
Secure Communication
in

Disaster Scenarios

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften
(Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik
der Philipps-Universität Marburg

vorgelegt von

Diplom-Informatiker

Lars Baumgärtner

geboren in Offenbach

Marburg, im September 2018

Vom Fachbereich Mathematik und Informatik der Philipps-Universität Marburg
(Hochschulkennziffer 1180) als Dissertation am 3. September 2018 angenommen.

1. Gutachter: Prof. Dr. Bernd Freisleben, Philipps-Universität Marburg
2. Gutachter: Prof. Dr. Matthias Hollick, Technische Universität Darmstadt

Tag der Einreichung am 3. September 2018.
Tag der mündlichen Prüfung am 27. November 2018.

Eidesstattliche Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig, ohne unerlaubte Hilfe
angefertigt und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten
Quellen und Hilfen bedient habe. Die Dissertation wurde in der jetzigen oder einer
ähnlichen Form noch bei keiner anderen Hochschule eingereicht und hat noch keinen
sonstigen Prüfungszwecken gedient.

Marburg, den

Datum Unterschrift

v

Abstract

During disasters, existing telecommunication infrastructures are often congested or
even destroyed. In these situations, mobile devices can be interconnected using wireless
ad hoc and disruption-tolerant networking to establish a backup emergency communi-
cation system for civilians and emergency services. When available, a connection to
cloud services in the Internet is a valuable aid in crisis and disaster management. How-
ever, such communication systems entail serious security risks, since adversaries may
attempt to steal confidential data, fake notifications of emergency services, or perform
denial-of-service (DoS) attacks. This thesis proposes novel emergency communication
approaches for challenged networks of mobile devices, addressing issues ranging from
mobile device communication to cloud services running on servers in the Internet.
Using these approaches, the security of mobile device-to-device communication, the
security of emergency apps running on mobile devices, and the security of server
systems hosting cloud services are improved.

vii

Deutsche Zusammenfassung

Während Naturkatastrophen oder terroristischer Anschläge ist die bestehende Kommu-
nikationsinfrastruktur häufig überlastet oder fällt komplett aus. In diesen Situationen
können mobile Geräte mithilfe von drahtloser ad-hoc- und unterbrechungstoleranter
Vernetzung miteinander verbunden werden, um ein Notfall-Kommunikationssystem
für Zivilisten und Rettungsdienste einzurichten. Falls verfügbar, kann eine Verbindung
zu Cloud-Diensten im Internet eine wertvolle Hilfe im Krisen- und Katastrophen-
management sein. Solche Kommunikationssysteme bergen jedoch ernsthafte Sicherheits-
risiken, da Angreifer versuchen könnten, vertrauliche Daten zu stehlen, gefälschte
Benachrichtigungen von Notfalldiensten einzuspeisen oder Denial-of-Service (DoS)
Angriffe durchzuführen. Diese Dissertation schlägt neue Ansätze zur Kommunikation
in Notfallnetzen von mobilen Geräten vor, die von der Kommunikation zwischen Mobil-
funkgeräten bis zu Cloud-Diensten auf Servern im Internet reichen. Durch die Nutzung
dieser Ansätze werden die Sicherheit der Geräte-zu-Geräte-Kommunikation, die Sicher-
heit von Notfall-Apps auf mobilen Geräten und die Sicherheit von Server-Systemen für
Cloud-Dienste verbessert.

ix

Acknowledgments

First of all, I would like to thank Prof. Dr. Bernd Freisleben for supervising me over the
course of my dissertation, for his assistance, and the valuable discussions that helped
me to advance this thesis. I am grateful that he gave me the opportunity to work in
different projects and let me follow different, exciting research topics.

I would also like to thank Prof. Dr. Matthias Hollick at the Technische Universität
Darmstadt for kindly taking the time to act as a reviewer of my thesis. Moreover, I
am thankful for the opportunity to benefit from the collaboration with colleagues and
researchers in the NICER project which would not have happened without him. This
project was very inspirational by not only providing technically challenging research
questions, but also giving me a new form of motivation by having a humanitarian goal
and working on something that is supposed to save and impact lives.

During the work on this thesis, I was financially supported by the German Ministry of
Research and Education (BMBF) in the ACCEPT project, the Hessische Landesoffensive
zur Entwicklung wissenschaftlich-ökonomischer Exzellenz (LOEWE) in the LOEWE-
Zentrum SYNMIKRO and in the LOEWE-Schwerpunkt NICER, as well as the German
Research Foundation (DFG) in the SFB 1053 (MAKI).

Furthermore, I would like to thank my past and present colleagues and students at
the Distributed Systems Group in Marburg who were important for many research
projects I was involved in (alphabetically): Prof. Dr. Ralph Ewerth, Prof. Dr. Sascha Fahl,
Dr. Niels Fallenbeck, Pablo Graubner, Christina Heitzer, Jonas Höchst, Dr. Ernst Juhnke,
Nikolaus Korfhage, Patrick Lampe, Matthias Leinweber, Prof. Dr. Dorian Minarolli, Prof.
Dr. Afef Mdhaffar, Dr. Markus Mühling, Alvar Penning, Falk Schellenberg, Dr. Matthias
Schmidt, Nils Schmidt, Dr. Roland Schwarzkopf, Prof. Dr. Matthew Smith, Markus
Sommer, Artur Sterz, and Christian Strack. Special thanks go to Mechthild Kessler for
managing almost everything in administration, so that one can completely focus on
research. Without her, the Distributed Systems Group would be pretty thwarted.

While being involved in different projects, I had interesting, inspirational and fun
collaborations in Marburg and across universities with (alphabetically): Lars Almon, Dr.
Thomas Fober, Prof. Dr. Kurt Geihs, Dr. Bastian Hoßbach, Prof. Dr. Stefan Katzenbeisser,
Prof. Dr. Anja Klein, Dr. Stefan Kohlbrecher, Florian Kohnhäuser, Christian Meurisch,
Prof. Dr. Mira Mezini, Ragnar Mogk, Prof. Dr. Max Mühlhäuser, Dr. Björn Richerzhagen,
Prof. Dr. Guido Salvaneschi, Prof. Dr. Bernhard Seeger, Marc Seidemann, Prof. Dr. Ralf
Steinmetz, Prof. Dr. Paul Gardner-Stephen, Prof. Dr. Oskar von Stryk, Milan Stute. For
these, I am very grateful.

Finally, I want to thank my family for always being there for me. My parents Angelika
and Wolfgang Baumgärtner supported me in all my activities from early childhood
on and encouraged my to pursue all my goals in life. They made me the curious,
open-minded person I am today, for which I am deeply grateful. Last but not least, I
also have to thank Eva, who always has my back and helped me through many difficult
times, pushing me when I was unmotivated and providing a cozy place when needed.

xi

My Contributions

As already indicated in my acknowledgments, I am grateful to several persons who
cooperated with me or who influenced my research in one way or another. Security,
systems, and network research are often joint work. Therefore, pinning achievements
to a single individual is not always possible, since most developments are ongoing
processes, involving contributions from different participants. Furthermore, students
play a vital role in implementing ideas or assisting with experimental evaluations.
Since this thesis contains content from original publications, often in verbatim form, it
also includes joint and sometimes practically indivisible contributions from colleagues.
Therefore, I try to highlight my specific contributions as good as possible below.

Chapter 3 presents solely my views and ideas for the research topics addressed in
this thesis.

Chapter 4 includes several works that are joint efforts of different researchers in the
LOEWE NICER project. Although many ideas and concepts are genuinely my work,
several bachelor and master students were involved in the experimental evaluations
and parts of the implementations [1]–[6]. This holds especially for Sections 4.3, 4.4,
and 4.6 where student assistants contributed to realizing and evaluating my concepts.
Sections 4.2, 4.5, and 4.7 are also based on students’ master theses that I supervised,
where I also made contributions to the design, implementation, and evaluation in the
published version of these works. I developed the idea and the concept of the publication
on environmental monitoring [6] plus major parts of the implementation such as the
rf95modem firmware and the BLE LoRa integration. The Serval evaluation study [2]
was my idea, and I also supervised the involved students. Pablo Graubner performed
the energy related evaluation in the announcement interval paper [3], while I developed
the underlying software (mesher) and the announcement algorithms, and a student was
involved in some implementation parts and the evaluation setup. Bringing different
aspects of emergency communication together in a joint publication [7] involved people
from different backgrounds. My work focused on the overall architecture, as well as the
integration and evaluation of the DTN component for the mobile cloud in Section 4.8,
and I also had the lead for producing the paper. Here, I developed different components
of the mobile cloud, such as Serval shell integration, ServalDesktopApp, sdnatui, serval-
socks-proxy etc. and evaluation helpers like core-automator. Through several joint
discussions, novel concepts for secure mobile device communication were formulated
between Florian Kohnhäuser, Milan Stute, Lars Almon, and me. This led to the SEDCOS
publication [8] in Section 4.9 where my contributions were mainly providing a system
model and input for the overall concept, plus integrating knowledge gained from my
previous work on various DTN systems, which was used in initial versions of the paper.
For several publications [1]–[3], [5], [6], I wrote the initial texts, while I wrote major
parts of the initial texts for other publications [4], [7].

Chapter 5 focuses on joint work with other members of our research group in
Marburg or with former members at other universities. In the Eve and Mallory paper

xiii

[9] presented in Section 5.2, my main contributions were performing manual app audits,
writing automated tests, and developing proof-of-concept exploits such as the Zoner-
AV hack featured in the paper. AndroLyze and Dynalize [10], [11] were joint efforts
between Pablo Graubner, students, and me. While my focus was mostly on the static
app analysis and distributed system design of AndroLyze (Section 5.3) plus assisting
with requirements and developing use cases for Dynalize (Section 5.4), Pablo Graubner
was responsible for the architecture and cloud integration of Dynalize. AndroLyze
was also part of a bachelor thesis that I supervised. I designed and conducted the
emergency app audit in Section 5.5, assisted by a student.

Chapter 6 includes cooperations between different partners of the BMBF ACCEPT
project. In the mail server misuse paper [12], a bachelor student was involved in the
evaluation of the results, and his bachelor thesis was also about the topic presented in
Section 6.2. In the malware detection paper [13], I contributed the kernel introspection
and hooking parts described in Section 6.3. In the ACCEPT system [14], [15], I mainly
take credit for being involved in the overall architectural design and the design and
implementation of sensors on various layers (where my colleagues Christian Strack and
Matthias Leinweber also made contributions), as well as in designing the use case and
developing the proof-of-concept implementation.

xiv

Contents

Abstract vii

Deutsche Zusammenfassung ix

Acknowledgments xi

My Contributions xiii

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Statement . 4

1.3 Contributions . 5

1.4 Publications . 6

1.5 Outline . 8

2 Background 9
2.1 Networking . 9

2.1.1 Mesh Networking . 9

2.1.2 Delay-/Disruption-Tolerant Networking 10

2.1.3 Serval . 11

2.2 Mobile Devices . 12

2.3 Emergency Communication . 14

2.3.1 Federal Public Warning Systems 14

2.3.2 Infrastructureless Communication 17

2.4 Cloud Computing . 19

2.5 Security . 20

2.5.1 Transport Layer Security . 20

2.5.2 Man-in-the-Middle Attacks . 20

3 Secure Emergency Communication 23
3.1 Emergency Communication . 23

3.1.1 Internet Services . 23

3.1.2 Mobile Applications . 24

3.1.3 Shortcomings . 25

3.2 Design of a Secure Emergency Communication System 26

3.2.1 Disruption-tolerant Device-to-Device Emergency Communication 27

3.2.2 Security Vulnerability Analysis of Mobile Apps 28

3.2.3 Secure Cloud Systems . 29

4 Disruption-tolerant Device-to-Device Emergency Communication 31
4.1 Introduction . 31

xv

Contents

4.2 MiniWorld - An Emulation-based Evaluation Environment 33

4.2.1 Introduction . 33

4.2.2 Related Work . 34

4.2.3 MiniWorld’s Design . 35

4.2.4 Implementation . 37

4.2.5 Experimental Evaluation . 41

4.2.6 Conclusion . 46

4.3 Serval - A Robust Communication Foundation 48

4.3.1 Introduction . 48

4.3.2 Related Work . 49

4.3.3 Experimental Evaluation . 50

4.3.4 Conclusion . 58

4.4 Optimizing Epidemic Announcements . 60

4.4.1 Introduction . 60

4.4.2 Related Work . 61

4.4.3 Design . 63

4.4.4 Implementation . 65

4.4.5 Experimental Evaluation . 66

4.4.6 Conclusion . 73

4.5 DTN-RPC - Offloading Work in Challenged Environments 75

4.5.1 Introduction . 75

4.5.2 Related Work . 76

4.5.3 DTN-RPC’s Design . 77

4.5.4 Implementation . 81

4.5.5 Experimental Evaluation . 82

4.5.6 Conclusion . 88

4.6 Environmental Monitoring Platforms for Disaster Scenarios 89

4.6.1 Introduction . 89

4.6.2 Related Work . 90

4.6.3 Sensor Platforms for Disaster Scenarios 90

4.6.4 Implementation . 92

4.6.5 Experimental Evaluation . 96

4.6.6 Conclusion . 102

4.7 Applications for Disaster Response: SmartFace 103

4.7.1 Introduction . 103

4.7.2 Related Work . 103

4.7.3 SmartFace’s Design . 104

4.7.4 Implementation . 105

4.7.5 Experimental Evaluation . 106

4.7.6 Conclusion . 113

4.8 Applications for Disaster Response: UV4EC 114

4.8.1 Introduction . 114

4.8.2 Related Work . 115

4.8.3 UV4EC’s Design and Implementation 116

4.8.4 Experimental Evaluation . 121

4.8.5 Conclusion . 126

xvi

Contents

4.9 SEDCOS - Secure Disaster Communication 128

4.9.1 Introduction . 128

4.9.2 Related Work . 128

4.9.3 System Model . 129

4.9.4 Secure Key Management . 129

4.9.5 Resilient Communication . 131

4.9.6 Experimental Evaluation . 133

4.9.7 Conclusion . 134

4.10 Summary . 135

5 Security Vulnerability Analysis of Mobile Apps 137

5.1 Introduction . 137

5.2 TLS Usage in Android Apps . 138

5.2.1 Introduction . 138

5.2.2 Background . 139

5.2.3 Related Work . 141

5.2.4 Evaluating Android SSL Usage . 142

5.2.5 MITMA Study . 146

5.2.6 Limitations of our Analysis . 152

5.2.7 Trouble in Paradise . 152

5.2.8 Countermeasures . 154

5.2.9 Conclusion . 156

5.2.10 List of Apps With Broken SSL Usage 157

5.3 AndroLyze: Static Mobile App Analysis 159

5.3.1 Introduction . 159

5.3.2 Related Work . 159

5.3.3 AndroLyze’s Design . 161

5.3.4 Implementation . 165

5.3.5 Experimental Evaluation . 167

5.3.6 Conclusion . 173

5.4 Dynalize: Dynamic Mobile App Analysis 175

5.4.1 Introduction . 175

5.4.2 Related Work . 175

5.4.3 Dynalize’s Design and Implementation 177

5.4.4 Experimental Evaluation . 181

5.4.5 Conclusion . 185

5.5 Security Assessment of Emergency Apps 186

5.5.1 Introduction . 186

5.5.2 Popular Emergency Apps . 186

5.5.3 Common Attack Surface . 187

5.5.4 Individual App Audits . 188

5.5.5 Conclusion . 198

5.6 Summary . 200

6 Secure Cloud Systems 201

6.1 Introduction . 201

xvii

Contents

6.2 Assessment of Email Delivery Security 202

6.2.1 Introduction . 202

6.2.2 Related Work . 203

6.2.3 An Empirical Study of SMTP over TLS 205

6.2.4 Advice for Email Providers . 214

6.2.5 Conclusion . 215

6.3 Hardening Server Systems . 217

6.3.1 Introduction . 217

6.3.2 Problem Statement . 217

6.3.3 Related Work . 219

6.3.4 Design . 220

6.3.5 Implementation . 225

6.3.6 Experimental Evaluation . 228

6.3.7 Conclusion . 230

6.4 Reactive Realtime Cloud Infrastructure Monitoring 231

6.4.1 Introduction . 231

6.4.2 Related Work . 232

6.4.3 Architecture . 235

6.4.4 Example Anomaly Detection . 237

6.4.5 Sensor Framework . 239

6.4.6 Analysis-VM . 243

6.4.7 Action Framework . 251

6.4.8 Conclusion . 254

6.5 Summary . 255

7 Conclusion 257
7.1 Summary . 257

7.2 Future Work . 258

List of Figures 259

List of Tables 263

Bibliography 265

Curriculum Vitae 287

xviii

1 Introduction

1.1 Motivation

The unfortunate reality is that each year disasters and emergencies occur in many
places around the world. The chart shown in Figure 1.1 displays an increasing trend
for most types of natural disasters in the last decades, not even taking into account acts
of terrorism or wars.

Figure 1.1: Natural catastrophes since 1980.1

Especially highly developed countries are in danger due to their high dependency
on electricity and communication. Without local food production or fuel, life depends
on coordinated efforts and logistics. Apart from a lack of electrical power, another
common feature of these events is that partial or complete loss of communication
capacity occurs.2 Even without the loss of communication capacity in a disaster, there
are significant challenges to providing effective information for those affected [16]. The
loss of means of communication serves to compound the difficulties and sufferings
faced by those in the disaster area [17]. Furthermore, communication is needed to find
missing people, self-organize aid by civilians or report local issues and emergencies
to authorities. It is not only useful for person-to-person text messaging, but also
vital to coordinate semi-autonomous systems such as Unmanned Aerial and Ground
Vehicles (UAVs and UGVs). The use of drones and ground-based robots has many
advantages and helps to protect the lives of professional responders. For example,
in the Fukushima event, UGVs were sent into areas where radiation levels were too

1Deutsche Welle: https://p.dw.com/p/152Y2
2https://www.drj.com/articles/online-exclusive/when-communications-infrastructure-

fails-during-a-disaster.html

1

https://p.dw.com/p/152Y2
https://www.drj.com/articles/online-exclusive/when-communications-infrastructure-fails-during-a-disaster.html
https://www.drj.com/articles/online-exclusive/when-communications-infrastructure-fails-during-a-disaster.html

1 Introduction

Figure 1.2: FEMA Top 10 Response Core Capabilities.4

Figure 1.3: FEMA Top 10 Protection Core Capabilities.5

high for human rescuers, which also shows that current systems easily reach their
limits.3 Furthermore, infrastructureless wireless sensing is beneficial for environmental
monitoring in various application scenarios, such as in a disaster where it is vital for
the operational planning of professional responders.

A communication infrastructure is a critical key component to successful disaster
response. This is also reflected in the National Preparedness Report of the US’ Federal
Emergency Management Agency (FEMA) where operational communication has the
highest priority of the 10 core capabilities (Fig. 1.2).

Since communication plays a vital role, the integrity and security of such a system

3https://singularityhub.com/2018/04/25/how-fukushima-changed-japanese-robotics-and-

woke-up-the-industry/
4Source: https://www.fema.gov/national-preparedness-report
5Source: https://www.fema.gov/national-preparedness-report

2

https://singularityhub.com/2018/04/25/how-fukushima-changed-japanese-robotics-and-woke-up-the-industry/
https://singularityhub.com/2018/04/25/how-fukushima-changed-japanese-robotics-and-woke-up-the-industry/
https://www.fema.gov/national-preparedness-report
https://www.fema.gov/national-preparedness-report

1.1 Motivation

is of importance for professional responders as well as civilians involved. FEMA’s
National Preparedness Report also lists cybersecurity as its top priority in its protection
category (Fig. 1.3), since many other operations and tasks heavily depend on networked
systems. Therefore, there is a moral imperative to seek out means of finding ways to
restore, or better, sustain secure communication during and following such adverse
events.

3

1 Introduction

1.2 Problem Statement

To deliver a viable solution to the problems discussed above, several steps are necessary.
Since the challenges for networked devices during disasters are different from regular
setups, a controlled environment is needed for repeated tests, realistic development
and evaluation of new approaches. Modern technology such as virtualization and
emulation can be used to build simulations of larger scale with ease. This is the
foundation for any further developments regarding a secure emergency communication
system. Three different problem areas can be identified that are important for this
thesis. First, infrastructureless communication must be used to deliver relevant services
in a secure and efficient manner between end user devices. Second, the applications
running on mobile devices and providing emergency services to users are critical for
the security of the communication system. Third, more powerful backend systems
running on machines at a mobile command center or in the cloud must be considered.
Each of these areas has specific problems and requirements as outlined below.

1. Disruption-tolerant Device-to-Device Communication. The main challenge is
to deliver services such as messaging or task offloading with remote procedure
calls in a secure yet accessible way for a disaster scenario where communication
infrastructure failed. Therefore, one has to rely on battery-powered commodity
hardware, such as mobile phones. This limits the radio link technologies to those
capable of direct device-to-device communication, such as WiFi, Bluetooth, and
(with additional hardware) LoRa, without relying on working cell towers. Further-
more, the communication should ideally utilize disruption-tolerant-networking
(DTN) and/or mesh networking to cope with the challenged network environ-
ment where links and devices are prone to fail or move out of range. Existing
algorithms often either do not take these highly dynamic networks with often
disrupted connections into account and/or neglect limited resources such as
battery or computing power.

2. Security Vulnerability Analysis of Mobile Apps. Since emergency apps are the
main interface for users on mobile devices, their security is vital for the whole
system. For an in-depth analysis of the security level of any given or developed
solution, dynamic as well as static code analysis should be performed to assess
attack surfaces and identify vulnerabilities. Having automated tests that can be
repeated easily ensures that the security level can be kept even after adding new
features to an app.

3. Secure Cloud Systems. Having services running on larger machines in the
fog/edge of a network or virtualized in the cloud also means that they are
exposed to possible attacks. Protecting core services such as email, which plays a
vital role for professional first responders, is important in maintaining the overall
security of rescue operations. Moreover, further steps must be taken to ensure the
security and integrity of such a system not only on the network level but also
across the whole setup.

The aim of this thesis is to present approaches that provide solutions to the three
problem areas outlined above.

4

1.3 Contributions

1.3 Contributions

The main research contributions of this thesis are:

Topic Contributions

Emergency Network Emulation

A novel, flexible, distributed emulation environment for
realistically evaluating software in emergency scenarios
is presented. The proposed approach utilizes full system
emulation and can be integrated with external simulations
for positional updates. The network back-end is flexible and
can mimic different wireless interfaces.

DT-D2D Communication

A novel communication system including a set of new
approaches to deliver a mobile cloud infrastructure with
efficient data dissemination through dynamic announcement
intervals and disruption-tolerant remote procedure calls
is presented. These can power advanced apps such as
on-device face recognition for supporting the search for
missing persons, integrate UAVs for communication and
rescue operations as well as faciliate various environmental
sensoring setups. These approaches are portable and
platform agnostic, covering mobile devices, computers and
small embedded system. Furthermore, a large variety of
radio link technologies is covered (e.g. Bluetooth, WiFi, LoRa)
by the developed solutions. Also, new solutions for increased
security in the communication system are presented.

Security Analysis of Apps

A novel suite of tools for automated and repeatable static
as well as dynamic analysis of mobile Android apps is
presented. These tools can be deployed to repeatedly audit
large sets of apps. The usefulness is shown through several
mass audits regarding the state of security in Android apps.

Secure Cloud Systems

A novel approach for securing virtualized server systems
by integrating classic anti-virus solutions with live system
introspection and dynamic sensors deployed across several
layers is presented. The use of a federated Complex Event
Processing (CEP) system in conjunction with a historic event
database enables new ways to eliminate false positives and
detect various anomalies through minimal added logic within
each virtual machine.

5

1 Introduction

1.4 Publications

During the work on this thesis, the following papers were published:

1. L. Baumgärtner, A. Penning, P. Lampe, B. Richerzhagen, R. Steinmetz, and B.
Freisleben, “Environmental Monitoring Using Low-Cost Hardware and Infras-
tructureless Wireless Communication,” in IEEE Global Humanitarian Technology
Conference (GHTC 2018), San Jose, USA: IEEE, 2018, accepted for publication

2. R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini, “Fault-
tolerant Distributed Reactive Programming,” in 32nd European Conference on Object-
Oriented Programming (ECOOP 2018), vol. 109, Amsterdam, The Netherlands:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018, 1:1–1:26

3. P. Graubner, P. Lampe, J. Höchst, L. Baumgärtner, M. Mezini, and B. Freisleben,
“Opportunistic Named Functions in Disruption-tolerant Emergency Networks,”
in ACM International Conference on Computing Frontiers 2018 (ACM CF’18), Ischia,
Italy: ACM, 2018, pp. 129–137

4. L. Baumgärtner, S. Kohlbrecher, J. Euler, T. Ritter, M. Schmittner, C. Meurisch, M.
Mühlhäuser, M. Hollick, O. von Stryk, and B. Freisleben, “Emergency Communi-
cation in Challenged Environments via Unmanned Ground and Aerial Vehicles,”
in IEEE Global Humanitarian Technology Conference (GHTC 2017), San Jose, USA:
IEEE, 2017, pp. 1–9

5. C. Meurisch, J. Gedeon, A. Gogel, T. A. B. Nguyen, F. Kaup, F. Kohnhäuser, L.
Baumgärtner, M. Schmittner, and M. Mühlhäuser, “Temporal Coverage Analysis
of Router-based Cloudlets Using Human Mobility Patterns,” in 2017 IEEE Global
Communications Conference: Selected Areas in Communications: Internet of Things
(Globecom 2017 SAC IoT), Singapore, Singapore: IEEE, 2017, pp. 1–6

6. F. Kohnhäuser, M. Schmittner, L. Baumgärtner, L. Almon, S. Katzenbeisser, M.
Hollick, and B. Freisleben, “SEDCOS: A Secure Device-to-Device Communication
System for Disaster Scenarios,” in 42nd Annual IEEE Conference on Local Computer
Networks (LCN 2017), Singapore, Singapore: IEEE, 2017, pp. 195–198

7. J. Höchst, L. Baumgärtner, M. Hollick, and B. Freisleben, “Unsupervised Traffic
Flow Classification Using a Neural Autoencoder,” in 42nd Annual IEEE Conference
on Local Computer Networks (LCN 2017), Singapore, Singapore: IEEE, 2017, pp. 523–
526

8. A. Sterz, L. Baumgärtner, R. Mogk, M. Mezini, and B. Freisleben, “DTN-RPC:
Remote Procedure Calls for Disruption-Tolerant Networking,” in IFIP Networking
2017 Conference and Workshops (Networking 2017), Stockholm, Sweden: IFIP, 2017,
pp. 1–9

9. N. Schmidt, L. Baumgärtner, P. Lampe, K. Geihs, and B. Freisleben, “MiniWorld:
Resource-aware Distributed Network Emulation via Full Virtualization,” in 22nd
IEEE Symposium on Computers and Communication (ISCC 2017), Heraklion, Greece:
IEEE, 2017, pp. 818–825

10. P. Lampe, L. Baumgärtner, R. Steinmetz, and B. Freisleben, “SmartFace: Efficient
Face Detection on Smartphones for Wireless On-demand Emergency Networks,”
in 24th International Conference on Telecommunications (ICT 2017), Limassol, Cyprus:
IEEE, 2017, pp. 1–7

11. L. Baumgärtner, P. Graubner, J. Höchst, A. Klein, and B. Freisleben, “The More
You Speak, the Less You Hear: On Dynamic Announcement Intervals in Wireless

6

1.4 Publications

On-demand Networks,” in 13th Conference on Wireless On-demand Network Systems
and Services (WONS 2017), Jackson Hole, USA: IEEE, 2017, pp. 33–40

12. L. Baumgärtner, P. Gardner-Stephen, P. Graubner, J. Lakeman, J. Höchst, P. Lampe,
N. Schmidt, S. Schulz, A. Sterz, and B. Freisleben, “An Experimental Evaluation of
Delay-Tolerant Networking with Serval,” in IEEE Global Humanitarian Technology
Conference (GHTC 2016), Seattle, USA: IEEE, 2016, pp. 1–8

13. M. Leinweber, T. Fober, M. Strickert, L. Baumgärtner, G. Klebe, B. Freisleben, and
E. Hüllermeier, “CavSimBase: A Database for Large Scale Comparison of Protein
Binding Sites,” IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 6,
pp. 1423–1434, 2016

14. L. Baumgärtner, J. Höchst, M. Leinweber, and B. Freisleben, “How to Misuse
SMTP over TLS: A Study of the (In) Security of Email Server Communication,” in
2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland: IEEE, 2015, pp. 287–294

15. L. Baumgärtner, C. Strack, B. Hoßbach, M. Seidemann, B. Seeger, and B. Freisleben,
“Complex Event Processing for Reactive Security Monitoring in Virtualized Com-
puter Systems,” in Proceedings of the 9th ACM International Conference on Distributed
Event-Based Systems, Oslo, Norway: ACM, 2015, pp. 22–33

16. L. Baumgärtner, P. Graubner, N. Schmidt, and B. Freisleben, “AndroLyze: A Dis-
tributed Framework for Efficient Android App Analysis,” in IEEE 2nd International
Conference on Mobile Services (MS 2015), New York City, USA: IEEE, 2015, pp. 73–80

17. P. Graubner, L. Baumgärtner, P. Heckmann, M. Müller, and B. Freisleben, “Dy-
nalize: Dynamic Analysis of Mobile Apps in a Platform-as-a-Service Cloud,” in
IEEE 8th International Conference on Cloud Computing (CLOUD 2015), New York
City, USA: IEEE, 2015, pp. 925–932

18. M. Leinweber, L. Baumgärtner, M. Mernberger, T. Fober, E. Hüllermeier, G. Klebe,
and B. Freisleben, “GPU-based Cloud Computing for Comparing the Structure of
Protein Binding Sites,” in 6th IEEE International Conference on Digital Ecosystems
Technologies (DEST 2012), Campione d’Italia, Italy: IEEE, 2012, pp. 1–6

19. S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith,
“Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security,”
in Proceedings of the 2012 ACM Conference on Computer and Communications Security
(CCS), Raleigh, USA: ACM, 2012, pp. 50–61

20. L. Baumgärtner, P. Graubner, M. Leinweber, R. Schwarzkopf, M. Schmidt, B.
Seeger, and B. Freisleben, “Mastering Security Anomalies in Virtualized Comput-
ing Environments via Complex Event Processing,” in Proceedings of the The Fourth
International Conference on Information, Process, and Knowledge Management (eKNOW
2012), Valencia, Spain: IEEE, 2012, pp. 76–81

21. M. Schmidt, L. Baumgärtner, P. Graubner, D. Böck, and B. Freisleben, “Malware
Detection and Kernel Rootkit Prevention in Cloud Computing Environments,”
in 19th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP 2011), Ayia Napa, Cyprus: IEEE, 2011, pp. 603–610

7

1 Introduction

1.5 Outline

This thesis is organized as follows:
Chapter 2 introduces topics fundamental for the research in this thesis. The top-

ics covered include emergency communication in general, mesh and delay-tolerant
networking technologies as well as cloud computing and security issues.

Chapter 3 gives a more in-depth overview of the work presented in this thesis.
The architecture of the proposed system as well as challenging areas covered in the
following chapters are explained.

Chapter 4 includes research results obtained to provide optimized emergency com-
munication services on mobile devices. Apart from algorithmic improvements to data
dissemination and remote procedure calls, concrete applications such as mobile face
detection and its integration with unmanned vehicles are discussed.

Chapter 5 presents work to improve the security of apps running on mobile devices.
Audits on current mobile apps are performed as well as general frameworks for static
and dynamic analysis are presented.

Chapter 6 discusses approaches for cloud service security in emergency scenarios.
The technologies covered include email as well as realtime security monitoring for
cloud computing and system hardening.

Chapter 7 concludes the thesis and discusses possible areas of future work.

8

2 Background

In this chapter, fundamental issues relevant for the research presented in this thesis
are discussed. General networking technologies such as mesh routing and delay-
tolerant networking as well as relevant technologies regarding mobile devices and
cloud computing are explained. Furthermore, an overview of security related topics is
given.

2.1 Networking

In the context of an emergency scenario, network infrastructure is not available or unable
to function reliably. Due to the highly dynamic nature of the network, static routing
based on OSPF1, RIP2 or BGP3 is not suited to provide stable routes for applications
to perform well. One alternative is to use mesh networking with algorithms that are
specifically tailored to provide the kind of dynamic routing that is needed in these
environments. The other alternative is to rely on Delay-/Disruption-Tolerant-Networking
(DTN) where data dissemination happens in bundles rather than packets.

2.1.1 Mesh Networking

The most common wireless mesh routing algorithms used in communities such as
Freifunk4, GuiFi5, and Commotion Wireless6 are described below.

OLSR

The Optimized Link State Routing protocol is formally described in RFC 3626
7. It is a

proactive link-state routing mechanism working on the IP-layer and often deployed in
wireless ad-hoc networks. It uses specific Hello and Topology Control (TC) messages
in conjunction with periodic broadcasts to build its routing tables. This information is
used by each node to compute the next hop for all nodes. Due to its proactive nature
and rather large routing tables that are disseminated, OLSR requires some bandwidth
and CPU power to fully function. The main implementation runs as a userland routing
daemon on various platforms such as Linux, MacOS X, FreeBSD etc.

1https://tools.ietf.org/html/rfc2328
2https://tools.ietf.org/html/rfc2453
3https://tools.ietf.org/html/rfc4271
4https://freifunk.net/
5https://guifi.net/
6https://www.commotionwireless.net/
7https://tools.ietf.org/html/rfc3626

9

https://tools.ietf.org/html/rfc2328
https://tools.ietf.org/html/rfc2453
https://tools.ietf.org/html/rfc4271
https://freifunk.net/
https://guifi.net/
https://www.commotionwireless.net/
https://tools.ietf.org/html/rfc3626

2 Background

Figure 2.1: IP vs DTN data flow.12

B.A.T.M.A.N.

Better Approach To Mobile Adhoc Networking (B.A.T.M.A.N.)8 is designed as a layer 2

multi-hop routing algorithm for wireless ad-hoc networks. To eliminate the resource
intensive routing information calculation and dissemination of OLSR, each node only
has statistics about where it got data from and uses this for sending decisions at
each hop. Therefore, the node does not know the complete best route to a destination
but only the best next hop node. To build up these statistics, the network is flooded
periodically with small Originator Messages (OGMs) that are forwarded and processed
by the nodes. In case of multiple neighbors, a node chooses a next hop node by checking
the OGM statistics for each neighbor, through which the most OGMs in the shortest
time were received from the target node. The main implementation is tightly coupled
to the Linux kernel and runs as a loadable kernel module in Linux.

2.1.2 Delay-/Disruption-Tolerant Networking

DTN development is strongly driven by NASA9 and other space agencies to ease
communication between satellites, robots, spacecrafts etc. These devices only have
limited communication opportunities and often unstable links. Therefore, instead of
relying on real-time routing and direct connections, data is passed in a store-and-
forward fashion from node to node. Here, each device acts as a ”data mule”, physically
carrying data around. A direct comparison of end-to-end communication with IP
and incremental data dissemination using DTN is shown in Figure 2.1. For reference
purposes, the RFCs 4838

10 and 5050
11 provide specifications for a Bundle Protocol.

There are different distribution strategies and routing algorithms specifically de-
signed for DTNs. Some prominent replication-based candidates are summarized in the
following paragraphs.

8https://www.open-mesh.org
9https://www.nasa.gov/content/dtn

10https://tools.ietf.org/html/rfc4838
11https://tools.ietf.org/html/rfc5050
12https://www.nasa.gov/sites/default/files/dtn_0.png

10

https://www.open-mesh.org
https://www.nasa.gov/content/dtn
https://tools.ietf.org/html/rfc4838
https://tools.ietf.org/html/rfc5050
https://www.nasa.gov/sites/default/files/dtn_0.png

2.1 Networking

File
Distribution MeshMS Voice

Mesh

Rhizome DTN Mesh Datagram
Protocol (MDP)

Serval Overlay Mesh

UDP, IP, Ethernet/WiFi Packet Radio ...

Figure 2.2: The Serval technology stack

Epidemic. Epidemic routing uses flooding as its basis, trying to synchronize all data
to any new neighbor lacking a copy of it [24]. Even though many resources are wasted
in this approach, it also is very robust when it comes to failing nodes and delivery
rates.

PRoPHET. The Probabilistic Routing Protocol using History of Encounters and
Transitivity (PRoPHET) protocol tries to conserve resources by exploiting the fact that
human encounters, also in DTN ”data mule” context, are rarely purely random [25].
This is achieved by keeping track of probabilities for successful delivery of bundles
through different nodes. Therefore, data synchronization is only triggered if a neighbour
node has a higher probability of delivering the message. This protocol has also been
formalized as RFC 6693.13

2.1.3 Serval

Serval is centered around a suite of protocols and technologies designed to allow ad-hoc
infrastructure-independent communications [26], [27], as illustrated in Fig. 2.2. The
goal is to provide infrastructure-independent versions of many of the services that
are commonly used on smartphones in conjunction with the Internet and/or cellular
networks, e.g., voice calls, short text messaging (SMS), voice mail, social media, as well
as file and image transfer.

The Serval Mesh protocols purposely take a contrasting approach to that of us-
ing IP (v4 or v6) as the basis for forming mobile ad-hoc communications networks
(MANETs) [28]. The reason for this is that despite billions of dollars of research and
development work, IP-based MANETs still struggle, and face a number of significant
challenges that limit their real-world use, e.g., address allocation, the need to main-
tain a routing table, authenticity and integrity of communications, and the need for
relatively reliable and stable end-to-end connectivity for such systems. Instead, Serval
uses 256-bit public cryptographic keys as the primary network identifier, the so-called
Serval ID (SID), and also includes a rich security model that facilitates confidentiality,
integrity and authenticity by design, and does not require a Trusted Third Party (TTP)
to operate. It also includes a store-and-forward DTN protocol (Rhizome), allowing
network operation in the absence of end-to-end connectivity.

13https://tools.ietf.org/html/rfc6693

11

https://tools.ietf.org/html/rfc6693

2 Background

Rhizome and Delay Tolerant Networking

Rhizome is a simple bundle protocol that principally defines data units as bundles,
consisting of an optional payload, together with a manifest that contains necessary
meta-data. Manifests have a hard size limit of 1 KB to improve efficiency, and must also
contain a cryptographic public key that is used to protect the integrity and authenticity
of the manifest itself. The manifest may also contain a cryptographic hash, indicating
that it has an associated payload, together with other meta-data, such as mime-type,
Rhizome service tag, file-name, and SID of the sender and/or recipient, as appropriate.

While the Rhizome implementation includes several transports for Rhizome, includ-
ing HTTP, packet radio and the Serval MDP protocol described below, the protocol is
purposely agnostic of the transport, to allow other transports to be added. The intention
of this is that any transport that is capable of carrying bytes of data can be used to
transport Rhizome data.

As a simple state-less flooding protocol, Rhizome requires no routing table, and
never requires that two parties have an end-to-end connection for them to communicate.
That is, the Rhizome protocol is always focused on single-hop communications, with
multi-hop communications emerging as a natural consequence of bundles replicating
among nodes.

Rhizome is used as the basis for the SMS-like Mesh Messaging Service (MeshMS) [29],
and file distribution, including software updates. It is also planned to implement a
twitter-like micro-blogging service using Rhizome.

MDP, MSP and Node Discovery

In addition to the Rhizome DTN protocol, Serval also includes a real-time packet-
switched protocol, the Mesh Datagram Protocol (MDP) that is generally similar to
UDP/IP, but uses SIDs instead of IP addresses, and includes encryption, authentication
and integrity features by default. The TCP-like Mesh Streaming Protocol (MSP) is lay-
ered atop MDP to provide reliable data streaming. Various services can be implemented
atop MDP and MSP, including the VoIP-like Voice over MDP Protocol (VoMP).

MDP routing uses an OSLR- and BATMAN-inspired [30], [31] ad-hoc protocol for
both node discovery and maintaining a routing table, that facilitates multi-hop routing
of packets. In order to reduce packet sizes, address abbreviation is used, so that only
the minimum number of bytes of a SID is required to uniquely identify a node among
its direct, i.e., 1-hop neighbours. This reduces the header size in the common case to be
smaller than that used for IPv6.

2.2 Mobile Devices

Mobile devices in general characterize networked appliances such as tablet computers
and smartphones, in a broader sense also smart watches and notebooks. In this thesis,
the focus will be on smartphones and tablets. Even though many vendors exist, the
majority of devices either run Apple’s iOS or Google’s Android operating system.
Due to its openness and easy accessibility, Android is often the platform of choice for
researchers. Some brief information about Google’s system is given below.

12

2.2 Mobile Devices

Figure 2.3: Contents of NINA APK

Android

Android is an operating system developed by Google specifically for smartphones,
tablets and similar devices.14 At its core it uses a modified Linux kernel with a custom
userland and user interface. While apps are generally written in Java, there is no
stack-based Java Virtual Machine (JVM) involved, but a register-based one called Dalvik
Virtual Machine (Dalvik VM). Inter-process communication between apps can happen
through explicit and implicit intents. Through this system, an app can subscribe to
events such a shared photo or contact information. Sending apps can either specify an
explicit application to handle the payload in the intent or just share the data such that
any application can respond to it. While UI code is written in the Java language, there
is also a native code interface to call binary libraries developed, for example, in C/C++.
To ease development and debugging, Google provides a QEMU-based Android device
emulator for all major desktop operating systems.

APK - Android Application Package

Android apps are packaged as APKs, combining all necessary resources and code in one
ZIP-compressed file ready for distribution. The basic layout of a typical application such
as the emergency warning application NINA is shown in Figure 2.3. While executable
code for the Dalvik VM can be found in .dex files, native libraries are organized under a
lib folder structured by target architecture, since one APK can be deployed on different
architectures (arm, mips, x64 etc). Assets and resources necessary have their predefined
locations in the APK. Moreover, resources are also available in a precompiled form
in resources.arsc. General information about an app are given in the binary XML file
called AndroidManifest.xml. Here, version and author information as well as access
rights, public intents and referenced libraries are described. The META-INF contains
meta-information to ensure authenticity and integrity of the APK. Google requires each
app to be signed by the developer prior to installation on any device.

14https://www.android.com/

13

https://www.android.com/

2 Background

2.3 Emergency Communication

Several systems exist for emergency communication. There are specialized systems
such as TETRA15 that are only for professionals and in many places also public sirens to
alert the local population. The focus of this work is more on modern approaches using
commodity devices. Here, one can distinguish between mobile device-based public
warning systems that get centrally orchestrated by, e.g., the government (one-way),
and general communication applications for anyone with a suitable device and app
installed (two-way). Both approaches are described in more detail in the following
subsections.

2.3.1 Federal Public Warning Systems

Prior to omnipresent Internet access through mobile devices, governments relied mainly
on the use of public broadcast services such as television and radio as well as local
sirens and speakers to inform the general population. Since the time spent with classic
broadcast services is declining16 and since especially younger people use the Internet,
additional warning systems are needed. Due to the high smartphone penetration in the
general population17,18 of most countries, one favored approach is to use apps with
push notifications to deliver alerts. Some of the most common warning systems, mainly
from a German perspective, are presented below.

DWD WarnWetter

WarnWetter (Fig. 2.4) is a weather forecasting and warning app provided by the federal
weather service of Germany, Deutscher Wetterdienst (DWD). It is available for Android
as well as iOS. Even though no source code is provided, the raw weather and warning
data is freely available through an official API and can be downloaded, for example, as
a plaintext JSON file. The main features include general weather data, rain radar, high
tide, flooding and avalanche information as well as alerts for the current location and
subscribed regions.

BBK NINA

The Federal Office of Civil Protection and Disaster Assistance (Bundesamt für Be-
völkerungsschutz und Katastrophenhilfe - BBK) has also developed an app to spread
public safety information to smartphones. NINA (Notfall-Information- und Nachrichten-
App) enables a user to subscribe to various regions as well as the current position to
receive push alerts (Fig. 2.5. The warnings are from three different main categories: civil
protection, weather, and high tide information. The weather information is fed from
the same source as the WarnWetter app. Besides the warnings, the app also includes

15http : / / www . etsi . org / deliver / etsi _ en / 300300 _ 300399 / 30039202 / 03 . 02 . 01 _ 60 / en _

30039202v030201p.pdf
16http://www.businessinsider.de/tv-vs-internet-media-consumption-average%2Dchart-2017-

6
17https://newzoo.com/insights/rankings/top-50-countries-by-smartphone%2Dpenetration-

and-users/
18http://www.pewglobal.org/2016/02/22/smartphone- ownership- and- internet%2Dusage-

continues-to-climb-in-emerging-economies/

14

http://www.etsi.org/deliver/etsi_en/300300_300399/30039202/03.02.01_60/en_30039202v030201p.pdf
http://www.etsi.org/deliver/etsi_en/300300_300399/30039202/03.02.01_60/en_30039202v030201p.pdf
http://www.businessinsider.de/tv-vs-internet-media-consumption-average%2Dchart-2017-6
http://www.businessinsider.de/tv-vs-internet-media-consumption-average%2Dchart-2017-6
https://newzoo.com/insights/rankings/top-50-countries-by-smartphone%2Dpenetration-and-users/
https://newzoo.com/insights/rankings/top-50-countries-by-smartphone%2Dpenetration-and-users/
http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet%2Dusage-continues-to-climb-in-emerging-economies/
http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet%2Dusage-continues-to-climb-in-emerging-economies/

2.3 Emergency Communication

(a) Main overview (b) Weather radar

Figure 2.4: DWD WarnWetter app in action

reading material regarding various disaster scenarios and general preparedness. The
app is closed source, but the alert data is freely available as JSON files to be included
in other projects.

KATWARN

KATWARN (Fig. 2.6) is another system for public warnings similar to NINA. It was
developed by Fraunhofer FOKUS and CombiRisk GmbH. A user can subscribe to
various locations, areas or even special topics such as Oktoberfest for specific warnings.
The backend also supports sending out warnings via SMS or email to users that
registered for a location or topic and do not have a smartphone. KATWARN is also
available internationally, for example, in Austria. Weather warnings are also issued
but only for severe conditions, again sourced from the DWD. There is no source
code available and also no API or direct access to the current warnings. Depending
on a user’s location and the corresponding districts and independent municipalities,
warnings might get issued only over NINA or KATWARN or both. Therefore, both
apps are needed to be safe when traveling through the whole country. Also, due the
central architecture deployed, KATWARN was overloaded during the Munich terrorist
attack in 2016.19

Wireless Emergency and AMBER Alerts

Wireless Emergency Alerts (WEA) / Commercial Mobile Alert System (CMAS) is a
US-centric alert system designed for mobile phones utilizing the GSM infrastructure
to deliver text messages via Cell Broadcast directly to cell phones.20 The system was

19https://heise.de/-3277214
20https://www.fema.gov/pdf/emergency/ipaws/cmas_factsheet.pdf

15

https://heise.de/-3277214
https://www.fema.gov/pdf/emergency/ipaws/cmas_factsheet.pdf

2 Background

(a) Warnings overview (b) Detailed map view (c) Main menu

Figure 2.5: BBK NINA in action

(a) General map view (b) Alert details

Figure 2.6: KATWARN in action

16

2.3 Emergency Communication

designed to be used in the following use cases:

• Alerts given out directly from the President of the United States of America.
• Warnings for imminent threats such as terrorist attacks or extreme weather.
• AMBER alerts - in case of local child abduction.

Prominent use of the system was made during the Boston marathon bombing and
by the National Weather Services for various extreme weathers like tornadoes, dust
storms and flash floods. For the system to be effective, the cooperation of mobile service
providers as well as the cell phone manufacturers is required. Given that this is the
case and the cell network is still up, this system is highly effective in reaching people,
and no preparation steps such as installing a specific app is required by the general
population.

Despite the limitations of the system, such as 90 character messages, no audio/video
attachments etc., it still poses a valuable tool to reach people in specific areas. Unfortu-
nately, the system is not deployed in Germany or other European countries, Japan uses
a similar system to issue earthquake warnings. Also, it fails if the central infrastructure
is disrupted.

2.3.2 Infrastructureless Communication

Besides communication from professional responders and government officials to the
general public there is also the need for people to communicate with each other. People
tend to self-organize help during disaster and therefore use social networks21 such as
Twitter or Facebook. Often enough, Internet access is not or only partially available
during disasters, which led to the development of messenger applications that com-
municate also directly from device-to-device. These apps are not only popular during
disasters, but also for communication in oppressive regimes or during demonstration
where free speech and communication might be restricted.

Briar

Briar22 is a rather new device-to-device messaging app. The focus of development was
to provide a secure and robust way for activists and journalists to communicate. Besides
Bluetooth and Wi-Fi communication, it can also utilize the Tor network for increased
privacy and security while exchanging messages over the Internet. Besides classic
messaging, group chats, forums, and blogs are supported by the app. The application
and the protocol are completely open source, but the goal is only the integration of
open platforms such as Android, leaving iOS users out. Therefore, Briar is not suited
as a general purpose communication tool for the majority of smartphone users.

FireChat

FireChat23 is a messaging app developed by the company Open Garden for decentral-
ized communication without the need for Internet access. The app itself is available

21https://blog.twitter.com/official/en_in/a/2016/twitter-for-crisis-and-disaster-

relief-in.html
22https://briarproject.org/
23https://www.opengarden.com/firechat.html

17

https://blog.twitter.com/official/en_in/a/2016/twitter-for-crisis-and-disaster-relief-in.html
https://blog.twitter.com/official/en_in/a/2016/twitter-for-crisis-and-disaster-relief-in.html
https://briarproject.org/
https://www.opengarden.com/firechat.html

2 Background

Figure 2.7: FireChat room overview
Figure 2.8: Serval Mesh main view

for Android as well as iOS platforms. It was especially popular during the Hong Kong
protests24 and various natural disasters. It features private one-on-one conversations
as well as public chat rooms (see Fig. 2.7). The core component MeshKit is, as the app
itself, closed source.

Serval Mesh

Serval Mesh25 is an Android app (see Fig. 2.8) that uses Serval as its core to provide
mesh and DTN networking through an easy app interface. It enables a phone to
communicate with peers through Bluetooth, WiFi and if supported by the mobile
device also ad-hoc mesh routing. The app provides mainly the following services:

• Voice calls
• Text messaging
• File sharing

The app26 and the underlying system27 are completely open source and develop-
ment is very active even though Serval Mesh app is going to get replaced by a more
messaging-focused app called Serval Chat in the future. Features such as a public
twitter-like timeline missing from Serval Mesh are supposed to come with the new
Serval Chat app. Strong cryptography for end-to-end encryption is already built-in and
usable in Serval Mesh. The app itself has been field tested during development by the
New Zealand Red Cross, among others. Various experimental ports exist, for example,
for the iOS platform.

24http://edition.cnn.com/2014/10/16/tech/mobile/tomorrow-transformed-firechat/
25https://play.google.com/store/apps/details?id=org.servalproject
26https://github.com/servalproject/batphone
27https://github.com/servalproject/serval-dna

18

http://edition.cnn.com/2014/10/16/tech/mobile/tomorrow-transformed-firechat/
https://play.google.com/store/apps/details?id=org.servalproject
https://github.com/servalproject/batphone
https://github.com/servalproject/serval-dna

2.4 Cloud Computing

Cloud Clients

SaaS

PaaS

IaaS

Web browser, mobile app, thin client, ...

CRM, Email, virtual desktop, communication, ...

Database, web server, development tools, ...

VMs, server, storage, load balancers, network, ...

In
fra
st
ru
ct
ur
e

P
la
tfo
rm

A
pp
lic
at
io
n

Figure 2.9: Cloud services overview

2.4 Cloud Computing

Cloud computing is a paradigm where resources are shared and provisioned according
to the current requirements. Often this means not owning hardware and not having it
on premise but dynamically using the resources from specialized cloud providers as a
service. Through rapid provisioning and low management cost, companies can easily
scale when new events like Christmas business demand other resources.

Many classic services used by companies as well as private persons, including storage,
email, web-servers and databases, are migrated to cloud services with different payment
models. Instead of purchasing and maintaining own hardware, only the used services
in terms of bandwidth, CPU power or storage are paid. The different services (Fig. 2.9)
can be categorized, e.g., as Software as a Service (SaaS), Platform as a Service (PaaS), or
Infrastructure as a Service (IaaS), the latter being the closest to classic dedicated servers
providing the most flexibility. A more technical look into IaaS is given in the following
subsection.

Infrastructure as a Service

The purpose of IaaS is to provide a computing infrastructure on demand similar to
a hosted dedicated server. This is achieved by using either hypervisor based virtual-
ization technologies like Xen28, KVM29, VirtualBox30, VMware ESXi31 or lightweight

28https://www.xenproject.org/
29https://www.linux-kvm.org
30https://www.virtualbox.org
31https://www.vmware.com/products/esxi-and-esx.html

19

https://www.xenproject.org/
https://www.linux-kvm.org
https://www.virtualbox.org
https://www.vmware.com/products/esxi-and-esx.html

2 Background

virtualization such as Linux containers32, DragonFly vkernel33 or FreeBSD jails34. The
latter shares a kernel across all guest instances, preserving resources but less flexibility
and isolation for the guest user. Hypervisor-based solutions enable one to use guest
OSes that are fundamentally different than the host, e.g., Windows machines running
on a Linux host, and provide increased security through better isolation.

2.5 Security

2.5.1 Transport Layer Security

The Secure Sockets Layer (SSL) and its successor, Transport Layer Security (TLS),
are cryptographic protocols that were introduced to protect network communication
from eavesdropping and tampering. To establish a secure connection, a client must
securely gain access to the public key of the server. In most client/server setups,
the server obtains an X.509 certificate that contains the server’s public key and is
signed by a Certificate Authority (CA). When the client connects to the server, the
certificate is transferred to the client. The client must then validate the certificate.35

However, validation checks are not a central part of the SSL and X.509 standards.
Recommendations are given, but the actual implementation is left to the application
developer.

The basic validation checks include: a) does the subject (CN) of the certificate match
the destination selected by the client?; b) is the signing CA a trusted CA?; c) is the signa-
ture correct?; and d) is the certificate valid in terms of its time of expiry? Additionally,
revocation of a certificate and its corresponding certificate chain should be checked, but
downloading Certificate Revocation Lists (CRLs) or using the Online Certificate Status
Protocol (OCSP)36 is often omitted. The open nature of the standard specification has
several pitfalls, both on a technical and a human level. Therefore, the evaluations in the
remainder of this work are based on examining the four validation checks listed above.

2.5.2 Man-in-the-Middle Attacks

In a Man-in-the-Middle attack (MITMA), the attacker is in a position to intercept
messages sent between communication partners. In a passive MITMA, the attacker can
only eavesdrop on the communication (attacker label: Eve), and in an active MITMA,
the attacker can also tamper with the communication (attacker label: Mallory). MITMAs
against mobile devices are somewhat easier to execute than against traditional desktop
computers, since the use of mobile devices frequently occurs in changing and untrusted
environments. Specifically, the use of open access points [32] and the evil twin attack
[33] make MITMAs against mobile devices a serious threat.

TLS is fundamentally capable of preventing both Eve and Mallory from executing
their attacks. However, the cases described above open up attack vectors for both
Eve and Mallory. Trivially, the mixed mode/no SSL case allows Eve to eavesdrop on

32https://linuxcontainers.org/
33https://www.dragonflybsd.org/docs/handbook/vkernel/
34https://www.freebsd.org/doc/handbook/jails.html
35https://tools.ietf.org/html/rfc5280
36https://tools.ietf.org/html/rfc2560

20

https://linuxcontainers.org/
https://www.dragonflybsd.org/docs/handbook/vkernel/
https://www.freebsd.org/doc/handbook/jails.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc2560

2.5 Security

non-protected communication. Furthermore, Mallory might act as a transparent proxy,
delivering a certificate of its own to eavesdrop on the communication.

SSL Stripping is another method by which a MITMA can be launched against an
SSL connection, exploiting apps that use a mix of HTTP and HTTPS.37 SSL Stripping
relies on the fact that many SSL connections are established by clicking on a link in or
being redirected from a non-SSL-protected site. During SSL Stripping, Mallory replaces
https:// links in the non-protected sites with insecure http:// links. Thus, unless the user
notices that the links have been tampered with, Mallory can circumvent SSL protection
altogether. This attack is mainly relevant to browser apps or apps using Android’s
WebView.

37http : / / www . blackhat . com / presentations / bh - dc - 09 / Marlinspike / BlackHat - DC - 09 -

Marlinspike-Defeating-SSL.pdf

21

http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf

3 Secure Emergency Communication

Secure communication during emergency scenarios is as complex as it is manifold,
leading to complex systems with diverse requirements. At the one end, small, resource
constrained devices such as smartphones, tablets and laptops are available to civilians
as well as to first responders. On the other end, large servers are relevant either in
the cloud or at specialized command and control centers in the field. Since many
other critical infrastructures and rescue operations heavily depend on ways of secure
communication, secure emergency communication plays a vital role.

3.1 Emergency Communication

In general, there are two target groups that are relevant for emergency communication:
professional responders and civilians. One issue refers to the question what happens
on large, centralized systems that are connected via the Internet and provide various
essential services. Another issue is what happens on devices directly available to users,
most commonly mobile devices such as smartphones. Both issues have their own
requirements and challenges when used for emergency communication, as described
below.

3.1.1 Internet Services

Internet

Figure 3.1: Typical services used during disaster response running in the Internet.

A large variety of services exists in the Internet that are commonly used during
disaster scenarios. Some of them are depicted in Figure 3.1. Several of them such
as email, Google, the World Wide Web itself or social networks such as Facebook
and Twitter are also heavily used in everyday life. Yet, they also play a vital role in
distributing information and connecting people during an emergency, as past events

23

3 Secure Emergency Communication

have shown.1,2 They are used by professional responders as well as civilians to self-
organize help. Furthermore, there are services developed and deployed specifically
for disaster scenarios, e.g., to coordinate rescue teams through disaster management
software such as Project Sahana’s EDEN3 or managing reports in Ushahidi4. Other
useful cloud services for such scenarios include Google’s Crisis Map or Facebook’s
Safety Check. For rapid deployment and scalability, many of these services rely on a
dynamic cloud infrastructure such as Amazon’s EC2.

3.1.2 Mobile Applications

First RespondersCivilians

Figure 3.2: Mobile apps deployed on different devices.

A similar picture can be seen when taking a look at common mobile devices used by
civilian and first responders (Fig. 3.2). Besides typical services that are also used on
computers connected to the Internet, such as social networks (Twitter, Facebook etc.),
the World Wide Web, or email, there are also apps more specific to smartphones, such
as messengers (e.g., WhatsApp, Threema, Telegram). While the previously mentioned
apps are useful in non-disaster situations as well as during a disaster, there are many
apps such as Video-On-Demand (Netflix, Amazon Prime Video etc.), games and music
streaming that have limited to no use during an emergency. There are a few apps
specifically designed for emergency scenarios to inform citizens and to cope with the
fact that less and less people can be reached by classic broadcast services such as radio
and television. In Germany, examples for these apps are NINA and KATWARN that
both send push notifications via the Internet to participating mobile devices. While all
the previously mentioned apps on mobile devices rely on cellular networks or Internet

1https://blog.twitter.com/official/en_in/a/2016/twitter-for-crisis-and-disaster-

relief-in.html
2https://www.fastcompany.com/40546380/facebooks-disaster-maps-helps-rescuers-know-

where-theyre-needed-most
3https://sahanafoundation.org/
4https://www.ushahidi.com/

24

https://blog.twitter.com/official/en_in/a/2016/twitter-for-crisis-and-disaster-relief-in.html
https://blog.twitter.com/official/en_in/a/2016/twitter-for-crisis-and-disaster-relief-in.html
https://www.fastcompany.com/40546380/facebooks-disaster-maps-helps-rescuers-know-where-theyre-needed-most
https://www.fastcompany.com/40546380/facebooks-disaster-maps-helps-rescuers-know-where-theyre-needed-most
https://sahanafoundation.org/
https://www.ushahidi.com/

3.1 Emergency Communication

access through WiFi, a few apps enable direct device-to-device communication for
simple services such as text messaging (Briar, Serval Mesh, FireChat). In recent years,
mobile Internet usage has surpassed that of desktop systems.5 Having mobile, battery
powered devices readily available for the majority of people is a great advantage during
an emergency scenario.

3.1.3 Shortcomings

One common requirement for many existing emergency software solutions is that they
require a working communication infrastructure and a working Internet link. While
most of these applications work over reliable TCP links, they also assume connections
to be stable and require quite some bandwidth even for loading a simple webpage
such as Facebook. When disaster strikes like, for example, hurricane Irma in 2017, this
can leave even parts of a high-tech country such as the USA for a few days without
connectivity. A small overview of a typical scenario can be seen in Figure 3.3.

While mobile devices are mainly used for person-to-person communication, social
networks and taking footage with the built-in camera, back end services include stan-
dard communication measures such as email as well as scenario specific applications.
These cloud-based services might not be accessible when communication infrastructure
is destroyed during disasters, as indicated by the red arrowed connections and yellow
flashes in the figure. Also, emergency warning apps such as KATWARN or NINA will
not work anymore when the Internet connection is not available any longer. This is
especially problematic, since they were not only meant to warn people prior to a disas-
ter, but also to inform them during the event. Even with working connectivity, such a
system might fail due to the sudden peak in user activity similar to a Denial-of-Service
attack.6

Civilians

First Responders

Internet

Figure 3.3: Problem overview

In the past, the public was warned and informed using, e.g., radio broadcasts, but
especially young people are more focused on Internet-based media consumption and

5http://bgr.com/2016/11/02/internet-usage-desktop-vs-mobile/
6https://www.focus.de/5756395

25

http://bgr.com/2016/11/02/internet-usage-desktop-vs-mobile/
https://www.focus.de/5756395

3 Secure Emergency Communication

more and more mobile device vendors have removed the ability to use phones as FM
receivers.7 The lack of the Internet during a disaster also renders common applications
such as Skype, Twitter or WhatsApp useless. All dysfunctional apps are marked with
a red ’x’ in the figure. Only very few of the apps available on today’s smartphones
work truly offline or with local communication only. Notable examples are FireChat
and Serval Mesh. If none of these are present on a smartphone, it is very limited in its
usefulness during a disaster.

One of the few functions usually still working is the included camera for taking
pictures or videos, but with very limited ways to share this data., e.g., via vendor
specific solutions for local data exchange such as AirDrop or Google’s Files Go.

3.2 Design of a Secure Emergency Communication System

The main challenge is to identify ways to re-enable communication with readily avail-
able commodity hardware during a crisis. Typically, local routers can be used together
with mesh routing to form an independent communication infrastructure, e.g., Frei-
Funk8 and GuiFi9. While this approach can also be beneficial in non-disaster situations
and provide stable services, it also relies on a sufficiently dense distribution of partic-
ipating routers and a stable power supply. Mesh routing has the advantage that it is
transparent to legacy applications, but often mobile devices lack capabilities to natively
join an ad-hoc or pure 802.11s mesh network. Thus, such a network relies again on a
form of maintained infrastructure.

The alternative is to use device-to-device communication, relying on the built-in direct
communication capabilities of smartphones, tablets and notebooks. These technologies
typically include Bluetooth, WiFi and, WiFi direct, with special application support
for disruption-tolerant-networking and new mechanisms for coping with delays and
disruptions. These technologies can provide a viable alternative. Furthermore, when
looking at future technologies currently emerging, such as Lora, Bluetooth Mesh and
802.11ah, all mainly used for Internet-of-Things (IoT) communication, more possibilities
for readily available emergency communication can be developed.

Part of this thesis’ research question is to find a communication solution integrat-
ing these technologies with new approaches for secure and robust local and cloud
communication.

There are three key components (see Fig. 3.4) relevant for a general emergency
communication system that is suitable for civilians and professional responders alike:

• Disruption-Tolerant Device-To-Device Emergency Communication (green)
• Security Vulnerability Analysis of Mobile Apps (blue)
• Secure Cloud Systems (red)

The foundation is a disruption-tolerant device-to-device emergency communication
system (indicated by green arrows in the figure) that handles various needs of users
and can cope with the challenges in disaster scenarios while maintaining a high level of
security. Also, the state of apps deployed on mobile devices is relevant for the overall
security of the system and, therefore, must be analyzed for security vulnerabilities

7http://fortune.com/2017/09/28/apple-fm-radio-hurricane/
8http://freifunk.net/
9http://guifi.net/

26

http://fortune.com/2017/09/28/apple-fm-radio-hurricane/
http://freifunk.net/
http://guifi.net/

3.2 Design of a Secure Emergency Communication System

Figure 3.4: Secure communication during disaster scenarios

(marked in blue in the figure). Finally, services running on servers in the edge/fog/mist
computing infrastructure (provided, e.g., by professional responders) or the cloud must
be secured against failures and attackers (marked in red in the figure).

3.2.1 Disruption-tolerant Device-to-Device Emergency Communication

There are several key challenges that must be overcome to deliver a disruption-tolerant
device-to-device emergency communication system that also works during a disaster
scenario. These challenges are described briefly below.

Test and Evaluation Environment. Since the goal of this thesis is to deliver a system
that operates in various network setups, mobility and link properties, a virtual play-
ground for disaster scenarios is needed. While there are different network simulators
available, these lack the capabilities to include software as it is and therefore, omit any
side-effects caused by real world implementations of the software or the full system
stack (network, kernel, userland etc.). Yet, they often provide advanced mobility pat-
terns and (at least for WiFi) realistic communication models. On the other hand, many
emulation environments are often limited in terms of mobility of the nodes or realistic
simulation of link properties. To thoroughly test an emergency communication system,
a simulation-emulation system with full-system emulation, flexible movement patterns,
and various radio links is vital.

Basic Messaging and Data Exchange. The most basic and useful feature needed by
people for organizing themselves during a crisis is some form of message exchange
and a way to share binary data. Since many solutions exist that try to solve these
problems, we must first evaluate those that might also work in a disaster scenario.
Only peer-to-peer protocols must be considered, since we cannot rely on infrastructure
during emergencies. Furthermore, not relying on TCP connections but using UDP
instead helps to deal with unreliable connections. Protocols that have DTN built in
are especially suitable for these setups. Further desired properties include message
integrity and confidentiality that are mandatory for such a scenario.

Optimizations for Low-Bandwidth Links. Due to the fact that we heavily rely on low-
bandwidth links (e.g., Bluetooth and LoRa) we have to minimize the produced traffic.

27

3 Secure Emergency Communication

Existing protocols often rely on flooding the network with local announcements, which
works well with Ethernet or fast WiFi, but can easily overwhelm a small local network
with only a few kilobits per second of bandwidth. Furthermore, some protocols such
as HTTP(S) are suitable as long as the infrastructure works and bandwidth is plentiful,
but for slow links HTTP(S) is very verbose, and each request and response is very large.
Finally, the payload data itself is subject to optimizations. Especially large binary blobs
such as image data can be optimized prior to sending either through compression or
preprocessing on the device itself.

High-Level Task Offloading. Since resources such as battery power and compute
power on mobile devices are considered to be very limited in a disaster scenario,
alternatives must be found to handle more complex tasks. Usually, we can offload tasks
by calling a remote procedure e.g., via SOAP or JSON-RPC, on a remote server and
utilize its power. When we are limited to unreliable links and have highly mobile nodes,
these approaches do not work. Therefore, a system is needed to deal with unknown
remote-peers, disrupted connections, and delayed execution, and delayed delivery of
results.

On-Device Data Processing. By processing data on a mobile device, not only the
bandwidth requirements can be reduced, but also improved quality of services regard-
ing emergency services can be delivered. On of the most common tasks during an
disaster is the localization of missing persons. Therefore, having the ability to process
image data on-device and detect human faces can easily be used to automate the
search. Furthermore, having automated visual concept detection on-device can help
to reduce the number of unimportant images that should not be spread further in
the network. Since mobile devices such as smartphones or Raspberry Pis are severely
limited when it comes to battery life and CPU power, algorithms must be adopted to
this new environment. This also results in an overall higher processing speed, since a
shorter runtime means that less power is consumed.

Secure Communication System. Besides designing the communication system to be
robust against network disruptions and to work in an infrastructureless manner, it is
equally important to incorporate approaches for increased security of such a system.
This includes attestation of new devices during a crisis and avoiding DTN-specific
attacks on message buffer management. Confidentiality and message authenticity is
vital during a crisis for professionals responder as well as civilians.

Since mobile devices are key components in communication nowadays, research
topics focusing on mobile communication infrastructures and application level services
can be found in Chapter 4.

3.2.2 Security Vulnerability Analysis of Mobile Apps

Furthermore, the security aspects of data-at-rest and data-in-motion in emergency
scenarios are vital for mobile emergency communication. Therefore, several research
questions have to be answered, as outlined below.

28

3.2 Design of a Secure Emergency Communication System

Static Analysis of Mobile Apps. Repeatability and automation of security audits
make it easy to evaluate larger sets of apps that might be relevant in an emergency
scenario. While static analysis usually is a manual process on the binary, assembler or
source level, the patterns of vulnerabilities found in binaries are often similar. These
patterns can be related to different network usage patterns, encryption functionality,
or access to sensitive information. Moreover, static analysis is suited to quickly ensure
that certain mistakes are not (re-)introduced during development by reapplying the
audit script to newly produced binaries.

Dynamic Analysis of Mobile Apps. There are some vulnerabilities that cannot be
spotted with static analysis such as the ones nested in dynamically loaded code. For
a thorough security audit, it is mandatory to also inspect apps during runtime. Since
this involves on-device deployment or emulation of a mobile device, the process of
automating this on a large scale is very resource intensive and quite challenging.
Therefore, it is beneficial to include cloud computing resources in the design of such a
system.

Security of Common Emergency Apps. There already exist various apps for commu-
nication and information spreading before, during and after disasters, as mentioned in
Chapter 2. Some of them are officially distributed by governments and are widely used.
By applying static and dynamic analysis together with manual audits, potential short-
comings and vulnerabilities can be identified. Having apps where one can suppress
warnings or distribute false information, an attacker can potentially worsen an already
critical situation or cause a disaster in the first place.

The security analysis and approaches regarding mobile devices mentioned above are
presented in Chapter 5.

3.2.3 Secure Cloud Systems

The Internet provides vast resources for various services that are critical during disasters
as well as everyday life. Especially due to dynamic deployments in the cloud one can
easily respond to disasters and quickly get necessary services for coordination of rescue
efforts running.10 Here, it is important to understand key services and find ways to
protect infrastructure at risk.

Email Delivery. One of the corner stones of Internet communication is the email
system based on SMTP. Its importance can also be seen as this is mentioned in the list of
”basic internet communications activities like text messaging, SMS, status updates, basic
web access and email” that was delivered by Google’s Project Loon to the people of
Puerto Rico after being struck by a hurricane.11,12 By design, SMTP, responsible for the
delivery of email message, is a plain text protocol. To secure a message, there are many
solutions such as S/MIME or PGP/GPG that users can settle on. Factors often neglected

10https://www.ushahidi.com/plans
11https://www.fiercewireless.com/wireless/loon-working-at-t-to-get-basic-services-to-

puerto-rico
12https://blog.x.company/helping-out-in-peru-9e5a84839fd2

29

https://www.ushahidi.com/plans
https://www.fiercewireless.com/wireless/loon-working-at-t-to-get-basic-services-to-puerto-rico
https://www.fiercewireless.com/wireless/loon-working-at-t-to-get-basic-services-to-puerto-rico
https://blog.x.company/helping-out-in-peru-9e5a84839fd2

3 Secure Emergency Communication

are leaking meta-data and insecure communication links. Transport-layer security is
optional but critical for the overall security of emergency communication. Therefore,
an evaluation of how wide-spread encrypted SMTP is, what cryptographic key size is
used, who issued a certificate and what encryption ciphers are used is needed for an
more in-depth understanding of the overall security of email communication.

Infrastructure Protection. All services exposed via a network are potentially at risk
from malware and malicious hackers. While 100% security will never be achieved, it is
vital to make a system compromise as hard as possible. If it does happen, incidents
need to be detected as soon as possible to trigger counter actions. The use of virtualized
systems gives a defender a variety of new options to detect attacks and infected systems,
ideally, with a minimal footprint in the virtual machine and all security critical logic
separated. Points to be considered are classic anti-virus protection against unknown
binaries, but also advanced monitoring of network traffic, system calls or loading of
kernel modules for yet unknown anomalies. By having minimally-invasive sensors
across all layers of the host machine, kernel, userland and the application layer also
gives us the opportunity to cross-validate findings and eliminate false positives.

New approaches regarding cloud and server security for communication systems are
presented in Chapter 6.

30

4 Disruption-tolerant Device-to-Device
Emergency Communication

4.1 Introduction

This chapter presents research conducted in this thesis regarding disruption-tolerant
device-to-device emergency communication on mobile devices as well as applications
and application services developed for this scenario.

First, a realistic environment for the evaluation of possible mobile communication
solutions is needed. Since pure model-based simulations often differ from real world
implementations and large scale physical test-beds are as expensive as they are inflex-
ible, a solution, called MiniWorld, based on full system virtualization is presented in
Section 4.2.

MiniWorld is used for the development and evaluation of novel DTN-based commu-
nication solutions. The Serval Project appears to be a viable basis for mobile emergency
communication. To verify its claims, an in-depth evaluation regarding an emergency
scenario is presented using MiniWorld in Section 4.3.

During this evaluation, a major issue for improvement was identified regarding
Serval’s energy and bandwidth requirements. So far, Serval uses fixed announcement
intervals for peer discovery and database synchronization. Switching to dynamically
adaptable announcement algorithms is much more efficient, as shown in Section 4.4.

Since the resources on mobile devices are limited, offloading tasks makes sense,
but existing classical remote procedure call (RPC) solutions are not applicable in
this uncertain environment. Therefore, a novel RPC system, called DTN-RPC, that is
specifically tailored to DTN and D2D communication. is presented in Section 4.5.

Furthermore, with additional new components developed for embedded systems,
DTN-RPC can be used for environmental monitoring in static and mobile setups, as
shown in Section 4.6. By combining low-cost micro-controller units and long-range
LoRa transceivers, it is possible to integrate smartphones in such infrastructureless
networks. Moreover, the possibility to perform on-device visual concept detection on
smartphone photos is also presented and optimized for energy efficiency on low-power
devices such as the Raspberry Pi. Section 4.7 shows that on-device pre-processing of
data, such as face detection, is invaluable especially for low bandwidth links.

Using the above research, it is possible to deliver new applications and network
services for disaster scenarios. One common task, often heavily relying on Internet
cloud services, is the detection of a missing person’s face on images. A complete
on-device solution for efficient face detection is presented in Section 4.7.

The real world usefulness of the developed system as a mix of mesh and DTN-
based services in combination with unmanned autonomous ground and air vehicles is
demonstrated in Section 4.8.

A flexible security infrastructure that is resilient to flooding attacks and that takes

31

4 Disruption-tolerant Device-to-Device Emergency Communication

File
Distribution MeshMS Voice

Mesh

Rhizome DTN Mesh Datagram
Protocol (MDP)

Serval Overlay Mesh

UDP, IP, Ethernet/WiFi Packet Radio ...Lora

SmartFace
People
Finder

DTNRPC GW
Proxy

Pre/Content/PostFilter

Adaptive Communication

Mesh Routing

Information Centric Networking Sensor Managment Remote Control

Figure 4.1: The DT D2D communication system developments highlighted in green.

proper key/certificate management into account, is necessary for any emergency com-
munication system. SEDCOS, presented in Section 4.9, is a novel solution specifically
designed for emergency scenarios with these problems in mind.

The various improvements and new developments in comparison to Serval are
depicted in Figure 4.1. Many of the developments required for the emergency commu-
nication system described in this chapter are available as open source software. During
the course of this work, contributions have been made to Serval1 as well as CORE2,
through patches, bug reports, and additional software3. Regarding the MiniWorld emu-
lation environment, more information can be found on github.4 DTN-RPC5 and the
filters developed for integration and optimization purposes are also available.6,7 Vari-
ous user directed developments are also available such as command line helpers and
remote command execution services8, legacy TCP application integration9 as well as
user interfaces.10,11,12 To make the most out of the various LoRa transceivers embedded
on microcontrollers, a novel radio modem firmware was also developed. 13

1https://github.com/servalproject/serval-dna
2https://github.com/coreemu/core
3https://github.com/gh0st42/core-automator
4https://github.com/miniworld-project/miniworld_core
5https://github.com/umr-ds/DTN-RPC
6https://github.com/umr-ds/serval-contentfilters
7https://github.com/umr-ds/serval-dna/tree/nicer-filters
8https://github.com/gh0st42/servalshellscripts
9https://github.com/umr-ds/python-socks5-serval

10https://github.com/umr-ds/serval-web
11https://github.com/gh0st42/ServalDesktopApp
12https://github.com/gh0st42/sdnatui
13https://github.com/gh0st42/rf95modem

32

https://github.com/servalproject/serval-dna
https://github.com/coreemu/core
https://github.com/gh0st42/core-automator
https://github.com/miniworld-project/miniworld_core
https://github.com/umr-ds/DTN-RPC
https://github.com/umr-ds/serval-contentfilters
https://github.com/umr-ds/serval-dna/tree/nicer-filters
https://github.com/gh0st42/servalshellscripts
https://github.com/umr-ds/python-socks5-serval
https://github.com/umr-ds/serval-web
https://github.com/gh0st42/ServalDesktopApp
https://github.com/gh0st42/sdnatui
https://github.com/gh0st42/rf95modem

4.2 MiniWorld - An Emulation-based Evaluation Environment

4.2 MiniWorld - An Emulation-based Evaluation Environment

4.2.1 Introduction

To develop applications, algorithms, and protocols for future networks, four methods
are typically used: (a) mathematical modeling, (b) network simulation, (c) network
emulation, and (d) real world experiments. Mathematical modeling and network simu-
lation are commonly used in the early stages of development, but are often criticized
for inaccuracies in capturing realistic node behavior and medium characteristics [34],
[35]. In contrast, real world testbeds can establish genuine environmental conditions,
but are often limited in scope and induce a high management overhead.

Network emulation offers a valuable compromise between network simulation and
real world experiments, since evaluations can be performed in real-time under realistic
conditions and software can largely be reused when switching from emulation to real
world deployment [36], [37]. In particular, in virtualization-based network emulation,
real code is run in an emulated network using operating system level virtualization
techniques combined with careful resource isolation and monitoring [38]–[40]. This
approach provides the topology flexibility, low cost, and repeatability of simulation
with the functional realism of real world testbeds.

In this section, MiniWorld is presented, a novel distributed network emulation frame-
work. It is based on virtual machines (VMs) running on the cores of a shared-memory
multi-core processor (centralized mode) or in a distributed system of connected multi-
core processors (distributed mode). Its main properties that distinguish it from other
network emulators are:

• MiniWorld’s QEMU14/KVM-based15 full virtualization allows nearly every soft-
ware and hardware to be emulated.
• Three network backends for wired and (pseudo-)wireless communication are

provided to demonstrate the flexibility and modularity of MiniWorld.
• Four mobility patterns and three distance-based link quality models are offered

to ease the development and evaluation of wireless networks.
• A snapshot boot mode is presented for accelerated booting of identical environments

and repeating emulations.
• MiniWorld’s emulations can be distributed across multiple computers via a

resource-aware VM scheduler.
• Connection tracking, differential network switching, address configuration and

network supervision features are provided automatically for every network back-
end.

Experimental results demonstrate the performance of MiniWorld with respect to VM
boot times, network bandwidth, round trip times, and topology switching times, both
for MiniWorld’s centralized and distributed emulation mode.

Parts of this section have been published in [1].

14http://www.qemu-project.org
15http://www.linux-kvm.org/

33

http://www.qemu-project.org
http://www.linux-kvm.org/

4 Disruption-tolerant Device-to-Device Emergency Communication

4.2.2 Related Work

Several network emulators have been developed [36], [37]. For example, CORE [38]
is a popular network emulator based on container virtualization. Since all emulated
nodes share the same operating system (OS) kernel, protocol stacks other than the ones
present in the kernel cannot be emulated. Further limitations are that router images,
different OS and different kernels are not usable with CORE. In contrast, MiniWorld
is designed for full system emulation and supports every OS and application that
runs under QEMU. CORE offers a distributed mode in Linux based on GRE tunnels
(i.e., Gretap) to connect nodes living on different emulation servers. Nodes have to be
manually assigned to a specific emulation server. This is different in MiniWorld where a
scheduler carries out the node assignment task according to resources of the emulation
servers.

Cloonix16 is an emulator using KVM, mainly for wired networks. Several Cloonix
servers can be interconnected, but there are fixed links between the emulated nodes,
and nodes are manually pinned to their hosting server, similar to CORE.

DOCKEMU [39] uses Docker containers as its virtualization layer and utilizes Linux
bridges together with the ns-3 simulator17 to emulate PHY and MAC layers. MiniWorld
uses the KVM instead of Docker containers as its virtualization layer, but adding Docker
to MiniWorld would increase performance for scenarios where full system virtualization
is not required.

BAMNE [41] is a network emulator that leverages a patched version of VDE [42] to-
gether with VirtualBox18. The emulator is tailored to perform tests with B.A.T.M.A.N.19.
Unfortunately, no experiments that demonstrate the performance of BAMNE are pro-
vided.

Netkit [43] relies on full virtualization and container-based isolation. It is based on
UML, a port of the Linux kernel designed to run as a user-space application. All nodes
share the same file system for reading, while they use a COW mechanism to create a
write-layer on a per-node basis. Netkit is built for educational purposes and lacks several
important features, such as link emulation or a wireless mode. MiniWorld utilizes the
COW approach in the same manner Netkit does.

GNS3
20 is an open source emulator built to help people preparing for Cisco exams.

GNS3 can only emulate Cisco routers, not switches [44]. Besides CORE and Cloonix, it
is the only simulator with a distributed mode.

NEMAN [45] is a network emulator for testing middleware and application layer
protocols. It relies on ns-221 scenario files for the description of mobility and topology.
In contrast to MiniWorld, NEMAN requires application binaries to be modified. Fur-
thermore, there is no virtualization layer, since processes simply bind to a tap device.
Moreover, there is no link impairment and no high fidelity link emulation. Netem, a
Linux kernel module [46], is used for link impairment by MiniWorld’s Bridged LAN and
Bridged WiFi network backends. For high fidelity link emulation, MiniWorld could be
combined with ns-3, similar to CORE or DOCKEMU.

16http://cloonix.fr
17https://www.nsnam.org
18https://www.virtualbox.org
19https://www.open-mesh.org/projects/open-mesh/wiki
20https://www.gns3.com
21http://nsnam.sourceforge.net/wiki/

34

http://cloonix.fr
https://www.nsnam.org
https://www.virtualbox.org
https://www.open-mesh.org/projects/open-mesh/wiki
https://www.gns3.com
http://nsnam.sourceforge.net/wiki/

4.2 MiniWorld - An Emulation-based Evaluation Environment

MiniWorld

Emulation
Manager

Image Store

Scenario
Config

Analyst

Address
Configuration

Network
Supervision

Mobility
Pattern

Network
Backend

Start /
Stop

Step

Node Virtualization

Virtual
Network

Figure 4.2: MiniWorld’s Architecture

Mininet [40] is an emulator for SDN and comes with open vSwitch [47]. It uses Linux
network namespaces and process isolation for each emulated node [48]. SDN controllers
can run on the real network or inside the network namespaces, since Mininet ships with
a VM with useful tools, e.g., Wireshark and dpctl, to control and view the flow tables
of an OpenFlow switch. In contrast, MiniWorld’s Bridged LAN and Bridged WiFi network
backends follow the CORE approach. CORE scenario files can be built with the CORE
UI and used by MiniWorld’s CORE Mobility Pattern to switch between topologies.

4.2.3 MiniWorld’s Design

Architecture

The architecture of MiniWorld is shown in Figure 4.2. To start an emulation, a network
analyst needs a Scenario Config to setup a Virtual Network, and an OS image containing
the software to be evaluated from the Image Store. The analyst starts/stops an emulation
and performs emulation steps by invoking the Emulation Manager. A step involves
the Network Backend to change the topology of the Virtual Network and requires a
distance matrix from the Mobility Pattern as the input for the static or event-driven
impairment scenario that governs node connectivity and link quality. The Network
Backend can operate either in user-space or in kernel-space and is responsible for
creating or switching the network topology according to the Link Quality Model and
the Mobility Pattern. Address Configuration to communicate via addresses and Network
Supervision to monitor the network topology setup are optional components.

MiniWorld needs to know when a VM has finished booting. This is accomplished by
either letting MiniWorld know for which string it has to wait (boot mode: Boot Prompt) or
by simulating pressing enter and waiting for the shell prompt (boot mode: Shell Prompt).
Furthermore, network nodes are started in parallel to improve performance. After all

35

4 Disruption-tolerant Device-to-Device Emergency Communication

nodes have been started, the VMs are provisioned according to the shell commands
supplied in the Scenario Config. MiniWorld can be set up to switch the network topology
in configurable time steps (normally one second) automatically. Note that an analyst
can also manually switch the network topology.

Wireless Interfaces

Virtual nodes can have multiple wireless interfaces to create separate network segments.
Built-in interface types are: AP, Ad-hoc, Mesh, Bluetooth and WiFiDirect. Each node can
have multiple instances of an interface type. An Interface Filter decides which interfaces
are connected to each other. The default Interface Filter allows only interfaces of the same
type and index to be interconnected. A Network Backend can define its own Interface
Filter to change this behavior. A Management interface that is not affected by link quality
impairments serves as a management/side channel that can be used in experiments
for control information or SSH automation. A Management Node has to be provided by
a Network Backend to support the management interface. To simulate crowded events
such as football games, there is a Hub interface that allows a Network Backend to set up
a single broadcast domain.

Link Quality Models

A Link Quality Model controls the impairment applied to the virtual network (impair-
ment scenario). Static impairments serve as default values. For each step and distance
between two nodes, the Emulation Manager calls the Link Quality Model. First, the model
determines whether a connection will be established at all. Second, the link quality
based on the distance is determined. Currently, three link quality models are available:
(a) Fixed-Range where nodes are interconnected if their distance is less than 30 meters
and the bandwidth is fixed, (b) WiFi Simple Linear decreases bandwidth and increases
delay linearly with the distance, (c) WiFi Simple Exponential halves bandwidth and
doubles delay every 4 meters. To prevent link quality models from slowing down the
connection switching process, the link quality settings are pre-calculated (Link Quality
Caching) for all rounded distances up to the maximum allowed connection range. This
approach is a trade-off between performance and granularity.

Mobility Patterns

Currently, MiniWorld provides four mobility patterns: (a) Random Walk, (b) Move On
Big Streets, (c) Arma 3, (d) CORE Mobility. Patterns (a) and (b) are based on OSM22 data
and implement a Random Walk and a Move On Big Streets pattern. Pattern (c) is based
on the Arma 3 MilSim game23 where coordinates are extracted from the game for each
player to feed a Movement Director with node positions. Pattern (d) uses CORE scenarios
exported to XML in order to have multiple topology files that can be switched after a
predefined number of time steps. There are two connection modes: LAN and WiFi. The
LAN mode considers whether nodes are connected according to the XML files. In the
WiFi mode, the distances between nodes are used to determine link qualities between
nodes. Pattern (d) can also be looped.

22http://www.openstreetmap.org
23https://arma3.com

36

http://www.openstreetmap.org
https://arma3.com

4.2 MiniWorld - An Emulation-based Evaluation Environment

Network Backends

Currently, MiniWorld comes with three network backends to create virtual networks,
add/remove connections, and adjust link quality: (a) VDE, (b) Bridged LAN, and (c)
Bridged WiFi.

VDE [42] is a user-space software-switch to emulate link properties, such as delay,
packet loss, and duplicate packets. In MiniWorld’s VDE network backend, each interface
is connected to a different VDESwitch to create separate network segments. A Wirefilter
for each connection between two nodes is used to apply different link quality impair-
ments. The VDE color patch24 is used to create a hop-to-hop network instead of a single
collision domain where all nodes can see each other. Traffic is only forwarded between
switch ports if their color differs, effectively realizing a wireless mesh network.

Bridged LAN and Bridged WiFi leverage technologies from the Linux kernel (i.e., Linux
bridges and Linux TC) to create a virtual network. Bridged LAN uses one interface to
represent a connection. In contrast, the Bridged WiFi multiplexes connections via a
single tap interface per MiniWorld interface. Thus, Bridged LAN is static and can be
used to emulate wired networks, because the number of unique connections has to be
known beforehand to set up the number of NICs in the VM. In contrast, Bridged WiFi is
dynamic and can be used to emulate wireless networks, since it does not matter how
many unique connections are going to exist.

Distributed Mode

Figure 4.3 illustrates MiniWorld’s distributed mode, where a central Coordinator allows
any Linux computer (Emulation Server) to participate in an emulation. A user can interact
with any of these via an RPC interface to query information or execute commands on
specific nodes. Each Emulation Server operates independently for each simulation step,
and virtual network nodes are hosted only on the Emulation Servers.

There is a score-based node placement strategy which takes the resources of the
Emulation Servers into account. The Coordinator computes the distance matrix and
distributes it among the Emulation Servers, hence the Emulation Servers are kept in sync
with each other. Globally necessary information is shared with each Emulation Server
before an emulation starts.

An emulation step of either the RunLoop or the user creates a distance matrix
that is sent via ZeroMQ25, a networking library for message-passing with efficient
one-to-many (Publish-Subscribe) and one-to-one (Request-Reply) communication. In the
Publish-Subscribe pattern, the distance matrix is sent to any subscriber and filtered at
an Emulation Server for relevant data. In the Request-Reply pattern, the distance matrix
can optionally be filtered at the Coordinator, since it has a separate connection to each
Emulation Server.

4.2.4 Implementation

Figure 4.4 shows an overview of the implementation of MiniWorld26. Its functionality,
indicated by the blue buttons on the left, is accessible by an RPC interface. All classes

24http://www.open-mesh.org/attachments/download/152/vde2-2.3.2_colour.patch
25http://zeromq.org
26https://github.com/miniworld-project/miniworld_core

37

http://www.open-mesh.org/attachments/download/152/vde2-2.3.2_colour.patch
http://zeromq.org
https://github.com/miniworld-project/miniworld_core

4 Disruption-tolerant Device-to-Device Emergency Communication

MiniWorld

Emulation ServerCoordinator

RPC Interface

Emulation
Manager

ZeroMQ
Interface

RunLoop

St
ep

St
ep

St
ep

Virtual Network

C
ha

ng
e

 T
op

ol
og

y

Network
Backend

Emulatiom
Manager

Network
Manager

VM
VMVM

RPC Interface

ZeroMQ
Interface

St
ep

Emulation Server

Virtual Network

C
ha

ng
e

 T
op

ol
og

y

Network
Backend

Emulation
Manager

Network
Manager

VM
VMVM

RPC Interface

ZeroMQ
Interface

St
ep

Tunnels

Step

Analyst

St
ep

Legend

ZeroMQ Socket

Optional RPC

Control Flow

Virtual Network

Figure 4.3: MiniWorld’s Distributed Architecture

with dashed line frames can be exchanged in a modular manner. The interplay of most
of the classes of the core of MiniWorld in the lower right part of Figure 4.4 have already
been explained in Section 4.2.3. The implementation of the remaining classes is outlined
below.

Each virtual network node is represented by a QEMU process. If the processor does
not support VT, the dynamic translation capabilities of QEMU are leveraged. Internally,
the QEMU class has a connection to the serial console of the VM. This gives MiniWorld
control over the VM without requiring any VM configuration. Moreover, this enables
MiniWorld to view the kernel and boot log. The boot process is finished if either the
shell prompt (boot mode: Shell Prompt) or a user configured string has been read on
the serial console (boot mode: Boot Prompt). An additional UDS socket, connected to
the QEMU Monitor, is leveraged to interact with the QEMU process. The monitor
connection enables the creation of snapshots (Snapshot Boot Mode).

Not relying on SSH for node provisioning enables MiniWorld to configure a VM
without preconfigured network settings. Commands to be executed on all or only a
specific node are stored inside the Scenario Config. Moreover, commands can be executed
by the user on each node.

The NetworkManager keeps track of current connections and associated link impair-

38

4.2 MiniWorld - An Emulation-based Evaluation Environment

MiniWorld

MiniWorld Core
Virtual
Network

VMVMVM

Network
Configurator

Network
Backend

Emulation
Manager

Network
Manager

Connection
Tracking

QEMU

Emulation
Node

Unix Domain
Sockets

Interface

ShellCommand-
Serializer

Change Topology

Emulation
Management

Topology
Switching

Process Management

Shell-
Helper

LogWriter
filestack

Mobility & Link
Quality

Movement
Director

LinkQuality
Model

Event System

EventSystem

EventProgess
Store

RPC Interface

Start / Stop
Scenario

Get
Connections

Get Link
Quality

Execute
Command on

Node

Get Logs

Step

Legend
Control Flow Aggregation

I/O Exchangeable
Class

Class

Usage

Get Distances

Get Server

RunLoop

Figure 4.4: MiniWorld Implementation

ments independent of the network backend implementation. Since connections are
tracked, the EmulationManager only communicates with the Network Backend if a con-
nection changes in terms of link state or impairment (Differential Network Switching).
An optional Network Configurator gives each interface of a VM an IP address. Moreover,
each Network Backend may decide to use a custom implementation. Note that even the
virtualization layer can be exchanged so that container virtualization may be added to
MiniWorld.

Virtual Nodes

Nodes are virtualized with QEMU. MiniWorld does not rely on libvirt, instead it uses
plain QEMU to leverage the full flexibility of the emulator. The QEMU command is
built from options declared in the Scenario Config. For each different node image, an
QCOW2 overlay image is generated to make use of a COW mechanism. With the COW
mechanism, a single image representing a common read-only layer is used by all nodes
with the same base image, hence node images are write-isolated from each other. The
boot times of VMs for full virtualization are higher than for lightweight virtualization.
A special boot mode called Snapshot Boot Mode tries to reduce these times. Snapshots are
taken from the VMs. For this purpose, {savevm,loadvm} <snapshot name> commands
are sent to the QEMU Monitor. If an error occurs, a VM is booted normally.

39

4 Disruption-tolerant Device-to-Device Emergency Communication

Network Backends

VDE For each interface of the VDE network backend, a VDESwitch is started. Both
the VDESwitch and Wirefilter can be controlled via an Unix Domain Socket (UDS). The
VDESwitch interface is used to set the hub mode, manage VLAN, view switch ports
and their links, set the color of each link and to set the number of ports. The Wirefilter
UDS interface is used to define the link quality in terms of loss and bandwidth, but it
supports more impairment options such as delay, duplicate packets, bandwidth, speed,
noise, MTU, and more advanced modulation techniques using Markov chains.

Bridged LAN and Bridged WiFi Bridged LAN determines for each node the maximum
number of connections during a scenario. Then, the VMs are created with the necessary
number of NICs. The representation of a connection with a single NIC creates point-to-
point links. Hence, for each connection, the appropriate NICs are added to a bridge.
Bridged WiFi allows any number of connections to be multiplexed over a single NIC,
hence only one NIC per MiniWorld interface is used. Ebtables is the equivalent of iptables
to create firewalls, but operates on the link level instead. For each connection, ebtable
rules based on the tap device names are used for filtering. Additionally, Linux traffic
control facilities are used to apply different link qualities based on the connections.
For each interface in MiniWorld, one bridge is created. Moreover, frames received by a
bridge are redirected to the appropriate chain.

Virtual Network Creation and Control To create and control a virtual network, Mini-
World supports Brctl, Iproute2 and the Pyroute2 Python library that uses netlink sockets
to interact directly with the kernel. In contrast to Iproute2, Brctl worked out of the box
on all tested machines, whereas some versions of Iproute2 do not support setting the
hub mode of a bridge. Although Brctl does not offer a batch mode, it is included for
situations where ease of use is more important than performance. Either Brctl, Iproute2
or Pyroute2 is used for creating a bridge, adding an interface to a bridge, changing the
state of an interface and for transforming a bridge into a hub. Brctl commands can only
be executed sequentially, hence communication with the kernel produces overhead for
each command. Iproute2 and Pyroute2 are able to execute all commands at once (batch
mode).

Link Quality Models Link quality impairment is implemented using HTB, a classful
QDisc for bandwidth shaping. More advanced link emulation is offered by NetEm [46]
that allows to simulate delay, packet reordering, loss and much more. Currently, only
the delay is deployed in the NetEm capable link quality models. The delay depends
to 25% on the last delay. For the Bridged WiFi network backend, connection flows
are marked by ebtables. Since connections are multiplexed via a single NIC, for each
connection a separate traffic class associated with the NIC is used to simulate different
link quality impairments. Traffic is classified by a filter (via the flow ID) and then
redirected to the appropriate traffic class. For Bridged LAN, a single traffic class can be
used without any filtering, since each connection is represented by a NIC.

40

4.2 MiniWorld - An Emulation-based Evaluation Environment

Distributed Mode

In MiniWorld’s distributed mode, nodes are interconnected on the link layer with GRE
by default. Both sides of a connection have to establish a tunnel. The tunnel is added to
a bridge on both nodes.

Scheduling To perform resource-aware placement of virtual nodes on Emulation
Servers, their resources are transformed into a score and shared with the Coordina-
tor. This includes CPU (based on bogomips) and RAM. The NodePlacementScore works as
follows: nodes are placed on Emulation Servers based on the CPU score. RAM is only
used to check that the amount of free memory is not exceeded on an Emulation Server.
Otherwise, the number of VMs is reduced until the memory fits to the needs of the
VMs. The RAM check is possible, since memory is limited for each VM.

Bridged Backends The Bridged network backends use Iproute2 to set up GreTap tunnels
such that nodes living on distinct Emulation Servers can be interconnected. Each tunnel
requires an ID for (de)multiplexing. To avoid distributed coordination of such IDs, a
pairing function is used to produce a unique ID from the two node IDs. Since GreTap
devices are represented by a NIC on both sides of a connection, tunnels can be handled
the same way as in the centralized mode.

Communication The central Coordinator distributes the distance matrix either via the
Request-Reply or the Publish-Subscribe pattern among the Emulation Servers. After each
step, Emulation Servers are synced via the Request-Reply pattern. All Emulation Servers
subscribe to an extra channel such that a reset can be triggered at any time. The channel
is implemented using the Publish-Subscribe pattern.

4.2.5 Experimental Evaluation

This section presents a performance evaluation of MiniWorld itself. In all experiments
in this section, the presented values are averages of 10 repeated measurements.

Centralized Mode

The experiments in MiniWorld’s centralized mode are performed on a shared-memory
multi-core computer. It has 16 physical CPU cores and 64 virtual cores, and 256 GiB
of RAM. In the experiments, iproute2 version 4.2.027 and QEMU version 2.6.0 are used.
The used VMs are: OpenWrt Barrier Braker (OpenWrtBB; size: 68 MiB) that has been
compiled manually, and Debian 8 (Debian8; size: 1,568 MiB) that has been installed
from a netinstall image with the options SSH Server and Standard System Utilities. The
OpenWrtBB VM needs only 10 MiB of memory after boot, whereas the Debian8 VM
requires 78 MiB of RAM.

VM Image Boot Times The boot times of QEMU VMs in MiniWorld are evaluated
below.

27https://kernel.googlesource.com/pub/scm/linux/kernel/git/shemminger/iproute2

41

https://kernel.googlesource.com/pub/scm/linux/kernel/git/shemminger/iproute2

4 Disruption-tolerant Device-to-Device Emergency Communication

1 2 4 8 16 32 64 128 256 512
#Nodes

0

1

2

4

8

16

32

64

128

Ti
m

e
(s

)

OpenWrt BB +RD
Debian 8 +RD
OpenWrt BB
Debian 8

Figure 4.5: Boot Times: OpenWrtBB vs. Debian8 (Shell Prompt)

1 2 4 8 16 32 64 128 256 512
#Nodes

0

1

2

4

8

16

32

64

128

Ti
m

e
(s

)

Snapshot Boot
Real Boot

Figure 4.6: Boot Times: Snapshot Boot vs. Real Boot (Debian8)

Image Comparison Figure 4.5 shows the required boot times for both images, con-
sidering that the Debian8 VM is equipped with 256 MiB of RAM instead of 32 MiB
for OpenWrtBB. OpenWrtBB is approximately twice as fast as Debian8. Since the Shell
Prompt boot mode is used, the VMs may not boot fully, but offer a shell prompt. The
use of a RD reduces the boot times only slightly. Moreover, doubling the number of
VMs by factor 64 (i.e., the number of virtual CPU cores) doubles the start times for each
image. Therefore, MiniWorld scales linearly.

Snapshot Boot VM snapshots can be used to improve VM boot times. Snapshots are
taken after the VM has been started the first time. Figure 4.6 shows the improvements
of the boot times achieved by Snapshot Boot. Even for 512 VMs, only a few seconds are
required to restore the state of the VM (6.8 seconds). A full boot requires 143.3 seconds,
hence the node start times are reduced by a factor of 21.

Network Backends The three network backends are evaluated in terms of bandwidth
and RTTs below. In addition, the topology switching times are measured.

42

4.2 MiniWorld - An Emulation-based Evaluation Environment

VDE
Bridged LAN

Bridged WiFi

Backends

32

64

128

256

512

1024

2048

4096
Ba

nd
wi

dt
h

(M
bp

s)

Figure 4.7: Network Backend Throughput

0 50 100 150 200 2500.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

VDE

0 50 100 150 200 250

Bridged LAN

0 50 100 150 200 250
Time (s)

RT
T

(m
s)

Bridged WiFi
Avg Min
Avg Std
Avg Mean
Avg Max
RTT / Std RTT

Figure 4.8: RTTs for the Network Backends

Bandwidth To measure bandwidth, two VMs and iperf are used. All VMs are started
with 1024 MiB RAM and the virtio-net-pci QEMU NIC Model. Moreover, each VM gets
a single CPU core. The results are shown in Figure 4.7. The VDE network backend
provides an average bandwidth of 55.7 Mbps. The Bridged network backends differ only
slightly from each other: Bridged LAN provides a bandwidth of 5848.5 Mbps, while
Bridged WiFi offers 5867.6 Mbps of bandwidth, i.e., ebtables does not seem to reduce
bandwidth.

Round Trip Times Figure 4.8 shows the results for the RTTs, gathered by the ping
command over 240 seconds. All three subplots share the same x and y axis. The red line
shows the average maximum delays (Avg Max) for 10 trials. With slightly more than
1.4 ms, the Avg Max (red line) is the highest for VDE. The Bridged network backends
provide the same delay characteristics, since both use Linux bridges. The Avg Mean
(yellow line) of both is less than 0.4 ms. The highest Avg Mean value results from the
VDE network backend (approximately 0.8 ms), most likely since the number of ports is
quite high for the VDESwitches by default (65537). To summarize, all network backends
provide good RTTs values.

Topology Switching Mobile nodes change their positions frequently, hence switching
between different topologies needs to be fast. The following experiment investigates
topology switching of the Bridged network backends, because VDE did not show
satisfactory results and thus cannot be used for wireless network emulation. Figure 4.9
shows the results of switching between 4 topologies, each consisting of 128 nodes:

43

4 Disruption-tolerant Device-to-Device Emergency Communication

Chain
 128

Cycl
e 1

28

Wheel
 128

Grid
 128

Chain
 128

Topology

0

1

2

3

4

5

Ti
m

e
(s

)

Differential
Differential +NS
Full
Full +NS

Figure 4.9: Topology Switching (Bridged WiFi)

Chain 128, Cycle 128, Wheel 128, and Grid 128. The first two bars of each topology
show the Differential Topology Switching capability, since only the differences between
topologies are changed. For example, switching between Chain 128 and Cycle 128
requires less than a second (red bar at Cycle 128) since the Step Time of the RunLoop
is 1 second by default. Therefore, each step takes at least one second. The Differential
Topology Switching feature is provided by the Network Manager and hence every network
backend benefits from it automatically. The values of the green and blue lines have
been created by defining the appropriate topology as the only one in the Scenario Config.
Therefore, no Differential Topology Switching can be performed. In all topology switching
cases depicted in Figure 4.9, Differential Topology Switching is faster than Full Topology
Switching. The used network backend is the Bridged WiFi network backend. Moreover,
Figure 4.9 illustrates that Network Supervision increases switching times since NICs need
to be configured in terms of IP addresses, and the network connectivity needs to be
checked with the ping command. Since Network Checking (NC) is an important feature
to ensure that a network topology has been switched correctly, the additional times can
be neglected.

Distributed Mode

In the following experiments, the distributed mode of MiniWorld is evaluated using 6

Emulation Servers and one Coordinator. Each of the 6 computers has a Core i7 processor
with 4 physical and 8 virtual cores. Hence, 8 QEMU processes are started in parallel.
Moreover, it has 32 GiB of memory and a Gigabit Ethernet card.

VM Boot Times To demonstrate MiniWorld’s resource-aware virtual node placement
on the 6 Emulation Servers, 300 OpenWrtBB nodes are started by n servers where n is
increased by 1 until all 6 servers take part in the distributed emulation. The boot times
(Selectors Boot Prompt) are shown in Figure 4.10. The start of 300 virtual nodes with a
single Emulation Server takes 435.8 seconds. Doubling the number of servers reduces the
boot times to 218.9 seconds (factor 2). With a total of 6 servers, the boot times could be
lowered to 81.5 seconds. Hence, the total boot times could be reduced by a factor of 5.3.

44

4.2 MiniWorld - An Emulation-based Evaluation Environment

1 2 3 4 5 6
#Emulation Servers

50

100

150

200

250

300

350

400

450
Ti

m
e

(s
)

Figure 4.10: Distributed Mode: Boot Times (300 OpenWrtBB Nodes, 128 MB RAM, Selectors Boot Prompt)

1 2 3 4 5 6
#Emulation Servers

0

1

2

3

4

5

6

Ti
m

e
(s

)

Chain 300
Cycle 300
Wheel 300
Grid 300
Chain 300

Figure 4.11: Distributed Mode: Differential Topology Switching (300 OpenWrtBB Nodes, Fixed-Range
Model, Bridged WiFi Network Backend, No Link Quality Impairment)

Topology Switching The topology switching times of the distributed mode are shown
in Figure 4.11. 6 servers are used to run 300 OpenWrtBB nodes with the Bridged WiFi
network backend and the Fixed-Range model without any link impairments. Creating
the Chain 300 topology is very fast, taking less than 2 seconds. Adding only a single
additional link (Cycle 300) can be handled efficiently by any number of Emulation Servers.
Switching to Wheel 300 takes the longest time. Figure 4.11 indicates that there is nearly
no communication overhead. Therefore, the topology switching times in the distributed
mode are approximately as fast in the centralized mode, since the number of connections
to switch stay the same. One disadvantage of the distributed mode is that the slowest
Emulation Server dictates the time required for a single step, since Emulation Servers are
synced after each step.

Tunnel Delays Tunnels introduce overhead, since frames need to be encapsulated by
a PDU. For Gretap, each frame is wrapped into an IP packet. The following experiment
examines the overhead posed by tunnels on bandwidth and delay. A Chain 6 topology
is used, delay is measured with the ping command, and bandwidth is measured with
iperf. A connection from node 1 to node 6 is established and data is recorded during

45

4 Disruption-tolerant Device-to-Device Emergency Communication

Local Chain 6 Distributed Chain 6

500.0

1000.0

1500.0

2000.0

Ba
nd

wi
dt

h
(M

bp
s)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

RT
T

(s
)

Figure 4.12: Distributed Mode: Tunnel Overhead (6 OpenWrtBB Nodes, Fixed-Range Model, Bridged WiFi
Network Backend, No Link Quality Impairment)

240 seconds. Figure 4.12 shows the results. IP routing is set up along the Chain topology.
For x = 1, all nodes are placed on one Emulation Server only. Hence, no tunnels are
used at all. The examined average bandwidth is 1804.6 Mbps. The average delay is
3.1 ms. If the Chain 6 topology is distributed among all clients (x = 6, one node per
Emulation Server), the bandwidth reduces to 866.0 Mbps and the RTT increases to 5.7
ms. The lowered bandwidth can be explained by routing the traffic through 5 nodes
and 5 tunnels on 6 different Emulation Servers. Even in this worst-case scenario, the
distributed mode still provides sufficient bandwidth and good delay characteristics.

4.2.6 Conclusion

In this section, MiniWorld, a novel distributed network emulation framework, was
presented. It relies on full virtualization using QEMU/KVM, offers three network
backends for emulating both wired and wireless communication, and provides four
mobility patterns as well as three distance-based link quality models. A novel snapshot
boot mode is offered for accelerated booting of identical environments and repeating
emulation runs. Connection tracking, address configuration, and network supervision
features are provided for each network backend automatically. To decrease runtimes,
MiniWorld supports distributed emulation across multiple computers, based on a
resource-aware virtual machine scheduler. Experimental results have demonstrated

46

4.2 MiniWorld - An Emulation-based Evaluation Environment

the performance of MiniWorld with respect to VM boot times, network bandwidth,
round trip times, and topology switching times, both for MiniWorld’s centralized and
the distributed emulation mode.

There are several areas for future work, such as (a) providing virtual WiFi devices
within QEMU instead of Ethernet devices as pseudo-wireless links, (b) developing
more sophisticated models for node mobility and link quality computation, e.g., by
integrating the ns-3 simulator to support high-fidelity link emulation and by adapting
the link quality depending on the used wireless interfaces, (c) investigating whether
SDN switches are alternatives to Linux bridges, e.g., to provide event-driven and
trace-based link impairment scenarios, and (d) integrating the QEMU-based Android
emulator into MiniWorld, e.g., to use geographic coordinates to emulate node mobility
and to evaluate location-aware Android apps.

47

4 Disruption-tolerant Device-to-Device Emergency Communication

4.3 Serval - A Robust Communication Foundation

4.3.1 Introduction

The Serval Project’s [26]–[29] objective is to allow people to use mobile telephone
handsets to communicate anywhere, anytime [28]. The project seeks to achieve this
by creating protocols, writing software, including mobile apps, and creating comple-
mentary hardware devices that, together, are able to replicate many of the functions
of a conventional cellular network to some degree (see Sec. 2.1.3). The goal is not
the replacement of cellular networks, but rather provisioning the best possible set of
functionality and quality of service that is feasible, without requiring any conventional
infrastructure.

Currently, pilots are being planned in the Pacific region and in Outback Australia over
the coming months. The pacific trials that are sponsored by the Pacific Humanitarian
Challenge28 in particular will involve the provision of Serval technology to the general
public in regions that are particularly vulnerable to natural disasters. It is therefore
imperative that the behavior of the technology be sufficiently characterized, so that
informed decisions can be made, and where any current deficiencies might exist, that
they can be identified, and thus be scheduled for remediation.

In this section, an in-depth experimental evaluation is presented of the delay-tolerant
networking (DTN) aspects of the Serval software stack for various network setups
and usage patterns, including simulated long term use. The evaluation is based on
the simulation and emulation environment called MiniWorld (Sec 4.2) to provide
insights into the scenarios where Serval can be deployed with satisfactory quality
and performance characteristics, without requiring the expense and complication of
deploying large and potentially costly physical test networks. Since battery capacity
is limited on mobile phones, a closer look at the battery drain from using Serval over
various communication links, such as WiFi and Bluetooth is taken. The contributions of
this research are:

• Evaluation using a hybrid simulation and emulation environment that allows
us to run real OpenWRT29 firmware images in an emulator, in contrast to mere
simulations where only the DTN protocol can be tested.

• Various network topologies, ranging from many 1-hop neighbors and a 64-hop
chain to more realistic merging islands connection schemes are evaluated.

• Several test cases mimicking common functionality, such as file distribution,
messaging and peer discovery, and typical user behavior, such as rapid bulk
insertion of content, writing periodic text messages, and adding different types of
content every now and then, are considered.

• Different file sizes are examined to reflect different patterns of mobile phone
usage, such as sharing text files (GPX data, ebooks, messages), images (map tiles,
pictures), voice and video recordings (eye-witness video footage, voice memos,
diaries).

• All test data, scripts and topologies are freely available and can be adapted to test
other software30.

28http://pacifichumanitarianchallenge.org/
29https://openwrt.org/
30https://github.com/umr-ds/

48

http://pacifichumanitarianchallenge.org/
https://openwrt.org/
https://github.com/umr-ds/

4.3 Serval - A Robust Communication Foundation

Parts of this section have been published in [2].

4.3.2 Related Work

There exists a wide range of related work addressing emergency communications needs
and solutions, beyond what is possible to cover in this work [49]. Nonetheless, many
of the solutions in this space can be classified according to (1) the communications
medium/media and modulation(s); and (2) the architectural model(s) used by each
solution.

Communications media include WiFi, Bluetooth, WiMAX, GSM, TETRA digital radio,
and various analog two-way and digital microwave, UHF, VHF and HF radio systems,
as well as wired analog or digital systems, and satellite based systems, all available
from various commercial vendors.

The architectural models can be often classified as either infrastructure-oriented,
distributed (including peer-to-peer ad-hoc systems), or hybrid architectures of both
approaches.

Several systems support multiple transport modalities. WISECOM [50], for example,
is an infrastructure-oriented system that seeks to provide a comprehensive approach to
post-disaster communications, using satellite for global connectivity and a wide range
of media and modulations. A significant challenge with such systems is their overall
complexity, and their dependence on a sophisticated Internet-side infrastructure.

Distinct from the transport media, considerable work has been done on designing
network protocols and frameworks for emergency communications using various
selections of the media and modulations listed above [51]–[53]. A resulting problem in
this diversity is that interoperability can be a signifcant challenge and requires ongoing
effort to contain and improve this situation [54], [55].

Mobile applications are also becoming more prominent in the emergency commu-
nications space [26], due to the increasing capability of modern smartphones. Several
systems also employ DTN principles to mitigate the challenges that arise when forming
networks from end-user devices, and without adequate supporting infrastructure [56].
Such systems are particularly relevant, due of their ability to operate when faced with
the failure of infrastructure, which is a common feature in disasters and emergencies
[49].

For example, FireChat31 is a DTN system for sending messages, but it lacks openness.
Other DTN systems such as SPAN [57] and Briar32 only support specific target operating
systems such as Android, and SPAN does not provide applications built on top of it.
Furthermore, Forban33 can spread files opportunistically in a DTN manner, but lacks
protocol support for direct private file transfers, messaging or routing.

Liu et al. [58] have developed a DTN based mobile microblogging app for censorship
resistant communication. Their focus is on the app’s energy consumption in an 802.11

ad-hoc network, ignoring other means of communication such as Bluetooth or WiFi
in AP mode and limiting the system to specific rooted Android devices in ad-hoc
networking mode. Also, there is no support for sending large files, such as videos.

Ntareme et al. [59] have presented an approach based on Android phones using a

31https://www.opengarden.com/firechat.html
32https://briarproject.org/
33http://www.foo.be/forban/

49

https://www.opengarden.com/firechat.html
https://briarproject.org/
http://www.foo.be/forban/

4 Disruption-tolerant Device-to-Device Emergency Communication

store-and-forward architecture. Services such as email are transparently delivered via
DTN, but the solution requires special server software in addition to the Android app.
Energy and bandwidth consumption were measured, but scalability and performance
in different scenarios were not evaluated.

Heimerl et al. [60] attempt to solve the problem of poor cellular coverage and power
outages in rural areas by using low-cost GSM hardware and a system for reduced
power consumption. While this approach is interesting for feature phones and services
such as voice calls and text messages, it still requires infrastructure to function.

4.3.3 Experimental Evaluation

In this subsection, the details of the evaluation setup are described including the
selected network topologies and tasks. Afterwards, the results of our evaluation are
presented.

Experimental Setup

The experimental setup for the in-depth evaluation of Serval, including the hard-
/software environment used, the parameters measured, the network topologies chosen,
and communication scenarios, is presented below.

Simulation/Emulation Environment To evaluate the performance in a realistic man-
ner, the MiniWorld network emulator presented in Section 4.2 is used. This gives us the
opportunity to use the OpenWRT build chain for building router images that include
Serval. OpenWRT is also used on real world routers such as TP-Link MR3020 or the
Mesh Extenders of the Serval Project. Having a full operating system with its own
network stack running on each node gives a much better picture of real life performance
than pure protocol simulation.

All tests are performed on a 64 core AMD Opteron 6376 CPU with 256 GB RAM,
simulating up to 100 virtual nodes, each one with 512 MB RAM and 2 GB of storage
space. These quite limited values allow us to investigate how Serval performs on older
smartphones like the original Samsung Galaxy S or similar, which are common in
developing countries.

Measurements Standard Unix tools are used to measure system properties, with a
measuring interval of one second. For memory consumption, CPU and I/O usage
pidstat34 is used to monitor the statistics of the Serval process from within a node. Disk
space is measured with du and df, both from the GNU coreutils35. Network usage is
measured on the MiniWorld bridge interfaces of the host system using a custom Python
tool36 based on libpcap37. Insertion points in time for the Rhizome store are derived
directly from Serval’s log, while the general file count is logged using direct servald
calls.

34http://sebastien.godard.pagesperso-orange.fr
35http://www.gnu.org/s/coreutils/
36https://github.com/umr-ds/serval-tests/blob/master/netmon.py
37http://www.tcpdump.org

50

http://sebastien.godard.pagesperso-orange.fr
http://www.gnu.org/s/coreutils/
https://github.com/umr-ds/serval-tests/blob/master/netmon.py
http://www.tcpdump.org

4.3 Serval - A Robust Communication Foundation

Table 4.1: Network Topologies

Name # Nodes Description

Hub 48 All nodes connected to each other

Chained 64 Pair-wise connected

Islands 100 Partitioned islands, merging over time

Network Topologies Several network topologies are studied, as shown in Table 4.1.
The Hub topology connects 48 nodes with each other. It represents a scenario with a
high number of direct neighbors all using bandwidth, flooding each other with status
information and new files, sharing the same transport channel. Typically, the number
of direct neighbors is limited by the radio range of WiFi or Bluetooth (i.e., often less
than 48). Thus, Hub is challenging for Serval and also the radio link itself.

The Chained topology consists of a chain of 64 nodes, thus the last node is 63 hops
away from the first node. Typically, network connections over the Internet require less
than 16 hops. In a delay-tolerant mobile mesh network, more hops might be needed for
messages to reach their destination compared to static networks physically optimized
for minimum hop numbers and maximum throughput.

The Islands topology represents a partitioned network that slowly merges over time.
At the beginning, there are 100 nodes in small islands with only a few neighbors.
Between these small islands there are no links, but after a predefined time a few of
them merge together, exchanging all their information that they have collected so far.
Finally, there are two big islands where one node acts as a bridge between the two, and
all accumulated data from one island has to pass through this node to propagate to the
other island.

All topologies are used in two configurations, one modeled after the common 802.11g
standard with a 54 Mbit/s limit on each link and one with no bandwidth limitations.

Scenario Tests Based on these topologies, several tests were designed, as shown in
Table 4.2.

Idle (I) simply starts Serval and waits until all nodes have found each other. This test
serves to evaluate how long the discovery phase takes in various network setups and
how much traffic Serval produces while idling.

Mass Files (MF) pre-generates a number of files and inserts them at one specific
node. The goal is to evaluate whether Serval can handle a large number of files at
once. Propagation through the network is observed to reveal problems related to high
bandwidth, storage and/or CPU usage.

Mass Messages (MM) is designed to test the messaging subsystem of Serval by flooding
the network with text messages. A number of messages is sent at once to every single
node in the network no matter if it is currently reachable or not.

Periodic Files (PF) is designed to observe the long-term behavior of the system. Files
are added at random points in time by every node. A real world analogy is: people
taking pictures occasionally and sharing them with everybody else.

Periodic Private Files (PPF) is a special case of PF where files are not shared with the
public but sent to a randomly chosen recipient.

51

4 Disruption-tolerant Device-to-Device Emergency Communication

Table 4.2: Scenario Tests

Name Short Description

Idle I Node discovery, no actions triggered

Mass Files MF Insert bulk of file set at once

Mass Messages MM Insert bulk of messages at once

Periodic Files PF Periodic adding of files

Periodic Private Files PPF Periodic adding of private files

Periodic Messages PM Periodic sending of messages

Combined C All periodic tests together

Table 4.3: Test File Sets

Name Sizes Description

Small 64K, 256K, 512K Small pictures, map data, text files

Medium 1M, 5M, 10M Camera pictures, audio recordings

Large 25M, 50M, 100M Recorded video

Mixed all of the above -

Periodic Messages (PM) is designed to evaluate the Serval messaging subsystem. These
messages are also directed to a specific recipient and are not meant for the public.

Combined (C) is designed to run all periodic tests (PF, PPF, PM) at once. Similar to
real life situations, the nodes change their behavior and there is a competition for the
resources in the network. Broadcasting files, sending files to “friends” and writing text
messages all have different requirements.

Data Sent Text messages consist of a fixed string plus a timestamp in milliseconds
when a message was sent. Since these messages are meant to mimic real world chat, the
total string length is kept small (53 characters). According to a chat study of Battestini
et al. [61], text messages sent by males had an average length of 47 characters and for
females 58 characters.

Files have different file sizes representing different types of data, as shown in Table 4.3.
The Small file set contains randomly generated files ranging from 64 KB to 512 KB; large
text files, ebooks, small pictures or other data such as map tiles typically have these
sizes. In the Medium file set we have files between 1 MB and 10 MB, which is nowadays
the size of pictures taken with mobile phones or some audio recordings. Recorded
video or software bundles are represented in the Large file set and are generated in the
range from 25 MB to 100 MB. Finally, there is a Mixed file set where small, medium and
large files are included.

Test Execution All file related tests were performed with all four file sets, every test
was executed on all topologies with limited and unlimited bandwidth resulting in a

52

4.3 Serval - A Robust Communication Foundation

total of 114 tests. While some tests (e.g., MF) are count-based and terminate after every
node has received a specific number of files, other tests (e.g., PPF) are time-based -
always running for the same duration. Each test was performed 5 times, resulting in a
total of 570 test runs.

Experimental Results

In the following, various results regarding Serval’s behavior during the experiments
are presented.

Idle Behaviour To investigate the idle behavior of Serval, we looked at network traffic,
CPU load and memory usage after the initial discovery phase, without triggering
further actions. In every scenario, whenever Serval is started, there are peaks in the
network load, in the Chained and Hub topologies at approximately 10 to 12 Mbit/s. After
this peak, Chained has a summed average network traffic of around 0.7 Mbit/s, whereas
the nodes in Hub produce 6 Mbit/s. This behavior is caused by Serval’s information
distribution strategy, because it announces status information, such as the list of files
in Rhizome, periodically via broadcasts. Since there are 47 neighbours for each node,
traffic is relatively high in the Hub topology. Islands has extrema whenever partitions
merge. The traffic during peaks grows with the number of nodes.

CPU usage of the Serval process correlates with network load in our scenarios, but
never gets larger than two percent per node. Serval uses around 4 MB of memory in all
scenarios.

Moreover, the discovery time of each topology is different. For Hub, the average
time of a full network discovery is approximately 5 seconds, since every node has a
direct connection to all others. In contrast, the Chained topology takes about 20 seconds,
because announcements have to be forwarded through all other nodes.

In some experiments, Serval’s address abbreviation (Sec. 2.1.3) mechanism caused
conflicts under special circumstances, depending on the keys and when different nodes
announce themselves for the first time. If a node already has seen another node with
the same abbreviated address, it is ignored, potentially causing a partitioning of the
network. To circumvent such effects, we modified Serval to generate unique prefixes
for the desired node number in our tests.

Hub Constraints For Hub, a single bridge interface was used to connect all nodes.
Since each node is a single hop away from all other nodes and Serval uses broadcast
packets to announce meta-data (e.g., the files of a node), each node is flooding all
neighbors with this information. Since the number of adjacent nodes affect the CPU
consumption of the respective node, in the Hub topology the CPU usage is always
higher than in the corresponding test in Chained or Islands, due to the high number of
direct neighbors.

Topology Characteristics Fig. 4.13 shows Mass Files tests with a Mixed file set in
different topologies. It shows how transfer rate in Mbit/s, size of the Rhizome database
and the CPU usage change over time. The transfer rate is stacked for all links. The
Rhizome size is the stacked database sizes of all nodes.

53

4 Disruption-tolerant Device-to-Device Emergency Communication

(a) Chained limited (b) Hub limited (c) Islands limited

Figure 4.13: MF Mixed: Rhizome store size, network and CPU load

Fig. 4.13a shows a limited (802.11g) Chained topology, in which five phases are visible,
caused by the Rhizome prioritization based on file sizes. Small files are delivered first
and therefore can be distributed earlier by the following nodes. The bigger the files
get, the less total network utilization is achieved. Despite this effect, a constant stable
data flow is visible, and the Rhizome store grows constantly. The maximum CPU load
correlates with network usage, since the most active network nodes do have the highest
CPU usage.

In Fig. 4.13b, a limited Hub topology is shown. Though a constant 54 Mbit/s data flow
is visible, the spikes exceeding 54 Mbit/s are measurement errors, caused by differing
network backend and traffic monitoring timers. With a constant network load caused
by the file transfers, the disk usage also grows linearly as expected in this case, meaning
that the network load is not dominated by status and management information but real
content distribution. Compared to Fig. 4.13a the average CPU usage is about 10 times
higher, as explained in Sec. 4.3.3.

For Islands, CPU usage increases every time the network changes. Looking at Periodic
Files tests, the max. CPU load rises to 15% when large files are inserted, since they
have to be redistributed among the other nodes. Fig. 4.13c shows the Mixed file set
in MF, which peaks at around 7% CPU load. Since many of the files already exist on
various nodes, every time new network connections are set up, the impact on the CPU
is relatively low compared to Hub. In general, smaller files have a negligible impact on
the CPU.

The Periodic File tests with small sizes do not show any unexpected behavior in
terms of CPU consumption in Chained, the CPU peaks at about 10%. When the files are
encrypted as in PPF, the CPU utilization is slightly higher, at about 15%, due to CPU
intensive cryptographic operations.

The file size influences CPU utilization, which greatly impacts the inserting node.
For instance, when sending Small files in Chained, there is no significant change of CPU
utilization compared to idling, whereas file set Large utilizes the CPU up to 35%. Bigger
files lead to more time consuming hashing, as it is required by the corresponding
protocol. Thus, every node receiving the file needs to compute a hash, verify and
redistribute it, which also leads to a higher load.

In terms of CPU usage, Islands is a combination of Chained and Hub. CPU usage does
not exceed 50%, since the total number of neighbors per node is not as high as in Hub.

54

4.3 Serval - A Robust Communication Foundation

Figure 4.14: MM CPU usage over time. Left: unlimited Chained, right: unlimited Hub.

In the message based tests, the measured CPU consumption correlates with the
number of messages sent. For MM, the behavior differs depending on the topology
used. Fig. 4.14 shows the CPU usage per node of two experiments over time. Using
Chained, the inserting node peaks at 30% CPU load compared to the receiving nodes,
which consume about 15%. Using Hub, the load of the inserting node remains the same.
In contrast, the receiving nodes constantly consume about 65% CPU. Hub suffers from
the broadcast overhead (Section 4.3.3), but this does not fully explain the high load, as
the sending node is not affected. Further investigating this behavior, it can be tracked
back to recurring hashing and encryption in Rhizome Journal syncing, which is the
core of MeshMS messaging.

PM results differ from MM. For Chained, the CPU utilization is relatively low at about
15% maximum. This correlates with the CPU load of the non-inserting nodes in MM.
Since they are added periodically, the CPU overhead is negligible here. Hub behaves
differently than in the file based tests or MM: The PF tests show that in every topology
the more files are injected in the network, the more CPU is needed to handle the
broadcast packets. Messages are not announced further after reaching their destination
and being acknowledged by the recipient. The obvious consequence should be that the
CPU usage decreases. However, as indicated by Fig. 4.15, once the CPU peaks at about
25%, it does not settle any more, but increases even further, although the network load
decreases to the idle level and the Rhizome database size is at its maximum, which
indicates that all messages have arrived. This behavior cannot be transferred to Islands,
where the inserting nodes peak at about 40% and all other nodes do not exceed 15%.

For C tests, the general CPU usage is similar to other file based tests. The only
difference is the fact that in Chained and Hub the CPU usage increases by 5% after about
500 seconds and also correlates with the network load, similar to the behavior depicted
in Fig. 4.15. This problem emerges when sending messages over a longer time period.
Since Islands is not in the final state at the beginning of the test in terms of the links
between the nodes, this result can not be observed in this particular topology.

Network Performance One goal was to test to what extent Serval is able to use
available bandwidth. Chained was created to assess this.

The cumulative transfer rate using Rhizome in this topology reached 500 Mbit/s to
2 Gbit/s, depending on the file sets, with Large being the fastest. That is, up to 2 Gbit/s
of traffic was being carried over the set of hops in the chain, with each seeing an

55

4 Disruption-tolerant Device-to-Device Emergency Communication

0 100 200 300 400 500 600 700 800 900
time (s)

0

5

10

15

20

25

tr
a
n
sf

e
r

ra
te

 (
M

b
it

/s
)

0

2

4

6

8

10

12

14

16

rh
iz

o
m

e
 s

iz
e
 (

M
iB

)

0

20

40

60

80

100

)
 m

a
x

 a
v
g

m
in

cp
u
 u

sa
g
e
 (

%
)

-
(

Figure 4.15: Hub limited PM: Rhizome store size, network & CPU

average utilization of 32 Mbit/s. Tests that transfer large files over an unlimited network
show that Serval is able to use even more bandwidth, since the highest measured
transmission speed from one node to another can be up to 160 Mbit/s.

Using Chained, the hop-to-hop transmission time can be modeled, since node n is
able to receive a file just after node n− 1 received it. Fig. 4.16 shows the hop-to-hop
transmission times of the Medium file set. The five files of each size are grouped into one
box plot, while the colors present five different runs of each experiment. The median
transmission times for 1, 5 and 10 MB files are 0.54, 1.06 and 1.85 seconds, and only 0.27

sec for 64 KB files. From these values, a simple correlation for the transmission time
can be derived: T(sizeMB) = 0.16 · size + 0.26, which also holds for the Large set. The
formula indicates a net transmission rate of around 31 Mbit/s, with a 0.26 sec delay.

The average speeds are lower, because files are exchanged node-by-node, and can
only be spread to node n + 1 after reaching node n, resulting in an effective end-to-end
bandwidth, for a given bundle, inversely proportional to the number of hops. This
compares favorably with end-to-end ad-hoc wireless routing protocols, where the
effective end-to-end bandwidth drops by approximately half for each additional hop.

Briefly considering the different topologies, the network utilization in Islands for file
based tests is generally about the same as in Chained, since each node has only a few
neighbors, in contrast to Hub, which is always able to saturate all links due to the high
degree of connection among nodes.

Messages in Serval are effectively transported as small files, with a payload size of 53

bytes in both PM and MM cases. The network load shows a behavior similar to small
files in the PF test, peaking at up to 40 Mbit/s at all topologies and regardless if the
network is limited or not.

The network load for C tests in all topologies is similar to the file based tests,
independent of bandwidth limitations. The only difference is the increase of the network

56

4.3 Serval - A Robust Communication Foundation

1
m

1
m

1
m

1
m

1
m

5
m

5
m

5
m

5
m

5
m

1
0

m

1
0

m

1
0

m

1
0

m

1
0

m

filesize

0.1

1

10

100

ti
m

e
 (

s)

Figure 4.16: Chained limited Medium file set: File-size-grouped hop-to-hop delivery periods of five runs.

load after about 500s on Chained and Hub, as shown in Section 4.3.3.
In Hub, small files take between 1 and 4 min to arrive on the last node in the

limited network links. This increases linearly, up to 20 min, with increasing file size.
If the network is unlimited, transmission time reduces to between 18 sec and 9 min,
depending on the file size. One difference between Hub and Chained is the runtime.
Small files are transmitted faster in Hub, whereas Large files are faster in Chained. The
time overhead for file announcements is relatively higher for Small. Even with a lower
total bandwidth (Hub: 54 Mbit/s for 48 nodes vs. Chained: 54 Mbit/s pairwise), Hub can
achieve faster transmission rates. The limitation of network speed does not influence
this behavior, only the overall transmission time increases.

The transfer times of messages differ from topology to topology. While it takes about
350 sec in Chained until all messages arrive at their destinations, it can take up to 900 sec
in Hub. This again shows that the high number of 1-hop neighbors in Hub is challenging
for Serval. The transmission time for messages in the C tests depends highly on the
used file set, rather than on the topology and network speed. The reason is that the
network is saturated with big files, which leads to overall higher transmission times for
messages.

Energy Consumption The Idle test in Section 4.3.3 showed network peaks caused by
Rhizome status information announcements. Therefore, the energy consumption of the
announcements is evaluated: Two devices send announcements in different intervals.
Fig. 4.17 shows the energy consumption for peer A using different announcement
intervals at peer A and peer B. With a 0.5 sec or 1 sec interval, the consumed energy
is 9% higher than in idle state. With a 2 sec interval, the consumed energy is only
3% higher than in idle state. With a higher interval of 4 sec or 8 sec, only negligible
decreases in energy can be achieved.

Furthermore, the power consumption during MM and MF tests were evaluated. Two
peers were connected via an 802.11n WiFi Access Point. Peer A inserts files and messages
into Rhizome in the same manner as MM and MF tests. The power consumption of
peer B, a Raspberry Pi 3, is then measured with the Odroid Smart Power measurement
device, an external power meter. The aim of these experiments is to measure the energy
overhead for running Serval on a device, which allows conclusions about the power
drain of Serval on battery-powered devices.

Fig. 4.18 shows the power consumption during different Rhizome file set insertions

57

4 Disruption-tolerant Device-to-Device Emergency Communication

No Peer 0.5 1 2 4 8
Announcement Interval Peer B (s)

1400

1450

1500

1550

1600

1650

1700

1750

E
n
e
rg

y
 C

o
n
su

m
p
ti

o
n
 P

e
e
r

A
 (

W
s) Announcement Interval Peer A (s)

0.5 1 2 4 8

Figure 4.17: Energy consumption of announcement intervals

similar to MF. The file sizes are increased during the phases f1-f4. During f1, the file
sizes are smaller than 1 MB, resulting in a negligible additional power consumption.
The bigger the transmitted files are, the more power is consumed. The comparison
between receiving files and sending files shows an unexpected behaviour: In all phases
f1-f4, sending files is less expensive compared to receiving files, on the average between
0.05 and 0.1 W (3-6%). This counter-intuitive result is caused by additional CPU
consumption of the Rhizome checksum calculation during reception. Compared to a
1.53 W mean idle value of peer B, the power overhead introduced by Serval is between
0.01 and 0.13 W (1-8%) during phases f1-f4.

In another experiment, the power consumption during different message insertions
similar to the Mass Messages test was measured. The results show a power consumption
peak between 1.81 and 1.91 W during a short period of reception, followed by a phase
of negligible additional power consumption. During the reception of 100 messages, a
mean value of 1.69 W (10%) additional power consumption is measured.

A better energy efficiency during message transmission could be achieved by using
Bluetooth. It consumes a significant amount of energy during device discovery, but has
a lower power consumption during data transmission than WiFi. Due to the low energy
efficiency (joule per bit) of Bluetooth compared to WiFi, it consumes significantly more
energy for large data transmissions. During an experiment, we measured a 32 times
better energy efficiency of WiFi compared to Bluetooth for files between 512 KB and 16

MB.

4.3.4 Conclusion

In this section, an in-depth experimental evaluation of the delay-tolerant aspects of
Serval for various network setups and usage patterns was presented. The results
show satisfactory performance of Serval when deployed in partitioned scenarios and
extreme examples of network topologies. Furthermore, Serval’s energy consumption
was evaluated, having the limited battery capacity of mobile devices in mind.

In particular, the experiments indicate that there is a sweet-spot for the trade-off
between up-to-dateness and energy consumption regarding announcement intervals.
Furthermore, Serval can handle a realistic number of files over a longer time period.
In the Chained topology, neither the CPU load nor the used network bandwidth leads
to out of service situations. All tests with the Hub topology show that in a highly
used network the announcements consume a considerable portion of the available

58

4.3 Serval - A Robust Communication Foundation

Figure 4.18: Power consumption during different Rhizome file set insertions (f1-f4) similar to the Mass
Messages test.

bandwidth. In emergency situations or in long-term setups this could have a negative
effect depending on the number of people in direct communication range. The Combined
tests in our Islands topology demonstrate that Serval works flawlessly in adapting to
heterogeneous environments where users have different requirements at the same time
and the topology changes over time.

There are several areas for future work. Mobility simulations should be carried
out, preferably with real world movement patterns gathered from past events. More
powerful hardware with higher numbers of nodes should be used to run the simulations
and emulations, to further investigate Serval’s scalability properties, particularly in
highly-connected topologies, like Hub. The defect that has been exposed in the address
abbreviation code should be rectified. An evaluation of Serval’s non-DTN related
features, such as voice calls, could further increase the attractiveness of Serval as a
solution for emergency or off-grid communication.

59

4 Disruption-tolerant Device-to-Device Emergency Communication

4.4 Optimizing Epidemic Announcements

4.4.1 Introduction

As shown in the previous section, several network protocols rely on nodes broadcasting
announcements to other nodes. Examples include service discovery (Bonjour/ZeroConf,
Samba), routing algorithms (RIP, OLSR), and peer-to-peer or delay-tolerant networking
(DTN) systems (Forban38, Serval39). While the traffic generated by periodically sending
announcements might be negligible in wired networks with high-speed links, band-
width in wireless networks, such as 802.11, Bluetooth or various mobile ad hoc networks
(MANETs), is precious and limited. For example, spontaneous smartphone networks
become more and more important not only by providing pervasive wireless Internet
access during large human crowd gatherings, but also during emergency situations or
post-disaster recovery [62].

Group 1 Group 2 Group 3

Figure 4.19: Drive-by store-and-forward data exchange.

s=77m

r=40m
v=50 km/h

Figure 4.20: Drive-by window of opportunity example.

In an emergency communication scenario, the main goal is to spread messages and
files produced at a disaster site fast among reachable nodes. Therefore, data is passed
around in an epidemic fashion to as many neighboring peers as possible. Typically,
some nodes are more static, such as devices of people trapped in their houses or small
emergency camp sites forming islands, while other nodes are on the move (by bike,
car, foot), which by passing through these islands act as carrier-pigeons to distribute
information further (see Fig. 4.19). These islands have a higher density than typical
sensor networks. To make optimal use of the short time in case of a drive-by, it is
important to find a peer for data exchange very fast. Since any peer can initiate data
synchronization, a special treatment of mobility is not necessary. Depending on the
used wireless technology, a mobile phone might have an effective range of 14-80 meters
to communicate with others. Thus, if we assume a WiFi radius of 40 meters and a
static node being 10 meters away from a street, a car driving on the street would be

38http://www.foo.be/forban/
39http://www.servalproject.org/

60

http://www.foo.be/forban/
http://www.servalproject.org/

4.4 Optimizing Epidemic Announcements

in the WiFi range for about 77 meters (see Fig. 4.20). The car passing by, assuming it
moves at about 50 km/h, would have just under 6 seconds for node discovery and
exchange of data. This is plenty of time for transferring, for example, two 6 megapixel
pictures and setting up connections via a standard 54 Mbps link. Therefore, for the fast
moving node, one of the more static peers is sufficient to start a data transfer. Since
all information gets replicated in this scenario, the fast moving node does not need
to know all possible neighbors. The static node can distribute the data further among
its neighbors. Discovering all direct peers as fast as possible is neither necessary nor
beneficial for the static nodes. Under these assumptions, it is reasonable to use dynamic
announcement intervals instead of the typically used static announcement intervals.
Furthermore, dynamic announcement intervals require not only less network resources,
but also potentially save more battery capacity than static announcement intervals.

In this section, several approaches are presented to realize dynamic announcement
strategies that facilitate fast reception from at least one other node while trying to keep
the overall communication overhead as low as possible. Experimental results in terms
of performance properties and energy consumption are given to illustrate the benefits
of dynamic announcement intervals in wireless on-demand networks. In particular, this
section makes the following contributions:

• Various strategies for realizing dynamic announcement intervals optimized for
different network setups are presented.

• An experimental evaluation of all proposed strategies, including static and ran-
dom announcement strategies, with respect to bandwidth usage, announcement
distribution and energy consumption is presented.

• Test environments suited for various topologies, such as large stable networks,
islands merging and networks splitting, are investigated.

• The results are directly applicable to local peer-to-peer content distribution sys-
tems in emergency scenarios, such as Forban and Serval.

Parts of this section have been published in [3].

4.4.2 Related Work

There are several publications that investigated problems associated with static an-
nouncement intervals in various protocols and application scenarios.

Natsheh et al. [63] proposed a solution based on fuzzy logic to optimize hello
messages in dynamic ad-hoc routing. Their work focused on the mesh routing use case,
and experiments with a maximum of 35 simulated nodes were presented. Furthermore,
Khalaf et al. [64] investigated the broadcast storm problem in mobile ad hoc networks.
The authors presented a probabilistic approach to improve the situation in a mesh
routing scenario.

Ahmed et al. [65] addressed the problem of beaconing in vehicular ad hoc networks
(VANETs). Combinations of controlling a beacon’s transmission power, transmission
rate, and contention window at the MAC layer were proposed to achieve efficient beacon
communication in VANETs. Another approach devoted to improve the problems related
to static beaconing intervals in ad hoc networks was presented by Tahar et al. [66]. Hess
et al. [67] investigated peer discovery in mobile opportunistic networks by considering
the mobility of nodes.

61

4 Disruption-tolerant Device-to-Device Emergency Communication

Peng [68] proposed an adaptive mobility-aware MAC protocol for wireless sensor
networks. Apart from optimizing the number of messages, the energy consumption
was investigated. Lim et al. [69] presented an approach called RandomCast to improve
the energy efficiency of 802.11 ad hoc networks. In this approach, the sender can specify
the desired level of overhearing of neighboring traffic, trying to find a balance between
energy consumption and routing performance.

Using perfect difference sets for neighbor discovery, Link et al. [70] presented an en-
ergy efficient approach for wireless networks. The authors focused on sensor networks
and DTNs with sporadic communication, whereas we focus on networks with higher
communication frequencies in local clusters.

Peer-to-peer content distribution is another scenario where announcements are
relevant, and a trade-off must be made between central tracker-based peer discovery
and distributed peer discovery. Dán et al. [71] presented a hybrid approach that uses
individual trackers and a gossip protocol to improve peer discovery. By hopping
between swarms and redistributing known peers, efficiency is increased.

Liu et al. [58] developed a censor-ship resistant delay-tolerant network for message
exchange and evaluated it with respect to performance and energy consumption.
To avoid energy draining broadcasting with fixed intervals, the authors adopted an
approach presented by Zheng et al. [72] based on asynchronous wake-ups for ad
hoc networks. Another delay-tolerant networking system designed specifically for
data synchronization in emergency situations was presented by Paul et al. [73]. While
optimizations are proposed to speed up file transfers and syncing, the actual peer
discovery was realized by simple broadcasts with fixed announcement intervals.

During an experimental evaluation of Serval as a delay-tolerant emergency com-
munication platform, Baumgärtner et al. [2] (see also Section 4.3) found that regular
broadcasts used for node discovery or announcements of routing and data storage infor-
mation especially in networks with many direct peers require high network bandwidth.
The study showed that around 2 seconds of announcement delay was the best trade-off
between quick peer discovery and conserving energy with the stock implementation
made available by the Serval Project.

By exploiting social network characteristics for assisting ad hoc peer discovery, Zhang
et al. [74] attempted to find optimal beacon probing rates with constant intervals for
each group of users. As stated by Wang et al. [75], peer discovery itself can be as energy
consuming as making phone calls.

Trifunovic et al. [76] presented a solution for opportunistic networks of stock mobile
devices using 802.11. Since ad hoc mode and Bluetooth pairing does not really work
in practice on current mobile devices, open access points and intelligent switching of
clients between these access points were used.

While most of the mentioned work is highly specific to the studied use cases, the
general picture is that adaptive or dynamic announcement intervals usually outperform
static ones, not only with respect to network performance, but also regarding energy
consumption. In this scenario, a small dense clusters of nodes is considered, where a
few nodes act as mobile bridges between these islands, in contrast to most sparse sensor
networks. Furthermore, most approaches focus on lower layer technologies, whereas
these algorithms here can be applied on the application layer without operating system
support.

62

4.4 Optimizing Epidemic Announcements

4.4.3 Design

Dynamic Announcement Intervals

In this section, several dynamic announcement strategies, the constraints associated
with them, and quality properties to evaluate their performance are presented.

Announcement Strategies

Several novel strategies for realizing dynamic announcement intervals have been
developed. Each strategy has access to the current announcement delay, the global
number of announcements seen at the last observation interval and the current number
of unique peers. The strategies are described in the following:

Static The Static announcement strategy is the basic announcement approach used
by most current broadcast protocols. There is a fixed interval defined for every node
in which an announcement is sent. This also means that the generated global traffic is
growing linearly with the node count. By default, this interval is set to a 2 second delay
in our tests, which also is the recommended value for MANET NHDP [77].

Random In the Random strategy, every node chooses a random announcement delay.
This delay is a random number between a minimum and a maximum (as described in
Section 4.4.3) for every observation interval. The distribution of the random numbers,
depending on the network size, heavily influences the performance of this strategy, as
well as the duration of the observation interval.

RandomSweet In this strategy, Random is extended. The announcement interval is only
set randomly if the current global announcement rate is higher than one announcement
per second or less than the minimum number of announcements per second (see Section
4.4.3). Thus, if the network has reached a stable state, this strategy does not change
anything and sticks to the last randomized delay for each node. This stabilizes the
network if by chance optimal delay combinations are found, at least until nodes join or
leave the network.

Step After every observation interval, the Step strategy checks the global announce-
ment count. If the count is higher than one announcement per second, the node’s
announcement delay is increased by one second. If the count is lower than 0.5 an-
nouncements per second, the node’s announcement delay is decreased. This leads to
gradually narrowing down to a most suitable announcement delay over time.

StepRand In this strategy, Step is extended by adding randomness to each step. While
the conditions remain the same as in Step, a random value between 0 and 0.5 seconds
is added or subtracted to the announcement delay.

MaxFirst MaxFirst is a rather defensive strategy: whenever a high global announce-
ment rate is detected (more than one announcement per second), the node’s announce-
ment interval is set to the observation interval, i.e., the maximum possible announce-
ment delay is tried first, hence the name. Then, if less than 0.5 global announcements

63

4 Disruption-tolerant Device-to-Device Emergency Communication

per second are present, the strategy decreases the announcement delay by one second
per iteration, until the local minimum of 0.5 seconds is reached. Thus, a very low an-
nouncement frequency is favored, which should be beneficial in larger or fast growing
networks.

MinFirst MinFirst reverses MaxFirst, and thus is an aggressive announcement strategy.
Whenever less than 0.5 announcements per second are detected globally, the announce-
ment delay is set to the local minimum of 0.5 seconds. Otherwise, the announcement
delay is increased by one second per iteration, until the observation interval is reached.
This strategy supports scenarios where most of the time only very few peers are in
direct vicinity of each other.

Unsteady In the Unsteady strategy, each announcement delay is computed only on
the basis of the number of unique peers known by a node and not on the global
announcement rate like in the other algorithms. The goal is to reach a global rate of
one announcement per second. Looking at the current peer count, an announcement
interval is computed to complement the announcement intervals of the other nodes.
Using this method, the strategy should be able to adapt to new situations as fast as
defined by the observation interval.

Constraints

To guarantee that a node can be discovered, an observation delay, with the same value
for all nodes, is define. This is the time between re-evaluation and before another
change in the announcement frequency can happen. Each node has to announce itself
at least once per observation interval. All nodes must set the announcement delay
after the observation delay is over. This enables a better comparability between the
announcement strategies.

The observation delay is set to 20 seconds in all experiments, since the baseline for static
announcements is 2 seconds. Therefore, it is reasonable to re-evaluate the situation after
10 standard announcements. The higher the delay, the longer it takes for the network
to adapt to new situations. A very short delay in conjunction with the premise that
each node should at least send one announcement per interval leads to higher loads,
especially with higher node numbers. Thus, a delay of 20 seconds ensures that within
this interval all peers in the direct neighborhood are discovered.

Quality Properties

To evaluate and compare different strategies for dynamic announcement intervals,
universally applicable quality properties must be defined. The main goal is to globally
have one announcement per second at any given time, not less, but also not much
more to conserve resources. This goal is motivated by the drive-by scenario described
in Section 4.4.1, in which 10% of the window of opportunity would be used for peer
discovery under this assumption.

Global Announcement Rate The Global Announcement Rate is measured by counting
the announcements per second. This parameter is the main optimization goal for the
algorithms, since it is directly correlated with the bandwidth used for peer discovery.

64

4.4 Optimizing Epidemic Announcements

Global Announcement Gaps The Global Announcement Gaps are measured by the time
periods between two announcements. The Global Announcement Gaps are important to
observe, since they reveal how long a new peer needs until it receives an announce-
ment from the rest of the network. Although this value is roughly the inverse of the
Global Announcement Rate, its distribution can reveal other aspects, as observed in our
experiments.

Adaptation Rate The Adaptation Rate represents the time needed for an announcement
strategy to adapt to a new situation. It describes the situation that all nodes are started
at the same time, and defines the moment when no significant change in the number of
announcements is recognizable.

4.4.4 Implementation

In this section, implementation issues of the announcement strategies and the network
using them are discussed.

Mesher

To investigate dynamic announcement intervals, a simple broadcast service was ex-
tended to provide easily exchangeable announcement algorithms for peer discovery.
Mesher40 is a simple local chat written in Google’s Go language by me, and therefore is
easily extensible. It utilizes broadcast packets for neighbor discovery and for exchang-
ing public chat messages. Mesher uses a static announcement interval of 2 seconds
in its default configuration, and thus the network traffic is growing linearly with the
node count. Each announcement contains the elliptic curve public key of the sending
node, the services provided by the node, 512 bytes random data to simulate database
states and a cryptographic signature, resulting in 642 bytes per broadcast packet. Other
protocols might use larger or smaller announcement packets, depending on the type of
state that is broadcasted.

Dynamic Interval Computation

To evaluate various interval computation methods including dynamic changes, the
corresponding algorithms needed to be easily exchangeable. Therefore, the algorithms
are implemented using an embedded JavaScript engine, and an interface was defined to
hand over useful information to access it in the main Go binary:

• get_announce_count()

• get_and_reset_announce_count()

• get_peer_count()

• get_announce_delay()

After analyzing the provided values, the algorithms are able to set a new announcement
interval using set_announce_delay(Int).

40https://github.com/gh0st42/mesher

65

https://github.com/gh0st42/mesher

4 Disruption-tolerant Device-to-Device Emergency Communication

Announcement Strategies in Mesher

For all announcement strategies, the same template (see Listing 4.1) in JavaScript is used
where one specific function is responsible for computing any changes. Each strategy
gets the current announcement delay and the global number of announcements seen in
the last observation interval. This setup proved to be perfect for rapid prototyping of
new algorithms without recompilation or modifications of the main binary.

Listing 4.1: Basic layout of the announcement strategies

var observation_interval = 20000;

var total_count = 0;

var min_delay = 500;

set_announce_delay(2000);

for (;;) {

sleep(observation_interval);

var cur_count = get_and_reset_announce_count ();

var cur_delay = get_announce_delay ();

// call scheduler and set new delay there

scheduler(cur_count , cur_delay);

}

4.4.5 Experimental Evaluation

In this subsection, the announcement strategies described in Subsection 4.4.3 are
evaluated using the network configurations described below in Subsection 4.4.5. Based
on the quality properties of Subsection 4.4.3, the strategies are compared to each other.

To test the strategies, the centralized network configuration was evaluated with
different node counts. For each of the eight announcement strategies, the tests were
performed using 2, 5, 10, 25, 50, 100 and 200 nodes, resulting in 56 configurations.
These configurations were each executed using two nodes starting mechanisms: a) the
batch node start, in which all nodes were started randomly in the observation interval
window; b) the delayed node start, where a node was added every second, resulting in
a linearly growing network.

In addition, two dynamic network configurations were used: Split, where the central
network was split in two halves, and Merge, where two equally sized networks were
joined. Summing up the different configurations, 224 independent experiments were
performed.

Evaluation Setup

To evaluate the announcement strategies, several setups were used, including emula-
tions with many nodes as well as physical machines connected over various network
links.

66

4.4 Optimizing Epidemic Announcements

Network Emulation

For network emulation, the Common Open Research Emulator41 (CORE) was chosen,
which is scriptable using Python and in this way allows versatile creation of experimental
configurations. This system uses Linux and lightweight virtualization to provide a
networking testbed for unmodified, regular Linux binaries. All announcement strategies
are evaluated under four different network scenarios described below:

Centralized Network In the Centralized Network configuration, all nodes are connected
centrally and hence are located in the same collision domain. This setup is similar to
a classic network hub or a local ad hoc wireless network in the sense that each node
can directly communicate with all of its adjacent peers. As long as the network is not
oversaturated, every node gets the announcements of every other node.

Growing Network In the Growing Network configuration, nodes are added periodically
to the network. Ideally, the announcement strategies should adapt to the new situation
fast and down-regulate their announcement counts. Each second, a new node joins the
network, and adaptation is required to maintain optimal resource usage.

Merging Network In the Merging Network configuration, two equally sized Central
Networks merge at a fixed point in time, doubling their size instantaneously. Using this
configuration, adaptation rates for abruptly changing network configurations can be
observed.

Splitting Network In the Splitting Network configuration, the network is split in two
halves at a fixed point in time. By creating two independent networks, the announce-
ment strategies need to react fast to satisfy the defined quality properties and avoid
prolonged periods of silence between announcements.

41http://www.nrl.navy.mil/itd/ncs/products/core

67

http://www.nrl.navy.mil/itd/ncs/products/core

4 Disruption-tolerant Device-to-Device Emergency Communication

0 50 100 150 200 250
time (s)

0

2

4

6

8

10

12

14

a
n
n
o
u
n
ce

s
/

se
co

n
d

MaxFirst-n025

MinFirst-n025

Random-n025

RandomSweet-n025

Static-n025

Step-n025

StepRand-n025

Unsteady-n025

Figure 4.21: Announcements/second in a static network of 25 nodes.

Physical Testbed

To evaluate the proposed announcement strategies under realistic conditions, a physical
testbed was created. It consists of several Raspberry Pi 3 Model B42 single-board com-
puters, running under the vendor-provided Debian-Linux-based Raspbian43 operating
system. This platform is comparable to mobile phones in terms of energy consumption
and therefore allows one to obtain realistic energy and power consumption measure-
ments when evaluating the announcement strategies.

Eight Raspberry Pis were setup up as network participants, as well as an additional
Raspberry Pi as a system under test (SUT). The energy consumption of the SUT was
measured using an Odroid Smart Power measurement device, an external power meter.
The data points were logged at 5 Hz to another device, in order to prevent disruption
of the measurement.

Basic Capabilities

In Fig. 4.21, the announcement rate for all strategies in a static network with 25 nodes
is visualized. The strategies share the same observation interval, and therefore the first
20 seconds are the same, since they also start with the same announcement interval of
2 seconds. The Static strategy preserves this announcement interval, and the globally
generated traffic remains the same for the whole experiment.

Unsteady and MaxFirst show very low announcement rates in this network config-
uration. Unsteady uses the node count (see Sec. 4.4.3) and computes its maximum

42https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
43https://www.raspbian.org

68

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspbian.org

4.4 Optimizing Epidemic Announcements

100

101

102

a
n
n
o
u
n
ce

s
/

se
co

n
d

(a) MaxFirst (b) MinFirst (c) Random (d) RandomSweet

0 50 100 150 200 250
time (s)

100

101

102

a
n
n
o
u
n
ce

s
/

se
co

n
d n002

n005

n010

n025

n050

n100

n200

(e) Static

0 50 100 150 200 250
time (s)

(f) Step

0 50 100 150 200 250
time (s)

(g) StepRand

0 50 100 150 200 250
time (s)

(h) Unsteady

Figure 4.22: Comparison: announcements produced by the proposed strategies in different static network
configurations.

announcement delay, which in this case is greater than the observation delay and sets
this maximum. Because the observed announcement count is high, MaxFirst jumps
to the maximum possible announcement delay. Since the situation does not change,
both algorithms stick to their decision in future observations. This similarity changes
for lower node counts. Considering Figure 4.22a, MaxFirst sets the same very low an-
nouncement rates in the beginning, which leads to low global announcement rates and
finally to big gaps between each two announcements. Unsteady (Fig. 4.22h) compensates
this problem and starts with higher announcement rates in smaller networks.

MinFirst and Step also behave similarly, since the down steps are implemented the
same way. Both algorithms extend their announcement delay by 1 second, starting at a
delay of 2 seconds. StepAndRand also is in the same group and only differs from Step by
adding a random value with a maximum of 0.5 seconds. All three algorithms achieve
the goal of a less saturated network and also approach the same minimum as MaxFirst
and Unsteady.

In this network configuration, RandomSweet as well as Random show a similar behavior.
The announcement rate drops directly after the initial observation, but stays higher
than for the other strategies that achieve a low announce rate after around 200 seconds.
To get similar results as, for example, MaxFirst, all nodes would need to pick a pretty
high delay by chance, and the more nodes in the network, the more unlikely it is that
all nodes do this in the same observation interval.

Bandwidth Savings

A major goal for using dynamic announce intervals is the reduction of bandwidth in
such protocols. Table 4.4 shows the announcement rates of the proposed strategies
compared to the static announcement strategy. For this table, the announcements sent
by one node in the batch node start is used. This number also includes the observation
delay in which all strategies follow the static behavior.

All non-static strategies converge for growing node counts. Step, StepRand and
MinFirst use around a third of the number of announcements compared to Static.

69

4 Disruption-tolerant Device-to-Device Emergency Communication

Table 4.4: Announcements of the strategies compared.

Name

Nodes
2 5 10 25 50

Static 291 732 1460 3658 7296

Random 34,4% 47,0% 37,0% 37,9% 37,3%

RandSweet 58,1% 41,7% 29,0% 35,6% 37,7%

Step 101,7% 45,4% 35,2% 33,2% 33,4%

StepRand 99,7% 42,5% 32,5% 30,1% 30,2%

MaxFirst 99,0% 21,2% 17,1% 17,0% 17,1%

MinFirst 84,9% 44,3% 34,7% 33,3% 33,5%

Unsteady 188,7% 56,8% 32,5% 17,7% 17,1%

MaxFirst and Unsteady take advantage of their fast adaptation rate and are able to save
around 80% of the announcements. This means that only one fifth of the bandwidth is
used without sacrificing any comfort or usability of the protocol.

Table 4.4 also shows that the proposed strategies benefit the most from their dynamic
behavior for networks with 2 to 10 nodes. After that, only minor improvements can
be achieved. The announcement rate of Static can be altered easily by hand and could
therefore also reach the goal of a lower global announcement rate for big networks,
but would then lose the ability to perform good in small networks without manual
interaction on each node.

Unsteady uses more bandwidth than Static for a minimal network. This allows fast
discovery of new peers in an existing network and addresses the real-world problems
described in Figure 4.20. Random and RandomSweet have a lower total announcement
count in small networks. This shows that these strategies are inferior in terms of
discovery times. The remaining Step-based strategies show satisfactory results in small
and bigger networks in terms of bandwidth usage, but take a longer time to reach an
optimal resource usage.

Adaptation Rate

Unsteady and MaxFirst have a very high adaptation rate, since they set their final
announcement delay after the first observation interval for all static network configu-
rations, as presented in Figure 4.22h. MaxFirst is able to achieve fast adaptation rates
for big networks, while MinFirst is able to achieve this in small networks, as a result of
their designs. A disadvantage of MaxFirst is shown in Figure 4.22a: For small networks,
the announcement rate also drops to the minimum in the first place, so discovery may
be worsened.

The adaptation rate of the Step-based algorithms depend on the number of nodes. As
outlined in Figure 4.22f, in a network of 5 nodes around 70 seconds and in a network
of 10 nodes around 150 seconds are needed to fully adapt.

In Figure 4.23, a splitting network configuration with 10 nodes is presented. The Step-
based strategies reach their target announcement rate immediately. In RandomSweet and
Unsteady, new announcement rates are visible after about 30 seconds. Both strategies
reach announcement rates as in the united, central network. This understanding only
slightly differs in the merging network: The Step based algorithms need longer, while

70

4.4 Optimizing Epidemic Announcements

0 50 100 150 200 250
time (s)

0

1

2

3

4

5

6

a
n
n
o
u
n
ce

s
/

se
co

n
d

split

MaxFirst-n010

MinFirst-n010

Random-n010

RandomSweet-n010

Static-n010

Step-n010

StepRand-n010

Unsteady-n010

Figure 4.23: Splitting network configuration with 10 nodes.

Unsteady and MaxFirst adapt in the observation interval.
The observed adaptation rates are also valid for the merging network configuration:

MaxFirst and Unsteady adapt in a 30-seconds window, while the Step strategies take a
longer time. For the network of 5 nodes, the Step strategies also achieve an adaptation
rate of around 40 seconds. Especially in small networks, this rate is important, since
the announcement gaps are compensated quickly.

Figure 4.24 shows a delayed start of 100 nodes, with one node starting per second.
Compared to Static, the proposed algorithms are able to keep the announcement rates
low. Since every node announces using the default interval for the first 20 seconds,
the announcement rate grows even in the very agile Unsteady and MaxFirst strategies.
Immediately after all nodes are spawned, the algorithms are able to adapt to the
situation.

Announcement Gaps

Figure 4.25 shows a violin plot of the global announcement gaps for a static network
with 10 nodes. The mean gap correlates with the global announcement rate, and so does
the variance. Having this in mind, the perceptions of Subsection 4.4.5 are backed by
this plot. Although MaxFirst does not have the highest announcement gap, it produces
a relatively high percentage of longer gaps, while all other strategies only have a low
number of outliers in this area. This is also the case for a network of 5 nodes. Yet larger
network configurations do not show the same characteristics. This behavior can be
ascribed to the observations made in the previous section.

What stands out is that compared to Static, all strategies perform worse with respect
to the maximum announcement gap. This can be put in perspective by examining
the upper quartile: For all algorithms except for MaxFirst, the upper quartiles of the

71

4 Disruption-tolerant Device-to-Device Emergency Communication

0 50 100 150 200 250 300
time (s)

0

10

20

30

40

50

60

a
n
n
o
u
n
ce

s
/

se
co

n
d

MaxFirst-n100

MinFirst-n100

Random-n100

RandomSweet-n100

Static-n100

Step-n100

StepRand-n100

Unsteady-n100

Figure 4.24: A growing network with 100 nodes.

announcement gaps are below 2 seconds.

Energy Consumption

The initial assumption was that a reduced number of announcements would reduce
the consumed energy proportionally. This assumption was evaluated in a wireless
network of 9 ARM-based nodes as described in Section 4.4.5. In these experiments,
each node acted as sender and receiver simultaneously. One node (system under test -
SUT) was connected to an external power meter (ODROID SmartPower), which logged
the power and energy consumption of the node at a 5 Hz rate. Additionally, every
experiment was performed with two different network interface configurations, with
a different idle power consumption each: ad hoc mode (Pidle=1.37 W) and managed
mode (Pidle=1.45 W).

To measure the higher end of the power consumption, two additional announcement
strategies sending announcements at a high rate are introduced: Static05 and Static01,
with 2 and 10 announcements per second, respectively.

To compute the energy consumed by the software, the average idle power is sub-
tracted from the measured power in the given 300 seconds measurement interval:

E :=
∫ 300

0
Pmeasured(t)dt− 300 ∗ Pidle (4.1)

In the physical testbed with 9 nodes, the default Static strategy uses 1.99 mWh.
Static05 and Static01 use 11.97 mWh and 32.52 mWh for their announcements, respec-
tively. Based on these numbers, a correlation between the number of announcements
(sent and received) and the consumed energy is found and presented in Table 4.5.

72

4.4 Optimizing Epidemic Announcements

MaxFirst

MinFirst

Random

RandomSweet
Static Step

StepRand

Unste
ady

0

1

2

3

4

5

6

a
n
n
o
u
n
ce

 g
a
p
s

(s
)

Figure 4.25: Announcement Gaps in a static network of 10 nodes.

Table 4.5: Correlation of energy consumption and announcements in a physical testbed of 9 nodes.

Name # Ann. E (mWh) rel. Ann. rel. E ratio

Static 1323 1.99 1.00 1.00 1.00

Static05 5404 11.97 4.08 6,00 1.47

Static01 29342 32.52 22.18 16.31 0.74

MaxFirst 256 1.17 0.19 0.59 3.04

MinFirst 473 1.26 0.36 0.63 3.04

Random 434 1.34 0.33 0.67 2.04

RandomSweet 342 0.73 0.26 0,37 1.42

Step 495 1.20 0.37 0.60 1.61

StepRand 460 1.12 0.35 0.56 1.61

Unsteady 514 1.38 0.39 0.69 1.78

While the correlation between the number of announcements and the energy con-
sumption is reasonable for large numbers of announcements, this correlation is not
substantial for lower numbers of announcements. The general trend seems to be correct
(correlation coefficient r = 0.985), since all proposed strategies need less energy than
Static. In contrast, there are examples in which this correlation seems to be vice versa,
e.g., when comparing MaxFirst and RandomSweet.

To summarize, the energy measurements of the experiments show that for high
numbers of announcements the energy consumption is increased. Side-effects of the
programming language, as well as the relatively low energy impact of the announce-
ments of Mesher disturb the energy measurements. Nevertheless, a general trend is
clearly evident.

4.4.6 Conclusion

In this section, it was shown that without relying on application-specific properties,
optimizations for network protocols relying on announcements can be achieved. Eight
different announcement strategies were compared, including a standard static announce-
ment strategy and a random announcement strategy. While a random announcement
strategy might preserve more bandwidth than a static announcement strategy, it has
negative side-effects compared to the other proposed announcement strategies. By

73

4 Disruption-tolerant Device-to-Device Emergency Communication

dynamically changing the announcement interval and depending on the number of
nodes involved, the bandwidth required for announcements could be reduced by more
than 80% compared to a static announcement strategy. Nevertheless, the requirement
of fast discovery of at least one node is still met. The evaluation of the proposed
announcement strategies in terms of energy consumption show that announcements
do effect battery lifetimes and are thus worth to be reduced.

There are several areas for future work. For example, so far the algorithms only
have access to information like the number of announcements received in the last
observation interval or the number of currently known peers. By giving the strategies
more information, further optimizations might be possible. Furthermore, a dynamic
observation interval could be implemented, to allow even faster adaptation to new
situations.

74

4.5 DTN-RPC - Offloading Work in Challenged Environments

4.5 DTN-RPC - Offloading Work in Challenged Environments

4.5.1 Introduction

The possibility of calling a procedure on a remote computer has been introduced to
program client-server interactions in a procedural manner. Remote Procedure Calls (RPCs)
[78] have proven to be useful in many distributed computing scenarios to simplify
application programming by eliminating the need for explicitly having to code the
details of remote interactions based on a request-response message-passing protocol.
RPCs have been integrated into programming languages (e.g., Java RMI, Python RPyC,
Distributed Ruby DRb-RPC, and Erlang RPC), dedicated applications (e.g., SAP RFC),
and WWW protocols (e.g., XML-RPC, JSON-RPC, SOAP, Windows WCF, Google gRPC,
Google Web Toolkit RPC).

However, none of the existing RPC implementations are designed to work properly
for Delay/Disruption-Tolerant Networking (DTN) [79], [80] where network connectivity
is periodic, intermittent, prone to disruptions, and a direct connection to a remote server
might not exist. DTN scenarios with potentially large transmission delays as a result of
either inadequate physical link properties or extended periods of network partitioning
are common in natural disasters. For example, during the 2010 earthquake in Haiti,
public and mobile telephone systems were destroyed or disturbed and could not be
rebuilt or repaired for days44. An inoperative cellular communication infrastructure
during the earthquake in New Zealand on November 14, 2016, created uncertainty
about whether people were still in the affected areas45. Even in the absence of disasters,
there are still regions, e.g., in India [81] and Australia [82], where no telecommunication
infrastructure exists and where people cannot communicate using mobile devices.
Whenever reliable end-to-end connectivity is not available, DTN can be used to sustain
communications without requiring any conventional infrastructure.

Calls Remote
Procedure

Sends taken
picture as
result

*

Route used
by call

Route for
the result

Connection disrupt
after call *

New connection
for result

Figure 4.26: Calling a remote procedure in a DTN disaster scenario.

Being able to use RPCs in these scenarios could provide great services for civilians
and professional first responders. For example, quadcopters could offer a procedure
that takes a picture with a mounted camera at a particular geographical location and

44https://en.wikipedia.org/wiki/2010_Haiti_earthquake
45https://www.bbc.com/news/world-asia-37970775

75

https://en.wikipedia.org/wiki/2010_Haiti_earthquake
https://www.bbc.com/news/world-asia-37970775

4 Disruption-tolerant Device-to-Device Emergency Communication

returns it over the network. Then, rescuers could request an overview image via an
RPC to a quadcopter while performing other tasks until the file arrives over a DTN
connection using nodes of other rescue workers or citizens as relay nodes. This example
is illustrated in Fig. 4.26, where the call takes the blue route, but the result arrives over
the red route due to the connection loss illustrated by the yellow lightning symbol. This
might take longer, but without DTN the call could not be made at all.

In this section, DTN-RPC is presented, a new approach to provide RPCs for DTN
environments. DTN-RPC relies on (a) control and data channels to cope with potentially
short contact durations in DTN where it is impossible to transmit large amounts of data,
(b) explicit and implicit modes for server addressing, (c) Non-DTN and DTN transport
protocols for calls and results, and (d) predicates that servers can check to decide
whether a procedure should be executed. The open-source implementation of DTN-
RPC46 is based on Serval [2], [27]–[29], an open-source, disruption-tolerant wireless
ad-hoc networking system. The experimental results obtained within the network
emulation framework CORE indicate that the measured CPU and network overheads
for DTN-RPC are reasonably low so that DTN-RPC can be executed on smartphones or
routers, and that the round-trip times and the number of successful RPCs are highly
satisfactory in dynamically changing network topologies with unreliable connectivity.

Parts of this section have been published in [4].

4.5.2 Related Work

Tu and Stewart [83] present a Java RPC framework where small data is replicated and
sent over a second TCP connection to the server or back to the client. At the destination,
a listener collects all arriving data on all connections, reassembles the original data,
and passes it to the corresponding handler.

Stuedi et al. [84] increase the efficiency of RPCs in data centers by softening the
userland and kernel separation in the network stack and by using remote direct memory
access to minimize the overhead of network operations by performing them with less
context switches and zero-copy network I/O.

Chen et al. [85] introduce memory regions where server and client exchange data
to improve the efficiency of RPCs between virtual machines (VMs) on the same host
computer. The proposed framework has three components: (a) a notification channel
that informs the server about new calls and the client about arriving results, (b) a
control channel that sends meta-data (e.g., the parameter count), and (c) a transfer
channel that is responsible for transmitting data between server and client and putting
the data in the predefined memory regions.

Shyam et al. [86] propose solutions for situations where an RPC server is not available.
The first solution is a heartbeat server that observes whether the RPC server is operative.
The second solution is that every node sends a health check message to the RPC server.
Since these messages are typically smaller than an RPC request and no computations
take place, the answer of the health check should arrive faster. If the answer does
not arrive within a timeout that is smaller than the timeout for the RPC, the server is
considered inoperative.

Reinhardt et al. [87] address the problem of providing RPCs in wireless sensor
networks. In particular, the authors eliminate the need of conventional RPCs to send

46https://github.com/umr-ds/DTN-RPC

76

https://github.com/umr-ds/DTN-RPC

4.5 DTN-RPC - Offloading Work in Challenged Environments

predefined data to predefined destinations, typically addressed by ports, by publishing
descriptions of new sensors that can be used by other sensors or nodes dynamically.

Shi et al. [88] present a framework where mobile devices can offload jobs to other
mobile devices. In scenarios where node mobility is high, only small tasks will be
offloaded; otherwise larger jobs will be offloaded, too. To increase the number of
offloaded jobs, every job is split into smaller tasks. Additionally, every node has to
announce its capabilities, such as CPU capacity and available battery power. To offload
a job, the framework compares the task requirements with the capabilities of the client
and tries to find a server that satisfies the requirements better than the client. If no
server is found, the job will be executed locally.

Chen et al. [89] propose a solution for offloading computations to ad-hoc cloudlets. A
job is offloaded via an ad-hoc communication channel that is closed after the procedure
has been called successfully. The result of the job can arrive (a) via an ad-hoc channel if
server and client are in close proximity, (b) via a cellular network used when an ad-hoc
connection is not possible, (c) via a WiFi access point, if available.

Zhang et al. [90] propose a solution for cloudlets with intermittent connectivity where
parts of a job will be executed either locally or remotely. The decision which of both
options is chosen is based on a probability that includes the cost of executing a task.
Two cost factors are calculated: (a) the cost when the phase is executed locally, where,
e.g., energy consumption is important, (b) the cost when the phase is executed in a
cloudlet, where, e.g., available bandwidth is important. Based on this information, a
Markov chain can be constructed and the optimal path can be found.

Lai et al. [91] propose an offloading algorithm for delay-tolerant mobile networks that
increases the amount of offloaded data without increasing the transmission overhead or
delay. The transfer channel is chosen based on the contact duration between two nodes
and the available transmission protocols. Therefore, every node logs which neighbors
are available. Based on the available neighbors, on the size of the data that is offloaded,
and the estimated waiting time, a priority is computed. With these factors, a utility is
calculated that denotes whether data should be offloaded using this particular channel
or not.

To summarize, several of the related works address problems of RPCs in traditional
networks, where links are either static or tasks are on the same machine, such as in
VMs. Furthermore, direct memory access methods to reduce networking overhead
cannot be used in a DTN environment, due to possibly untrustworthy nodes. Also,
control mechanisms like heartbeats or duplicating data on multiple channels are no
options for DTN. In the offloading approaches, the particular problems of RPCs in
DTN are either not addressed or would require additional infrastructure, such as cell
towers for 3G or LTE connectivity, or nodes with access to the Internet. DTN-RPC on
the other hand is designed to provide RPCs in DTN environments without requiring
any additional infrastructure.

4.5.3 DTN-RPC’s Design

This section presents the design of DTN-RPC.

Fundamental Considerations

There are several differences between RPCs in traditional networks and RPCs in DTN.

77

4 Disruption-tolerant Device-to-Device Emergency Communication

In conventional RPC implementations, errors are handled, for example, if the con-
nection between client and server is lost. In DTN, it is not certain whether a call even
reaches its destination. Thus, errors in DTN can only be handled in a few situations,
since error reports could just not arrive and the client would not notice that the call
was not successful. The server, on the other hand, would have to spend computational
overhead while trying to inform the client about the error. Furthermore, disruptions
and poor connection quality make it impossible to support real-time communication or
to guarantee a predefined quality of service in DTN.

Common RPCs are location transparent. For this purpose, stubs or proxy functions
exist to handle communication via the network. In DTN, a call will explicitly be
executed remotely, and it is expected that there will be networking overhead when
executing a remote procedure.

In several RPC implementations, the client has to register at the server before calling
a procedure. Since in DTN the address of a server is typically not known, client
registration is not possible.

Traditional RPC servers either announce the procedures they offer or there exists
a lookup service where clients can find information about which server offers which
procedure. In DTN, server announcements might not reach or lookup services might
not be available for clients when needed.

Control and Data Channels

DTN is often used in mobile mesh and ad-hoc networks where the network topology
changes frequently. This can lead to short contact durations between nodes where it
is impossible to transmit large amounts of data. Due to this restriction, two separate
communication channels are introduced in DTN-RPC: the control and the data channel.

The control channel is responsible for transmitting meta-data, such as the procedure
name and the parameters, from client to server, and possible results from server to
client. The control channel supports two modes to address remote servers, explicit and
implicit (any or all), as described below.

Explicit If the address of a server is known and the server is reachable, DTN-RPC
will choose the explicit mode and will try to establish an end-to-end connection to this
specific server.

Implicit (any or all) If the address of a server is not known, but potential servers
are reachable, both the any and all modes (summarized as the implicit mode) are used
to broadcast a call. In the any mode, the client waits for exactly one response. This is
helpful if it is known that servers exist that offer a particular procedure, but it does not
matter which server responds. The first arriving response will be accepted. In the all
mode, the client will wait for as many answers as possible until its internal timeout
occurs. This is useful in scenarios where the quality of the results varies with the
executing machine (e.g., GPU support, different algorithms), where different answers
should be combined (e.g., to implement aggregate functions that return a value across
all items in the results set), or is influenced by other factors such as geolocation (e.g.,
sensor readings, taking a picture).

78

4.5 DTN-RPC - Offloading Work in Challenged Environments

Client

Start

Transparent
Call Address

Reachable

Call via
Non-DTN

Broadcast
Non-DTN

Reachable

Call via
DTN

Receive
Result

Stop

Explicit

Implicit

Yes

Yes

No

No

Server

Start

Offer
Procedure

Wait for
Call

Eval.
Predicates

Execute

Receiving
Proto.

Reachable

Return via
Non-DTN

Return via
DTN

Yes

No

DTN

Non-DTN

No

Yes

Figure 4.27: DTN-RPC flowchart for client and server.

The payload of the control channel packets must not exceed the payload size of the
underlying transport protocol to keep the data on the network as small as possible.

The data channel transports larger amounts of data from client to server and vice
versa. It is used if a file is required as a parameter for a particular call. The transport
of the payload in the data channel is always performed via DTN. The transport of the
meta-data in the control channel is explained below.

Transparency

In both explicit and implicit addressing modes, the control channel of DTN-RPC supports
Non-DTN and DTN transport protocols and automatically switches between them for
performing a procedure call, as explained below.

Non-DTN vs. DTN As illustrated in Fig. 4.27, if the server is reachable in the explicit
mode, DTN-RPC will use a Non-DTN transport protocol to call the server. If the server
is not reachable, the call will be issued using a DTN protocol.

After having called a remote procedure in the explicit mode, the client waits for the
response using the same transport protocol that was used to call the procedure. If the
connection is interrupted, the client additionally waits for results that arrive via a DTN
protocol.

79

4 Disruption-tolerant Device-to-Device Emergency Communication

After having successfully executed a received call, the server checks whether the
explicit control channel on which the call was received via a Non-DTN protocol is still
available, as shown in Fig. 4.27. If the channel is not available anymore, the result will
be sent via a DTN protocol. The DTN-RPC server does not attempt to re-establish a
Non-DTN connection, since it is unlikely that a reconnection is successful if one of the
nodes has physically moved out of the network’s reach. If the call was received via a
DTN protocol, the server also uses a DTN protocol for its response.

Since the implicit modes use broadcast addresses to call procedures, a different
transport protocol has to be used than in the explicit mode, because reliable point-to-
point transport protocols like TCP do no support broadcast packets. Since a server
availability check in a broadcast scenario would imply communication between multiple
nodes, which would add additional delays, a call just gets broadcasted without any
prior availability checks. If a timeout occurs and no result arrives, the call is performed
via a DTN protocol.

Transparent DTN-RPC is designed to automatically select the most suitable trans-
port protocol in any given scenario. In the transparent transport method, both client
and server are designed to make all the above dicussed decisions without any user
interaction.

Offering and Executing Calls

To offer a remote procedure as shown in Fig. 4.27, two steps are required on the server:
declaring and implementing a procedure. The first step of offering a remote procedure
is that every procedure has to be declared as a prototype in an extra configuration file in
order to tell the server which procedures are available for execution. The implementation
of a procedure, which is the second step, has to be provided as an external executable
written in any programming language.

The parameters of an incoming call are passed in the order they were received to the
external program that then executes the procedure. After the procedure finishes, the
result is returned to the server that marshals the result and prepares the result to send
it back to the client.

Typically, the computational resources and the battery lifetimes of nodes in DTN
are limited. To avoid the execution of calls that would consume too many resources
with respect to the current state of a server, a server can decide whether a remote
procedure should be accepted or not. For this purpose, particular predicates can be
defined, such as thresholds for resource constraints (number of concurrent processes,
remaining battery life etc.) or available (sensor) hardware like GPS. This is also shown
in Fig. 4.27. The server checks whether defined predicates are satisfied. If at least one
requirement is not met, the procedure will not be executed.

Furthermore, each call can provide its own requirements that also have to be checked
by the server. For example, some calls should only be executed on non-moving nodes,
or require special sensor hardware or extensive resources, such as disk space or RAM.
Therefore, there is a two-stage predicate check per server: the first one is the general
server acceptance check, and the second one is call-specific and evaluated after having
passed the first check.

80

4.5 DTN-RPC - Offloading Work in Challenged Environments

4.5.4 Implementation

The implementation of DTN-RPC is based on the Serval Project [27]–[29]. Serval is
centered around a suite of protocols designed to allow ad-hoc and infrastructure-
independent communications. The Serval Mesh Protocols abstract from lower-layer
protocols, such as IP, UDP, WiFi, packet radio or others. Serval’s real-time packet-
switched protocol is the Mesh Datagram Protocol (MDP), which can be compared to
UDP/IP, but uses SIDs (Subscriber ID, the public key of an asymmetric elliptic curve
key pair) instead of IP addresses, and includes encryption, authentication and integrity
features by default. To route packets, MDP uses a protocol inspired by OLSR 47 and
B.A.T.M.A.N. [30] for both node discovery and maintaining a routing table, which
facilitates multi-hop routing of packets. On top of MDP, the Mesh Streaming Protocol
(MSP) provides reliable data streaming, similar to TCP. Finally, Rhizome is a simple
store-and-forward protocol defining files as bundles. Intended as the DTN protocol of
Serval, Rhizome uses an epidemic routing protocol to transmit files hop-by-hop from
source to destination. Rhizome is purposely agnostic of the transport protocols below
it, requires no routing table and focuses on single-hop communications, with multi-hop
communications emerging as a natural consequence of bundles replicating among nodes.
DTN-RPC uses MDP, MSP, and Rhizome to handle different situations and addressing
modes.

As shown by the evaluation in Section 4.3 Serval is an elaborate and ready-to-use
software for DTN and mesh networks.

For programmers, an API is offered that can be used to develop programs using the
DTN-RPC library to execute procedures on remote devices in DTN environments.

Calling a Remote Procedure Transparently

To call a remote procedure transparently, a single function is required that is part of
the offered DTN-RPC API. This function has five parameters: the server address, the
name of the called remote procedure, the number of parameters of the procedure, the
parameters themselves and the execution requirements discussed in Section 4.5.3. The
mode to be used is determined by the first parameter of this API function call.

Explicit If the parameter is a valid address, the remote procedure will be called
explicitly, i.e., the call will be issued via Serval’s MSP, if the server is available. A
routing table is built in an ad-hoc manner. If the address of the server can be found
in this routing table, this particular server is reachable. While waiting for the result,
the client checks periodically whether the connection is still alive. If the connection
terminates, the client starts a Rhizome DTN listener.

Implicit The modes any and all are used if the address is the ANY address provided
by Serval for any or the broadcast address for all. Since Serval’s MSP supports point-
to-point communication only, it is not possible to send data to the broadcast address.
Therefore, any and all use Serval’s MDP.

Since a reachability test is not possible for broadcast packets, the procedure will be
called without any prior checks. Since delivery is uncertain, the client sends a call every

47https://tools.ietf.org/html/rfc3626

81

https://tools.ietf.org/html/rfc3626

4 Disruption-tolerant Device-to-Device Emergency Communication

second until at least one server responds with an acknowledgement or a timeout occurs.
If an acknowledgment arrives, the threshold for the timeout is increased. Only if the
new timeout occurs, the client will additionally start a Rhizome DTN listener and wait
for the result via DTN.

The difference between the modes any and all is the number of results. In the first
case, the client stops listening as soon as the first result arrives. In the second case, the
client waits for as many results as possible, but at least for one.

Returning the Result Transparently

While executing the called procedure, the server does not check periodically whether
the client is still reachable. Instead, this check is done once when the response is ready
to be sent. If the call arrived via MSP or MDP, but the connection is broken or the client
is not reachable, sending will fail and the server will send the result via Rhizome.

4.5.5 Experimental Evaluation

In this section, an experimental evaluation of DTN-RPC for different network topologies
and in various configurations is presented. Due to the lack of comparable RPC imple-
mentations that can handle disruptive networks, DTN-RPC is not compared against
other approaches. A comparison with widespread software solutions such as JSON-RPC
or SOAP would be unfair, since they would fail each time the network connection is
lost.

Test Setup

The evaluation of DTN-RPC is based on the open source network emulation framework
CORE48. Compared to protocol simulations, CORE can run DTN-RPC without modi-
fications in a more realistic Linux environment. All tests are performed on a 64-core
AMD Opteron 6376 CPU with 256 Gigabyte RAM, emulating up to 64 virtual nodes at
the same time.

Measurements Standard Unix tools are used to measure system properties with a
time resolution of one second. For CPU statistics, pidstat49 is used, and the Serval and
DTN-RPC processes are monitored from within a node. Network usage is measured
from within the nodes on every network interface for Serval and DTN-RPC using a
custom Python script based on libpcap50. To monitor the behavior of DTN-RPC, metrics
such as call times, round-trip times, and logging functions were implemented and
integrated into the binary.

Network Topologies Three network topologies are considered, as shown in Table 4.6.

48https://www.nrl.navy.mil/itd/ncs/products/core
49http://sebastien.godard.pagesperso-orange.fr
50http://www.tcpdump.org

82

https://www.nrl.navy.mil/itd/ncs/products/core
http://sebastien.godard.pagesperso-orange.fr
http://www.tcpdump.org

4.5 DTN-RPC - Offloading Work in Challenged Environments

Table 4.6: Topologies

Name # Nodes Description

Hub 28 All nodes connected to each other
Chained 32 Pair-wise connected
Islands 64 Partitioned islands with dynamic links in between

Hub The Hub topology connects 28 nodes with each other so that every node
is one hop away from all other nodes. As shown previously in Section 4.3, the Hub
topology is challenging for Serval and thus also for DTN-RPC due to the high number of
direct neighbors, all using bandwidth and flooding each other with status information.
Therefore, the Hub topology helps to investigate whether DTN-RPC can handle RPCs
when the network is under heavy load.

Chained The Chained topology consists of a chain of 32 nodes, 31 hops from the
first to the last node. Typically, network connections over the Internet require less than
16 hops. In a DTN mesh network, more hops might be needed for messages to reach
their destination.

Islands The Islands topology represents a partitioned, dynamic network with 64

nodes. At the beginning, there are 4 islands each containing 16 nodes. The 16 nodes
per island are connected randomly with each other, creating an ad-hoc mesh network.
Then, four different behaviors can occur randomly every 60 seconds: two islands are
connected, two connected islands are disconnected, all islands are connected or all
islands are disconnected resulting in the original state.

Network Connections DTN-RPC adds a new layer of abstraction to the Serval net-
working stack. Although Serval can cope with several degraded networking scenarios,
DTN-RPC is only evaluated in situations where network connections are completely
lost, because this is the most challenging situation in DTN. Network degradations and
bandwidth limitations would only lead to higher delays, but not break DTN-RPC itself.

Test Sets and Modes The remote procedure used in the tests implements a simple
echo service. It is called with three different test sets: (a) 0MB, where no file is used; (b)
1MB, where a file of 1 megabyte is transmitted; (c) 100MB, where a file of 100 megabyte
is sent.

Additionally, all tests are executed in 10 different modes: explicit, any and all via
Rhizome; explicit, any and all via MDP; explicit, any and all transparently and explicit via
MSP.

Servers Since the successful execution of remote procedures in DTN depends on the
number and distribution of servers, every test in Hub and Islands is executed twice,
first with 5% of the nodes as servers and second with 50%. In Chained, the goal is to
determine how DTN-RPC performs if the call has to travel a long distance. Thus, only
one server and one client at the opposite ends of the chain are needed.

83

4 Disruption-tolerant Device-to-Device Emergency Communication

In each test setup, the procedure is called 30 times to get reliable results. The
acknowledgement from the server has to arrive within 30 seconds on the explicit
channel. After the acknowledgement, the client waits an additional 90 seconds for the
result. If within these 90 seconds no results arrived, the procedure is called via DTN,
which has an additional 90 seconds to finish. After the client has received the result or
all timeouts are reached, the next procedure will be called.

Since our evaluation is concerned with the overhead and the performance of DTN-
RPC, the possibility of DTN-RPC to perform predicate checks to decide whether a
remote procedure should be accepted has been disabled in the experiments.

Fundamental Properties

In Hub where each node is a single hop away from all other nodes and Serval uses
broadcast packets to announce meta-data, each node produces a flood of data that
is sent to all neighbors. Thus, both the CPU usage and the network load in Hub are
always higher than in the corresponding tests in Chained or Islands, due to the high
number of direct neighbors. Furthermore, DTN-RPC does not only use the API, but
also the networking stack and the communication mechanisms provided by Serval.
Thus, DTN-RPC cannot be measured separately, but only together with other Serval
traffic.

Similar to the network usage, the CPU utilization has to be measured not only for
DTN-RPC, but also for Serval running on a node. The evaluation of the CPU usage
shows that the CPU consumption of DTN-RPC is negligible with about 1% in heavy
load situations. However, the Serval process has a higher CPU usage, since Rhizome
computes a hash for each file sent. The larger the file, the more time-consuming the
hash computation becomes. DTN-RPC, on the other hand, is independent of file sizes,
because it simply issues a call to the Rhizome API, which leads to the described 1%
CPU utilization increase in the DTN-RPC process. Therefore, since the CPU utilization
is dominated by Rhizome, in the experiments below it is always based on the Serval
process.

Network Performance

For the 0MB tests in the Chained topology, the overall network load averages at about
2 Mbit/s for each of the three transport protocols (MDP, MSP and Rhizome). This is
true for all three modes, explicit, any and all. Since DTN-RPC uses only a single packet
for calling the remote procedure and returning the result in 0MB, these packets get
lost in the overall network load that is produced by Serval exchanging meta-data and
therefore not plotted in Fig. 4.28.

During the 1MB and 100MB test sets, the network load increases up to 70 Mbit/s
for 1MB and up to 500 Mbit/s for 100MB, as indicated by the blue and red graph of
Fig. 4.28a, in which the stacked bandwidth for all network interfaces together with
the CPU usage in a logarithmic scale for 5 calls with the 100MB test set and 30 calls
with the 1MB test set is shown. In the 1MB and 100MB calls, a file always has to be
transmitted via the Rhizome DTN for calling the remote procedure and receiving the
result. The difference between the 1MB and 100MB calls is due to the different file sizes.

The Hub topology shows a similar behavior, as illustrated by Fig. 4.28b, where
the stacked bandwidth for all network interfaces together with the CPU usage in a

84

4.5 DTN-RPC - Offloading Work in Challenged Environments

(a) Chained topology (b) Hub topology

Figure 4.28: Stacked bandwidth usage for 1MB and 100MB and maximum CPU usage for 1MB and 100MB
in different topologies.

logarithmic scale for 3 calls with the 100MB test set and 30 calls with the 1MB test
set is shown. The main difference is that the Hub topology suffers from the problems
discussed in Sec. 4.5.5. The overall network usage for the 1MB test sets exceeds 1,000

Mbit/s (blue graph) and 10,000 Mbit/s for the 100MB test sets (red graph).
Comparing the bandwidth consumption to previous results in Section 4.3, DTN-RPC

does not add any measurable network traffic to the traffic produced by Serval, and thus
can handle scenarios where the network has a high bandwidth usage well.

CPU Usage

As shown in Figures 4.28a and 4.28b, CPU usage highly correlates with network usage.
Since CPU usage in the 0MB tests does not exceed 1% after the initial discovery phase,
it is not plotted in Figures 4.28a and 4.28b. For the 1MB tests, the maximum is at about
2% up to 3% (red line) and up to 20% for the 100MB tests (black line) in the Chained
topology.

In the Hub topology, the behavior is comparable to the Chained topology, with the
difference that the CPU usage is generally higher. In the 1MB tests, the CPU usage
increases up to about 10% and for the 100MB tests up to 90% during the sending phase.
This relatively high CPU consumption happens only while a hash of a file is computed
and the file is inserted into the Rhizome store, and thus only during a relatively short
time period. As already mentioned, the CPU usage of DTN-RPC does not exceed 1%.

Round Trip Times

To measure the round-trip times (RTTs), only the Chained and Hub topologies are
considered, since the Islands topology would not give any credible results due to the
random merging and separation of the islands. RTT is only used to indicate the time
that is needed to transmit the payload through the network to be sure no additional
delays are introduced by DTN-RPC. The execution of a procedure typically takes longer
to finish than the implemented echo service.

As shown in Fig. 4.29a, the 0MB tests in Chained called by MDP or MSP (i.e., Non-
DTN) are executed within a second. As the files grow, the RTT increases.

85

4 Disruption-tolerant Device-to-Device Emergency Communication

(a) Chained topology (b) Hub topology

Figure 4.29: Round trip times in different topologies.

In the DTN tests, the RTTs are similar, regardless of the file size. Due to the fact that in
DTN the control channel as well as the data channel are transferred via Rhizome, both
server and client have to wait for two files. Therefore, all tests take about 40 seconds.

Transparent calls are slower than the calls via MDP or MSP for the 0MB and 1MB tests.
Some of the calls are issued via MDP or MSP, while others are executed via Rhizome,
as explained in Section 4.5.3. The illustrated RTTs are averaged over 30 calls, including
the slower Rhizome calls. Furthermore, the time it takes to wait until the transport
protocol will be switched is also part of the RTT. Therefore, the transparent tests are
slower than the corresponding explicit tests, but faster than the DTN tests. Since all
100MB tests are issued using Rhizome and the switch time is included in the RTT, the
time it takes for finishing is higher than for MDP or MSP.

As shown in Fig. 4.29b, the RTTs for tests in Hub do not differ much from the tests in
Chained. The only difference is that the 0MB and 1MB tests are faster in Hub, because
all nodes are only one hop away from each other.

To summarize, DTN-RPC can execute remote procedures satisfactorily fast. The
fallback method using Rhizome is slower, but still can get a result back to the client
within an acceptable time, even if the files are large.

Transparency Behavior

In this section, it is examined how DTN-RPC behaves in the dynamic Islands topology
with different numbers of available servers. The figures below show how many of a
total of 30 procedures are called using Non-DTN or DTN, respectively, in terms of
percentage values. The left half of the pie charts represents outgoing calls and the right
half incoming results.

Since the Islands topology consists of 4 islands with 16 nodes that merge and separate
over time, it is possible that not all results arrive within 210 seconds at the client (see
Sec. 4.5.5) if the call was issued in explicit mode, especially in tests with only 5% servers.
Additionally, as the file size increases, the transmission time increases too, and the
number of successful calls decreases as expected, as indicated by Fig. 4.30a, Fig. 4.30c,
and Fig 4.30e.

86

4.5 DTN-RPC - Offloading Work in Challenged Environments

5% Servers 50% Servers

Calls (%) Results (%) Calls (%) Results (%)

55.3

44.7
26.3

23.7

50 52

48
28

20

52

(a) Explicit 0MB tests.

5% Servers 50% Servers

Calls (%) Results (%) Calls (%) Results (%)

94

6 4

94
100 100

(b) Implicit 0MB tests.

(c) Explicit 1MB tests. (d) Implicit 1MB tests.

(e) Explicit 100MB tests. (f) Implicit 100MB tests.

Figure 4.30: Percentages of procedures called and results returned via Non-DTN and DTN for 100MB in
the Islands topology.

Furthermore, it is evident that some of the results arrive via MDP or MSP (i.e.,
Non-DTN), others only via Rhizome (i.e., DTN). There are two reasons. First, it is
possible that a call is issued successfully using MSP, but the route from the server to the
client gets lost because the islands have separated. Then, the result is sent via Rhizome
and arrives after the islands have merged again. Second, the client cannot establish a
connection to the server at all, because the islands are not connected. The procedure
will be called using Rhizome and the client will wait via Rhizome for the result. Even
if some results do not arrive in the explicit mode, the DTN protocol helps to improve
the number of successful calls, as shown in Fig. 4.30. 41.9% of the results in the explicit
tests with the 100MB test set with 50% of the nodes as servers arrive via Rhizome, and
in 41.9% of the tests, no result arrives. In the implicit tests with the 100MB test set with
only 5% of the nodes as servers, 61.1% of the results arrive via Rhizome, and only 27.8%
of the results do not arrive at all.

Figures 4.30b, 4.30d and 4.30f show implicit tests in the Islands topology for three
different file sizes with different numbers of servers. It is evident that the implicit mode
increases the number of successful calls in every situation compared to the explicit
tests. Due to the dynamically changing Islands topology and the relatively short contact

87

4 Disruption-tolerant Device-to-Device Emergency Communication

durations, it is still possible that not all results arrive in 100MB. For the explicit calls,
the more servers are available, the more results arrive.

The number of missing results can be decreased if the contact duration is increased or
the waiting time for results is increased. Furthermore, more elaborate remote procedures
require a lot more time to finish than the simple echo service used in this evaluation.
Therefore, the waiting time for results of up to 210 seconds in the experiments should
be increased in production environments, since it might be possible that a result arrives
after hours at the client via DTN.

To summarize, the transparent mode helps to improve the probability of receiving
results in dynamically changing network topologies like Islands. Furthermore, the
transparent mode can deliver results where a traditional RPC would not lead to any
response due missing network connections. Finally, if the waiting time for results is
adequately large, the probability of receiving results increases, because when a DTN
protocol is used, results do not get lost, but simply are not transmitted via a direct
connection to the receiving node. Therefore, given sufficient time, results will always
reach their destinations.

4.5.6 Conclusion

In this section, DTN-RPC was presented, a new approach to provide RPCs for DTN
environments. DTN-RPC relies on (a) control and data channels to cope with potentially
short contact durations in DTN where it is impossible to transmit large amounts of
data, (b) explicit and implicit modes to address remote servers, (c) Non-DTN and DTN
transport protocols for issuing calls and receiving results, and (d) predicates that servers
check to decide whether a procedure should be executed. The implementation of DTN-
RPC is based on Serval, an open-source, disruption-tolerant wireless ad-hoc networking
system. The experimental results have indicated that the measured CPU and network
overheads for DTN-RPC are reasonably low so that DTN-RPC can be executed on
smartphones or routers, and that the round-trip times and the number of successful
RPCs are highly satisfactory in dynamically changing network topologies with unstable
links. Thus, DTN-RPC adds remote computing capabilities in the form of RPCs to DTN.
These can, for example, greatly improve the tools available for professional responders
during emergencies by utilizing low-power mobile devices that can offload tasks, such
as requests for aerial overview images or for face recognition based comparisons to
search for missing people. Furthermore, CPU-intensive tasks such as reconstruction of
3D models for replication of spare parts in the field [92] can be delegated off-the-grid
to more powerful participants in the area.

There are several areas for future work. First, DTN-RPC has been tested and evaluated
using emulated networks. We plan to perform tests with smartphones to get a better
view on the real-world performance of DTN-RPC and a realistic evaluation of its energy
consumption. Second, since the Non-DTN transport protocols produced satisfactorily
results in the Chained and Hub topologies, DTN-RPC should be evaluated without
relying on the strict differentiation between control and data channels. Finally, although
it is relatively difficult to implement error handling and acknowledgment mechanisms,
the evaluation has shown that this is not impossible. Thus, an acknowledgment system
should be implemented for the any mode to inform other servers that the execution has
already started.

88

4.6 Environmental Monitoring Platforms for Disaster Scenarios

4.6 Environmental Monitoring Platforms for Disaster Scenarios

4.6.1 Introduction

Environmental monitoring without being able to rely on existing electricity and com-
munication infrastructures is required in several use cases, such as biological and
ecological studies (e.g., animal tracking, air quality measurement), delivering Internet
of Things (IoT) technology to farms51 in rural places, and emergency communication in
disaster scenarios (e.g., tsunamis, earthquakes, nuclear meltdowns). In these situations,
several constraints need to be considered when a technical solution for environmental
monitoring is designed: lack of power supply, lack of communication infrastructures,
harsh weather, low maintenance possibilities, weight restrictions for animal-attached
sensors, availability of scenario-specific sensors, and cost factors.

There are several computing platforms readily available that can be extended to
provide stationary services as well as mobile, low power tracking devices. Furthermore,
there are many affordable, off-the-shelf sensors that are potentially useful in such
scenarios, but proper information on how to integrate them and their specific require-
ments, such as real world energy consumption, are often not easily accessible. Moreover,
integrating the computing power, flexibility and mobility of smartphones and tablets
is an interesting option. Since satellite communication is expensive and limited, and
cellular services are often not available in remote places or during a disaster, low-cost
long-range (up to 16 km) radio technologies, such as LoRa, are quite useful. Although
they are mostly associated with IoT applications in an infrastructure-based LoRaWAN
mode, they can also be used for device-to-device communication and have the benefit
of license-free frequency bands in any country of the world. Due to the low bandwidth
of these radio transceivers, only small pieces of data can be transmitted, increasing the
need to preprocess data prior to long-range transmissions.

In this section, a flexible and affordable sensor, computation, and communication
platform for environmental monitoring that relies on low-cost hardware and infrastruc-
tureless communication is presented. It uses delay-/disruption-tolerant networking
(DTN) for non-time critical tasks over different wireless links, provides on-device data
processing capabilities based on machine learning methods, and integrates mobile
sensor nodes, static devices, and smartphones. In particular, the following contributions
are made:

• A novel sensor, computation, and communication platform for static and mobile
environmental monitoring setups, and for users with mobile devices is presented.

• A novel energy-efficient approach for on-device image classification is presented.
• A novel approach to provide long range communication capabilities for Bluetooth-

enabled devices is presented.
• Experimental evaluations of (a) commonly available and affordable platforms, (b)

the power consumption of several sensors, and (c) the real world communication
ranges and power demands of various radio link technologies for environmental
monitoring are presented.

Parts of this section have been published in [6].

51https://wazihub.com

89

https://wazihub.com

4 Disruption-tolerant Device-to-Device Emergency Communication

4.6.2 Related Work

Several wireless sensor platforms for environmental monitoring were presented in
the literature, but they are often either based on specific technologies or tailored to
dedicated use cases. For example, the OpenSense project aims to bring community-
driven environmental monitoring to life with an open platform and accessible results
[93]. However, it is specifically designed for air pollution monitoring, relies on existing
communication infrastructures and hardware specifically built for this use case. On the
other hand, it integrates static sensor nodes as well as mobile nodes, and most recently
also wearables [94]. Similarly, Citi-Sense-MOB [95] and AirSenseEUR52 [96] work for
air quality measurements in urban environments, but also rely on technologies such
as GRPS for data transmission, constant power supply (e.g., from the bus or car the
sensor is mounted on), and custom/closed-source printed circuit boards (PCBs).

Some custom-built platforms can be adopted to various scenarios. Problems asso-
ciated with custom-built platforms are their cost and availability; sometimes they are
specifically tailored to a particular geographic region [97], [98].

Llamas et al. [99] use Arduino and Raspberry Pi computers for building a reusable
open sensor platform. Their application is human gait identification. Long range
communication or infrastructureless operation are not considered.

The senseBox project53 provides a sensor platform for citizen science projects [100].
There is a strong focus on education and publicly available sensor data, but senseBox
lacks flexibility when used for more than just raw sensor data aggregation and also
relies on existing communication infrastructures. Luftdaten54 [101] also uses cheap
microcontroller units (MCUs) configured for air quality measurement in a citizen
science project, but also relies on existing communication infrastructures.

The EU project WAZIUP tries to bring IoT technologies to developing countries [102].
WAZIUP provides a low-cost communication infrastructure (LoRaWAN), while we try
to work without any infrastructure on a purely peer-to-peer basis. We incorporate DTN
technologies and feature heterogeneous radio-link setups. Furthermore, conserving
energy plays a more vital role in our use cases, and we focus on providing a complete
system for remote sensing and communication.

Some proposals use mobile devices or wearables as sensors, and some approaches
provide low-cost, long-range radios usable from smartphones, but they are often very
impractical (a direct USB connection to a smartphone is required) or require operating
system modifications [103].

4.6.3 Sensor Platforms for Disaster Scenarios

Static Sensor Platforms (SSPs) are the backbone of our environmental monitoring
platform. They have less restrictions on size or weight than Mobile Sensor Platforms
(MSPs), and energy problems can be handled easier by adding solar panels, wind
turbines, or larger batteries. SSPs can be used for relaying packets, collecting sensor
data on roof-tops, on trees (e.g., wildlife cameras), or on smart street lamps. MSPs, on
the other hand, are used to tag animals and, therefore, must be kept as light and small
as possible. Energy is a more valuable resource. Since humans with smartphones and

52https://airsenseur.org/website/
53https://www.sensebox.de
54https://www.luftdaten.info

90

https://airsenseur.org/website/
https://www.sensebox.de
https://www.luftdaten.info

4.6 Environmental Monitoring Platforms for Disaster Scenarios

tablets can also act as sensors, these must be integrated as well. Adding long-range
infrastructureless communication to mobile devices also has the benefit that it can be
used in case of an emergency for sending messages to other participants. Finally, it is
necessary to preprocess the gathered sensor data to reduce the needed bandwidth for
transmission. This is challenging when using power-efficient devices as a basis for SSPs.
The different sensor platforms are discussed in more detail below.

Static Sensor Platforms

SSPs can easily utilize different energy sources, such as solar panels, car batteries, or
electrical wall outlets. Therefore, they can be built using regular single board computers
(SBCs), such as Raspberry Pi 3 or Zero, since these platforms offer a compromise
between computational power and low energy consumption. To also function as a
network hub for mobile users and MSPs, different radio link technologies can be
incorporated - Bluetooth, WiFi mesh, and for longer range, license-free, low-bandwidth
communication via LoRa. Since energy consumption of SSPs is not as critical as in
MSPs, SSPs can constantly listen on the different wireless interfaces and act as hubs or
relays for smaller mobile nodes passing by. For data dissemination, DTN technologies
such as Serval55 can be used, since they perform well in infrastructureless environments
[2]. A variety of sensors can be added, e.g.:

• camera, night-vision camera, thermal camera
• microphone
• GPS/GLONASS
• temperature, humidity, barometric pressure
• air quality
• rain- and soil-moisture sensors

Usually, these are connected directly through GPIO pins or various bus systems (e.g.,
serial, SPI, i2c). Most SBCs directly provide these interfaces, only analog-digital pins
are often lacking, but can easily be added externally.

Mobile Sensor Platforms

MSPs have more constraints than SSPs, since they must be as light and small as possible
to be attached to animals or additionally mounted on an Unmanned Ground or Aerial
Vehicles (UGV/UAV) [7]. Apart from the weight of the total system, power consumption
is the main bottleneck. Due to these limitations, the choice of radio link technologies
and the types of sensors are quite restricted. MSPs are based on small MCUs, since they
require much less power and often provide deep sleep capabilities as well as various
I/O pins for digital and analog sensor inputs.

Long-range Radio Links for Mobile Devices

In remote areas, cellular coverage or WiFi access points for communication using
standard smartphones are often not available. Building custom radio links into phones
is quite expensive and economically not interesting for large carriers. Therefore, a
different approach with the following requirements is needed:

55https://github.com/servalproject/serval-dna

91

https://github.com/servalproject/serval-dna

4 Disruption-tolerant Device-to-Device Emergency Communication

1. it should work with any operating system,
2. it should be compatible with any mobile phone,
3. it should be license-free ”worldwide”,
4. it should provide infrastructureless long-range (>1 km) communication,
5. it should be energy-efficient,
6. it should be affordable.

The best solution for items 1 and 2 is to rely on platform-agnostic standards such as
Bluetooth Low Energy (BLE) that can be used from Apple iOS and Google Android, or
almost any other operating system. To cover items 3 and 4, we use the LoRa standard
that in theory provides up to 16 km of range and is available in different frequency
bands (433/868/915 MHz) for worldwide usage. LoRa also offers the LoRaWAN stan-
dard as a higher layer with built-in encryption, but it also requires some infrastructure,
making it unsuitable for our task. Energy efficiency (item 5) is partly achieved by using
BLE, but also by using small MCUs to handle communication. By finding a suitable
MCU with built-in Bluetooth and LoRa chipsets, the price for such a smartphone
add-on is also kept low. Alternatively, an SBCs equipped with a LoRa modem can be
paired using Bluetooth with a smartphone. Even though power consumption will be
higher, this system has the benefit that software such as Serval can run directly on the
SBC and expose only UI relevant functions via BLE, preserving smartphone energy
due to lesser notifications and wake-ups.

On-Device Data Processing

Since long-range links over LoRa only provide a few kilobits per second of bandwidth,
transmitting large amounts of data in its raw form is not feasible. Therefore, processing
the sensor data at least partially on the SSP to filter out unwanted content or already
produce analysis results is favorable. In our use cases, we heavily rely on visual
object/concept detection in images to filter out relevant information. Our previous
work has shown how this approach can significantly reduce the amount of data
necessary to be transmitted [5]. To cope with the limited CPU power of most SBCs, we
integrate external hardware to accelerate the visual classification process. The challenge
is to limit the power consumed by the accelerator device when it is currently not in use.

4.6.4 Implementation

Here, the implementation details of the developed platforms are discussed.

Static Sensor Platform

The SSP can act as a relay for MSPs and mobile devices carried by users. Furthermore,
it can be used without any sensors as a base station and uplink to the Internet (see
Fig. 4.31). To provide these features, we focused on ARM-based SBCs, more specifically
the Raspberry Pi family. These devices are readily available worldwide, are proven
technology made specifically for tinkerers and well documented. There are several
cameras that can be directly attached, plus many (p)HATs with additional hardware and
many GPIO pins for direct sensor attachment. Depending on particular requirements
(size, energy etc.), there are different models available, such as the Pi Zero W and the Pi
3. Many wildlife cameras and weather stations have already been built on this proven

92

4.6 Environmental Monitoring Platforms for Disaster Scenarios

Figure 4.31: Base station for monitoring, relaying and processing.

hardware platform, and Raspbian provides a solid and familiar Linux foundation. We
modified a Raspbian OS Image to provide features specific to our SSP. It can easily setup
a mesh network, provide Bluetooth debugging capabilities, open an access point, and
start services, such as GPS logging and serval-dna. Also, the energy consumption can
be optimized by deactivating unused features, such as the HDMI port of the Raspberry.
All this can be configured through a simple text file on the small FAT32 partition on
the SD card56. This has the benefit that the default image can be written to a new SD
card and then can be configured from any computer with a simple text editor prior
to actually booting the system. There is no need for Linux knowledge or extra drivers
to read the filesystem, all is kept in one file, in one place for ease of use. The single
biggest feature missing in the Raspberry Pi family is proper power management and
deep sleep, but there are several after-market solutions57,58 offering this functionality.
Another benefit of the newer Pi’s (Zero W(H) and 3) is that Wi-Fi and Bluetooth are
already present. The only major interface left to be added for our system is a LoRa
transceiver for long-range communication.

LoRa Radio Modem There are several MCUs on the market using Cortex M0, AT-
mega32u4, or ESP32 chips with onboard rfm95 transceiver modules. Using the Radio-
Head library59, these can easily be used in the Arduino programming environment
to send packet data from device to device. We developed a firmware to expose this
functionality via an AT command set over the built-in USB-Serial, similar to the one
found in classic dial-up modems. Therefore, any device with an USB port can use such
a modem, and no special drivers are needed. The source of the modem firmware can be

56https://github.com/buschfunkproject/heckenschere
57https://spellfoundry.com/product/sleepy-pi-2/
58http://www.uugear.com/witty-pi-realtime-clock-power-management-for-raspberry-pi/
59http://www.airspayce.com/mikem/arduino/RadioHead/

93

https://github.com/buschfunkproject/heckenschere
https://spellfoundry.com/product/sleepy-pi-2/
http://www.uugear.com/witty-pi-realtime-clock-power-management-for-raspberry-pi/
http://www.airspayce.com/mikem/arduino/RadioHead/

4 Disruption-tolerant Device-to-Device Emergency Communication

found on github60. Furthermore, Serval, our DTN middleware, was made aware of this
communication channel by changing LBARD and writing a driver for our firmware61.

Mobile Sensor Platform

Since the MSP should be as light and small as possible, we focused on MCUs with inte-
grated Wi-Fi and/or LoRa transceivers. For convenience, performance and portability,
all of our programming was done using the Arduino programming environment in
contrast to ESP’s IDF or MicroPython. Hence, only minimal changes were necessary
to switch from one MCU to another. To preserve battery power, the mobile sensors
are mostly kept in deep sleep until a timeout or external trigger wakes them up. Also,
they are programmed as send-only devices, since relaying data would require constant
listening and would prevent deep sleep, thus draining the battery faster.

Long-range Radio Links for Mobile Devices

Since newer SBCs, such as the Raspberry Pi 3 and Pi Zero W, provide Bluetooth
capabilities and can control devices with our radio modem firmware, such a setup
can easily be used as a bridge for smartphones. For a simple prototype, we used
the bleno framework62 to expose system functionality via BLE. This is also useful for
debugging head-less systems. Therefore, we provide a simple echo service to broadcast
any information via BLE63 from our customized Raspbian distribution. Despite the
flexibility this setup provides, it consumes quite a lot of power and is rather large in
size (Pi Zero + LoRa modem + battery pack + antenna).

For a more lightweight solution, the radio modem firmware was enhanced to directly
use BLE as a serial UART replacement. The packet size restrictions of LoRa and the BLE
implementation in most RF95-based chipsets are quite similar. There are ESP32-based
MCUs, such as the ones from Heltec and TTGO, that provide WiFi, Bluetooth and LoRa
on a single board. The resulting system can be paired with any BLE capable (mobile)
device, requires much less power, and for the 868/915 MHz bands, a rather short
antenna. A modified version of the firmware can also be found online64. This system is
rather small and comparable to commercial products, such as the GoTenna65, but more
open and flexible. The BLE LoRa modem based on a TTGO ESP32 chip, including a
small 750 mAh LiPo, a custom 3D printed case, and a 868 MHz antenna is shown in
Fig. 4.32 right next to a Raspberry Pi 3 for a size reference.

On-Device Data Processing

For data processing on SBCs, a solution with two execution options was imple-
mented. The first one uses the device CPU itself, and the second one utilizes a Intel R⃝
MovidiusTM Neural Compute Stick (NCS). If we use the compute stick, the CPU of the
SBC can go to deep sleep and save energy. Visual object/concept detection is used for

60https://github.com/gh0st42/rf95modem
61https://github.com/gh0st42/lbard-ng
62https://github.com/noble/bleno
63https://github.com/buschfunkproject/bledebug
64https://github.com/gh0st42/rf95modem/tree/ble_modem
65https://www.gotenna.com

94

https://github.com/gh0st42/rf95modem
https://github.com/gh0st42/lbard-ng
https://github.com/noble/bleno
https://github.com/buschfunkproject/bledebug
https://github.com/gh0st42/rf95modem/tree/ble_modem
https://www.gotenna.com

4.6 Environmental Monitoring Platforms for Disaster Scenarios

Figure 4.32: BLE LoRa modem with plain Raspberry Pi 3 for size comparison.

image processing, and for this purpose we use two neural network models. The first
one is InceptionNet v3 [104] with 1001 different detectable classes, and the second one
is also an InceptionNet v3 model trained on the Open Images Dataset66 This neural
network can detect 6012 different classes and is suitable for a more detailed analysis of
the given images.

These neural network models are executed either with Tensorflow 1.1.0 built for ARM
CPUs or on the Movidius compute stick. Additionally, the neural networks have to be
converted with the Movidius compiler mvNCCompile to run the pretrained versions on
the compute stick.

During our evaluation we found that the Intel Movidius NCS consumes an average
power of 1955 mW when it is idle. On a Raspberry Pi, we can disable the entire USB
subsystem, but in this case the Ethernet and all other USB ports are also disabled. Since
various sensors and potential extra radio link interfaces might be connected over USB,
this behavior is not desirable. Disabling only the specific port of the NCS to save energy
when no processing has to be done is more favorable. To achieve this, hub-ctrl67 is
used to turn off the power of the compute stick in case it is currently not needed. This
preserves a lot of energy, since the compute stick is expected to have more idle times
than compute times. The possibility to have the compute stick as a backup without an
energy penalty and only activating it when really needed makes it even more useful.

The visual object/concept detection software itself was written in Python 2.7 and
outputs the five main visual concepts for each given image for further processing or
discarding of irrelevant images. Thus, the energy for transmitting irrelevant images can
be saved. Especially in a multi-hop scenario, a large amount of energy can be saved by
applying preprocessing functions to recorded image data [19].

66https://storage.googleapis.com/openimages/web/index.html
67https://github.com/codazoda/hub-ctrl.c

95

https://storage.googleapis.com/openimages/web/index.html
https://github.com/codazoda/hub-ctrl.c

4 Disruption-tolerant Device-to-Device Emergency Communication

4.6.5 Experimental Evaluation

Several experimental evaluations were performed regarding power consumption, trans-
mission ranges, and execution times. The Monsoon Power Monitor was used for power
measurements. All energy tests were repeated 2-3 times and ran for about one minute
each, resulting in plenty of time to get a realistic power reading. Only the stress and
compute stick evaluations were not terminated by time but by the given task.

Platform Comparisons

The evaluation includes some Raspberry Pi SBCs as well as MCUs from different
vendors. They were tested for their idle power consumption and under full load. Other
chipset-specific features such as RAM, onboard networking capabilities etc. are also
listed in Table 4.7.

Table 4.7: Overview of SBC and MCU Platforms
Processor RAM Network Idle - Power in mW Load - Power in mW

Mean Max Mean Max

Pi 1 Model B+ 1x 700 MHz 512 MB 100 Mbit Eth. 931 1288 1043 1418

Pi 3 Model B 4x 1200 MHz 1024 MB 100 Mbit Eth., WiFi, 4.1 1107 1845 2224 3285

Pi Zero W 1x 1000 MHz 512 MB WiFi, 4.1 415 702 662 1057

ESP32, TTGO 1x 240 MHz 520 KB WiFi, 4.2 366 427

ESP8266, Feather Huzzah 1x 80 MHz 80 KB WiFi 426 1321

Feather M0 1x 48 MHz 32 KB Optionally WiFi, LoRa 25 29

Feather 32u4 1x 8 MHz 2 KB Optionally LoRa 24 27

Waspmote 1x 14.74 MHz 8 KB 145 150

When looking at the different Raspberry Pi models, it is evident that when idling,
the Pi Zero W (415 mW) consumes less than half of what a Pi 1 (931 mW) needs and
just about a third of what the base Pi 3 Model B (1107 mW) needs. The newest Pi 3

Model B+ was not tested, but due to its increased CPU power it is expected to consume
even more power. Both Pi 1 and Pi 3 offer more USB ports onboard and Ethernet. The
Pi 3 offers more processing power and cores than the relatively power-hungry Pi 1 that
provides even less processing power than the Pi Zero W. Under load, the Pi Zero W still
consumes less power than a Pi 1 idle. Due to its 4 cores and high clock speed, the Pi 3

uses 2224 mW under load and peaks to 3285 mW at certain times. Thus, if saving power
is the priority, then the Pi Zero W is the best choice. If multiple CPU cores, onboard
Ethernet, and more USB ports are essential, then the Pi 3 Model B is the best candidate.

For the MSP several MCU candidates were evaluated, as shown in the lower part of
the table. Some of them like the ESP32 board from TTGO are much more powerful with
240 MHz and 520 KB RAM compared to systems like the Waspmote with 14.74 MHz
and 8 KB RAM. Not all systems provide deep sleep functionality by default. Even
though the Waspmote or Feather M0 system consume less power than the ESP32, they
also lack the radio link interfaces. Due to the flexibility through the included radio
interfaces, cost of the board and provided CPU/RAM as well as deep sleep capabilities
and I/O pins, the MSPs were mainly built on ESP32 boards. Should RAM not be
an issue and a single radio-link interface be sufficient, the Feather M0 or even the
low-power 32u4 are good alternatives with minimal power requirements.

96

4.6 Environmental Monitoring Platforms for Disaster Scenarios

Evaluation of Sensor Requirements

The typical power requirements of different sensor types were measured, as shown in
Table 4.8. The sensors range from simple temperature and particle sensors over GPS
receivers to complex optical systems such as (night vision) cameras.

Table 4.8: Overview of different Sensors

Function Power in mW
Mean Max

MAX30105 Particle 19 145

CCS811 VOC, TVOC, eCO2 52 186

PIR PIR 51 55

SIM28 GPS GPS 250 302

BME280 Temp., Baro., Humidity 56 65

MICS-2714 NO2 42 45

MICS-5524 CO 41 60

AMG8833 IR thermal 179 2248

Envirophat
Temp., Baro., Color,
Accel., Magnetometer

180 1868

Pi Camera NV Night Vision Camera 1173 2290

Pi Camera v2.1 Camera 393 2231

Most of these sensors consume an average power of about 50 mW or less. A notable
exception is GPS with about 250 mW and the cameras with 393 mW / 1173 mW. It
is also noteworthy that the night vision camera draws 3 times as much power as the
regular one. A simple 8x8 thermal imaging sensor, such as the AMG8833, on the other
hand, only consumes an average of 179 mW. When adding these sensors to an MSP or
SSP, the maximum peaks must also be considered. These can go up to 2290 mW for the
optical sensors.

Radio Link Comparisons

We evaluated the power consumed by different MCUs with onboard radio transceivers,
ranging from Wi-Fi to LoRa, as shown in Table 4.9. This table shows the power
consumption from the MCUs with included radio transceivers. It is obvious that Wi-Fi
communication is at least twice as expensive as LoRa (TTGO ESP32), and in case of the
Feather M0, about 10 times as expensive. There is also a bigger difference regarding
LoRa power consumption when comparing both Feather devices (ca 46 mW) to the
TTGO ESP32 (235 mW). Furthermore, sending via LoRa is much more expensive at
roughly 528 to 816 mW. If more RAM and CPU power is needed or if more than one
radio transceiver with small physical dimensions is required, than the TTGO is the best
choice. The Feather sticks are available only either with Wi-Fi or LoRa onboard.

To evaluate the LoRa transceiver modules’ communication range, we deployed our
sensor box (Fig. 4.33) and measured the transmission range using one of our GPS
modules. We used ESP32 TTGO modules in various configurations. One chip was
tuned to the 433 MHz band and equipped with a small wire antenna from the supplier.
The next one was set to work in the 868 MHz band, also with the short vendor-supplied

97

4 Disruption-tolerant Device-to-Device Emergency Communication

Figure 4.33: Waterproof static sensor box deployed.

Table 4.9: Power consumption of MCUs including radio transceivers

Power in mW
Mean Max

ESP32, TTGO, WiFi 591 1353

ESP8266, Feather Huzzah, WiFi 405 2118

Feather M0, WiFi 475 1577

ESP32, TTGO, LoRa 235 816

Feather M0, LoRa 45 528

Feather 32u4, LoRa 47 568

antenna. Finally, we set up another TTGO in the 868 MHz band but on a different
channel with larger 3.5 dBi magnetic sucker antennas on both ends. The sending
interval chosen for the fixed station was set to 7 seconds for each device.

The city of Marburg is surrounded by many hills and forests, therefore, the sending
station was deployed on a viewpoint near the university with line-of-sight to most
parts of the city. The receiving nodes were mounted on the dashboard of a car, and we
drove around the campus, through the city, up to the castle on the opposite side of the
city, and then along the valley, until we lost the signal. The route we took, including
received beacons, is shown in Fig. 4.34.

The longest distance covered was almost 6.5 km with the 3.5 dBi sucker antenna. The
433 MHz setup and the other 868 MHz node reached 1-2 km less, but with a much
higher packet loss. Also, there was no more line-of-sight from either maximum distance
points, it was blocked by hills, houses and trees. The 1.5-2 km distance to the downtown
area was covered by all three devices despite trees and houses in the way.

The RSSI over distance is shown in Figure 4.35, where up to 2-3 km all devices still
received signals quite often. As expected, the 3.5 dBi antenna has the best reception
throughout the test. This is especially clear for distances over 3 km where the duck
antennas both fall short. The total number of received packets in percent can be seen
in Fig. 4.36. The clear winner here, again, is the 3.5 dBi sucker antenna. Both stock

98

4.6 Environmental Monitoring Platforms for Disaster Scenarios

Figure 4.34: Communication range of different LoRa setups.

antennas from TTGO perform very similar with reception rates between 10% and 15%
during the test. Due to our constant movement and the diverse topographic areas, these
numbers should be seen in relation to the sucker antenna, not as absolute numbers.
Traffic might be responsible for remaining longer in areas where no reception was
possible, resulting in a higher overall packet loss rate.

On-Device Data Processing

For on-device data processing, we used 1481 images for CPU and neural compute stick
execution. Each of these images is 3000 x 2000 pixels in size, since 6 mega-pixels are a
good compromise between storage space and visual details. This dataset is described in
our previous work [5]. For evaluation purposes, we built a Python tool to batch process
these images. First, the program loads the necessary libraries and the pretrained neural
network, then the images are processed. The power consumption and time for the tasks
is shown in Table 4.10.

First, we compared the idle power consumption of the Pi 3 to one with an attached
neural compute stick. While the max peak is almost identical, the average power

99

4 Disruption-tolerant Device-to-Device Emergency Communication

Figure 4.35: RSSI vs. Distance Figure 4.36: Number of received packets in relation
to packets sent.

Table 4.10: Comparison of Concept Detection on Pi vs. Neural Compute Stick

Idle - Power in mW Starting - Power in mW Analysis - Power in mW
Mean Max Time Mean Max Time Mean Max Time per Image

Pi 3b, 1K, CPU 1107 1845 59.29 sec. 2626 2895 19.66 sec. 2723 3537 13.27 sec.
Pi 3b, 1K, Movidius 1955 2095 59.76 sec. 2372 2884 3.92 sec. 2760 3388 0.61 sec.

Pi 3b, 6K, CPU 1107 1845 59.29 sec. 2659 3203 75.03 sec. 2871 3537 5.46 sec.
Pi 3b, 6K, Movidius 1955 2095 59.76 sec. 2507 2879 12.64 sec. 3313 3667 0.82 sec.

consumed is nearly double when a NCS is added. In the starting phase, the neural
network is loaded either into RAM for the plain Pi 3 or onto the NCS. Both setups draw
around 2500 mW with a slight edge for the NCS setup. Taking runtime into account,
the compute stick is clearly more efficient by loading the trained model 5-6 times faster.
When performing the actual visual concept detection, the mean power is between 2723

and 3313 mW and peaks at 3667 mW, with a slightly lower power demand by the CPU
setups. Given the much longer runtimes of the CPU version, 6x and 21x slower per
image, the NCS is still much more efficient, in terms of speed and energy. The main
drawback of the tested compute stick is its high power consumption when idle.

This problem was solved by deactivating the specific USB port when the stick is
currently not needed, reducing the power consumption overhead to zero.

Setup Cost

Since we want to provide affordable solutions that can easily be customized to specific
needs, we also provide a short overview of the cost of our systems. All prices are
in (rounded) Euro, taken in June 2018 from Amazon, Aliexpress etc. All our cases
are custom printed on a 3D printer. We also did successful deployments with cheap
waterproof junction boxes from the local hardware store (<10 e).

The cheapest system is our BLE LoRa Modem with a total system cost of about
14 e (Table 4.11). A 750 mAh battery lasts roughly between half a day and a full day.
This component can easily be swapped for a bigger battery or powerbank.

100

4.6 Environmental Monitoring Platforms for Disaster Scenarios

Table 4.11: Cost of BLE LoRa Modem

Part Estimate Price Comment

TTGO LoRa SX1276 ESP32 9 e incl. antenna
LiPo Battery 750mAh 3 e
3D printed case 2 e

Total Price 14 e

The MSP example shown in Table 4.12 is usable for GPS tracking of larger animals
plus some added sensors for collecting weather data. In real world deployments with a
750 mAh battery and gathering samples every 15 seconds, the power lasted for about 6

days. With a reasonably lightweight and cheap 1500 mAh battery and a lower sampling
rate, we can achieve runtimes over two weeks. The total cost for this setup is around
46 e per device, mainly dominated by the price of the SD card for data logging and the
GPS module.

Table 4.12: Example configuration for a MSP

Part Estimate Price Comment

TTGO LoRa SX1276 ESP32 9 e incl. antenna
LiPo Battery 1500mAh 3 e
3D printed case 4 e
Ublox NEO GPS 12 e incl. antenna
SD-Card Breakout 2 e
32 GB SD Card 13 e
Real Time Clock 1 e
Temperature & Humidity Sensor 1 e
Gyro Sensor 1 e

Total Price 46 e

In Table 4.13, an SSP example, used for relaying data as well as actively gathering
sensor data and processing it on device, is shown. Depending on whether a compute
stick is used or not, the cost varies between 135 e and 201 e. The cost for a blank
relay-only system would be around 65 e. The rest is the cost of the added sensors and
the NCS. What this setup is lacking, is a power supply. Depending on the location of
deployment, a battery system (20 e - 200 e) and/or a solar panel (50 e - 200 e) could
be added if a direct power supply is not available.

101

4 Disruption-tolerant Device-to-Device Emergency Communication

Table 4.13: Example configuration for a SSP (w/o power supply)

Part Estimate Price Comment

Raspberry Pi 3 32 e
TTGO LoRa SX1276 ESP32 9 e incl. antenna
3D printed case 10 e
Ublox NEO GPS 12 e incl. antenna
32 GB SD Card 13 e
Real Time Clock 1 e
Temperature & Humidity Sensor 1 e
Pi Camera 20 e night vision opt.
Movidius NCS 66 e optionally
Thermal Imaging 32 e
Rain Sensor 1 e
Soil Moisture 3 e
PIR Motion Detector 1 e

Total Price 135 e / 201 e

4.6.6 Conclusion

In this section, a flexible and affordable sensor, computation, and communication
platform for environmental monitoring was presented. Solutions for static and mo-
bile setups, and integrated mobile devices, such as smartphones, into long-range
infrastructureless radio networks were provided. Apart from evaluating typical power
requirements of common hardware platforms and sensors, LoRa radio transceivers
were also included in the study and evaluated regarding their realistic communication
ranges. Furthermore, to make optimal use of these long-range, low-bandwidth links,
a solution to on-device preprocessing of image data using neural compute sticks was
provided in an energy efficient and computationally fast way. Finally, the expected costs
of the subsystems used in the evaluation were presented. The components developed
for the setups, such as the rf95 modem firmware, the BLE modem, Serval LBARD
support, and the software customized for the Raspbian distribution, are all released as
open source software on github.

In the future, the possibilities of direct device-to-device communication via cheap
LoRa addons for smartphones should be used more extensively. This opens possibilities
for new apps on mobile devices, such as infrastructureless messaging, or using a phone
for sensing and remote control tasks. Furthermore, the usefulness of DTN software
directly on the MCUs based on miniDTN should be explored. Finally, the integration
of energy harvesting solutions would also increase the flexibility of the system when
deployed in remote places.

102

4.7 Applications for Disaster Response: SmartFace

4.7 Applications for Disaster Response: SmartFace

4.7.1 Introduction

During many natural or man-made disasters, a common task is to find missing persons.
For this purpose, Facebook and Google offer services such as Safety Check68 or Person
Finder69, respectively. However, both services require a working Internet connection
and thus cannot be used when telecommunication infrastructures of mobile phone
operators fail. In such emergency situations, smartphones, tablets and/or battery
powered wireless routers can be used alternatively to spontaneously establish a disaster-
response communications network to share data in a peer-to-peer fashion.

To support the search for missing persons, photos taken by mobile device users
staying inside a disaster area can be spread around using disruption-tolerant networking
(DTN) [56]. Since CPU power, memory space, and battery capacity of mobile devices are
limited, the size of the photographic image data can be reduced by detecting persons’
faces in images and transmitting only the extracted faces. In many cases, faces only
make up a small fraction of a complete photo, and only sharing these over a wireless
on-demand emergency network would significantly save resources.

For desktop and server systems, several face detection libraries with different prop-
erties in terms of recall and precision are available, but their resource requirements
do not match with the resources of today’s mobile devices, since the latter still only
provide a fraction of the computing power offered by a contemporary workstation.

In this section, a novel approach, called SmartFace, to perform face detection in
situ on smartphones or tablets in an efficient manner is presented. The approach is
based on a novel two-stage combination of state-of-the-art face detection algorithms,
further enhanced by region of interest selection, color space/depth reduction, resolution
scaling, face size definition, image scaling, image cropping, and bounding box scaling.
SmartFace improves the face detection rates within the same runtimes or obtains the
same face detection rates within faster runtimes compared to the individual face
detection algorithms used alone, and also reduces the amount of data that needs to be
stored on disk and sent over the network. As a consequence, the battery life of mobile
devices is extended, too. The main contributions are:

• A novel two-stage processing pipeline for resource-efficient face detection on
mobile devices, with improved overall face detection rates and runtimes.

• An experimental study of image preprocessing parameters to obtain algorithm
agnostic speed gains.

• Methods to reduce our original image data set by a factor of 133, indicating
significant savings of network bandwidth and disk storage resources.

Parts of this section have been published in [5].

4.7.2 Related Work

Emergency communication networks [49] typically rely on radio technologies, such
as Bluetooth, LoRaWAN, WiFi, TETRA digital radio or satellite links. They either

68https://www.facebook.com/about/safetycheck/
69https://google.org/personfinder/global/home.html

103

https://www.facebook.com/about/safetycheck/
https://google.org/personfinder/global/home.html

4 Disruption-tolerant Device-to-Device Emergency Communication

use telecommunication infrastructures, are distributed (peer-to-peer, mobile ad-hoc
networks), or form hybrid architectures of both.

Several approaches utilize commodity mobile devices to realize hop-to-hop DTN
[28], [56], [57]. Due to their peer-to-peer nature, they are well suited for (post-)disaster
scenarios. Projects such as FireChat70, Briar71, Serval72 and Forban73 transfer messages
and files between heterogeneous devices and share them locally through store-and-
forward technology.

Furthermore, several face detection algorithms have been proposed. Viola and Jones
[105] offer an approach in OpenCV that accelerates face detection. The tradeoff is that
with an increased detection rate, the false positive rate also increases.

Felzenswalb et al. [106] present an object detection system for dlib. Since a sliding
window over an entire image in different resolutions is used, the runtime increases
with increasing image size. Therefore, small interesting regions within an image should
be selected before the algorithm is applied.

Cheney et al. [107] perform a comparison of face detection algorithms. The authors
state that often used test sets, such as Labeled Faces in the Wilf (LFW)[108] and YouTube
Faces [109], do not pose any challenges for current algorithms and should not be used
any more for benchmarking. Instead, they use the IARPA Janus Benchmark-A face
challenge (IJB-A)[110] that consists of over 5000 images and 20,000 video frames for
benchmarking, The main open source algorithms highlighted in their paper are from
Dlib and OpenCV, the first one with good detection rates and the second one being one
of the fastest.

The typical approach to perform face detection on mobile devices is to offload images
to a server and run a face detection algorithm on the server [111], [112]. Using powerful
servers makes it much easier to achieve good face detection rates, but in an emergency
scenario such servers are often not available.

Feng et al. [113] present a cascaded classifier approach that has also been tested
on a Samsung S6 smartphone, resulting in a runtime of 34 ms for detecting faces in
a 640 x 480 pixel photo. Compared to current 8 or 16 megapixel cameras in today’s
smartphones, this size is very small, and no public code is available to verify the results.

4.7.3 SmartFace’s Design

The goals of SmartFace are as follows:

• Since the recognized faces have to be stored on mobile devices and transferred
over wireless links, the size of the required data should be minimized. This also
means that the false positive rate of the used face detection approach should be
as low as possible.

• Since a data transfer can only happen after face detection has finished, the runtime
of the used face detection approach should be minimized. This also means that the
false negative rate and the false positive rate of the used face detection approach
cannot be minimized at the same time, but the false negative rate should be as low

70http://opengarden.com/firechat
71https://briarproject.org/
72http://www.servalproject.org
73http://www.foo.be/forban/

104

http://opengarden.com/firechat
https://briarproject.org/
http://www.servalproject.org
http://www.foo.be/forban/

4.7 Applications for Disaster Response: SmartFace

results results
first

detection
stage

second
detection

stage

Figure 4.37: Basic two-stage face detector

as possible in accordance with the available computational resources on mobile
devices.

To achieve these goals, the basic idea is to develop a two-stage processing pipeline
in which the first stage is responsible for quickly selecting interesting regions in a
given image, and the second stage performs in-depth face detection and validation
in the interesting region selected in the first stage (see Fig. 4.37). Thus, the first stage
is optimized for speed, favoring high recall over high precision. The second stage is
optimized for quality, favoring high precision over high recall. By using adequate face
detection algorithms that support the competing objectives of each stage, overall speed
and quality improvements can be achieved.

This two-stage face detection approach can be flexibly configured to the preferences
of a particular usage scenario, e.g., (a) by reducing the runtimes to save battery power,
(b) by improving the quality of the face detection results by running the algorithms for
a longer time, or (c) by trying to get the best results in a fixed amount of time.

There are several parameters that can change the runtime and the quality of the
results of a face detection algorithm without changing the algorithm itself. To support
the goals of SmartFace, the following set of parameters and their values are considered:

Color space: color / greyscale / black-and-white
Color depth: 24-bit / 8-bit / 1-bit
Resolution: 100 ≤ n ≤ 5000 in steps of 100 pixels
Image scaling: area, cubic, lanczos4, linear, nearest interpolation
Cropping: remove from each border 0%, 10%, 20%, 30% of the full image
Face size: min: 80 x 80 pixels; max: 1000 x 1000 pixels
Bounding box scaling: 50 ≤ n ≤ 500 in steps of 50

Some of these parameters are relevant for operations in a preprocessing step, while
other parameters are applied to the first or second detection stages, respectively, as
shown in Fig. 4.38. For example, having a larger bounding box in the second stage
might increase the number of results, but might overlap with nearby faces in the
same region. Here, duplicates have to be detected and eliminated. This is achieved by
allowing bounding boxes to overlap to a certain degree after the second detection stage.

4.7.4 Implementation

The implementation of SmartFace is based on three main components. The first compo-
nent handles the parameters and the preprocessing steps. The second component is a
fast face detection algorithm for the first stage of SmartFace to select regions of interest.
The third component is a high-quality face detection algorithm for the second stage of
SmartFace to operate on the selected regions of interest.

105

4 Disruption-tolerant Device-to-Device Emergency Communication

preprocessing
first

detection
stage

second
detection

stage

color

color depth

resolution

min face size

max face size
increase

bounding box

results

image section

Figure 4.38: Two-stage face detector, preprocessing, and parameters

Figure 4.39: SmartFace in action

OpenCV’s Viola/Jones algorithm [105] is used in the first stage, since it is a common
out-of-the-box solution for face detection, in contrast to OpenCV’s SURF that is also
suitable for general object detection. It is comparatively fast [107], but has a relatively
high false positive rate (which is acceptable as a pre-filter), as shown in Fig. 4.39 by the
blue bounding boxes in each image. Dlib is used in the second stage. It is slower than
the Viola/Jones algorithm, but has a lower false positive rate and a higher precision
[107]. The faces detected by dlib are shown by the yellow bounding boxes in Fig. 4.39.

All parameters except the face sizes are independent of the used face detection
algorithms. Therefore, the algorithms can be replaced by alternatives, still benefiting
from the rest of the optimizations. The entire program flow is shown in Figure 4.40.

To determine suitable parameters for the scenario, a parameter scan by creating
a test environment in Bash and using the created API to automatically iterate over
the parameter sets using the image test set is performed. The parameter scan is first
executed with dlib to match the results to the behavior of OpenCV. The results are
presented in Section 4.7.5.

4.7.5 Experimental Evaluation

Test Environment

Three different devices are used in the experimental evaluation, as shown in Table 4.14:
(a) a workstation as a reference platform, (b) a high-end smartphone (OnePlus 3T), and
(c) an older mid-range tablet (Nexus 7). The workstation operates under Ubuntu 16.04

LTS, and both Android devices use the latest Android release 6.0.1.

106

4.7 Applications for Disaster Response: SmartFace

preprocessing

OpenCV

dlib
min face size

max face size

bounding box

color

color depth

resolution

image section

result

file path image

modify

transform

Figure 4.40: SmartFace implementation

Table 4.14: Device Specifications

Device CPU RAM Storage

Workstation Quad-core (i7-2600 @3,4GHz) 8GB 256 GB SSD
OnePlus 3T Quad-core (2x2,35 GHz & 2x1,6 GHz) 6GB 128 GB Flash
Nexus 7 Quad-core (4x1,5GHz) 2GB 32 GB Flash

Image Test Set

To evaluate SmartFace on realistic images taken during emergency scenarios, an own test
set by randomly was created by downloading images from the Internet (two examples
are shown in Figure 4.41) using one of the scenario specific search terms from the
following list: haiti earthquake, haiti earthquake people, haiti earthquake faces, earthquake
faces, earthquake people, disaster people, disaster faces, disaster management, flooding people,
flooding faces, natural hazard people, natural hazard faces, tsunami people, tsunami faces, night
bushfire, bushfire people, firefighter disaster, explosion people, accident people, syrian civil war,
crowd, crowd disasters, crowd control, crevices earthquake.

A crawler for Google Images was developed and it downloaded the top 100 search
results, finally obtaining a total of 2,400 images. Duplicates were removed prior to usage.
The crawler downloads images with a resolution of 3000 x 2000 pixels. Thus, these
images correspond to photos taken by a 6 megapixel camera. Current smartphones can
take photos with a higher resolution, but in a typical disaster scenario it is not realistic
to assume that top-notch hardware is commonly available. Thus, 6 megapixel photos
are quite realistic and much more sophisticated than commonly used face detection
test sets, such as LFW where images have a resolution of 250 x 250 pixels, and a large
image part is covered by a face.

After removing duplicates, the test set consists of 1,481 images. This leads to 2.8 GB
image data that needs to be processed in the benchmarks. In addition, the faces for each
image in our test set were manually labeled. It contains 2,419 faces to be detected. A list

107

4 Disruption-tolerant Device-to-Device Emergency Communication

Figure 4.41: Examples from image test set

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

500

1000

1500

2000

2500

ru
n
ti

m
e
 p

e
r

im
a
g
e
 (

m
s)

color
greyscale
black and white

(a) Runtime

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

500

1000

1500

2000

2500

d
e
te

ct
e
d
 f

a
ce

s

color
greyscale
black and white
number of labeled faces

(b) Detected faces

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

1

2

3

4

5

to
ta

l
ru

n
ti

m
e
 /

 d
e
te

ct
e
d
 f

a
ce

s

color
greyscale
black and white

(c) Runtime / faces

Figure 4.42: Comparison of different color spaces and depths.

with 2-D coordinates is stored for each image in the test set. These coordinates represent
a central point in the face, in many cases this is the tip of the nose. Furthermore, the
rule suggested by Cheney et al. [107] to only mark faces where both eyes can be seen
was followed.

Parameter Scan

To evaluate the selected parameters, the results achieved with dlib are presented below;
each preprocessing experiment is repeated 10 times. The results using OpenCV are
similar.

Color Space and Depth In this experiment, the 24-bit input image is reduced to an 8-
bit greyscale image and to a 1-bit black-and-white image. As indicated by Fig. 4.42a, the
runtimes for greyscale and black-and-white images are nearly identical, and both are
faster than for the fully colored image. This effect increases with increasing image size.
Changing color space and depth also affects the detection rates, as shown in Fig. 4.42b.
Using a greyscale image produces almost as good results as using the original image,
but black-and-white yields significantly worse results. Fig. 4.42c shows the combination
of the first two graphs; lower numbers are better. Again, greyscale and full color images
are similar in their score, with a slight edge for greyscale due to its runtime being faster
than its decrease in detection rate.

108

4.7 Applications for Disaster Response: SmartFace

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

1

2

3

4

5

to
ta

l
ru

n
ti

m
e
 /

 d
e
te

ct
e
d
 f

a
ce

s

color area
color cubic
color lanczos4
color linear
color nearest

(a) Color images

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

1

2

3

4

5

to
ta

l
ru

n
ti

m
e
 /

 d
e
te

ct
e
d
 f

a
ce

s

greyscale area
greyscale cubic
greyscale lanczos4
greyscale linear
greyscale nearest

(b) Grey scale images

Figure 4.43: Number of detected faces per detection time for different resolutions.

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

500

1000

1500

2000

2500

ru
n
ti

m
e
 p

e
r

im
a
g
e
 (

m
s)

10% cropped
20% cropped
30% cropped
full image

(a) Runtime

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

500

1000

1500

2000

2500

d
e
te

ct
e
d
 f

a
ce

s

10% cropped
20% cropped
30% cropped
full image
number of labeled faces

(b) Detected faces

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

1

2

3

4

5

to
ta

l
ru

n
ti

m
e
 /

 d
e
te

ct
e
d
 f

a
ce

s

10% cropped
20% cropped
30% cropped
full image

(c) Runtime / faces

Figure 4.44: Comparison of cropped areas from grey scale images.

Image Scaling These experiments are performed on the original and greyscale images;
black-and-white is not considered due to the results from the color space tests. Although
the most common interpolation mechanisms for scaling images such as linear, area,
cubic, nearest and lanczos4 produce slightly different images, they are all comparable in
terms of runtime and number of detected faces (see Fig. 4.43).

Image Cropping The next parameter evaluated is cropping the greyscale image. For
each image, 0%, 10%, 20% and 30% are cut off from each border, reducing the image
size, but also reducing areas where possible faces could be detected. As expected,
image cropping reduces runtimes, even more when an original image is upscaled,
as shown in Fig. 4.44a. Cropping the image by 30% from each border significantly
reduces the number of detected faces, while cropping 10% decreases the detection
rate only slightly (see Fig. 4.44b). Combining both scores shows an interesting result
in Figure 4.44c where no single strategy wins. The behavior changes between 1,500

and 2,000 pixels. Cropping around 10% gives the most reliable results independent of
image size. However, since not many portrait photos can be expected in our emergency
scenario, one cannot assume that humans are always centered in the images, therefore
cutting off the edges might miss important information.

109

4 Disruption-tolerant Device-to-Device Emergency Communication

Table 4.15: Contingency table for dlib

faces detected undetected

labeled faces 1,194 1,226 Recall (R): 0.49

unlabeled areas 178 —
Precision (P): 0.87 F1-Score: 0.63

Table 4.16: Contingency table for OpenCV

faces detected undetected

labeled faces 1,967 502 Recall (R): 0.79

unlabeled areas 6,106 —
Precision (P): 0.24 F1-Score: 0.37

Face Detection Comparison

Next, the face detection quality of the dlib and OpenCV algorithms are compared. Tables
4.15 and 4.16 show that dlib is superior with an overall F1 score of 0.63 compared to the
0.37 of OpenCV. However, the recall value of 0.49 for dlib is much lower than the recall
value for OpenCV with 0.79, whereas the precision of dlib with 0.87 clearly outperforms
OpenCV with a precision of 0.24. This confirms that OpenCV is well suited for the first
stage of SmartFace, while dlib is an ideal candidate for the second stage.

Table 4.17 shows the results for combining both algorithms within SmartFace where
it was tried to run SmartFace as fast as possible to obtain roughly the same number of
detected faces as dlib. In contrast, in Table 4.18 SmartFace was given the same amount
of time as dlib, leading to a higher precision of 0.93 and also a higher recall of 0.70

compared dlib. This also results in a higher F1 score of 0.80 compared to 0.63 of dlib.

Table 4.17: Contingency table for SmartFace (faster runtime)

faces detected undetected

labeled faces 1,172 1,263 Recall (R): 0.49

unlabeled areas 238 —
Precision (P): 0.83 F1-Score: 0.61

Table 4.18: Contingency table for SmartFace (higher quality)

face detected undetected

labeled face 1,741 732 Recall (R): 0.70

unlabeled area 129 —
Precision (P): 0.93 F1-Score: 0.80

Compared to using color or greyscale images in dlib, SmartFace is up to two times
faster depending on the image size, as shown in Figure 4.45a. The overall number of
detected faces is only slightly smaller, particularly when compared to standard greyscale

110

4.7 Applications for Disaster Response: SmartFace

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

500

1000

1500

2000

2500

ru
n
ti

m
e
 p

e
r

im
a
g
e
 (

m
s)

color
greyscale
SmartFace (greyscale)

(a) Runtime

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

500

1000

1500

2000

2500

d
e
te

ct
e
d
 f

a
ce

s

color
greyscale
SmartFace (greyscale)
number of labeled faces

(b) Detected faces

0 500 1000 1500 2000 2500 3000 3500 4000
width (number of pixel)

0

1

2

3

4

5

to
ta

l
ru

n
ti

m
e
 /

 d
e
te

ct
e
d
 f

a
ce

s

color
greyscale
SmartFace (greyscale)

(c) Runtime / faces

Figure 4.45: Overall benchmark

80% dlib

90% dlib

95% dlib

100% dlib

dlib tim
e max

optim
ize

d tim
e

optim
ize

d detection
0

500

1000

1500

2000

n
u
m

b
e
r

o
f

d
e
te

ct
e
d
 f

a
ce

s
a
n
d
 t

im
e
s

(m
s)

dlib faces
dlib runtime in ms

faces
runtime in ms

Figure 4.46: Best of all categories
dlib vs SmartFace

optim
ize

d tim
e (i7

)

optim
ize

d detection (i7
)

optim
ize

d tim
e (O

ne Plus 3
T)

optim
ize

d detection (O
ne Plus 3

T)

optim
ize

d tim
e (N

exus 7
)

optim
ize

d detection (N
exus 7

)
0

1000

2000

3000

4000

5000

6000

7000

8000

n
u
m

b
e
r

o
f

d
e
te

ct
e
d
 f

a
ce

s
a
n
d
 t

im
e
s

(m
s)

labeled facesruntime in ms
faces

Figure 4.47: Direct comparison of devices

(Fig. 4.45b) images resulting in the best overall score, as indicated by Figure 4.45c.
Figure 4.46 shows a comparison of the best parameter combinations. The two hori-

zontal lines are the baselines of dlib for runtime and number of detected faces without
preprocessing, respectively. With an increased number of detected faces (80-100%), the
runtime also increases for dlib with preprocessing. When reaching 100%, the runtime
is still slightly better than dlib without preprocessing. Giving dlib with preprocessing
the same amount of time as dlib without preprocessing results in a few more detected
faces. On the other hand, SmartFace (i.e., the red/blue bars denoted by optimized time
and optimized detection) is almost twice as fast as dlib with preprocessing, when limited
to the same number of detected faces. If SmartFace gets the same amount of time as dlib
with preprocessing, the number of detected faces increases significantly.

Device Performance

A comparison (see Fig. 4.47) of SmartFace running on all three devices shows that the
high-end OnePlus 3T is about 2-4 times slower than the i7 workstation. The slightly
outdated mid-range tablet Nexus 7 is about twice as slow as the OnePlus 3T. All three
devices yield about the same high face detection rate, but the runtimes range between
3 and 7 seconds for the mobile devices. For an emergency scenario with a DTN sharing
photos, these runtimes are sufficiently fast.

The individual performance of the three devices is shown in Fig. 4.48. Across all

111

4 Disruption-tolerant Device-to-Device Emergency Communication

dlib OpenCV optimized time optimized faces
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

n
u
m

b
e
r

o
f

d
e
te

ct
e
d
 f

a
ce

s
a
n
d
 t

im
e
s

(m
s)

labeled facesruntime in ms
correct detected faces
all detected faces

(a) Computer i7

dlib OpenCV optimized time optimized faces
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

n
u
m

b
e
r

o
f

d
e
te

ct
e
d
 f

a
ce

s
a
n
d
 t

im
e
s

(m
s)

labeled facesruntime in ms
correct detected faces
all detected faces

(b) OnePlus 3T

dlib OpenCV optimized time optimized faces
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

n
u
m

b
e
r

o
f

d
e
te

ct
e
d
 f

a
ce

s
a
n
d
 t

im
e
s

(m
s)

labeled facesruntime in ms
correct detected faces
all detected faces

(c) Nexus 7

Figure 4.48: Individual device performance

Table 4.19: Transmission times for various link types

100 Kb/s 2.1 Mb/s 54 Mb/s 150 Mb/s

2.8 GB 3,734 Min 177.78 Min 6.91 Min 2.49 Min
18 MB 24 Min 1.14 Min 0.044 Min 0.016 Min

devices, OpenCV is clearly the fastest algorithm, but with an unacceptably high false
positive rate. Figure 4.48a shows that depending on whether SmartFace is optimized
for time or detection rate, it clearly outperforms dlib. Even on the resource-constraint
mobile devices, the number of detected faces is increased.

Storage and Bandwidth Savings

The complete full image test set is about 2.8 GB in size. When applying SmartFace, this
leads to 18 MB of face images for the runtime-optimized variant and around 24 MB for
the quality-optimized variant. Thus, SmartFace reduces the data roughly by a factor of
133 to 0.75% of its original size. This indicates how much storage space and network
bandwidth can be saved when applying SmartFace prior to sharing data in a wireless
on-demand hop-to-hop emergency network.

For illustration, Table 4.19 shows the transmission times of sending either the full
2.8 GB or the reduced 18 MB data set over different wireless link types: (a) 100 Kb/s
(e.g., LoRaWAN), (b) 2.1 Mb/s (e.g., Bluetooth), (c) 54 Mb/s (e.g., WiFi 802.11g), (d)
150 Mb/s (e.g., WiFi 802.11n). Of course, the runtimes of SmartFace must be added to
the transmission time at the first node. Since for a single image they range from 665

ms on the i7 over 3.4 s on the OnePlus 3T up to 7.3 s on the Nexus 7, the runtimes for
whole image test set are roughly 16 min, 84 min and 180 min, respectively. Therefore,
there are different break-even points for the three devices. Fig. 4.49 shows that due
to its computational power, the i7 already pays off after 1-3 hops of transmissions for
most link types; only for fast WiFi it takes about 8 hops to pay off, which is a quite low
number in a scenario of DTN store-and-forward with epidemic routing. When looking
an the slowest links such as LoraWAN and Bluetooth transmitting 2.8 GB of data is not
realistic. Therefore, good compression or data reduction is a necessity. For both mobile
devices, the break-even point for the faster WiFi connections is 12 hops or higher. Since
these are hop-to-hop transmissions instead of classic TCP/IP connections and data will
eventually be passed to every participant in the area, quite high hop-counts are likely

112

4.7 Applications for Disaster Response: SmartFace

0 2 4 6 8 10 12 14 16
hops

0

100

200

300

400

500

ru
n
ti

m
e
 (

m
in

)

LoraWan full set
Bluetooth full set
WiFi (54Mb/s) full set
WiFi (150Mb/s) full set
LoraWan prev face detection
Bluetooth prev face detection
WiFi (54Mb/s) prev face detection
WiFi (150Mb/s) prev face detection

(a) i7

0 2 4 6 8 10 12 14 16
hops

0

100

200

300

400

500

ru
n
ti

m
e
 (

m
in

)

LoraWan full set
Bluetooth full set
WiFi (54Mb/s) full set
WiFi (150Mb/s) full set
LoraWan prev face detection
Bluetooth prev face detection
WiFi (54Mb/s) prev face detection
WiFi (150Mb/s) prev face detection

(b) OnePlus 3T

0 2 4 6 8 10 12 14 16
hops

0

100

200

300

400

500

ru
n
ti

m
e
 (

m
in

)

LoraWan full set
Bluetooth full set
WiFi (54Mb/s) full set
WiFi (150Mb/s) full set
LoraWan prev face detection
Bluetooth prev face detection
WiFi (54Mb/s) prev face detection
WiFi (150Mb/s) prev face detection

(c) Nexus 7

Figure 4.49: Comparison of transmission and optimization times on various devices.

in an emergency scenario. In reality, the impact of the runtimes on each mobile is much
less, since no mobile device would input 3 GB of data at once, but each device would
process its own images. A photo taken every now and then, processed directly and
then shared epidemically does not have much influence on a single mobile device, but
for the whole network, the consumed bandwidth and storage resources are influenced
in a significant manner, as stated above.

4.7.6 Conclusion

SmartFace is a novel approach to perform face detection on mobile devices in an efficient
manner for supporting the search for missing persons in wireless on-demand emergency
networks. The approach relies on a two-stage combination of existing face detection
algorithms, enhanced by region of interest selection, color space/depth reduction,
resolution scaling, face size definition, image scaling, image cropping, and bounding
box scaling. Experimental results have shown that the proposed approach improves
both the overall face detection rate and the overall runtime compared to each of the
individual face detection algorithms used alone, and also reduces the amount of data
that needs to be stored on disk and sent over the network.

There are several areas for future work, such as (a) exploring the use of visual
concept detection algorithms as filters to determine whether humans are present in
an image; the most computation-intensive parts of SmartFace can then be skipped if
no persons are present, (b) improving the runtimes of SmartFace on mobile devices by
utilizing multiple CPU cores or GPUs, (c) applying SmartFace to non-scenario specific
image sets (e.g., LFW or FDDB) for a general evaluation of our optimizations, and
(d) combining SmartFace’s offline face detection capabilities with a decentralized on-
device face recognition approach to find missing persons or family members by just
participating in a DTN and relaying data.

113

4 Disruption-tolerant Device-to-Device Emergency Communication

4.8 Applications for Disaster Response: UV4EC

4.8.1 Introduction

Rescue operations during and after disasters often expose rescue teams to high risks.
Therefore, more and more unmanned vehicles (UVs) are used on the ground, in the air
or in the water to support rescue operations. Typically, such UVs operate either in a
semi-autonomous manner or are completely controlled by remote human operators.
For example, in the ruins of Fukushima Daiichi remotely controlled robots were sent to
highly contaminated areas. Remote control requires a reliable communication infras-
tructure to coordinate UVs and to increase their operation radius significantly. However,
during the first hours of a disaster event, the existing communication infrastructure
might be severely damaged, disrupted or overloaded due to network congestion. Thus,
re-establishing basic ways of communication during a disaster despite fragmented IP
networks and totally or temporarily disrupted network links is a key step in successful
disaster management and rescue operations.

An emergency communication system should not only support UVs, but also human
rescuers and civilians who are still in the disaster area. Since connectivity cannot
be easily established in the entire affected area, it is more likely that small islands
of devices connected to each other will evolve, with limited bridges between these
islands. These islands can be formed by team members operating in the field, people
trapped in houses or waiting in temporary shelters, and clusters of cooperating UVs.
By using store-carry-forward technologies, humans or UVs can act as carrier pigeons
and deliver data between islands, thus spreading information in an epidemic fashion.
This approach can be used for person-to-person communication, in a way similar to
SMS and various messengers, or for sensor data such as images from smartphones or
temperature and Geiger counter readings from UVs that are shared with the public.
Gathering this information and processing it in the rescuers’ operations and control
center is helpful for situation analysis and coordination of rescue endeavors. In general,
long distance, real-time unicast communication is not possible in such a scenario.
The chances of establishing a successful multi-hop connection to a specific node are
increased by altering the objectives of UVs, such as drones, to incorporate air bridges
as part of their mission. In this case, a secure mesh routing algorithm is needed for
real-time communication in the emergency communication system.

Here, a novel emergency communication system that relies on delay-/disruption-
tolerant networking (DTN) for non-time critical tasks and direct mesh connections for
prioritized tasks that need real-time feedback is presented. It is used for the distribu-
tion of sensor data, human-to-human communication, as well as direct and indirect
control of unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV).
To demonstrate the real-world applicability of the developed emergency communica-
tion system, called UV4EC (Unmanned Vehicles for Emergency Communication), it is
runt on RoboCup Rescue proven [114] robots as well commodity mobile devices, and
various drones, and support our operations and control center software for disaster
management. Experimental results indicate that a combined DTN and mesh networking
approach is a good compromise for providing emergency communication based on
semi-automatic and remotely controlled autonomous UVs. In particular, the following
contributions are made:

114

4.8 Applications for Disaster Response: UV4EC

• A novel hybrid DTN and mesh networking communication middleware for
disaster scenarios.

• A novel approach to emergency communication where a semi-autonomous UGV
establishes UAV-based communication bridges between dynamically forming
communication islands of mobile devices.

• An operations and control center for commanders to get a more complete situation
overview of the disaster scenario and to control the rescue mission by sending
high-level commands to mobile rescuers or UVs.

Parts of this section have been published in [7].

4.8.2 Related Work

Several approaches that address emergency communications needs have been presented
in the literature [49]. Some of them require special hardware (e.g., radio-link technolo-
gies or satellites), are engineered for specific tasks, or are not usable on consumer-grade
hardware with commodity operating systems [50], [52], [53], [55], [60], [115]–[117]. Since
our focus is to enable as many people as possible to communicate in an emergency
network, our approach attempts to leverage commodity hardware and software, such
as WiFi-enabled mobile end-user devices, where possible.

Other research has shown that DTNs and mesh networks are viable solutions in
emergency scenarios [51], [56], [118], [119]. By leveraging ubiquitous mobile devices,
such as smartphones or tablets, novel communication solutions have been proposed [57],
[59], [120]–[122] and evaluated [123]. Since both DTNs and mesh networks have distinct
capabilities, we incorporate a dual networking stack in UV4EC, which uses mesh
networking for real-time communication and DTN for data sharing and messaging.

While the use of both UAV and UGV systems (and their combination) for search and
rescue applications has received considerable attention from the research community
[124], the combination of robots with both DTN and mesh networking has not been
studied extensively. However, based on the experiences with real-world deployments
[125], [126] and the associated communication difficulties, this appears to be a promising
direction of research. While mesh-based approaches have been used successfully with
UVs before [127], the body of research on the additional use of DTN with UVs is limited
to mainly theoretical results [128]–[130].

Collecting, analyzing, and visualizing emergency data at a central point (e.g., in
a control center) to provide a situation overview for rescuers is crucial in disaster
management [131]. However, many proposed control centers are stationary and rely
on centralized approaches, assuming Internet connectivity to exchange data or to
control UGVs [132]. Only a few control centers have been designed for mobile use and
decentralized communication [133], [134]. For instance, the SENEKA project presents an
adaptable and scalable ground control station integrated in a van for gathering sensor
data from stationary sensors, mobile ad hoc networks and mobile sensor platforms [134].
In addition to the data channel, it establishes a control channel to control UVs in the field.
Inspired by this work, here a lightweight offline control center is presented, running
on a customary laptop for mobile use and relying on mesh networking and DTN for
decentralized communication while providing a similar range of functions as state-of-
the-art approaches, namely data gathering, fusion and processing, providing visual

115

4 Disruption-tolerant Device-to-Device Emergency Communication

Figure 4.50: Emergency communication scenario

situation overviews, as well as realtime and delay-tolerant control of semi-autonomous
UAVs and UGVs.

4.8.3 UV4EC’s Design and Implementation

The design of UV4EC supports unmanned vehicles and professional responders as
well as civilians in the affected area. All communication links can be volatile and
connectivity is expected to be lost. Given an opportunity to exchange data, each peer
will communicate with all of its neighbors for maximum data distribution, as indicated
in 4.50.

Unmanned Ground Vehicles

The UGVs used in UV4EC employ ROS as a robotics middleware. ROS has become
the de-facto standard in the robotics community in recent years. Based on a modular
software design, components for different tasks like navigation and perception can be
exchanged and adjusted for use with different vehicle platforms. For UV4EC, we use a
tracked mobile robot based on the Taurob Tracker platform. To support multimodal
sensing in disaster environments, the robot is equipped with a comprehensive sensor
suite consisting of (among others) a spinning 3D LIDAR, a thermal camera, a 30x
optical zoom camera, and a depth camera. The camera sensors are mounted on a sensor
arm to provide flexibility in sensor positioning. The robot can perform autonomous
exploration of unknown environments, using a Simultaneous Localization and Mapping
(SLAM) approach to learn the environment and map and simultaneously localize objects
within the environment [135]. The robot operator can select between teleoperation or
autonomous operation at any time.

Unmanned Aerial Vehicles

Since the focus is on the communication aspects and to avoid the (administrative and
organizational) overhead of deploying real UAVs, multiple simulated UAVs based on
the Gazebo simulator are used. It allows us to simulate multiple UAVs with dynamics.
The UAVs establish communication bridges between UGVs and the operations and
command center (OCC) from time to time, i.e., the UAVs should position themselves
near specific prescribed locations between UGVs and the OCC to enable communica-
tion. The task of allocating and getting to these positions is solved cooperatively and
decentrally; necessary control inputs for each UAV are computed locally on board of
the UAVs by applying a feedback and optimization-based vehicle controller [136], [137].
This vehicle controller uses a mixed logical dynamical (MLD) approach to model the
multi-vehicle system [138] consisting of every UAV within the communication radius.

116

4.8 Applications for Disaster Response: UV4EC

Based on the MLD formulation, an optimal control problem is set up, in which the
number of and distance to unoccupied bridge locations is minimized subject to vehicle
dynamics, allocation logic and constraints regarding collision avoidance. This optimal
control problem is solved over a limited time horizon in a model predictive control
fashion so that a mixed integer linear program has to be solved in every time step. The
first elements of the resulting control input sequence are applied by each individual
UAV.

Emergency Communication

In disaster scenarios, a number of communication services and applications are required
to ensure effective disaster response. These applications include human-to-human
(message-based) communication, sensor data sharing for situational reporting, and also
“real-time” control channels for operating UGVs and UAVs from a remote location.
Unfortunately, during a disaster, the local communication infrastructure, such as cell
towers and Internet-connected WiFi hotspots that would normally be used to support
these applications, might be unavailable either due to poor coverage at the disaster site
or because it has been destroyed by the disaster.

Thus, the design decision to rely on decentralized ad-hoc communication technologies
to provide connectivity in such extreme environments. To enable a wide range of
applications with different communication requirements, a dual networking stack
consisting of (i) a mobile cloud based on delay/disruption-tolerant networking that can
be used for messaging and information sharing applications, and (ii) a highly adaptive
end-to-end communication protocol based on wireless multi-hop routing that quickly
finds and exploits communication bridges and can be used for control applications
with “real-time” feedback is employed. The two components are presented in detail
below.

Mobile Cloud

In a network consisting of many mobile and fast-moving nodes including UGVs and
UAVs, the contact times between two nodes are typically short. When communication
links are only available for short periods and in the near vicinity, classical multi-
hop routed network communication is hardly possible. As an alternative, store-carry-
forward based DTN has been proposed especially for challenged environments such as
space communication and emergency communication. In DTN, nodes are considered as
“data mules”: they carry their own messages as well as messages from others. When two
nodes meet, they exchange all messages they are carrying by replicating them. Using
this approach, messages are spread in an epidemic fashion throughout the network,
which increases the chances that a message eventually arrives at its destination. In DTN,
delivery performance highly depends on node mobility. This makes it attractive for a
disaster scenarios where mobile devices of civilians and professional disaster response
staff as well as UGVs and UAVs are present and physically move around. Due to its
best-effort service, DTN is suitable for applications such as text messaging, collecting
sensor data, and transmitting geo-location updates.

This research relies on the Serval Project74 to realize a DTN protocol for UV4EC.

74http://www.servalproject.org

117

http://www.servalproject.org

4 Disruption-tolerant Device-to-Device Emergency Communication

Serval provides basic messaging with built-in end-to-end encryption and a portable
C code base for further extensions. To verify the viability of Serval in our disaster
scenario, an in-depth performance analysis of the existing protocol and software was
conducted in Section 4.3. Based on the results, the protocol overhead was reduced by
dynamically adjusting the neighbor announcement interval (Sec. 4.4) and transparent
computation task offloading was implemented to preserve local resources (Sec. 4.5).
To allow the integration of Serval in UV4EC, pre- and post-receive message filters as
well as content hooks that are triggered when manipulating the data store75,76 were
developed. Furthermore, more advanced features such as append-only sensor logs and
file updates for rapid prototyping and deployment in the field are supported.77 For non-
mobile users, custom ways of interfacing with the Serval application are currently in
development, including a web interface78, standalone desktop application79, and a full-
screen console application80. The final system enables any WiFi-enabled UNIX-based
system, such as smartphones running Linux, Android, or MacOS, to communicate with
each other. This includes one-to-one encrypted text messaging and file transfers, and
publicly shared information such as images or position logs. It can easily be ported and
used by new specialized systems such as rescue robots, drones or static sensor nodes in
addition to the ones we are already using.

Communication Bridges

Certain applications, such as directly controlling a UGV or UAV, require real-time com-
munication. This cannot be realized using the mobile cloud, since it does not provide
delivery guarantees or feedback. Therefore, control messages might never or only very
lately reach their destinations, which would render UGV/UAV control unreliable. To
solve this problem, it is resorted to classical store-and-forward routing where messages
are forwarded from one node to the next node until it reaches its destination. If a
destination is not reachable, for example, because the network is partitioned or the
node has moved out of range, messages should be dropped: in this case, there is no
need to buffer packets, since one is not interested in late deliveries. However, the
system should be able to notify the user in a timely manner that communication was
unsuccessful or that an ongoing communication was interrupted.

For UV4EC, SEMUD[139] is used that provides an end-to-end communication proto-
col is employed. It supports on-demand route discovery and constantly adjusts its active
routing paths. This is important for a highly mobile network where topology changes
are frequent. In other words, SEMUD maintains a stable route while there is active
communication between two nodes, for example, between the operator’s device and a
UGV; and does not generate any traffic while end-to-end communication is inactive.
This is in contrast to classical proactive routing protocols for mesh networks such as
OLSR81. SEMUD achieves these goals by a combination of per-packet feedback, the
integration of routing with actual data transmission, the use of reliability as a distance

75https://github.com/umr-ds/serval-contentfilters
76https://github.com/umr-ds/serval-dna/tree/nicer-filters
77https://github.com/gh0st42/servalshellscripts
78https://github.com/umr-ds/serval-web
79https://github.com/gh0st42/ServalDesktopApp
80https://github.com/gh0st42/sdnatui
81https://tools.ietf.org/html/rfc7181

118

https://github.com/umr-ds/serval-contentfilters
https://github.com/umr-ds/serval-dna/tree/nicer-filters
https://github.com/gh0st42/servalshellscripts
https://github.com/umr-ds/serval-web
https://github.com/gh0st42/ServalDesktopApp
https://github.com/gh0st42/sdnatui
https://tools.ietf.org/html/rfc7181

4.8 Applications for Disaster Response: UV4EC

NICER OCC

UI component

Processing modules
Local lightweight database

Content-based

pub/sub system

N
et

w
o
rk

 m
an

ag
er

D
at

a
co

n
tr

o
ll

er

Figure 4.51: Architecture of NICER OCC

metric, and lightweight cryptographic mechanisms. These features allow SEMUD to be
highly adaptive to topology changes and resilient to a wide range of common attacks
on wireless routing protocols even in the case that a device is compromised or captured
by an adversary. Furthermore, a prototypical and portable C++ implementation of the
protocol is freely available82.

Operations and Control Center

To provide a more complete situation overview and coordinate rescue endeavors, a
user-friendly operations and control center (termed NICER OCC) was developed, that
is commonly located outside of the affected region. It comprises (1) data gathering,
fusion and processing, (2) visualization, and (3) coordination of mobile rescuers or semi-
autonomous unmanned vehicles (UVs) with specific focus on high-level commands,
namely exploring (e.g., mapping, taking photos) or performing critical tasks (e.g., closing
a valve). To show the applicability for the outlined disaster scenario, a proof-of-concept
prototype that relies on the previously described communication network and can run
on a customary laptop was implemented.

Data Gathering, Fusion and Processing The NICER OCC strives to collect a compre-
hensive picture about the situation and the interactions of mobile rescuers and UVs
in the field. Pursuing a loosely coupled and event-driven architecture (cf. Fig. 4.51),
the system or the data controller first gathers and fuses sensor data of multiple nodes
from the decentralized ad-hoc communication network; and second, (a) persistently
stores them in a local lightweight database for historical views, as well as (b) publishes
them to a content-based pub/sub system for push updates to the subscribed modules,
such as processing modules or the UI component. Subscribed processing modules can then
asynchronously analyze the data (e.g., image editing, object recognition) and publish
the results back to the pub/sub system, where other subscribers (e.g., the UI compo-
nent) can use them. The computational workload (i.e., processing modules) can also be

82https://seemoo.de/semud

119

https://seemoo.de/semud

4 Disruption-tolerant Device-to-Device Emergency Communication

(a) Situation overview
(outdoor map)

(b) Detailed view within a building
(indoor map)

Figure 4.52: UI component of NICER OCC

moved to the network by integrating in-network processing approaches [140], which is
especially designed for such infrastructure-less scenarios. In urban environments, the
system can also utilize upgraded home routers as DTN communication bridges and
computing nodes [141].

Visualization The UI component of the system provides a visual overview of the
situation by displaying the collected and processed sensor data (cf. Fig. 4.52). Modern
lightweight web technologies are used to accelerate UI development, to provide an
easy to learn and use application, as well as to easily distribute and port the system
(cross-platform compatibility) in infrastructure-less disaster scenarios.

Figure 4.52a shows the offline (outdoor) map, which is supposed to provide an entire
situation overview for the commanders. It displays and updates all units in the field
(e.g., UVs, mobile rescuers) who are at least equipped with communication technology
and location sensor, points of interest (POIs), and overlaid indoor maps. By clicking on
a unit, a detail view on the right side of the map appears, representing all relevant
collected information (e.g., health status) and possible high-level commands (e.g., take
a photo). The same is true for a POI, which geographically marks a situation that
the commanders may find interesting, e.g., detected victims or damages. Receiving
new data (e.g., status or location updates) by listening on the pub/sub system, the
UI component only updates the visual representation of the referenced unit or object
without refreshing the whole map.

To provide a more detailed view for inaccessible buildings (e.g., a nuclear reactor)
to the commanders, the NICER OCC can display and update indoor maps created via
laser scanning by on-site UGVs (cf. Fig. 4.52b). The indoor map view is based on the
user interface of the outdoor map to apply same interaction concepts.

Coordination The NICER OCC also enables commanders to coordinate the units in
the field by sending high-level commands. Two types of commands to control semi-
autonomous UAVs and UGVs are defined, namely (i) exploring (e.g., mapping, taking
photos), and (ii) performing critical tasks (e.g., closing a valve; handing special equipment,
emergency rations or medical kits over to injured people). Internally, these commands
are encoded and sent via messages over the available network. For a high-priority
command or a direct control of an UV, the NICER OCC can easily request a so-called
communication bridge from the units in the field (cf. Section 4.8.3). The NICER OCC

120

4.8 Applications for Disaster Response: UV4EC

Figure 4.53: Hector Tracker robot operating in a simulated disaster scenario.

can also be extended by integrating civilians who use our mobile application for
smartphones (cf. [142]).

4.8.4 Experimental Evaluation

UV4EC is evaluated by performing real-world tests (4.8.4) and performing comprehen-
sive simulation and emulation of various nodes in realistic setups (4.8.4) based on the
generated data.

Real World Setup

To provide a test scenario that can be transferred to real applications, real-world disaster
scenarios is emulated by relying on well-established approaches for evaluating disaster
response robots. This includes NIST standard test methods [143] that are used in the
RoboCup Rescue competition. They are designed to provide reproducible test setups
representative for the challenges encountered in real disasters. Figure 4.53 shows and
image of the robot operating in the scenario.

To simulate the use of a robot for victim search in a disaster scenario, multiple
persons are placed in a simulated disaster zone, simulating trapped victims. The Hector
Tracker vehicle is then used to explore the environment and search for victims. The
robot can be controlled by teleoperation or can operate fully autonomously, and the
used control paradigm can be changed at any time. Using onboard sensors, it generates
a map of the environment including geometric (point cloud) data and found victims or
objects of interest.

Communication requirements for robot operation depend on the operation mode. For
fully autonomous control, neither up- or downlinks are required, but often desirable to
monitor the vehicle. For pure teleoperation, connectivity between robot and operator

121

4 Disruption-tolerant Device-to-Device Emergency Communication

(a) RGB Image (b) Thermal Image

Figure 4.54: Robot sensor data for a ”victim found” event

station must be established. The downlink (robot to operator) direction then requires
the transmission of low latency image data.

Independent of the operation mode, the robot’s mission state needs to be commu-
nicated as the main deliverable for responders. It mainly consists of robot pose, 3D
environment map as well as event-based tracking of objects of interest, such as finding
a trapped victim. Since all related computation tasks take place onboard the robot, all
mission state related information can be communicated in a delay-tolerant manner.
This motivates the use of image data for evaluating communication performance in
Section 4.8.4. Figure 4.54 shows example camera imagery that is associated with a
”victim found” event onboard the robot when a victim has been automatically detected.

Lab Test Environment

To get a basic understanding of the performance of UV4EC, several experiments in
a controlled simulated and emulated environment derived from scenarios faced in
Section 4.8.4 were performed. The following results can be directly transferred to real
world deployments, due to the focus on emulation of systems instead of simulated
algorithms.

Test Environment All tests were performed on an i7-4771 CPU @ 3.50GHz, supporting
8 threads, with 32 GB of RAM. The nodes were simulated using a combination of the
Common Open Research Emulator (CORE)83, Gazebo84 robot simulator and ROS85. The
system was designed with a static operations and command center node center1, a robot
slowly moving in one direction until it gets stuck at a building entrance robot1 and three
highly mobile drones drone1-3 with various objectives. These drones either have fixed
points of interest for their mission or circle around specific positions. Furthermore, they
periodically seek contact to center1, and robot1. The setup is shown in Figure 4.55 where
an accident in the chemistry building of the university of Marburg is simulated. In the

83https://www.nrl.navy.mil/itd/ncs/products/core
84http://gazebosim.org/
85http://www.ros.org/

122

https://www.nrl.navy.mil/itd/ncs/products/core
http://gazebosim.org/
http://www.ros.org/

4.8 Applications for Disaster Response: UV4EC

Figure 4.55: Simulation setup with three drones, one ground robot and a command center operating on
our university campus

simulations, the area covered by all involved entities is about 250.000 m2. Each node has
a 802.11g WiFi interface in ad-hoc mode for direct mesh communication. Therefore, the
bandwidth cannot exceed 54 Mbit/s and has a maximum simulated range of 80 meters.
Each experiment was repeated 10 times and ran for about 260 seconds.

Communication Opportunities For delay-tolerant communication, it is important
how often peers get a chance to exchange their data with others. In the simulation,
it was determined, using one second intervals, how many peers are currently in
communication range.

Overall, there were over 800 total contact opportunities in the entire simulation across
all nodes. The individual number of contacts per node is shown in Figure 4.56. The
number of opportunities over the runtime per node is depicted in Figure 4.57. It shows
that within this area of action and without any specific targets for the autonomous
drones regarding communication, there are plenty of opportunities to exchange data,
even though the mobile drones have more opportunities than the rather static or remote
nodes, such as center1 and robot1.

Delivery Times Knowing that many opportunities exist for data exchange in this
scenario, one must still determine how fast responses to individual commands can be
expected in such circumstances.

Two different tests were performed to analyze the delivery times. The first test
injects image data at robot1 and measures how long it takes for this data to arrive in

123

4 Disruption-tolerant Device-to-Device Emergency Communication

robot1 drone1 drone2 drone3 center1 total
Node

0

100

200

300

400

500

600

700

800

O
p
p
o
rt

u
n
it

ie
s

robot1
drone1
drone2
drone3
center1
total

Figure 4.56: Opportunities for
data exchange

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

6

7

O
p
p
o
rt

u
n
it

ie
s

robot1
drone1
drone2
drone3
center1
total

Figure 4.57: Opportunities for data
exchange over time

img0 img1 img2 img3 img4 img5 avg
Image

0

20

40

60

80

100

120

140

T
ra

n
sm

is
si

o
n
 T

im
e
 [

s]

Figure 4.58: File distribution times

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Message

0

10

20

30

40

50

T
im

e
 [

s]

total avg
drone1
drone2
drone3
avg

Figure 4.59: Message distribution times

the operations and control center (center1). In the second test, center1 wants a direct
connection to robot1 and therefore sends the commands for an air-bridge to all three
drones. It is measured how long it takes for all drones to receive the command. Both
experiments were repeated with different starting times and therefore different geo-
spatial distributions of nodes.

File distribution depends on the file size. In the experiments, 1080p images were
sent as they are recorded by the physical robot. The transmission times are shown in
Figure 4.58. Average file transmission time is about 60 seconds with the worst time of
about 155 seconds. Without this image transmission, the average time goes down to
about 46 seconds. This can be explained with bad timing, no peers in range or moving
out of range during transmission, and Serval needing some time to recover from failed
transmissions. The transmission always needs at least 2-3 hops to travel from robot1 to
center1, considering that the area of action covered by an average transmission time of
60 seconds is more than acceptable.

When it comes to message delivery to the drones, the picture is similar. If messages
are sent faster than they can be delivered, they are transmitted together, arriving at
the same time even although they have been sent at different points in time. The
arrival times are shown in Figure 4.59. Since text messages are much smaller than
images, the chances of a successful transmission even with only short contact periods
is much higher, resulting in an average transmission time of about 9 seconds in this

124

4.8 Applications for Disaster Response: UV4EC

P
a

c
k
e

t
R

a
te

 a
t

D
e

s
ti
n

a
ti
o

n

Time [s]

SEMUD OLSR

0

100

200

300

400

500

600

0 5 10 15 20 25 30

B
ri
d

g
e

 I
n

a
c
ti
v
e

Bridge Active

Figure 4.60: Reaction to a newly established communication bridge of SEMUD and OLSR

scenario. Considering the worst delivery rates recorded in the experiments, a message
still reaches its destination in under one minute. Thus, even with the rather low number
of participants in the simulation, direct control can be triggered within a quite short
period of time.

All these numbers are highly scenario specific, and by having humans with network
devices also in the affected area, even better delivery rates can be achieved. Having
the drones programmed with multiple objectives, one seeking opportunities for data
exchange, gives a powerful tool to dynamically adapt to the environment and the tasks
at hand.

Connection Establishment The responsiveness of the communication system to newly
established communication bridges, i. e., when drones have moved into positions to
allow a multi-hop connection from the control center to a robot, was also evaluated.
For the experiment, center1 generates UDP/IP traffic to robot1 using the iPerf86 tool.
The incoming packets are recorded at robot1 over time using tcpdump and their arrival
times can be seen plotted in Figure 4.60. The figure also marks the point in time when
the drones have aligned and the communication bridge has been established.

One can see that SEMUD almost instantaneously is able to deliver messages to the
destination after the communication bridge has become active. This is due to SEMUD’s
design of integrated route discovery and data transmission: there is no explicit protocol
that needs to be run prior to actual data transmission, but data is piggybacked to every
message that is sent, which keeps delay at a minimum. In addition, SEMUD essentially
follows a trial-and-error approach: every message is flooded through the network until
feedback from the destination is received, in which case SEMUD switches to unicast
transmissions to reduce network load. In contrast, OLSR is significantly slower in
exploiting the communication bridge: it needs approximately 17 seconds to find a path.
This is due to the fixed interval at which OLSR exchanges routing information. Note
that this additional delay is not a one-time cost, but has be paid whenever the topology
changes. This is especially problematic when long-term continuous control of a moving
robot is required and more drones are added to maintain the bridge.

86https://iperf.fr

125

https://iperf.fr

4 Disruption-tolerant Device-to-Device Emergency Communication

Message Processing Besides the delivery time of messages through the network, it
is also important that the system has low message processing times at the network
devices to ensure fast responses. Therefore, the NICER OCC is evaluated by system
performance tests with respect to the entire message life-cycle between the network
and the UI, i.e., from the arrival of the message at the OCC through to the visualization
of the contained sensor data in the UI or on the map, so that the commanders can
perceive them.

Both directions of message processing are considered, (a) reading sensor data from
the network (including deserialization) and updating the UI, as well as (b) sending com-
mands from the UI to the network (including serialization). As performance measures,
latency and throughput are used. Latency is the time required to process one message.
Throughput is the number of such messages processed per unit of time. It is important
to note that one message can contain multiple sensor data such as location updates.
However, to analyze the different message types and make the tests comparable, the
number of sensor data or commands is limited to one per message for the lab test.

Table 4.20: Performance test of OCC w.r.t message processing

Message type Latency [ms] Throughput [1/s]

Sensor data (location) 26.1± 1.3 53.8± 4.0
Sensor data (image) 76.6± 2.5 12.5± 0.5
Commands 69.1± 1.8 19.6± 0.3

Table 4.20 shows the results of the performance tests. One can observe that messages
with different kinds of sensor data are processed differently: a message with location
data needs about 26 ms to be processed in the OCC while messages with image content
need roughly three times more (∼76 ms). This is also reflected in the throughput
measurements. Considering the other direction, commands can be sent in about 70 ms
from the UI to the network, which is more than sufficient to be able to smoothly control
the rescue mission.

All in all, the message processing of the operations and control center is negligible
compared to the delivery times of the messages through the network. Thus, there is
no lack of performance for the OCC; quite the contrary, the OCC supports situation
overviews with high-frequency updates in the magnitude of the human eye or screen
refresh rate.

4.8.5 Conclusion

In this section, UV4EC was presented, a novel emergency communication system
involving unmanned vehicles. By combining a DTN-based mobile cloud infrastructure
for non-time-critical tasks with reactive mesh routing for real-time interaction, novel
ways of operating UGVs and UAVs are provided that also support humans in the
affected area. UGVs and UAVs are used to bridge communication gaps that otherwise
would significantly reduce their radius of operation. Also a lightweight operations
and control center that complements UV4EC to provide all relevant functionalities
(i.e., data gathering and processing, providing visual situation overviews, and sending
high-level commands) to commanders for coordinating rescue missions was developed.

126

4.8 Applications for Disaster Response: UV4EC

Furthermore, the viability of the approach by experimental evaluation and real world
deployment was demonstrated.

There are several areas of future work. For example, additional work should be
invested in developing further DTN-aware control mechanisms for various robot
operations. Furthermore, the coordination of the UAVs can be fine tuned and optimized
for specific scenarios. Depending on the tasks at hand, data prioritization should
be considered at the UAV/UGV, DTN and/or routing levels for improved network
performance. Finally, for low-priority tasks (e.g., analyzing local sensor data), it is
planned to move the computational workload from the control center to the network,
i.e., the data should already be analyzed by the nodes in the network.

127

4 Disruption-tolerant Device-to-Device Emergency Communication

4.9 SEDCOS - Secure Disaster Communication

4.9.1 Introduction

Communication technologies are integral to disaster relief operations. The solutions pre-
sented in the previous sections leverage the ad hoc and disruption-tolerant networking
(DTN) capabilities of mobile devices to create opportunistic communication networks.
In DTNs, all devices store, carry, and forward data to form a dynamic, infrastructure-
less, and self-organized network. Coverage is increased by adding more devices to the
network. In particular, the approach can be applied to mobile commodity devices, such
as smartphones, tablets, and laptops, which are ubiquitous and provide diverse ad
hoc communication capabilities (e. g., Wi-Fi and Bluetooth). In this way, people can
continue using their personal devices to request or offer aid, obtain information from
emergency services, or contact relatives and friends.

However, such opportunistic networks are susceptible to a wide range of security at-
tacks due to their wireless, cooperative, decentralized, and resource-constrained nature.
For instance, during wars or terror attacks, adversaries may subvert the communication
system to disrupt disaster relief operations by injecting false information or performing
denial-of-service (DoS) attacks. Furthermore, panicked people may spam the network
with messages, unintentionally jeopardize availability.

Thus, a practical emergency communication system must ensure confidentiality,
authenticity, integrity, and availability, but these properties are difficult to achieve
during adverse events. Existing proposals either lack disaster functionality or provide
an insufficient level of security [144]–[147]. High data availability and reliability are
crucial for emergency notifications and distress signals. Prior work has improved
reliability, but has not assessed secure prioritization mechanisms that work reliably
under attack.

In this section, SEDCOS, a secure device-to-device communication system for disaster
scenarios, is presented. The main contributions are:

• a secure communication substrate with message prioritization and a management
scheme that delivers messages reliably and is resilient against flooding DoS
attacks, and

• large-scale network simulations showing SEDCOS’s effectiveness in maintaining
high delivery rates under attack and revoking user certificates in the field.

Parts of this section have been published in [8].

4.9.2 Related Work

Typical security targets in opportunistic networks are authentication and integrity of
messages [148], secure routing [149], and confidential as well as anonymous end-to-end
communication [150]. Identity-based Cryptography (IBC) is a frequently suggested
solution, since traditional public key cryptography is often regarded as unsuitable
for opportunistic networks due to the need of accessing public keys, certificates, and
revocation information from central online servers [151]. To eliminate central author-
ities, fully decentralized trust-based concepts [152], [153], or approaches based on
threshold-cryptography [154] have been proposed. However, existing works do not
address the unique challenges of disaster relief communication, such as a high delivery

128

4.9 SEDCOS - Secure Disaster Communication

rate (emergency messages), immobility of individual users (trapped victims), role-based
authentication, or insider attackers. Denial-of-service attacks on unauthenticated DTNs
have been evaluated, but contrary to previous findings [149], we show that authentica-
tion is essential for reliable operation. Other works have attempted to hinder flooding
attacks by setting explicit rate limits and trying to detect misbehaving nodes using a
complex distributed detection mechanism [155].

4.9.3 System Model

Store, Carry, and Forward

Instead of relying on infrastructure, DTN-enabled devices exchange messages directly
using WiFi and Bluetooth. DTNs exploit user mobility to increase coverage: devices act
as “data mules” that store their messages as well as messages from other users, carry
them, and finally forward them to the destination upon contact. This way, messages
propagate in an epidemic manner from device to device until they reach their destina-
tions. DTN performance is typically worse than that of infrastructure networks but is
preferable to no communication at all. Nevertheless, devices with Internet connectivity
(cellular or WiFi access points) can opportunistically act as “wormholes” used for rapid
message distribution to isolated parts of the network.

Communication Model

Communication in an emergency scenario is either one-to-one (contact with friends or
family), many-to-many (within task forces or departments), or one-to-many (emergency
notification broadcasts). Due to the inherent delay of DTN-based communication, only
small messages, such as text and prioritized distress messages (including additional
information, such as GPS location of the sender), serving a similar purpose as the
classic “112” emergency call, are allowed in SEDCOS. Compared to rich media (images,
voice, video), information in text messages is more compact, thus, uses the limited
resources of DTNs more efficiently.

Adversary Model

An adversary Adv is considered who can mount network attacks and compromise
network entities. Specifically, Adv can eavesdrop, manipulate, forge, or drop messages.
Furthermore, Adv can assume a limited number of entities, either by compromising or
stealing devices or by registering multiple times in our system. Unlike the classic Dolev–
Yao adversary model, Adv controls only a part of the communication channel and a
portion of all network entities. Moreover, Adv cannot break cryptographic primitives or
tamper with the root authority (see 4.9.4).

4.9.4 Secure Key Management

Establishing trust is important to satisfy the security requirements. For this purpose, a
centralized trust model using a Public Key Infrastructure (PKI) is employed, as shown
in 4.61. The PKI consists of multiple hierarchically organized certificate authorities
(CAs), whose root is a dedicated authority named root authority (RA). The RA serves
as a trust anchor, maintains the emergency communication software, and distributes

129

4 Disruption-tolerant Device-to-Device Emergency Communication

unprivileged users with seperate authorization level ()

Emergency
Communication
Software

High Authorization Level Low Authorization Level

District
Authority 1

District
Authority 2 Team

Leader

Firefighter

Predefined User Group:
Fire Service

Fire Service
Headquarter

Authority

negotiate
terms

issue
certificate

Ambulance
Headquarter

Authority

Root
Authority

(RA)

Citizen
Authority

National
Authority A

National
Authority B

issue
identity

certificate

Identity
Certificate
Network Identifier:
 0x12345689
Affiliation:
 Fire Service
Authority:
 District Authority 2
Role:
 Team Leader
Authorization Level:
 2 ()

revoke
certificate

revoke
certificate

during
crisis

revoke
certificate

before crisis

negotiate
terms

Figure 4.61: Illustration of our secure key management. The authorization level decreases from left to
right, except for citizens.

the software if infrastructure access is still available. In an initialization phase, before
the actual crisis, the RA establishes relationships to organizations or governments
that want to participate as authorities in the emergency communication system. All
authorities initially undergo a rigorous audit by the RA, since their authenticity and
trustworthiness are crucial to the overall security. As part of the audit process, RA and
authority agree on user roles as well as preconfigured user groups that the authority
introduces to the network. For instance, in 4.61, the fire service organization added the
user roles team leader and firefighter, and arranged a preconfigured user group fire service,
so users can particularly address all firefighters when sending a message. Authorities
manage their own PKI and, hence, maintain one or multiple, potentially hierarchically
organized, CAs. The CAs’ public keys are embedded in the emergency communication
software. After this step, authorities can issue identity certificates. Furthermore, the
overall PKI contains at least one authority that issues identity certificates to unprivileged
users, i.e., citizens. In 4.61, the fire service maintains several hierarchically organized
authorities. On the lowest hierarchical CA level, CAs issue identity certificates to staff
members.

Identity certificates bind the public signing keys of users, which function as their
unique network identifiers (see 4.9.5), to user properties. A vital user property is the
user role, since it is important to assess the content of messages. For instance, citizens
consider medical information more reliable if they originate from physicians rather
than firefighters. Another essential property is the authorization level that indicates
the permission level and trustworthiness of a user. 4.61 shows the identity certificate
of a firefighter team leader, and depicts the authorization level of entities by their
x-coordinate as well as stars in the certificate. In order to obtain an identity certificate,
users must register with the CA and provide a proof of identity, e.g., using their
identification card, phone number, or address. The identity proof is vital to hamper
multi-registrations, where a single user obtains multiple identity certificates.

Since an adversary may obtain identity certificates, compromise user devices, or
even infiltrate authorities, it is important that certificates can be revoked. SEDCOS
implements certificate revocations via certificate revocation lists (CRLs) that are broad-
casted with high priority in the network. It is distinguished between two different
entities: authorities and users. An authority A can revoke an entity E if A has a higher
authorization level than E , and there is a certificate chain (i.e., a chain of trust) between
A and E . Upon the revocation of an authority, all certificates that the authority issued
in the past and will issue in the future are regarded as invalid, withdrawing its power.

130

4.9 SEDCOS - Secure Disaster Communication

In case a user identity certificate is revoked, the respective user becomes an uncertified
and unprivileged user, hence, loses its user role, authorization level, and any message
transmission privileges (see 4.9.5).

4.9.5 Resilient Communication

In this subsection, first an overview of the communication protocol is given and then
the design of the DoS-resistant buffer management is given.

Protocol Overview

A short overview of the used message protocol is given in the following.

Message Format and Types All SEDCOS messages have the same format and include
the following fields: message type, sender and receiver addresses, creation time and
lifetime (together yielding the time-to-live (TTL)), sender signature, and the optionally
encrypted payload. It is emphasized that all header fields are immutable, that is, they are
not changed in transit, thus, allowing the signature to protect the entire message. The
message type can be:

• Certificate Revocation Lists;
• Network control with subtypes for acknowledgments and the device-to-device

message exchange handshake;
• Content sent by users.

Acknowledgments are sent by the destination upon reception of a message.

Message Authenticity and Confidentiality Each user possesses a unique Elliptic
Curve Digital Signature (ECDSA) signature key pair. The public part of the key serves
as a unique addressable network identifier. Each outgoing message is signed using
this key and can optionally be augmented with the identity certificate. Devices verify
messages at each hop by checking the message signature and, if available, the sender’s
identity certificate; and discard them if any check fails. Hence, corrupted messages do
not propagate in the network. To achieve data confidentiality, each user generates its
own Elliptic Curve Integrated Encryption Scheme (ECIES) encryption key pair during
initialization. Consequently, sending or receiving confidential messages requires the
message payload to be encrypted with the public or decrypted with the private ECIES
key of the receiving user.

Message Storage Each device reserves persistent memory for storing its own as
well as others’ messages. This memory space is referred to as the buffer. Its capacity C
depends on the device capabilities and can be adjusted by the user. Efficiently managing
the buffer is crucial for delivery reliability, as shown in 4.9.6.

Message Exchange When two devices discover each other via Bluetooth or Wi-Fi
beacon frames, they connect to exchange messages. Currently epidemic dissemination
is used, i.e., nodes try to exchange all carried messages. This introduces redundancy
in the network, which helps when single nodes “disappear” (low battery or mobility).

131

4 Disruption-tolerant Device-to-Device Emergency Communication

Algorithm 1 Source-based Elastic Bucket Insertion
Require: msg, buckets, C
1: s← source of msg
2: if not buckets contains bucket for s then
3: insert new empty bucket for msg in buckets;
4: end if
5: Bs ← bucket from buckets for s;
6: insert msg into Bs;
7: while occupancy of buckets exceeds C do
8: B̂← bucket from buckets with the highest occupancy;
9: remove message with the lowest rank from B̂;

10: if B̂ is empty then
11: remove B̂ from buckets;
12: end if
13: end while

However, due to limited buffer capacity and possibly short contact times (i. e., two
cars passing each other), not all messages might be exchanged. Thus, messages are
exchanged in the following order:

• messages destined for B,
• messages from privileged users (authorities),
• all other messages.

Source-based Elastic Buckets

Proper buffer management is essential to prevent resource starvation attacks such
as flooding. Malicious nodes can easily exploit trivial implementations such as FIFO
queues containing all messages to replace valid messages with bogus ones [156]. To
counter such attacks, a novel buffer management strategy called Source-based Elastic
Buckets (SEB) is employed that, by design, prevents valid messages from being purged
during flooding attacks. The basic idea is that all messages from a source s are placed
in an isolated bucket B such that messages from different sources cannot influence
one another. SEB is fair in the sense that each bucket has a guaranteed capacity of
CB = ⌊C/n⌋ where n is the number of currently allocated buckets (= number of source
nodes currently carry messages from). The occupancy of a single source bucket OB is
subject to OB ∈ [0, C] and ∑s OB ≤ C. If s does not exhaust its guaranteed capacity
(OB < CB) because it has not sent “enough” messages, free capacity (CB − OB) is
shared by other buckets requiring it. However, when s sends a message at a later
point, overdrawn buckets (OB > CB) are emptied first. These elastic quotas allow full
exploitation of local buffer capacities while maintaining strict message separation of
different source nodes. Algorithm 1 shows SEB’s message insertion procedure: the
underlying idea is that SEB inserts new messages in the appropriate (source) bucket
and then drops messages from the highest occupant bucket until the total occupancy
meets C. Note that a node will always try to make space for its messages by dropping
its messages last. This is to ensure that there is at least one copy of every message in
the network. However, if a device injects too many new messages (exceeding C), its
buffer overflows, and SEB eventually has to drop own messages. Within each bucket,
SEB prioritizes:

132

4.9 SEDCOS - Secure Disaster Communication

• security control messages (revocation certificates),
• network control messages (acknowledgments), and
• messages with the longest remaining TTL.

SEB’s robustness relies on the fact that messages are source-authenticated and on
the relatively high costs of acquiring new identities in the system. Without the latter
costs, an attacker could assume multiple identities, flood the network with messages
and, thus, hijack a disproportional amount of buffer capacity.

4.9.6 Experimental Evaluation

In this subsection, the impact of flooding attacks by several privileged devices (due to
theft or compromise), and their eventual revocation from the system is evaluated.

Scenario

Three different user classes are considered with a total of 1000 nodes: 850 citizens, 100

authorities, and 50 attackers. Within each group, there are 5 % cars (10–50 km/h), all oth-
ers move at walking speed (1.8–4.5 km/h). Citizens can transmit low-priority messages,
while authorities sent with high priority (interval: 15–25 s). SEB is compared to a classic
FIFO queue, both using epidemic routing. The buffer capacity C is 5 MB. The ONE
simulator v1.6.0 [157] as well as the default Helsinki map for the experiments is used
and the results are averaged over ten differently-seeded runs. Bluetooth communication
with 2 Mbit/s and a range of 10 m is assumed.

Flooding Attack and Revocation

No Attack Attack RevocationD
e

liv
e

ry
 P

ro
b

a
b

ili
ty

Time [h]

SEB-low
SEB-high
FIFO-low

FIFO-high

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 TC 4 5 6 7 8 TR 10 11 12

(a) Delivery rate of valid mes-
sages over time.

B
u

ff
e

r
O

c
c
u

p
a

n
c
y

Time [h]

bogus
high
low

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 TC 4 5 6 7 8 TR 10 11 12

(b) Buffer occupancy with
FIFO

B
u

ff
e

r
O

c
c
u

p
a

n
c
y

Time [h]

bogus
high
low

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 TC 4 5 6 7 8 TR 10 11 12

(c) Buffer occupancy with SEB

Figure 4.62: Flooding attack and revocation.
The attack starts at TC = 3 h and the revocation certificate is issued at TR = 9 h.

The impact of an attacker being able to compromise privileged devices is evaluated.
In this case, the attacker is able to inject bogus high-priority messages into the network,
thus, increasing their chances to remain in the nodes’ buffers for a long time. In this
experiment, two events occur: at TC = 3 h, the attackers start the flooding attack
using compromised devices; and after a reaction time of 6 h at TR = 9 h, an authority
issues and injects the revocation certificate into the network. When a node receives
the revocation certificate, it drops all messages it carries from the revoked nodes and
blacklists future messages by those nodes. Attackers ignore revocation certificates.

133

4 Disruption-tolerant Device-to-Device Emergency Communication

Before the attack Figure 4.62a shows the delivered benign messages (low and high)
over time. In the beginning, SEB quickly starts to successfully deliver most messages.
FIFO follows the same start-up behavior but is not able to keep up from the 30 minutes
mark. After 30 minutes, buffers are filled up (Fig. 4.62b) and the lack of proper buffer
management leads to poor delivery performance.

During the attack At the start of the attack, SEB’s delivery probability remains almost
unaffected by the flooding attack even though buffers quickly fill up to 70 % with bogus
messages (Fig. 4.62c). The decrease in delivery probability is only about 10 % (Fig. 4.62a)
demonstrating the effectiveness of the source-based elastic buckets: they assure that
bogus messages cannot overtake the entire buffer capacity. FIFO reacts less visibly to
the attack since the delivery probability is already low at TC (4.62a). Yet, the impact is
apparent in 4.62b where bogus messages steadily take up more buffer capacity, leading
to continuously decreasing delivery probability.

Aftermath FIFO does not recover from the attack after TR, since only a few nodes
receive the revocation certificate due to the lack of a prioritization mechanism. With
SEB, the revocation certificate propagates quickly throughout the network: half of the
nodes are informed within 12 minutes while full network penetration is reached in less
than one hour. The drop of bogus message buffer occupancy shortly after TR indicates
the revocation certificate’s effect (4.62c). As the certificate propagates in the network,
buffer occupancy restores to a state similar to t < TC. Nevertheless, a small fraction of
bogus messages remains in the network since attackers ignore the revocation certificate
and keep their messages in their buffers.

4.9.7 Conclusion

A secure and reliable communication system is essential for effective disaster response.
SEDCOS, a system that enables secure and reliable disruption-tolerant emergency
communication on commodity mobile devices, was presented. It is the first secure
emergency communication system that enables the exclusion of adversaries while
providing authentic and confidential group communication. Under DoS attacks, SED-
COS increases the message delivery rate by a factor of 6 compared to a contemporary
DTN protocol. Finally, SEDCOS provides a timely revocation (less than one hour) for
withdrawing any power of an insider adversary.

While the solutions described in this section proved to be effective, they have only
been evaluated in a simulator. In the future, integration into a real DTN middleware,
as used in the previous sections, would be a valuable task. Furthermore, different ways
of attestation, local and remote, for handing out identity certificates during a disaster
should be investigated.

134

4.10 Summary

4.10 Summary

In Section 4.2, MiniWorld was presented, a novel distributed network emulator. It is
based on full virtualization using QEMU/KVM, offers three network backends for
emulating both wired and wireless communication, and provides several mobility
patterns as well as distance-based link quality models. A snapshot boot mode is
offered for accelerated booting of identical environments and repeating emulation
runs. To decrease runtimes, MiniWorld supports distributed emulation across multiple
computers, based on a resource-aware virtual machine (VM) scheduler. Experimental
results demonstrate the performance of MiniWorld with respect to VM boot times,
network bandwidth, round trip times, and topology switching times.

An in-depth experimental evaluation of Serval for various network setups and usage
patterns, including simulated long term use was performed in Section 4.3. The focus
of the evaluation was on the delay-tolerant aspects of Serval, providing insights into
the scenarios where Serval can be deployed with satisfactory quality and performance
characteristics. Furthermore, since mobile phones have a limited battery capacity, a
closer look is taken at the battery drain resulting from using Serval over different
communication links, such as WiFi and Bluetooth. Despite minor shortcomings, it
was shown that Serval is a flexible foundation for data and message dissemination in
various environments.

Several approaches to realize dynamic announcement intervals that facilitate fast
reception from at least one other node while trying to keep the overall communication
overhead as low as possible were developed in Section 4.4. Experimental results in
terms of performance properties and energy consumption were presented to illustrate
the benefits of dynamic announcement intervals in wireless on-demand networks.

In Section 4.5, DTN-RPC, a new approach to provide RPCs for DTN environments,
was presented. DTN-RPC relies on (a) control and data channels to cope with potentially
short contact durations in DTN where large amounts of data cannot be transmitted, (b)
explicit and implicit modes to address remote servers, (c) Non-DTN and DTN transport
protocols for issuing calls and receiving results, and (d) predicates that servers check to
decide whether a procedure should be executed. The implementation of DTN-RPC is
based on Serval. The experimental results indicate that the measured CPU and network
overheads for DTN-RPC are reasonably low so that it can be executed on smartphones
or routers, and that the round-trip times and the number of successful RPCs are highly
satisfactory in dynamic networks with unstable links.

In Section 4.6 a novel, low-cost yet flexible and powerful hardware/software platform
for sensing, computation, and infrastructureless wireless communication was presented.
Since energy consumption is a key issue for autonomous operation, the power re-
quirements of various computing platforms, sensors and radio link technologies were
investigated. Furthermore, several license-free radios (WiFi, Bluetooth, LoRa 433 MHz
and 868 Mhz) were experimentally evaluated regarding their real-world communication
ranges. To avoid wasting precious communication resources, machine learning and
image-based concept detection was applied on-device to remove irrelevant data prior
to sending. Neural compute sticks were also evaluated to improve performance and
optimize their energy consumption in this specific scenario. The proposed hardware/
software platform consists of small, low-power sensor nodes based on microcontrollers,
larger single board computer relay nodes that can also preprocess data, and Bluetooth

135

4 Disruption-tolerant Device-to-Device Emergency Communication

Low Energy enabled smartphone add-ons to give mobile devices access to long range
communication technology. Finally, a Linux distribution tailored to the specific needs
in this application area is presented that makes deploying new relay nodes easy even
for non-specialists.

SmartFace, a novel approach to perform face detection locally on mobile devices
in an efficient manner, was presented in Section 4.7. The approach relies on a two-
stage combination of existing face detection algorithms, enhanced by region of interest
selection, color space/depth reduction, resolution scaling, face size definition, image
scaling, image cropping, and bounding box scaling. Experimental results indicate that
the proposed approach improves both the overall face detection rate and the overall
runtime compared to the individual face detection algorithms used alone. It also
reduces the amount of data that needs to be stored on disk and sent over the network.

UV4EV was presented in Section 4.8, a novel approach to emergency communication
where semi-autonomous UGVs and UAVs cooperate with humans to dynamically form
communication islands and establish communication bridges between these islands.
Humans typically form an island with their mobile devices if they are in physical
proximity; UGVs and UAVs extend an island’s range by carrying data to a neighboring
island. The proposed approach uses delay/disruption-tolerant networking for non-time
critical tasks and direct mesh connections for prioritized tasks that require real-time
feedback. The developed communication platform runs on rescue robots, commodity
mobile devices, and various drones, and supports our operations and control center
software for disaster management.

SEDCOS, a secure device-to-device communication system for disaster scenarios, was
presented in Section 4.9. It mitigates flooding DoS attacks and offers role revocation for
detected adversaries to withdraw their permissions. The effectiveness of SEDCOS was
demonstrated by large-scale network simulations.

The research in this chapter shows that even in uncertain and challenged network
conditions, such as the ones found during emergency scenarios, common applications
and services can be delivered through new ways. By relying on D2D communication
together with DTN, many of the challenges can be overcome.

136

5 Security Vulnerability Analysis of Mobile
Apps

5.1 Introduction

While the previous chapter focused on disruption-tolerant device-to-device emergency
communication in general, this chapter provides an in-depth insight into the security
aspects of existing emergency apps and their communication. Most apps found on
smartphones use network resources, often through HTTP(S), or store valuable data,
such as images, contacts, bank credentials, cryptographic identities and messages.
Therefore, analyzing emergency apps for possible vulnerabilities is critical for secure
emergency communication.

One fundamental technology to secure data-in-motion is the use of SSL/TLS. In
Section 5.2, a study of the use and implementation security state of SSL in Android
apps is presented.

To ease the process of such audits, a flexible framework for distributed static analysis,
called AndroLyze, is presented in Section 5.3. Furthermore, the use of cryptographic
functions in about 40,000 APKs is investigated.

In Section 5.4 Dynalize, a Platform-as-a-Service cloud for dynamic analysis of Android
apps, is proposed. It completes the flexible toolkit, together with AndroLyze, for large-
scale analysis of mobile apps.

The experience from the previous sections is used to give a security report on the
most commonly used emergency communication apps currently available for Android.
The results of this audit are presented in Section 5.5.

AndroLyze1 as well as Dynalize2 have been published on github.

1https://github.com/nachtmaar/androlyze
2https://github.com/umr-ds/dynalize

137

https://github.com/nachtmaar/androlyze
https://github.com/umr-ds/dynalize

5 Security Vulnerability Analysis of Mobile Apps

5.2 TLS Usage in Android Apps

5.2.1 Introduction

Currently, Android is the most used smartphone operating system in the world, with
a market share of 48%3 and over 400,000 applications (apps) available in the Google
Play Market4, almost doubling the number of apps in only six months.5 Android apps
have been installed over 10 billion times6 and cover a vast range of categories from
games and entertainment to financial and business services. Unlike the ”walled garden
approach” of Apple’s App Store, Android software development and the Google Play
Market are relatively open and unrestricted. This offers both developers and users more
flexibility and freedom, but also creates significant security challenges.

The coarse permission system [158] and over-privileging of applications [159] can lead
to exploitable applications. Consequently, several efforts have been made to investigate
privilege problems in Android apps [158], [160]–[163]. Enck et al. introduced TaintDroid
[164] to track privacy-related information flows to discover such (semi-)malicious apps.
Bugiel et al. [162] showed that colluding malicious apps can facilitate information
leakage. Furthermore, Enck et al. analyzed 1,100 Android apps for malicious activity
and detected widespread use of privacy-related information such as IMEI, IMSI, and
ICC-ID for ”cookie-esque” tracking. However, no other malicious activities were found,
in particular no exploitable vulnerabilities that could have lead to malicious control of
a smartphone were observed [165].

In this section, instead of focusing on malicious apps, the potential security threats
posed by benign Android apps that legitimately process privacy-related user data, such
as log-in credentials, personal documents, contacts, financial data, messages, pictures or
videos is investigated. Many of these apps communicate over the Internet for legitimate
reasons and thus request and require the INTERNET permission. It is then necessary
to trust that the app adequately protects sensitive data when transmitting it via the
Internet.

The most common approach to protect data during communication on the Android
platform is to use the Secure Sockets Layer (SSL) or Transport Layer Security (TLS)
protocols.7 To evaluate the state of SSL use in Android apps, 13,500 popular free apps
were downloaded from Google’s Play Market and their properties were studied with
respect to the usage of SSL. In particular, the apps’ vulnerability against Man-in-the-
Middle (MITM) attacks due to the inadequate or incorrect use of SSL was studied.

For this purpose, MalloDroid was created, an Androguard8 extension that performs
static code analysis to a) analyze the networking API calls and extract valid HTTP(S)
URLs from the decompiled apps; b) check the validity of the SSL certificates of all
extracted HTTPS hosts; and c) identify apps that contain API calls that differ from An-
droid’s default SSL usage, e. g., contain non-default trust managers, SSL socket factories
or hostname verifiers with permissive verification strategies. Based on the results of the

3https://bit.ly/L4c8Ky
4https://bit.ly/xr7WET
5https://bit.ly/rhJxf2
6https://bit.ly/H1qGta
7Android supports both SSL and TLS; for brevity, it will be referred to both protocols as SSL. The

issues described in this work affect both SSL and TLS in the same way.
8http://code.google.com/p/androguard/

138

https://bit.ly/L4c8Ky
https://bit.ly/xr7WET
https://bit.ly/rhJxf2
https://bit.ly/H1qGta
http://code.google.com/p/androguard/

5.2 TLS Usage in Android Apps

static code analysis, 100 apps were selected for manual audits to investigate various
forms of SSL use and misuse: accepting all SSL certificates, allowing all hostnames
regardless of the certificate’s Common Name (CN), neglecting precautions against SSL
stripping, trusting all available Certificate Authorities (CAs), not using SSL pinning,
and misinforming users about SSL usage.

Furthermore, the visibility and awareness of SSL security in the context of Android
apps was studied. In Android, the user of an app has no guarantee that an app uses
SSL and also gets no feedback from the Android operating system whether SSL is
used during communication or not. It is entirely up to the app to use SSL and to
(mis)inform the user about the security of the connection. However, even when apps
present warnings and security indicators, users need to see and interpret them correctly.
The users’ perceptions concerning these warnings and indicators were investigated
in an online survey. Finally, several countermeasures that could help to alleviate the
problems discovered in the course of this work are discussed.

The results of the investigations can be summarized as follows:

• 1,074 apps contain SSL specific code that either accepts all certificates or all
hostnames for a certificate and thus are potentially vulnerable to MITM attacks.

• 41 of the 100 apps selected for manual audit were vulnerable to MITM attacks
due to various forms of SSL misuse.

• The cumulative install base of the apps with confirmed vulnerabilities against
MITM attacks lies between 39.5 and 185 million users, according to Google’s
Play Market.9 This number includes 3 apps with install bases between 10 and 50

million users each.
• From these 41 apps, it was possible to – for example – capture credentials for

American Express, Diners Club, Paypal, bank accounts, Facebook, Twitter, Google,
Yahoo, Microsoft Live ID, Box, WordPress, remote control servers, arbitrary email
accounts, and IBM Sametime.

• Virus signatures were injected into an anti-virus app to detect arbitrary apps as a
virus or disable virus detection completely.
• It was possible to remotely inject and execute code in an app created by a

vulnerable app building framework.
• 378 (50.1%) of the 754 Android users participating in the online survey did not

judge the security state of a browser session correctly.
• 419 (55.6%) of the 754 participants had not seen a certificate warning before and

typically rated the risk they were warned against as medium to low.

Parts of this section have been published in [9].

5.2.2 Background

The focus of the investigation is the inadequate use of SSL in Android apps. In this
subsection, a brief overview of how SSL is used in Android is given and how MITM
attacks can be launched against broken SSL connections in the context of this research.

9Google’s Play Market does not give a precise number of installs, instead giving a range. The actual
number is likely to be larger, since alternative app markets for Android also contribute to the install base.

139

5 Security Vulnerability Analysis of Mobile Apps

SSL

The Secure Sockets Layer (SSL) and its successor, Transport Layer Security (TLS),
are cryptographic protocols that were introduced to protect network communication
from eavesdropping and tampering. To establish a secure connection, a client must
securely gain access to the public key of the server. In most client/server setups,
the server obtains an X.509 certificate that contains the server’s public key and is
signed by a Certificate Authority (CA). When the client connects to the server, the
certificate is transferred to the client. The client must then validate the certificate.10

However, validation checks are not a central part of the SSL and X.509 standards.
Recommendations are given, but the actual implementation is left to the application
developer.

The basic validation checks include: a) does the subject (CN) of the certificate match
the destination selected by the client?; b) is the signing CA a trusted CA?; c) is the signa-
ture correct?; and d) is the certificate valid in terms of its time of expiry? Additionally,
revocation of a certificate and its corresponding certificate chain should be checked, but
downloading Certificate Revocation Lists (CRLs) or using the Online Certificate Status
Protocol (OCSP)11 is often omitted. The open nature of the standard specification has
several pitfalls, both on a technical and a human level. Therefore, the evaluations in the
remainder of this work are based on examining the four validation checks listed above.

Android & SSL

The Android 4.0 SDK offers several convenient ways to access the network. The
java.net, javax.net, android.net and org.apache.http packages can be used to
create (server) sockets or HTTP(S) connections. The org.webkit package provides
access to web browser functionality. In general, Android allows apps to customize SSL
usage – i. e., developers must ensure that they use SSL correctly for the intended usage
and threat environment. Hence, the following (mis-) use cases can arise and can cause
an app to transmit sensitive information over a potentially broken SSL channel:

Trusting all Certificates. The TrustManager interface can be implemented to trust all
certificates, irrespective of who signed them or even for what subject they were
issued.

Allowing all Hostnames. It is possible to forgo checks of whether the certificate was
issued for this address or not, i. e., when accessing the server example.com, a
certificate issued for some-other-domain.com is accepted.

Trusting many CAs. This is not necessarily a flaw, but Android 4.0 trusts 134 CA root
certificates per default. Due to the attacks on several CAs in 2011, the problem of
the large number of trusted CAs is actively debated.12

Mixed Mode/No SSL. App developers are free to mix secure and insecure connections
in the same app or not use SSL at all. This is not directly a SSL issue, but it is
relevant to mention that there are no outward signs and no possibility for a
common app user to check whether a secure connection is being used. This opens
the door for attacks such as SSL Stripping [166], [167] or tools like Firesheep.13

10https://tools.ietf.org/html/rfc5280
11https://tools.ietf.org/html/rfc2560
12https://bit.ly/g0dH34
13https://codebutler.com/firesheep

140

example.com
some-other-domain.com
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc2560
https://bit.ly/g0dH34
https://codebutler.com/firesheep

5.2 TLS Usage in Android Apps

On the other hand, Android’s flexibility in terms of SSL handling allows advanced
features to be implemented. One important example is SSL Pinning14, in which either a
(smaller) custom list of trusted CAs or even a custom list of specific certificates is used.
Android does not offer SSL pinning capabilities out of the box. However, it is possible
to create a custom trust manager to implement SSL pinning.15

The use of an SSL channel, even under the conditions described above, is still more
secure than using only plain HTTP against a passive attacker. An active MITM attack is
required for an attacker to subvert an SSL channel and is described below.

MITM Attack

In a MITM attack (MITMA), the attacker is in a position to intercept messages sent
between communication partners. In a passive MITMA, the attacker can only eavesdrop
on the communication (attacker label: Eve), and in an active MITMA, the attacker can
also tamper with the communication (attacker label: Mallory). MITMAs against mobile
devices are somewhat easier to execute than against traditional desktop computers,
since the use of mobile devices frequently occurs in changing and untrusted environ-
ments. Specifically, the use of open access points [32] and the evil twin attack [33] make
MITMAs against mobile devices a serious threat.

SSL is fundamentally capable of preventing both Eve and Mallory from executing
their attacks. However, the cases described above open up attack vectors for both
Eve and Mallory. Trivially, the mixed mode/no SSL case allows Eve to eavesdrop on
non-protected communication.

SSL Stripping is another method by which a MITMA can be launched against an
SSL connection, exploiting apps that use a mix of HTTP and HTTPS. SSL Stripping
relies on the fact that many SSL connections are established by clicking on a link in or
being redirected from a non-SSL-protected site. During SSL Stripping, Mallory replaces
https:// links in the non protected sites with insecure http:// links. Thus, unless the user
notices that the links have been tampered with Mallory can circumvent SSL protection
altogether. This attack is mainly relevant to browser apps or apps using Android’s
WebView.

5.2.3 Related Work

So far, there is no in-depth study of SSL usage and security on Android phones to date.
Thus, the discussion of related work is divided into two parts: related work concerning
Android security and a selection of SSL security work relevant for this research.

Android Security

There have been several efforts to investigate Android permissions and unwanted or
malicious information flows, such as the work presented by Enck et al. [158], [164],
Porter Felt et al. [159], [160], Davi et al. [161], Bugiel et al. [162], Nauman et al.[168]
and Egners et al. [169]. These works have in common that they study how permissions
can be abused and how this abuse can be prevented. Their scope does not include the
study of SSL issues, and the proposed countermeasures do not mitigate the threats

14https://bit.ly/qugGtH
15https://bit.ly/v55mxn

141

https://bit.ly/qugGtH
https://bit.ly/v55mxn

5 Security Vulnerability Analysis of Mobile Apps

presented here. The vulnerabilities studied in this thesis are based on weaknesses in
the design and use of SSL and HTTPS in Android apps. Since the permissions used by
the apps during SSL connection establishment are legitimate and necessary, the current
permissions-based countermeasures would not help.

There are several good overviews of the Android security model and threat landscape,
such as Vidas et al. [170], Shabatai [171] et al. and Enck et al. [165], [172]. These papers
do not discuss the vulnerability of SSL or HTTPS on Android. Enck et al. [165] does
mention that some apps use sockets directly, bearing the potential for vulnerabilities,
but no malicious use was found (cf. [165], Finding 13). The investigation in this research
shows that there are several SSL-related vulnerabilities in Android apps, endangering
millions of users.

McDaniel et al. [173] and Zhou et al. [174] also mainly focus on malicious apps in
their work on the security issues associated with the app market model of software
deployment. The heuristics of DroidRanger [174] could be extended to detect the
vulnerabilities uncovered in this work.

SSL Security

A good overview of current SSL problems can be found in Moxi Marlinspike’s Black
Hat talks [166], [167]. The talks cover issues of security indicators, Common Name (CN)
mismatches and the large number of trusted CAs and intermediate CAs. Marlinspike
also introduces the SSL Stripping attack. The fact that many HTTPS connections are
initiated by clicking a link or via redirects is particularly relevant for mobile devices,
since the MITMA needed for SSL Stripping is easier to execute against mobile devices
[32], [33] and the visual indicators are hard to see on mobile devices.

Shin et al. [175] study the problem of SSL Stripping for desktop browsers and present
a visual-security-cue-based approach to hinder SSL Stripping in this environment. They
also highlight the particular problem of this type of attack in the mobile environment
and suggest that it should be studied in more detail.

Egelman et al. [176] and Sunshine et al. [177] both study the effectiveness of browser
warnings, showing that their effectiveness is limited and that there are significant us-
ability issues. Although both of these studies were conducted in a desktop environment,
the same caveats need to be considered for mobile devices. In this research, a first online
survey was conducted to gauge the awareness and effectiveness of browser certificate
warnings and HTTPS visual security indicators on Android.

5.2.4 Evaluating Android SSL Usage

The study of Android SSL security encompasses 13,500 popular free apps from Google’s
Play Market.MalloDroid, an extension of the Androguard reverse engineering frame-
work, was build to automatically perform the following steps of static code analysis:

Permissions. MalloDroid checks which apps request the INTERNET permission, which
apps actually contain INTERNET permission-related API calls and which apps addi-
tionally request and use privacy-related permissions (c.f. [159]).

Networking API Calls. MalloDroid analyzes the use of HTTP transport and Non-HTTP
transport (e. g., direct socket connections).

142

5.2 TLS Usage in Android Apps

HTTP vs. HTTPS. MalloDroid checks the validity of URLs found in apps and groups
the apps into HTTP only, mixed mode (HTTP and HTTPS) and HTTPS only.

HTTPS Available. MalloDroid tries to establish a secure connection to HTTP URLs
found in apps.

Deployed Certificates. MalloDroid downloads and evaluates SSL certificates of hosts
referenced in apps.

SSL Validation. MalloDroid examines apps with respect to inadequate SSL validation
(e. g., apps containing code thats allows all hostnames or accepts all certificates).

12,534 (92.84%) of the apps in the test set request the network permission android.

permission.INTERNET. 11,938 (88.42%) apps actually perform networking related API
calls. 6,907 (51,16%) of the apps in the sample use the INTERNET permission in addition
to permissions to access privacy related information such as the users’ calendars,
contacts, browser histories, profile information, social streams, short messages or exact
geographic locations. This subset of apps has the potential to transfer privacy-related
information via the Internet. This subset does not include apps such as banking,
business, email, social networking or instant messaging apps that intrinsically contain
privacy-relevant information without requiring additional permissions.

It was found that 91.7% of all networking API calls are related to HTTP(S). Therefore,
the decision was made to focus the further analysis on the usage of HTTP(S). To find
out whether an app communicates via HTTP, HTTPS, or both, MalloDroid analyzes
HTTP(S) specific API calls and extracts URLs from the decompiled apps.

HTTP vs. HTTPS

MalloDroid extracted 254,022 URLs. It can be configured to remove certain types of
URLs for specific analysis. For this study, the 58,617 URLs pointing to namespace
descriptors and images were removed, since these typically are not used to transmit
sensitive user information. The remaining 195,405 URLs pointed to 25,975 unique hosts.
29,685 of the URLs (15.2%) pointing to 1,725 unique hosts (6.6%) are HTTPS URLs.
Then is was analyzed how many of the hosts referenced in HTTP URLs could also have
been accessed using HTTPS.

76,435 URLs (39.1%) pointing to 4,526 hosts (17.4%) allowed a valid HTTPS connection
to be established, using Android’s default trust roots and validation behavior of current
browsers. This means that 9,934 (73.6%) of all 13,500 tested apps could have used
HTTPS instead of HTTP with minimal effort by adding a single character to the target
URLs. It was found that 6,214 (46.0%) of the apps contain HTTPS and HTTP URLs
simultaneously and 5,810 (43.0%) do not contain HTTPS URLs at all. Only 111 apps
(0.8%) exclusively contained HTTPS URLs.

For a more detailed investigation, it was looked at the top 50 hosts, ranked by
number of occurrences. This group mainly consists of advertising companies and social
networking sites. These two categories account for 37.9% of the total URLs found,
and the hosts are contained in 9,815 (78.3%) of the apps that request the INTERNET
permission.

Table 5.1 presents an overview of the top 10 hosts. The URLs pointing to the these
hosts suggest they are often used for Web Service API calls, authentication and fetch-
ing/sending user or app information. Especially in the case of ad networks that

143

5 Security Vulnerability Analysis of Mobile Apps

collect phone identifiers and geolocations [164] and social networks that transport
user-generated content, the contained information is potentially sensitive.

Table 5.1: The top 10 hosts used in all extracted URLs and their SSL availability, total number of URLs and
number of HTTPS URLs pointing to that host.

Host has SSL # URLs # HTTPS

market.android.com ✓ 6,254 3,217

api.airpush.com ✓ 5,551 0

a.admob.com ✓ 4,299 0

ws.tapjoyads.com ✓ 3,410 3399

api.twitter.com ✓ 3,220 768

data.flurry.com ✓ 3,156 1,578

data.mobclix.com ✓ 2,975 0

ad.flurry.com ✓ 2,550 0

twitter.com ✓ 2,410 129

graph.facebook.com ✓ 2,141 1,941

34 of the top 50 hosts offer all their API calls via HTTPS, but none is accessed exclu-
sively via HTTPS. Of all the URLs pointing to the top 50 hosts, 22.1% used HTTPS, 61.0%
could have used HTTPS by substituting http:// with
https://, and 16.9% had to use HTTP because HTTPS was not available. The hosts
facebook.com and tapjoyads.com are positive examples, since the majority of the
URLs found for these two hosts already use HTTPS.

Deployed SSL Certificates

To analyze the validity of the certificates used by HTTPS hosts, the SSL certificates
for all HTTPS hosts extracted from our app test set were downloaded, yielding 1,887

unique SSL certificates. Of these certificates, 162 (8.59%) failed the verification of
Android’s default SSL certificate verification strategies, i. e., 668 apps contain HTTPS
URLs pointing to hosts with certificates that could not be validated with the default
strategies. 42 (2.22%) of these certificates failed SSL verification because they were
self-signed, i. e., HTTPS links to self-signed certificates are included in 271 apps. 21

(1.11%) of these certificates were already expired, i. e., 43 apps contain HTTPS links to
hosts with expired SSL certificates.

For hostname verification, two different strategies were applied that are also avail-
able in Android: the BrowserCompatHostnameVerifier16 and the StrictHostnameVerifier17

strategy. 112 (5.94%) certificates were found that did not pass strict hostname verifi-
cation, of which 100 certificates also did not pass the browser compatible hostname
verification. Mapping these certificates to apps revealed that 332 apps contained HTTPS
URLs with hostnames failing the BrowserCompatHostnameVerifier strategy.

Overall, 142 authorities signed 1,887 certificates. For 45 (2.38%) certificates, no valid
certification paths could be found, i. e., these certificates were signed by authorities not
reachable via the default trust anchors. These certificates are used by 46 apps. All in all,

16https://bit.ly/IKR9cD
17https://bit.ly/Ixy9kr

144

facebook.com
tapjoyads.com
https://bit.ly/IKR9cD
https://bit.ly/Ixy9kr

5.2 TLS Usage in Android Apps

394 apps include HTTPS URLs for hosts that have certificates that are either expired,
self-signed, have mismatching CNs or are signed by non-default-trusted CAs.

Custom SSL Validation

Using MalloDroid, 1,074 apps (17.28% of all apps that contain HTTPS URLs) were
found that include code that either bypasses effective SSL verification completely by
accepting all certificates (790 apps) or that contain code that accepts all hostnames for a
certificate as long as a trusted CA signed the certificate (284 apps).

While an app developer wishing to accept all SSL certificates must implement
the TrustManager interface and/or extend the SSLSocketFactory class, allowing all
hostnames only requires the use of the AllowAllHostnameVerifier class from the
org.apache.http.conn.ssl package that is included in 453 apps. Additionally, Mal-
loDroid found a FakeHostnameVerifier, NaiveHostnameVerifier and AcceptAll-

HostnameVerifier class that can be used in the same way.
To understand how apps use ’customized’ SSL implementations, it was searched

for apps that contain non-default trust managers, SSL socket factories and hostname
verifiers differing from the BrowserCompatHostnameVerifier strategy. Here 86 custom
trust managers and SSL socket factories were found in 878 apps. More critically, the
analysis also discovered 22 classes implementing the TrustManager interface and 16

classes extending the SSLSocketFactory that accept all SSL certificates. Table 5.2 shows
which broken trust managers and SSL socket factories were found.

Table 5.2: Trust Managers & Socket Factories that trust all certificates (suffixes omitted to fit the page)

Trust Managers SSL Socket Factories

AcceptAllTrustM AcceptAllSSLSocketF

AllTrustM AllTrustingSSLSocketF

DummyTrustM AllTrustSSLSocketF

EasyX509TrustM AllSSLSocketF

FakeTrustM DummySSLSocketF

FakeX509TrustM EasySSLSocketF

FullX509TrustM FakeSSLSocketF

NaiveTrustM InsecureSSLSocketF

NonValidatingTrustM NonValidatingSSLSocketF

NullTrustM NaiveSslSocketF

OpenTrustM SimpleSSLSocketF

PermissiveX509TrustM SSLSocketFUntrustedCert

SimpleTrustM SSLUntrustedSocketF

SimpleX509TrustM TrustAllSSLSocketF

TrivialTrustM TrustEveryoneSocketF

TrustAllManager NaiveTrustManagerF

TrustAllTrustM LazySSLSocketF

TrustAnyCertTrustM UnsecureTrustManagerF

UnsafeX509TrustM

VoidTrustM

145

5 Security Vulnerability Analysis of Mobile Apps

This small number of critical classes affects a large number of apps. Many of the
found classes belong to libraries and frameworks that are used by many apps. 313

apps contained calls to the NaiveTrustManager class that is provided by a crash
report library.18 In 90 apps, MalloDroid found the NonValidatingTrustManager class
provided by an SDK19 for developing mobile apps for different platforms with just a
single codebase. The PermissiveX509TrustManager20, found in a library for sending
different kinds of push notifications to Android devices, is included in 76 apps. Finally,
in 78 apps, MalloDroid found a SSLSocketFactory provided by a developer library21

that accepts all certificates. The library is intended to support developers to write
well designed software and promotes itself as a library for super-easy and robust
networking. Using any of the above Trust Managers or Socket Factories results in the
app trusting all certificates.

5.2.5 MITMA Study

The static code analysis presented above only shows the potential for security problems.
The fact that code for insecure SSL is present in an app does not necessarily mean that
it is used or that sensitive information is passed along it. Even more detailed automated
code analysis, such as control flow analysis, data flow analysis, structural analysis and
semantic analysis cannot guarantee that all uses are correctly identified [165]. Thus,
the decision was made to conduct a more detailed manual study to find out what
sort of information is actually sent via these potentially broken SSL communication
channels, by installing apps on a real phone and executing an active MITMA against
the apps. For this part of the study, the search was narrowed down to apps from the
Finance, Business, Communication, Social and Tools categories, where one can suspect
a higher amount of privacy-related information and a higher motivation to protect the
information. In this test set, there are 266 apps containing broken SSL or hostname
verifiers (Finance: 45, Social: 94, Communication: 49, Business: 60, Tools: 18). These
apps were ranked based on their number of downloads and selected the top 100 apps
for manual auditing. Additionally, 10 high profile apps (large install base, popular
services) were cherry-picked that contained no SSL-related API calls but contained
potentially sensitive information, to see whether this information was actually sent in
the clear or if some protection mechanism other than SSL was involved.

Test Environment

For the manual app auditing process, a Samsung Galaxy Nexus smartphone with
Android 4.0 Ice Cream Sandwich was used. The potentially vulnerable apps were
installed on the phone and a WiFi access point with a MITM SSL proxy was set up.
Depending on the vulnerability to be examined, the SSL proxy was equipped either
with a self-signed certificate or with one that was signed by a trusted CA, but for an
unrelated hostname.

Of the 100 apps selected for manual audit, 41 apps proved to have exploitable
vulnerabilities. It was possible to gather bank account information, payment credentials

18Application Crash Report for Android (ACRA) library org.acra.util.NaiveTrustManager
19Titanium Mobile ti.modules.titanium.network.NonValidatingTrustManager
20Urban Airship library client.ssl.PermissiveX509TrustManager
21Droid-Fu library com.github.droidfu.http.ssl.EasySSLSocketFactory

146

org.acra.util.NaiveTrustManager
ti.modules.titanium.network.NonValidatingTrustManager
client.ssl.PermissiveX509TrustManager
com.github.droidfu.http.ssl.EasySSLSocketFactory

5.2 TLS Usage in Android Apps

for PayPal, American Express and others. Furthermore, Facebook, email and cloud
storage credentials and messages were leaked, access to IP cameras was gained and
control channels for apps and remote servers could be subverted. According to Google’s
Play Market, the combined install base of the vulnerable apps in our test set of 100

apps was between 39.5 and 185 million users at the time of writing. In the following,
the findings are briefly discussed to illustrate the scope of the problem.

Trusting All Certificates

21 apps among the 100 selected apps fell into this category. The MITMA proxy was
given a self-signed certificate for the attack. The apps leaked information such as login
credentials, webcam access or banking data. One noteworthy contender was a generic
online banking app.22 The app uses separate classes for each bank containing different
trust manager implementations. 24 of the 43 banks supported were not protected
from the MITMA. The app also leaks login credentials for American Express, Diners
Club and Paypal. The Google Play Market reports an install base between 100,000 and
half a million users. A further app in this category offers instant messaging for the
Windows Live Messenger service23. The app has an install base of 10 to 50 million users
and is listed in the top 20 apps for the communication category in the Google Play
Market (as of April 30th, 2012). Username and password are both sent via a broken
SSL channel and were sniffed during the attack. This effectively gives an attacker full
access to a Windows Live account that can be used for email, messaging or Microsoft’s
SkyDrive cloud storage. Also in this category, a browser24 with an install base between
500,000 and one million users was found. The browser does not correctly handle SSL at
all, i. e., it accepts an arbitrary certificate for every website the user visits and hence
leaks whatever data the user enters. All three apps do not provide any SSL control
or configuration options for the user. None of the other apps in this category showed
warning messages to the user while the MITMA was being executed.

Allowing All Hostnames

The second category of apps analyzed is the group of 20 apps that accepted certificates
irrespective of the subject name, i. e., if the app wants to connect to https://www.

paypal.com, it would also accept a certificate issued to some-domain.com. A certificate
for an unrelated domain signed by startSSL25 was used for the attacks in this category.
The apps leaked information such as credentials for different services, emails, text
messages, contact data, bitcoin miner api keys, premium content or access to online
meetings. A particularly interesting find was an anti-virus app that updated its virus
signatures file via a broken SSL connection. Since it seems that the connection was
considered secure, no further validation of the signature files is performed by the app.
Thus it was possible to feed a modified signature file to the anti-virus engine. First,
an empty signature database was sent which was accepted, effectively turning off the
anti-virus protection without informing the user. In a second attack, a virus signature
for the anti-virus app itself was created and then sent it to the phone. This signature

22com.liato.bankdroid
23miyowa.android.microsoft.wlm
24sui.m
25https://www.startssl.com/

147

https://www.paypal.com
https://www.paypal.com
some-domain.com
https://www.startssl.com/

5 Security Vulnerability Analysis of Mobile Apps

was accepted by the app, which then recognized itself as a virus and recommended to
delete itself, which it also did. Figure 5.1 shows a screenshot of the result of this attack.
This is a very stark reminder that defense in depth is an important security principle.
Since the SSL connection was deemed secure, no further checks were performed to
determine whether the signature files were legitimate. The app has an install base of
500,000 to one million users.26

Figure 5.1: After injecting a virus signature database via a MITM attack over broken SSL, the AntiVirus
app recognized itself as a virus and recommended to delete the detected malware.

A second example in this category is an app that offers ”Simple and Secure” cloud-
based data sharing.27 According to the website, the app is used by 82% of the FORTUNE
500 companies to share documents. It has an install base between 1 and 5 million users.
While the app offers simple sharing, it leaks the login credentials during the MITMA.
One interesting finding in this app was that the login credentials were leaked from a
broken SSL channel while up- and downloads of files were properly secured. However,
using the login credentials obtained from the broken channel is sufficient to hijack an
account and access the data anyway.

A third example is a client app for a popular Web 2.0 site28 with an install base of
500,000 to 1 million users. When using a Facebook or Google account for login, the app
initiates OAuth login sequences and leaks Facebook or Google login credentials.

Also a very popular cross-platform messaging service was successfully attacked.29

While the app has been criticized for sending messages as plaintext and therefore
enabling Eve to eavesdrop, the SSL protection that was intended to secure ’sensitive’
information such as registration credentials and the user’s contact does not protect

26appcom.zoner.android.antivirus – honored as the ”Best free anti-virus program for Android” with a
detection rate > 90% – http: // www. av-test. org/ en/ tests/ android/

27com.box.android
28com.yahoo.mobile.client.android.flickr
29com.whatsapp

148

http://www.av-test.org/en/tests/android/

5.2 TLS Usage in Android Apps

from Mallory. For instance, one is able to obtain all telephone numbers from a user’s
address book using a MITMA. At the time of writing, the app had an install base of 10

to 50 million users.

SSL Stripping

SSL Stripping (cf. Section 5.2.2) can occur if a browsing session begins using HTTP and
switches to HTTPS via a link or a redirect. This is commonly used to go to a secure
login page from an insecure landing page. The technique is mainly an issue for Android
browser apps, but it can also affect other apps using Android’s webkit.WebView that
do not start a browsing session with a HTTPS site. The webkit.WebView was found in
11,038 apps. Two noteworthy candidates from this category concern a social networking
app30 and an online portal app31 client app. Both apps use the webkit view to enhance
either the social networking experience or surf the portal and have 1.5 to 6 million
installs. The two apps start the connection with a HTTP landing page, and one could
rewrite the HTTPS redirects to HTTP and thus catch the login credentials for Facebook,
Yahoo and Google.

One way to overcome this kind of vulnerability is to force the use of HTTPS, as
proposed by the HTTP Strict Transport Security IETF Draft32, or using a tool such
as HTTPS-Everywhere.33 However, these options currently do not exist for Android.
Android’s default browser as well as available alternatives such as Chrome, Firefox,
Opera or the Dolphin Browser do not provide HTTPS-Everywhere-like features out of
the box, nor could any add-ons for such a feature be found.

Lazy SSL Use

Although the Android SDK does not support SSL pinning out of the box, Android apps
can also take advantage of the fact that they can customize the way SSL validation is
implemented. Unlike general purpose web browsers that need to be able to connect to
any number of sites as ordained by the user, many Android apps focus on a limited
number of hosts picked by the app developer: for example, the PayPal app’s main
interaction is with paypal.com and its sister sites. In such a case, it would be feasible to
implement SSL pinning, either selecting the small number of CAs actually used to sign
the sites or even pin the precise certificates. This prevents rogue or compromised CAs
from mounting MITM attacks against the app. To implement SSL pinning, an app can
use its own KeyStore of trusted root CA certificates or implement a TrustManager that
only trusts specific public key fingerprints.

To investigate the usage of SSL pinning, 20 high profile apps were cherry-picked that
were not prone to the previous MITM attacks and manually audited. An own root CA
certificate was installed on the phone and a SSL MITM proxy set up that automatically
created CA-signed certificates for the hosts an app connects to. Then MITM attacks
were executed against the apps. Table 5.3 shows the results. Only 2 of the apps make
use of SSL pinning and thus were safe from the attack. All other apps trust all root

30com.jmt.application.facebookthemes.activity
31com.yahoo.mobile.client.android.yahoo
32https://bit.ly/IJrVh5
33https://www.eff.org/https-everywhere

149

https://bit.ly/IJrVh5
https://www.eff.org/https-everywhere

5 Security Vulnerability Analysis of Mobile Apps

CA signatures, as long as they are part of Android’s trust anchors, and thus were
vulnerable to the executed attack.

Table 5.3: Results of the SSL pinning analysis.

App Installs SSL Pinning

Amazon MP3 10-50 million
Chrome 0.5-1 million
Dolphin Browser HD 10-50 million
Dropbox 10-50 million
Ebay 10-50 million
Expedia Bookings 0.5-1 million
Facebook Messenger 10-50 million
Facebook 100-500 million
Foursquare 5-10 million
GMail 100-500 million
Google Play Market All Phones
Google+ 10-50 million
Hotmail 5-10 million
Instagram 5-10 million
OfficeSuite Pro 6 1-5 million
PayPal 1-5 million
Twitter 50-100 million ✓

Voxer Walkie Talkie 10-50 million ✓

Yahoo! Messenger 10-50 million
Yahoo! Mail 10-50 million

Missing Feedback

When an app accesses the Internet and sends or receives data, the Android OS does not
provide any visual feedback to the user whether or not the underlying communication
channel is secure. The apps are also not required to signal this themselves and there is
nothing stopping an app from displaying wrong, misguided or simply no information.
Several apps were found that provided SSL options in their settings or displayed visual
security indicators, however failed to establish secure SSL channels for different reasons.

Banking apps34 were found in this category that could not be fully tested, since
bank accounts were required there. However, these apps stated that they were using
SSL-secured connections and displayed green visual security indicators, but suffered
from one of the MITMA vulnerabilities shown above. It was therefore possible to
intercept login credentials, which would enable one to disable cards and gather account
information using the app.

Several prominent mail apps were found that had issues with missing feedback.
Both were dedicated apps for specific online services. The first app35 with an install

34com.vrm.hessenland, com.vrm.mindenerland
35com.yahoo.mobile.client.android.mail.apk

150

5.2 TLS Usage in Android Apps

base between 10 and 50 million users handled registration and login via a secure SSL
connection, but the default settings for sending and receiving email are set to HTTP.
This can be changed by the user, but the user must be aware of the issue to do this and
there was no indication that the emails were not protected.

An instant messaging app36, with an install base of 100,000 to 500,000 users, transfers
login credentials via a non-SSL protected channel. Although the user’s password is
transferred in encrypted form, it does not vary between log-ins, so Eve can record the
password and could use it in a replay attack to hijack the user’s account.

Figure 5.2: A sample warning message that occurs in an app that is MITM attacked.

A framework37 was found that provides a graphical app builder, allowing users to eas-
ily create apps for Android and other mobile platforms. Apps created with this frame-
work can load code from remote servers by using the dalvik.system.DexClassLoader.
Downloading remote code is handled via plain HTTP. One app38 built with the frame-
work was analyzed and it was possible to inject and execute arbitrary Java code, since
the downloaded code is not verified before execution.

During manual analysis, it was also found that 53 apps that were not vulnerable to
the MITM attacks did not display a meaningful warning messages to the user under
attack. These apps simply refused to work and mostly stated that there were technical
or connectivity problems and advised the user to try to reconnect later. There was also
an app39 that recommended an app-update to eliminate the network connection errors.
Some apps simply crashed without any announcement. Figure 5.2 shows a confusing
sample error message displayed during a MITMA.40

An additional 6 apps not vulnerable to the MITM attacks did display certificate
related warning messages, but did not indicate the potential presence of a MITMA. The
official Facebook app41 is not vulnerable to the MITM attacks described above and is a
positive example for displaying a meaningful warning message. Even if the warning
message contains tech-savvy wording, the user at least has the chance to realize that a
MITM attack might be occuring (cf. Fig. 5.3).

Interestingly – excluding browser apps – there was only one app that let the user
choose to continue in the presence of an SSL error.

36cn.msn.messenger
37http://ibuildapp.com/
38com.appbuilder.u36633p92811

39de.aboalarm.kuendigungsmaschine
40com.yahoo.mobile.client.android.flickr
41com.facebook.katana.apk

151

dalvik.system.DexClassLoader
http://ibuildapp.com/

5 Security Vulnerability Analysis of Mobile Apps

Figure 5.3: Facebook’s SSL warning.

A complete list of all apps found vulnerable to on MITM attack or another can be
found at the end of this section (Sec 5.2.10).

5.2.6 Limitations of our Analysis

This study has the following limitations: a) During static code analysis, the studied
applications were selected with a bias towards popular apps; b) The provided install
base numbers are only approximate values as provided by Google’s Play Market; c) Only
100 of the apps where MalloDroid found occurrences of broken SSL implementations
were manually audited. For the rest, the existence of the unsafe code does not mean
that these apps must be vulnerable to a MITM attack; d) Static code analysis might
have failed in some apps, for instance if they were obfuscated. Hence, there might be
further vulnerable apps that were not classified as such; e) During manual audits, the
applications were selected with a bias towards popularity and assumed sensitivity of
data they handle; f) It was not possible to test the entire workflow of all apps, e. g., it
was not possible to create a foreign bank account to see what happens after successfully
logging into the bank account.

5.2.7 Trouble in Paradise

The default Android browser uses sensible trust managers and host name verifiers.
Also, unlike most special purpose apps, it displays a meaningful error message when
faced with an incorrect certificate and allows the user to continue on to the site if
the user wants to. Thus, it relies on the ability of the user to understand what the
displayed warning messages mean and what the safest behavior is. There have been
many studies of this issue conducted in the context of desktop browsing. Here, to the
best of knowledge, a first survey was conducted for this research to investigate the
users’ perceptions when using secure connections in the Android browser.

152

5.2 TLS Usage in Android Apps

Online Survey

The goal of the online survey was to explore whether or not the user can assess the
security of a connection in the Android browser. Goal was to test that a) a user can
distinguish a HTTPS connection from a regular HTTP connection and b) how the
user perceives a SSL warning message. Previous work has addressed the effectiveness
of warning dialogues in several scenarios, mostly for phishing on regular computers
(e. g., [176], [177]). Recently, Porter Felt et al. [160] conducted a survey on the prompts
informing users of the requested permissions of Android apps during installation. The
online survey in this research is based on a similar design, but studies SSL certificate
warnings and visual security indicators in Android’s default browser.

Participants were recruited through mailing lists of several universities, companies
and governmental agencies. The study invitation offered a chance to win a 600$ voucher
from Amazon for participation in an online survey about Android smartphone usage.
The survey could only be accessed directly from an Android phone. The survey was
served via HTTPS for one half of the participants and via HTTP for the other. After
accessing a landing page, the participants were shown a typical Android certificate
warning message, mimicking the behavior of the Android browser. Subsequently, it was
asked whether the participants had seen this warning before, if they had completely
read its text and how much risk they felt they are warned against. Also of interest was
to know whether or not they believed to be using a secure connection and their reasons
for this belief. Finally, demographic information on technical experience, Android
usage, previous experience with compromised credentials or accounts as well as age,
gender and occupation was collected.

Results

754 participants completed the survey. The average age was 24 years (sd = 4.01), 88.3%
were students while the rest mainly were employees. 61.9% of the participants did
not have an IT-related education or job (non-IT experts in the following) and 23.2%
had previous experience with compromised credentials or accounts. Overall, the self-
reported technical confidence was high: participants stated a mean value of 4.36 for IT
experts and 3.58 for non-experts on a scale from 1 (often asking for help) to 5 (often
providing help to others). 51.9% of IT experts and 32.8% of non-IT experts have been
using an Android smartphone for more than a year and 57.1% of experts and 69.8% of
non-experts had only 25 apps or less installed.

Concerning connection security, it was found that 47.5% of non-IT experts believed
to be using a secure connection, while the survey was served over HTTP. On top of that,
even 34.7% of participants with prior IT education thought that they were using a secure
channel when they were not. In both groups, 22.4% were unsure about the protection
of their connection. Only 58.9% of experts and 44.3% of non-experts correctly identified
that they were using a secure or insecure connection when prompted. The majority of
users referred to the URL prefix as the reason for their beliefs and 66.5% of participants
that were unsure said that they did not know how to judge the connection security.
Those users that were wrongly assuming a secure connection stated that they use a
trustworthy provider (47.7%), trust their phone (22.7%) or thought that the address
was beginning with https:// even though it was not (21.6%) as a justification for their
beliefs. Interestingly, participants that stated that they had suffered from compromised

153

5 Security Vulnerability Analysis of Mobile Apps

credentials or online accounts before did significantly better in judging the connection
state (χ2 = 85.36, d f = 6, p < 0.05).

Concerning the warning message, the majority of participants stated that they had
not seen such a certificate warning before (57.6% of non-IT experts and 52.3% of IT
experts) or were unsure (5.9%/9.2%). 24.0% of all participants only read the warning
partially and 4.5% did not read it at all. These numbers did not differ significantly
based on whether or not they had seen the warning before. The participants rated the
risk they were warned against with 2.86 (sd = .94), with 1 being a very low risk and 5 a
very high risk. The perceived risk did not differ significantly between IT-experts and
other users.

Overall, the results of our online survey show that assessing the security of a browser
session on Android’s default browser was problematic for a large number of our
participants. While certificate handling is done correctly by the browser app and basic
visual security indicators are offered, the user’s awareness for whether or not his data
is effectively protected is frequently incomplete.

Limitations

The survey is limited in the following ways: Official mailing lists were used to distribute
the invitation for the survey. While, on a technical level, this should not affect the
trustworthiness of the mail or the survey site - the emails were not digitally signed and
the survey was served with an URL that was not obviously linked to the university.
Therefore, the emails could have been spoofed. Nonetheless, it is likely that a higher
level of trust was induced in most participants, due to the fact that the survey was
advertised as a university study (c.f. [178]). Therefore it was refrained from evaluating
the users’ reasons for accepting or rejecting a certificate in this concrete scenario.

Participants were self-recruited from multiple sources, but mainly entries from univer-
sity students for this first exploration were received. While a study by Sotirakopoulos et
al. [179] found little differences between groups of students and the broader population
in the usable security context, a more varied sample of participants would improve the
general applicability of the results.

5.2.8 Countermeasures

There are several ways to minimize the problem of unencrypted traffic or SSL misuse.
They can be categorized into three groups: (1) solutions integrated into the Android
OS, (2) solutions integrated into app markets and (3) standalone solutions.

154

5.2 TLS Usage in Android Apps

OS Solutions

Enforced Certificate Checking A radical solution to prevent the use of overly per-
missive TrustManagers, SSLSocketFactorys and AllowAllHostnameVerifiers is to
disallow custom SSL handling completely. This can be achieved by forcing developers
to use the standard library implementations provided by Android’s APIs. By limit-
ing the way TrustManagers, SSLSocketFactorys and HostnameVerifiers can be used,
most cases of faulty code and unintended security flaws could be avoided.

HTTPS Everywhere A solution to improve a fair number of the vulnerabilities dis-
covered in the test set would be an Android version of HTTPS-Everywhere, integrated
into the communication APIs. This would prevent most SSL Stripping attacks were
found in the test set.

Improved Permissions and Policies Instead of simply having a general permission
for Internet access, a more fine-grained policy model could allow for more control
(cf. [159]). By introducing separate permissions for INTERNET SSL and INTERNET PLAIN,
apps could indicate which type of connections are used. This would give users a
chance to avoid applications that do not use HTTPS at all. However, in mixed mode
cases or when SSL is used but used incorrectly, this method would not protect the
user without additional indicators/countermeasures. Furthermore, introducing policies
like GSM ONLY, NO OPEN WIFI or TRUSTED NETWORKS could help to protect apps from
some MITM attacks. Despite the fact that cellular networks such as GSM/3G/4G do
not provide absolute security, they still require considerably more effort to execute
an active MITMA. Apps could then specify which types of networks or even which
connections specifically are allowed to be used. However, this countermeasure could
have considerable usability and acceptance issues.

Visual Security Feedback Reasonable feedback to the user about the security status
of the currently running application is undoubtedly a valuable countermeasure – at
least for some users. The operating system should provide visual feedback on whether
or not apps are communicating via a secure channel. Current mobile devices usually
only show the signal strength, the connection type and whether any transfers are in
progress at all. Finding an effective way to inform users about which apps are currently
communicating with the Internet and whether the communication is secure is not
trivial and should be studied carefully before a solution is propagated.

MalloDroid Installation Protection MalloDroid could be integrated into app installers,
such as Kirin [158], to perform static code analysis at install time. This analysis per-
formed directly on a phone could warn of potentially unsafe applications. The user
would then have to decide if he wishes to install the app irrespective of the warning.

App Market Solutions

Similar to the MalloDroid installation protection, MalloDroid could be integrated into
app markets. This form of automated checking of apps could either be used to reject
apps from entering the market or warnings could be added to the app’s description.
Both options have usability and acceptance issues that need to be studied.

155

5 Security Vulnerability Analysis of Mobile Apps

Standalone Solution: The MalloDroid App & Service

All countermeasures mentioned above require modification of the Android OS and
support from Vendors and/or app markets. Standalone solutions can be deployed more
easily. Therefore, as a stop-gap measure, the MalloDroid tool is going to be offered
both as a Web and Android app. This will at least allow interested users to check on
apps before they install them. The Android app will also offer a convenience feature
checking all installed applications. MalloDroid can of course also be used as-is with
Androguard.

5.2.9 Conclusion

In this research, an investigation of the current state of SSL/TLS usage in Android
and the security threats posed by benign Android apps that communicate over the
Internet using SSL/TLS was presented. MalloDroid, a tool that uses static code analysis
to detect apps that potentially use SSL/TLS inadequately or incorrectly and thus
are potentially vulnerable to MITM attacks, was developed.The analysis of 13,500

popular free apps from the Google Play Market has shown that 1,074 apps contain code
belonging to this category. These 1,074 apps represent 17.0% of the apps that contain
HTTPS URLs. To evaluate the real threat of such potential vulnerabilities, MITM attacks
against 100 selected apps from that set have been mounted manually. This manual audit
has revealed wide spread and serious vulnerabilities. The credentials for American
Express, Diners Club, Paypal, Facebook, Twitter, Google, Yahoo, Microsoft Live ID, Box,
WordPress, IBM Sametime, remote servers, bank accounts and email accounts have
been captured. It was possible to successfully manipulate virus signatures downloaded
via the automatic update functionality of an anti-virus app to neutralize the protection
or even to remove arbitrary apps, including the anti-virus program itself. Furthermore,
it was possible to remotely inject and execute code in an app created by a vulnerable
app building framework. The cumulative number of installs of apps with confirmed
vulnerabilities against MITM attacks is between 39.5 and 185 million users, according
to Google’s Play Market.

The results of the online survey with 754 participants showed that there is some
confusion among Android users as to which security indicators are indicative of a
secure connection, and about half of the participants could not judge the security state
of a browser session correctly. Possible countermeasures were discussed that could
alleviate the problems of unencrypted traffic and SSL misuse. MalloDroid is offered as
a first countermeasure to possibly identify potentially vulnerable apps.

The findings of the investigation suggest several areas of future work. The intention
is to provide a MalloDroid Web App and Android App and will make it available to
Android users. Moreover, there seems to be a need for more education and simpler
tools to enable easy and secure development of Android apps. But most importantly,
research is needed to study which countermeasures offer the right combination of
usability for developers and users, security benefits and economic incentives to be
deployed on a large scale.

156

5.2 TLS Usage in Android Apps

5.2.10 List of Apps With Broken SSL Usage

The following table gives an overview of the apps that we found vulnerable to MITM
attacks. Either accepting all certificates (1) or allowing all hostnames (2) or
being vulnerable for SSL Stripping (3).

App Installs Vuln Comment

Bankdroid 100k-
500k

(1) Banking app. Leaks banks, Mastercard, Diners Club
and Paypal credentials.

Börse Mobil 10k-50k (1) Shows stock market information. Leaks login cre-
dentials.

CashBase 1k-5k (1) Wallet app, keeps track of spendings. Leaks login
credentials.

Dolphin Browser HD 10m-50m (1) Web browser. Leaks credentials for Dolphin Con-
nect.

FriendScout24 10m-50m (1) Dating App. Leaks login credentials.
IBM Sametime 10m-50m (1) IBM Sametime client. Leaks login credentials.
IP Cam Viewer 100m-

500m
(1) App for viewing and controlling IP cameras.

Leaks login credentials, gives Mallory access video-
/audiostream.

Last FM 1m-5m (1) App for sharing favorite music. Leaks data during
login process.

Mamba 100k-
500k

(1) Dating app. Leaks account information.

Messenger With You 10m-50m (1) MSN Messenger. Sends the credentials in an obfus-
cated way.

Mobli 100k-
500k

(1) Photo sharing app. Leaks credentials, contacts and
GPS location.

Pinger SMS Free 10k-50k (1) SMS app. Leaks login credentials.
Pizza.de 100k-

500k
(1) Pizza ordering app. Leaks login credentials.

SonicWALL Mobile
Connect

5k-10k (1) Firewall administration, Establishes connection via
broken SSL.

Total Recall 500k-1m (1) Call recorder. Checks premium status over broken
SSL.

TouchDown Tablet 50k-100k (1) Exchange and Active Sync mail app. Leaks login
credentials.

VR Banking 1k-5k (1) Banking application. Credentials and PIN are trans-
mitted over broken SSL.

VZ-Netzwerke 500k-1m (1) Social network client. Leaks data during login pro-
cess.

WordPress 1m-5m (1) Blogging tool. Leaks account information.
World of Tanks Assis-
tant

100k-
500k

(1) Gaming asistant tool. Leaks credentials.

xScope Browser 500k-1m (1) Browser, that accepts arbitrary certificates.
AlwaysOnPC-
HD:Office,Chrome

10k-50k (2) Virtual PC app. Leaks login credentials.

BILD 500k-1m (2) News app with premium features. Checks premius
subscription over broken SSL, allowing a MITM to
obtain such a subscription.

Box 1m-5m (2) Document sharing application for enterprises. Leaks
login credentials.

157

5 Security Vulnerability Analysis of Mobile Apps

Cisco WebEx Meetings 100k-
500k

(2) Cisco WebEx client. Leaks login credentials.

DS file 100k-
500k

(2) Access remote files.

Flickr 500k-1m (2) Flickr client. Leaks Facebook/Google credentials
during login.

Forfone 500k-1m (2) App for the SIP protocol and text messages. Leaks
login credentials and data.

Formspring 100k-
500k

(2) Questionaires and photo sharing app. Leaks login
credentials.

Hipster 10k-50k (2) Photo sharing and social network app. Leaks login
credentials.

HootSuite 100k-
500k

(2) Social networking app for Facebook, Twitter, etc.
Leaks login credentials.

HP iLO Mobile 5k-10k (2) Control remote servers. Allows to shutdown servers.
Leaks login credentials.

MailDroid 500k-1m (2) MailDroid is a free IMAP/POP3/Exchange email
client. It leaks login credentials as well as emails
themselves.

Miner Status 5k-10k (2) Bitcoin mining status app. Leaks the miner-API key.
Monster 1m-5m (2) Job search app. Leaks login credentials.
Moxier Mail Trial 100k-

500k
(2) Exchange Active Sync mailing app. Leaks login cre-

dentials.
Posterous Spaces 100k-

500k
(2) Photo and Video sharing app. Leaks login creden-

tials.
Privat24 50k-100k (2) Banking app. Leaks login credentials.
TouchDown Phone 500k-1m (2) A free Exchange and ActiveSync client. Leaks login

credentials.
WhatsApp Messenger 10m-50m (2) Messaging app. Leaks credentials during registra-

tion.
Zoner AntiVirus Free 100k-

500k
(2) Antivirus App. Loads signatures over broken SSL,

allows the injection of arbitrary signatures.
Facebook Themes 500k-1m (3) Color theming for the Facebook website. Leaks Face-

book credentials.
LetMeCU 100k-

500k
(3) Dating app. Leaks login credentials.

QuickWindowsLiveHotmail100k-
500k

(3) Email app. Leaks login credentials.

Yahoo! 1m-5m (3) Yahoo! news and services. Leaks login credentials.

158

5.3 AndroLyze: Static Mobile App Analysis

5.3 AndroLyze: Static Mobile App Analysis

5.3.1 Introduction

With the rise of mobile applications (“mobile apps”) and the availability of app market
places, the security and privacy risks associated with mobile apps increase accordingly.
Not only mobile malware is growing, but also the risk for private and corporate data
posed by badly written software as shown in the previous section. As a consequence,
more and more security checks are developed [159] [9] [180] [181] [182] to analyze
mobile apps. The focus is not solely on identifying malicious software, but also on
spotting potential privacy breaches [183] and corporate data leaks [184] or indicating
bad programming issues such as energy bugs [185]. In the last years, researchers did
not only look at cherry picked applications from various market places, but also mass-
analyzed apps ranging from a few hundred [159] over several thousand [9] up to over
a million mobile apps [182].

Performing mobile app analysis in an automated manner is interesting for the
research community as well as for the corporate world. However, setting up an envi-
ronment for different analyses is a tedious task, and conducting mass security scans of
apps is quite time-consuming.

In this section, AndroLyze, a distributed framework to analyze large numbers of
apps in an efficient manner, is presented. AndroLyze combines several key features in
a novel way that distinguish it from other work on mobile app analysis:

• AndroLyze offers a utility library for standardized writing of static analysis scripts
• AndroLyze provides unified logging and reporting functionality backed by a

database
• AndroLyze can handle large sets of mobile apps, including different versions of

an app
• AndroLyze achieves efficiency through parallelization and distribution among

CPU cores, CPUs and servers
• AndroLyze relies on optimized job scheduling to obtain faster analysis times

By having a standardized way of writing and deploying scripts as well as a properly
defined output format, it is much easier to incorporate security checks into the devel-
opment process or use the knowledge of various script sources to improve corporate
security by enriching black-/white-lists of mobile device management solutions. To
demonstrate the benefits of AndroLyze, the Top Free 500 Android apps of all categories
in Google Play collected over three years are analyzed. The whole data set consists of
almost 40,000 apps requiring about 227 GB of storage space.

Parts of this section have been published in [10].

5.3.2 Related Work

Several approaches in the literature rely on Android app analysis, ranging from the
detection of privacy leaks to misuse of cryptography and certificates as well as iden-
tification of malicious software. However, very few publications address the issue of
mass-analysis of Android apps. Most approaches are ”hand-made” and are only suit-
able for a particular use case, and they do not provide version and result management.

159

5 Security Vulnerability Analysis of Mobile Apps

A common basis for manual and automatic app audits has been developed by Desnos
et al. [186]. This framework written in Python is called Androguard and offers features
such as disassembly, decompilation, control flow graphs and similarity search. The high
number of features and the possibility to easily write scripts using them, combined
with constant improvements over the years, added to Androguard’s popularity.

Viennot et al. [182] have conducted a study of Google Play and developed PlayDrone, a
crawler of the Google Play store including a distributed analysis framework. Downloaded
APKs are decompiled with dex2jar and JD-Core and stored in Git repositories located
on worker nodes as well as on ElasticSearch. The latter offers full text search and an
analysis engine for an app’s source code. AndroLyze differs from PlayDrone in the
fact that it offers a native decompiler and uses MongoDB, a NoSQL database for result
evaluation and storage. Furthermore, it achieves efficiency through parallelization and
optimized job scheduling, and can handle different versions of an app.

Fahl et al. [9] have conducted a mass audit of APKs using a script based on Androguard
named MalloDroid to identify security issues in the use of transport layer encryption
in apps. No special infrastructure used in the analysis is presented, and the system is
specifically tailored to perform SSL/TLS analysis. Cryptography related analysis has
been performed by Egele et al. [187] in their empirical study. Their static analysis tool
called CryptoLint is also based on Androguard, and the number of APKs analyzed is
comparable to the work by Fahl et al. [9]. A similar approach has been taken by Felt et al.
[159] for their static analysis tool Stowaway to analyze app permissions. Using Dedexer
to disassemble the APKs, the output is analyzed and the results are manually stored.
Further research on permission based problems with Android applications has been
done by Bartel et al. [188] by using static analysis to build call graphs, but focusing on
the Android framework itself and not on the apps. Fend et al. [189] use static analysis
of applications to detect malware. By performing inter-component control flow analysis
and static taint analysis, APKs from Google Play are analyzed. Static analysis is based
on SOOT42 for the task at hand. Kim et al. [183] have developed static tests to detect
privacy leaks in Android applications. The main component is a modified decompiler
and an intermediate language for their analyzer. Another approach to static analysis
has been presented by Payet et al. [190] by extending the Julia static analyzer to work
with the specific requirements and features of Android applications. Only tens of apps
have been tested, and with a runtime of 7 minutes per app, speed can be an issue for
mass audits. Static analysis is also part of the work done by Schmidt et al. [191]. For
their collaborative malware detection function, calls made in the Android environment
are extracted for automatic classification and comparison with malware. All of these
papers focus on their specific tests and have their own implementation to handle large
amounts of APKs. In contrast, AndroLyze provides a standardized way offering a single
platform for all kinds of security checks regardless of the target and also with analysis
speed in mind to execute them as fast as possible.

Grace et al. [181] have developed RiskRanker to detect apps exhibiting dangerous
behavior. Apart from offering this particular type of analysis, the authors focus on
execution speed to potentially handle large numbers of APKs. Nevertheless, RiskRanker
does not provide a general purpose platform for other tests or a mixture of different
analysis scripts.

SAAF developed by Hoffmann et al. [192] is a general framework for static Android

42https://sable.github.io/soot/

160

https://sable.github.io/soot/

5.3 AndroLyze: Static Mobile App Analysis

app analysis. It can be used for manual and automated checks. While it aids developers
in writing new security checks and provides fast execution times for single scripts, it
does not provide support for effectively handling results and large numbers of APKs
and scripts.

An approach combining different solutions for Android malware detection has been
presented by Maggi et al. [180]. Similar to Google’s VirusTotal43, AndroTotal is a platform
based on virtual Android devices running different malware detection software and
giving users submitting samples feedback based on the results. The focus is solely on an
infrastructure for dynamic analysis including user-interaction automation. Integration
of different ready-to-run native anti-malware apps in the Android emulators is provided,
but there is no support for third-party developers, and there is no scheduler optimized
for fast results while conducting mass audits in place.

Andrubis developed by Weichselbaum et al. [193] is a platform combining dynamic
and static analysis. Static analysis is used to aid and fine-tune dynamic analysis
and providing additional information about an app, such as permissions, activities,
broadcast and receivers. While Andrubis has been designed for broad tests written for
dynamic analysis on larger sets of APKs, the requirements for this hybrid approach are
quite different from AndroLyze, and it lacks the unification and rapid writing of static
analysis tasks AndroLyze provides.

5.3.3 AndroLyze’s Design

This subsection presents the design and analysis approach taken by AndroLyze, as
illustrated in Figure 5.4. The bottom part of Figure 5.4 shows that AndroLyze has a
direct link to Google Play to download apps. Moreover, it shows an analyst with an
import database carrying information about the APKs to be analyzed. Importing apps
into a local database enables certain filter and sorting capabilities, but AndroLyze
can also be used without using a local database. AndroLyze already comes with a
built-in set of scripts, such as extracting permissions from the manifest, disassembling
or decompiling the APK. Additional analysis criteria require users to write custom
scripts based on the functionality of Androguard [186].

The top part of Figure 5.4 illustrates the analysis approach. There are different modes:
Depending on the number of applications, a user can start an analysis either locally
(local mode) or on a cluster of nodes (distributed mode) to further improve performance.
Both modes operate in a fully parallel manner, leveraging all available cores of the used
processor(s).

The distributed mode shown in Figure 5.4 works as follows: Initially, the scripts are
deployed via SSH on the available nodes. Tasks are sent to a distributed job queue
and processed by a pool of worker nodes. The APKs are either stored in the jobs or
predistributed and available in the APK cache. After a node has finished a job, it stores
the outcomes in the result database. Finally, an analyst can view and evaluate his or
her findings either using AndroLyze directly, sending custom queries to the database, or
by syncing all results and performing a local analysis or review.

AndroLyze is designed to analyze large numbers of APKs in a short amount of time.
More nodes can be added on the fly to further improve performance and reduce the
analysis time.

43https://www.virustotal.com

161

https://www.virustotal.com

5 Security Vulnerability Analysis of Mobile Apps

Analysts Machine

AndroLyze

Analyst

Import
DB

APK
Cache

Result
DB

APK
Cache

Result
DB

Jo
b

Q
ue

ue
Result

APK

Worker
Nodes

Script + APK
Information

Figure 5.4: Analysis approach of AndroLyze

In the following, the design of AndroLyze is explained in more detail, describing
the script framework, the storage system and the parallel analysis engine. Finally, the
reader is guided through a typical workflow using AndroLyze.

Script Framework

The heart of AndroLyze is the script framework. User defined analysis features can be
implemented with Python scripts leveraging the power of Androguard [186].

Script Requirements Scripts in AndroLyze can be written for different purposes, such
as collecting information from the Android manifest, accessing information gathered
by analyzing the disassembly, checking where and which permissions are used in
the code, creating the control flow graph or decompiling the application. These tasks
differ in their demands they pose on Androguard. AndroLyze takes advantage of this
fact to improve performance by requiring script authors to signal their requirements to
implement certain analyses. Therefore, AndroLyze can scale down the requirements of all
scripts to the lowest common denominator, resulting in the best analysis performance.
The built-in scripts are written in a modular way, and functionality can be chained
together on demand.

Logging Logging the results of an analysis in a structured fashion is important for any
evaluation study. The AndroLyze script framework comes with a set of functions to log
common data types. Additionally, results can be summarized to groups of particular

162

5.3 AndroLyze: Static Mobile App Analysis

interest. Examining the manifest, for instance, might lead to a structure such as manifest
→ permissions→ {permission1, ..., permissionn}.

Very large and/or binary data is supported by the logging component. It is directly
connected to the storage architecture, thus all results are kept in the result database
and optionally in the file system of the analyst.

AndroLyze does not enforce a static schema for results, but requires a script author
to register a basic structure such that a result can be rendered to hold initial default
values. This offers the possibility to visualize results in the absence of any logging and
makes the comparison of app versions easier.

Storage & Analysis

AndroLyze provides an import database that carries meta-information about the APKs,
a result database for storing the results and an APK cache for the .apk files. One of
the main design goals of the import database is to manage different versions of an
application, either from different sources (e.g. Amazon Market or Google Play) or different
builds. This can be used for historic analysis, e.g., to see how long different bugs were
present or to determine application trends on a broader scale, such as the adoption of
technologies like HTML5-based frameworks or the use of encryption over the course of
several month or years. To collect these different versions, AndroLyze allows analysts to
update the database by downloading newer versions, if present, directly from Google
Play. Thus, evaluations can not only be performed on the most recent APKs, but also
on earlier versions several years back.

The analysis can be performed in two different modes, called local parallel and
distributed parallel. The local parallel mode offers the possibility to use AndroLyze
without the need to install a distributed system. The distributed parallel mode enables
the system to further improve performance by adding more nodes on demand.

Both implement dynamic scheduling to utilize all available nodes, hence all cores/pro-
cessors as long as possible. However, since the analysis time between jobs may differ
strongly, long running jobs are scheduled first. Since most scripts analyze some piece
of code, the size of the classes.dex file is used as a simple metric for a job’s runtime. This
approach is called Code Size Scheduling (CSS). With both dynamic scheduling and CSS,
parallel execution can be performed as long as possible.

The actual analysis process is as follows: A worker fetches a job from the task queue,
performs an analysis and stores the outcomes in the result database. A job represents
the analysis of a single APK with a given set of scripts. An APK is either part of the job
or fetched from the APK cache if the applications have been imported beforehand. In
addition to the analysis results, the system stores the identifiers of the analysis results
in the job queue such that the analyst can view his or her findings directly after the
analysis has finished.

Workflow

To illustrate the approach in action, the reader is now guided through a typical workflow
while using AndroLyze.

Figure 5.5 summarizes the architecture and common steps required for an analysis.
First, the analyst needs to obtain the APKs (s)he wants to inspect. The link to Google

163

5 Security Vulnerability Analysis of Mobile Apps

AndroLyze

Analysis environment

Determine
minimum script
requirements

Get job

Store results

Provide work

Analyze
results

6

Start
analysis

5

Load APK meta

Synchronize

Analyst Job Queue

Import
DB

Result
DB

APK
Cache

Import
APKs

1

3

Download
APKs

2

Create
script

Distributed mode
4

Deploy
scriptsOptional

Result
DB

APK
Cache

Optional

Figure 5.5: Typical workflow while using AndroLyze

Play44 offers the possibility to download single applications via the package name or
to download the newest or most famous APKs from either a particular category or all
categories (Step 1). Importing the apps into a local database (Step 2) is not required,
but enables an analyst to use our advanced scheduling and filtering functionality. The
next step is to create a script (Step 3) suitable for AndroLyze, leveraging the power of
Androguard in order to implement the needed analysis functionality. The more nodes
one has, the faster the entire analysis is. Therefore, it is recommended to use the
distributed parallel mode for larger sets of applications. It assumes that all nodes have
been started and that the scripts have been deployed (Step 4). The deployment process
can be handled through AndroLyze and requires an analyst to have SSH access on the
nodes. After Steps 1-4, the actual analysis process can be triggered (Step 5). Initially, the
APK meta-information is loaded, either from the .apk files supplied by the analyst or
from the import database. For an efficient analysis (Step 6), the minimum requirements
that satisfy all scripts are determined and sent together with information about the
scripts and the applications to the distributed job queue. The worker nodes in the pool
fetch one job after the other, perform the analysis and store the outcomes in the result
database. The results can be synchronized, concurrently to the analysis process, to the
local hard disk drive of the initiator of an analysis. Finally, the findings can be further
processed or evaluated.

44The listing of the most famous or newest applications in a certain category is limited by n = 500 [182]

164

5.3 AndroLyze: Static Mobile App Analysis

5.3.4 Implementation

In this subsection, implementation details of AndroLyze, including the script framework,
the storage and the analysis components, are described.

Script Framework

There are two types of scripts, implemented as subclasses of either AndroScript or
ChainedScript. The first provides the analysis functionality for scripts, the latter en-
ables the chaining of scripts to bundle their functionality. Depending on the script
requirements the analyst needs, the following analysis objects are provided:

• DalvikVMFormat: Creates a disassembly and provides access to classes, fields
and methods.

• VMAnalysis: Analyzes the disassembly to check, for example, where which
permissions are used or if reflection or dynamic code loading is used.
• GVMAnalysis: Creates the control flow graph.
• XREF: Detects cross-references between methods.
• DREF: Detects cross-references between data fields.

Through the definition of requirements, AndroLyze can query all scripts and determine
the minimum script requirements to provide the necessary analysis functionality.
Without defining any requirements, it is only possible to access the raw .apk file or its
contents, such as the manifest file.

Every script has access to the logging framework, allowing unified logging in a
structured fashion. AndroLyze supports logging of all JSON serializable data types,
such as booleans, integers, strings, lists and dictionaries. Internally, a dictionary keeps
all reported results, extended by static information about the analyzed APK as well
as the script. Moreover, AndroLyze offers a custom storage interface for text files,
graphs or other binary data. Statistics about the analysis time help to improve the script
performance.

Storage

The storage implementation is divided into two parts: the import and the result
database. Both are described below.

Import Database Even if the analyst has many APKs, (s)he might be interested in a
subset or a single application only. To provide filters, AndroLyze needs information from
the application’s manifest. The import mechanism extracts data such as the package name
and version number from the manifest. Moreover, it stores the size of the classes.dex file as
a metric for the script runtime used for the improved job scheduling. Instead of relying
on Androguard to perform the import, a faster solution was developed that extracts only
the manifest, thus preventing the extraction of the whole .zip file as Androguard does
it. The import process is fully parallelized and all operations are executed in-memory
after the APK has been loaded. A SHA 256 message digest45 over the whole APK serves
as a unique key in the database and enables management of different versions of a
single app. Therefore, AndroLyze can provide a security track record over many releases.

45In the following, message digest or hash always refer to the usage of the SHA 256 algorithm

165

5 Security Vulnerability Analysis of Mobile Apps

Labeling a data set in order to provide a better distinction between different APK sets
is also allowed. Finally, the meta-information is stored in a local SQLite database so that
different analysts can manage their databases independently of others.

Result Storage In contrast to the local import database that is basically a flat file,
MongoDB46, a schema-free NoSQL database for the distributed result storage, is used.
Therefore, all users of AndroLyze share the same result database. Nevertheless, different
views on the database can be used to distinguish between data sets.

AndroLyze adds meta-information for an APK, such as package name, version name,
build date and message digest, to the result. Additionally, information such as script
name, hash, version number and the analysis date are added as script meta-information.
This meta-information about the APK and script add fields to the result layout, allowing
to formulate queries for the database without any knowledge of the actual results. A
result is defined as the outcome of the analysis of a single APK using a single script.
New results with the same script name and APK hash replace old ones47. In addition
to the result storage in the database, AndroLyze can store the results formatted as JSON
strings on the local hard disk drive.

GridFS To support the storage of files larger than the MongoDB limit of 16 MB,
AndroLyze uses MongoDB’s GridFS that splits BSON documents into binary chunks.
Two collections, one for the chunks, the other for the meta-information, are used to
reassemble the whole file. The method is used for storing large results and APKs48.
AndroLyze does not decide on the fly to use GridFS for large results due to the fact that
storing results in a binary format allows analysts to query only the meta-information
of the results.

Key Escaping Reserved characters such as ”.” and ”$” need special treatment if
they are used as keys in the result. This is important when using the package name
in a query. AndroLyze escapes them with ” ” and ” $”, respectively. Key escaping is
only necessary if queries are sent directly to MongoDB, since AndroLyze automatically
handles this while creating queries.

Analysis

Although the local parallel and distributed parallel mode share the same conceptual
design, they differ in their implementation details. Both modes use processes instead of
threads, because, due to the Global Interpreter Lock, only one Python thread can execute
code at once in the interpreter. On each node, as many processes as the CPU has cores
(including multithreading) are spawned. Providing the Androguard analysis objects,
such as the disassembly, implicates overhead that can be reduced by the definition of
script requirements. This enables AndroLyze to use the minimum script requirements
needed to perform an analysis. Due to the overhead involved, an APK is opened only
once and all scripts are run afterwards.

46https://www.mongodb.org
47The keys for the results are generated by hashing the script name and the APK message digest
48We integrated the GooglePlayCrawler into AndroLyze to access the Play Store and download the APKs

166

https://www.mongodb.org

5.3 AndroLyze: Static Mobile App Analysis

Local Parallel Mode The local parallel mode uses a synchronized queue to distribute
the work among the processes. The queue memorizes the path to the APK and the
meta-information. After a successful analysis, the results are stored in MongoDB.

Distributed Parallel Mode The Celery framework49 is used to implement a message-
oriented middleware in combination with RabbitMQ50 as a distributed task queue.
Celery acts as a message broker and provides worker instances to execute the actual
analysis jobs. Each process maintains a single Celery task instance that is kept alive
as long as Celery is started on the node. Therefore a persistent database connection
can be kept for the result storage. To avoid idle times, a process reserves one task per
process that is preloaded. Therefore, if the APK has been integrated into the message,
it is already available when the process starts the analysis. The actual analysis process
is as follows: Tasks are serialized with the Python Pickle module and sent to RabbitMQ.
Celery workers retrieve a job and perform the analysis on the given APK with all scripts.
Afterwards, the results are stored in MongoDB. The identifiers of each result are kept in
RabbitMQ in a reserved queue only for the job results. The initiator of an analysis has
a callback handler registered for this queue so that (s)he can synchronize the results
concurrently to his or her local hard disk drive. All steps in the analysis process are
fault tolerant. Thus, if a node fails, the job can be executed by any other node. The
connection to RabbitMQ and MongoDB can be fully encrypted, using X.509 certificates.

5.3.5 Experimental Evaluation

In this subsection, the performance of AndroLyze is evaluated. First, speed improvements
by import parallelization and by on-demand script requirements are demonstrated.
Afterwards, the local parallel and distributed parallel modes are investigated as well as
the APK distribution strategies. Then, the overall performance of AndroLyze is illustrated
by evaluating the analysis time of almost 40,000 applications (i.e., the Top Free 500

APKs from all categories collected in three years: 2012, 2014 and 2015). Finally, the
results of a study on the use of cryptographic code in this set of APKs is presented.

Test Environment

In total, 7 computers are used in the experiments. Each has an Intel Core i7-4771

processor, 32 GB RAM, a 240 GB SSD, and two hard disk drives with both 3 TB storage.
They are connected via Gigabit Ethernet, and all except one computer host a KVM
virtualized machine (VM) that has only 16 GB RAM and a 128 GB HDD (no RAID),
except for the job queue which has 512 GB of additional space.

Table 5.5 shows the APK sets used in the experiments: the Top Free 4, 100 and 500

applications51 available from all categories in Google Play. Furthermore, snapshots of the
Top Free 500 applications of the years 2012, 2014, and 2015 were collected, and merged
in the set Top Free 500 Archive to demonstrate the versioning system and security track
capabilities of AndroLyze.

49http://www.celeryproject.org
50http://www.rabbitmq.com
51The shown numbers do not take duplicate apps (same hash) into account. Duplicates can occur

because an app may be present in more than one category

167

http://www.celeryproject.org
http://www.rabbitmq.com

5 Security Vulnerability Analysis of Mobile Apps

Table 5.5: APK test sets

Set # unique APKs Size in MB

Top Free 4 102 1,159

Top Free 100 2,519 22,315

Top Free 500 12,689 91,764

Top Free 500 Archive 39,725 226,798

The used script sets shown in Table 5.6 start with scripts that extract information
from the manifest only. The next set adds partial SSL analysis capabilities from Mallo-
Droid (Sec. 5.2). Bytecode has additional scripts listing the classes and fields using the
disassembly as well as creating a method call graph. In addition to Bytecode, Source code
performs decompilation with the help of Androguard’s DAD decompiler.

Table 5.6: Script test sets

Set Reqs. Scripts

Manifest None Activities, BroadcastReceivers, ChainedApkInformation,
ContentProviders, Files, Intents, Libs, Permissions, Services

+SSL XREF Manifest, SSL
+Bytecode XREF +SSL, AnalyzeFrameworks, ClassDetails, ClassListing,

MethodCallGraph
+Source code XREF +Bytecode, Decompile

Import

The first experiment is performed on a single computer and inspects the performance
improvements achieved by parallelizing the import and using the import code compared
to the standard Androguard import.

Figure 5.6: Parallelization of APK import

Figure 5.6 shows three curves: The orange (middle) curve is the import using An-
droguard to open the APK and to extract the needed manifest information. The blue
(bottom) curve points out the speed improvements over Androguard since only the

168

5.3 AndroLyze: Static Mobile App Analysis

manifest needs to be extracted from the .zip file and all other processing of the APK
can be omitted at this stage. The green (top) curve shows the influence of concurrently
copying the APKs to the local hard disk drive. For each run, the import database as
well as the import directory for the APKs were deleted. The database is created on
the SSD while the APKs are copied from and to the local hard disk drive. With only
one process, the improved import mechanism is 2.03 times faster than Androguard.
Even though the performance benefits decrease with more processes, there is still an
improvement of 19.24% with 19 processes, which is the best value for the Androguard
import. Moreover, copying the APKs clearly reduces the import speed because the hard
disk drive is involved, but even here there is a performance increase of 98.87% with 18

processes compared to 1 process.

Scripts

The next experiment measures the impact of the analysis object provisioning time on the
script runtime. For this purpose, a scriptwas created for each available analysis object,
signaling only the particular script requirement that is to be examined. The method
body of the procedure responsible for the actual analysis was left empty. Nevertheless,
meta-information about the script and APK is still logged and stored in the file system
as well as in MongoDB, because this is automatically done by AndroLyze. The network
is not involved in this test scenario, since only a single computer with a local MongoDB
instance in the local parallel mode is used.

Figure 5.7: Relation between script requirements and runtime

The results of this experiment shown in Figure 5.7 indicate that providing the analy-
sis objects only on demand improves performance. Providing access to the manifest
for all 102 applications of the APK set Top Free 4 is very fast. As soon as the first
requirement is needed, the runtime gets approximately 100 seconds longer (DalvikVM-
Format, VMAnalysis and GVMAnalysis) because the disassembly etc. have to be created.
Creating cross-references between methods (XREF) and fields (DREF) are the most
time-consuming requirements.

Local Parallel Mode

To evaluate the performance of the local parallel mode, the APK set Top Free 4 was used
and then analyzed with the script set Source code. The results in Figure 5.8 show that a

169

5 Security Vulnerability Analysis of Mobile Apps

speed-up of 3.19 is achieved using 4 processes instead of only 1 process, each of them
assigned to a single CPU core of the used computer that is equipped with 4 CPU cores.

Figure 5.8: Local parallel mode +Source code

Figure 5.9: Comparison of job scheduling strategies

Figure 5.9 shows the distribution of analysis tasks among the CPU cores using two
different scheduling strategies. The first scheduling strategy is based on the ascending
order of the package names, while the second (CSS) uses the code size and schedules
jobs with a large code sizes first. Each job is represented by a different color and its
block size in the chart corresponds to its runtime. The figure shows that the analysis
of a particular job took very long, which is caused by the decompilation script. With
CSS, this long running job is scheduled earlier, resulting in a reduced analysis time
(233.15 seconds). With improved scheduling, the speed-up of 3.19 shown in Figure 5.8
is improved to 3.59.

To validate the performance benefits of CSS, an experiment was carried out that uses
the same script set as the experiment before, but does not use the decompilation script,
thus eliminating the long running process. The results in Figure 5.10 show again that
CSS exhibits a better performance. The speed-up is improved from 3.69 to 3.8.

Distributed Parallel Mode

To evaluate the distributed parallel mode, the performance properties of both modes
including CSS are compared. Using 4 computers (3 of them with a KVM VM each), the
distributed environment has been set up as follows: The result database is located on

170

5.3 AndroLyze: Static Mobile App Analysis

Figure 5.10: Local parallel mode +Bytecode

the computer without a VM, whereas the distributed message queue runs in a VM. The
analyst initiates the analysis from the computer without a VM and integrates the APKs
located on the hard disk drive into the messages sent to RabbitMQ. The serialization of
the APK data as well as the network is taken into account.

Figure 5.11: Distributed parallel mode + SSL vs. local parallel mode +SSL

Figure 5.11 shows the analysis of the data set Top Free 4 (left) and the analysis with
the set Top Free 100 (right). Both use the script set +SSL, and each physical machine
runs 8 processes. The results for Top Free 4 indicate that AndroLyze is optimized for
a large number of jobs. The speed-up between the local parallel and distributed parallel
mode is only 2.17 and 2.41 with CSS. This result can be explained by the reservation of
tasks. Each process reserves one task, hence in the worst case, a worker may be free for
work, but all other workers have reserved the remaining tasks. Another problem is the
granularity of the tasks, because in our scenario the last 31 jobs are executed by less
than 32 processes (the total number of processes). The results for Top Free 100 show
that a speed-up of 3.26 and 3.31 with CSS could be obtained. In both cases (Top Free 4

and Top Free 100), CSS improves the performance.

APK Distribution

The next experiment investigates the data throughput of the proposed APK distribution
strategies. Figure 5.12 compares both APK distribution strategies (Send APK vs. Send
APK-ID) in the distributed parallel mode with the local sequential and local parallel

171

5 Security Vulnerability Analysis of Mobile Apps

mode. The used test set Top Free 500 consists of 12,689 APKs with a total size of 91.8
GB to measure the throughput of serializing the APKs and the distribution through
MongoDB. The script set Manifest for unzipping the APK and extracting the information,
is used in this experiment.

Figure 5.12: APK distribution

The result synchronization from MongoDB to the initiator of the analysis has been
disabled in this experiment because it puts more load on the database and may influence
its APK distribution. The results shown in Figure 5.12 indicate that the local parallel
mode is faster than the distributed parallel mode, no matter which APK distribution
strategy is used. Integrating the APK into the message that is sent to RabbitMQ allows
preloading the message, because every process reserves one task. Prior importing of
the APKs into MongoDB and only sending the identifier of the application forces the
worker to fetch the APK from MongoDB before it can start the analysis. Moreover, the
APK has to be build together from all of its chunks52. The distribution via MongoDB is
17 minutes and 26 seconds slower than the distribution via RabbitMQ.

Nevertheless, the distributed parallel mode is valuable, since MongoDB’s sharding
facilities can be used to distribute data records among several instances. Having enough
MongoDB nodes can circumvent the bottleneck that can occur while serializing and
sending apps from the analysis initiator over the network. Furthermore, the caching
behavior of MongoDB allows MongoDB to be used as an in-memory database. In the
experiment, MongoDB was stopped, all unused pages removed and then the service
was started again to prevent this effect.

Overall Performance

Now follows a presentation of an overall performance evaluation of AndroLyze. Figure
5.13 shows the results of executing a single script on the data set Top Free 500 Archive
on 7 computers, each running 8 Celery processes.

The first script (left) does not need any analysis objects. Thus, job execution is much
faster than loading the APK data from the hard disk drive and transferring it over the
network. Obviously, increased script requirements increase the runtime. ClassListing
(i.e., list all classes) and ClassDetails (i.e., list all classes and additionally show fields and
methods) do not need any cross-references because they only access the disassembly.
Creating cross-references, as needed by CodePermissions, WebView (i.e., list all methods

52AndroLyze sets the chunk size as large as possible, preventing more chunks than necessary

172

5.3 AndroLyze: Static Mobile App Analysis

Figure 5.13: Performance of AndroLyze

using the WebView class), SSL, CryptoStats (see Section 5.3.5) and MethodCallGraph,
adds more than one hour to the analysis time. Most of the time is needed to decompile
all apps with Androguard’s DAD decompiler, which consumes 9 hours and 24 minutes.
Since there is an overhead for opening the APKs and providing the analysis objects, an
analysis with all scripts where the objects are only provisioned once and shared, is 19

hours and 35 minutes faster compared to running all scripts alone.

AndroLyze@Work: Use of Cryptographic Code in Apps

To demonstrate the benefits of AndroLyze in a concrete analysis scenario, a study on the
use of cryptographic code in APKs in the data set Top Free 500 Archive was conducted.
The script checks for explicit calls to the block cipher modes ECB (Electronic Codebook)
and CBC (Cipher Block Chaining) as well as for the most preferred ciphers, which in
total took 3:29 hours to complete on 7 computers. The results are shown in Figure 5.14.
They are in line with the results by Egele et al. [187], since many apps use cryptographic
functions (65.65 %) somewhere in their code. Since there were snapshots of the Top
Free 500 apps of all categories from different years, it was also analyzed which apps
changed their cryptographic behavior, given they were still in Google’s Top Free 500

apps. Throughout the years, AES (Advanced Encryption Standard) has always been the
most popular cipher, and the study shows that most developers still favor AES. Overall,
many developers requested CBC mode (87.51 %) independent of the used cipher, and
only a fraction asked explicitly for ECB mode (still 20.35 %). Some apps use both modes
in different areas of code, either for backward compability, as a fallback, for file format
compability or for no apparent reason. For apps relying on ECB mode, the results show
that 134 apps removed the ECB mode in their latest version. It is evident that checks
like these and the ones performed by Egele et al. [187] should not only be performed
once, but should be incorporated in a unit test-like fashion into build or release cycles.
Having a standardized infrastructure, script, APK and result management as offered by
AndroLyze helps providing audit trails for app lifecycles and various checks developed
in-house, for the research community or for commercial entities.

5.3.6 Conclusion

In this section, a distributed framework called AndroLyze to support researchers in the
process of conducting mass-audits of Android apps was presented. It was shown that

173

5 Security Vulnerability Analysis of Mobile Apps

Figure 5.14: Crypto Statistics for Top Free 500 Archive

intelligent scheduling and APK management leads to faster results with potentially
more useful information by incorporating past versions of apps. AndroLyze has been
evaluated using the Top 500 Free apps from all categories of Google Play collected over
three years, consisting of almost 40,000 apps requiring about 227 GB of storage space.

There are several areas of future work. Currently, the analysis scripts are based
on Androguard, but AndroLyze can be used to easily plug-in other script backends
for custom checks. Furthermore, the scheduling algorithms and script management
facilities could also be used to optimize and streamline app runtime analysis. Finally,
potential applications for AndroLyze include open repositories for static checks to
bring the knowledge from the research community to app developers and into the
development process of companies.

174

5.4 Dynalize: Dynamic Mobile App Analysis

5.4 Dynalize: Dynamic Mobile App Analysis

5.4.1 Introduction

In the previous section, a framework for large scale static analysis of Android apps
was presented. Unfortunately, not all app functionality can be identified in this way.
Thus, certain bugs or vulnerabilities might be missed if relying solely on static analysis.
This can be overcome by using dynamic analysis to observe runtime properties of a
mobile app that is executed on a physical or virtual device. This process if very resource
intensive, and it proves to be even more challenging to do automated tests for larger
quantities of apps.

There are several tools that examine the runtime properties of mobile apps in order to
evaluate bugs [194], performance issues [195] or to detect malware [196]. Furthermore,
there are generic frameworks such as PUMA [197] that provide support for dynamic
app analysis, but not with respect to scalability and dynamic resource provisioning.
On the other hand, Device-as-a-Service (DaaS) providers such as Genymotion [198],
Manymo [199] and Testdroid [200] assume that a human tester controls devices remotely.
These approaches are aimed at supporting the development and evaluation of single
apps on a small number of virtual or physical devices in parallel.

In this section, Dynalize, a novel Platform-as-a-Service (PaaS) cloud for dynamic
analysis of mobile apps, is proposed. Dynalize provides a scalable platform for dynamic
app analysis, allows developers to integrate existing tools with only slight modifications
and can be used to publish analysis results as Software-as-a-Service (SaaS) offerings.
Therefore, Dynalize provides (i) a container management/job processing engine that
serves as a layer between Infrastructure-as-a-Service (IaaS) and PaaS, and (ii) a service
platform for the dynamic analysis of mobile apps.

Dynalize has the following features:

1. It runs virtual devices on top of IaaS instances, which provides scalability and
dynamic resource provisioning.

2. It makes use of containerization and container virtualization, which allows de-
velopers to execute existing tools with heterogeneous dependencies regarding
libraries and programming languages.

3. It provides a storage architecture for mobile apps, which can be used to distribute
and process large amounts of data for thousands of apps in an efficient and
coordinated manner.

4. It offers users (i) one-time and (ii) long-term provisioning, which enables users to
either (i) start and terminate IaaS instances on demand or (ii) keep IaaS instances
running in order to make use of local caches.

5. It offers a web service frontend to users, which allows users to publish their
results as a SaaS service.

Parts of this section have been published in [11].

5.4.2 Related Work

Dynamic analysis has been used to analyze mobile apps with respect to privacy [201],
security [196], [202], performance [195], energy consumption [203]–[205] and bugs [194],
[206]–[209]. Several frameworks for large-scale dynamic analysis for mobile apps [197],

175

5 Security Vulnerability Analysis of Mobile Apps

[210] and automatic test frameworks running in the cloud [211], [212] have emerged.
Furthermore, on-demand physical and virtual devices for testing individual apps with
different operating system releases and configurations [198]–[200] and clouds of devices
for automatic tests [213]–[215] have been developed.

The problem of performing dynamic analysis of mobile apps has been solved differ-
ently in the past. Approaches such as AppDoctor[207] and AndroidRipper[206] analyze
mobile apps sequentially and accelerate virtual device startups with snapshots. While
this is practicable for a small number of apps, without parallelization, dynamic analysis
on a large-scale can take months or even years. For example, a measurement study
of the Google Play store by Viennot et al. [216] has covered roughly 1 million apps.
Assuming an execution time of one minute per app, a sequential analysis of these apps
would take about two years.

Another approach is to perform dynamic analysis in parallel on a cluster of physical
[197] or virtual devices [210]. For example, Andlantis[210] can analyze 3,000 Android
apps per hour for malware on a cluster of 200 servers. Nevertheless, it relies on
dedicated resources and only supports malware analysis. In contrast, Dynalize provides
a generic solution with dynamically provisioned resources, enabling the user to analyze
mobile apps with respect to other targets than malware, such as performance, bugs or
energy consumption.

Furthermore, cloud-based approaches have been proposed for large-scale dynamic
analysis. For example, Mahmood et al. [211] have deployed the Android emulator
on IaaS instances to perform a large number of analyses in parallel. Furthermore,
Ravindranath et al. [194] have developed VanarSena, allowing app developers to
upload a Windows Phone binary and obtain a bug report within a short amount of time.
In contrast, Dynalize supports multiple platforms and custom emulators such as the
open source QEMU extension PANDA [217] that adds the ability to record and replay
executions. More importantly, Dynalize provides caching and scheduling methods to
enable the user to consider costs/performance trade-offs and to decide between one-
time or long-term analyses. Furthermore, in contrast to previous cloud-based solutions,
a layered file system has fast deployment times even if the program that performs the
dynamic analysis changes or makes use of other libraries.

More recently, container virtualization has attracted the interest of researchers (e.g.,
REMnux53). Containers can be deployed faster, compared to IaaS instances, and can be
arbitrarily assembled from multiple storage layers. Container virtualization can also be
beneficial for dynamic analysis: (i) Different virtual device emulators, programming
languages and libraries can be easily composed to an execution environment for an
analysis. (ii) Virtual devices can be recreated fast in order to provide a clean execution
environment for an analyzed app. Therefore, Dynalize adapts container virtualization
for its platform solution.

Several cloud providers already offer container virtualization services based on the
docker container engine54, such as the Amazon EC2 Container Service (ECS)55 and
the Google Container Engine56. A user can acquire a cluster of containers that can
be composed arbitrarily out of existing libraries, execution environments and – of

53https://remnux.org/docs/containers/malware-analysis/
54https://www.docker.com/
55https://aws.amazon.com/ecs
56https://cloud.google.com/container-engine

176

https://remnux.org/docs/containers/malware-analysis/
https://www.docker.com/
https://aws.amazon.com/ecs
https://cloud.google.com/container-engine

5.4 Dynalize: Dynamic Mobile App Analysis

Dynalize
platform

IaaS instance #n

C
ontainer

Virtual D
evice

Task

Local
Cache

Daemon

Local
Scheduler

Scheduler Node

Frontend

Global
Scheduler

Device
Scheduler

Data Provider

Service Node

FrontendService
Handler

IaaS Provider

Presenter

submits job
deploys
analysis

submits apps

submits job

service
user

platform
user

submits
tasks

Figure 5.15: Dynalize platform architecture.

course – virtual devices. For example, a developer performing dynamic app analysis
can start a cluster of IaaS instances and make use of a container cluster manager such
as Kubernetes57 to parallelize her dynamic analysis. But from a technical perspective,
this approach is limited. Since these approaches leave the virtual server hosting the
virtual container unmodified, the local storage cannot be used as additional cache,
which is not efficient if large numbers of applications should be analyzed. For example,
the study of Viennot et al. [216] is based on a data volume of 5.3 TB. Even smaller data
sets with a volume of a few GBs require that the data is distributed and processed in
an efficient and coordinated manner. Therefore, in contrast to pure container services,
Dynalize provides a novel storage solution: It employs app prefetching and caching on
the IaaS instance executing the Dynalize container, using a local cache daemon.

5.4.3 Dynalize’s Design and Implementation

Dynalize consists of dynamically provisioned IaaS instances, a central Scheduler Node
and a Service Node (see Figure 5.15). The components of Dynalize are described below.

IaaS Instances

Figure 5.16 shows the layout of an IaaS instance provisioned by Dynalize to analyze
mobile apps. On the left side, the relation between data provider, local cache daemon
and the container is shown. On the right side, the relation between global scheduler,
local scheduler and local cache daemon is illustrated. Basically, the global scheduler
partitions the total set of apps and sends a list of tasks to the local schedulers residing
on the IaaS instances (see Section 5.4.3). An IaaS instance usually hosts two or more

57https://github.com/GoogleCloudPlatform/kubernetes

177

https://github.com/GoogleCloudPlatform/kubernetes

5 Security Vulnerability Analysis of Mobile Apps

IaaS instance

O
ut

go
in

g
Da

ta
 C

ac
he

C
ontainer

Virtual Device

Environment Task

Local Cache Daemon

In
co

m
in

g
Da

ta
 C

ac
he

Task Layer

Environment Layer

Virtual Device Layer

Data Provider

Local Scheduler

Global Scheduler

Figure 5.16: Layout of an IaaS instance used to analyze apps with Dynalize.

containers that are created and coordinated by the local scheduler. When a list of tasks
is received, the local scheduler triggers the local cache daemon to asynchronously
download these apps from the data provider. In the meantime, the containers are
created and the virtual devices are started.

Container Layout In general, container virtualization makes use of operating system
level virtualization: The host kernel is shared with several isolated process groups
(in the remainder of the work referred to as containers or guests) that appear as
separate physical systems to guest processes. In contrast to full- and para-virtualization
solutions, container virtualization is lightweight; it enables isolated environments for
user processes without additional virtualization overhead. The file system within a
container is composed of several layers during creation time: Each layer represents
a separate folder on the host’s file system. During startup, these folders are overlaid
transparently and form a single coherent file system using a storage backend.

During the development of Dynalize, three different storage backends were evaluated:
Advanced Union File System (AUFS)58, LVM2 DevMapper59 and VFS60. AUFS is a
union file system that provides a file-level Copy-On-Write (COW) mechanism, while
DevMapper is the kernel part of the LVM2 logical volume system, implementing a
block-level COW. VFS does not provide COW support, instead a container’s file system
is formed by making a deep copy of its layers. The main advantages of composing a file
system consisting of layers are deployment time and reusability of the base layer. Since
AUFS gives the best results with respect to container startup times and throughput (see
Section 5.4.4), Dynalize makes use of AUFS.

A Dynalize container consists of the following layers: (i) The virtual device layer, (ii)
the environment layer and (iii) the task layer. The term task refers to the analysis of a
single app, while the term job refers to a list of apps to be analyzed. The virtual device

58http://aufs.sourceforge.net/
59http://sourceware.org/lvm2
60https://www.docker.com/

178

http://aufs.sourceforge.net/
http://sourceware.org/lvm2
https://www.docker.com/

5.4 Dynalize: Dynamic Mobile App Analysis

layer contains the emulation program for the virtual device and its virtual storage,
i.e., its system image and a virtual SD card. This layer may contain emulators such as
the Android Emulator, but also software such as the open source QEMU extension
PANDA [217]. Dynalize virtual devices rely on full system emulation, since they are
executed on the application layer, and hardware-acceleration is usually not supported
in an IaaS cloud. On the other hand, full system emulation supports the execution
of both native ARM or x86 binaries, which is not the case with hardware-accelerated
x86-emulators. Furthermore, Dynalize offers different virtual device types, reflecting
different amounts of resources reserved for each virtual device. The environment layer
consists of programming languages, libraries and other dependencies for the execution
environment of a dynamic analysis. It contains dependencies that are consistent for a
long period and not changed with every minor update of an analysis. Finally, the task
layer contains the program that performs the dynamic analysis.

This layered design ensures that Dynalize can use the snapshot capability provided
by several IaaS providers. Even if a task changes slightly, only the task layer has to be
retransmitted to the IaaS instances. Since the virtual device layer and the environment
layer can grow very large (several GBs for system images, SD cards etc.), this container
layout avoids the retransmission of large files within the virtual device and the envi-
ronment layer. In contrast, if a new version of an analysis is deployed in Dynalize, it is
retransmitted to and cached within each IaaS instance.

Local Cache Daemon In contrast to cluster solutions such as Andlantis [210], data
transfer from and to the data provider is completely separated from the containers.
By design, a data provider can be any storage service that supports downloads via
HTTP/HTTPS, such as Amazon S3

61 or GitHub62. All containers share a common
read-only directory residing on the host, in which prefetched apps are stored by the
local cache daemon. Prefetching allows a significant reduction of startup time of an
analysis, since data transmission can be started before the container is created. Also, the
incoming data cache allows the reuse of a previously fetched app. On the other hand,
the outgoing data cache is a writable directory residing on the host, which is created
during the container startup process. Each container has its own outgoing data cache
directory, and when a task within a container signals the end of an analysis, the data
within the cache is asynchronously transferred to the data provider while the container
is restarted for the next analysis.

Scheduler Node

The Scheduler Node provides a frontend to the user, enable her to deploy her analysis
and to submit jobs (see Figure 5.17). The user can choose between (i) one-time and (ii)
long-term jobs, enabling her to either (i) start and terminate IaaS instances on demand
or (ii) keep IaaS instances running to make use of local caches. Furthermore, a job
configuration specifies a data provider as well as the type and number of virtual devices
used to process this job.

61http://aws.amazon.com/s3
62https://github.com

179

http://aws.amazon.com/s3
https://github.com

5 Security Vulnerability Analysis of Mobile Apps

Figure 5.17: Screenshot of the Dynalize interface.

Device Scheduler IaaS instances are started and terminated by the device scheduler
that maps virtual devices onto IaaS instances. It is based on a multi-objective schedul-
ing algorithm: Since IaaS instances are billed in a pay-as-you-go manner, the objective
function of the scheduling algorithm includes job execution time and execution costs.
The search space includes different IaaS providers, each allowing their users to choose
from a broad variety of instance types with different prices per hour. Primarily, instance
types specify resources like the number of CPUs and the amount of RAM for a virtual
server. Secondarily, instance types also reflect different kinds of hardware, which are
optimized, for example, for I/O-intensive or CPU-intensive workloads. Therefore, the
multi-objective scheduler models execution time as a function of performance parame-
ters like average virtual device startup time and throughput. The device scheduler is
implemented as a variant of the Strength Pareto Evolutionary Algorithm (SPEA2) [218],
has good convergence properties and is adaptable to different application areas.

Global Scheduler The global scheduler is responsible for distributing tasks to the
IaaS instances. First, the tasks are partitioned among the virtual devices. The task list
for each virtual device is sent to the corresponding local scheduler that initiates the
app download and the creation of the containers (see Section 5.4.3). After a task is
finished, the local scheduler notifies the global scheduler, which in turn keeps track of
the on-going and finished tasks. In case of mixed instance types, the global scheduler
reschedules tasks between the instances. In case of one-time jobs, instances can be
terminated if no tasks can be rescheduled.

Service Node

As Figure 5.15 shows, both Scheduler Node and Service Node provide a frontend to the
Dynalize user. While the Scheduler Node frontend is used to configure the IaaS provider
interface, to submit jobs and to deploy analyses, the Service Node allows Dynalize
users to make their work publicly available. For example, when an analysis has been
successfully performed on a large number of apps, the developer can automatically

180

5.4 Dynalize: Dynamic Mobile App Analysis

generate both a job submission template for the Service Handler and a web page
template for the Presenter. Both templates can be modified to ensure a cost-efficient
execution or a custom web page layout.

Since the main work is done by the Scheduler Node, a service request is processed in
a straightforward manner. The Presenter runs a web server, on which a service user
can upload apps to analyze. After an app is uploaded, the Service Handler submits a
job to the Scheduler Node, which is terminated after all apps are analyzed. When the
Scheduler Node signals job completion, results are uploaded to the cloud storage and
made available to the user on the web page of the Service Node. The service can be
evaluated more detailed with the demo service deployment.63

5.4.4 Experimental Evaluation

In the following sections, a use case and a performance evaluation of Dynalize are
described.

Use Case

As a use case for Dynalize, it was investigated which Android apps potentially use mal-
ware obfuscation techniques. Rastogi et al. [196] have shown that typical anti-malware
solutions heavily depend on static signatures and therefore are ineffective against
simple program transformations (transformation attacks). In particular, programs that
make use of reflection (e.g., using the Java Reflection API) or code encryption can make
parts of an app binary unavailable for static analysis. On the other hand, dynamic anal-
ysis can give hints on which apps use obfuscation techniques. For example, dynamic
analysis can easily detect whether native libraries are linked within a binary or not.
Afterwards, these apps can be further investigated with other tools.

For Dynalize, this is an interesting use case: (i) The execution of native binaries
requires full system emulation, which Dynalize provides. (ii) The analysis needs to be
performed on a representative set of applications, i.e., thousands of apps. In our use
case, we have analyzed about 6,000 free Android apps from the Google Play store, with
an average size of 17.7 MB per app and a total size of 10 GB, for signs of obfuscation.
While a sequential dynamic analysis of these 6,000 apps took about 148 hours (nearly
one week), Dynalize can offer a significant speedup due to parallelization. (iii) An
appropriate de-obfuscation technique for arbitrary apps requires a variety of tasks,
such as scanning the application for native library use, dynamic library linking, use
of the Java Relection API, system calls and anomalous network traffic. These can be
implemented using different libraries within the execution environment of Dynalize. (iv)
The use case can give evidence about the significance of dynamic mobile app analysis; to
make appropriate assumptions about real-world mobile apps, a representative sample
of apps needs to be analyzed.

The dynamic analysis in this use case has been implemented using Python 2.7, the
Android Developer Tools, the Android Emulator, and the Android Debug Bridge. Most
of the data has been collected with the Linux strace tool that traces system calls and
signals. The Android Debug Bridge is used to install, start and trace an app on the

63http://ds.mathematik.uni-marburg.de/dynalize

181

http://ds.mathematik.uni-marburg.de/dynalize

5 Security Vulnerability Analysis of Mobile Apps

0	

200	

400	

600	

800	

1000	

t2.
sm
all
	 (1
)	

t2.
me
diu
m	
(2)
	

m3
.m
ed
ium

	 (1
)	

m3
.la
rge
	 (2
)	

c4
.la
rge
	 (2
)	

r3.
lar
ge
	 (2
)	

i2.
xla
rge
	 (4
)	

!m
e	
(s
)	

one	 two	 four	 eight	

(a) Virtual device startup time.

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

t2.
sm
all
	

t2.
me
diu
m	

m3
.m
ed
ium

	

m3
.la
rge
	

c4
.la
rge
	

r3.
lar
ge
	

i2.
xla
rge
	

M
B/
s	

(b) Container to virt. dev. throughput.

Figure 5.18: Virtual device startup time and container to virtual device throughput for different Amazon
EC2 instance types.

virtual device. Each output is stored in a single file on the outgoing data cache on the
IaaS instance.

Dynalize has been used with 40 virtual devices in parallel on 20 c4.large Amazon
EC2 instances, two virtual devices each. The data was previously uploaded to Amazon
S3. The additional startup time introduced by the instance boot time is negligible (less
than a minute). However, due to resource sharing between virtual devices, the analysis
of an individual app is approximately 10% slower than with a single virtual device. In
summary, dynamic app analysis for the 6,000 apps was executed within 4,4 hours (3% of
the time required for sequential analysis), with costs of 11.88 $ (90 instance hours). The
results show that 906 apps (15.1%) use native libraries and 192 apps (3%) dynamically
load other binaries. There is a high usage of the Java reflection API, since it is used by
4,238 apps (71%). Another 3,483 apps (58%) make use of the Java cryptography API.

Virtual Device Performance

IaaS providers allow users to choose between several instance types. Scheduling virtual
devices on IaaS instances requires us to consider different IaaS instance types. During
the sequential execution of the use case, it was observed that the virtual device startup
took 22-47% of the total execution time. Furthermore, the throughput between virtual
device and container is important. Therefore, both virtual device startup time and
throughput were evaluated for different IaaS instance types. They were measured with
the Android Emulator with 512 MB RAM and the Android Debug Bridge, running on
top of an Ubuntu 14.04 Linux distribution.

The virtual device startup time for different Amazon EC2 instance types in region
eu-west-1 is shown in Figure 5.18a, while the costs for the used instance types is listed
in Table 5.7. All virtual devices were started simultaneously, the values in brackets
reflect the number of vCPUs. Note that t2.small only provides 1 vCPU and 2 GB
RAM, while m3.medium provides 1 vCPU and 3.75 GB RAM. The t2 and m3 instance
types are generic instances, while c4 is optimized for data processing, r3 for RAM
accesses and i2 for storage. Furthermore, t2 instances are burstable: According to
Amazon64, CPU performance of t2 instances is based on CPU credits. Initially, a t2

instance earns credits for 30 minutes of 100% utilization, and every hour credits for

64http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html

182

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html

5.4 Dynalize: Dynamic Mobile App Analysis

Table 5.7: Prices of the used instance types

Instance Type vCPUs RAM (GB) $/h

t2.small 1 2 0.028

t2.medium 2 4 0.056

m3.medium 1 3.75 0.077

m3.large 2 7.5 0.154

c4.large 2 3.75 0.132

r3.large 2 15 0.195

i2.xlarge 4 30.5 0.938

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

AUFS	 Output	 AUFS	 Input	 DevMapper	 Output	 DevMapper	 Input	 VFS	 Output	 VFS	 Input	

M
B/
s	

t2.small	 t2.medium	 m3.medium	 m3.large	 	 c4.large	 r3.large	 i2.xlarge	

Figure 5.19: Container storage throughput for different EC2 instance types and storage backends.

another 12 minutes are added. If an instance runs out of credits, it is reduced to 20%
(t2.small) and 40% (t2.medium) of CPU usage.

Since CPU performance is significant for full system emulation, Figure 5.18a shows
the best results with 1+ vCPU per virtual device. Nevertheless, the values are not
linearly scaled due to concurrent access on the device images (I/O). An interesting
fact is that the best execution times were measured with both the low-end t2 and the
high-end c4 instance types. This is due to t2’s ability to burst CPU performance for a
short period of time. Therefore, this is a good choice for analyses of a small number of
apps. On the other hand, c4 instance types use a high-frequency Intel Xeon processor
with SSD-backed instance storage. Therefore, both one and two virtual devices can be
started within a short period of time.

Figure 5.18b depicts the throughput between the container and the virtual device for
different Amazon EC2 instance types. It was measured by transferring a 133 MB app
via the Android Debug Bridge from the analysis task to the emulated 2GB SD-card
storage residing in the virtual device. The data is first passed through the ADB process
running within the container and afterwards sent to a ADB server process within the
virtual device via a QEMU-specific channel. Hence, the throughput of the Android
Device Bridge makes heavy use of the CPU and involves several processes.

As Figure 5.18b shows, the best results were achieved with high-end c4 and i4

instance types. Due to the burst ability of t2, this low-end instance type also gives good
results. The outlier for m3 indicates that the ADB throughput does not increase with a
larger amount of RAM.

183

5 Security Vulnerability Analysis of Mobile Apps

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

t2.medium	 m3.large	 	 c4.large	 r3.large	 i2.xlarge	

!m
e	
(s
)	

AUFS	 DevMapper	 VFS	

Figure 5.20: Container startup.

Container Storage Backends

As mentioned in Section 5.4.3, the container file system consists of multiple layers. This
can be realized with three storage backends: AUFS, LVM2 DevMapper and VFS.

Figure 5.19 shows different backend throughputs measured with the bonnie++65 file
system benchmark suite. It tests sequential input and sequential output on the block
level. Although the measurements with different Amazon EC2 instance types show a
high variance, they indicate the following: (i) In general, read throughput per instance
type is better than write throughput. (ii) AUFS is better for instance types with more
CPU efficiency and more RAM, while DevMapper performs better for I/O optimized
instance types. (iii) The best results are performed with VFS, which comes with nearly
zero overhead.

Afterwards, the startup time for each container was evaluated. In this benchmark, a
Linux ARM system image was booted with QEMU, measuring the interval between
the container was created and the guest kernel was booted. Figure 5.20 shows that the
AUFS storage backend performed best with an average startup time of 8.09 seconds.
The DevMapper backend needed 10.55 seconds on the average, whereas VFS performed
worst with an average of 131.68 seconds. The long startup time is due to the deep copy
mechanism used by VFS: As Figure 5.21a depicts, Devmapper needed only slightly
more (3.5%) disk space compared to AUFS, but VFS needed 1934% additional storage
(32.12 GB in total).

The latter is also confirmed by Figure 5.21b that shows the average disk throughput
of both sequential input and output. Since VFS cannot be used for its slow deployment
times, an interesting result is that AUFS is slightly better than DevMapper.

Discussion

The results of the experiments can be summarized as follows: (i) In contrast to a
sequential mobile app analysis, Dynalize offers parallel dynamic mobile app analysis to
process mobile apps on a large scale in short time. Furthermore, Dynalize can be used

65http://www.coker.com.au/bonnie++

184

http://www.coker.com.au/bonnie++

5.4 Dynalize: Dynamic Mobile App Analysis

0	

5	

10	

15	

20	

25	

30	

35	

40	

AUFS	 DevMapper	 VFS	

G
B	

Storage	 before	 boot	 Storage	 a9er	 boot	

(a) Overhead of storage backends.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

Output	 (seq.)	 Input	 (seq.)	

M
B/
s	

AUFS	 DevMapper	 VFS	

(b) Average backend throughput.

Figure 5.21: Average throughput and overhead of storage Backends.

as an economical and flexible alternative to a dedicated cluster. (ii) The measurements
with different Amazon EC2 instance types indicate that the ability of t2 instance types
to burst CPU performance for a short period of time is useful for analyses of a small
number of apps, while high-end instance types like c4 can perform analysis efficiently
with a high number of virtual devices in parallel. (iii) While throughput and virtual
device startup measurements show high variance for different instance types, the AUFS
storage backend proved to be the best of the three alternatives AUFS, DevMapper, and
VFS.

5.4.5 Conclusion

In this section, Dynalize has been presented, a Platform-as-a-Service (PaaS) cloud for
the dynamic analysis of mobile applications. It relies on container virtualization on
top of IaaS instances, enabling dynamic provisioning and fast deployment of dynamic
analyses. A platform architecture as well as a custom container layout and a novel
storage solution on the virtual server layer have been presented. A dynamic security
analysis of about 6,000 Android applications has shown the cost- and runtime-efficiency
of a large-scale analysis for thousands of apps. Experiments focusing on container
startup, virtual device to container throughput and different storage backends showed
the feasibility of our approach.

Future work will address a deeper comparison between Dynalize and container
virtualization engines like Kubernetes. It will also address other storage backends, like
btrfs66 and overlayfs67. Furthermore, efforts will be made to improve the cost- and
runtime-efficiency of Dynalize. For example, QEMU checkpoint/restore mechanisms
will be evaluated as an alternative to full virtual device termination/restarts. Finally,
it will be evaluated how Dynalize can be automatically customized to support new
device emulators and the corresponding environment libraries.

66https://btrfs.wiki.kernel.org/index.php/Main_Page
67https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/

filesystems/overlayfs.txt

185

https://btrfs.wiki.kernel.org/index.php/Main_Page
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/overlayfs.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/overlayfs.txt

5 Security Vulnerability Analysis of Mobile Apps

5.5 Security Assessment of Emergency Apps

5.5.1 Introduction

Since the usage of traditional broadcast media, such as television and radio, is declining,
apps running on mobile devices play a major role in reaching the masses with alerts
and warnings. Digital distribution of information has many benefits, but also presents
new opportunities for malicious people. The propagation of fake news or false alarms
can be used to trigger certain behavior, worsen an emergency situation, or cause an
emergency situation in the first place. For example, a spoofed, fake alert can trigger a
mass panic and disrupt the public order. How vulnerable the Internet infrastructure is
can be seen by incidents like the temporary rerouting of Telegram traffic through Iran in
2018.68 Sophisticated attackers such as federal authorities or governmental institutions
easily have access to legitimate certificate authorities and can attack network links
world wide. Therefore, the focus of this section is on a security assessment of common
disaster warning apps and whether it is possible to spread false alarms, under which
circumstances and for which attackers. Furthermore, apps have access to sensitive user
information, including their location, which should also be protected. More troublesome,
a warning app might just as easily be used to spy on citizens.

5.5.2 Popular Emergency Apps

The security audit focuses on official and popular emergency warning apps, partially
consisting of national German and/or international apps, where the international apps
either have a world-wide focus or focus just on the USA. A brief description of each of
these apps is given below. All install base numbers are from July 2018.

German Official Apps

DWD WarnWetter The federal weather service (DWD) provides this app free of
charge to issue weather forecasts and warnings to the general public. While the API for
accessing the weather and warning data is made public, the app itself is closed source
software. The install base on Android alone is over one million devices.

BBK NINA Similarly, The Federal Office of Civil Protection and Disaster Assistance
(BBK) has an app to distribute public alerts, including weather related warnings. Again,
the data itself is openly available, but not the source of the app. According to the
Google Play Store it is deployed on over one million mobile devices.

KATWARN This app has a similar focus as NINA but lacks a public API. Due to
the federal system in Germany, some cities, counties or states rely either on NINA or
KATWARN. It is installed on over one million Android devices.

Sicher Reisen The German foreign ministry developed this app to inform and warn
citizens abroad about various dangers and disaster scenarios. According to the devel-
oper, it has been installed on over 400.000 devices so far.

68https://www.theregister.co.uk/2018/08/01/bgp_route_leak_telegram_iran/

186

https://www.theregister.co.uk/2018/08/01/bgp_route_leak_telegram_iran/

5.5 Security Assessment of Emergency Apps

BIWAPP The Bürger Info & Warn App is a free app developed by Marktplatz.GmbH. It
can be used by cities, municipalities and professional responders to publish all kinds
of information and warnings. Besides weather warnings or larger disasters, it can
also publish topics including cancellation of school classes, accidents, or bomb alerts.
Currently, it is installed on more than 100.000 Android devices.

International App Selection

FEMA The US Federal Emergency Management Agency also has an app to inform
and warn the public about various dangers. Furthermore, it provides general advice
and information about the location to nearby emergency shelters. So far, it has been
installed on over half a million Android devices.

Disaster Alert The Pacific Disaster Center developed an app to inform about active
hazards world wide. These hazards can be of natural origin, such as earthquakes,
tsunamis or wildfires, or man-made disasters. The app was downloaded over half a
million times from the Play Store.

NOAA Weather Radar This is a commercial offering, providing US and international
weather forecast services including various warnings. According to the Google Play
Store, this app was installed on over 10 million devices. This makes it the app with the
largest user base in this selection.

5.5.3 Common Attack Surface

While the audit was performed with semi-automatic scripts, utilizing static and dynamic
analysis, for various common vulnerabilities, they were also manually inspected to
eliminate false positives and to search for additional security bugs. The most common
problem areas that were looked at are briefly described in the following.

Transport Layer Security As already shown in Section 5.2, many mistakes can be
made regarding transport layer security in mobile apps. While spreading public infor-
mation is not reliant on encrypted links, as the content is public anyhow, it still helps
to protect the content from being tempered with while in transport. All apps rely on
HTTP and therefore should use TLS to encrypt their links. Common mistakes here
include:

• Accepting self-signed or invalid certificates
• Accepting any valid certificate without hostname verification
• Not pinning the expected certificate

Without implementing certificate pinning, a user is still vulnerable to any sophisti-
cated attacker that can manage to install a malicious root certificate on a user’s device
or has access to any already trusted certificate authority, which can easily be achieved
by governments in a cyber-war or long planned cyber-terrorist attacks.

187

5 Security Vulnerability Analysis of Mobile Apps

Integrity of Messages After successful delivery of alerts, there is still the possibility
that someone unauthorized placed the false information on the server or somehow
managed to change the message in transit. Therefore, message integrity is not only rele-
vant for transmission, but also for further processing on the device. For this evaluation,
it must be checked whether the published data is digitally signed, where the certificate
comes from, and whether the client verifies that the message comes from a legitimate
source.

App vs. App - Intent Security Besides altering information on the server or while
it is transmitted over the network, modern mobile device operating systems such as
Android provide various ways of Inter-Process Communication (IPC). Using intents
and receivers, an app can expose its functionality to other local apps on the device. This
additional attack surface might be used by a malicious app to trigger custom alerts in a
vulnerable app or impersonate the legitimate app.

Privacy Leaks All of the mentioned apps have access to potentially sensitive infor-
mation, such as camera images, GPS locations, contacts, or device resource usage.
Protecting this data should always be a high priority. Therefore, we investigate whether
this data is used locally or transmitted to a remote destination and under which
circumstances this happens, e.g., due to crash reports, regular checks for warnings etc.

5.5.4 Individual App Audits

All apps were audited with the above four topics in mind. Therefore, a short summary
matrix for each app is provided, displaying the state of Transport Layer Security (µ TLS
usage, certificate pinning), Message Integrity, IPC Security and Privacy (leaking data).
For each category, an app can receive a score of up to 4 points if no issues were found
and countermeasures have been implemented in all categories or no attack surface
is given. This results in a maximum score of 16 points that an app can achieve. If an
exploitable vulnerability is found, screenshots with a false alarm are given, including
out-of-place strings such as ”MITM” or the number ”23” as an indicator for a successful
attack.

188

5.5 Security Assessment of Emergency Apps

DWD WarnWetter

Security Matrix: DWD WarnWetter

Transport Layer Security: µ Message Integrity: é
IPC Security: Ë Privacy: Ë

Overall Score: 10

The official German weather forecast and warning app fetches all its data via HTTPS. It
was not possible to use a self-signed certificate, a broken one or a valid one for another
hostname. But since no certificate pinning was used, any trusted authority can issue
a valid certificate for a malicious server. Since the delivered data from DWD was not
signed and therefore cannot be validated, a Man-in-the-Middle attack is still possible
for a sophisticated attacker, as shown in Figure 5.22. Here, an attacker can not only
inject text based warnings, but also directly embed videos, e.g., as a weather reporter
presenting a false forecast or spreading a fake warning.

Figure 5.22: Successful MITM attack on WarnWetter.

Furthermore, the GPS location is used, but only locally, since all warnings are loaded
from the server and filtered on the device for the ones relevant for the user. There is
also usage and debug code present that gathers various statistics, but there seems no
valid code path to trigger this behavior. Thus, no major privacy issues were found with
this app.

189

5 Security Vulnerability Analysis of Mobile Apps

BBK NINA

Security Matrix: BBK NINA

Transport Layer Security: µ Message Integrity: é
IPC Security: Ë Privacy:

Overall Score: 6

Similarly to WarnWetter, NINA also relies on HTTPS to fetch its content. Trust managers
and TLS code in general work as intended, but again, no certificate pinning and no
signing of the retrieved data can be found. This enables advanced attackers to perform
MITM attacks and inject their own alerts, as shown in Figure 5.23. Furthermore,
hardcoded basic authentication credentials are stored in the app to communicate with
one of the backend systems responsible for push notifications.

Figure 5.23: Successful MITM attack on NINA.

Privacy-wise, the whole warning database is downloaded and locally checked for
relevant alerts. Yet, Google Analytics is contacted by the app, which should not be
necessary for the functionality of the app. There is a lot of tracking code in place, giving
detailed feedback about the device and app usage. It is possible to deactivate this code
via the settings, by default it is turned on. From a privacy standpoint, this should be
the other way around.

190

5.5 Security Assessment of Emergency Apps

KATWARN

Security Matrix: KATWARN

Transport Layer Security: µ Message Integrity: é
IPC Security: Ë Privacy:

Overall Score: 8

KATWARN takes a completely different approach than the previous two applications.
Here, the warning database is not publicly available. Each user/device has to register
with the service and subscribe to different alert topics (e.g., Oktoberfest, Dippemess)
and/or regional areas. The app itself ships a certificate to verify the identity of the
server. This means that for any successful MITM attack to be carried out, the app itself
has to be heavily modified. This server pinning is an effective security measurement
against network based attacks, even though the system still lacks signed alert data.
Relying on complex server-side software for data exchange, on the other hand, adds
unnecessary complexity and, therefore, provides a larger attack surface to the overall
system.

Having each device uniquely register at the central server and requesting specific
locations regularly means that identifying individuals and tracking them is rather
easy. Although this is happening over an encrypted link, it is not necessary for the
application to provide its functionality, as the previous apps have shown.

191

5 Security Vulnerability Analysis of Mobile Apps

Sicher Reisen

Security Matrix: Sicher Reisen

Transport Layer Security: µ Message Integrity: é
IPC Security: Ë Privacy: Ë

Overall Score: 10

Attacking the app on the transport layer works in the same way as it does with
WarnWetter and NINA. No certificate pinning is in place and the data is directly
rendered to the user, without any validation. It is possible to display any HTML text
and external images, but not the execution of JavaScript. A successful attack is shown
in Figure 5.24. Furthermore, hardcoded credentials together with basic authentication
are used for each request to the server.

Figure 5.24: Successful MITM attack on Sicher Reisen.

No external resources are contacted besides those relevant for the main service. All
issued warnings are downloaded and the relevant ones for the user’s location are
locally selected, as it should be. Overall, the app leaves a good impression in terms of
privacy.

192

5.5 Security Assessment of Emergency Apps

BIWAPP

Security Matrix: BIWAPP

Transport Layer Security: µ Message Integrity: é
IPC Security: Ë Privacy: (Ë)

Overall Score: 8

The app also uses TLS correctly, but lacks certificate pinning and signing of the received
data. Therefore, it can easily be tricked into displaying false information when a trusted
certificate authority is used for the attack (Fig. 5.25). A few informational pages are
loaded via HTTP to display information about pages and the likes.

Figure 5.25: Successful MITM attack on BIWAPP.

While analyzing the HTTPS-based protocols, more possible attacks on the app and the
server infrastructure came to light. Since each user is identified by an easily guessable 6-
digit number, an attacker can trigger test alarms for any or all users by brute-forcing the
numbers and sending a short POST request to the API server. The app downloads the
complete alert database, with a current size about 1 MB, every time the app is started or
the main screen is refreshed. Clicking on the test notification also triggers this behavior.
Depending on the state of the app, the whole database is then downloaded multiple
times for one test alarm. This can be used to deplete the bandwidth volume of the
users phone contract or put stress on the server, resulting possibly in a denial-of-service
attack. Furthermore, these brute-forced user IDs can be used to get the subscription
list of any BIWAPP user, also revealing their current location if they did enable the

193

5 Security Vulnerability Analysis of Mobile Apps

guardian feature. During analysis of the requests and corresponding results, it became
evident that some fail regularly due to syntax errors, producing stack traces in the
server responses. These might contain useful information for attackers going after the
server systems.

The app itself logs verbosely to the device system log but does not transmit this
data back home. Privacy only leaks due to the bad protocol decisions and the server
back-end security, where an attacker could gain the users location and subscribed
interests. Furthermore, one of the external about pages uses piwik69 to gather statistics,
such as the user agent. This is only triggered if one explicitly clicks on the link in the
about section. Thus, for BIWAPP the privacy issues are mostly related to the server
component and bad protocol/API design, and not to the app code itself.

69https://github.com/piwik

194

https://github.com/piwik

5.5 Security Assessment of Emergency Apps

FEMA

Security Matrix: FEMA

Transport Layer Security: b Message Integrity: é
IPC Security: Ë Privacy:

Overall Score: 4

The FEMA app partially uses TLS with correct hostname verification but also lacks
certificate pinning. Therefore, it is possible to alter some content such as the blog
news (Fig. 5.26a). Furthermore, some data is loaded via plain HTTP, such as the leaflet
JavaScript library, which can easily be modified to display false data (Fig. 5.26b). This
leaves the app wide open for easy manipulation, since not only text and images can be
changed, but JavaScript code can be directly executed.

(a) Sophisticated attacker performing
MITM attack.

(b) Primitive attacker changing map code
during app start.

Figure 5.26: Different successful attacks on FEMA app.

Regarding privacy, the user’s location and a possible target shelter is leaked via
HTTP when activating this functionality. Also, a token is generated when launching
the app for the first time. It is used for communication with the back-end server, but
user- or device-specific data does not seem to be involved. Furthermore, the Android
version and platform are leaked by HTTP(S) links.

195

5 Security Vulnerability Analysis of Mobile Apps

Disaster Alert

Security Matrix: Disaster Alert

Transport Layer Security: b Message Integrity: é
IPC Security: (é) Privacy:

Overall Score: 2

Contrary to most of the previously mentioned applications that were vulnerable to
MITM attacks only with valid certificates, PDC’s Disaster Alert even loads HTML
from unencrypted HTTP links. Besides static content, it is also possible to execute
JavaScript code within the app. This makes injecting manipulated content very easy,
even for unsophisticated attackers, as displayed in Figure 5.27. Furthermore, hardcoded
credentials are used for basic authentication in some API calls to the service. Most
of these calls are sent twice, once without credentials, thus failing, and once with
credentials. This behavior wastes precious resources in a disaster scenario. Moreover,
the app also exposes complex IPC functionality locally that under specific circumstances
might be used to an attacker’s advantage.

Figure 5.27: Successful MITM attack on Disaster Alert.

Privacy-wise, transmitting data unencrypted is also problematic since anyone with
access to the routing path or local WiFi can easily eavesdrop on the user. These insecure
transmissions happen for the main app code, but also for helper functions such as
Google’s geocode API. Google Analytics is used by the app when accessing the FAQ
which also happens over an unencrypted link. Furthermore, privacy related information
is sent to another analytics server via HTTP.

196

5.5 Security Assessment of Emergency Apps

NOAA Weather Radar

Security Matrix: NOAA Weather Radar

Transport Layer Security: b Message Integrity: é
IPC Security: Ë Privacy:

Overall Score: 4

This app uses plain HTTP to load an overlay for its weather radar on the map view. This
can be used to replace the tiles with custom warning symbols, as shown in Figure 5.28.
Weather warnings are also downloaded as a ZIP file over a plain text link. Manual
inspection shown that the remote server is capable of communicating using HTTPS.
Thus, it is really a bug in the app and could easily be fixed by simply switching the
protocol in the source code. On the other hand, certificate pinning is used for some of
the embedded functionality and specific servers, mostly integrated code from social
and ad networks. Yet, the servers vital for the service itself are not pinned or do not
use TLS at all.

Figure 5.28: Successful MITM attack on NOAA Weather Radar.

The user’s location is leaked via plain HTTP to the weather service provider. Also,
the app contains code for various ad networks, potentially leaking information and
broadening the general attack surface.

197

5 Security Vulnerability Analysis of Mobile Apps

Table 5.8: Audit summary grouped by attacker skill and general privacy issues.

App Primitive Attacker Sophisticated Attacker Privacy

DWD WarnWetter é
BBK NINA é é
KATWARN (é) é
Sicher Reisen é
BIWAPP é (é)
FEMA é é é
Disaster Alert é é é
NOAA Weather Radar é é é

5.5.5 Conclusion

The security audit of these common emergency warning apps has shown that there are
several shortcomings regarding security as well as privacy. Here, an é indicates that an
app fails to defend itself against the corresponding attacker, either with primitive skills
or sophisticated ones, or has privacy issues in general. While a primitive attacker might
try to intercept traffic with a self-signed certificate or by spoofing an intent to trigger
a false alarm, most apps defend very well against these types of attacks. Given that a
highly sophisticated and dedicated attacker can gain access to a certificate authority
or manage to install own certificates in users trust stores, many applications display
vulnerabilities. Furthermore, even when the transport layer is properly secured using
certificate pinning, the data itself could be altered by an sophisticated attacker. This can
only be prevented by digitally signing the data and verifying it at the end user’s mobile
device. Fortunately, most apps avoid security problems through improper protection of
local IPC code. Only more or less harmless code is left exposed with a few exceptions
of apps that already have shown serious flaws for transport security. Regarding privacy,
almost every app has issues where it leaks data to third parties, to the official app
servers or to Google.

Having strong transport layer security without signed data, e.g., KATWARN, can also
cause problems during a disaster. While the publicly available data from WarnWetter
and NINA can easily be served from another server, if the system is under stress by
users or a denial-of-service attack, the KATWARN service requires more server-side
logic and proper certificates, matching the one distributed with the app. Having a more
complex API and the process of retrieving data from the server can easily be used for
server-side attacks by sophisticated attackers. Hence, this should be avoided if it is
not absolutely necessary. Of course, for data duplication to work, both, WarnWetter
and NINA, should provide signature files for verification of their distributed data,
which they currently lack. The importance of proper protocol design and remote server
security also becomes evident when looking at the flaws found in BIWAPP. These
lead to serious privacy issues and enable attackers to easily force massive resource
consumption on clients, servers and network links, with minimal effort on the attacker
side.

Overall, one can conclude that the official German warning apps provide basic
security features, but fail to deliver proper security when facing more serious threats.

198

5.5 Security Assessment of Emergency Apps

The recent events of increased cyberwarfare, manipulation of votes and cyber terrorism
in general have shown that there are major players easily capable of conducting such
attacks on a large scale. The international apps have similar problems, but additionally
also fail at defending against primitive attacks in various circumstances.

All vulnerabilities found during this audit have been disclosed to the vendors prior
to releasing this thesis.

199

5 Security Vulnerability Analysis of Mobile Apps

5.6 Summary

An analysis of 13,500 popular free apps from Google’s Play Market regarding the
state of SSL security and protection from Man-in-the-Middle attacks was presented
in Section 5.2. MalloDroid was introduced, a tool to detect potential vulnerability
against MITM attacks. The analysis revealed that 1,074 (8.0 %) of the apps examined
contain SSL/TLS code that is potentially vulnerable to MITM attacks. Various forms of
SSL/TLS misuse were discovered during a further manual audit of 100 selected apps
that allowed successful MITM attacks against 41 apps and gathered a large variety
of sensitive data. Furthermore, an online survey was conducted to evaluate users’
perceptions of certificate warnings and HTTPS visual security indicators in Android’s
browser, showing that half of the 754 participating users were not able to correctly
judge whether their browser session was protected by SSL/TLS or not. The section
is concluded by considering the implications of these findings and discussing several
countermeasures with which these problems could be alleviated.

In Section 5.3, AndroLyze, a distributed framework with unified logging and report-
ing functionality to perform security checks on large numbers of applications in an
efficient manner, was presented. AndroLyze provides optimized scheduling algorithms
for distributing static code analysis tasks across several machines. Moreover, AndroLyze
can handle several versions of a single mobile application to generate a security track
record over many versions. To demonstrate the benefits of AndroLyze, the Top Free
500 Android applications of all categories in Google Play collected over three years
were analyzed. The resulting data set consists of almost 40,000 mobile applications and
requires about 227 GB of storage space.

A Platform-as-a-Service cloud for the dynamic analysis of mobile applications,
called Dynalize, was presented in Section 5.4. It allows researchers and developers to
investigate mobile applications at runtime in a virtual device cloud and to publish
the performed analyses as web services. In contrast to existing approaches, it makes
use of container virtualization on top of Infrastructure-as-a-Service instances, enabling
dynamic provisioning and fast deployment of dynamic analyses. A custom container
layout and a novel storage solution on the virtual server layer ensures cost- and runtime-
efficient large-scale analyses of thousands of apps. The applicability of Dynalize is
demonstrated by a security analysis of about 6,000 Android applications. Experiments
on container startup, virtual device to container throughput and different storage
backends show the feasibility of the proposed approach.

The results of an security audit of the most common emergency apps was presented in
Section 5.5. Here, it was shown that, while most apps provide basic security mechanisms,
they still fall short when facing a sophisticated attacker. Furthermore, many apps also
have privacy issues, leaking data to third parties or the app provider.

200

6 Secure Cloud Systems

6.1 Introduction

The previous chapter has shown that various security issues exist with existing mobile
apps. This was also true for emergency specific apps. Furthermore, the audit of these
apps has also revealed flawed protocol designs and bugs in the server APIs. To ensure
the overall security, the backend systems running in the cloud must also be protected
from attackers.

One of the main methods of communication for civilians as well as governmental
and non-governmental organizations is still email, which also makes it a priority
when rebuilding or installing emergency infrastructure.1 Therefore, the security of
the involved technologies such as SMTP are vital also during emergency scenarios.
An in-depth analysis of the state of transport layer security of SMTP in the German
IP-Space is given in Section 6.2.

Malware and kernel rootkits pose great threats to server infrastructure. The use of
virtual machines especially in large hosting environments opens new possibilities for
defense against these threats. In Section 6.3 a combined approach for live application
tracing, signature based malware detection and kernel rootkit prevention is presented.
This does not require any software installation in the virtual machine but only a
modified kernel with the security critical code running ”outside” the machine.

A holistic concept to detect, analyze and handle security anomalies in virtualized
computing systems is presented in Section 6.4. The focus is on intrinsic security
measures for virtualized cloud services. This is achieved by utilizing fast, minimal-
intrusive sensors across all layers and using a federated Complex Event Processing
(CEP) engine to aggregate and correlate events to find genuine attack and eliminate
false positive alarms.

1https://www.heise.de/newsticker/meldung/Not-Internet-aus-dem-Ballon-3848035.html

201

https://www.heise.de/newsticker/meldung/Not-Internet-aus-dem-Ballon-3848035.html

6 Secure Cloud Systems

6.2 Assessment of Email Delivery Security

6.2.1 Introduction

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are
application-layer protocols to encrypt data segments transferred on the underlying
transport layer of the Internet Protocol Suite. The communicating entities use X.509

certificates and thus rely on asymmetric cryptography to authenticate themselves and to
exchange symmetric session keys to encrypt data flowing between the communicating
entities. The use of X.509 certificates requires certificate authorities (CA) and a public
key infrastructure (PKI) to verify the relation between a certificate and its owner, as
well as to generate, sign, and administer the validity of certificates.

Several versions of TLS and SSL protocols are used in applications such as the WWW,
electronic mail (email), and Voice-over-IP. The current version of TLS, TLS 1.2, was
defined in RFC 5246 and released in August 2008, TLS 1.3 is currently available as a
draft version. The most recent version of SSL, SSL 3.0, was released in 1996 (see RFC
6101

2).

DNS MX
Query

Mail Transfer
SMTP Port 25

Mail Submission
SMTP Port 587

Mail Retrieval
IMAP, HTTP, …

smtp.two.orgm.one.de

alice@one.de bob@two.org

user-opaque
user-influenceable

Alice sends mail to Bob.

Figure 6.1: Email transfer and TLS usage.

Since email is a fundamental technology in everyday communication for government
agencies, NGOs and civilians alike, its security is highly relevant during a disaster
scenario.

The focus of this research is the use of TLS in SMTP3,4, the Simple Mail Transfer
Protocol, responsible for the delivery of email. In Figure 6.1, the process of sending and
receiving email is outlined. Alice connects to her provider via SMTP on Mail Submission

2https://tools.ietf.org/html/rfc6101
3https://tools.ietf.org/html/rfc821
4https://tools.ietf.org/html/rfc5321

202

https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc5321

6.2 Assessment of Email Delivery Security

Port 587. Using StartTLS, she can encrypt the connection, as long as the email provider
has this option enabled. After authenticating herself, she submits her email for Bob to
her provider’s email server. Her provider then looks up the DNS MX record for Bob’s
email address. In the next step, Alice’s provider connects to Bob’s provider using the
Mail Transfer Port 25. Neither Alice nor Bob are able to review the connection properties
the providers are using for the email transfer. Finally, Bob connects to his provider
via the provider’s web page or protocols such as POP3 or IMAP, and retrieves the
email from his provider. Even if the email body may be encrypted by Alice using a
client-side end-to-end encryption protocol such as Pretty Good Privacy (PGP) [219],
meta-data such as sender, receiver and subject names may be visible to others, if the
server-to-server connection is not encrypted properly. To secure the server-to-server
connection, SMTP has been combined with TLS to encrypt email delivery and exchange
between the participating entities 5. Usually, the end user has no influence on this part
except for his/her own mail submission to his/her provider’s email server.

Recent revelations by Edward Snowden show that various government agencies
actively and passively gather as much information from communication in the Internet
as they can. Furthermore, since many corporate processes are coordinated using email
within a company or with its costumers, the security of email is important for avoiding
corporate espionage. Although consumers often communicate via Facebook, Whatsapp
or Google Talk, email is typically used for banking, tax and online shopping related
information that may be quite valuable for criminals, governments or other entities.

In this section, the results of a study of the security properties of SMTP over TLS
conducted within the German IP address space (about 100 million IP addresses) is
presented. A look at the involved cipher suites, the used certificates, CAs, and the
general availability of TLS within the detected SMTP servers is taken. Since most private
email correspondence is managed by a few big email providers, the behavior of their
Mail Transfer Agents (MTAs) when communicating with improperly secured email
servers is also analyzed. The results of the investigation lead to recommendations and
best practices to solve some of the identified security issues.

Parts of this section have been published in [12].

6.2.2 Related Work

The security properties of the TLS/SSL landscape have been investigated in several
works. The used certificates, the lengths of the private keys and the supported cryp-
tographic functions bear significant security risks, as indicated by attacks such as
POODLE6, BEAST7 and LUCKY THIRTEEN [220].

Lee et al. [221] have investigated cryptographic cipher suites, key lengths and support
for the insecure version SSL 2.0 in TLS/SSL servers. Attacks on the RC4 stream cipher
[222] and the MD5 hash function [223] have been presented in other publications. In
their study on the certificate ecosystem used in the WWW, Eckersley and Burns [224]
have shown that only around 40% of the investigated web servers had a valid certificate
chain. In 2011, Holz et al. [225] have presented their analysis of the SSL landscape and
the use of X.509 PKIs based on active and passive gathering of certificates, indicating that

5https://tools.ietf.org/html/rfc3207
6https://poodlebleed.com/ssl-poodle.pdf
7http://www.hit.bme.hu/~buttyan/courses/EIT-SEC/abib/04-TLS/BEAST.pdf

203

https://tools.ietf.org/html/rfc3207
https://poodlebleed.com/ssl-poodle.pdf
http://www.hit.bme.hu/~buttyan/courses/EIT-SEC/abib/04-TLS/BEAST.pdf

6 Secure Cloud Systems

only 18% of the provided certificates were accepted without warning when validating
them with the Mozilla Root Store. Ristic and Small [226] have presented an overview of
SSL usage in the WWW. In 2013, a similar study has been published by Durumeric et al.
[227] to analyze signing CAs, key lengths and cryptographic algorithms. In Section 5.2
we have conducted a mass audit of mobile Android applications to identify security
issues in the use of TLS/SSL.

Giesen et al. [228] have published an approach to increase the security of recent
mechanisms for TLS renegotiation. This hardening prevents Man-in-the-Middle attacks
in some instances and minimizes the attack surface of applications using TLS. Focusing
on TLS certificate management, Szalachowski et al. [229] have presented a solution based
on the idea of publicly verifiable logs as made popular by Laurie et al.8 with Certificate
Transparency for PKIs. The reference implementation for a HTTP environment aids
in securing the PKI landscape as a whole. Ryan’s work [230] also enhances Certificate
Transparency and integrates it with end-to-end email encryption in an attempt to make
it easier accessible for users and avoid some of the cumbersome quirks of PGP. This
approach helps to improve certificate management, removes several trust issues and
includes end-to-end encryption transport channel security. Even if certificate validation
is performed accordingly, it still leaves an attack surface. A general overview of past
attacks on SSL in the context of the WWW and issues with the certificate trust model
has been shown by Clark and Oorshot [231]. However, the authors have web browsers
and HTTPS traffic in mind, and their solutions are tied to this use case.

Huang et al. [232] have published a study to detect forged SSL certificates in the
wild. They have analyzed over 3 million real-world SSL connections to Facebook. Even
though the used detection mechanisms are limited, about 0.2% of the connections
were detected using forged certificates. Validating certificates is an error-prone task,
and various SSL libraries have different default behaviors. Automated tests have been
performed by Brubaker et al. [233] to reveal major flaws in common libraries and how
they are used in software like web browsers, giving false or at least misleading feedback
to the user. Slow deployment rates of security fixes for SSL related code has been
identified as a key problem by Bates et al. [234]. The proposed approach hooks SSL
verification code to non-browser applications to give them increased security without
tampering with the actual source code. These extra validations impose a 20 ms overhead
and work out-of-the-box with 94% of Ubuntu’s most popular packages.

None of the cited works is concerned with the use of TLS/SSL in SMTP server
communications. However, email is still an integral part of today’s business communica-
tions. Recently, Facebook9 has published some interesting observations regarding their
email system. For example, STARTTLS is adopted by 76% of the unique MX hostnames
that Facebook is in contact with. Moreover, 58% of the notification emails sent are
successfully encrypted. The study concludes that general support for encryption is
available, but proper certificates and certificate validation are missing.

8https://tools.ietf.org/html/rfc6962
9https : / / www . facebook . com / notes / protect - the - graph / the - current - state - of - smtp -

starttls-deployment/1453015901605223

204

https://tools.ietf.org/html/rfc6962
https://www.facebook.com/notes/protect-the-graph/the-current-state-of-smtp-starttls-deployment/1453015901605223
https://www.facebook.com/notes/protect-the-graph/the-current-state-of-smtp-starttls-deployment/1453015901605223

6.2 Assessment of Email Delivery Security

6.2.3 An Empirical Study of SMTP over TLS

The study of the email TLS landscape is based on the German IPv4 address space. In
particular, 116,824,576 IP addresses were scanned to investigate the TLS properties of
German SMTP servers. Using nmap10, it was first checked whether the relevant ports
were open and then TLS versions, cipher suites, certificates, CAs, and email provider
strategies were analyzed.

SMTP uses port 25 as its main port. Port 465 has been suggested for SMTP over
TLS, called SMTPS (Simple Mail Transfer Protocol Secure)11, but was later revoked;
nevertheless some email providers still use this port. Port 587 is used to transfer email
from the user to the provider’s server.

Nmap also performs a reverse Domain Name System (DNS) lookup to find the
domain names belonging to the referenced IP addresses. It is common to check the
reverse DNS name when an email is sent to a server, thus the domain names should be
set. These domain names are used later to check the validity of TLS certificates and to
make sure that the IP in question is under the authority of the domain owner; emails
from servers without valid reverse lookups should not be accepted.

total

port 25

port 465

port 587

0 175,000 350,000 525,000 700,000

656,295

44,478

27,870

188,765

211,556

238,827

419,373

TLS handshake successful TLS handshake failed total

Figure 6.2: SMTP and TLS usage among the scanned hosts.

TLS Usage

From the scanned hosts reached at the 116,824,576 IP addresses, 656,295 hosts offer
SMTP services on at least one of the following ports: 25, 465 or 587. Figure 6.2 shows
that only 68.96% (419,373) of the 608,138 hosts that offer SMTP services on port 25

perform a successful TLS handshake on this port. On the mail submission port 587,
82.63% (211,556 of 256,034) complete a TLS handshake successfully. While on port 465,
which has TLS enabled by default, a TLS handshake nevertheless fails in 10.45% of the
attempts. It is likely that server administrators use this port for different services not
related to SMTPS. The results presented below are either based on the 656,295 hosts
that offer SMTP services on at least one of the three ports or on the 869,756 services
(see Fig. 6.3) with a successful TLS handshake on at least one of three ports.

10https://nmap.org
11https://tools.ietf.org/html/rfc3207

205

https://nmap.org
https://tools.ietf.org/html/rfc3207

6 Secure Cloud Systems

total

SSL 3.0

TLS 1.0

TLS 1.1

TLS 1.2

0 225,000 450,000 675,000 900,000

869,756

349,100

413,644

864,020

824,785

Figure 6.3: SSL and TLS versions used in the scanned services.

TLS/SSL Versions

TLS and SSL have a long history of organic growth, leading to a non-uniform use
of their different versions. SSL 2.0 had certain design flaws, ultimately leading to an
insecure protocol. SSL 3.0 was considered secure, until the POODLE attack went public
in October 2014. The SMTP server scans took place in May 2014, five months before the
POODLE attack was released to the public. On these grounds, the collected data allows
us to observe the potential impact of the attack.

In Figure 6.3, the TLS/SSL versions used in the scanned SMTP servers are visualized.
While the insecure version SSL 2.0 is not used at all, SSL 3.0 is enabled in 94.83% of
the servers. The most popular TLS version 1.0 is supported by 99.34% of the servers,
whereas the versions TLS 1.1 and TLS 1.2 are supported by less than half of the servers.
BEAST’s target was TLS 1.0, so there is no reason to hold back the newer versions.
POODLE is also a good argument to use TLS 1.2 instead of SSL 3.0 – SSL 3.0 is only
used for the sake (or curse) of compatibility.

TLS Cipher Suites

In a TLS handshake, the client offers a list of supported cipher suites to the server,
which then picks one to secure the connection. To obtain all cipher suites supported
by a server, the client has to iterate over the cipher suites and then tries to establish a
connection using the selected cipher suite. This functionality is provided by the nmaps
ssl-enum-cipher script12. Performing this test requires many connections to the tested
servers and therefore creates quite some traffic in the network.

If an attacker is able to influence the TLS handshake by selecting a cipher suite
that (s)he is able to break, this attack is called a cipher suite downgrade attack. Even if
backward compatibility is a reason to offer potentially insecure cipher suites, they open
up a huge attack vector. The cipher suite classification of the nmap ssl-enum-ciphers
script provides three categories of cipher suites, as described below.

Broken Cipher Suites Broken cipher suites do not support protection against passive
or active eavesdropping. Therefore, all anonymous cipher suites with an unauthorized
Diffie-Hellman key exchange belong to this category. It is easy for an attacker to

12https://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html

206

https://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html

6.2 Assessment of Email Delivery Security

intercept and modify the messages between client and server and decipher the data.
Furthermore, cipher suites using no encryption at all or just authentication are also
considered as broken.

Weak Cipher Suites The category of weak cipher suites mainly consists of historical
cipher suites. Examples are the export ciphers that emerged as a consequence of the
US export rules on cryptographic systems before 1999, and cipher suites based on the
legacy Data Encryption Standard (DES). Weak cipher suites can be deciphered in a
brute force manner by powerful hardware in less than a day13.

Strong Cipher Suites All remaining cipher suites are strong cipher suites. Although
there are known weaknesses in RC4 [235] and MD5 [236], they are nevertheless used
with some workarounds in many cases. With RFC 7465, attempts are made to remove
RC4 completely [237].

Another noteworthy property of cipher suites is Perfect Forward Secrecy [238]. It
ensures that a session key derived from a set of long-term keys can not be compromised
if one of the long-term keys is compromised in the future. Thus, an attacker cannot
decipher past messages even with the server’s private long-term key.

total

with strong ciphers

with weak ciphers

with broken ciphers

only strong ciphers

with pfs

with ecdh

0 225.000 450.000 675.000 900.000

869.756

194.108

741.284

240.547

430.621

504.711

869.278

Figure 6.4: Use of cipher suites.

Figure 6.4 illustrates the used cipher suites. Almost every server offers strong cipher
suites, but only 27.66% of the servers are hardened in the sense that they offer strong
cipher suites only. It is remarkable that 85.28% of the servers offer Perfect Forward
Secrecy (pfs). A widely discussed issue is the use of Elliptic Curve Cryptography (ECC),
since many of the ECC algorithms are suspected to have been constructed under the
influence of US intelligence services14. In our data set, 22,32% of the servers support
ECC ciphers (ecdh).

In Table 6.1, the top ten most used weak and broken cipher suites are presented.
Many servers accept weak cipher suites without the need to. Looking at the FREAK
attack15 published in March 2015, more than half of the server’ connections can be
downgraded to weak or broken cipher suites.

13http://www.sciengines.com/company/news-a-events/74-des-in-1-day.html
14https://www.wired.com/2007/11/securitymatters-1115/
15https://freakattack.com

207

http://www.sciengines.com/company/news-a-events/74-des-in-1-day.html
https://www.wired.com/2007/11/securitymatters-1115/
https://freakattack.com

6 Secure Cloud Systems

Table 6.1: Shares of weak and broken cipher suites.

Name Usage Share

DH anon AES 256 CBC SHA 426,848 49.08%
DH anon 3DES EDE CBC SHA 426,835 49.08%
DH anon AES 128 CBC SHA 426,779 49.07%
DH anon RC4 128 MD5 424,526 48.81%
RSA DES CBC SHA 416,324 47.87%
RSA EXPORT RC4 40 MD5 410,627 47.21%
RSA EXPORT RC2 CBC 40 MD5 409,893 47.13%
RSA EXPORT DES40 CBC SHA 407,480 46.85%
DHE RSA DES CBC SHA 382,903 44.02%
DHE RSA EXPORT DES40 CBC SHA 368,247 42.34%

TLS Certificates

The nmap ssl-cert script16 was used to retrieve the certificates used by the servers. This
script tries to perform a TLS handshake with the given server/port and saves the
Privacy-enhanced Electronic Mail (PEM) certificate in the scan report. In addition, it
parses the fields of the certificate and stores them in the report. The script also supports
the STARTTLS command for an active SMTP session.

The validity of a certificate is based on three major properties: issuance by a valid
CA, time period of validity and a matching Common Name (CN). In addition, we
investigate other issues of certificates, such as multiple uses of the key pair or short
private keys. Lastly, all retrieved certificates are categorized using these properties.

Multiple Use of Key Pairs X.509 certificates are uniquely identified by their fingerprint
using a MD5 or the Secure Hash Algorithm 1 (SHA1) sum; current practice is to use
a SHA256 hash nowadays. Although 656,295 hosts offer SMTP services in the data
set, only 218,239 unique certificates were found. The reason is the presence of shared
hosters using a single wildcard certificate for their hosts. This may not be a problem
unless any user is able to retrieve the corresponding private key.

Another group of repeatedly used certificates are the certificates delivered with the
servers’ operating systems. Those are recognizable by their subject’s CN, which often
contains the operating system name, phrases like localhost or a domain ending in *.local.
These configurations have to be considered insecure, because multiple users have access
to the private key and therefore can decipher the TLS connections of other users.

Also private keys that are used multiple times in different certificates were found.
At a first glance, this does not involve a decrease of security. However, if the private
key is lost, one has to revoke not only one, but all certificates issued for this private
key. There is no acceptable reason for a system administrator to use the same key for
multiple certificates.

Time Period of Validity To investigate the time of validity, the certificates were
categorized into four groups, as outlined in Table 6.2. A certificate has two timestamps,

16https://nmap.org/nsedoc/scripts/ssl-cert.html

208

https://nmap.org/nsedoc/scripts/ssl-cert.html

6.2 Assessment of Email Delivery Security

Table 6.2: Time period of validity of the retrieved certificates.

Type Count Share

not yet valid 161 0.07 %
expired 56,078 25.68 %
valid 161,993 74.20 %
never valid 99 0.05 %

defining the time period during which the certificate is valid. 25.80% of the certificates
were not valid. It is suspected these are hosts that are not maintained anymore. Although
expired certificates may not be a security problem, they are an indicator that email is
treated with a low priority. Expired certificates prevent secure communication with
these servers if strict certificate validation is turned on at the email sender’s side. There
are 99 certificates which were never valid, since the not-after date of use was lower than
or equal to the not-before date of use.

Table 6.3: Self-signed, server and CA certificates.

Type Count Share is ca is server

server 79,832 36.58 % 0 1

ca 705 0.32 % 1 0

self-signed 137,694 63.09 % 1 1

invalid 1 0.01 % 0 0

Certificate Issuance Also it was analyzed who issued and signed the obtained certifi-
cates. Table 6.3 shows that 63.09% of the certificates were self-signed certificates, i.e.,
certificates that are signed by the same entity whose identity they certify, by signing
with their own private key. It was not looked into them in more detail, since the
signature is not meaningful in these certificates, and they clearly represent a security
issue.

To build the chain of trust for the non-self-signed certificates, the Ubuntu 14.04 trusted
root certificates were used as a trust anchor. It were 24,641 certificates reachable by
building a trust chain with the root and the retrieved intermediate certificates. This
set of certificates corresponds to 11.29% of the 218,239 found certificates and can be
considered trustworthy according to the signature.

Key Lengths Figure 6.5 shows the growth of key lengths in relation to the dates of
issuance of their certificates. It is apparent that the key lengths are growing steadily,
using an average of more than 2,230 bits at the time of the scans. The average lowest
key length stems from 2007 with 1366 bits. It is remarkable that a 1023-bit RSA number
has been factored in May 2007

17, and that key lengths will become an issue when more
powerful hardware becomes available.

17http://phys.org/news98962171.html

209

http://phys.org/news98962171.html

6 Secure Cloud Systems

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●●●●●●

●

●

●

●
●

●●

●
●

●
●

●

●●●

●●

●●
●

●
●●

●
●

●●
●

●

●

2008 2010 2012 2014

14
00

16
00

18
00

20
00

22
00

date of issue (2007−01 to 2014−05)

av
er

ag
e

ke
yl

en
gt

h

Figure 6.5: Change of the average key lengths over
time.

valid
1.89%

valid (wildcard)
9.34%

expired
0.19%

wrong CN
5.99%

untrusted
5.47%

untrusted, expired
29.03%

untrusted, wrong CN
0.84%

wrong CN, expired
0.39%

nothing correct
12.51%

no rDNS
10.48%

no SSL/TLS
23.87%

Figure 6.6: Categorization of services using the main
security properties.

Categorization To summarize the findings regarding certificates, the three main valid-
ity properties to form eight disjoint categories of certificates are used. Since not every
server has reverse DNS entries, it was not possible to get the names of 10.48% of the
servers. 23.87% did not offer TLS. Figure 6.6 indicates that only 11.23% of all scanned
email services had valid certificates in all concerns. Considering the certificate subject’s
CN, the category of valid certificates can be split up further. A certificate is not only
accepted as valid, if the CN matches the domain name, but if it has a wildcard pattern
in the form of *.domain.tld matching the domain name (e.g., mail.domain.tld). Using
this categorization, only 1.89% of the email services use a certificate only valid for this
specific host.

0 50 100 150

1
10

10
0

10
00

10
00

0

trusted root certificates

si

gn
ed

 s
er

ve
r

ce
rt

ifi
ca

te
s

Figure 6.7: Root certificates in relation to their signed server certificates.

Certificate Authorities

A widely criticized problem of the TLS trust model are CAs. Over the last years, more
and more CAs are trusted by software vendors. Figure 6.7 outlines the obtained trusted

210

6.2 Assessment of Email Delivery Security

Table 6.4: Top 10: Most popular CAs, measured by their issued certificates.

Count Share Common Name

1 7,085 28.58 % StartCom Certification Authority
2 4,309 17.38 % AddTrust External CA Root
3 4,278 17.26 % GeoTrust Global CA
4 2,632 10.62 % thawte Primary Root CA
5 2,079 8.39 % GlobalSign Root CA
6 1,243 5.01 % DFN-Verein PCA Global - G01

7 640 2.58 % UTN-USERFirst-Hardware
8 515 2.08 % COMODO Certification Authority
9 285 1.15 % Go Daddy Root Certificate Authority
10 279 1.13 % Deutsche Telekom Root CA 2

root CAs in relation to their signed server certificates of our test set. The ten most
popular CAs shown in Table 6.4 sign 94.16% of the server certificates. To have 99%
coverage, one needs to trust the 23 most popular CAs. The idea that ”if a CA can sign
for one domain, it can sign for any domain” leads to a loss of security. Examples such as
the DigiNotar hack18 or the TurkTrust incident19 show that this is a problem of practical
relevance. Since the default configuration remains unchanged in many settings, the
operating system and application vendors should act more responsibly in this respect.

CA Topologies

To check the validity of a certificate, a user builds a so called chain of trust. In addition to
its own certificate, the server can deliver additional intermediate certificates. The client
then builds a chain of trust as follows: The issuer of a non-root certificate is identified
by the issuer’s properties of this certificate, and the signature is obtained by using the
issuer’s public key. To get a valid chain of trust, the last certificate needs to be in the list
of trusted root certificates of the client. If no path from the server certificate to any of
the trusted root certificates can be found, the certificate is considered as untrusted. This
is often the case when a private CA for in-house deployment or self-signed certificates
are used.

Using OpenSSL20, a key-value database was built representing the graph of signatures
and the hierarchy of CAs. Two CAs showed peculiarities. First, StartSSL uses two
almost identical root certificates, only differing in the date of issuance and the serial
number. The trusted root certificate set as shipped by default with Ubuntu 14.04

was used. Second, as shown in Figure 6.8, the Comodo CA uses more than just the
CA and intermediate certificates. Comodo cross-certifies its root keys using the other
root certificates. This results in multiple signed key pairs and therefore in multiple
certificates for every key. If one of those root certificates is revoked, there are signing
chains starting at other root certificates available. Comodo enables a kind of fail-safe
strategy for their customers. Even if one root certificate is removed from the set of

18https://www.eff.org/deeplinks/2011/08/iranian-man-middle-attack-against-google
19http://web.archive.org/web/20130926134541/http://turktrust.com.tr/en/kamuoyu-

aciklamasi-en.2.html
20https://www.openssl.org

211

https://www.eff.org/deeplinks/2011/08/iranian-man-middle-attack-against-google
http://web.archive.org/web/20130926134541/http://turktrust.com.tr/en/kamuoyu-aciklamasi-en.2.html
http://web.archive.org/web/20130926134541/http://turktrust.com.tr/en/kamuoyu-aciklamasi-en.2.html
https://www.openssl.org

6 Secure Cloud Systems

StartCom Certification Authority
StartCom Certification Authority

StartCom Class 1 Primary Intermediate Server CA

AddTrust External CA Root

UTN - DATACorp SGCUTN - DATACorp SGC

AddTrust External CA RootAddTrust External CA Root

GeoTrust Global CA

RapidSSL CA

PositiveSSL CA 2

thawte Primary Root CA

Thawte DV SSL CA

StartCom Class 2 Primary Intermediate Server CA

GlobalSign Root CA

Deutsche Telekom Root CA 2

DFN-Verein PCA Global - G01

The Go Daddy Group, Inc.Go Daddy Secure Certification Authority

COMODO High-Assurance Secure Server CA

AlphaSSL CA - G2

GeoTrust DV SSL CA

Thawte SSL CA

GlobalSign Domain Validation CA - G2

GlobalSign Domain Validation CA - G2

PositiveSSL CA

Go Daddy Root Certificate Authority - G2

Go Daddy Secure Certificate Authority - G2

COMODO Certification AuthorityCOMODO Certification AuthorityCOMODO Certification AuthorityCOMODO Certification Authority

GeoTrust SSL CA

EssentialSSL CA
EssentialSSL CA

VeriSign Class 3 Public Primary Certification Authority - G5

COMODO RSA Certification Authority

COMODO RSA Domain Validation Secure Server CA

DigiCert High Assurance EV Root CA

Starfield Technologies, Inc.

Starfield Secure Certification Authority

VeriSign Class 3 Secure Server CA - G3

Baltimore CyberTrust Root

GlobalSign Organization Validation CA - G2

GlobalSign Organization Validation CA - G2

DigiCert High Assurance CA-3

AlphaSSL CA - SHA256 - G2

Entrust.net Certification Authority (2048)

Uni-FR CA - G02

Equifax

COMODO SSL CA

TeleSec ServerPass CA 1

EuropeanSSL Server CA

USERTrust Legacy Secure Server CA

GeoTrust SSL CA - G2

DFN-Verein-GS-CA - G02

GlobalSign
GlobalSign Domain Validation CA - SHA256 - G2

GlobalSign Domain Validation CA - SHA256 - G2

Thawte Server CA

DigiCert Global Root CA

GlobeSSL CA

Starfield Root Certificate Authority - G2
Starfield Secure Certificate Authority - G2

MPG CA

DigiCert Secure Server CA

VeriSign Class 3 International Server CA - G3

GeoTrust Primary Certification Authority

GlobalSign Domain Validation CA

RWTH Aachen CA

Equifax Secure Global eBusiness CA-1

Certum CA

TUD CA G01

TeleSec ServerPass DE-1

GlobalSign Organization Validation CA - SHA256 - G2

FAU-CA

FHWF-CA

RHRK-CA - G02

TC TrustCenter Class 2 CA II

Certum Level II CA

DigiCert SHA2 Secure Server CA

Thawte Premium Server CA

SwissSign Silver CA - G2

TC TrustCenter Class 2 L1 CA XI

Entrust Certification Authority - L1C

GeoTrust Extended Validation SSL CA - G2

Technische Universitaet Braunschweig CA

SwissSign Gold CA - G2

Zertifizierungsstelle der TUM

COMODO Extended Validation Secure Server CA

SwissSign Server Silver CA 2008 - G2

thawte Extended Validation SSL CA

TU Dresden CA - G02

Universitaet Bremen CA

UHH CA - G02

Ruhr-Universitaet Bochum CA

StartCom Class 3 Primary Intermediate Server CA

CA der Universitaet zu Luebeck

TeleSec ServerPass DE-2

StartCom Extended Validation Server CA

GeoTrust Extended Validation SSL CA

Uni Marburg CA - G02

Universitaet-Goettingen CA

SwissSign Server Gold CA 2008 - G2

Alpha CA

CA der LUH (UH-CA) - G03

Universitaet Stuttgart CA - G01

COMODO RSA Organization Validation Secure Server CA

DigiCert SHA2 High Assurance Server CA

Universitaet Duisburg-Essen CA -G01

Vodafone (Corporate Domain 2009)

VeriSign, Inc.

DFN-Verein CA Services

Global-UNITUE-CA 01

DOMENY.PL DV Certification Authority

UNIVERSITAET LEIPZIG CA

Uni Kiel CA - G02

VeriSign, Inc.

VeriSign Class 3 Extended Validation SSL SGC CA

LMU-CA

WebSpace-Forum Server CA

TU Clausthal CA - G02

Freie Universitaet Berlin - FU-CA - G01

GlobalSign

Universitaet Potsdam CA - G01

Vodafone (Corporate Services 2009)

Vodafone (Corporate Services 2009)

UTN-USERFirst-HardwareUTN-USERFirst-HardwareUTN-USERFirst-Hardware

Gandi Standard SSL CA

Figure 6.8: CA Topology of the Comodo CA.

trusted certificates, the customers’ servers have other intermediate certificates to build a
trusted chain. Although cross-certification is legitimate according to the X.509 standard,
it implies a less secure CA, if the private key is lost.

Email Provider Strategies

Finally, the connections of the providers’ email servers to other email servers were
investigated. For this purpose, email accounts at various free email providers popu-
lar in Germany were registered and emails sent to prepared test email server. This
revealed the connection details of the providers’ outgoing connections. For this part
of the study, Google Mail21, web.de22, GMX23, Freenet24, Yahoo Mail25, Microsoft
Outlook.com/Hotmail/Live26, Apple iCloud Mail27 and T-Online28 were used.

The idea of this investigation was to find situations that a potential attacker with
access to the connection between two email servers can exploit to read email. The
attacker could just passively eavesdrop on the connection or actively perform a Man-
in-the-Middle attack. To simulate an attacker that attempts to change cryptographic
properties, the servers’ TLS properties were changed to test the behavior of the email
providers. In particular, the following settings were examined:

• Expired certificate (not security critical)
21https://mail.google.com
22https://www.web.de
23https://www.gmx.de
24https://email.freenet.de
25https://mail.yahoo.com
26https://login.live.com
27https://www.icloud.com
28https://email.t-online.de

212

https://mail.google.com
https://www.web.de
https://www.gmx.de
https://email.freenet.de
https://mail.yahoo.com
https://login.live.com
https://www.icloud.com
https://email.t-online.de

6.2 Assessment of Email Delivery Security

Table 6.5: Email provider strategies for connections to other email servers.

Provider Untrusted Certificate 512-bit RSA Key Anonymous Ciphers Weak Ciphers No STARTTLS

Google Mail encrypted no delivery no delivery no delivery unencrypted
Web.de encrypted encrypted unencrypted unencrypted unencrypted
GMX encrypted encrypted unencrypted unencrypted unencrypted
Freenet encrypted unencrypted encrypted unencrypted unencrypted
Yahoo encrypted encrypted unencrypted unencrypted unencrypted
Outlook/Hotmail encrypted no delivery unencrypted unencrypted unencrypted
iCloud encrypted encrypted unencrypted unencrypted unencrypted
T-Online encrypted unencrypted unencrypted unencrypted unencrypted

• 512-bit RSA key certificate
• Certificate with wrong CN
• Only anonymous ciphers (no certificate)
• Only weak or broken ciphers

Different security settings were found and thus more and less difficult situations
to attack the email providers. All providers forward email to servers with invalid
certificates and still communicate plaintext if a server does not support TLS at all. With
one exception (Google), one can trick the email providers to send their data without
any encryption. The results of the experiments are summarized in Table 6.5.

Invalid Certificates The main security properties of a certificate are a trusted issuer,
the period of validity and the domain name matching the common name. All email
providers ignored these features, completed the TLS handshake and submitted the
data. A Man-in-the-Middle could provide this kind of certificate without any effort and
thus see the data. In this study multiple certificates were used to check these properties.
None of the providers complained about the often changing certificates, implying that
certificate pinning is not used at all or at least not automatically for new or uncommon
servers.

Default Cipher Suites All examined email providers use strong cipher suites in
their connections, with one exception. Freenet offered, in addition to several strong
cipher suites, three cipher suites with an anonymous key exchange. The anonymous
key exchange methods do not use a certificate and therefore do not provide any
authentication of the server. An attacker would love this situation, since his or her effort
to read the email data is minimized.

Short RSA Keys To examine the use of short cryptographic keys, a certificate with
a 512-bit RSA key was created. The email providers acted in different ways: Web.de,
GMX, Yahoo and iCloud accepted the certificate, completed the TLS handshake and
transmitted the email data. Google Mail and Microsoft Outlook/Hotmail rejected the
certificate and continued with multiple unsuccessful retries. Freenet and T-Online
rejected the certificate and closed the connection. Immediately afterwards, they opened
another connection to transfer the email without using any encryption.

213

6 Secure Cloud Systems

Weak Cipher Suites The behavior of the email servers when a server only supported
weak ciphers was also checked. As mentioned above, the providers offer only strong
ciphers in their client hello message. Therefore, the TLS handshake could not be
completed. However, all providers except Google Mail reconnect after this failed TLS
handhake and transfer the email without using encryption.

No STARTTLS In the last test, the STARTTLS command on port 25 was completely
disabled . After the SMTP session is initiated, an email server offers a list of features
it supports. STARTTLS is a means to encrypt the session after it is established. All
tested email providers continued with the non-encrypted transfer of an email when this
feature was disabled. Therefore, an attacker only needs to modify the SMTP command
list provided by the server. Modern routing and firewall hardware, e.g., as provided by
Cisco, has exactly this mechanism built in to inspect mail traffic29.

Implications Considering the results presented above, an interesting situation hap-
pens: If an attacker is able to inject a few TCP packets into the connection, the TLS
handshake is aborted, and the email provider reconnects and transfers the email with-
out any transport security. Google seems to use a non-secured TLS policy in the sense
that Google transfers email using TLS only, but does not insist on correct certificates.

Over the last years, several methods to avoid downgrade attacks in web browsers
and other applications have been developed. Initiatives such as the SSL Observatory30

and tools such as HTTPS Everywhere31 try to protect users against leakage of their
private data. Email providers need to catch up and deploy similar security standards in
their infrastructures.

6.2.4 Advice for Email Providers

The SMTP TLS landscape has major flaws across most email providers. In this subsec-
tion, some advice is given to email providers for obtaining secure configurations for
their servers. The advice is meant to harden a TLS server at the cost of compatibility,
which we think is one reason for weak configurations. In addition to the relevant TLS
factors, measures to prevent simple downgrade attacks are suggested.

The following recommendations can be given to network administrators and email
providers to harden their TLS configurations:

1. Update the TLS stack frequently.
2. Use TLS 1.0 (or higher) instead of SSL 3.0 (or lower).
3. Support strong cipher suites only.
4. Perform smart TLS certificate checks.

• Time of validity
• CA issuance
• Key lengths

5. Accept/use TLS enabled email transfer only.

29https://www.cisco.com/web/about/security/intelligence/asa_esmtp_starttls.html
30https://www.eff.org/observatory
31https://www.eff.org/de/https-everywhere

214

https://www.cisco.com/web/about/security/intelligence/asa_esmtp_starttls.html
https://www.eff.org/observatory
https://www.eff.org/de/https-everywhere

6.2 Assessment of Email Delivery Security

The first advice is that the TLS stack of the system needs to be updated frequently to
keep the system secure.

The second advice is that currently only TLS 1.0 and the higher TLS versions can be
considered secure, since SSL 3.0 is affected by the POODLE attack.

The third advice is to support strong cipher suites only. Older cipher suites with
MD5 hashing or 3DES encryption should not be used, since they are more likely to be
broken in the near future. As with security updates for software and the TLS stack,
email providers should pay close attention to the effects of new attacks on the list of
secure cipher suites and remove insecure cipher suites accordingly32.

The fourth advice is to perform appropriate certificate checks regarding period of
validity, CA issuer and key lengths and use a certificate pinning mechanism to detect
bogus certificates33. A list of the trusted certificates for every server must be maintained.
When a TLS handshake is in progress, it can be checked whether the certificate has
changed without revocation or whether it has expired.

The final advice is to either at least warn users and let them decide to use a potentially
insecure connection, as done in web browsers, or decline non-encrypted email transfer,
rather than just transferring email without encryption. One possibility to achieve this
would be to set a special email header in the Mail User Agent (MUA) indicating that an
email should only be delivered over encrypted links, with strictly validated peers or
just anybody and any connection. Email should only be delivered over links with an
equal or higher security rating than the one provided in the header. Although there
is no guarantee that the server respects the user’s wishes, if the big email providers
followed this proposal and enough users set a flag for strict validation and encryption,
smaller providers would be forced to use valid certificates and strong ciphers. Thus,
unencrypted communication could possibly be eliminated after some time. It is also
recommend to consider Ristic’s TLS deployment best practices34 for more details on
TLS configuration hardening.

Furthermore, email providers are mostly left alone when it comes to tools for securing
and testing their setups. Qualys provides a service for web server administrators to
check their setup for common misconfigurations35. This kind of service would be of
great benefit for email providers. Standardized test infrastructures could also be utilized
by central instances like CERT, the German BSI or large websites with lots of email
traffic, such as Facebook, Youtube or Github, to automatically generate emails to MTA
owners in case of security concerns. This, of course, means that every entity must
support the common mailbox names as suggested by RFC 2142

36.

6.2.5 Conclusion

In this section, an empirical study of the security properties of SMTP over TLS within
the German IP address space was presented. It was shown that even though many
email servers support strong cipher suites, weak or broken cipher suites are still present.
Furthermore, only few certificates provided by the email servers are valid (about
11%). The behavior of email providers differs significantly with respect to handling

32https://hynek.me/articles/hardening-your-web-servers-ssl-ciphers/
33https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
34https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf
35https://www.ssllabs.com/
36https://tools.ietf.org/html/rfc2142

215

https://hynek.me/articles/hardening-your-web-servers-ssl-ciphers/
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf
https://www.ssllabs.com/
https://tools.ietf.org/html/rfc2142

6 Secure Cloud Systems

various TLS configurations. Based on the results, practical advice on securing SMTP
setups to avoid some of the identified issues was given. Unfortunately, an ultimate
solution offering perfect security is simply not possible with the current PKI landscape.
This topic is often discussed in the context of HTTP(S), but with email the problems
may be even harder to fix, since decision making happens automatically without user
interaction.

There are several areas for future work. For example, appropriate best practices
are needed to ensure transport layer security of email traffic. A simple plain-text
fallback as used by many providers significantly reduces the protection level of SMTP
communication. Furthermore, validation and verification of peers and their certificates
must be simplified. Finally, staying up to date with broken, weak and strong cipher
suites is another challenging task, since there is no central entity giving advice for
regular updates.

216

6.3 Hardening Server Systems

6.3 Hardening Server Systems

6.3.1 Introduction

External and internal intrusions are the most serious threats in computer systems
connected to a network. Attackers exploit software bugs in core components on a target
system to gain superuser privileges, allowing the attacker to take control of the attacked
system. The rise of Cloud Computing aggravates the stated problem. Cloud Computing
refers to both the on-demand provisioning of hardware resources in the data centers of
public providers such as with Amazon’s Web Services, and the applications delivered
as services over the Internet, such as with Google’s AppEngine. Offering access to
remote compute resources is often referred as Infrastructure as a Service (IaaS). The
resources provided as IaaS are platform virtualized environments, i.e. customers have
access to their own virtual appliances running on shared physical resources.

To retain the control of the attacked system persistently, the intruders typically install
malware in order to recover full control after reboot. The target system in this case
is the virtual machine offered by the Cloud Computing provider. This kind of attack
is commonly discussed as a strong intrusion attack, while temporary attacks between
two operating system startups are referred as weak intrusion attacks [239]. The software
toolkits that are installed within a strong intrusion attack are commonly called rootkits.
Usually, weak intrusion attacks are used to place a rootkit on the attacked system.

These potential threats create the need for a new malware detection system. Providers
need ways to ensure the security of their infrastructure and the systems of their
customers. Having a flexible Cloud infrastructure also opens new possibilities to scale
up and distribute malware detection software among several systems. Most end-host
security solutions have a major, negative performance impact on the computer caused
by huge signature-sets or complex detection algorithms. Cloud Computing can be
beneficial here to decrease the slowdown and offload it to dedicated machines.

In this section, an approach that deals with malware detection and kernel rootkit
prevention is presented. While the former deals with detecting malware traces during
runtime in a safe and non-intrusive manner, the latter prevents rootkits from being
installed in the operating system kernel. A Cloud-based intrusion detection system
to recognize running malware is designed to run on virtual machine instances with a
backend Cloud to distribute malware scanning operations between several backends. A
flexible framework for a distributed security solution with a minimal overall resource
footprint on the end host is presented. To detect well-known as well as yet unknown
malware, a traditional signature check is performed and the prerequisites for a live
system-call tracer are presented. Furthermore, the solution introduces an integrity
check of authorized kernel modules to prevent rootkit installations via corrupted
kernel modules. For this purpose, the operating system kernel is modified to load only
previously cryptographically authorized kernel modules.

Parts of this section have been published in [13].

6.3.2 Problem Statement

A convenient way for an attacker to gain control over a compromised system is a rootkit.
There are various types of rootkits available, e.g. application level rootkits that replace
the original binaries with a fake binary containing a trojan horse or library rootkits

217

6 Secure Cloud Systems

that replace valid library functions with malicious ones. The focus of our work is the
kernel rootkit. It replaces/adds functions or device drivers in the kernel space of an
operating systems. Kernel modules in general enable upgrades to specified parts of
a kernel to strengthen modularity of the operating system. There are two classes of
kernel modules: permanent kernel modules, which are loaded at boot time and cannot
be removed once they are running, and loadable kernel modules, which can be loaded
and unloaded by the system at run time. Many kernel rootkits are designed as loadable
modules or device drivers, since this is the easiest way to add new functionality to the
core system. Thus, monitoring the loading process of kernel modules is indispensable
to ensure that no malicious modules are loaded.

There are various ways to disable dynamic kernel module loading:

• In Linux it is possible to disable kernel module loading completely. While con-
figuring a kernel, the administrator can set the MODULES option to NO and thus
disables the complete kernel loading and processing mechanism. While this
completely prevents kernel rootkits from loading, it also affects all legal modules.

• The technique of multiple secure levels is used in various BSD derived Unix
operating systems. Any super user is able to increase the secure level. On the
other hand, the only way to lower the secure level is via the init-process, a
prototype user process that is only loaded during system startup, so the system
has to be restarted. For example, FreeBSD [240], a widely used Unix branch, runs
with four different levels of security.

Thus, it is possible to disable dynamic module loading either by disabling modules or
via a higher secure level. In this case, one has to take the good with the bad: On the one
hand, this avoids critical actions such as arbitrary changes of kernel memory through
user programs (which, in fact, is performed by loading a kernel module). On the other
hand, the concepts are very restrictive and forces users to compile and install the whole
kernel instead of linking a single file. This step makes a reboot of the modified system
necessary and interrupts running applications. Actually, for several applications (e.g.
all mission critical applications), this is not a suitable solution.

While the previously stated problem applies to a greater extent to infrastructural
machines, such as critical servers (e.g. DNS, DHCP), a Cloud provider should also be
interested in keeping the VMs of its customers safe. Most Cloud vendors provide VMs
with full root access, meaning that a user can mostly do whatever (s)he wants, including
destroying the whole machine. Since Cloud Computing is about pay-as-you-go, this
should not harm the vendor. Nevertheless, if a user (intentionally or not) executes
malware, this could also affect the provider, e.g. a spam malware could abuse the
outgoing bandwidth to send mass-spam mails. Thus, while granting root permissions
to its customers, a provider still should be able to inspect the applications running
inside its customers’ VMs. Furthermore, (s)he should be able to take countermeasures
if (s)he detects a security violation, such as running malware binaries. In the following
section, we will present a Cloud based host intrusion detection system with a minimal
resource footprint as well as hidden from the malware itself in the operating system
kernel.

218

6.3 Hardening Server Systems

6.3.3 Related Work

Kroah-Hartman [241] has proposed to sign executables with a fingerprint. It is stored in
an additional section of the commonly used executable linkage format (ELF). Further-
more, the technique of asymmetric cryptography is used to protect the fingerprint from
malware modifications: A private key is used to encrypt the fingerprint stored in the
ELF section, while the kernel linker decrypts the signature in order to compare it with
the signature of the loaded file. A general problem is the kernel-level implementation
of an asymmetric cryptography algorithm. There is no such implementation in most
current operating systems. This is the reason why for this research the symmetric
SHA256 hash algorithm was chosen.

A similar way of implementing a kernel rootkit prevention technique is used by
Catuogno et al. [239]. They implemented a verification mechanism based on encrypted
signatures stored in an additional section of an executable as well. In contrast to Kroah-
Hartman, they did not address dynamically loadable kernel modules but executables
in general. This is why they assumed that the support of dynamically loadable kernel
modules should be disabled. This is not an appropriate assumption for the security of
most applications.

In the NetBSD operating system, the Veriexec (verified execution) kernel subsys-
tem allows users to monitor files and to prevent their removal, read/write access
or execution if necessary37. It implements four levels of strictness: A learning mode
for configuration matters, intrusion detection and intrusion prevention mode, as well
as a lockdown mode. Contrary to Veriexec, the proposed solution is specialized to
protect the kernel from modifications by dynamically loaded modules. In this research
a comparable database and fingerprints are used, but in contrary to the NetBSD kernel,
the obsolete lkm (loadable kernel modules) architecture is not used.

King et al. [242] have classified three kinds of malicious services supported by vir-
tual machine based rootkits (VMBR): Services not interacting with the target system
(spam relays, DDoS zombies, phishing web servers), services observing data or events
(keystrokes, network packets) using virtual machine introspection and services delib-
erately modifying the execution of the target system. They successfully implemented
all of these types combined with a countermeasure against the redpill virtual machine
detection mechanism through emulating an instruction, which is used to determine a
difference between a real and a virtualized processor’s interrupt descriptor table. The
intrusion detection approach from this research cannot defend an attacked system once
a VMBR is installed, nevertheless the proposed secure level mechanism is powerful
enough to protect an endangered system from a VMBR installation by locking e.g.
shutdown scripts used for Subvirt installation by King et al.

Garfinkel and Rosenblum [243] have described a virtual machine introspection based
on an architecture that leverages the isolation, inspection and interposition properties
of VMMs. Virtual machine introspection (VMI) describes a family of techniques that
enables a VM service to understand and modify states and events within the guest.
Beside this passive monitoring technique, active monitoring of virtual machine-based
IDSes has been implemented as well [244]. Although they are facing the gap between
the VMM’s view of data/events and the guest software’s view (which is called semantic
gap), their modifications of the guest operating systems are detectable.

37https://www.netbsd.org/docs/guide/en/chap-veriexec.html

219

https://www.netbsd.org/docs/guide/en/chap-veriexec.html

6 Secure Cloud Systems

CloudAV [245] is a software stack developed by Oberheide et al. It is meant to
counter the problems single anti-virus solutions face nowadays with the increase of
different malware and new exploit techniques. Instead of having just one AV solution
per host, CloudAV uses multiple, heterogeneous detection engines. This approach is
called ’N-version protection’.

The Automatic Malware Signature Discovery System (AMSDS) [246] has been de-
veloped by Yan and Wu. The fact that increasing numbers of zero-day malware take
more and more time to analyze and the need to write signatures for them indicates
that it is necessary to provide automatic signature generators. Moreover, the increasing
size of signature databases and analysis techniques increase the processor and memory
footprint on computers with installed anti-virus solutions. This can be countered by
anti-virus software as a Cloud service, putting the workload of analysis and signature
maintenance on dedicated machines. AMSDS has a small detection engine with a re-
duced signature set. This set of signatures can match a great share of malicious software
through special treatment and preprocessing of the binary. Only if the much smaller
AMSDS signatures cannot detect a suspicious file, it is send to the Cloud anti-virus
service for scanning with traditional anti-virus solutions. The automatic signature
generation is very effective and space saving compared to classic signature generation.
But these signatures can only detect binary executables loaded either from disk or
network. An already running binary such as a service infected through an exploit is
not covered by this approach.

Laureano et al. [247] have implemented some kernel introspection mechanisms
into User-Mode-Linux. The authors gather information about the running system by
inspecting the flow of the system calls made. Their IDS runs in two different modes:
a mode for learning the regular behavior of a system and a so called monitor mode
where anything unusual generates an alarm and suspicious processes are denied access
to specific system calls. A similar system could easily be implemented within the
framework presented here. Furthermore, in the proposed approach access to system
call parameters is granted, enabling a more fine grained behavior analysis, while
their approach just reports the system calls. Ignoring the parameters might lead to
significantly more false alarms, since it can make a huge difference wether an open
system call accesses a password file or just a new temporary file.

6.3.4 Design

In the sequel, the proposed solution to the problems stated above is presented. The
proposal is based on the standard assumptions made in most other virtualization
security architectures [243], [244]. The hypervisor is part of the trusted computing base
(TSB). Since the focus is on infrastructural security, it is not dealt with attacks against
the Virtual Machine Monitor.

Malware Detection

Contrary to a classic anti-virus setup, a Cloud specific design of a malware detection
engine should run in a distributed manner and display some special requirements to
ensure the security of the service provider’s infrastructure as well as the customer’s
security. The communication paths and different software modules of the proposed
design are shown in Figure 6.9. Any program run by the user (1) is executed in a virtual

220

6.3 Hardening Server Systems

machine in the Cloud. The kernel of this machine then passes all relevant information
to a KernelAgent (2). The KernelAgent gathers all information by the virtual machines
running on the Cloud resource and then relays them to the ScanProxy (3). The ScanProxy
provides a front-end to the Cloud security analyzer services. At this stage, the proxy
has to distribute the information to the different services, such as classic anti-virus
software or behavior-based analysis solutions (4).

Service Resource

Scan
Proxy

Backend n
Backend 2
Backend 1

(e.g. ClamAV) 4

Cloud Resource n

Virtual Machine n

Kernel
Virtual Machine 2

Kernel
Virtual Machine 1

Kernel

Cloud Resource 2

Virtual Machine n

Kernel
Virtual Machine 2

Kernel
Virtual Machine 1

Kernel

Cloud Resource 1

Kernel
Agent

Virtual Machine n

Kernel
Virtual Machine 2

Kernel
Virtual Machine 1

Kernel
2

1

3

User

Figure 6.9: Malware scanner architecture

The kernel module is the primary sensor sitting directly in the running virtualized
kernel of the guest machine. To avoid any security issues through the kernel module,
it has very limited functionality. Its main task is to function as a logging relay and to
submit any interesting activities to the KernelAgent for further processing. Valuable
information include process creation or termination, system calls by these processes and
the system call parameters as well as any binary files getting executed. This approach
makes it very easy for the Cloud provider to maintain the system. The only component
that has to be changed is the kernel. Thereafter, all operating system (OS) images that
are provided by the customers can be booted using the modified kernel. Contrary to
classic anti-virus solutions, no installation within the OS image is necessary, which
means the additional security provided by the OS is completely transparent to the
customer. Moreover, the customer has full control over his or her OS image. No matter
what the customer does with the image, (s)he cannot break or deactivate the malware

221

6 Secure Cloud Systems

detection system.
The kernel modules should intercept any executable before it is running and submit

it to its host agent. This is the way classic anti-virus hooks grab an executable before
loading it into their scan engine. They check every executable through static analysis.
Applying static binary analysis might not always be the best way to ensure security,
especially when confronted with unknown, new malware. Nevertheless, it still should
be part of any malware detection solution. Using this approach, it is easy to take
advantage of all the existing anti-virus software. A requirement for any executable
analysis is the binary image of the file itself, and for identification purposes, the
filename must also be transmitted.

Process Life Cycle, System Calls Monitoring a process with respect to its system
calls throughout its lifecycle can be a valuable source of information when looking
for common patterns in malware behavior. By relaying this information live, not only
encrypted executable images and obfuscation, but also in-memory injected malware
through an exploit can be analyzed. System calls make it easy to spot specific file
accesses or socket operations, such as transmitting data back to an attacker. The
relevant information includes the system call, its parameters, return values and the
program that made the call.

KernelAgent This part collects all the data from the VM kernels running on the host
system. This information should then be relayed to the ScanProxy. Since there is no
other logic involved in this piece of software other than the configuration of what
has to be sent to whom, there is almost no need to touch an installed system. To
increase the performance, caching of messages and later on responses is implemented.
This is especially interesting for classical executable image analysis. While starting-up
several virtual machines, the same executable is run several times. These often called
binaries include e.g. system services. Submitting and analyzing the executable at every
initiation/run costs CPU time and also increases network traffic. This can slow down
the start-up time in a feedback based intrusion prevention system significantly.

Since both groups of information (binary and system call related) have different
requirements, splitting up the KernelAgent into two separate servers makes sense. One is
a UDP-based system call forwarder, the other one should receive binaries and forward
them. The binary executable relay must not save any executables to the hard disk.
Otherwise, there is a chance of an infection happening on the host system in case of
malware.

ScanProxy This component gathers all available information from the hosts and
distributes it among the registered scan engines. For each incoming packet containing a
system call, one or more receiving scan engines can be used. The proxy then forwards
the packet to the registered receivers. It could also act as a global log and caching
proxy for the complete Cloud. Every new scan engine being a system call analyzer
or a classical anti-virus scanner can be enlisted here once or even several times for
redundancy purposes. The proxy does not need to have much more logic than the
above to keep the system as easy to manage and immunized as much as possible. More
code complexity means more space for failure through attacks.

222

6.3 Hardening Server Systems

Scan Engine and Executable Analysis Considering the previously described frame-
work, several possible scanning backends can be implemented. They can generally be
categorized as process behavior based or executable binary based, such as a classical
anti-virus solution, e.g. ClamAV38. Every incoming executable has to be placed in a
separate container on the hard disk and then has to be analyzed. The received binaries
must not be executed, otherwise the security of the scanning computer can be com-
promised in case of an infection. By registering several different anti-virus scanners
with wrappers, an increased level of security can be achieved. This helps to minimize
the vulnerability window that exists between the discovery of a new malware and the
release of the signatures by the anti-virus vendors for their products. To process events
such as systems calls, a backend like the software of Wagener et al. [248] can be used
with minor modifications. The underlying concept of their approach is that even new
malware shares common behavioral similarities to already existing malware. By finding
these similarities in behavior graphs, even yet unknown malware can be automatically
detected. While Wagener et al. perform system call analysis ahead-of-time in a secure
execution environment, modifications should easily be possible to enable on-the-fly
detection.

Kernel Rootkit Prevention

Instead of disabling kernel module loading completely, the BSD secure level concept
is favored. It allows module loading before raising the secure level. The following
subsection describes the process of kernel rootkit prevention by loading authorized
kernel modules only. It is distinguished between two modes, describing the state of
the secure level. If the secure level is lower or equal than 0 (which is the default for
single user mode), it is called insecure mode; if the secure level is set to 1 or higher
(kernel memory is read-only, file system might be read only), it is called secure mode.
Furthermore, adding a module to the internal list is called mark/unmark as authorized.

To prevent kernel rootkits, it is distinguished between safe and unsafe kernel modules.
In secure mode, it is only possible to (un-)load authorized kernel modules. It is not
possible to load other modules, especially any kind of malware. All authorized modules
are kept in a list that resides in read-only kernel memory. The latter is needed to prevent
that an attacker could simply modify the list to mask a rootkit as an authorized module.
Each list entry contains the following information:

• A human-readable description of the kernel module
• A unique cryptographic hash of the kernel module
• Some internal kernel structures to indicate whether the kernel module is currently

loaded

The implementation uses a generated SHA256 hash to provide a unique key for each
module. To authorize kernel modules, a userland program has been developed to add
or remove kernel modules to the mentioned list through a system call. This system
call refuses execution if it is called without root privileges. Optionally, all dependent
modules could be added as well. Any operations on the list can only be made while the
system is in insecure mode. A convenient moment would be the initial system setup

38https://www.clamav.net/

223

https://www.clamav.net/

6 Secure Cloud Systems

before it is actually connected to an external network. While the system is running in
insecure mode, the userland program is able to mark/unmark modules as authorized.
The list, where the marks are stored, uses transient storage, i.e. the list is initially empty
at system start-up time.

not loaded &
not authorized

not loaded,
but authorized

loaded, but
not authorized

loaded &
authorized

mark as authorized

mark as not
authorized

mark as not
authorized

m
ar

k
as

 lo
ad

ed

m
ar

k
as

 n
ot

 lo
ad

ed

m
ar

k
as

 n
ot

 lo
ad

ed

m
ar

k
as

 lo
ad

ed

Insecure Mode

Se
cu

re
 M

od
e

mark as authorized

Figure 6.10: Authorized module loading state transition diagram

Figure 6.10 shows the possible modifications of a list entry. By default, a module
is not loaded and not authorized. In insecure mode, a user can mark a module as
authorized and thus is able to load it later when the system is in secure mode. All
kernel modules that are loaded during the boot process (e.g. the ACPI subsystem or
device drivers) are not authorized. Consequently, they have to be authorized before
the system is switched to secure more. Otherwise, they would work as expected, but
unloading would not be possible (which might not be necessary, especially if it is a
core component). Once the system is in secure mode, only authorized kernel modules
can be loaded.

The main features of this process are encapsulated in the dynamic module loading
process to check whether a module is marked as authorized or not. To authorize a
module, an authorization function has to open the module file, hash its content and
search for matching hashes in the list. If the authorized-flag of the corresponding list
entry is set, the module is allowed to be loaded. The unloading process is handled
by another function that checks if the module is already loaded. Consequently, we do
not have to hash the module again. Every loaded module is equipped with a unique
pointer, representing the module. This pointer is used to find the correct module in
the list and to decide whether to unload or not. Finally, unloaded modules must be
marked as not loaded in the list.

224

6.3 Hardening Server Systems

6.3.5 Implementation

Like the operating system kernel (which in this case is the DragonFly BSD kernel,
version 2.5.0), the kernel part of the malware detection module and all parts of kernel
rootkit prevention and have been written in ANSI C.

Malware Detection

To tap into the relevant parts of the kernel, some static hooks are installed. These hooks
redirect or copy valuable information from kernel functions such as execve to an extra
function that passes this information on to the KernelAgent.

Process Related Information Getting all process related information requires the
addition of several hooks to the VM kernel. A hook is installed in the function that
adds new processes to the kernel’s process list and assigns a new PID to them. The
list is a linked-list used to keep a global list of all running processes. Another hook
that is called at the end of a process lifetime works in a similar fashion. This routine is
called by the kernel’s exit1 function to remove a process from the global list of running
processes and add it to the list of dead processes. This list is an in-kernel linked-list
containing all processes in the ZOMBIE state. This means that they are about to be
removed from memory and are done executing.

The system call hook is called from within the VM’s syscall2 function. It is executed
immediately after the processing of the real system call. Getting called after the exe-
cution of the system call has the advantage that some parameters that are passed on
empty to the kernel and are filled during execution can get their content inspected.
This is, for example, the case with the open system call that has a buffer as its parameter
for reading bytes from a file descriptor.

The challenging part here is getting the parameters. They are passed to the system
call function without providing any type-information, except a memory reference. For
the kernel, there is no need to know this type-information, since the corresponding
system call knows what type its parameters should have. As part of this approach,
an extra file holds a list of all system calls and their parameter types. Additionally,
the error code as returned by the actual system call is provided for analysis purposes.
This has the advantage that the data flow can be recorded, such as the returned file
descriptor from an open call and later on any read system calls to this file descriptor.

Executable Loader The binary loader hook is placed in the kern execve function of
the VM, which is the actual place of execution and not the system calls’ first entry
point, sys execve. To avoid unnecessary calls to the logging hook, it is only called
after exec check permissions has successfully returned. After this call, it is certain that
the executable is valid and has the appropriate permissions. The logging takes place
before the first page of the executable gets mapped into the memory and is executed.
In a feedback-based Intrusion detection system it would still be possible to stop the
execution at this stage, should the binary be infected with malware. The whole binary
is then submitted to the KernelAgent using TCP.

Communication from the VM to the Host System To keep the protocol overhead as
small as possible and be as responsive as necessary, a simple protocol is implemented

225

6 Secure Cloud Systems

by using UDP in the kernel. Approaches based on TCP would have brought up some
additional delays, which is a problem when monitoring realtime events such as system
calls.

KernelAgent The KernelAgent’s main task is to collect the data from all virtual kernels
running on the machine and forward it to its ScanProxy. This part is implemented
using the Python scripting language. Whenever a new packet is received, a background
thread is started to process the received packet. This implies that it is parsed and then
the whole packet is sent forward to the configured ScanProxy.

ScanProxy This software module is similar to the KernelAgent on the receiving part
and is also written in Python. Instead of one configured receiver for relaying, like in
the KernelAgent, there is a list of receivers. This list can be configured for each entry
to relay only specific types of traffic (e.g. only NEWPROC, ENDPROC and SYSCALL) or any
traffic for a catchall or logging daemon. Due to this fine grained configurability, the
incoming packets must be inspected and checked against the list of receivers to ensure
that every receiver obtains only events that have been subscribed for.

For scanning executable files with an anti-virus software such as ClamAV, a TCP
variant of the ScanProxy has also been written. Just as within the UDP ScanProxy, a list
of receivers/backends can be configured. All incoming binaries are relayed to them.
The ScanProxy only keeps the executable’s data in memory, nothing gets written to
the hard disk. This backend checks incoming binary files with ClamAV for known
viruses. Incoming files are received over TCP connections to ensure that the received
binaries are complete and in-order. As in the KernelAgent and the ScanProxy the name
of the executable is also submitted. Every received binary is saved in a temporary
quarantine folder, where it is scanned. After scanning is done, the file gets deleted to
ensure security of the backend system.

Kernel Rootkit Prevention

All main communication between userland tools and kernel is handled by a newly
introduced system call, e.g. add a new module to the internal list is done by sending
the required information via the defined interface. As mentioned before, the internal
list has to hold any information about a module. For example, a module can just be
authorized, not loaded, or it can be loaded but not authorized. Therefore, our list
contains one entry per module. The state is held in flags or implicitly by pointers being
not empty.

Every generated list entry holds a unique key. In this implementation, the generated
SHA256 hash is used to provide a unique key for each module. The longer the resulting
hash value is, the more secure is the corresponding algorithm regarding brute force
attacks. Thus, SHA-256 is a good tradeoff in terms of security as well as memory usage
and performance.

The identifier is used to hold the human readable description of that entry. A linker file
pointer points to the corresponding linker file kernel structure. This is a convenient
way to map a loaded module to the generated hash without doing changes inside the
existing kernel structures. To prevent the list from being changed while system is in
secure state, the functions responsible for mark-and-authorize a module are not callable

226

6.3 Hardening Server Systems

in that case. After switching to secure mode, only authorized modules can be loaded or
unloaded - there is no way to authorize kernel modules retroactively.

Usually a userland tool is used to load modules during runtime. This utility directly
uses the system call kern kldload, which basically implements dynamic module loading.
After a basic permission check, the main module loading, depending on the binary
format, is performed. Those formats are compiled into the kernel and cannot be changed
dynamically. The common format is the Executable and Linking Format (ELF). Each of
the functions above verifies the secure level at first and interrupts loading immediately
if the system runs in secure mode. Figure 6.11 shows a flowchart of the module loading
process (changes drawn in dashed lines).

Kernel

Load Module
(Kernel)

Secure Mode

Secure Mode

Select
Format

Extract pathLoad Module
(Linker)

Load Module File

yes

Module
authorized?

Access denied
yes

no

no

no

yes

Mark as Loaded

Userland

Load Module

no
yes

Figure 6.11: Module loading activity

The first task to authorize a module is to open a virtual node, identified by the given
filename. A virtual node is an entry in the virtual file system (VFS), which is an abstract
layer on top of the physical file systems. The function has to open the virtual node
already in this early stage of the loading process. Later on, one could reuse the provided,
convenient functions to read a file from kernel, but from the security perspective this
would be too late. Thus, the more complex way through the VFS layer has to be taken.
As a consequence, the virtual node, pointing on the module file, is opened twice during
the loading process. As this is not a time-critical job, it is negligible. If the virtual node
is opened without errors, the module is read. Otherwise, the function aborts with an
error message. Since the read bytes can be added to the hash algorithm successively, the
memory usage by reading data piecewise using the same buffer each time is reduced.
This data can be used to generate the hash key. If the internal list contains the generated
hash key, the module is marked as to be loaded, otherwise it is not and the appropriate

227

6 Secure Cloud Systems

0

0.1

0.2

0.3

0.4

Host VM VM Tracer

0.262

0.255

0.029 0.083
0.040.035T

im
e
 (
in

 s
e
c
o

n
d

s)

Sys User

(a) Comparing host, VM
and modified VM (tracer)
speed

0 100 200 300

Trials

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Ti
m

e
(in

 s
ec

on
ds

)

(b) Overall time to intercept a
binary, transfer it and scan
it with ClamAV

0

0.05

0.1

0.15

0.2

0.25

0.3

58KB 685KB 1.2MB 2.4MB

0.228

0.111

0.062

0.002

Transfer times

Time in seconds

(c) Transfer times for vari-
ous binaries

Figure 6.12: Malware Detection Benchmarks

permission denied error is returned.
Authorizing a module within the unloading process is less complex, because the

used data structures by the unload process contain a file pointer that is also registered
in the internal list if the module is loaded. If the module is authorized, it is unloaded.
Otherwise, unloading is not permitted.

6.3.6 Experimental Evaluation

This subsection focuses on the performance and a qualitative evaluation of the de-
veloped prototype malware detection and kernel rootkit prevention system. All tests
were performed on two 2.53 GHz Intel Core2Duo CPU, 4 GB MB RAM running
DragonFlyBSD 2.5 connected with Gigabit ethernet.

Malware Detection

Since the main modifications to the VM kernel happened in the process and system
call handling code, measuring performance impact is best done by spawning several
processes and by performing rapid system calls, thus data or process intensive tasks
are not relevant for the benchmark. A test case that queries the kernel for network,
user and other arbitrary information is executed 50 times, and the average run-time is
calculated. The results of the benchmark are presented in Figure 6.12a. The lower bars,
named sys, indicate the time spent executing system calls on behalf of the executed
program. The upper bars, named user, represent the time spent doing calculations,
iterations or generally spoken actions in userland. The diagram clearly shows that the
host operating system easily outperforms the virtualized kernels. Even though the time
spent executing system calls is nearly identical between host and the VM kernel, the
time spent in userland is much more compared to the time when running on the host
directly. Enabling the tracer functionality of the VM kernel doubles the time spent in
the kernel, but the userland portion stays constant. Since the in-kernel time for system
calls is so low compared to the total execution time (0.06 seconds), this impact on the
performance can be neglected.

Figure 6.12b shows the measured time needed to intercept a 8 KB binary in a running
VM with the KernelAgent, transfer it over the network and scan it with the ClamAV
engine. Over 350 trials were conducted to get a robust mean, which is 0.5 seconds.
The oscillation of the graph is due to the fact that we could only measure with a wall

228

6.3 Hardening Server Systems

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of kernel modules

5

10

15

20

25

30

35

Ti
m

e
(in

 s
ec

on
ds

)
Insecure mode
Secure mode
Default mode

(a) Module loading

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of kernel modules

5

10

15

20

25

Ti
m

e
(in

 s
ec

on
ds

)

Insecure mode
Secure mode
Default mode

(b) Module unloading

Figure 6.13: Module (un)loading overhead measurement

clock, which in this case works with Unix timestamps (seconds since the epoch). The
measured overhead of 0.5 seconds before the actual execution starts is negligible in
the described Cloud environment, since most jobs will be long running computational
jobs. Furthermore, the use of caching techniques will even reduce the overhead, as
every (unchanged) binary is only scanned once. Figure 6.12c shows the times needed
to transfer various binaries of different sizes over the developed middleware between
KernelAgent and the ScanProxy. Multiple measurements with different binary sizes
representing different types of malware (the average file size of the standard system
binaries is about 1.2 MB) were conducted. For binary 1 (58 KB), the average time is
0.001 seconds, for binary 2 (685 KB), the average time is 0.06 seconds, for binary 3 (1.2
MB), the average time is 0.1 seconds, and for the biggest binary (2.4 MB), the average
time is 0.2 seconds. Thus, the transfer time increases with the size of the binary.

Kernel Rootkit Prevention

To measure the module loading overhead, a script was written that cascades module
(un-)loading. Since the main overhead is due to hashing the modules, a proper average
module size had to be chosen to get realistic results. By examining the standard kernel
directory, 64 kByte turned out to be the average size of the kernel modules. In order
to be a bit ahead, 100 KB sized kernel modules were created for testing. To be able to
measure the correct time overhead, the modules were loaded between 250 and 2000

times.
As shown in Figure 6.13a, there is an overhead in every measurement. The module

hashing causes the overhead during every module load. Loading modules either in
secure or insecure mode (with enabled kernel protection) takes more time than loading
modules in the default mode (no protection and a stock kernel). This is due to the
fact that the kernel rootkit prevention technique has to iterate over the internal list
to validate a module. Thus, there is an additional linear effort. Nevertheless, module
loading is not a time critical job and the average number of loaded modules should be
much lower than in the tests. In the case of 250 loaded modules in the generic kernel,
a module needs 0.016 seconds on the average to get loaded. In a kernel with rootkit
prevention it takes 0.02 seconds on the average. This is more than 1.25 times longer,
but still is not a large delay. If the system is running in secure mode, loading a module

229

6 Secure Cloud Systems

will consume more time, because there is one additional list iteration involved in the
loading process. Generic kernels are not even able to load modules during secure mode.
The measured overhead for module unloading is shown in 6.13b. Contrary to the
loading process, the unloading process is less time consuming. There is no noteworthy
time difference regardless which kernel mode is used.

6.3.7 Conclusion

In this section, an approach for combined malware detection and rootkit prevention in
Cloud Computing environments was presented. All running binaries are intercepted by
a small, in-kernel agent and submitted to one or more backend units where the actual
classification process happens. Furthermore, live-scanning of all binary system calls is
performed to detect yet unknown exploits or malware. Due to the in-kernel nature of
the agent, it is completely transparent to the user as well as to malicious binaries trying
to detect any countermeasures. The distributed architecture allows a good utilization
of existing Cloud resources and the connection of different analysis engines.

While the detection rate of malware and anti-virus scanners has steadily improved
within the last years, its still not a fool-proof solution against recent exploits like zero-
day exploits. Many successful attacks lead to the installation of a kernel rootkit to gain
permanent control over the target machine including the possibility to get access at
later times and misuse the machines as an attack platform. Consequently, the proposed
solution is a modification of the in-kernel loading process. Only authorized and thus
trusted kernel modules are allowed to load during runtime. Loading of unauthorized
modules is no longer possible.

There are several issues of future work. For example, the malware detection engine
currently implemented provides a solid foundation for a flexible Cloud specific anti-
malware solution. In a second step, it would be desirable to change the software stack
from just a detection engine to a bidirectional intrusion response engine capable of
isolating and terminating malware binaries in real-time. For the rootkit prevention
solution it would be desirable to bring asymmetric cryptography into the various
operating system kernels to be able to use signatures instead of cryptographic hashes.
Finally, the possibility to manage the in-kernel black- and whitelists (or a central signing
key) could be realized by a central instance in the Cloud Computing environment. For
this purpose, various parts of proposed infrastructure could be reused to achieve this
goal.

230

6.4 Reactive Realtime Cloud Infrastructure Monitoring

6.4 Reactive Realtime Cloud Infrastructure Monitoring

6.4.1 Introduction

In recent years, the number of security attacks performed on computer systems con-
nected to the Internet has increased significantly. Several security monitoring solutions
such as Intrusion Detection/Prevention (IDS/IPS) and Security Information and Event
Managment (SIEM) systems have been developed as a response to the rising number of
threats. To work effectively, these systems heavily rely on meaningful log data generated
by different components involved in the setup. Automatically parsing these human
readable logs costs considerable amounts of time given the verbosity of the information
collected. Furthermore, the more complex an attack is, the harder it gets to detect it
using simple signature-based approaches, since they typically support only simple
count-based rules or simple regular expression matching rules for particular attacks.
Supporting more complex rules, on the other hand, usually suffers from keeping up
with high event rates and processing them in real time.

In this section, a new approach to detect, analyze and handle security anomalies is
presented. The anomalies include both known and yet unknown security vulnerabilities
with a particular focus on systems based on operating system virtualization, such as
Infrastructure-as-a-Service Cloud computing systems. Hence, a novel SIEM system
especially for virtualized computing resources is proposed.

The proposed approach utilizes sensors deployed on different layers of a virtualized
computer system. Layers range from the hypervisor, also called virtual machine (VM)
monitor, and the operating system of the VM (kernel and userland) to any kind of
application runtime environment, such as a web-application container, to continuously
report all relevant events. The combination of out-of-VM monitoring using VM intro-
spection [244] and in-VM monitoring opens up opportunities to eliminate false positives
through double bookkeeping.

To facilitate horizontal and vertical correlation and aggregation of monitored events,
Complex Event Processing (CEP) is used. Continuous queries on event streams perform
cross-layer monitoring of events to detect security anomalies. These queries can trigger
different actions in any of the virtualization layers to repel attacks or isolate breached
components. Therefore, attacks can be stopped before they are successful, or further
breaching of a compromised VM is prevented.

The core functionality resides in a hardened, trusted VM responsible for analyzing
sensor data. All sensor data is sent to this VM for further processing, and actions are
triggered by this VM if necessary. To increase the speed with which events are processed
by queries, queries are distributed across multiple, different CEP engines optimized
for specific query operators. Furthermore, a global event log called Event Store is
maintained, gathering all events and providing the possibility for offline learning and
what-if analysis. Analysis results produced offline from the Event Store can then be fed
into the online query rules.

Thus, the proposed approach is designed to provide security monitoring in a box,
meaning that every physical server hosting multiple virtual machines has a dedicated
virtual machine (VM) responsible for performing all tasks required for monitoring
this server. Therefore, monitoring a very large number of physical servers is possible,
since each additional physical server gets an additional dedicated VM for security

231

6 Secure Cloud Systems

monitoring. The particular focus of this design is on systems based on operating system
virtualization, such as Infrastructure-as-a-Service Cloud computing systems. Hence, we
propose a novel SIEM system for virtualized computing resources.

This research makes several contributions to advance the state-of-the-art:

• A novel set of minimally intrusive sensors with a reduced attack surface enabling
live gathering of sensor data is presented.

• A novel approach to optimize the performance of continuous queries by utilizing
a federation of heterogenous CEP engines is presented.

• A novel historical data store, optimized for fast event logging is presented. It
is designed for fast sequential writing and applies a bulk-loading technique for
almost no-cost index creation.

• A novel query language for specifying complex monitoring rules compared to
classic IDS and SIEM solutions is presented.

• A secure execution and deployment environment for sensor and action scripts is
presented.

The research focuses explicitly and solely on the components of the infrastructure
required for performing security monitoring and not on the improved security through
advanced attack signatures or anomaly detecting queries. Some examples of queries to
detect simple security incidents are presented in this work, but developing new attack
signatures or automatically generating queries based on past behavior are beyond the
scope of this work.

Parts of this section have been published in [14], [15].

6.4.2 Related Work

CEP Engine. The main features of the CEP engine used in this system are that it is a
federation of different CEP engines and that it utilizes a query index. While the former is
used to optimize the performance of single queries, the latter is used to ensure scalability
with an increasing number of queries. Federations of data management systems are
not novel. Federal database systems [249] have been intensively studied in the past.
However, the main focus of federated database systems is the integration of distributed
and potentially heterogeneous databases and not performance optimizations. The
same is true for MaxStream [250], the only existing federal stream processing system
we are aware of. MaxStream extends SAP MaxDB, a federation engine for database
management systems (DBMS), by the ability to also integrate data stream processing
systems (DSMS) and has a strong emphasis on the cooperation between DBMSs and
DSMSs. Performance optimizations among a federation of different DSMSs are not
studied by MaxStream. The cyclops platform [251] is similar to the approach used in
this work, but focuses on federations consisting of different classes of data management
systems rather than on federations consisting of different implementations of the same
type of data management system. In particular, Cyclops optimizes the performance
of continuous aggregation queries among a federation consisting of a centralized
stream processing system, a distributed stream processing system and a distributed
batch processing system. Based on the definition of the window, one system class
is superior to the others from a performance point of view. For instance, when the
window is a window that slides from event to event, a centralized stream processing

232

6.4 Reactive Realtime Cloud Infrastructure Monitoring

system performs best. When the window jumps with big distances, a distributed batch
processing system performs best. Similar to the approach from this research, Cyclops
selects a target system class via a classifier that has been created on basis of performance
benchmarks. However, Cyclops focuses only on continuous aggregation queries that are
an atomic unit and not on complex queries consisting of several operators that can be
distributed. The latter problem has been studied by StreamCloud [252]. StreamCloud
partitions operator graphs into arbitrary subgraphs and distributes the resulting parts
across a distributed streaming infrastructure. The partitioning is based on a simple
but effective strategy. For each stateful operator, an operator graph is cut. Therefore,
costly stateful operators can be optimally distributed with respect to load balancing,
utilization of the infrastructure and performance. All relatively cheap stateless operators
are then automatically distributed together with their associated stateful operators
in order to reduce communication overhead. However, StreamCloud focuses only on
infrastructures consisting of a single type of streaming system and not on heterogeneous
federations.

Recently, the BE-tree [253] was introduced for indexing sets of queries. The BE-tree is
a dynamic query index being superior to all competitors proposed so far (e.g., Gryphon
[254], k-index [255]). Therefore, the BE-tree for the Analysis-VM of the system was
reimplemented. However, the system does not need a fully dynamic query index
since index updates are very infrequent in comparison to the event rates. Therefore, a
bulk-loading technique for BE-trees was developed to perform several optimizations to
further increase the performance of BE-trees.

Sensor and Actor Frameworks. The foundation of every decision or rule-based
system are the sensors that deliver the data being used. There is a variety of data
sources developed for different purposes such as alerts, performance monitoring and
intrusion detection. Alert-based systems such as Nagios39 are organized in a host-
and service-based manner, meaning that attributes of the host and running services
are monitored by running specified commands and using specified polling values.
Typical events reported are the information whether or not a service is vital and how
this information was determined, as plaintext printed to stdout. Countermeasures
are not part of the system, since the main purpose is the notification of responsible
administrators. Performance monitoring frameworks such as Ganglia40, Munin41 and
Scout42 place agents on the hosts to be monitored. Sensors are scripts in any language
the system supports, executed by these agents. In contrast to the polling-based approach,
intrusion detection systems collect data continuously. Snort43, a network intrusion
detection system, collects network packets and uses regular expressions to detect
malicious activity or specific attack patterns. Ossec44, a host-based intrusion detection
system, performs log file analysis, file system monitoring, root-kit detection (Unix)
and registry integrity checking (Windows). While data is being collected by agents,
the analysis is performed by a central manager using regular expressions. Ossec uses
pre-shared keys for encryption and zlib for compression of the data sent via UDP
and can trigger single commands at monitored sites or the server. Despite the fact

39http://www.nagios.org/
40http://ganglia.info/
41http://munin-monitoring.org/
42https://scoutapp.com/
43https://snort.org/
44http://www.ossec.net/

233

http://www.nagios.org/
http://ganglia.info/
http://munin-monitoring.org/
https://scoutapp.com/
https://snort.org/
http://www.ossec.net/

6 Secure Cloud Systems

that one could have utilized all of the mentioned frameworks with little effort in the
proposed reactive security monitoring system, the solution proposed here already offers
minimally invasive sensors on all layers of a virtualized computer system collecting live
data and event-based data, secure communication optimized for fast transmission and
signature-based deployment and execution of actions. Forget et al. [256] have proposed
a design for a client/server infrastructure for monitoring client machines in which
they describe how sensors should be designed to be able to collect data for long-term
analysis. In contrast to this research approach, data is written to a data server before it
is analyzed, but the general design principles of sensors, namely being independent,
minimally invasive and running in a least privileged manner, are similar what is done
in this work. DACSA [257] presented by Gionta et al. is a decoupled architecture
for cloud security analysis performing out-of-VM analysis without interfering with
the guest system. To achieve this goal, the authors create copy-on-write snapshots of
running VMs and analyze the memory of these snapshots using forensic methods and
the ClamAV Anti-Virus software. Through this technique, the overhead for analysis
can be reduced at the cost of not being able to analyze real-time data. Srinivasan et al.
[258] have proposed a system for fine-grained out-of-VM process execution monitoring
by moving the process to an analysis VM and redirecting kernel level operations back
to the guest system using two techniques called out-grafting and split-execution. In
this way, it is possible to use userland analysis tools such as strace to analyze processes
from another guest system. While this is useful for malware analysis where the tools
for inspection have to be hidden, the goal in this work is to prevent that any harm gets
done.

Stream Data Stores. Storing streams is a great challenge due to their huge data
amounts and high data rates. In contrast this work, recent systems are either based on
relational database systems or distributed key-value stores. Golab et al. have proposed
a data warehouse solution called DataDepot [259] to store streaming data. The authors
use a two-tier approach: at first, data is simply written to disk (i.e., into log files).
Afterwards, an ETL query transforms streaming data from the raw data sources into a
relational representation and loads them into the data warehouse. Apart from these
raw tables, DataDepot supports derived tables constructed via SQL queries and data
partitioning. In contrast to this approach, DataDepot uses a relational database as
its underlying storage and achieves a throughput of only about 10 MB/s. Tidalrace
[260], the successor of DataDepot, pursues a distributed storage approach and reaches
data rates of up to 500.000 records per second, which still does not compete with the
centralized approach in this research. LogKV [261] utilizes distributed key-value stores to
process event log files. The authors assume a scenario where many different log sources
(machines) with different event formats are connected to LogKV. A central coordinator
node maintains the meta-information about the log sources and is responsible for the
distribution of the incoming data to a set of worker nodes in the same data center.
Every worker node is divided into two components. TimeRangeKV represents the final
storage layout and manages all data belonging to its dedicated temporal partition. Since
a single machine may be overwhelmed with the incoming event data, several IngestKV
instances of multiple worker nodes first ingest incoming events to support high data
throughput. Afterwards, IngestKV shuffles the log data to the desired worker node with
the dedicated TimeRangeKV instance for its time partition. In their experiments, the
authors achieved a throughput of 28 MB/s log ingestion bandwidth per worker node

234

6.4 Reactive Realtime Cloud Infrastructure Monitoring

consisting of an Intel Xeon X5675 system with 96 GB memory and a 7200rpm SAS drive,
which are connected via a 1 GB/s network. Deri et al. [262] have presented a lightweight
and fast time series database based on the embedded BerkeleyDB. The authors store
time series as BLOBs to reduce the number of transactions, and therefore to increase
data throughput. Similar to this work, the authors use a LZ based compression library
for loss-less data compression. In contrast to this research, the authors assume all
streams of the same database to have the same equidistant time intervals. LogBase [263]
is a distributed, write-optimized store with transaction support. It uses a log-structured
data base, and like HBase45, it uses super-nodes that are responsible for a group of
adjacent nodes. LogBase stores all data in a single unordered data log that is located
on a distributed file system. The log approach has append-only semantics. This offers
sequential write performance on disks. In contrast to this work, LogBase is designed
as a general-purpose database, also applicable for media data like photos. Due to the
fact that LogBase is based on Hadoop46, it is not able to keep up with the real-time
demands of a storage for event systems. The authors use an index similar to Blink-trees,
augmented with compound keys (key, timestamp) to index the data in an in-memory
multi-version index. In the proposal of Wang et al. [264], LogBase acts as storage layer
for a lightweight indexing approach. Similar to this approach, the authors utilize the
assumption that successive observational values are similar. Therefore, they index (min,
max) intervals for each disk page within B+-trees and interval trees to speed up query
performance. These (min, max) values cover a small amount of space compared to the
raw data and therefore are assumed to be kept in memory.

6.4.3 Architecture

The goal of the proposed reactive security monitoring system is to detect attacks
based on the analysis of sensor data. Therefore, it is crucial to gather as much sensor
data as possible.Theoretically, every event that occurs in one of the different layers of a
virtualized system can be an indicator for an anomaly: for example, established network
connections, creation or termination of processes or even user or process activities
beyond regular working hours.

The decision about what is a normal or unknown system behavior cannot be made
by the sensors of a monitored environment. Instead, a CEP engine is responsible for
processing all the informations sent by the sensors and is then able to decide what
can be viewed as normal system behavior. Through dynamic deployment of further
sensors, it is possible to eliminate false positives and verify findings.

Collecting large amounts of data leads to challenges regarding the transport, the
analysis and the storage of sensor data. In addition, transitions from knowledge derived
from data considered as normal to detection rules and appropriate actions have to be
considered.

The architecture of the proposed system (Fig. 6.14) consists of a secure and trusted
virtual machine (called Analysis-VM) where the main analysis component is located,
sensors that reside in every layer of the virtualized computer system and actors that
execute actions. More design details for all components are given below.

45http://hbase.apache.org/
46http://hadoop.apache.org/

235

http://hbase.apache.org/
http://hadoop.apache.org/

6 Secure Cloud Systems

VM

Hardware

Application
Container

Aktor

Sensor

Sensor

Actor

Actor

Sensor

Analysis-VM (Trusted)

Modelbase

Matchmaker
(Input)

Matchmaker
(Output)

Aktionen

Aktion
Aktion
Aktion

CEP Engine

EPA
EPA

EPA

Einfügen/Löschen

von EPAs

VM

Application
Container

Actor

Sensor Aktor

Sensor

Hypervisor

Shared ressources (CPU, RAM etc.)

SHIFT

10 : 9

SYNC

BLUE
ONLY

R

G

B

F3

F4

SAFE
AREA

MONO

APT

COMB

F1

F2

ADDRESS

DEGAUSS POWER

INPUT

MANUELCONTRAST

MANUELBRIGHT

MANUELCHROMA

MANUELPHASE

MENUUP

ENTERDOWN

POWERSTANDBYOVER LOAD

SHIFT

10 : 9

SYNC

BLUE
ONLY

R

G

B

F3

F4

SAFE
AREA

MONO

APT

COMB

F1

F2

ADDRESS

DEGAUSS POWER

INPUT

MANUELCONTRAST

MANUELBRIGHT

MANUELCHROMA

MANUELPHASE

MENUUP

ENTERDOWN

POWERSTANDBYOVER LOAD

SHIFT

10 : 9

SYNC

BLUE
ONLY

R

G

B

F3

F4

SAFE
AREA

MONO

APT

COMB

F1

F2

ADDRESS

DEGAUSS POWER

INPUT

MANUELCONTRAST

MANUELBRIGHT

MANUELCHROMA

MANUELPHASE

MENUUP

ENTERDOWN

POWERSTANDBYOVER LOAD

SHIFT

10 : 9

SYNC

BLUE
ONLY

R

G

B

F3

F4

SAFE
AREA

MONO

APT

COMB

F1

F2

ADDRESS

DEGAUSS POWER

INPUT

MANUELCONTRAST

MANUELBRIGHT

MANUELCHROMA

MANUELPHASE

MENUUP

ENTERDOWN

POWERSTANDBYOVER LOAD

SHIFT

10 : 9

SYNC

BLUE
ONLY

R

G

B

F3

F4

SAFE
AREA

MONO

APT

COMB

F1

F2

ADDRESS

DEGAUSS POWER

INPUT

MANUELCONTRAST

MANUELBRIGHT

MANUELCHROMA

MANUELPHASE

MENUUP

ENTERDOWN

POWERSTANDBYOVER LOAD

SHIFT

10 : 9

SYNC

BLUE
ONLY

R

G

B

F3

F4

SAFE
AREA

MONO

APT

COMB

F1

F2

ADDRESS

DEGAUSS POWER

INPUT

MANUELCONTRAST

MANUELBRIGHT

MANUELCHROMA

MANUELPHASE

MENUUP

ENTERDOWN

POWERSTANDBYOVER LOAD

SHIFT

10 : 9

SYNC

BLUE
ONLY

R

G

B

F3

F4

SAFE
AREA

MONO

APT

COMB

F1

F2

ADDRESS

DEGAUSS POWER

INPUT

MANUELCONTRAST

MANUELBRIGHT

MANUELCHROMA

MANUELPHASE

MENUUP

ENTERDOWN

POWERSTANDBYOVER LOAD

SHIFT

10 : 9

SYNC

BLUE
ONLY

R

G

B

F3

F4

SAFE
AREA

MONO

APT

COMB

F1

F2

ADDRESS

DEGAUSS POWER

INPUT

MANUELCONTRAST

MANUELBRIGHT

MANUELCHROMA

MANUELPHASE

MENUUP

ENTERDOWN

POWERSTANDBYOVER LOAD

Dedicated ressources

Actor

Actor

Figure 6.14: Sensors, Analysis-VM and actors

Sensor Framework

Sensors are deployed on every layer of the virtualized computer system. As shown
in Figure 6.14, there are sensors in the hypervisor, guest userland, guest kernel and
application containers. Apart from getting as much information as possible, this also
enables one to compare and correlate information coming from different layers. For
example, if an intruder is spoofing specific information for userland processes, one
can compare this information with information coming from the guest kernel or the
hypervisor. Depending on their location, the sensors differ in their implementation
details, but all of them are designed to be minimally invasive in terms of resource
consumption and performance penalties. Sensors are deployed without any extra
analyzer functionality to keep the performance impact and additional attack surface
introduced through them as minimal as possible. Consequently, communication with
the Analysis-VM is crucial. Every sensor has two communication channels to interact
with the Analysis-VM: one channel for the transmission of sensor data and the other
channel for control messages. Control messages are used to manage sensors and rely
on a custom wire protocol for control messages. In addition, the control channel is used
to reconfigure a sensor if necessary (e.g., to reduce the amount of data being sent).

Matchmaker

Event
Store

EPA
EPA

Action

Action

CEP Engine

Action
Framework

Analysis-VM

Figure 6.15: Analysis-VM

236

6.4 Reactive Realtime Cloud Infrastructure Monitoring

Analysis-VM

The Analysis-VM is the central instance of the monitoring system where sensor data
is analyzed using CEP technology. This implies that the Analysis-VM is the main
target of potential attackers. A successful breach could be used to compromise anomaly
detection and sent harmful actions to actors, e.g., to shutdown sensors and/or VMs.
For this reason, several approaches to improve security and consistency of the system
have been combined to harden the Analysis-VM. Inside the Analysis-VM, Grsecurity47,
AppArmor48 and Aide49 are combined to get PaX address space protection50, role-based
access control, file system integrity checks, kernel auditing and executable protection. In
addition, the Snort intrusion detection system is used to detect malicious network traffic.
Furthermore, the host is configured to use SELinux51 protection for QEMU/KVM52

processes.
Figure 6.15 illustrates the different components responsible for event processing and

triggering of actions. All events produced by the sensors are managed by a central hub
called the Matchmaker that forwards them to the CEP Engine and to the Event Store.
The latter is used as a historical database to store all events gathered from all sensors
and can be used for what-if analysis or for machine learning to produce new rules.
Since the number of events per second highly depends on the number of monitored
VMs and number of deployed sensors, high throughput optimization is mandatory for
this component. Live analysis is performed in the CEP Engine where different Event
Processing Agents (EPAs) run continous queries on the event streams to monitor the
incoming sensor data. Queries are formulated in a simple but powerful language. The
reaction time of the entire system depends on the runtime of the used CEP engine and
how fast and how many EPAs it can handle. These EPAs can then trigger different
Actions in the Action Framework that decides whether an action should run out-of-VM
or should be submitted to any specific VM for execution.

Action Framework

Actors are deployed on all layers of the virtualized computer system (see Figure
6.14) to execute actions. They share the minimally invasive design principle and
communication capabilities, but differ in their function. In contrast to sensors, actors
receive cryptographically signed actions. Thus, they provide an execution envionment
and the capability to check signatures for their validity. The actions should be as
flexible as possible to enable administrators to model any countermeasure required for
a particular security intrusion.

6.4.4 Example Anomaly Detection

The general lifecycle of the monitoring system is depicted in Figure 6.16. In this figure
the blue loop represents the sense-detect-react-cycle and the yellow loop shows the
automatic rule generation process. To illustrate this new approach an example is given

47https://grsecurity.net/
48http://apparmor.net
49http://aide.sourceforge.net/
50http://pax.grsecurity.net
51http://selinuxproject.org/
52http://www.linux-kvm.org/

237

https://grsecurity.net/
http://apparmor.net
http://aide.sourceforge.net/
http://pax.grsecurity.net
http://selinuxproject.org/
http://www.linux-kvm.org/

6 Secure Cloud Systems

VM

Hardware

HypervisorS

VM

AS

A

AS

CEP Engine

EPA
EPA

EPA

Actions

Action
Action
Action

Action
Action
Action

Model DB

Hist. DB

Intruder
attack

sensor data

security alert

action

countermeasure

record data

derive new
models

new rules

Figure 6.16: Monitoring lifecycle

in this subsection. An anomaly in double-entry accounting of the hypervisor and
operating system layers port list is associated with a network based backdoor.

TCP Backdoor

In this scenario, an attacker has successfully installed a backdoor in a monitored
virtual machine. He/she hides his/her presence through a rootkit, a modification of
the operating system and its userland interfaces. Even though the backdoor is listening
on an arbitrary TCP port, the process belonging to it and the listening socket are not
listed by the operating system userland tools.

Sensors The scenario including the sensors and corresponding actions is shown in
Figure 6.17. To detect the backdoor, at least two different sensors are involved: One
sensor is running within the virtual machine and utilizes standard tools such as netstat
to check for any listening sockets. Since the backdoor is well hidden, this sensor will
not report the security breach.

The other sensor is inspecting the network state of the virtual machine from the
hypervisor level. Since this sensor is running outside of the guest operating system, it
is not affected by the backdoor’s hiding features. On this level, an event is generated
for the detection of a newly opened port in the virtual machine.

Analysis With the help of the Model Database and the Historical Database, queries can
be generated to recognize normal or regular behavior. Therefore, an alarm should be
triggered when a new open port is detected. Furthermore, by comparing both listening
socket sensors, inside and outside of the virtual machine, it can be concluded that this
really is a security related anomaly. A regular service installed in the virtual machine
should not be hidden within the system. The conflicting sensors information is a clear
sign of an attack.

238

6.4 Reactive Realtime Cloud Infrastructure Monitoring

Figure 6.17: Example: TCP backdoor detection.

Action As a result of this attack, actions should be taken to eliminate the threat as
much as possible. One such action could be to block all communication from and to
the backdoor’s port on the hypervisor level. This prevents the attacker of extracting
information or further using the infected machine. Another step that should be taken is
to isolate and possibly terminate the processes involved in the infection. For forensics
purposes, taking a snapshot of the virtual machine and generating a dump is another
possibility.

6.4.5 Sensor Framework

In contrast to existing monitoring frameworks, the reactive security monitoring system
in this work incorporates sensors from different layers of a virtualized computer system
with their own environments. Thus, sensors have to be written in different languages
using specific libraries and programming idioms. An overview of the implemented
sensors is shown in Table 6.6. To ensure that every sensor has a minimal memory
footprint, is minimally invasive in terms of performance and can be implemented
fast without having to know details about the Analysis-VM and the control messages,
dedicated libraries and a framework for sensor execution were created. These libraries
are accessible from C/C++, Python and Java to be useful on as many different layers as
possible.

To ensure that the communication channel for event transmission between the sensors
and the Analysis-VM offers maximum throughput and robust transfer, we considered
different protocols and serialization formats.

JMS and AMQP are message broker protocols that require a dedicated broker and
offer point-to-point and routed communication. While broker-oriented protocols have
beneficial attributes such as guaranteed message transmission through persistent queues

239

6 Secure Cloud Systems

Table 6.6: Number of implemented sensors

Layer Quantity

Hypervisor 12

Guest Kernel 8

Guest Userland 39

Application Container 14

and easy bootstrapping, they are not optimized for high throughput. No parameter
configuration leading to a sufficient throughput required was found.

In contrast to broker-oriented protocols, socket-oriented protocols offer higher
throughput. UDP offers a very high throughput at the cost of possible packet loss,
while TCP provides high throughput with reliable transmission. Since every event can
contain information that might signal a security anomaly, TCP has been selected as the
communication protocol for event transmission.

Human readable serialization formats such as XML and JSON, as well as binary
marshalling algorithms such as MessagePack53 and Google Protocol Buffers54 were
considered. While human readability in general creates an environment that is easier
to debug, it enlarges the attack surface and has an impact on performance. Google
Protocol Buffers offer smaller messages with faster transition than human-readable
formats, but require a definition in the Interface Description Language, which makes
them a suboptimal solution for dynamic adoption of sensors. MessagePack is also fast,
but more flexible and dynamic, and thus the serialization format of choice. In addition,
MessagePack offers libraries for different languages and was easier to port to the Linux
kernel.

Furthermore, attributes related to the activity of sensors can be configured. In general,
it is distinguished between sensors with a polling-based sending scheme and event
driven sensors. While the latter obviously only send data when a specific event occurs,
the sending rate of polling-based sensors can be configured. Thus, instead of relying
on operating system log files, data is directly queried and watched for specific events
to occur. In addition, the initial configuration of sensors including specific white- and
blacklists can be altered within our framework.

Application Container

In today’s production systems, enterprise applications run on application servers like
Glassfish or Tomcat. To be able to get detailed information about the servers and
the applications running on them, an environment for sensors written in Java was
developed for this research. A dispatch sensor gets deployed and waits for directions
delivered in the form of actions from the Analysis-VM. These actions contain names of
sensors to be deployed and the Process Identification (PID) of a Java process to attach
them to. Therefore, one can directly monitor the JVM of a given process. Using btrace55,
one is also able to trace internals of a process, such as class loading, JDBC operations,

53http://msgpack.org/
54https://github.com/google/protobuf/
55https://kenai.com/projects/btrace

240

http://msgpack.org/
https://github.com/google/protobuf/
https://kenai.com/projects/btrace

6.4 Reactive Realtime Cloud Infrastructure Monitoring

exceptions, webservices, file handling or URLs.

Userland

The userland is very broad, and thus there are many possible requirements for sen-
sors. For this reason, the scripting language Python was adopted with its inherent
prototyping qualities and several third-party packages. Moreover, a sensor developed
in Python cannot easily compromise the security of the system since it is immune
to memory corruption attacks such as buffer overflows or double frees. Furthermore,
sensors within the framework are signed and only executed with a valid signature.
This prevents malicious changes or the deployment of untrusted sensors.

As mentioned above, it is distinguished between event-driven sensors like a syslog
sensor or a sensor that monitors specific files and folders, and polling-based sensors
like a sensor for firewall rules or open network connections. Sensors can be full Python
programs that make use of third-party packages or shell commands that are wrapped
within the environment, making the creation of sensors an easy task without limitations
in functionality. Using our Python sensor framework, a new sensor can be developed
by writing less than 10 lines of code, which makes writing sensors for custom inhouse
application monitoring a simple task.

Kernel

To create a communication channel to the Analysis-VM that uses the protocol (TCP)
and serialization format (MessagePack) chosen, a kernel module that uses the Linux
kernel’s own socket library and a port of the MessagePack serializer to run in kernel
space had to be written.

Sensors in this environment are written in C and trace specific system calls. For
various reasons, there is no interface to trace system calls within the kernel. Since nearly
every Linux distribution offers debug symbols for their kernels, the sys call table address
can be determined using the kallsyms header. The addresses within this table can be
replaced by the address of a decorator function that triggers an event before redirecting
the call to the original system call. Since specific regions of the kernel are protected,
this would trigger a general protection fault that can be suppressed temporarily.

Hypervisor

Hypervisor sensors can be grouped into sensors that leverage the libraries libvirt56

and libvmi57 and sensors that monitor the host operating system and QEMU/KVM
processes. Since these libraries offer Python bindings, and monitoring the host operating
system and specific processes is comparable to userland sensors, it was decided to use
the Python sensor framework. Using high-level libraries for VM administration and
introspection offers support for different hypervisors such as Xen, QEMU and KVM
while keeping the code for the actual sensors small. In this research QEMU/KVM was
used as hypervisor, because in QEMU/KVM virtual machines are processes that can be
easily monitored, and the QEMU Monitor Protocol (QMP) can be leveraged to query

56http://libvirt.org/
57http://libvmi.com/

241

http://libvirt.org/
http://libvmi.com/

6 Secure Cloud Systems

Table 6.7: Hardware specification of the host systems

Host

CPU Intel Core i7-4771 CPU @ 3.50GHz
RAM 32 GB
NIC Intel I217-LM Gigabit LAN
HDD LVM Raid 1 Seagate Barracuda ST3000

OS Ubuntu 14.04 LTS
Kernel 3.13.0.39-generic

Table 6.8: Hardware specification of the guest systems

Guest VM Analysis-VM

RAM 4 GB 8 GB
Kernel 3.13.0.24 3.13.0-44

CPU 2 Cores
NIC VirtIO macvtap VEPA
HDD VirtIO
OS Ubuntu 14.04 LTS

information regarding virtual hardware. Furthermore, the QMP can be used within
actions to dump memory or alter a VM.

Experimental Evaluation

In this subsection, the environment is described in which the system was evaluated
and the experiments that were performed to demonstrate that the system holds up to
the claims made above. The evaluation platform uses a Gigabit network on multiple
hosts with similar hardware specifications as shown in Table 6.7.

To produce realistic measurements, the guest system with the Analysis-VM was
separated from the monitored guest system, both with similar specifications as listed in
Table 6.8, and placed them on separate hosts.

Sensor Resource Usage To measure sensor resource usage, 28 of the userland polling-
based sensors were configured to send events without any limitation. These sensors
are encapsulated in a single process with one thread per sensor. During runtime, this
process has been monitored using ps for 10 minutes. The results of this experiment
are based on calculating the mean values of the percentual usage of CPU and RAM.
The results listed in Figure 6.18 show the mean value of the percentual usage as the
abscissa and the metric (CPU and RAM) as the ordinate. With values ranging from 1.9
to 2.6 percent leading to 2.2 percent mean CPU usage and 0.4 to 0.5 percent leading
to 0.49 percent mean RAM usage, sensor resource usage is quite low, especially when
considering the fact that the sensors had no limitations in their sending behavior.

Sensor Impact on Other Processes In this experiment, it was investigated how the
activity of sensors affects other processes running under top load. For this purpose,

242

6.4 Reactive Realtime Cloud Infrastructure Monitoring

0

0.5

1

1.5

2

2.5

CPU MEM

P
e

rc
e

n
tu

al
 U

sa
ge

Sensor Resource Usage

Figure 6.18: Resource usage of sensors

!"##$!"%#$!&##$!&%#$!'##$!'%#$

()$

(#)$

*+,-$

!"#$%&'#()&*+),-.%+/&

0
)
.
%
#.
1
&2

-
%
)
&

'-34$&!"#$%&'#()&

Figure 6.19: Comparison of sensor activity
affecting total build time

the build time of Octave58
3.8.2 was measured without any sensor activity and two

different sending modes with the Posix tool time. The results in Figure 6.19 show all
three measurements with the build time in seconds as the ordinate and the different
sensor setups grouped by user, system and idle time as the abscissa. There is nearly
no impact between the different times resulting in a minimum total time of 2,776.02

seconds when no sensor is active and a maximum total time of 2,905.15 seconds when
sensors send data every second, yielding a negligible delay of 4.65 percent.

6.4.6 Analysis-VM

This subsection presents the main components of the Analysis-VM, consisting of a
federated CEP engine and a fast Event Store.

Federated CEP Engine

The analysis of the event streams coming from the sensors is performed in real-time
using CEP technology. The use of CEP distinguishes the system from other security
monitoring systems that use tailor-made event correlation engines. CEP engines usually
provide powerful, declarative query languages, while tailor-made event correlation
engines must often be configured via dedicated GUIs (e.g., web forms), configuration
files or even imperative code. Using a declarative query language, complex queries are
easier to express and, most importantly, allow for query optimization. Furthermore, CEP
query languages not only allow developers to compose multiple queries to workflows,
but also to express powerful queries, such as pattern matching queries, over event
sequences (including correlations among the events of a pattern). However, tailor-made
event correlation engines typically offer very good performance characteristics. The
hypothesis is that general-purpose CEP engines can also provide very good performance
in this specific application domain. In order to shed light on this hypothesis, the
performance of the security monitoring system implemented with CEP technology
inside was investigated.

In the Analysis-VM, not a single CEP engine is used alone, but a federation of
heterogenous CEP engines to exploit synergies between them with respect to function-
ality, expressiveness, and performance. Therefore, a federation of four different CEP
engines allows one to execute a query or part of a query in the CEP engine that is most

58https://www.gnu.org/software/octave/

243

https://www.gnu.org/software/octave/

6 Secure Cloud Systems

suitable or performs best. In general, the federated CEP engine executes a query with a
significantly better performance than a single CEP engine.

A serious issue with today’s CEP engines is that there are absolutely no standards.
Each individual CEP engine has its own query language in terms of syntax and, more
critically, in terms of semantics. Since in this work a federated CEP engine is used that
incorporates multiple heterogenous CEP engines, an own query language had to be
developed on top. All detection rules of the system are specified as queries in this
query language that is based on SQL; Listing 6.1 gives an impression of the developed
query language. Then, a query compiler translates every query into an abstract operator
graph (i.e., an event processing network (EPN)). Each operator is identical to a basic
event processing agent (EPA) that is supported. Currently, EPAs for event filtering,
event aggregation, event correlation and event pattern matching are supported. For
execution, another compiler translates each single EPA into the different native query
languages of the CEP engines within the federation, while the query semantics are
preserved. This approach is similar to application virtual machines such as the JVM or
the CLR. Here, a program is compiled into platform-independent byte code. To execute
a program on a specific platform, another compilation process translates the byte code
into native code specifically for the given platform.

Before the abstract operator plan of a query is decomposed into sub-plans that are
then distributed across the CEP engines of the federation, it is transformed by a query
optimizer into a semantically equivalent but more efficient abstract operator plan.
With respect to the supported types of EPAs, the rule-based query optimizer adopts
well-known and powerful techniques from query compilers of database systems. In
particular, filter EPAs are pushed down as close as possible to the event sources and
a sub-graph consisting of multiple correlation EPAs (i.e., a multiway-correlation) is
exchanged for a sub-graph containing the correlation EPAs in an optimal ordering
according to a cost model.

Federation Manager After a new query has been successfully rewritten by the query
optimizer, its abstract operator plan must be mapped to the federation of CEP engines.
Conceptually, there are three different and concurrent optimization targets that deter-
mine an optimal mapping. First, the abstract operator plan should be distributed in a
way such that the load is balanced. Otherwise, a CEP engine of the federation might
get overloaded and become the bottleneck of the federation. Second, disjoint sub-plans
of the abstract operator plan should be created and deployed so that every single EPA
is executed by the best suited CEP engine of the federation from a performance point
of view. Otherwise, an EPA of the query might be executed sub-optimally and become
a bottleneck of the query. Third, sub-plans should be as large as possible. Otherwise,
the communication overhead between the CEP engines becomes too high and decreases
the overall performance of the system.

In the proposed system, a so-called federation manager automatically decomposes
abstract operator plans and deploys the resulting sub-plans to different CEP engines.
Of course, it respects the three concurrent optimization targets and tries to always find
a good compromise between them. Since load balancing is a problem that has been
solved in different environments, existing techniques were adopted to solve it in this
context in an appropriate manner. However, the distribution of an operator plan across
a federation of heterogeneous CEP engines is a novel problem requiring an adequate

244

6.4 Reactive Realtime Cloud Infrastructure Monitoring

solution. First, the individual strengths and weaknesses of each CEP engine of the
federation had to be figured out. Therefore, comprehensive benchmarks (more than
200 individual benchmarks in total) had to be done to reveal this information. Each
individual benchmark executed a certain type of EPA having a specific configuration of
its parameters in all available CEP engines. For many of the benchmarks, the different
CEP engines performed quite differently. Then the results of all benchmarks were
manually evaluated and a classifier in the form of a decision tree was developed. This
classifier gets an EPA and its parameter configuration as its input and returns the CEP
engine that is expected to perform best. The federation manager uses the classifier to
assign each EPA of an abstract operator plan individually to a CEP engine. Whenever
multiple EPAs of the abstract operator plan that are directly connected with each other
are assigned to the same CEP engine, they are clustered into a sub-plan. Finally, the
resulting sub-plans can be deployed to their assigned CEP engines. Each CEP engine
then executes autonomously all of its sub-plans. The federation manager as the master
CEP engine is in charge of forwarding every incoming event to all CEP engines of the
federation that execute at least one sub-plan that needs the event. All communication
between the CEP engines of the federation (i.e., sending the output event of one sub-
plan to a following sup-plan being executed in another CEP engine) is also done via
the federation manager.

Query Index One of the CEP engines of the federation has been developed newly for
this research and only supports event filtering (i.e., filter EPAs). Since the monitoring
system must be able to execute workloads consisting of thousands of queries, an
index for the queries is necessary in order to achieve sufficiently high performance.
Unfortunately, most CEP engines do not include a query index, and the CEP engines
that have a query index have unsatisfactory performance with respect to our target
workload. Therefore, an own query index in the form of an additional CEP engine is
provided.

The developed query index called BE+-tree is based on the BE-tree [253], the state-of-
the-art query index. However, the BE-tree is a general-purpose query index that can
be used in a variety of application domains including e-commerce, publish/subscribe
and approximate string matching. The BE-tree achieves this wide applicability by
supporting both fast index lookups and fast index updates (i.e., insertion of new
queries) at the same time. In particular, the BE-tree is a dynamic tree-based index
structure that handles insertions of new queries at runtime by local reorganization
that is limited to only one path of the tree data structure. However, in the targeted
applications, insertions of new queries occur with very low frequency compared to the
frequency of new events.

Therefore, a new functionality was added to the BE-tree that creates a tree from
scratch for a given query set. This gives two important advantages. First, a priori
knowledge about the queries can be exploited to build better trees in comparison to the
one-by-one design of the original BE-tree. The many optimizations performed by the
BE+-tree are beyond the scope of this work. Second, the overall creation time of the
BE+-tree is substantially lower than for the BE-tree. Due to the fast creation time of the
BE+-tree, one can build an entirely new BE+-tree on updates even for large query sets
very fast.

245

6 Secure Cloud Systems

Experimental Evaluation The Analysis-VM is supposed to support the execution
of huge query workloads with high performance. Due to the used query index, the
federated CEP engine scales well with the total number of running queries, and
due to the federation manager that optimizes the performance across a federation of
heterogenous CEP engines, every single query is executed with high event throughput
and low latency. The following experimental evaluation indicates that the federated
CEP engine in conjunction with a query index can master the challenging workloads of
the security monitoring system.

SELECT ∗

FROM (SELECT COUNT(∗) AS newCons

FROM OpenConnections WINDOW(TIME 5 SECONDS)

WHERE port=x AND vm=y)
MATCH RECOGNIZE (

PATTERN abc

WITHIN 10 SECONDS

DEFINE a AS newCons > z ∗ 1.5

b AS newCons > a.newCons

c AS newCons > b.newCons

)

Listing 6.1: Parametrized query of our workload

Listing 6.1 shows a typical anomaly detection query with parameters x, y and z of
the query workload. It is used to detect attacks against services running on a server.
The stream OpenConnections contains one event for each open connection to a VM on
the server. Within each VM, a sensor periodically obtains all currently open connections
and pushes one event for each open connection into OpenConnections. Each event
comprises the name of the service, the identification of its process, the user it belongs
to, the protocol of the connection, the identification of the VM (vm) on that the service
is running, the port on which the service is running (port) and the IP address of the
remote destination of the connection. The presented query is specifically for a service
on port x at VM y. For the selected service, it counts the open connections within a
sliding time window of size five seconds. On the output stream of the aggregation,
the query searches for a pattern that indicates an abnormal use of the service (e.g.,
denial of service attack, brute force attack). However, the meaning of normal differs
from service to service and, thus, is individual for every single service. The listed
query uses the popularity of a service as its normal behavior z. Popularity is simply
measured in the usual form of the total number of new connections within a time
window of size five seconds. Obviously, different services have different popularities
(e.g., an SSH server has significantly less new connections within a fixed time frame
than a web server running a web site). Therefore, there is exactly one query running
for each active service. The corresponding normal value z for an active service (x, y)
can be easily determined by analyzing its history recorded by the Event Store (see the
next subsection for details).

To evaluate the performance of the federated CEP engine, the number of active
services was varied so that one could arbitrarily increase the total number of running
queries. The events that the sensors emitted matched a running query with a probability
of one percent. Figure 6.20 shows the overall performance of the federated CEP engine
for 10,000 up to 80,000 monitored services and, thus, running queries. Note that each
single query consisted of three EPAs in total (one filter EPA, one aggregation EPA
and one pattern matching EPA) so that the total number of running EPAs is three

246

6.4 Reactive Realtime Cloud Infrastructure Monitoring

5000000

5200000

5400000

5600000

5800000

6000000

6200000

6400000

6600000

6800000

10000 20000 30000 40000 50000 60000 70000 80000

Ev
e

n
ts

 p
e

r
Se

co
n

d

Total Number of Running Queries

BE+-Tree

BE-Tree

Figure 6.20: Performance of the federated CEP engine with a query index

0

10000

20000

30000

40000

50000

60000

70000

80000

10000 20000 30000 40000 50000 60000 70000 80000

In
d

ex
 C

re
at

io
n

 T
im

e
 in

M

ill
is

e
co

n
d

s

Total Number of Running Queries

BE+-Tree

BE-Tree

Figure 6.21: Query index creation time

times as much as the number of running queries. The figure shows that the federated
CEP engine can handle more than 500,000 events per second in every case. Thanks to
the query index, the performance scaled well with the number of running queries. If
the number of running queries is increased, the performance decreases only slightly.
Despite the fact that the filter expressions of the queries were quite simple, the BE+-
tree still performed notably better than the BE-tree. For more complex queries, the
performance improvements of the BE+-tree compared to the original BE-tree can be
multiple factors. Figure 6.21 shows the creation times needed to create the query
indexes of the last experiment from scratch. The graphs illustrate the better creation
performance of the bulk loading implemented by the BE+-tree in comparison to the
query-by-query loading of the BE-tree. Even the creation of an index for huge query
workloads of size 80,000 required only about one second in case of the BE+-tree, while
the creation of the BE-tree needed more than one minute. Due to its fast recreation
on occasional updates of the query workload and its better overall performance, the
BE+-tree is prefered over the BE-tree in the Analysis-VM.

247

6 Secure Cloud Systems

Event Store

Apart from the real-time analysis of events, the Analysis-VM also supports offline
analysis of historical data. Therefore, it is necessary to store all incoming events for
a certain period of time (i.e., long-term storage). Due to the high data rates, existing
storage solutions do not meet the requirements that are imposed on a data store for CEP
systems. Traditional relational databases incur high transactional overhead, resulting
in poor insertion performance. Key-value stores such as Cassandra59 typically cannot
keep up with the high data rates of CEP systems. The historical data store called Event
Store is optimized for storing event stream data on a single machine, since it resides in
the hardened Analysis-VM.

Design Principles The goal of the Event Store is to keep up with the event rates of
the system while offering a reasonable (offline) query performance. For security and
monetary reasons, the decision was made to use local hard drives as the primary
storage medium. Thus, the Event Store is designed for sequential writing, aimed at
storing millions of events per second.

The most common queries that need to be supported are time travel queries and
temporal aggregation queries. Time travel queries allow requests for specific points and
ranges in time, e.g., all ssh login attempts within the last hour. Temporal aggregation
queries give a comprehensive overview of the data, e.g., the average number of ssh logins
for each day of the week during the last three months.

The fastest way to store data on a disk is logging, i.e., to store each incoming event
consecutively on disk and hence leverage its sequential write performance. The major
drawback of this approach is its obviously poor query performance due to the lack of
indexes. The opposite extreme would be to index each attribute of each stream in a
multi-dimensional index, resulting in very poor insertion rates but very good query
performance. The aim is to combine both: while high write performance is the main
focus, the best possible query performance should also be supported.

Main Components The Event Store can be logically separated into three components:
store, event queues and workers. The store is the central component, handling stream
registration and event insertion. It keeps one event queue per stream, required for
decoupling event queues from workers. Each worker resides in a dedicated thread and
is assigned to a physical storage device (i.e., a hard drive). A worker’s task is to process
events of one or multiple dedicated event stream queues.

Figure 6.22 shows an example of a logical processing graph for 7 streams, 3 workers
and 2 disks. The distribution of streams to workers and the assignment of workers to
disks depends on the characteristics of the registered streams. The main objectives are
(a) to optimally parallelize serialization and compression (worker distribution) and (b)
to fully utilize disk speed (disk assignment).

Storage Layout Based on the awareness of the importance of the time dimension for
query execution, it was figured out that the problem of storing incoming events in an
indexed fashion on disks can be solved by an efficient bulk-loading strategy for B+-trees.
The key attribute for the index is represented by the timestamps of events. Since events

59http://cassandra.apache.org/

248

http://cassandra.apache.org/

6.4 Reactive Realtime Cloud Infrastructure Monitoring

Event Queue

Event Queue

Event Queue

Event Queue

Event Queue

Event Queue

Event Queue

Store

Worker

Worker

Worker

Disk

Disk

Figure 6.22: Example of an Event Store topology

arrive from the Analysis-VM in temporal order, a sort-based build approach was used.
It is also possible to tolerate out-of order arrival within a certain tolerance, but this
would require an explicit sorting step before writing the events into the Event Store.

For primary indexing, an augmented B+-tree is used. It is built in a bottom-up
manner and avoids the traversal of the tree‘s right flank for each event. When a leaf
node is filled, its corresponding index entry is inserted into the parent level. Therefore,
one only has to access the parent node once per child node, which also applies to all
higher levels of the tree. Due to the fact that one can hold the right flank in memory
(only logbN buffer blocks for N events and block size b needed), primary index creation
is very fast.

To further improve write performance, the Event Store leverages data compression
techniques. LZ4

60, an LZ-based, loss-less compression library, is used due to its fast
compression speed. In terms of compression, the optimal physical storage layout would
be a column layout. Unfortunately, a column layout leads to non-sequential I/Os, and
thus causes a substantial performance loss. Thus, the storage layout is optimized for
better compression rates using a hybrid approach [265]. The main idea is to store the
relational events in a column-based fashion only within a single disk block.

Query Processing To speed up query performance, another characteristic of event
data is utilized. As observed by Wang et al. [264], it can be assumed that values
occurring within a small time interval are often very similar. This observation can
be leveraged to speed up queries. For every node in the B+-tree, the minimum and
maximum (minai ,maxai) value of each (selected) attribute ai is stored for light-weight
secondary indexing. Since the number of attributes i is negligible compared to the
number of entries stored in a single node, the performance impact is minimal. During
query processing, one can use these values for pruning. Additionally to the minimum
and maximum values, each node stores the count of all underlying entries as well as
the sum of each attribute, which allows it to answer aggregation queries very fast in
logarithmic time.

For full secondary indexing, a write-optimized indexing technique is used, namely
cache-oblivious look-ahead arrays (COLA) [266]. Since full secondary indexing is costly
compared to the primary index, indexes are only created partially if the system load is
sufficiently low.

60https://code.google.com/p/lz4/

249

https://code.google.com/p/lz4/

6 Secure Cloud Systems

Experimental Evaluation To measure the write performance of the Event Store, two
metrics are used: the number of events stored per second and the (gross) data rate while
storing on disk. Additionally, the net data rate is used due to its physical limitation
while writing on disk. Another limiting factor is CPU performance. As the Event
Store has been implemented in Java, data serialization is a major performance issue.
Furthermore, data compression also requires CPU time.

The goal is to leverage the maximum net data rate (i.e., disk rate) with even higher
gross data rate (i.e., good compression ratios). For the experiments, events consisting of
10 attributes of 8 byte each (80 bytes per event) were used.

1

10

100

1000

10000

Compression
Performance

Serialization
Performance

Combined
Performance

Disk Speed

M
B

/s

Figure 6.23: Evaluation of system performance factors

In the first experiment (see Figure 6.23; note the log scale), the key performance
factors in the Event Store (and Java) were evaluated. The results indicate that the
maximum possible gross data rate for 8 KB blocks with compression (but without
serialization) is about 2818 MB/s, which is far beyond the disk speed of 187.4 MB/s.
The main bottleneck of the Event Store is the serialization process, which is due to the
Java type system. Serialization of event data results in 461 MB/s (net=gross) data rate.
Overall, the total gross data rate of the Event Store is about 201 MB/s, resulting in a net
data rate of 88 MB/s. Although the Event Store is CPU-bound for a single stream, its
gross data rate already surpasses the sequential write speed of the disk (187.4 MB/s)
and reaches 2.64 million events per second. Note that the net data rate is about 47 % of
the available disk speed.

In the second experiment shown in Figure 6.24, the write performance of two (parallel)
streams, on separate workers but on the same disk, were evaluated since the results
of the first experiment suggest higher possible data rates. If one increases the number
of streams and therefore the degree of parallelization, compression can improve the
gross data rate significantly, reaching 186 % of the physical disk speed (4.56 million
events per second). Even two streams do not suffice to utilize full disk speed, since the
configuration is still CPU-bound.

The third experiment evaluated the maximum reachable gross data rate for more

250

6.4 Reactive Realtime Cloud Infrastructure Monitoring

0

50

100

150

200

250

300

350

400

Single Stream Two Streams Disk Speed

M
B

/s

Gross Net

Figure 6.24: Comparison of net and gross data rates

than two parallel streams. The Analysis-VM was extended to 8 cores and processed
each stream on a separate worker thread. In this scenario, it is assumed that at least 4

physical disks are installed. Since the test system offered only one disk, the final write
command to physical storage was omitted. Figure 6.25 shows the measured number of
events per second. With 8 parallel streams, a gross data rate of 768.6 MB/s and 9.05

million events per second is reached.
For query evaluation purposes, the relation scan performance (Q1), the time travel

performance (Q2) as well as the temporal aggregation performance (Q3) was measured
on a data set with 20 million events (with 80 bytes per event). For the time travel and
temporal aggregation performance, a continuous fraction containing 20 % of the data,
i.e., 4 million events,was queried and its query time was measured.

Figure 6.26 shows the results of the query evaluation (note the log scale). An entire
relation scan of the stream (Q1) takes about 7.1 seconds, reaching a gross data rate of
213 MB/s. The time travel query (Q2) using the index takes only about 1.3 seconds, less
than a fifth of a relation scan. Finally, the temporal aggregation query (Q3) of the same
partition as in Q2 only takes 5 milliseconds.

6.4.7 Action Framework

The proposed reactive security monitoring system can not only observe security intru-
sions and malicious behavior, but also trigger countermeasures to prevent an attack or
further system breaches. For this purpose, an action framework, as described below,
was developed.

Actions and Actors

The action framework has been developed to perform actions, when the matchmaker
for EPAs triggers events. Since possible countermeasures should be both simple and

251

6 Secure Cloud Systems

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

1 2 4 8

Ev
e

n
ts

 p
e

r
Se

co
n

d

Number of Streams

Figure 6.25: Increasing the number of streams

flexible, the decision was made to use Python that due to CPython and Jython61 could
be easily integrated in the environment. An action consists of a signed Python script
and an XML file that contains its required parameters and the layer on which the action
should be executed. Similar to sensors, actions can be dynamically added and removed
and can be executed on all layers of the virtualized computer system. In addition,
every action sent to an actor for execution can be configured to use the communication
channel used in the system. In this way, feedback whether or not the operation was
successful is provided, or another action based on the results of its execution can be
triggered. Typical actions are: making memory dumps with a forensic analysis and
performing live migration (hypervisor level), creating firewall rules and killing processes
(userland level), and altering JVM settings including restrictions (application container
level). Actors executing actions are only in charge of registering themselves, check
the signature of incoming actions and provide an execution environment including
parameters relevant for the specific layer.

Experimental Evaluation

SELECT ∗

FROM TestStream

WHERE identifier = "BenchmarkSensor"

Listing 6.2: Query used for benchmarking

To demonstrate that the proposed reactive security monitoring system can be used
in a real world setting, the difference between the timestamp of the creation of an
event at a sensor and the timestamp at the execution of an action triggered due to that

61http://www.jython.org/

252

http://www.jython.org/

6.4 Reactive Realtime Cloud Infrastructure Monitoring

1

10

100

1000

10000

Q1 Q2 Q3

M
ill

is
e

co
n

d
s

Figure 6.26: Query performance evaluation (overall query time) for queries Q1, Q2 and Q3

0

0.01

0.02

0.03

0.04

0.05

0.06

Ti
m

e
 (

se
co

n
d

s)

Actions

Event-To-Action Time (1 Action/s)

Figure 6.27: Time from event to action (single)

0

0.5

1

1.5

2

2.5

Ti
m

e
(s

ec
o

n
d

s)

Actions

Event-To-Action Time
 (~23,700 Actions/s)

Figure 6.28: Time from event to action (bulk)

event was measured. A sensor explicitly designed for this benchmark sends an event
containing an increasing identifier and the current timestamp of the guest machine.
The experiment is based on a simple query shown in Listing 6.2 to redirect this event
to the action framework. An action that prints the current timestamp and expects this
ID is used and sent to an userland actor where the timestamps are then compared,
resulting in the complete event-to-action time for this workflow. The actor is placed
on the same guest machine to avoid having to synchronize different clocks. Figure
6.27 shows the measured results for an event-to-action time of one event and thus one
action per second with a time series as the ordinate and the difference in timestamps as
the abscissa. The results indicate that the system has an average reaction time of 0.007

seconds.
Figure 6.28 shows the measurement series for an event-to-action time with no limi-

tation in the sending rate, resulting in around 23,700 actions per second in which the
time from event to action is measured. Similar to the previous experiment, the figure
shows a time series as the ordinate and the difference in timestamps as the abscissa.
Since this experiment investigates a system at the boundaries of the virtual hardware
with a triggering rate of over 23,000 actions per second, a mean value of 1.82 seconds
for the time from event creation to the resulting action is still within an acceptable
timeframe and indicates how well the system operates under heavy load.

253

6 Secure Cloud Systems

6.4.8 Conclusion

In this section, a novel approach for reactive security monitoring in a virtualized
computer environment based on minimally-intrusive dynamic sensor deployment
vertically across virtualization layers and horizontally within a virtual machine was
presented. The sensor streams are analyzed using a federation of CEP engines and
a query index to maximize the performance queries, and the results of the analysis
are used to trigger appropriate actions in response to the detected security anomalies.
Furthermore, a novel event store is utilized that supports fast event logging for offline
analysis of collected historical data. Experiments have shown that the proposed system
can execute tens of thousands of detection rules with high performance and low latency.

There are several areas of future work. For example, the research has demonstrated
that the system can be used for reactive security monitoring with respect to performance,
but not how it should be used. Thus, specifying appropriate sensors, CEP queries and
actions for several types of potential attacks is a challenging task for future research.
Furthermore, research on using machine learning techniques to automatically set
parameters of CEP queries based on historical data collected in the Event Store is
required. Finally, to increase the processing speed further and handle an even larger
number of events, multi-core architectures should be leveraged and certain CEP queries
should be offloaded to General Purpose Graphic Processing Units (GPGPUs).

254

6.5 Summary

6.5 Summary

In Section 6.2, an empirical study of the security properties of email server communica-
tion within the German IP address space range was presented. Instead of investigating
end-user security or end-to-end encryption, we focused on the connections between
SMTP servers relying on transport layer security. An in-depth analysis was performed
on the involved ciphers suites, the certificates used and certificate authorities, and
the behavior of email providers when communicating with improperly secured email
servers. Conclusions drawn from this analysis lead to several recommendations for
mitigating the security issues currently present in the email system as it is deployed in
the Internet.

An approach for combined malware detection and kernel rootkit prevention in
virtualized cloud computing environments was presented in Section 6.3. All running
binaries in a virtual instance are intercepted and submitted to one or more anti-
virus analysis engines. Besides a complete check against a signature database, live
introspection of all system calls is performed to detect yet unknown exploits or malware.
Furthermore, to prevent that an intruder retains persistent control over a running
instance after a successful compromise, an in-kernel rootkit prevention approach is
proposed. Only authorized and thus trusted kernel modules are allowed to be loaded
during runtime; loading of unauthorized modules is no longer possible. Finally, the
performance of the presented solutions was evaluated and showed its practicability.

Finally, in Section 6.4, a new approach for reactive security monitoring in a virtualized
computing environment based on minimally-intrusive dynamic sensor deployment
vertically across virtualization layers and horizontally within a virtual machine instance
was presented. The sensor streams are analyzed using a novel federation of Complex
Event Processing engines and an optimized query index to maximize the performance
of continuous queries, and the results of the analysis are used to trigger appropriate
actions on different virtualization layers in response to detected security anomalies.
Furthermore, a novel event store that supports fast event logging is utilized for offline
analysis of collected historical data. Experiments show that the proposed system can
execute tens of thousands of complex detection rules and trigger actions efficiently and
with low latency.

255

7 Conclusion

7.1 Summary

In this thesis, existing technology used during disaster scenarios was evaluated, and
shortcomings were identified regarding usability, feature-completeness, and security.
Several novel approaches were developed to improve the usefulness of a decentralized
communication system suited specifically for challenged networks such as the ones
found during an emergency. Overall, several improvements were made and novel
technologies were designed for secure emergency communication in course of this
thesis.

MiniWorld, a novel, flexible distributed emulation environment was developed. It
enables us to evaluate software for emergency scenarios in a more realistic way. This is
achieved by combining full system emulation with interchangeable network back-ends
to simulate wireless properties such as the ones found with Bluetooth or WiFi links
and allows an orchestrated dynamic movement of nodes.

Furthermore, the usefulness of DTN and Device-to-Device networks was improved
by novel approaches and algorithms for local announcements and data dissemination.
Also, a first of its kind RPC system specifically tailored to challenged network conditions
in an emergency scenario, called DTN-RPC, was presented. These developments are the
foundation for novel applications such as mobile optimized on-device face recognition
with D2D data distribution capabilities (SmartFace) and an integrated approach utilizing
unmanned ground and aerial vehicles (uv4ec). Through the addition of microcontroller
units and making long range radio transceivers available to mobile device, the system
can be used in various scenarios including environmental monitoring. Moreover, steps
were taken to increase the security and robustness of the presented disruption-tolerant
device-to-device emergency communication system.

To increase the security of mobile apps, novel tools for large scale dynamic (Dynalize)
and static (AndroLyze) analysis of Android apps were developed. The importance of
such tools is shown by audits of common emergency communication apps as well as
large-scale tests for the use of SSL/TLS and various cryptographic functions in apps.

Finally, a novel system for increased security and monitoring of virtualized servers
systems was developed. The combination of integrated classic anti-virus systems with
live introspection and dynamically deployed sensors across several layers enables new
ways to defend a system, with minimal footprint on each guest machine. A federated
CEP engine in conjunction with a historic event database helps identifying anomalies
and reducing false alarms.

Overall, this thesis has presented several solutions to provide a secure and flexible
communication system to cope with the challenging network conditions during a
disaster scenario, ranging from DTN D2D communication on mobile devices utilizing
secure communication channels to Internet connected virtualized cloud systems.

257

7 Conclusion

7.2 Future Work

There are several areas for future research regarding secure communication in emer-
gency scenarios. Many points have already been highlighted in the individual conclu-
sions of each section. Furthermore, future research may include general improvements
and extensions of the solutions presented in this thesis, which will be discussed in the
following.

Disruption-Tolerant Device-to-Device Emergency Communication

Although the solutions presented in this thesis can be used in various scenarios, there
is room for further optimizations, especially for low-bandwidth links, such as LoRa.
Here, DTN distribution strategies and protocols can be further developed to reduce the
amount of bandwidth needed. Also, the resource footprint of security related functions,
such as signing and hashing, is challenging for embedded microcontrollers. In terms
of implementation, the solutions are engineered mainly towards Linux, macOS, and
Android. However, they should also be expanded to iOS and Windows for wider real
world adoption.

Security Vulnerability Analysis of Mobile Apps

While the dynamic and static security checks designed during the course of this thesis
have already unveiled many vulnerabilities in existing emergency communication apps,
some aspects should be investigated further. Automatic and intelligent combination of
both analysis methods could be used to eliminate false positives, and integration of
these security checks into software development tools could further improve mobile
app security.

Secure Cloud Systems

The VM introspection and monitoring systems presented in this thesis are heavily
tailored towards KVM and the Linux kernel. For wider adoption, including support for
other hypervisors and operating systems such as FreeBSD or Windows Server would
be helpful. Building upon this foundation and the amount of sensor data that can be
acquired, the possibility of using machine learning techniques for anomaly detection
should be investigated.

258

List of Figures

1.1 Natural catastrophes since 1980 . 1

1.2 FEMA Top 10 Response Core Capabilities 2

1.3 FEMA Top 10 Protection Core Capabilities 2

2.1 IP vs DTN data flow . 10

2.2 The Serval technology stack . 11

2.3 Contents of NINA APK . 13

2.4 DWD WarnWetter app in action . 15

2.5 BBK NINA in action . 16

2.6 KATWARN in action . 16

2.7 FireChat room overview . 18

2.8 Serval Mesh main view . 18

2.9 Cloud services overview . 19

3.1 Typical Internet services used during disasters 23

3.2 Mobile apps deployed on different devices 24

3.3 Thesis problem overview . 25

3.4 Secure communication during disaster scenarios 27

4.1 DT D2D communication system developments 32

4.2 MiniWorld’s Architecture . 35

4.3 MiniWorld’s Distributed Architecture . 38

4.4 MiniWorld Implementation . 39

4.5 Boot Times: OpenWrtBB vs. Debian8 (Shell Prompt) 42

4.6 Boot Times: Snapshot Boot vs. Real Boot (Debian8) 42

4.7 Network Backend Throughput . 43

4.8 RTTs for the Network Backends . 43

4.9 Topology Switching (Bridged WiFi) . 44

4.10 Distributed Mode: Boot Times . 45

4.11 Distributed Mode: Differential Topology Switching 45

4.12 Distributed Mode: Tunnel Overhead . 46

4.13 MF Mixed: Rhizome store size, network and CPU load 54

4.14 Mass-Messages CPU Usage over Time . 55

4.15 Hub limited PM: Rhizome store size, network & CPU 56

4.16 Evaluation Scenario: Chained Limited Medium 57

4.17 Energy consumption of announcement intervals 58

4.18 Serval Power Consumption . 59

4.19 Drive-by store-and-forward data exchange 60

4.20 Drive-by window of opportunity example 60

4.21 Announcements/second in a static network of 25 nodes 68

4.22 Announcement Strategies Comparison 69

259

List of Figures

4.23 Splitting network configuration with 10 nodes 71

4.24 A growing network with 100 nodes . 72

4.25 Announcement Gaps in a static network of 10 nodes 73

4.26 Calling a remote procedure in a DTN disaster scenario 75

4.27 DTN-RPC flowchart for client and server. 79

4.28 DTN-RPC Bandwidth and CPU Usage . 85

4.29 Round trip times in different topologies 86

4.30 DTN vs. Non-DTN for 100MB with Islands Topology 87

4.31 Base station for monitoring, relaying and processing 93

4.32 BLE LoRa modem with plain Raspberry Pi 3 for size comparison 95

4.33 Waterproof static sensor box deployed . 98

4.34 Communication range of different LoRa setups 99

4.35 RSSI vs. Distance . 100

4.36 Number of received packets in relation to packets sent. 100

4.37 Basic two-stage face detector . 105

4.38 Two-stage face detector, preprocessing, and parameters 106

4.39 SmartFace in action . 106

4.40 SmartFace implementation . 107

4.41 Examples from image test set . 108

4.42 Comparison of different color spaces and depths 108

4.43 Face-Detection Performance for Different Resolutions 109

4.44 Comparison of cropped areas from grey scale images 109

4.45 Overall benchmark . 111

4.46 Best of all categories dlib vs SmartFace . 111

4.47 Direct comparison of devices . 111

4.48 Individual device performance . 112

4.49 SmartFace Performance on Various Devices and Links 113

4.50 Emergency communication scenario . 116

4.51 Architecture of NICER OCC . 119

4.52 UI component of NICER OCC . 120

4.53 Hector Tracker Robot in Simulated Disaster 121

4.54 Robot sensor data for a ”victim found” event 122

4.55 UAV/UGV Simulation Setup . 123

4.56 Opportunities for data exchange . 124

4.57 Opportunities for data exchange over time 124

4.58 File distribution times . 124

4.59 Message distribution times . 124

4.60 SEMUD vs OLSR Reaction Times . 125

4.61 Secure Key Management Illustration . 130

4.62 Flooding attack and revocation . 133

5.1 Insecure mobile AV solution compromised 148

5.2 Sample SSL Warning Message . 151

5.3 Facebook’s SSL warning . 152

5.4 Analysis approach of AndroLyze . 162

5.5 Typical workflow while using AndroLyze 164

5.6 Parallelization of APK import . 168

260

List of Figures

5.7 Relation between script requirements and runtime 169

5.8 Local parallel mode +Source code . 170

5.9 Comparison of job scheduling strategies 170

5.10 Local parallel mode +Bytecode . 171

5.11 Distributed parallel mode + SSL vs. local parallel mode +SSL 171

5.12 APK distribution . 172

5.13 Performance of AndroLyze . 173

5.14 Crypto Statistics for Top Free 500 Archive 174

5.15 Dynalize platform architecture . 177

5.16 Dynalize IaaS Layout . 178

5.17 Screenshot of the Dynalize interface . 180

5.18 Virtual device start time and throughput on EC2 182

5.19 Storage throughput for different EC2 instance types 183

5.20 Container startup . 184

5.21 Average throughput and overhead of storage Backends 185

5.22 Successful MITM attack on WarnWetter 189

5.23 Successful MITM attack on NINA . 190

5.24 Successful MITM attack on Sicher Reisen 192

5.25 Successful MITM attack on BIWAPP . 193

5.26 Different successful attacks on FEMA app 195

5.27 Successful MITM attack on Disaster Alert 196

5.28 Successful MITM attack on NOAA Weather Radar 197

6.1 Email transfer and TLS usage. 202

6.2 SMTP and TLS usage among the scanned hosts 205

6.3 SSL and TLS versions used in the scanned services 206

6.4 Use of cipher suites . 207

6.5 Change of the average key lengths over time. 210

6.6 Categorization of services using the main security properties 210

6.7 Root certificates in relation to their signed server certificates 210

6.8 CA Topology of the Comodo CA. 212

6.9 Malware scanner architecture . 221

6.10 Authorized module loading state transition diagram 224

6.11 Module loading activity . 227

6.12 Malware Detection Benchmarks . 228

6.13 Module (un)loading overhead measurement 229

6.14 Sensors, Analysis-VM and actors . 236

6.15 Analysis-VM . 236

6.16 Monitoring lifecycle . 238

6.17 Example: TCP backdoor detection. 239

6.18 Resource usage of sensors . 243

6.19 Comparison of sensor activity affecting total build time 243

6.20 Performance of the federated CEP engine with a query index 247

6.21 Query index creation time . 247

6.22 Example of an Event Store topology . 249

6.23 Evaluation of system performance factors 250

6.24 Comparison of net and gross data rates 251

261

List of Figures

6.25 Increasing the number of streams . 252

6.26 Query performance evaluation . 253

6.27 Time from event to action (single) . 253

6.28 Time from event to action (bulk) . 253

262

List of Tables

4.1 Network Topologies . 51

4.2 Scenario Tests . 52

4.3 Test File Sets . 52

4.4 Announcements of the strategies compared. 70

4.5 Correlation of energy consumption and announcements 73

4.6 Topologies . 83

4.7 Overview of SBC and MCU Platforms . 96

4.8 Overview of different Sensors . 97

4.9 Power consumption of MCUs including radio transceivers 98

4.10 Comparison of Concept Detection on Pi vs. Neural Compute Stick . . . 100

4.11 Cost of BLE LoRa Modem . 101

4.12 Example configuration for a MSP . 101

4.13 Example configuration for a SSP (w/o power supply) 102

4.14 Device Specifications . 107

4.15 Contingency table for dlib . 110

4.16 Contingency table for OpenCV . 110

4.17 Contingency table for SmartFace (faster runtime) 110

4.18 Contingency table for SmartFace (higher quality) 110

4.19 Transmission times for various link types 112

4.20 Performance test of OCC w.r.t message processing 126

5.1 Top 10 hosts in all extracted URLs . 144

5.2 Trust Managers & Socket Factories that trust all certificates 145

5.3 Results of the SSL pinning analysis . 150

5.5 APK test sets . 168

5.6 Script test sets . 168

5.7 Prices of the used instance types . 183

5.8 Emergency warning app audit results . 198

6.1 Shares of weak and broken cipher suites 208

6.2 Time period of validity of the retrieved certificates 209

6.3 Self-signed, server and CA certificates . 209

6.4 Top 10: Most popular CAs . 211

6.5 Email provider strategies for connections to other email servers 213

6.6 Number of implemented sensors . 240

6.7 Hardware specification of the host systems 242

6.8 Hardware specification of the guest systems 242

263

Bibliography

[1] N. Schmidt, L. Baumgärtner, P. Lampe, K. Geihs, and B. Freisleben, “MiniWorld:
Resource-aware Distributed Network Emulation via Full Virtualization,” in 22nd
IEEE Symposium on Computers and Communication (ISCC 2017), Heraklion, Greece:
IEEE, 2017, pp. 818–825 (cit. on pp. xiii, 6, 33).

[2] L. Baumgärtner, P. Gardner-Stephen, P. Graubner, J. Lakeman, J. Höchst, P.
Lampe, N. Schmidt, S. Schulz, A. Sterz, and B. Freisleben, “An Experimental
Evaluation of Delay-Tolerant Networking with Serval,” in IEEE Global Human-
itarian Technology Conference (GHTC 2016), Seattle, USA: IEEE, 2016, pp. 1–8

(cit. on pp. xiii, 7, 49, 62, 76, 91).

[3] L. Baumgärtner, P. Graubner, J. Höchst, A. Klein, and B. Freisleben, “The More
You Speak, the Less You Hear: On Dynamic Announcement Intervals in Wireless
On-demand Networks,” in 13th Conference on Wireless On-demand Network Systems
and Services (WONS 2017), Jackson Hole, USA: IEEE, 2017, pp. 33–40 (cit. on
pp. xiii, 6, 61).

[4] A. Sterz, L. Baumgärtner, R. Mogk, M. Mezini, and B. Freisleben, “DTN-RPC:
Remote Procedure Calls for Disruption-Tolerant Networking,” in IFIP Networking
2017 Conference and Workshops (Networking 2017), Stockholm, Sweden: IFIP, 2017,
pp. 1–9 (cit. on pp. xiii, 6, 76).

[5] P. Lampe, L. Baumgärtner, R. Steinmetz, and B. Freisleben, “SmartFace: Ef-
ficient Face Detection on Smartphones for Wireless On-demand Emergency
Networks,” in 24th International Conference on Telecommunications (ICT 2017),
Limassol, Cyprus: IEEE, 2017, pp. 1–7 (cit. on pp. xiii, 6, 92, 99, 103).

[6] L. Baumgärtner, A. Penning, P. Lampe, B. Richerzhagen, R. Steinmetz, and B.
Freisleben, “Environmental Monitoring Using Low-Cost Hardware and Infras-
tructureless Wireless Communication,” in IEEE Global Humanitarian Technology
Conference (GHTC 2018), San Jose, USA: IEEE, 2018, accepted for publication
(cit. on pp. xiii, 6, 89).

[7] L. Baumgärtner, S. Kohlbrecher, J. Euler, T. Ritter, M. Schmittner, C. Meurisch,
M. Mühlhäuser, M. Hollick, O. von Stryk, and B. Freisleben, “Emergency Com-
munication in Challenged Environments via Unmanned Ground and Aerial
Vehicles,” in IEEE Global Humanitarian Technology Conference (GHTC 2017), San
Jose, USA: IEEE, 2017, pp. 1–9 (cit. on pp. xiii, 6, 91, 115).

[8] F. Kohnhäuser, M. Schmittner, L. Baumgärtner, L. Almon, S. Katzenbeisser, M.
Hollick, and B. Freisleben, “SEDCOS: A Secure Device-to-Device Communica-
tion System for Disaster Scenarios,” in 42nd Annual IEEE Conference on Local
Computer Networks (LCN 2017), Singapore, Singapore: IEEE, 2017, pp. 195–198

(cit. on pp. xiii, 6, 128).

265

Bibliography

[9] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith,
“Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security,”
in Proceedings of the 2012 ACM Conference on Computer and Communications Security
(CCS), Raleigh, USA: ACM, 2012, pp. 50–61 (cit. on pp. xiv, 7, 139, 159, 160).

[10] L. Baumgärtner, P. Graubner, N. Schmidt, and B. Freisleben, “AndroLyze: A
Distributed Framework for Efficient Android App Analysis,” in IEEE 2nd Inter-
national Conference on Mobile Services (MS 2015), New York City, USA: IEEE, 2015,
pp. 73–80 (cit. on pp. xiv, 7, 159).

[11] P. Graubner, L. Baumgärtner, P. Heckmann, M. Müller, and B. Freisleben, “Dy-
nalize: Dynamic Analysis of Mobile Apps in a Platform-as-a-Service Cloud,” in
IEEE 8th International Conference on Cloud Computing (CLOUD 2015), New York
City, USA: IEEE, 2015, pp. 925–932 (cit. on pp. xiv, 7, 175).

[12] L. Baumgärtner, J. Höchst, M. Leinweber, and B. Freisleben, “How to Misuse
SMTP over TLS: A Study of the (In) Security of Email Server Communication,”
in 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland: IEEE, 2015, pp. 287–
294 (cit. on pp. xiv, 7, 203).

[13] M. Schmidt, L. Baumgärtner, P. Graubner, D. Böck, and B. Freisleben, “Malware
Detection and Kernel Rootkit Prevention in Cloud Computing Environments,”
in 19th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP 2011), Ayia Napa, Cyprus: IEEE, 2011, pp. 603–610 (cit. on
pp. xiv, 7, 217).

[14] L. Baumgärtner, P. Graubner, M. Leinweber, R. Schwarzkopf, M. Schmidt,
B. Seeger, and B. Freisleben, “Mastering Security Anomalies in Virtualized
Computing Environments via Complex Event Processing,” in Proceedings of
the The Fourth International Conference on Information, Process, and Knowledge
Management (eKNOW 2012), Valencia, Spain: IEEE, 2012, pp. 76–81 (cit. on
pp. xiv, 7, 232).

[15] L. Baumgärtner, C. Strack, B. Hoßbach, M. Seidemann, B. Seeger, and B. Freisleben,
“Complex Event Processing for Reactive Security Monitoring in Virtualized
Computer Systems,” in Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems, Oslo, Norway: ACM, 2015, pp. 22–33 (cit. on
pp. xiv, 7, 232).

[16] D. M. West and M. Orr, “Race, Gender, and Communications in Natural Disas-
ters,” Policy Studies Journal, vol. 35, no. 4, pp. 569–586, 2007 (cit. on p. 1).

[17] L. Comfort and T. Haase, “Communication, Coherence, and Collective Action:
The Impact of Katrina on Communications Infrastructure,” Public Works Manage-
ment & Policy, vol. 10, no. 4, pp. 328–343, 2006 (cit. on p. 1).

[18] R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and M. Mezini, “Fault-
tolerant Distributed Reactive Programming,” in 32nd European Conference on
Object-Oriented Programming (ECOOP 2018), vol. 109, Amsterdam, The Nether-
lands: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018, 1:1–1:26 (cit. on
p. 6).

266

Bibliography

[19] P. Graubner, P. Lampe, J. Höchst, L. Baumgärtner, M. Mezini, and B. Freisleben,
“Opportunistic Named Functions in Disruption-tolerant Emergency Networks,”
in ACM International Conference on Computing Frontiers 2018 (ACM CF’18), Ischia,
Italy: ACM, 2018, pp. 129–137 (cit. on pp. 6, 95).

[20] C. Meurisch, J. Gedeon, A. Gogel, T. A. B. Nguyen, F. Kaup, F. Kohnhäuser, L.
Baumgärtner, M. Schmittner, and M. Mühlhäuser, “Temporal Coverage Analysis
of Router-based Cloudlets Using Human Mobility Patterns,” in 2017 IEEE Global
Communications Conference: Selected Areas in Communications: Internet of Things
(Globecom 2017 SAC IoT), Singapore, Singapore: IEEE, 2017, pp. 1–6 (cit. on p. 6).

[21] J. Höchst, L. Baumgärtner, M. Hollick, and B. Freisleben, “Unsupervised Traffic
Flow Classification Using a Neural Autoencoder,” in 42nd Annual IEEE Confer-
ence on Local Computer Networks (LCN 2017), Singapore, Singapore: IEEE, 2017,
pp. 523–526 (cit. on p. 6).

[22] M. Leinweber, T. Fober, M. Strickert, L. Baumgärtner, G. Klebe, B. Freisleben,
and E. Hüllermeier, “CavSimBase: A Database for Large Scale Comparison
of Protein Binding Sites,” IEEE Transactions on Knowledge and Data Engineering,
vol. 28, no. 6, pp. 1423–1434, 2016 (cit. on p. 7).

[23] M. Leinweber, L. Baumgärtner, M. Mernberger, T. Fober, E. Hüllermeier, G.
Klebe, and B. Freisleben, “GPU-based Cloud Computing for Comparing the
Structure of Protein Binding Sites,” in 6th IEEE International Conference on Digital
Ecosystems Technologies (DEST 2012), Campione d’Italia, Italy: IEEE, 2012, pp. 1–6

(cit. on p. 7).

[24] A. Vahdat and D. Becker, “Epidemic Routing for Partially Connected Ad Hoc
Networks,” Duke University, Tech. Rep., Jul. 2000 (cit. on p. 11).

[25] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic Routing in Intermittently
Connected Networks,” ACM SIGMOBILE mobile computing and communications
review, vol. 7, no. 3, pp. 19–20, 2003 (cit. on p. 11).

[26] P. Gardner-Stephen, “The Serval Project: Practical Wireless Ad-Hoc Mobile
Telecommunications,” Flinders University, Adelaide, South Australia, Tech. Rep.,
Aug. 2011, pp. 1–29 (cit. on pp. 11, 48, 49).

[27] P. Gardner-Stephen, R. Challans, J. Lakeman, A. Bettison, D. Gardner-Stephen,
and M. Lloyd, “The Serval Mesh: A Platform for Resilient Communications in
Disaster & Crisis,” in IEEE Global Humanitarian Technology Conference (GHTC
2013), IEEE, 2013, pp. 162–166 (cit. on pp. 11, 48, 76, 81).

[28] P. Gardner-Stephen, A. Bettison, R. Challans, and J. Lakeman, “The Rational
Behind The Serval Network Layer For Resilient Communications,” Journal of
Computer Science, vol. 9, no. 12, p. 1680, 2013 (cit. on pp. 11, 48, 76, 81, 104).

[29] P. Gardner-Stephen, J. Lakeman, R. Challans, C. Wallis, A. Stulman, and Y.
Haddad, “MeshMS: Ad Hoc Data Transfer within a Mesh Network,” International
Journal of Communications, Network and System Sciences, vol. 8, no. 5, pp. 496–504,
2012 (cit. on pp. 12, 48, 76, 81).

267

Bibliography

[30] D. Johnson, N. Ntlatlapa, and C. Aichele, “A Simple Pragmatic Approach
to Mesh Routing Using B.A.T.M.A.N.,” in 2nd IFIP International Symposium
on Wireless Communications and Information Technology in Developing Countries,
Pretoria, South Africa, 2008 (cit. on pp. 12, 81).

[31] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot,
“Optimized Link State Routing Protocol for Ad Hoc Networks,” in IEEE Interna-
tional Conference on Technology for the 21st Century, IEEE, 2001, pp. 62–68 (cit. on
p. 12).

[32] C. Jackson and A. Barth, “Forcehttps: Protecting High-security Web Sites From
Network Attacks,” in Proceeding of the 17th International Conference on World Wide
Web, ACM, 2008, pp. 525–534 (cit. on pp. 20, 141, 142).

[33] Y. Song, C. Yang, and G. Gu, “Who is Peeping at Your Passwords at Starbucks? –
To Catch An Evil Twin Access Point,” in IEEE/IFIP International Conference on
Dependable Systems and Networks, IEEE, 2010, pp. 323–332 (cit. on pp. 20, 141,
142).

[34] E. Weingärtner, H. vom Lehn, and K. Wehrle, “A Performance Comparison of
Recent Network Simulators,” in IEEE International Conference on Communications
(ICC 2009), IEEE, 2009, pp. 1–5 (cit. on p. 33).

[35] L. Hogie, P. Bouvry, and F. Guinand, “An Overview of MANET Simulation,”
Electronic notes in Theoretical Computer Science, vol. 150, no. 1, pp. 81–101, 2006

(cit. on p. 33).

[36] M. Kropff, T. Krop, M. Hollick, P. S. Mogre, and R. Steinmetz, “A Survey on
Real World and Emulation Testbeds for Mobile Ad Hoc Networks,” in 2nd
International Conference on Testbeds and Research Infrastructures for the Development
of Networks and Communities, IEEE, 2006, pp. 448–453 (cit. on pp. 33, 34).

[37] K. N. Patel and R. h. Jhaveri, “A Survey on Emulation Testbeds for Mobile
Ad-hoc Networks,” Procedia Computer Science, vol. 45, pp. 581–591, 2015 (cit. on
pp. 33, 34).

[38] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE: A Real-time
Network Emulator,” in IEEE Military Communications Conference (MILCOM 2008),
IEEE, 2008, pp. 1–7 (cit. on pp. 33, 34).

[39] M. To, M. Cano, and P. Biba, “DOCKEMU–A Network Emulation Tool,” in IEEE
29th International Conference on Advanced Information Networking and Applications
(WAINA 2015), IEEE, 2015, pp. 593–598 (cit. on pp. 33, 34).

[40] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown, “Reproducible
Network Experiments Using Container-based Emulation,” in 8th International
Conference on Emerging Networking Experiments and Technologies (CoNEXT 2012),
Nice, France: ACM, 2012, pp. 253–264 (cit. on pp. 33, 35).

[41] J. D. Britos, S. Arias, N. Echániz, G. Iribarren, L. Aimaretto, and G. Hirschfeld,
“BATMAN Advanced Mesh Network Emulator,” in XXI Congreso Argentino de
Ciencias de la Computación, 2015, pp. 1–8 (cit. on p. 34).

[42] R. Davoli, “VDE: Virtual Distributed Ethernet,” in International Conference on
Testbeds and Research Infrastructures for the DEvelopment of NeTworks and COMmu-
nities, IEEE, 2005, pp. 213–220 (cit. on pp. 34, 37).

268

Bibliography

[43] M. Pizzonia and M. Rimondini, “Netkit: Easy Emulation of Complex Networks
on Inexpensive Hardware,” in 4th International Conference on Testbeds and Research
Infrastructures for the Development of Networks & Communities, ICST, 2008, pp. 1–7

(cit. on p. 34).

[44] T. Li, W. E. Thain Jr, and T. Fallon, “On the Use of Virtualization for Router
Network Simulation,” in American Society for Engineering Education, ASEE, 2010,
pp. 9–16 (cit. on p. 34).

[45] M. Pužar and T. Plagemann, “NEMAN: A Network Emulator for Mobile Ad-hoc
Networks,” in 8th International Conference on Telecommunications, 2005, pp. 155–
161 (cit. on p. 34).

[46] S. Hemminger, “Network Emulation with NetEm,” in Australia’s 6th National
Linux Conference, 2005, pp. 1–7 (cit. on pp. 34, 40).

[47] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, et al., “The Design and Implementation of Open vswitch,” in
12th USENIX Symposium on Networked Systems Design and Implementation (NSDI
15), 2015, pp. 117–130 (cit. on p. 35).

[48] S.-Y. Wang, “Comparison of SDN OpenFlow Network Simulator and Emulators:
EstiNet vs. Mininet,” in IEEE Symposium on Computers and Communications (ISCC
2014), IEEE, 2014, pp. 1–6 (cit. on p. 35).

[49] P. D. Pradeep and B. A. Kumar, “A Survey of Emergency Communication Net-
work Architectures,” International Journal of u-and e-Service, Science and Technology,
vol. 8, no. 4, pp. 61–68, 2015 (cit. on pp. 49, 103, 115).

[50] M. Berioli, N. Courville, and M. Werner, “Emergency Communications over
Satellite: the WISECOM Approach,” in 16Th IST Mobile and Wireless Communica-
tions Summit, IEEE, 2007, pp. 1–5 (cit. on pp. 49, 115).

[51] A. S. Cacciapuoti, F. Calabrese, M. Caleffi, G. Di Lorenzo, and L. Paura, “Human-
mobility Enabled Wireless Networks for Emergency Communications during
Special Events,” Pervasive and Mobile Computing, vol. 9, no. 4, pp. 472–483, 2013

(cit. on pp. 49, 115).

[52] W. Wang, W. Gao, X. Bai, T. Peng, G. Chuai, and W. Wang, “A Framework
of Wireless Emergency Communications Based on Relaying and Cognitive
Radio,” in IEEE 18th International Symposium on Personal, Indoor and Mobile Radio
Communications, IEEE, 2007, pp. 1–5 (cit. on pp. 49, 115).

[53] M. Manic, D. Wijayasekara, K. Amarasinghe, J. Hewlett, K. Handy, C. Becker,
B. Patterson, and R. Peterson, “Next Generation Emergency Communication
Systems via Software Defined Networks,” in Third GENI Research and Educational
Experiment Workshop, IEEE, 2014, pp. 1–8 (cit. on pp. 49, 115).

[54] V. Mayer-Schönberger, “Emergency Communications: The Quest for Interoper-
ability in the United States and Europe,” John F. Kennedy School of Government,
Harvard University, 2002 (cit. on p. 49).

[55] T. Pecorella, L. S. Ronga, F. Chiti, S. Jayousi, and L. Franck, “Emergency Satellite
Communications: Research and Standardization Activities,” IEEE Communica-
tions Magazine, vol. 53, no. 5, pp. 170–177, 2015 (cit. on pp. 49, 115).

269

Bibliography

[56] H. Chenji and R. Stoleru, “Delay-tolerant Networks (DTNs) for Emergency
Communications,” Advances in Delay-tolerant Networks (DTNs): Architecture and
Enhanced Performance, p. 105, 2014 (cit. on pp. 49, 103, 104, 115).

[57] J. Thomas, J. Robble, and N. Modly, “Off-grid Communications with Android
Meshing the Mobile World,” in IEEE Conference on Technologies for Homeland
Security (HST 2012), IEEE, 2012, pp. 401–405 (cit. on pp. 49, 104, 115).

[58] Y. Liu, D. R. Bild, D. Adrian, G. Singh, R. P. Dick, D. S. Wallach, and Z. M.
Mao, “Performance and Energy Consumption Analysis of a Delay-tolerant
Network for Censorship-resistant Communication,” in Proceedings of the 16th
ACM International Symposium on Mobile Ad Hoc Networking and Computing, ACM,
2015, pp. 257–266 (cit. on pp. 49, 62).

[59] H. Ntareme, M. Zennaro, and B. Pehrson, “Delay Tolerant Network on Smart-
phones: Applications for Communication Challenged Areas,” in Proceedings of
the 3rd Extreme Conference on Communication, ACM, 2011, pp. 14–21 (cit. on pp. 49,
115).

[60] K. Heimerl, K. Ali, J. Blumenstock, B. Gawalt, and E. Brewer, “Expanding
Rural Cellular Networks with Virtual Coverage,” in 10th USENIX Symposium on
Network Systems Design & Implementation, 2013, pp. 283–296 (cit. on pp. 50, 115).

[61] A. Battestini, V. Setlur, and T. Sohn, “A Large Scale Study of Text-messaging
Use,” in 12th International Conference on Human Computer Interaction with Mobile
Devices and Services, ACM, 2010, pp. 229–238 (cit. on p. 52).

[62] G. Aloi, M. Di Felice, V. Loscri, P. Pace, and G. Ruggeri, “Spontaneous Smart-
phone Networks as a User-centric Solution for the Future Internet,” IEEE Com-
munications Magazine, vol. 52, no. 12, pp. 26–33, 2014 (cit. on p. 60).

[63] E. Natsheh, A. B. Jantan, S. Khatun, and S. Shamala, “Adaptive Optimizing of
Hello Messages in Wireless Ad-Hoc Networks,” Int. Arab J. Inf. Technol., vol. 4,
no. 3, pp. 191–200, 2007 (cit. on p. 61).

[64] M. B. Khalaf, A. Y. Al-Dubai, and W. Buchanan, “A New Adaptive Broadcasting
Approach for Mobile Ad Hoc Networks,” in 6th Conference on Wireless Advanced
(WiAD 2010), IEEE, 2010, pp. 1–6 (cit. on p. 61).

[65] S. H. Ahmed, S. H. Bouk, and D. Kim, “Adaptive Beaconing Schemes in VANETs:
Hybrid Approach,” in International Conference on Information Networking (ICOIN
2015), IEEE, 2015, pp. 340–345 (cit. on p. 61).

[66] R. Tahar, A. Dhraief, A. Belghith, H. Mathkour, and R. Braham, “Autonomous
and Adaptive Beaconing Strategy for Multi-interfaced Wireless Mobile Nodes,”
Wireless Communications and Mobile Computing, vol. 16, no. 12, pp. 1625–1641,
2016 (cit. on p. 61).

[67] A. Hess, E. Hyytiä, and J. Ott, “Efficient Neighbor Discovery in Mobile Oppor-
tunistic Networking Using Mobility Awareness,” in Sixth International Conference
on Communication Systems and Networks (COMSNETS 2014), IEEE, 2014, pp. 1–8

(cit. on p. 61).

[68] F. Peng, “A Novel Adaptive Mobility-aware MAC Protocol in Wireless Sensor
Networks,” Wireless Personal Communications, vol. 81, no. 2, pp. 489–501, 2015

(cit. on p. 62).

270

Bibliography

[69] S. Lim, C. Yu, and C. R. Das, “RandomCast: An Energy-efficient Communication
Scheme for Mobile Ad Hoc Networks,” IEEE Transactions on Mobile Computing,
vol. 8, no. 8, pp. 1039–1051, 2009 (cit. on p. 62).

[70] J. A. B. Link, C. Wollgarten, S. Schupp, and K. Wehrle, “Perfect Difference Sets
for Neighbor Discovery: Energy Efficient and Fair,” in Proceedings of the 3rd
Extreme Conference on Communication: The Amazon Expedition, ACM, 2011, p. 5

(cit. on p. 62).

[71] G. Dán, N. Carlsson, and I. Chatzidrossos, “Efficient and Highly Available
Peer Discovery: A Case for Independent Trackers and Gossiping,” in IEEE
International Conference on Peer-to-Peer Computing (P2P 2011), IEEE, 2011, pp. 290–
299 (cit. on p. 62).

[72] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous Wakeup for Ad Hoc Networks,”
in Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking
& Computing, ACM, 2003, pp. 35–45 (cit. on p. 62).

[73] P. S. Paul, B. C. Ghosh, K. De, S. Saha, S. Nandi, S. Saha, I. Bhattacharya, and
S. Chakraborty, “On Design and Implementation of a Scalable and Reliable Sync
System for Delay Tolerant Challenged Networks,” in 8th International Conference
on Communication Systems and Networks (COMSNETS 2016), IEEE, 2016, pp. 1–8

(cit. on p. 62).

[74] B. Zhang, Y. Li, D. Jin, P. Hui, and Z. Han, “Social-Aware Peer Discovery for
D2D Communications Underlaying Cellular Networks,” IEEE Transactions on
Wireless Communications, vol. 14, no. 5, pp. 2426–2439, 2015 (cit. on p. 62).

[75] W. Wang, V. Srinivasan, and M. Motani, “Adaptive Contact Probing Mechanisms
for Delay Tolerant Applications,” in 13th Annual ACM International Conference on
Mobile Computing and Networking, ACM, 2007, pp. 230–241 (cit. on p. 62).

[76] S. Trifunovic, B. Distl, D. Schatzmann, and F. Legendre, “WiFi-Opp: Ad-hoc-less
Opportunistic Networking,” in 6th ACM Workshop on Challenged Networks, ACM,
2011, pp. 37–42 (cit. on p. 62).

[77] T. Clausen, C. Dearlove, and J. Dean, Rfc 6130: Mobile ad hoc network (manet)
neighborhood discovery protocol (nhdp), ietf, 2011 (cit. on p. 63).

[78] A. D. Birrell and B. J. Nelson, “Implementing Remote Procedure Calls,” ACM
Transactions on Computer Systems (TOCS 1084), vol. 2, no. 1, pp. 39–59, Feb. 1984

(cit. on p. 75).

[79] K. Fall, “A Delay-tolerant Network Architecture for Challenged Internets,” in
2003 ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, Karlsruhe, Germany: ACM, 2003, pp. 27–34 (cit. on
p. 75).

[80] A. McMahon and S. Farrell, “Delay- and Disruption-Tolerant Networking,” IEEE
Internet Computing, vol. 13, pp. 82–87, 2009 (cit. on p. 75).

[81] M. Kawecki and R. O. Schoeneich, “Mobility-based Routing Algorithm in Delay
Tolerant Networks,” EURASIP Journal on Wireless Communications and Networking,
vol. 2016, no. 1, pp. 1–9, 2016 (cit. on p. 75).

271

Bibliography

[82] P. Gardner-Stephen and S. Palaniswamy, “Serval Mesh Software - WiFi Multi
Model Management,” in Proceedings of the 1st International Conference on Wireless
Technologies for Humanitarian Relief, Amritapuri, Kollam, Kerala, India: ACM,
2011, pp. 71–77 (cit. on p. 75).

[83] J. Tu and C. Stewart, “Replication for Predictability in a Java RPC Framework,”
in IEEE International Conference on Autonomic Computing (ICAC 2015), IEEE, 2015,
pp. 163–164 (cit. on p. 76).

[84] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle, “DaRPC: Data Center RPC,”
in ACM Symposium on Cloud Computing (SOCC 2014), Seattle, WA, USA: ACM,
2014, 15:1–15:13 (cit. on p. 76).

[85] H. Chen, L. Shi, J. Sun, K. Li, and L. He, “A Fast RPC System for Virtual
Machines,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 7,
pp. 1267–1276, 2013 (cit. on p. 76).

[86] N. Shyam, C. Harmer, and K. Beck, Managing Remote Procedure Calls When a
Server is Unavailable, US Patent App. 12/610,049, May 2011 (cit. on p. 76).

[87] A. Reinhardt, P. S. Mogre, and R. Steinmetz, “Lightweight Remote Procedure
Calls for Wireless Sensor and Actuator Networks,” in IEEE International Confer-
ence on Pervasive Computing and Communications Workshops, IEEE, 2011, pp. 172–
177 (cit. on p. 76).

[88] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity: Enabling
Remote Computing Among Intermittently Connected Mobile Devices,” in 13th
ACM International Symposium on Mobile Ad Hoc Networking and Computing (Mobi-
Hoc 2012), Hilton Head, USA: ACM, 2012, pp. 145–154 (cit. on p. 77).

[89] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the Computation Offloading
at Ad Hoc Cloudlet: Architecture and Service Modes,” IEEE Communications
Magazine, vol. 53, no. 6, pp. 18–24, 2015 (cit. on p. 77).

[90] Y. Zhang, D. Niyato, and P. Wang, “Offloading in Mobile Cloudlet Systems with
Intermittent Connectivity,” IEEE Transactions on Mobile Computing, vol. 14, no. 12,
pp. 2516–2529, Dec. 2015, issn: 1536-1233 (cit. on p. 77).

[91] Y. Lai, X. Gao, M. Liao, J. Xie, Z. Lin, and H. Zhang, “Data Gathering and
Offloading in Delay Tolerant Mobile Networks,” Wireless Networks, vol. 22, no. 3,
pp. 959–973, 2016 (cit. on p. 77).

[92] J. Schöning and G. Heidemann, “Image Based Spare Parts Reconstruction for
Repairing Vital Infrastructure after Disasters,” in IEEE Global Humanitarian
Technology Conference (GHTC ’16), Seattle, USA: IEEE, 2016, pp. 225–232 (cit. on
p. 88).

[93] K. Aberer, S. Sathe, D. Chakraborty, A. Martinoli, G. Barrenetxea, B. Faltings, and
L. Thiele, “OpenSense: Open Community Driven Sensing of the Environment,”
in ACM SIGSPATIAL Int. Workshop on GeoStreaming, ACM, 2010, pp. 39–42 (cit.
on p. 90).

[94] B. Maag, Z. Zhou, and L. Thiele, “W-Air: Enabling Personal Air Pollution
Monitoring on Wearables,” Proceedings of ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 2, no. 1, p. 24, 2018 (cit. on p. 90).

272

Bibliography

[95] N. Castell, M. Kobernus, H.-Y. Liu, P. Schneider, W. Lahoz, A. J. Berre, and
J. Noll, “Mobile Technologies and Services for Environmental Monitoring: The
Citi-Sense-MOB Approach,” Urban Climate, vol. 14, pp. 370–382, 2015 (cit. on
p. 90).

[96] M. Gerboles, L. Spinelle, A. Kotsev, M. Signorini, and L. Srl, “AirSensEUR:
An Open-Designed Multi-Sensor Platform for Air Quality Monitoring,” in 4th
Scientific Meeting EuNetAir, 2015, pp. 3–5 (cit. on p. 90).

[97] P. Sikka, P. Corke, L. Overs, P. Valencia, and T. Wark, “Fleck-a Platform for Real-
world Outdoor Sensor Networks,” in 3rd International Conference on Intelligent
Sensors, Sensor Networks and Information, IEEE, 2007, pp. 709–714 (cit. on p. 90).

[98] M. T. Lazarescu, “Design and Field Test of a WSN Platform Prototype for Long-
term Environmental Monitoring,” Sensors, vol. 15, no. 4, pp. 9481–9518, 2015

(cit. on p. 90).

[99] C. Llamas, M. A. González, C. Hernández, and J. Vegas, “Open Source Hardware
Based Sensor Platform Suitable for Human Gait Identification,” Pervasive and
Mobile Computing, vol. 38, pp. 154–165, 2017 (cit. on p. 90).

[100] J. A. Wirwahn and T. Bartoschek, “Usability Engineering For Successful Open
Citizen Science,” in Free and Open Source Software for Geospatial (FOSS4G) Confer-
ence Proceedings, vol. 15, 2015, p. 54 (cit. on p. 90).

[101] N. Fröschle, “Engineering of New Participation Instruments Exemplified by
Electromobility, Particulate Matter and Clean Air Policy-Making,” HMD Praxis
der Wirtschaftsinformatik, vol. 54, no. 4, pp. 502–517, 2017 (cit. on p. 90).

[102] C. Pham, A. Rahim, and P. Cousin, “WAZIUP: A Low-Cost Infrastructure
for Deploying IoT in Developing Countries,” in International Conference on e-
Infrastructure and e-Services for Developing Countries, Springer, 2016, pp. 135–144

(cit. on p. 90).

[103] Y. Mao, J. Wang, B. Sheng, and F. Wu, “Building Smartphone Ad-hoc Networks
with Long-range Radios,” in 34th International Conference on Computing and
Communications, IEEE, 2015, pp. 1–8 (cit. on p. 90).

[104] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
Inception Architecture for Computer Vision,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, IEEE, 2016, pp. 2818–2826 (cit. on p. 95).

[105] P. Viola and M. J. Jones, “Robust Real-time Face Detection,” International Journal
of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004 (cit. on pp. 104, 106).

[106] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
Detection with Discriminatively Trained Part-based Models,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010

(cit. on p. 104).

[107] J. Cheney, B. Klein, A. K. Jain, and B. F. Klare, “Unconstrained Face Detection:
State of the Art Baseline and Challenges,” in International Conference on Biometrics
(ICB 2015), IEEE, 2015, pp. 229–236 (cit. on pp. 104, 106, 108).

273

Bibliography

[108] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled Faces in
the Wild: A Database for Studying Face Recognition in Unconstrained Envi-
ronments,” University of Massachusetts, Amherst, Tech. Rep., 2007 (cit. on
p. 104).

[109] L. Wolf, T. Hassner, and I. Maoz, “Face Recognition in Unconstrained Videos
with Matched Background Similarity,” in IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2011, pp. 529–534 (cit. on p. 104).

[110] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother, A.
Mah, and A. K. Jain, “Pushing the Frontiers of Unconstrained Face Detection and
Recognition: ARPA Janus Benchmark A,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, IEEE, 2015, pp. 1931–1939 (cit. on
p. 104).

[111] K. Imaizumi and V. G. Moshnyaga, “Network-based Face Recognition on Mobile
Devices,” in IEEE 3rd International Conference on Consumer Electronics, IEEE, 2013,
pp. 406–409 (cit. on p. 104).

[112] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman, “Cloud-
vision: Real-time Face Recognition Using a Mobile-cloudlet-cloud Acceleration
Architecture,” in IEEE Symposium on Computers and Communications (ISCC 2012),
IEEE, 2012, pp. 59–66 (cit. on p. 104).

[113] H. Feng, B. Wang, C. Zhang, B. Yu, W. Hwang, J.-J. Han, C. Choi, and H.
Wang, “A Fast Multi-view Face Detector for Mobile Phone,” in IEEE International
Conference on Image Processing (ICIP 2016), IEEE, 2016, pp. 3219–3223 (cit. on
p. 104).

[114] H. L. Akin, N. Ito, A. Jacoff, A. Kleiner, J. Pellenz, and A. Visser, “Robocup
Rescue Robot and Simulation Leagues,” AI magazine, vol. 34, no. 1, p. 78, 2012

(cit. on p. 114).

[115] D. Fan, B. Li, and M. Chen, “Design of Global Emergency Mobile Communi-
cation System Based on TDRSS,” in 6th International Conference on Electronics
Information and Emergency Communication (ICEIEC 2016), IEEE, 2016, pp. 322–325

(cit. on p. 115).

[116] K. Igarashi, K. Umeno, M. Okada, and M. Kikuchi, “Study on Emergency Mes-
sage Communication System for Ensuring Safety in Antarctica under Extremely
Severe Environments,” in International Conference on Smart Green Technology in
Electrical and Information Systems (ICSGTEIS 2016), IEEE, 2016, pp. 116–119 (cit.
on p. 115).

[117] K. Heimerl and T. S. Parikh, “How Users Understand Cellular Infrastructure,”
University of California, Berkeley, Tech. Rep., Apr. 2012 (cit. on p. 115).

[118] C. Köbel, W. B. Garcia, and J. Habermann, “A Survey on Wireless Mesh Net-
work Applications in Rural Areas and Emerging Countries,” in IEEE Global
Humanitarian Technology Conference (GHTC 2013), IEEE, 2013, pp. 389–394 (cit. on
p. 115).

274

Bibliography

[119] D. Reina, J. Coca, M. Askalani, S. Toral, F. Barrero, E. Asimakopoulou, S. Sotiri-
adis, and N. Bessis, “A Survey on Ad Hoc Networks for Disaster Scenarios,” in
International Conference on Intelligent Networking and Collaborative Systems (INCoS
2014), IEEE, 2014, pp. 433–438 (cit. on p. 115).

[120] Briar, https://briarproject.org/, (Accessed on 06/25/2016) (cit. on p. 115).

[121] Firechat, http://opengarden.com/about-firechat, (Accessed on 06/25/2016)
(cit. on p. 115).

[122] Z. Lu, G. Cao, and T. La Porta, “Networking Smartphones for Disaster Recov-
ery,” in IEEE International Conference on Pervasive Computing and Communications
(PerCom 2016), IEEE, 2016, pp. 1–9 (cit. on p. 115).

[123] H. Nishiyama, M. Ito, and N. Kato, “Relay-by-smartphone: Realizing Multihop
Device-to-Device Communications,” IEEE Communication Magazine, vol. 52, no. 4,
pp. 56–65, Apr. 2014 (cit. on p. 115).

[124] R. Murphy, S. Tadokoro, D. Nardi, A. Joacoff, P. Fiorini, H. Choset, and A.
Erkmen, Search and Rescue Robotics, Fundamental Problems and Open Issues in
Handbook of Robotics, eds. Siciliano, Bruno; Khatib, Oussama, 2008 (cit. on p. 115).

[125] R. R. Murphy, “Trial by fire [rescue robots],” IEEE Robotics & Automation Maga-
zine, vol. 11, no. 3, pp. 50–61, 2004 (cit. on p. 115).

[126] T. Yoshida, K. Nagatani, S. Tadokoro, T. Nishimura, and E. Koyanagi, “Improve-
ments to the Rescue Robot Quince Toward Future Indoor Surveillance Missions
in the Fukushima Daiichi Nuclear Power Plant,” in Field and Service Robotics,
Springer, 2014, pp. 19–32 (cit. on p. 115).

[127] A. Hart, N. Pezeshkian, and H. Nguyen, “Mesh Networking Optimized for
Robotic Teleoperation,” Space and Naval Warfare Systems Center San Diegom,
CA, Tech. Rep., 2012 (cit. on p. 115).

[128] C. Luo, P. Ward, S. Cameron, G. Parr, and S. McClean, “Communication Provi-
sion for a Team of Remotely Searching UAVs: A Mobile Relay Approach,” in
2012 IEEE Globecom Workshops, IEEE, 2012, pp. 1544–1549 (cit. on p. 115).

[129] E. F. Flushing, M. Kudelski, L. M. Gambardella, and G. A. Di Caro, “Connectivity-
aware Planning of Search and Rescue Missions,” in IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR 2013), IEEE, 2013, pp. 1–8 (cit. on
p. 115).

[130] J. A. Dias, J. N. Isento, V. N. Soares, and J. J. Rodrigues, “Impact of Scheduling
and Dropping Policies on the Performance of Vehicular Delay-tolerant Net-
works,” in IEEE International Conference on Communications (ICC 2011), IEEE,
2011, pp. 1–5 (cit. on p. 115).

[131] M. Frassl, M. Lichtenstern, M. Khider, and M. Angermann, “Developing a Sys-
tem for Information Management in Disaster Relief-Methodology and Require-
ments,” in 7th International Conference on Information Systems for Crisis Response
And Management (ISCRAM’10), vol. 1, 2010 (cit. on p. 115).

[132] A. M. Khaleghi, D. Xu, S. Minaeian, M. Li, Y. Yuan, J. Liu, Y.-J. Son, C. Vo, A.
Mousavian, and J.-M. Lien, “A Comparative Study of Control Architectures in
UAV/UGV-based Surveillance System,” in IIE Annual Conference. Proceedings,
Institute of Industrial Engineers-Publisher, 2014, p. 3455 (cit. on p. 115).

275

https://briarproject.org/
http://opengarden.com/about-firechat

Bibliography

[133] H.-B. Kuntze, C. W. Frey, I. Tchouchenkov, B. Staehle, E. Rome, K. Pfeiffer, A.
Wenzel, and J. Wöllenstein, “SENEKA-Sensor Network with Mobile Robots for
Disaster Management,” in IEEE Conference on Technologies for Homeland Security
(HST’12), IEEE, 2012, pp. 406–410 (cit. on p. 115).

[134] H.-B. Kuntze, C. Frey, T. Emter, J. Petereit, I. Tchouchenkov, T. Mueller, M. Tittel,
R. Worst, K. Pfeiffer, M. Walter, et al., “Situation Responsive Networking of
Mobile Robots for Disaster Management,” in Proceedings of ISR/Robotik 2014; 41st
International Symposium on Robotics, VDE, 2014, pp. 1–8 (cit. on p. 115).

[135] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, O. von Stryk, and U. Klingauf,
“Hector Open Source Modules for Autonomous Mapping and Navigation with
Rescue Robots,” in Proceedings of 17th RoboCup International Symposium, 2013

(cit. on p. 116).

[136] J. Kuhn, C. Reinl, and O. von Stryk, “Predictive Control for Multi-Robot Ob-
servation of Multiple Moving Targets Based on Discrete-Continuous Linear
Models,” in Proceedings of the 18th IFAC World Congress, 2011, pp. 257–262 (cit. on
p. 116).

[137] T. Ritter, J. Euler, S. Ulbrich, and O. von Stryk, “Decentralized Dynamic Data-
driven Monitoring of Atmospheric Dispersion Processes,” Procedia Computer
Science, vol. 80, pp. 919–930, 2016 (cit. on p. 116).

[138] A. Bemporad and M. Morari, “Control of Systems Integrating Logic, Dynamics,
and Constraints,” Automatica, vol. 35, pp. 407–427, 1999 (cit. on p. 116).

[139] M. Schmittner, A. Asadi, and M. Hollick, “SEMUD: Secure Multi-hop Device-
to-Device Communication for 5G Public Safety Networks,” in IFIP Networking
Conference (Networking’17), Stockholm, Sweden, 2017 (cit. on p. 118).

[140] T. A. B. Nguyen, C. Meurisch, S. Niemczyk, D. Böhnstedt, K. Geihs, M. Mühlhäuser,
and R. Steinmetz, “Adaptive Task-Oriented Message Template for In-Network
Processing,” in International Conference on Networked Systems (NetSys’17), IEEE,
2017, pp. 1–8 (cit. on p. 120).

[141] C. Meurisch, T. A. B. Nguyen, J. Gedeon, F. Kohnhäuser, M. Schmittner, S. Niem-
czyk, S. Wullkotte, and M. Mühlhäuser, “Upgrading Wireless Home Routers as
Emergency Cloudlet and Secure DTN Communication Bridge,” in 26th Interna-
tional Conference on Computer Communications and Networks (ICCCN’17): Posters,
IEEE, 2017 (cit. on p. 120).

[142] C. Meurisch, T. A. B. Nguyen, S. Wullkotte, S. Niemczyk, Kohnhäuser, and
M. Mühlhäuser, “NICER911: Ad-hoc Communication and Emergency Services
Using Networking Smartphones and Wireless Home Routers,” in 18th Inter-
national Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’17):
Poster, ACM, 2017 (cit. on p. 121).

[143] A. Jacoff, R. Sheh, A.-M. Virts, T. Kimura, J. Pellenz, S. Schwertfeger, and J.
Suthakorn, “Using Competitions to Advance the Development of Standard Test
Methods for Response Robots,” in Proceedings of the Workshop on Performance
Metrics for Intelligent Systems, ACM, 2012, pp. 182–189 (cit. on p. 121).

276

Bibliography

[144] T. Hossmann, P. Carta, D. Schatzmann, F. Legendre, P. Gunningberg, and C.
Rohner, “Twitter in Disaster Mode: Security Architecture,” in ACM Special
Workshop on Internet and Disasters, ACM, 2011, p. 7 (cit. on p. 128).

[145] E. A. Panaousis, T. A. Ramrekha, C. Politis, and G. P. Millar, “Secure Decen-
tralised Ubiquitous Networking for Emergency Communications,” in Interna-
tional Conference on Telecommunications and Multimedia (TEMU 2012), IEEE, 2012,
pp. 233–238 (cit. on p. 128).

[146] M. Puzar, T. Plagemann, and Y. Roudier, “Security and Privacy Issues in Middle-
ware for Emergency and Rescue Applications,” in Second International Conference
on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2008), IEEE,
2008, pp. 89–92 (cit. on p. 128).

[147] S. G. Weber, Y. Kalev, S. Ries, and M. Mühlhäuser, “MundoMessage: Enabling
Trustworthy Ubiquitous Emergency Communication,” in Proceedings of the 5th
International Conference on Ubiquitous Information Management and Communication,
ACM, 2011, p. 29 (cit. on p. 128).

[148] H. Zhu, X. Lin, R. Lu, X. Shen, D. Xing, and Z. Cao, “An Opportunistic Batch
Bundle Authentication Scheme for Energy Constrained DTNs,” in IEEE INFO-
COM, 2010 (cit. on p. 128).

[149] J. Burgess, G. D. Bissias, M. D. Corner, and B. N. Levine, “Surviving Attacks on
Disruption-tolerant Networks Without Authentication,” in Proceedings of the 8th
ACM international symposium on Mobile ad hoc networking and computing (MobiHoc
2007), ACM, 2007, pp. 61–70 (cit. on pp. 128, 129).

[150] A. Kate, G. M. Zaverucha, and U. Hengartner, “Anonymity and Security in
Delay Tolerant Networks,” in IEEE SecureComm, IEEE, 2007, pp. 504–513 (cit. on
p. 128).

[151] D. Ma and G. Tsudik, “Security and Privacy in Emerging Wireless Networks
[Invited Paper],” IEEE Wireless Communications, 2010 (cit. on p. 128).

[152] R. Chen, F. Bao, M. Chang, and J.-H. Cho, “Dynamic Trust Management for Delay
Tolerant Networks and Its Application to Secure Routing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 5, pp. 1200–1210, 2014 (cit. on p. 128).

[153] H. Zhu, S. Du, Z. Gao, M. Dong, and Z. Cao, “A probabilistic Misbehavior Detec-
tion Scheme Toward Efficient Trust Establishment in Delay-tolerant Networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 1, pp. 22–32,
2014 (cit. on p. 128).

[154] J. Luo, J.-P. Hubaux, and P. T. Eugster, “Dictate: Distributed Certification Au-
thority with Probabilistic Freshness for Ad Hoc Networks,” IEEE Transactions on
Dependable and Secure Computing, vol. 2, no. 4, pp. 311–323, 2005 (cit. on p. 128).

[155] Q. Li, W. Gao, S. Zhu, and G. Cao, “To Lie or to Comply: Defending Against
Flood Attacks in Disruption Tolerant Networks,” IEEE Transactions on Dependable
and Secure Computing, vol. 10, no. 3, pp. 168–182, 2013 (cit. on p. 129).

[156] F. C. Lee, W. Goh, and C. K. Yeo, “A Queuing Mechanism to Alleviate Flooding
Attacks in Probabilistic Delay Tolerant Networks,” in Sixth Advanced International
Conference on Telecommunications (AICT 2010), IEEE, 2010, pp. 329–334 (cit. on
p. 132).

277

Bibliography

[157] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN Protocol
Evaluation,” in Proceedings of the 2nd international conference on simulation tools
and techniques (ICST SIMUTools), 2009, p. 55 (cit. on p. 133).

[158] W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight Mobile Phone Appli-
cation Certification,” in Proceedings of the 16th ACM Conference on Computer and
Communications Security, ACM, 2009, pp. 235–245 (cit. on pp. 138, 141, 155).

[159] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android Permissions
Demystified,” in Proceedings of the 18th ACM Conference on Computer and Com-
munications Security, ACM, 2011, pp. 627–638 (cit. on pp. 138, 141, 142, 155, 159,
160).

[160] A. Porter Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
Permissions: User Attention, Comprehension, and Behavior,” UC Berkeley, Tech.
Rep., 2012 (cit. on pp. 138, 141, 153).

[161] L. Davi, A. Dmitrienko, A. Sadeghi, and M. Winandy, “Privilege Escalation At-
tacks on Android,” in Proceedings of the 13th International Conference on Information
Security, Springer, 2011, pp. 346–360 (cit. on pp. 138, 141).

[162] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shastry, “To-
wards Taming Privilege-Escalation Attacks on Android,” in Proceedings of the
19th Network and Distributed System Security Symposium (NDSS), vol. 17, 2012,
p. 19 (cit. on pp. 138, 141).

[163] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid Android:
Versatile Protection for Smartphones,” in Proceedings of the 26th Annual Computer
Security Applications Conference, ACM, Dec. 2010, pp. 347–356 (cit. on p. 138).

[164] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth, “TaintDroid: An Information-flow Tracking System For Realtime Privacy
Monitoring on Smartphones,” in Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, USENIX Association, 2010 (cit. on
pp. 138, 141, 144).

[165] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of Android
Application Security,” in Proceedings of the 20th USENIX Conference on Security,
2011 (cit. on pp. 138, 142, 146).

[166] M. Marlinspike, “More Tricks For Defeating SSL In Practice,” in Black Hat USA,
2009 (cit. on pp. 140, 142).

[167] ——, “New Tricks for Defeating SSL in Practice,” in Black Hat Europe, 2009

(cit. on pp. 140, 142).

[168] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android Permission
Model And Enforcement With User-defined Runtime Constraints,” in Proceedings
of the 5th ACM Symposium on Information, Computer and Communications Security,
ACM, 2010 (cit. on p. 141).

[169] A. Egners, B. Marschollek, and U. Meyer, “Messing with Android’s Permission
Model,” in Proceedings of the IEEE TrustCom, IEEE, 2012, pp. 1–22 (cit. on p. 141).

[170] T. Vidas, D. Votipka, and N. Christin, “All Your Droid Are Belong To Us: A
Survey Of Current Android Attacks,” in Proceedings of the 5th USENIX Workshop
on Offensive Technologies, 2011, pp. 10–10 (cit. on p. 142).

278

Bibliography

[171] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer, “Google
Android: A Comprehensive Security Assessment,” Security & Privacy, IEEE,
vol. 8, no. 2, pp. 35–44, 2010 (cit. on p. 142).

[172] W. Enck, M. Ongtang, and P. McDaniel, “Understanding Android Security,” in
Proceedings of the IEEE International Conference on Security & Privacy, IEEE, 2009,
pp. 50–57 (cit. on p. 142).

[173] P. McDaniel and W. Enck, “Not So Great Expectations: Why Application Markets
Haven’t Failed Security,” IEEE Security & Privacy, vol. 8, no. 5, pp. 76–78, 2010

(cit. on p. 142).

[174] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets,” in
Proceedings of the 19th Annual Network and Distributed System Security Symposium
(NDSS 2012), 2012 (cit. on p. 142).

[175] D. Shin and R. Lopes, “An Empirical Study of Visual Security Cues to Prevent
The SSLstripping Attack,” in Proceedings of the 27th Annual Computer Security
Applications Conference, ACM, 2011, pp. 287–296, isbn: 1450306721 (cit. on p. 142).

[176] S. Egelman, L. Cranor, and J. Hong, “You’ve Been Warned: An Empirical Study
of the Effectiveness of Web Browser Phishing Warnings,” in Proceedings of the
26th Annual SIGCHI Conference on Human Factors in Computing Systems, ACM,
2008, pp. 1065–1074 (cit. on pp. 142, 153).

[177] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. Cranor, “Crying Wolf:
An Empirical Study of SSL Warning Effectiveness,” in Proceedings of the 18th
USENIX Security Symposium, 2009, pp. 399–416 (cit. on pp. 142, 153).

[178] A. Sotirakopoulos and K. Hawkey, “”I Did it Because I Trusted You”: Challenges
With The Study Environment Biasing Participant Behaviours,” in Proceedings of
the 6th Symposium on Usable Privacy and Security, 2010 (cit. on p. 154).

[179] A. Sotirakopoulos, K. Hawkey, and K. Beznosov, “On the Challenges in Usable
Security Lab Studies: Lessons Learned From Replicating a Study on SSL Warn-
ings,” in Proceedings of the 7th Symposium on Usable Privacy and Security, Jul. 2011

(cit. on p. 154).

[180] F. Maggi, A. Valdi, and S. Zanero, “Andrototal: A Flexible, Scalable Toolbox and
Service for Testing Mobile Malware Detectors,” in Proceedings of the Third ACM
Workshop on Security and Privacy in Smartphones & Mobile Devices, ACM, 2013,
pp. 49–54 (cit. on pp. 159, 161).

[181] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: Scalable and
Accurate Zero-day Android Malware Detection,” in Proceedings of the 10th In-
ternational Conference on Mobile Systems, Applications, and Services, ACM, 2012,
pp. 281–294 (cit. on pp. 159, 160).

[182] N. Viennot, E. Garcia, and J. Nieh, “A Measurement Study of Google Play,” in
The 2014 ACM International Conference on Measurement and Modeling of Computer
Systems, ACM, 2014, pp. 221–233 (cit. on pp. 159, 160, 164).

[183] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center, “ScanDal: Static Analyzer for
Detecting Privacy Leaks in Android Applications,” in Proceedings of the 2012
Workshop on Security Technologies, IEEE, 2012 (cit. on pp. 159, 160).

279

Bibliography

[184] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth, “TaintDroid: An Information Flow Tracking System for Real-time Privacy
Monitoring on Smartphones,” ACM Transactions on Computer Systems (TOCS
2014), vol. 57, no. 3, pp. 99–106, 2014 (cit. on p. 159).

[185] A. Jindal, A. Pathak, Y. C. Hu, and S. Midkiff, “On Death, Taxes, and Sleep
Disorder Bugs in Smartphones (HotPower 2013),” in Proceedings of the Workshop
on Power-Aware Computing and Systems, Farmington, Pennsylvania: ACM, 2013,
pp. 1–5 (cit. on p. 159).

[186] A. Desnos and G. Gueguen, “Android: From Reversing to Decompilation,” in
Proceedings of Black Hat Abu Dhabi, 2011. [Online]. Available: https://github.
com/androguard/androguard (cit. on pp. 160–162).

[187] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Empirical Study
of Cryptographic Misuse in Android Applications,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, ACM, 2013,
pp. 73–84 (cit. on pp. 160, 173).

[188] A. Bartel, J. Klein, M. Monperrus, and Y. le Traon, “Static Analysis for Extracting
Permission Checks of a Large Scale Framework: The Challenges and Solutions
for Analyzing Android,” IEEE Transactions on Software Engineering, vol. 40, no. 6,
pp. 617–632, Jun. 2014 (cit. on p. 160).

[189] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-based De-
tection of Android Malware Through Static Analysis,” in 2014 Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (FSE), Hong Kong, China: ACM, 2014, pp. 576–587 (cit. on p. 160).

[190] É. Payet and F. Spoto, “Static Analysis of Android Programs,” Information and
Software Technology, vol. 54, no. 11, pp. 1192–1201, 2012 (cit. on p. 160).

[191] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A. Yuksel, S. A.
Camtepe, and S. Albayrak, “Static Analysis of Executables for Collaborative Mal-
ware Detection on Android,” in IEEE International Conference on Communications,
IEEE, 2009, pp. 1–5 (cit. on p. 160).

[192] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth, “Slicing Droids: Pro-
gram Slicing for Smali Code,” in Proceedings of the 28th Annual ACM Symposium
on Applied Computing, ACM, 2013, pp. 1844–1851 (cit. on p. 160).

[193] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio, V. van der
Veen, and C. Platzer, “Andrubis: Android Malware Under The Magnifying
Glass,” Vienna University of Technology, Tech. Rep. TRISECLAB-0414-001, 2014

(cit. on p. 161).

[194] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan, “Automatic and
Scalable Fault Detection for Mobile Applications,” in 2014 Proceedings of the
12th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys), Bretton Woods, New Hampshire, USA: ACM, 2014, pp. 190–203 (cit.
on pp. 175, 176).

280

https://github.com/androguard/androguard
https://github.com/androguard/androguard

Bibliography

[195] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and S. Shayan-
deh, “AppInsight: Mobile App Performance Monitoring in the Wild,” in 2012
Proceedings of the 10th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI), Hollywood, CA, USA, 2012, pp. 107–120 (cit. on p. 175).

[196] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluating Android Anti-
malware Against Transformation Attacks,” in Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security, Hangzhou,
China: ACM, 2013, pp. 329–334 (cit. on pp. 175, 181).

[197] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA: Programmable
UI-Automation for Large Scale Dynamic Analysis of Mobile Apps,” in Proceed-
ings of the 12th Annual International Conference on Mobile Systems, Applications, and
Services, ACM, 2014, pp. 204–217 (cit. on pp. 175, 176).

[198] Genymobile. (2015). Genymotion, [Online]. Available: http://www.genymotion.
com (visited on 02/19/2015) (cit. on pp. 175, 176).

[199] Manymo LLC. (2015). Manymo, [Online]. Available: https://www.manymo.com
(visited on 02/19/2015) (cit. on pp. 175, 176).

[200] Bitbar. (2015). Testdroid, [Online]. Available: http://testdroid.com (visited on
02/19/2015) (cit. on pp. 175, 176).

[201] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth, “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones,” ACM Transactions on Computer
Systems (TOCS 2014), vol. 32, no. 2, 5:1–5:29, 2014 (cit. on p. 175).

[202] D. Wu and R. Chang, “Analyzing Android Browser Apps for file:// Vulnerabili-
ties,” in Information Security, vol. 8783, Springer International Publishing, 2014,
pp. 345–363 (cit. on p. 175).

[203] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the Energy Spent Inside my App?
Fine Grained Energy Accounting on Smartphones with Eprof,” in Proceedings
of the 7th ACM European Conference on Computer Systems, ACM, 2012, pp. 29–42

(cit. on p. 175).

[204] R. Mittal, A. Kansal, and R. Chandra, “Empowering Developers to Estimate
App Energy Consumption,” in 2012 Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking (Mobicom), Istanbul, Turkey: ACM,
2012, pp. 317–328 (cit. on p. 175).

[205] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating Mobile Applica-
tion Energy Consumption Using Program Analysis,” in Proceedings of the 2013
International Conference on Software Engineering (ICSE), San Francisco, CA, USA:
IEEE, 2013, pp. 92–101 (cit. on p. 175).

[206] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon,
“Using GUI Ripping for Automated Testing of Android Applications,” in Pro-
ceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, Essen, Germany: ACM, 2012, pp. 258–261 (cit. on pp. 175, 176).

281

http://www.genymotion.com
http://www.genymotion.com
https://www.manymo.com
http://testdroid.com

Bibliography

[207] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, Effectively Detecting Mobile
App Bugs with AppDoctor,” in Proceedings of the Ninth European Conference on
Computer Systems (EuroSys 2014), Amsterdam, The Netherlands: ACM, 2014,
18:1–18:15 (cit. on pp. 175, 176).

[208] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input Generation System
for Android Apps,” in Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, Saint Petersburg, Russia: ACM, 2013, pp. 224–234 (cit. on
p. 175).

[209] C.-J. M. Liang, N. Lane, N. Brouwers, L. Zhang, B. Karlsson, R. Chandra, and
F. Zhao, “Contextual Fuzzing: Automated Mobile App Testing Under Dynamic
Device and Environment Conditions,” Microsoft Research, 2013 (cit. on p. 175).

[210] M. Bierma, E. Gustafson, J. Erickson, D. Fritz, and Y. R. Choe, “Andlantis: Large-
scale Android Dynamic Analysis,” in Proceedings of the 3rd IEEE Mobile Security
Technologies Workshop (MoST 2014), IEEE, 2014 (cit. on pp. 175, 176, 179).

[211] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and A. Stavrou, “A
Whitebox Approach for Automated Security Testing of Android Applications
on the Cloud,” in 7th International Workshop on Automation of Software Test (AST
2012), IEEE, 2012, pp. 22–28 (cit. on p. 176).

[212] O. Starov and S. Vilkomir, “Integrated TaaS Platform for Mobile Development:
Architecture Solutions,” in 8th International Workshop on Automation of Software
Test (AST 2013), IEEE, 2013, pp. 1–7 (cit. on p. 176).

[213] Perfecto Mobile. (2015). Perfecto Mobile, [Online]. Available: http://www.
perfectomobile.com (visited on 02/19/2015) (cit. on p. 176).

[214] Keynote. (2015). Mobile Testing, [Online]. Available: http://www.keynote.com/
solutions/testing/%5Clinebreak%20mobile-testing (visited on 02/19/2015)
(cit. on p. 176).

[215] Apkudo. (2015). Apkudo, [Online]. Available: http://www.apkudo.com (visited
on 02/19/2015) (cit. on p. 176).

[216] N. Viennot, E. Garcia, and J. Nieh, “A Measurement Study of Google Play,” in
ACM International Conference on Measurement and Modeling of Computer Systems,
ACM, 2014, pp. 221–233 (cit. on pp. 176, 177).

[217] B. F. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Repeatable
Reverse Engineering for the Greater Good with PANDA,” Technical Report:
CUCS-023-14, 2014 (cit. on pp. 176, 179).

[218] E. Zitzler, M. Laumanns, L. Thiele, E. Zitzler, E. Zitzler, L. Thiele, and L. Thiele,
“SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” Technical
Report 103, 2001 (cit. on p. 180).

[219] S. Garfinkel, PGP: Pretty Good Privacy. O’Reilly Media, 1995 (cit. on p. 203).

[220] N. J. Al Fardan and K. G. Paterson, “Lucky Thirteen: Breaking the TLS and
DTLS Record Protocols,” in IEEE Symposium on Security and Privacy, IEEE, 2013,
pp. 526–540 (cit. on p. 203).

282

http://www.perfectomobile.com
http://www.perfectomobile.com
http://www.keynote.com/solutions/testing/%5Clinebreak%20mobile-testing
http://www.keynote.com/solutions/testing/%5Clinebreak%20mobile-testing
http://www.apkudo.com

Bibliography

[221] H. K. Lee, T. Malkin, and E. Nahum, “Cryptographic Strength of SSL/TLS
Servers: Current and Recent Practices,” in 7th ACM SIGCOMM Conference on
Internet Measurement, ACM, 2007, pp. 83–92 (cit. on p. 203).

[222] A. Klein, “Attacks on the RC4 Stream Cipher,” Designs, Codes and Cryptography,
vol. 48, no. 3, pp. 269–286, 2008 (cit. on p. 203).

[223] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik, and
B. De Weger, “Short Chosen-prefix Collisions for MD5 and the Creation of a
Rogue CA Certificate,” in Advances in Cryptology-CRYPTO 2009, Springer, 2009,
pp. 55–69 (cit. on p. 203).

[224] P. Eckersley and J. Burns, “Is the SSLiverse a Safe Place?” In Chaos Communication
Congress, https://lb1.eff.org/files/ccc2010.pdf, 2010 (cit. on p. 203).

[225] R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL Landscape: A
Thorough Analysis of the X.509 PKI Using Active and Passive Measurements,”
in ACM SIGCOMM Conference on Internet Measurement, ACM, 2011, pp. 427–444

(cit. on p. 203).

[226] I. Ristic and M. Small, “A Study of What Really Breaks SSL,” Hack in the Box,
vol. http://blog.ivanristic.com/Qualys_SSL_Labs-A_Study_of_Really_
Breaks_SSL-HITB_Amsterdam_2011.pdf, May 2011 (cit. on p. 204).

[227] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of the HTTPS
Certificate Ecosystem,” in 2013 Conference on Internet Measurement, ACM, 2013,
pp. 291–304 (cit. on p. 204).

[228] F. Giesen, F. Kohlar, and D. Stebila, “On the Security of TLS Renegotiation,” in
ACM Conference on Computer & Communications Security, ACM, 2013, pp. 387–398

(cit. on p. 204).

[229] P. Szalachowski, S. Matsumoto, and A. Perrig, “PoliCert: Secure and Flexible
TLS Certificate Management,” in ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2014, pp. 406–417 (cit. on p. 204).

[230] M. D. Ryan, “Enhanced Certificate Transparency and End-to-end Encrypted
Mail,” Proceedings of NDSS 2014, The Internet Society, 2014 (cit. on p. 204).

[231] J. Clark and P. C. van Oorschot, “SoK: SSL and HTTPS: Revisiting Past Chal-
lenges and Evaluating Certificate Trust Model Enhancements,” in IEEE Sympo-
sium on Security and Privacy, IEEE, 2013, pp. 511–525 (cit. on p. 204).

[232] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing Forged SSL
Certificates in the Wild,” in IEEE Symposium on Security and Privacy, IEEE, 2014,
pp. 83–97 (cit. on p. 204).

[233] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using Frankencerts
for Automated Adversarial Testing of Certificate Validation in SSL/TLS Imple-
mentations,” in IEEE Symposium on Security and Privacy, IEEE, 2014, pp. 114–129

(cit. on p. 204).

[234] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, D. Tian, K. R. Butler, and A.
Alkhelaifi, “Securing SSL Certificate Verification through Dynamic Linking,” in
ACM SIGSAC Conference on Computer and Communications Security, ACM, 2014,
pp. 394–405 (cit. on p. 204).

283

https://lb1.eff.org/files/ccc2010.pdf
http://blog.ivanristic.com/Qualys_SSL_Labs-A_Study_of_Really_Breaks_SSL-HITB_Amsterdam_2011.pdf
http://blog.ivanristic.com/Qualys_SSL_Labs-A_Study_of_Really_Breaks_SSL-HITB_Amsterdam_2011.pdf

Bibliography

[235] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key Scheduling Algo-
rithm of RC4,” in Selected Areas in Cryptography, Springer, 2001, pp. 1–24 (cit. on
p. 207).

[236] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,” in Advances
in Cryptology–EUROCRYPT, Springer, 2005, pp. 19–35 (cit. on p. 207).

[237] A. Popov, “Prohibiting rc4 cipher suites,” Computer Science, vol. 2355, pp. 152–
164, 2015 (cit. on p. 207).

[238] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication and Authenti-
cated Key Exchanges,” Design, Codes and Cryptography, vol. 2, no. 2, pp. 107–125,
1992 (cit. on p. 207).

[239] L. Catuogno and I. Visconti, “An Architecture for Kernel-Level Verification of
Executables at Run Time,” Computer Journal, vol. 47, no. 5, pp. 511–526, 117 2004

(cit. on pp. 217, 219).

[240] M. McKusick and G. Neville-Neil, The Design and Implementation of the FreeBSD
Operating System. Addison-Wesley Publishing Company, Reading, MA, 2005

(cit. on p. 218).

[241] G. Kroah-Hartman, “Signed Kernel Modules,” Linux Journal, pp. 301–308, 117

2004 (cit. on p. 219).

[242] S. T. King, P. M. Chen, Y.-m. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch,
“Subvirt: Implementing Malware with Virtual Machines,” in In IEEE Symposium
on Security and Privacy, IEEE, 2006, pp. 314–327 (cit. on p. 219).

[243] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a Vir-
tual Machine-based Platform for Trusted Computing,” ACM SIGOPS Operating
Systems Review, vol. 37, no. 5, pp. 193–206, 2003 (cit. on pp. 219, 220).

[244] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection Based Archi-
tecture for Intrusion Detection,” in In Proceedings of the Network and Distributed
Systems Security Symposium (NDSS 2003), 2003, pp. 191–206 (cit. on pp. 219, 220,
231).

[245] J. Oberheide, E. Cooke, and F. Jahanian, “CloudAV: N-Version Antivirus in the
Network Cloud,” in Proceedings of the 17th USENIX Security Symposium, San Jose,
USA, 2008 (cit. on p. 220).

[246] W. Yan and E. Wu, “Toward Automatic Discovery of Malware Signature for
Anti-Virus Cloud Computing,” Advanced Threats Research Trend Micro Inc., 2009

(cit. on p. 220).

[247] M. Laureano, C. Maziero, and E. Jamhour, “Intrusion Detection in Virtual
Machine Environments,” in Proceedings of the 30th Euromicro Conference, IEEE,
2004, pp. 520–525 (cit. on p. 220).

[248] G. Wagener, R. State, and A. Dulaunoy, “Malware Behaviour Analysis,” Journal
in Computer Virology, vol. 4, pp. 279–287, 2008 (cit. on p. 223).

[249] A. P. Sheth and J. A. Larson, “Federated Database Systems for Managing Dis-
tributed, Heterogeneous, and Autonomous Databases,” ACM Computing Surveys
(CSUR 1990), vol. 22, no. 3, pp. 183–236, 1990 (cit. on p. 232).

284

Bibliography

[250] I. Botan, Y. Cho, R. Derakhshan, N. Dindar, A. Gupta, L. Haas, K. Kim, C.
Lee, G. Mundada, M.-C. Shan, N. Tatbul, Y. Yan, B. Yun, and J. Zhang, “A
Demonstration of the MaxStream Federated Stream Processing System,” in
IEEE 26th International Conference on Data Engineering (ICDE 2010), IEEE, 2010,
pp. 1093–1096 (cit. on p. 232).

[251] Y. H. Harold Lim and S. Babu, “How to Fit when No One Size Fits,” in Proceedings
of the Biennial Conference on Innovative Data Systems Research (CIDR 2013), 2013

(cit. on p. 232).

[252] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Valduriez,
“StreamCloud: An Elastic and Scalable Data Streaming System,” IEEE Transac-
tions on Parallel and Distributed Systems (TPDS 2012), vol. 23, no. 12, pp. 2351–
2365, 2012 (cit. on p. 233).

[253] M. Sadoghi and H.-A. Jacobsen, “Analysis and Optimization for Boolean Ex-
pression Indexing,” ACM Transactions on Database Systems (TODS 2013), vol. 38,
no. 2, 8:1–8:47, 2013 (cit. on pp. 233, 245).

[254] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra,
“Matching Events in a Content-based Subscription System,” in Proceedings of the
Symposium on Principles of Distributed Computing, ACM, 1999, pp. 53–61 (cit. on
p. 233).

[255] S. E. Whang, H. Garcia-Molina, C. Brower, J. Shanmugasundaram, S. Vassilvitskii,
E. Vee, and R. Yerneni, “Indexing Boolean Expressions,” Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 37–48, 2009 (cit. on p. 233).

[256] A. Forget, S. Komanduri, A. Acquisti, N. Christin, L. F. Cranor, and R. Telang,
“Building the Security Behavior Observatory: An Infrastructure for Long-term
Monitoring of Client Machines,” in Proceedings of the Symposium and Bootcamp on
the Science of Security (HotSos 2014), Raleigh, USA: ACM, 2014, 24:1–24:2 (cit. on
p. 234).

[257] J. Gionta, A. Azab, W. Enck, P. Ning, and X. Zhang, “DACSA: A Decoupled
Architecture for Cloud Security Analysis,” in 7th Workshop on Cyber Security
Experimentation and Test (CSET 2014), 2014 (cit. on p. 234).

[258] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, “Process Out-grafting: An Efficient
”out-of-VM”Approach for Fine-grained Process Execution Monitoring,” in Pro-
ceedings of the Conference on Computer and Communications Security (CCS 2011),
ACM, 2011, pp. 363–374 (cit. on p. 234).

[259] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk, “Stream Warehousing
with DataDepot,” in Proceedings of the International Conference on Management of
data (SIGMOD 2009), ACM, 2009, pp. 847–854 (cit. on p. 234).

[260] T. Johnson and V. Shkapenyuk, “Data Stream Warehousing in Tidalrace,” in
Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR
2015), 2015 (cit. on p. 234).

[261] Z. Cao, S. Chen, F. Li, M. Wang, and X. S. Wang, “LogKV: Exploiting Key-Value
Stores for Log Processing,” in Proceedings of the Biennial Conference on Innovative
Data Systems Research (CIDR 2013), 2013 (cit. on p. 234).

285

Bibliography

[262] L. Deri, S. Mainardi, and F. Fusco, “Tsdb: A Compressed Database for Time
Series,” in Traffic Monitoring and Analysis, vol. 7189, 2012, pp. 143–156 (cit. on
p. 235).

[263] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi, “LogBase: A Scalable Log-
structured Database System in the Cloud,” Proceedings of the VLDB Endowment,
vol. 5, no. 10, pp. 1004–1015, 2012 (cit. on p. 235).

[264] S. Wang, D. Maier, and B. C. Ooi, “Lightweight Indexing of Observational Data
in Log-Structured Storage,” in Proceedings of the VLDB Endowment, 2014, pp. 529–
540 (cit. on pp. 235, 249).

[265] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving Relations for
Cache Performance,” in Proceedings of the International Conference on Very Large
Data Bases (VLDB), 2001, pp. 169–180 (cit. on p. 249).

[266] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul, and
J. Nelson, “Cache-oblivious Streaming B-trees,” in Proceedings of the Symposium
on Parallel Algorithms and Architectures, ACM, 2007, pp. 81–92 (cit. on p. 249).

286

Curriculum Vitae

Diese Seite enthält persönliche Daten. Sie ist deshalb nicht Bestandteil der Online-
Veröffentlichung.

287

	Abstract
	Deutsche Zusammenfassung
	Acknowledgments
	My Contributions
	Introduction
	Motivation
	Problem Statement
	Contributions
	Publications
	Outline

	Background
	Networking
	Mesh Networking
	Delay-/Disruption-Tolerant Networking
	Serval

	Mobile Devices
	Emergency Communication
	Federal Public Warning Systems
	Infrastructureless Communication

	Cloud Computing
	Security
	Transport Layer Security
	Man-in-the-Middle Attacks

	Secure Emergency Communication
	Emergency Communication
	Internet Services
	Mobile Applications
	Shortcomings

	Design of a Secure Emergency Communication System
	Disruption-tolerant Device-to-Device Emergency Communication
	Security Vulnerability Analysis of Mobile Apps
	Secure Cloud Systems

	Disruption-tolerant Device-to-Device Emergency Communication
	Introduction
	MiniWorld - An Emulation-based Evaluation Environment
	Introduction
	Related Work
	MiniWorld's Design
	Implementation
	Experimental Evaluation
	Conclusion

	Serval - A Robust Communication Foundation
	Introduction
	Related Work
	Experimental Evaluation
	Conclusion

	Optimizing Epidemic Announcements
	Introduction
	Related Work
	Design
	Implementation
	Experimental Evaluation
	Conclusion

	DTN-RPC - Offloading Work in Challenged Environments
	Introduction
	Related Work
	DTN-RPC's Design
	Implementation
	Experimental Evaluation
	Conclusion

	Environmental Monitoring Platforms for Disaster Scenarios
	Introduction
	Related Work
	Sensor Platforms for Disaster Scenarios
	Implementation
	Experimental Evaluation
	Conclusion

	Applications for Disaster Response: SmartFace
	Introduction
	Related Work
	SmartFace's Design
	Implementation
	Experimental Evaluation
	Conclusion

	Applications for Disaster Response: UV4EC
	Introduction
	Related Work
	UV4EC's Design and Implementation
	Experimental Evaluation
	Conclusion

	SEDCOS - Secure Disaster Communication
	Introduction
	Related Work
	System Model
	Secure Key Management
	Resilient Communication
	Experimental Evaluation
	Conclusion

	Summary

	Security Vulnerability Analysis of Mobile Apps
	Introduction
	TLS Usage in Android Apps
	Introduction
	Background
	Related Work
	Evaluating Android SSL Usage
	MITMA Study
	Limitations of our Analysis
	Trouble in Paradise
	Countermeasures
	Conclusion
	List of Apps With Broken SSL Usage

	AndroLyze: Static Mobile App Analysis
	Introduction
	Related Work
	AndroLyze's Design
	Implementation
	Experimental Evaluation
	Conclusion

	Dynalize: Dynamic Mobile App Analysis
	Introduction
	Related Work
	Dynalize's Design and Implementation
	Experimental Evaluation
	Conclusion

	Security Assessment of Emergency Apps
	Introduction
	Popular Emergency Apps
	Common Attack Surface
	Individual App Audits
	Conclusion

	Summary

	Secure Cloud Systems
	Introduction
	Assessment of Email Delivery Security
	Introduction
	Related Work
	An Empirical Study of SMTP over TLS
	Advice for Email Providers
	Conclusion

	Hardening Server Systems
	Introduction
	Problem Statement
	Related Work
	Design
	Implementation
	Experimental Evaluation
	Conclusion

	Reactive Realtime Cloud Infrastructure Monitoring
	Introduction
	Related Work
	Architecture
	Example Anomaly Detection
	Sensor Framework
	Analysis-VM
	Action Framework
	Conclusion

	Summary

	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae

