26 research outputs found

    Ontologies for specifying and reconciling contexts of web services

    Get PDF
    This paper presents an ontology-based approach for the specification (using OWL-C as a definition language) and reconciliation (using ConWeS as a mediation tool) of contexts of Web services. Web services are independent components that can be triggered and composed for the satisfaction of user needs (e.g., hotel booking). Because Web services originate from different providers, their composition faces the obstacle of the context heterogeneity featuring these Web services. An unawareness of this context heterogeneity during Web services composition and execution results in a lack of the quality and relevancy of information that permits tracking the composition, monitoring the execution, and handling exceptions. © 2006 Elsevier B.V. All rights reserved

    Dynamic Web Services Composition

    Get PDF
    Emerging web services technology has introduced the concept of autonomic interoperability and portability between services. The number of online services has increased dramatically with many duplicating similar functionality and results. Composing online services to solve user needs is a growing area of research. This entails designing systems which can discover participating services and integrate these according to the end user requirements. This thesis proposes a Dynamic Web Services Composition (DWSC) process that is based upon consideration of previously successful attempts in this area, in particular utilizing AI-planning based solutions. It proposes a unique approach for service selection and dynamic web service composition by exploring the possibility of semantic web usability and its limitations. It also proposes a design architecture called Optimal Synthesis Plan Generation framework (OSPG), which supports the composition process through the evaluation of all available solutions (including all participating single and composite services). OSPG is designed to take into account user preferences, which supports optimality and robustness of the output plan. The implementation of OSPG will be con�gured and tested via division of search criteria in di�erent modes thereby locating the best plan for the user. The services composition and discovery-based model is evaluated via considering a range of criteria, such as scope, correctness, scalability and versatility metrics

    A graph-based framework for optimal semantic web service composition

    Get PDF
    Web services are self-described, loosely coupled software components that are network-accessible through standardized web protocols, whose characteristics are described in XML. One of the key promises of Web services is to provide better interoperability and to enable a faster integration between systems. In order to generate robust service oriented architectures, automatic composition algorithms are required in order to combine the functionality of many single services into composite services that are able to respond to demanding user requests, even when there is no single service capable of performing such task. Service composition consists of a combination of single services into composite services that are executed in sequence or in a different order, imposed by a set of control constructions that can be specified using standard languages such as OWL-s or BPEL4WS. In the last years several papers have dealt with composition of web services. Some approaches treat the service composition as a planning problem, where a sequence of actions lead from a initial state to a goal state. However, most of these proposals have some drawbacks: high complexity, high computational cost and inability to maximize the parallel execution of web services. Other approaches consider the problem as a graph search problem, where search algorithms are applied over a web service dependency graph in order to find a solution for a particular request. These proposals are simpler than their counterparts and also many can exploit the parallel execution of web services. However, most of these approaches rely on very complex dependency graphs that have not been optimized to remove data redundancy, which may negatively affect the overall performance and scalability of these techniques in large service registries. Therefore, it is necessary to identify, characterize and optimize the different tasks involved in the automatic service composition process in order to develop better strategies to efficiently obtain optimal solutions. The main goal of this dissertation is to develop a graph-based framework for automatic service composition that generate optimal input-output based compositions not only in terms of complexity of the solutions, but also in terms of overall quality of service solutions. More specifically, the objectives of this thesis are: (1) Analysis of the characteristics of services and compositions. The aim of this objective is to characterize and identify the main steps that are part for the service composition process. (2) Framework for automatic graph-based composition. This objective will focus on developing a framework that enables the efficient input-output based service composition, exploring the integration with other tasks that are part of the composition process, such as service discovery. (3) Development of optimal algorithms for automatic service composition. This objective focuses on the development of a set of algorithms and optimization techniques for the generation of optimal compositions, optimizing the complexity of the solutions and the overall Quality-of- Service. (4) Validation of the algorithms with standard datasets so they can be compared with other proposals

    Towards intelligent distributed computing : cell-oriented computing

    Get PDF
    Distributed computing systems are of huge importance in a number of recently established and future functions in computer science. For example, they are vital to banking applications, communication of electronic systems, air traffic control, manufacturing automation, biomedical operation works, space monitoring systems and robotics information systems. As the nature of computing comes to be increasingly directed towards intelligence and autonomy, intelligent computations will be the key for all future applications. Intelligent distributed computing will become the base for the growth of an innovative generation of intelligent distributed systems. Nowadays, research centres require the development of architectures of intelligent and collaborated systems; these systems must be capable of solving problems by themselves to save processing time and reduce costs. Building an intelligent style of distributed computing that controls the whole distributed system requires communications that must be based on a completely consistent system. The model of the ideal system to be adopted in building an intelligent distributed computing structure is the human body system, specifically the body’s cells. As an artificial and virtual simulation of the high degree of intelligence that controls the body’s cells, this chapter proposes a Cell-Oriented Computing model as a solution to accomplish the desired Intelligent Distributed Computing system

    Achieving autonomic Web service compositions with models at runtime

    Full text link
    [EN] Several exceptional situations may arise in the complex, heterogeneous, and changing contexts where Web service operations run. For instance, a Web service operation may have greatly increased its execution time or may have become unavailable. The contribution of this article is to provide a tool-supported framework to guide autonomic adjustments of context-aware service compositions using models at runtime. During execution, when problematic events arise in the context, models are used by an autonomic architecture to guide changes of the service composition. Under the closed-world assumption, the possible context events are fully known at design time. Nevertheless, it is difficult to foresee all the possible situations arising in uncertain contexts where service compositions run. Therefore, the proposed framework also covers the dynamic evolution of service compositions to deal with unexpected events in the open world. An evaluation demonstrates that our framework is efficient during dynamic adjustments.Alférez-Salinas, GH.; Pelechano Ferragud, V. (2017). Achieving autonomic Web service compositions with models at runtime. Computers & Electrical Engineering. 63:332-352. doi:10.1016/j.compeleceng.2017.08.004S3323526

    Towards automated composition of convergent services: a survey

    Get PDF
    A convergent service is defined as a service that exploits the convergence of communication networks and at the same time takes advantage of features of the Web. Nowadays, building up a convergent service is not trivial, because although there are significant approaches that aim to automate the service composition at different levels in the Web and Telecom domains, selecting the most appropriate approach for specific case studies is complex due to the big amount of involved information and the lack of technical considerations. Thus, in this paper, we identify the relevant phases for convergent service composition and explore the existing approaches and their associated technologies for automating each phase. For each technology, the maturity and results are analysed, as well as the elements that must be considered prior to their application in real scenarios. Furthermore, we provide research directions related to the convergent service composition phases

    Self-healing Web service composition with HTN planners

    Get PDF
    Web services have become a prominent paradigm for building of both inter and intra-enterprise business processes. These processes are composed from existing Web services based on defined requirements. Standards and techniques have been developed to aid in the dynamic composition of services. However, these approaches are limited when it comes to the handling of unexpected events. This dissertation presents the results of experiments that investigated numerous problems related to Web service composition processes. Based on the investigation, a fault taxonomy was formulated. Faults were grouped into three broad categories, each representing a distinct problem stage. The investigation into faults gave rise to the issue of fault recovery and continued process execution. A list of requirements for self-healing Web service composition was identified, while a new self-healing cycle was exploited based on the MAPE cycle (Monitor, Analyzer, Planner, Executive). The proposed self-healing composition cycle consists of three modules: Plan Generation Module, Plan Execution Module and Failure Analysis Module. The plan execution module, consisting of the execution and run-time monitoring phases, and the failure analysis module, consisting of the analysis and sensemaking phases, were found to be vital to self-healing Web service composition. Self healing Web service composition and the goal of self-healing were achieved through the use of Hierarchical Task Network (HTN) planning systems.Dissertation (MSc)--University of Pretoria, 2009.Computer Scienceunrestricte

    Towards automated composition of convergent services: A survey

    Get PDF
    A convergent service is defined as a service that exploits the convergence of communication networks and at the same time takes advantage of features of the Web. Nowadays, building up a convergent service is not trivial, because although there are significant approaches that aim to automate the service composition at different levels in the Web and Telecom domains, selecting the most appropriate approach for specific case studies is complex due to the big amount of involved information and the lack of technical considerations. Thus, in this paper, we identify the relevant phases for convergent service composition and explore the existing approaches and their associated technologies for automating each phase. For each technology, the maturity and results are analysed, as well as the elements that must be considered prior to their application in real scenarios. Furthermore, we provide research directions related to the convergent service composition phases

    Automated Realistic Test Input Generation and Cost Reduction in Service-centric System Testing

    Get PDF
    Service-centric System Testing (ScST) is more challenging than testing traditional software due to the complexity of service technologies and the limitations that are imposed by the SOA environment. One of the most important problems in ScST is the problem of realistic test data generation. Realistic test data is often generated manually or using an existing source, thus it is hard to automate and laborious to generate. One of the limitations that makes ScST challenging is the cost associated with invoking services during testing process. This thesis aims to provide solutions to the aforementioned problems, automated realistic input generation and cost reduction in ScST. To address automation in realistic test data generation, the concept of Service-centric Test Data Generation (ScTDG) is presented, in which existing services used as realistic data sources. ScTDG minimises the need for tester input and dependence on existing data sources by automatically generating service compositions that can generate the required test data. In experimental analysis, our approach achieved between 93% and 100% success rates in generating realistic data while state-of-the-art automated test data generation achieved only between 2% and 34%. The thesis addresses cost concerns at test data generation level by enabling data source selection in ScTDG. Source selection in ScTDG has many dimensions such as cost, reliability and availability. This thesis formulates this problem as an optimisation problem and presents a multi-objective characterisation of service selection in ScTDG, aiming to reduce the cost of test data generation. A cost-aware pareto optimal test suite minimisation approach addressing testing cost concerns during test execution is also presented. The approach adapts traditional multi-objective minimisation approaches to ScST domain by formulating ScST concerns, such as invocation cost and test case reliability. In experimental analysis, the approach achieved reductions between 69% and 98.6% in monetary cost of service invocations during testin
    corecore