474 research outputs found

    End-to-end weakly-supervised semantic alignment

    Get PDF
    We tackle the task of semantic alignment where the goal is to compute dense semantic correspondence aligning two images depicting objects of the same category. This is a challenging task due to large intra-class variation, changes in viewpoint and background clutter. We present the following three principal contributions. First, we develop a convolutional neural network architecture for semantic alignment that is trainable in an end-to-end manner from weak image-level supervision in the form of matching image pairs. The outcome is that parameters are learnt from rich appearance variation present in different but semantically related images without the need for tedious manual annotation of correspondences at training time. Second, the main component of this architecture is a differentiable soft inlier scoring module, inspired by the RANSAC inlier scoring procedure, that computes the quality of the alignment based on only geometrically consistent correspondences thereby reducing the effect of background clutter. Third, we demonstrate that the proposed approach achieves state-of-the-art performance on multiple standard benchmarks for semantic alignment.Comment: In 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018

    Taking the bite out of automated naming of characters in TV video

    No full text
    We investigate the problem of automatically labelling appearances of characters in TV or film material with their names. This is tremendously challenging due to the huge variation in imaged appearance of each character and the weakness and ambiguity of available annotation. However, we demonstrate that high precision can be achieved by combining multiple sources of information, both visual and textual. The principal novelties that we introduce are: (i) automatic generation of time stamped character annotation by aligning subtitles and transcripts; (ii) strengthening the supervisory information by identifying when characters are speaking. In addition, we incorporate complementary cues of face matching and clothing matching to propose common annotations for face tracks, and consider choices of classifier which can potentially correct errors made in the automatic extraction of training data from the weak textual annotation. Results are presented on episodes of the TV series ‘‘Buffy the Vampire Slayer”

    "'Who are you?' - Learning person specific classifiers from video"

    Get PDF
    We investigate the problem of automatically labelling faces of characters in TV or movie material with their names, using only weak supervision from automaticallyaligned subtitle and script text. Our previous work (Everingham et al. [8]) demonstrated promising results on the task, but the coverage of the method (proportion of video labelled) and generalization was limited by a restriction to frontal faces and nearest neighbour classification. In this paper we build on that method, extending the coverage greatly by the detection and recognition of characters in profile views. In addition, we make the following contributions: (i) seamless tracking, integration and recognition of profile and frontal detections, and (ii) a character specific multiple kernel classifier which is able to learn the features best able to discriminate between the characters. We report results on seven episodes of the TV series “Buffy the Vampire Slayer”, demonstrating significantly increased coverage and performance with respect to previous methods on this material

    Convolutional neural network architecture for geometric matching

    Get PDF
    We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.Comment: In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017

    Antitrust Standing of Target Corporations to Enjoin Hostile Takeovers Under Section 16 of the Clayton Act

    Get PDF
    Joint understanding of video and language is an active research area with many applications. Prior work in this domain typically relies on learning text-video embeddings. One difficulty with this approach, however, is the lack of large-scale annotated video-caption datasets for training. To address this issue, we aim at learning text-video embeddings from heterogeneous data sources. To this end, we propose a Mixture-of-Embedding-Experts (MEE) model with ability to handle missing input modalities during training. As a result, our framework can learn improved text-video embeddings simultaneously from image and video datasets. We also show the generalization of MEE to other input modalities such as face descriptors. We evaluate our method on the task of video retrieval and report results for the MPII Movie Description and MSR-VTT datasets. The proposed MEE model demonstrates significant improvements and outperforms previously reported methods on both text-to-video and video-to-text retrieval tasks

    Weakly-supervised learning of visual relations

    Full text link
    This paper introduces a novel approach for modeling visual relations between pairs of objects. We call relation a triplet of the form (subject, predicate, object) where the predicate is typically a preposition (eg. 'under', 'in front of') or a verb ('hold', 'ride') that links a pair of objects (subject, object). Learning such relations is challenging as the objects have different spatial configurations and appearances depending on the relation in which they occur. Another major challenge comes from the difficulty to get annotations, especially at box-level, for all possible triplets, which makes both learning and evaluation difficult. The contributions of this paper are threefold. First, we design strong yet flexible visual features that encode the appearance and spatial configuration for pairs of objects. Second, we propose a weakly-supervised discriminative clustering model to learn relations from image-level labels only. Third we introduce a new challenging dataset of unusual relations (UnRel) together with an exhaustive annotation, that enables accurate evaluation of visual relation retrieval. We show experimentally that our model results in state-of-the-art results on the visual relationship dataset significantly improving performance on previously unseen relations (zero-shot learning), and confirm this observation on our newly introduced UnRel dataset

    Occlusion resistant learning of intuitive physics from videos

    Get PDF
    To reach human performance on complex tasks, a key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation. This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences. Yet, most of these methods are restricted to the case where no, or only limited, occlusions occur. In this work we propose a probabilistic formulation of learning intuitive physics in 3D scenes with significant inter-object occlusions. In our formulation, object positions are modeled as latent variables enabling the reconstruction of the scene. We then propose a series of approximations that make this problem tractable. Object proposals are linked across frames using a combination of a recurrent interaction network, modeling the physics in object space, and a compositional renderer, modeling the way in which objects project onto pixel space. We demonstrate significant improvements over state-of-the-art in the intuitive physics benchmark of IntPhys. We apply our method to a second dataset with increasing levels of occlusions, showing it realistically predicts segmentation masks up to 30 frames in the future. Finally, we also show results on predicting motion of objects in real videos

    Weakly-supervised learning of visual relations

    Get PDF
    This paper introduces a novel approach for modeling visual relations between pairs of objects. We call relation a triplet of the form (subject, predicate, object) where the predicate is typically a preposition (eg. 'under', 'in front of') or a verb ('hold', 'ride') that links a pair of objects (subject, object). Learning such relations is challenging as the objects have different spatial configurations and appearances depending on the relation in which they occur. Another major challenge comes from the difficulty to get annotations, especially at box-level, for all possible triplets, which makes both learning and evaluation difficult. The contributions of this paper are threefold. First, we design strong yet flexible visual features that encode the appearance and spatial configuration for pairs of objects. Second, we propose a weakly-supervised discriminative clustering model to learn relations from image-level labels only. Third we introduce a new challenging dataset of unusual relations (UnRel) together with an exhaustive annotation, that enables accurate evaluation of visual relation retrieval. We show experimentally that our model results in state-of-the-art results on the visual relationship dataset significantly improving performance on previously unseen relations (zero-shot learning), and confirm this observation on our newly introduced UnRel dataset

    On Pairwise Costs for Network Flow Multi-Object Tracking

    Full text link
    Multi-object tracking has been recently approached with the min-cost network flow optimization techniques. Such methods simultaneously resolve multiple object tracks in a video and enable modeling of dependencies among tracks. Min-cost network flow methods also fit well within the "tracking-by-detection" paradigm where object trajectories are obtained by connecting per-frame outputs of an object detector. Object detectors, however, often fail due to occlusions and clutter in the video. To cope with such situations, we propose to add pairwise costs to the min-cost network flow framework. While integer solutions to such a problem become NP-hard, we design a convex relaxation solution with an efficient rounding heuristic which empirically gives certificates of small suboptimality. We evaluate two particular types of pairwise costs and demonstrate improvements over recent tracking methods in real-world video sequences
    • 

    corecore