
Self-healing Web Service Composition with
HTN Planners

by

Ka Sim May Chan

Submitted in partial fulfilment of the requirements for the degree

Magister Scientia (Computer Science)

in the

Faculty of Engineering, Built Environment and

Information Technology

University of Pretoria

Pretoria

2008

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Self-healing Web Service Composition with HTN
Planners

by

Ka Sim May Chan

Abstract

Web services have become a prominent paradigm for building of both inter-

and intra-enterprise business processes. These processes are composed from

existing Web services based on defined requirements. Standards and tech-

niques have been developed to aid in the dynamic composition of services.

However, these approaches are limited when it comes to the handling of

unexpected events.

This dissertation presents the results of experiments that investigated

numerous problems related to Web service composition processes. Based on

the investigation, a fault taxonomy was formulated. Faults were grouped

into three broad categories, each representing a distinct problem stage. The

investigation into faults gave rise to the issue of fault recovery and continued

process execution. A list of requirements for self-healing Web service com-

position was identified, while a new self-healing cycle was exploited based on

the MAPE cycle (Monitor, Analyzer, Planner, Executive). The proposed

self-healing composition cycle consists of three modules: Plan Generation

Module, Plan Execution Module and Failure Analysis Module. The plan ex-

ecution module, consisting of the execution and run-time monitoring phases,

and the failure analysis module, consisting of the analysis and sensemaking

phases, were found to be vital to self-healing Web service composition. Self-

healing Web service composition and the goal of self-healing were achieved

through the use of Hierarchical Task Network (HTN) planning systems.

Keywords: Web service composition, fault taxonomy, self-healing, HTN,

planning, verification, execution monitor, analyser, sensemaking, replanning

Supervisor: Prof. J.M. Bishop

Co-supervisor: Prof. T.J. Grant

Department of Computer Science

Degree: Magister Scientia (Computer Science)

Acknowledgements

My sincere thanks to:

• my parents and my brother for their unconditional support;

• Professor Judith Bishop and Professor Tim Grant for their professional

and thorough supervision;

• my friends for giving me courage to continue;

• Ezra for his coding assistance;

• Luciano Baresi and Sam Guniea in Politecnico di Milano, Italy for the

discussions they provided;

• the members of the Polelo research group, especially Johnny, Johan

and Pierre-Henri, for their valuable feedback and suggestions;

• the members of ICSA, Espresso and CIRG research groups and TechTeam

for the conversations they supplied;

• South African National Research Foundation and DST South African-

Italy Research Grant for their financial assistance.

TABLE OF CONTENTS i

Table of Contents

Chapter 1: Introduction . 1

1.1 Background . 1

1.2 Terminology . 3

1.3 Problem Statement . 4

1.4 Research Methodology . 4

1.5 Research Contributions . 5

1.6 Overview . 5

Chapter 2: Fundamentals of Composition 7

2.1 Introduction . 7

2.2 Web Services . 7

2.2.1 WSDL Example . 10

2.3 Semantic Web Services . 12

2.3.1 OWL-S Example . 16

2.4 Web Services Composition . 18

2.5 Current Composition Techniques 22

2.6 AI Planning . 24

2.6.1 Classical Planning . 24

2.6.2 Hierarchical Task Network (HTN) Planning 27

2.7 Suitability of HTN Planning to Web Services Composition . . 29

2.8 Conclusion . 30

Chapter 3: Failures and Self-healing 31

3.1 Introduction . 31

3.2 The Cause of Failures . 32

TABLE OF CONTENTS ii

3.2.1 Physical Faults . 33

3.2.2 Development Faults . 33

3.2.3 Interaction Faults . 37

3.3 Fault Taxonomy . 40

3.4 Requirements . 45

3.5 Conclusion . 47

Chapter 4: Evaluation of HTN Planners 49

4.1 Introduction . 49

4.2 HTN Planning Systems . 49

4.2.1 SIPE-2 . 50

4.2.1.1 Introduction 50

4.2.1.2 Evaluation 52

4.2.2 O-Plan . 56

4.2.2.1 Introduction 56

4.2.2.2 Evaluation 63

4.2.3 JSHOP2 . 64

4.2.3.1 Introduction 64

4.2.3.2 Evaluation 69

4.3 Summary of Evaluation . 70

4.4 Conclusion . 73

Chapter 5: Experiments . 74

5.1 Introduction . 74

5.2 Experimental Setup . 74

5.3 Hypotheses . 78

5.4 Results . 78

5.4.1 Experimental Results (O-Plan) 79

5.4.2 Experimental Results (JSHOP2) 82

5.4.3 Summary of Experimental Results 85

5.5 Conclusion . 87

Chapter 6: Conclusions and Recommendations 88

6.1 Summary . 88

TABLE OF CONTENTS iii

6.2 Limitations . 89

6.3 Recommendations . 90

Appendices . 91

Appendix A: Shopping Domain in O-Plan 92

A.1 Task Formalism . 92

A.2 Experimental Result Sets (O-Plan) 95

A.2.1 Case 1: Get price of a specific item 95

A.2.2 Case 2: Purchase an item specified 97

A.2.3 Case 3: Find the best prices and purchases the item . . 98

Appendix B: Shopping Domain in JSHOP2 99

B.1 Domain Definition (JSHOP2) 99

B.2 Problem Definition (JSHOP2) 106

B.3 Experimental Result Sets (JSHOP2) 107

B.3.1 Case 1: Get price of a specific item 107

B.3.2 Case 2: Purchase an item specified 112

B.3.3 Case 3: Find the best prices and purchases the item . . 116

Appendix C: Derived Publications 119

Acronyms . 120

Bibliography . 121

LIST OF FIGURES iv

List of Figures

1.1 Dissertation Outline . 6

2.1 WSDL . 9

2.2 Ontology description of service 13

2.3 Operation Translation [41] . 15

2.4 Web Service Composition Model 19

2.5 Composition of an online shopping service 20

2.6 Composite service (Bookstore) in BPEL 22

2.7 A partial-order plan for purchasing a book and the two possi-

ble linearization of the plan 27

2.8 Action decomposition for an online bookstore problem 28

3.1 Error produced on incorrect input 34

3.2 BPEL code of service with workflow error 35

3.3 Corresponding WSDL code of service 36

3.4 Example of Non-deterministic Actions 36

3.5 Composite service example . 39

3.6 Matrix representation of the combined classes and observed

effects . 43

3.7 Self-healing Web Service Composition Cycle 46

4.1 SIPE-2 Architecture [51] . 51

4.2 SIPE Modules and Flow of Control [52] 51

4.3 O-Plan overview [17] . 57

4.4 Solution to the online bookstore problem in O-Plan 59

4.5 Nodes Relationship . 61

LIST OF FIGURES v

4.6 Linking of the Event Node . 62

4.7 JSHOP2 Compilation Process [27] 65

4.8 Solution to the online bookstore problem in JSHOP2 69

5.1 An expanded shopping domain 76

A.1 O-Plan output for Case 1 (Strategy 1 and 2) 96

A.2 O-Plan output for Case 1 (Strategy 3) 96

A.3 O-Plan output for Case 2 (Strategy 1 and 2) 97

A.4 O-Plan output for Case 2 (Strategy 3) 97

A.5 O-Plan output for Case 3 (Strategy 1 and 2) 98

A.6 O-Plan output for Case 3 (Strategy 3) 98

LIST OF TABLES vi

List of Tables

2.1 Tags for abstract WSDL description 8

2.2 Tags for concrete WSDL description 9

2.3 Mapping between WSDL XSD and OWL-S Ontologies 14

2.4 Mapping between WSDL Operation and OWL-S Atomic Process 14

2.5 Correlation between abstract composition model and concrete

online bookstore example . 22

2.6 Mapping between Web service and Planning 25

3.1 The classes of the combined faults 41

3.2 Outcomes and their origin . 44

4.1 Mapping between self-healing requirements and SIPE-2’s re-

planner modules . 53

4.2 Problems to be checked by SIPE-2 problem recogniser 55

4.3 Current Algorithm of General Replanner (adapted from [52]) . 56

4.4 Mapping between self-healing requirements and O-Plan module 63

4.5 Evaluation summary of HTN planner 70

5.1 Test cases of an online bookshop domain 77

5.2 Failure settings and strategies 78

5.3 Faults and effects . 79

B.1 Experimental results of Test Case 1 in JSHOP2 108

B.2 Experimental results of Test Case 2 in JSHOP2 113

B.3 Experimental results of Test Case 3 in JSHOP2 117

LIST OF LISTINGS vii

List of Listings

2.1 Credit Approver Service Description in WSDL 1.1 10

2.2 Credit Approver Service Description in OWL-S 16

2.3 A Planning Problem for an Online Bookstore Domain 25

4.1 An online bookstore example in O-Plan 58

4.2 O-Plan Plan Repair Algorithm for Dealing with Execution

Failure . 61

4.3 O-Plan Plan Repair Algorithm for Dealing with Unexpected

World Events . 63

4.4 An online bookstore domain 66

4.5 An online bookstore problem domain 68

5.1 An example shopping list for the online bookstore problem . . 75

5.2 O-Plan code for purchasing a book 80

5.3 Plan for case 3 in JSHOP2 . 82

5.4 Re-planning method for time-out fault 84

B.1 Plans for Case 1 Interface Changed - (getPrice Bishop Java)107

B.2 Plans for Case 1 Interface Changed - (getPrice Bishop) . . 109

B.3 Plans for Case 1 Interface Changed - (getPrice Bishop) . . 109

B.4 Plans for Case 1 Time-out - (getPriceDelayed Bishop Java)110

B.5 Plans for Case 1 Time-out - (getPrice Bishop Javaa) . . . 110

B.6 Plans for Case 1 Unknown Fault - (getPrice King Java) . . 111

B.7 Plans for Case 2 Interface Changed - (buy Bishop Java 70) 112

B.8 Plans for Case 2 Interface Changed - (buy Bishop) 112

B.9 Plans for Case 2 Interface Changed - (buy CSharp 80) 114

B.10 Plans for Case 2 Time-out - (buyUnresponsive Bishop Java

70) . 114

LIST OF LISTINGS viii

B.11 Plans for Case 2 Incorrect Input (Workflow inconsistency) -

(buy King cshaer 50) . 115

B.12 Plans for Case 3 Interface Changed - (getBestPrice db Bishop)116

B.13 Plans for Case 3 Time-out - (getBestPriceUnresponsive db

Bishop) . 116

B.14 Plans for Case 3 Incorrect Inputer (Workflow Inconsistency) -

(getBestPrice db Bishop Javaa 100) 116

1

Chapter 1

Introduction

1.1 Background

Web services are increasingly used as the key building blocks for creating

inter- and intra-enterprise business processes. Such business processes are

created through the composition of several existing Web services in a logical

order that satisfies certain requirements. Several low-level process modelling

and execution standards have been proposed to compose Web services. One

of the most prominent standards for composition is Business Processes Exe-

cution Language (BPEL) [38]. Such a standard allows developers to imple-

ment composite services using simple mono building blocks. The positions

setup that uses these standards mostly requires manual implementation by

the developers. Given the scale of the Internet and the constant changing

environment, manual composition is restrictive, inflexible, time consuming

and often error prone. For example, if one of the participating services be-

comes unavailable due to server downtime, the composition plan will not be

able to select an alternative service to replace it. It may be forced to abort

the composition or the composition may not behave as expected. Therefore,

automated composition is desirable to cope with dynamisms and reduce er-

rors.

Recent research [33], [31], [49], [45], [46], [18], has identified that a ser-

vice composition problem can be viewed as a planning problem, and that

such planning problems can be solved by using Artificial Intelligent (AI)

1.1. BACKGROUND 2

planning systems. In particular, Hierarchical Task Network (HTN) planning

systems such as SHOP2 have been successfully applied in Web service com-

position [49]. Although AI planning systems have the ability to generate

plans automatically, the correctness of such plans during execution cannot

be guaranteed without monitoring and control. Therefore, self-healing plays

a crucial role in ensuring correctness throughout plan execution. Self-healing

is defined as the capability of a system to autonomously detect failures and

recover from them. It is also one of the attributes of Automatic Computing

defined by IBM [26]. The intention of a self-healing system is to improve

resilience by avoiding disorders through discovery, diagnosis and reaction to

unexpected working conditions. The control cycle (MAPE cycle) is the key

to the self-healing problem. It consists of four integrated phases and must

be able to

1. Monitor its own behaviour in order to detect service delivery failure;

2. Analyse these failures in order to diagnose the faults causing them;

3. Plan proper fault remediation strategies; and

4. Execute these plans in order to restore the normal behaviour of the

system.

The objective of self-healing service composition is to minimize the number

or duration of outages in order to maintain the availability of the composite

service.

Even though the MAPE cycle is used by various applications in self-

healing systems, it has its limitations when it comes to Web service com-

position. One main drawback is that when a service fails to deliver, it will

perform analysis and try to find another plan. However, replanning might

not be necessary if the service was delayed due to a slow network. In this

case, a re-execution of the composition might solve the problem. Given this,

an alternative self-healing cycle is needed for Web service composition.

The preceding paragraphs have provided a brief overview of the problems

related to Web service composition, with details to follow. The aim of this

1.2. TERMINOLOGY 3

work is to investigate the problems related to Web service composition and

to determine a set of requirements which Web service composition should

fulfil in order to be able to self-heal. Lastly, an evaluation is made of the

HTN planning systems with respect to the proposed requirements to show

their applicability in self-healing Web service composition.

1.2 Terminology

A number of terms used frequently in this dissertation are defined below.

• A plan is a composition workflow.

• A service is a self-contained, self-describing, open component that

supports rapid, low-cost composition of distributed applications.

• A composition is the process of combining existing services.

• A workflow defines the potential flow of control and data amongst a

set of services.

• Planning is the process of generating a composition workflow.

• A planning system , also known as a planner , is a system that

generates the composition workflow. It is also responsible for the exe-

cution of the workflow generated. Some examples of planning systems

are SIPE-2 [53], O-Plan [17] and JSHOP2 [27].

• An execution monitor is a mechanism that is used to monitor the

execution of the composition workflow. It is responsible for reporting

any abnormal behaviour that deviates from the one that is expected.

• Replanning is the process of workflow modification so as to overcome

the problems detected by the execution monitor.

• Sensemaking is the ability to make sense of an ambiguous situation.

1.3. PROBLEM STATEMENT 4

1.3 Problem Statement

We have chosen to explore the opportunity of HTN planning systems in self-

healing Web service composition. The investigation of problems in terms

of current approaches in Web service composition forms the basis of the

author’s proposed fault taxonomy. In conjunction with the fault taxonomy,

the requirements for a self-healing Web service composition are also needed

to ensure that all the necessary actions are taken in reaction to the occurrence

of unexpected events.

The first challenge faced is to develop a fault taxonomy that captures all

the possible causes and effects of a fault occurring during composition. The

taxonomy is used to identify the critical problems and/or most frequently

occurring problems during composition. Next an investigation has to be

conducted into the exact requirements for self-healing Web service composi-

tion. This will be followed by an investigation into the ways in which HTN

planning systems can be applied to self-healing Web service composition. Ex-

periments will be conducted as proof-of-concept in answer to the problems

posed.

1.4 Research Methodology

To start off, the current state of Web service composition will be explored in

a literature survey. Various composition problems will be examined in detail

to identify a set of requirements that self-healing composition must fulfil.

Once the requirements have been identified, a self-healing composition cycle

will be constructed to satisfy the requirements that were determined.

Hierarchical Task Network (HTN) planning systems are to be evaluated

according to these self-healing requirements. The purpose of the theoretical

evaluation of the HTN planning systems is to show the viability of the self-

healing composition cycle, as well as the capability of HTN planning systems

in self-healing Web service composition. Lastly, the theoretical evaluations

will be substantiated through practical experiments. The experiments are

conducted with the aim of gauging how the HTN planning systems withstand

1.5. RESEARCH CONTRIBUTIONS 5

both the normal and abnormal behaviour of a composition process.

1.5 Research Contributions

The contributions made to research by this dissertation can be summarised

as follows:

• A novel fault taxonomy for Web service composition (Chapter 3: Sec-

tion 3.3). The taxonomy is used to classify possible faults that may

occur during the composition of services.

• A list of requirements for self-healing Web service composition, and

a self-healing composition cycle (Chapter 3: Section 3.4). This cycle

is used to aid the evaluation of the applicability of HTN planning in

self-healing Web service composition (Chapter 4).

• An online shopping domain system (Chapter 5: Section 5.2). The

results of the experiments have shown that HTN planning can indeed

be used in self-healing Web service composition.

1.6 Overview

This dissertation consists of six chapters and has the following structure:

Chapter 1 – Introduction: This chapter describes the basic concepts

of planning in relation to Web service composition and their related issues.

Chapter 2 - Fundamentals of Composition: A basic background

to (semantic) Web services and composition of service is provided in this

chapter. Current standards as well as their problems in service composition

are discussed. The chapter ends with a brief discussion on the application

and suitability of AI planning techniques in Web service composition.

Chapter 3 - Failures and Self-healing: We start this chapter with

the classification of possible errors that could occur during the composition

process. Following this classification, we examine the role of and the need

for self-healing Web service composition. Furthermore, a set of requirements

1.6. OVERVIEW 6

that is needed to fulfil the self-healing Web service composition process is

deduced.

Chapter 4 - Evaluation of HTN Planners: This chapter presents

the evaluation of HTN planners in self-healing Web service composition.

Chapter 5 - Experiments: This chapter presents the experimental

results showing an application of the HTN planning systems in self-healing

Web service composition.

Chapter 6 - Conclusions and Recommendations: This chapter con-

cludes the research conducted. The summary of the dissertation is presented

along with recommendations for possible future research.

Figure 1.1: Dissertation Outline

7

Chapter 2

Fundamentals of Composition

2.1 Introduction

This dissertation starts off by explaining why current approaches to service

composition are not sufficient to ensure the correctness of the composite

service and how planning can assist in setting up the composition plan. The

AI planning techniques and their application in Web service composition are

explained, with special attention to planning in the dynamic environment,

which is important in run-time services composition. Finally, the chapter

is concluded with the application of AI planners to dynamic Web services

composition.

2.2 Web Services

A Web service is a software system identified by a URI, whose

public interfaces and bindings are defined and described using

XML. Its definition can be discovered by other software systems.

These systems may then interact with the Web service in a man-

ner prescribed by its definition, using XML based messages con-

veyed by Internet protocols. - [5]

A Web service is a service that embodies the paradigm of Service-Oriented

Computing (SOC) [42], where services are utilised as fundamental elements

2.2. WEB SERVICES 8

for developing applications. To build the service model, SOC relies on

Service-Oriented Architecture (SOA) [44], which is an architectural approach

aimed at facilitating standard, simple and pluggable interfaces between ap-

plications. Applications offered by different providers as services can be

discovered, composed, and coordinated in a loosely coupled manner.

Service providers describe their service interface by using the Web Service

Description Language (WSDL) [16]. They publish the interface on the online

repository such as Universal Description, Discovery, and Integration (UDDI)

[10], for discovery. A WSDL file is an XML document that describes a

Web service in two fundamental stages, the abstract and concrete stage. In

the abstract stage, the description defines what the Web service consists

of, that is, the service interface. The interface is comprised of operations

and input/output formal parameters. Tags are mostly used for abstract

description and their usage is summarised in Table 2.1.

Table 2.1: Tags for abstract WSDL description

Tags Definition

<portType>1 The operation performed by the Web service.
<operation> Web service function.
<message> Message used by the Web service. Represents collections

of input or output parameters.
<type> The data types of the message parts.
<part> Incoming or outgoing operation parameter data.

The concrete stage describes the access specification on how the Web

service is bound to the set of concrete protocols and its location. Tags are

mostly used for concrete description and their usage is summarised in Table

2.2.

1In WSDL version 2.0 specification the name of this element has been changed from
<portType> to <interface>.

2.2. WEB SERVICES 9

Table 2.2: Tags for concrete WSDL description

Tags Definition

<binding> Defines the communication protocol used by the Web ser-
vice.

<service> Defines collection of endpoints.
<port>2 Contains endpoint data, including physical address and

protocol information.

Figure 2.1: WSDL

2In WSDL version 2.0 specification the name of this element has been changed from
<port> to <endpoint>.

2.2. WEB SERVICES 10

Figure 2.1 depicts how businesses offer an application as a service online.

The WSDL document is used to describe the interface of the service that will

be made available online.

As has already been mentioned, UDDI is a directory service where busi-

nesses can register and search for Web services. The communication proto-

col used to register and search for Web services is the Simple Object Access

Protocol (SOAP) [24]. SOAP messages contain XML data content and the

service description of the Web services. The XML data content specifies

the structure or grammar of documents that describe Web services and the

service description of the Web service is presented as a WSDL file.

In general, Web services can be classified into two categories, namely

simple (atomic) and complex (composite) services [34]. The simple services

are individual Web services that have the ability to provide some function-

ality on their own. The complex services are value-added services that com-

bine several existing simple or complex Web services, possibly from different

providers, providing the ability to establish more powerful applications.

2.2.1 WSDL Example

Listing 2.1 shows a fragment of a simple credit approver service document

specified in WSDL 1.1.

1 <d e f i n i t i o n s >

<message name=”approvalMessage”>

<part name=”accept ” type=”xsd : s t r i n g ”/>

</message>

6

<portType name=”creditApprovalPT”>

<opera t i on name=”approve”>

<input message=”c r e d i t d e f : c r ed i t In fo rmat ionMessage”/>

<output message=”tns : approvalMessage”/>

11 < f a u l t name=”c r ed i tP ro c e s sFau l t ”

message=”c r e d i t d e f : c red i tRequestErrorMessage”/>

</operat ion>

</portType>

16 <binding name=”SOAPBinding” type=”tns : creditApprovalPT”>

<soap : b inding s t y l e=”rpc ”

t ranspo r t=”http :// schemas . xmlsoap . org / soap/http”/>

<opera t i on name=”approve”>

2.2. WEB SERVICES 11

<soap : opera t i on soapAction=”” s t y l e=”rpc”/>

21 <input>

<soap : body use=”encoded” namespace=”urn : c r ed i t approve r ”

encod ingSty l e=”http :// schemas . xmlsoap . org / soap/ encoding/”/>

</input>

<output>

26 <soap : body use=”encoded” namespace=”urn : c r ed i t approve r ”

encod ingSty l e=”http :// schemas . xmlsoap . org / soap/ encoding/”/>

</output>

</operat ion>

</binding>

31

<s e r v i c e name=”CreditApprover”>

<documentation>Credit Approver Serv i ce </documentation>

<port name=”SOAPPort” binding=”tns : SOAPBinding”>

<soap : address l o c a t i o n=

36 ”http :// l o c a l h o s t :8080/ bpws4j−samples / s e r v l e t / rpc rout e r ”/>

</port>

</s e r v i c e >

</d e f i n i t i o n s >

Listing 2.1: Credit Approver Service Description in WSDL 1.1

This document describes a Web service CreditApprover that provides a

single request-response operation creditApprovalPT (line 7). The operation

has an input message called creditdef:creditInformationMessage (line 9)

and an output message called tns:approvalMessage (line 10). The input

message that the service received is the client’s credit information sent by the

client to the server. The corresponding output message sent by the server to

the client is an approval message stating whether the credit application has

been approved or not. Data types of the incoming and outgoing messages are

defined under <message> element using <part> and <type>. All these

descriptions are part of the service interface definition (abstract description).

The concrete description (service implementation definition) is defined by

the <binding> element. This element defines the communication protocols

and message formats as name=SOAPBinding and type=tns:creditApprovalPT

(line 16) respectively. The soap:binding element is defined with two at-

tributes: style and transport. The style attribute indicates whether the

operation approved is RPC-oriented or document-oriented. In this example

rpc is chosen. If the operation is RPC-oriented, it means the messages con-

2.3. SEMANTIC WEB SERVICES 12

tain parameters and return values, whereas in the case of a document-oriented

operation, the messages will only contain document(s). The transport ele-

ment defines the SOAP protocols to use, while transport="http://schemas.

xmlsoap.org/soap/http" (line 18) shows the corresponding HTTP binding

in the SOAP specification.

2.3 Semantic Web Services

Although a WSDL document describes the interface, endpoint and proto-

col of the Web services, it does not provide the machine-understandable

information of what the service does. In other words, the operations and

messages of the service described in WSDL are only understandable to hu-

mans or custom-developed applications. The machine cannot distinguish two

services that have the same number of input and output messages.

It is clear to us that using WSDL documents alone to describe a service

will only allow manual discovery and composition of Web services. Manual

composition of Web services is not sufficient for keeping up with the dynamic

and fast changing pace of the Internet [20]. Service descriptions specified in

WSDL lack the semantic expressivity and cause difficulty in differentiating

between the services that appear to be syntactically identical to each other

but differ semantically. With manual composition, there is no way to check

the semantics of the service and it may cause binding of functionally incom-

patible services. In order to facilitate automatic Web services discovery and

composition, the service should be described in a way that is unambiguous

and machine-understandable.

The solution is to describe services in a semantic Web ontology [12]. Se-

mantic Web, an extension of the current Web, is based on ontology, which

provides an exact description of Web information and its relationships. By

using semantic Web, the information can be processed by computers and the

integration of information can be performed when necessary. Web service

semantics (WSDL-S) [2] aim to extend WSDL to incorporate semantic anno-

tations to the service description. Another well-known language for semantic

service description is Web Ontology Language (OWL) [32], an XML-based

2.3. SEMANTIC WEB SERVICES 13

language that was designed to provide a common way to read and process

the content of Web information by computers. In particular, OWL ontol-

ogy consists of a set of classes, instances and properties which describes the

concepts of a particular domain.

OWL-based Web service ontology refers to an ontology that provides

OWL classes and properties suitable for describing the semantics of Web

services.

Figure 2.2: Ontology description of service

Figure 2.2 depicts the description of a service class that displays the

following properties:

• Profile: describes what the service does in terms of its functional and

non-functional properties. The information provided by the profile of

a service is used to advertise the service capabilities for the purpose of

discovery.

• Service Model : describes how the service works in terms of the order

of service execution. More specifically, it is the invocation of other

(atomic or composite) services, the inputs, outputs, precondition and

effects of the execution. The service model is mainly concerned with

services composition.

2.3. SEMANTIC WEB SERVICES 14

• Grounding : describes how the service can be accessed. The main con-

cern is the mapping of abstract specifications to a concrete specification,

which is the WSDL description.

The mapping from WSDL to OWL-S [41] is done in three phases:

1. Translate the XSD (XML Schema Definition) types in WSDL specifi-

cation into the corresponding OWL-S ontologies (shown in Table 2.3).

Table 2.3: Mapping between WSDL XSD and OWL-S Ontologies

WSDL XSD OWL-S Ontologies

Primitive XSD (e.g. string and in-
teger)

Input and output of atomic process

Complex XSD Concepts which specifies the content
of input and output

2. Map the WSDL operations to the OWL-S atomic processes. Figure

2.3 depicts the operation translation between WSDL and OWL-S and

a summary of the mapping is presented in Table 2.4.

Table 2.4: Mapping between WSDL Operation and OWL-S Atomic Process

WSDL Operation OWL-S Atomic Process

portType Primitive Process Model
Name of the operation Name of the atomic process
Input messages of the operation Inputs of the atomic process
Outputs and faults of the operation Outputs of the atomic process

2.3. SEMANTIC WEB SERVICES 15

Figure 2.3: Operation Translation [41]

3. Generate service profiles. The generation process is further divided into

three stages:

• The capabilities of the Web service.

• Provenance information that describes the entity (i.e. the person-

/company that deployed the service).

• Non-functional parameters, such as the quality rating of the ser-

vice, which describes the services.

Since WSDL only provides input and output, the above-mentioned in-

formation will have to be implemented manually.

2.3. SEMANTIC WEB SERVICES 16

2.3.1 OWL-S Example

An equivalent Web Ontology Language for Services (OWL-S) [30] descrip-

tion, converted from WSDL to OWL-S using the WSDL2OWLS tool [55] of

the Credit Approver (as was described in Section 2.2.1), is given in Listing

2.2.

The CreditApproval service description consists of three parts, namely

CreditApproval-Profile (line 6), CreditApproval-Process-model (line

6), and CreditApproval-Grouding (line 7). The detailed description of

the service profile is given between lines 11 and 23. The service takes a

Credit Card information (line 19) as an input and output the result, sta-

ting whether or not the credit application has been approved to the user

(line 20). During the credit approval phase, an automic process (that is the

CreditApproval-Profile) is invoked to return the results to the user. In-

side this automic process there are two outcomes, and one of them will be

selected based on the decision made. Either the credit is approved (lines 34

- 45) or the credit is not approved (lines 46 - 58). The detailed description of

the input to the CreditApproval service is defined as a process itself, called

Input (lines 61 - 67). Similarly, the output to the CreditApproval service

is defined as an Ouput process (lines 69 - 75). Lastly, the grounding of the

CreditApproval service is given in lines 77 - 79.

<owl : Ontology rd f : about=””>

<owl : imports rd f : r e s ou r c e=”http : / / 1 2 7 . 0 . 0 . 1 / onto logy /Concepts . owl”/>

</owl : Ontology>

5 <s e r v i c e : S e rv i c e rd f : ID=”CreditApproval”>

<s e r v i c e : p r e s en t s rd f : r e s ou r c e=”#CreditApproval−P r o f i l e ”/>

<s e r v i c e : descr ibedBy rd f : r e s ou r c e=”#CreditApproval−Process−Model”/>

<s e r v i c e : supports rd f : r e s ou r c e=”#CreditApproval−Grounding”/>

</ s e r v i c e : Serv i ce>

10

<p r o f i l e : P r o f i l e rd f : ID=”CreditApproval−P r o f i l e ”>

<s e r v i c e : i sPresentedBy rd f : r e s ou r c e=”#CreditApproval−Se rv i c e ”/>

<p r o f i l e : serviceName xml : lang=”en”>

Credit Approval

15 </ p r o f i l e : serviceName>

<p r o f i l e : t e x tDe s c r i p t i on xml : lang=”en”>

Rece ives c r e d i t card i n f o and checks c r e d i t approval .

</ p r o f i l e : t ex tDesc r ip t i on >

<p r o f i l e : hasInput rd f : r e s ou r c e=”#CreditCard”/>

2.3. SEMANTIC WEB SERVICES 17

20 <p r o f i l e : hasOutput rd f : r e s ou r c e=”#CreditCheckResult”/>

<p r o f i l e : hasResult rd f : r e s ou r c e=”#CreditApproved”/>

<p r o f i l e : hasResult rd f : r e s ou r c e=”#CreditNotApproved”/>

</ p r o f i l e : P r o f i l e >

25 <proce s s : ProcessModel rd f : ID=”CreditApproval −Process−Model”>

<s e r v i c e : d e s c r i b e s rd f : r e s ou r c e=”#CreditApproval −Se rv i c e ”/>

<proce s s : hasProcess rd f : r e s ou r c e=”#CreditApproval −Process”/>

</proce s s : ProcessModel>

30 <proce s s : AtomicProcess rd f : ID=”CreditApproval −Process”>

<proce s s : hasInput rd f : r e s ou r c e=”#CreditCard”/>

<proce s s : hasOutput rd f : r e s ou r c e=”#CreditCheckResult”/>

<proce s s : hasResult>

<proce s s : Result rd f : ID=”CreditApproved”>

35 <r d f s : comment>Credit Card Approved</r d f s : comment>

<proce s s : E f f e c t >

<expr :SWRL−Express ion>

<expr : express ionBody rd f : parseType=”L i t e r a l ”>

<swr l : AtomList rd f : about=

40 ”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#n i l ” />

</expr : expressionBody>

</expr :SWRL−Express ion>

</proce s s : E f f e c t >

</proce s s : Result>

45 </proce s s : hasResult>

<proce s s : hasResult>

<proce s s : Result rd f : ID=”CreditNotApproved”>

<r d f s : comment>Credit Not Approved</r d f s : comment>

<proce s s : E f f e c t >

50 <expr :SWRL−Express ion>

<expr : express ionBody rd f : parseType=”L i t e r a l ”>

<swr l : AtomList rd f : about=

”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#n i l ” />

</expr : expressionBody>

55 </expr :SWRL−Express ion>

</proce s s : E f f e c t >

</proce s s : Result>

</proce s s : hasResult>

</proce s s : AtomicProcess>

60

<proce s s : Input rd f : ID=”CreditCard”>

<proce s s : parameterType

rd f : datatype=”http ://www.w3 . org /2001/XMLSchema#anyURI”>

http : / / 1 2 7 . 0 . 0 . 1 / onto logy /Concepts . owl#CreditCard

65 </proce s s : parameterType>

<r d f s : l abe l >Credit Card Information </r d f s : l abe l >

</proce s s : Input>

<proce s s : Output rd f : ID=”CardCheckResult”>

2.4. WEB SERVICES COMPOSITION 18

70 <proce s s : parameterType

rd f : datatype=”http ://www.w3 . org /2001/XMLSchema#anyURI”>

http : / / 1 2 7 . 0 . 0 . 1 / onto logy /Concepts . owl#Va l ida t i onResu l t

</proce s s : parameterType>

<r d f s : l abe l >Credit Card Va l idat i on Check Result </r d f s : l abe l >

75 </proce s s : Output>

<grounding : WsdlGrounding rd f : ID=”CreditApproval −Grounding”>

<s e r v i c e : supportedBy rd f : r e s ou r c e=”#CreditApproval −Se rv i c e ”/>

</grounding : WsdlGrounding>

80

</rd f :RDF>

Listing 2.2: Credit Approver Service Description in OWL-S

2.4 Web Services Composition

Service composition refers to the process of creating customised services from

existing services. This is done by a process of the dynamic discovery, inte-

gration and execution of those services in a deliberate order to satisfy user

requirements [14]. Service composition involves interactions between all par-

ticipating Web services. Figure 2.4 depicts the interaction between different

parties, namely the service provider, service broker and service requestor.

Service providers3 export the services they provide so that the service re-

questors can discover the service that best fits their quality requirements.

Service requestors discover services by sending their requirements to the ser-

vice broker. The service brokers are located between the service providers and

service requestors. Their functionality is to collect and advertise available ser-

vices and to facilitate interaction and the matching process according to the

requirements set by the requestor. Once service requests match the require-

ments, point-to-point interactions will occur between service requestors and

service providers. The point-to-point interaction between service providers

and services requestors initiates the composition process.

According to Chakraborty and Joshi [13], Web service composition can

be classified into two broad categories: the first is proactive and reactive

composition; the second is mandatory and optional service composition.

3Service providers can also be service requestors and vice versa.

2.4. WEB SERVICES COMPOSITION 19

Figure 2.4: Web Service Composition Model

Proactive (static) composition means offline or pre-compiled composition.

Services that are composed proactively are usually stable and used at a very

high rate over the Internet. Reactive (dynamic) Composition means creating

a compound service on the fly. Unlike the proactive composition, predefined

interaction is not possible and it varies according to the dynamic situation.

A component manager can be used to coordinate the interactions between

the different subservices and provide the composite service to the service re-

questors. The component manager should exploit the present state of services

and provide certain run-time optimisations based on real-time parameters

like bandwidth and the cost of execution of the different subservices.

Mandatory service composition means that all the subservices must par-

ticipate in the proper execution of composition. These types of services will

be dependent on the successful execution of other subservices to produce a

satisfactory result. Optional service composition is the opposite of manda-

2.4. WEB SERVICES COMPOSITION 20

tory service composition and does not necessarily need the participation of

certain subservices for the successful execution of a query.

Figure 2.5: Composition of an online shopping service

An example of Web service composition is shown in Figure 2.5 and it

demonstrates the online shopping domain.

In our example, the online bookstore is responsible for purchasing a book

that satisfies the user request and the bookstore service itself is a composition

of various other Web services, namely a Web Catalogue, a Credit Checker

and a Shipping Service. The basic operation of the online bookstore service

involves the following steps:

Logon → Place Order → Check Credit → Pay → Logoff

The user initiates the purchasing process by sending through a shopping

request to the bookstore service, specifying the item(s) he/she would like to

purchase. An example of the shopping request contains a shopping list that

has the following attributes:

• Item type: Fiction book

• Author: Stephen King

• Book title: The Tommy Lockers

2.4. WEB SERVICES COMPOSITION 21

• Quantity: 1

• Price: $30 - $50

• Shipping address

Assuming all the necessary Web services have been published to the online

registry (Step 0 in Figure 2.5), the bookstore service can then go to the

registry and find all the relevant services for its purpose (Step 1 in Figure

2.5). After a list of relevant services has been discovery, they are composed,

bind and execute together which forms the bookstore Web service (Step 2

in Figure 2.5). Once a list of relevant services has been discovered, they

are composed, bound and executed together. This constitutes the bookstore

Web service (Step 2 in Figure 2.5). The bookstore Web service acquires

the item that is requested by the user through the Web catalogue. The

Web catalogue, consisting of a set of items and information on its attributes,

prices and current availability, is presented. The current availability of an

item is updated during execution. As soon as such an item has been found

and all the requirements have been met, it will go through the checkout

process. The checkout process involves calculating the total cost, in other

words the shipping cost plus the cost of the item. The shipping time and cost

is determined by the Shipping Service. Lastly, the Credit Checker, one of the

internal processes called CreditApproval and described in WSDL and OWL-

S, is shown in Listing 2.1 and 2.2 respectively, and checks for sufficient funds

before the payment is being processed. By mapping the abstract composition

model shown in Figure 2.4 and the concrete example shown in Figure 2.5,

we will see their correlations (Table 2.5).

Techniques for Web services composition are discussed in the section that

follows.

2.5. CURRENT COMPOSITION TECHNIQUES 22

Table 2.5: Correlation between abstract composition model and concrete
online bookstore example

Element of the abstract compo-
sition model

Elements of the concrete com-
position example

Service requestor User
Composite service Bookstore service
Participating Web services Web Catalogue, Credit Checker and

Shipping Service

2.5 Current Composition Techniques

The fast-growing number of services available on the Internet results in a fast

development of standards for process-based Web services composition, such

as BPEL [38] and BPML [3]. Process-based Web service composition refers

to composing a composite service by gluing Web services together by means

of a process model. The process model specifies the composition workflow

between participating services in the form of mono building blocks.

Figure 2.6: Composite service (Bookstore) in BPEL

2.5. CURRENT COMPOSITION TECHNIQUES 23

Figure 2.6 depicts the bookstore example in BPEL. The composition

process is initiated by the bookRequest service. It receives input from the

client and based on the input, it goes to the Web catalogue to check for the

availability of the item specified. The CreditChecker checks the credit rating

of the client and if approved, the ShippingCenter will initiate shipping to the

client.

Since the BPEL composition is in a monolithic form, it lacks certain

aspects such as process modularity and flexibility [1]. There is a close re-

lationship between modularity and flexibility. While the lack of modularity

hampers reusability, it will also affect flexibility. Without the ability to reuse

parts of the code, the composition will be inflexible. The reason is that flex-

ibility only comes when the composition can select parts of the code to be

changed as needed.

From above, we see that the process-based Web service composition is

equivalent to the proactive service composition mentioned in Section 2.4. In

other words, these standards do not really address the issues of dynamic

process creation. The fast pace of Internet growth causes the manual com-

position of Web services to become inefficient and impractical. The ability

to automatically plan the composition of Web services dynamically and to

monitor their execution is therefore an essential step toward the effective

usage of Web services.

In order to automate the composition process, the services need to be

described in a way that is unambiguous and computer-interpretable. The

semantic Web was designed to facilitate the ontology-based discovery and

composition of services. An example of OWL-based Web service ontology

standards that annotate Web services description is OWL-S 1.1 [30]. Aslam

et al. [4] proposed a way to map the BPEL process model the OWL-S suite

of ontologies to overcome the semantic problem. Moreover, AI planning

techniques have been employed to automate the composition of Web services

described using these standards [48]. The following steps can be used to

automate a composition process:

1. Extend current service description to incorporate semantic. For exam-

ple, we could translate the existing BPEL process to OWL-S [47].

2.6. AI PLANNING 24

2. Translate semantic Web service description to planner actions. For ex-

ample, we would like to use SHOP2 to generate a composition. We will

need to encode a composite process composition problem as a SHOP2

planning problem, so SHOP2 can be used with OWL-S Web Services

descriptions to automatically generate a composition of Web services

calls [49].

3. Generate a composition plan using a planner and execute.

In the next section (Section 2.6), we examine the AI planning techniques

and their application in Web services composition.

2.6 AI Planning

In [43] the current AI planning techniques and their application in Web

services composition are surveyed. The following sections provide an in-

troduction to general AI planning and in particular the Hierarchical Task

Network (HTN) planning. The suitability of HTN planning to Web service

composition will also be discussed in this section.

2.6.1 Classical Planning

A classical planning environment is an environment that is fully observable,

deterministic, finite, static and discrete [23]. In general, a classic AI planning

problem has the following components:

• A set of possible states of the world, S

• An initial state description, S0 ⊂ S

• A desired goal state description, G ⊂ S

• A set of possible actions4, A

4Also known as operators, the term will be use interchangeably throughout the disser-
tation.

2.6. AI PLANNING 25

• The translation relation Γ ⊆ S × A × S defines the precondition and

effects for the execution of each action.

The objective of AI planning is to generate a plan, that is, a sequence of

actions that when executed from the initial state, will result in the desired

goal state. A state is a situation that describes the world at a certain point

in time. A set of ground literals in a first-order language represents a state.

The actions are expressions that are described using some formal language

consisting of a name, a parameter list, a precondition list and an effect list.

To understand how Web service composition can be modelled as planning,

we need to know how they can be mapped up.

The initial state and the goal state of the Web service composition can

be directly translated into a planning problem. In terms of Web service,

action is a set of available services and the translation relation defines the

precondition and effects for the execution of each action and denotes the

current state of each service. The input and output parameters of the service

act as knowledge preconditions and knowledge effects in a planning context.

The side-effects of the service are modelled as non-knowledge preconditions.

Table 2.6 shows the mapping between Web service and planning.

Table 2.6: Mapping between Web service and Planning

Web service context Planning context

Web services Actions
Current states of a Web service Translation relation
Input parameters Knowledge preconditions
Output parameters Knowledge effects
Side-effects Non-knowledge preconditions

Consider the online bookstore example (described in Section 2.4). The

equivalent planning problem to this example is illustrated in Listing 2.3. To

keep it simple, we will only show two services, namely find the book and the

credit checker. The shipping service is therefore omitted.

GOAL: (FoundBook and CreditApproval)

INIT : (gotBook , haveCredit)

ACTION: Book ()

4 PRECOND: gotBook

2.6. AI PLANNING 26

EFFECT: foundBook

ACTION: Credi t ()

PRECOND: haveCredit

9 EFFECT: cred i tApprova l

Listing 2.3: A Planning Problem for an Online Bookstore Domain

This example describes a simple planning problem with initial state (gotBook,

haveCredit) and the goal to satisfy FoundBook and CreditApproval. Start-

ing from the initial state, it searches through the planning domain for first

actions that satisfy the precondition. In this case only two actions: Book()

and Credit() satisfy the precondition. For example, if we chose to execute

Book(), then FoundBook will become true and hence be added to the plan.

This also satisfies part of the final state.

The solution to this problem is a partial plan (sequence in which the

actions must occur is not fully specified) that consists of two steps Book and

Credit. In this example, the partial-order plan is stated as follows:

• The book can be found if and only if gotBook is true.

• The credit check can be approved if and only if haveCredit is true.

• However, the execution order of Book and Credit is not specified, but

they must be true before the end of the process.

The advantage of a partial plan is that it allows least commitment, i.e. it

avoids problems causing by early commitment decisions. In contrast, total-

order plan is one that consists of a linear list of steps; the sequence in which

the actions must occur is fully specified. Each total-order plan is a lineari-

sation of the partial-order plan. Figure 2.7 shows both partial-order and

total-order plans to the problem.

2.6. AI PLANNING 27

Figure 2.7: A partial-order plan for purchasing a book and the two possible
linearization of the plan

2.6.2 Hierarchical Task Network (HTN) Planning

HTN planning is a technique that creates plans by task decomposition. In

addition to an initial state, a goal state and a set of operators found in clas-

sical planning, HTN planning also includes a set of methods. The planning

problem is specified by an initial task network, which is a collection of tasks

that need to be performed under a specified set of constraints. The planning

process decomposes the collection of tasks in the initial task network into

smaller subtasks until the task network contains only primitive tasks. The

decomposition of a task into subtasks is performed using a method from a

domain description. A method specifies how to decompose the task into a set

of subtasks. Each method is associated with various constraints that limit

the applicability of the method to certain conditions and define the relations

between the subtasks of the method. HTN planning performs a recursive

search of the planning state space via task decomposition and constraint

satisfaction.

Consider the online bookstore example again. By applying action, de-

composition is now refined and consists of operations that find a book, check

for credit approval and provide shipping details. These operations are con-

sidered to be the knowledge of how we want to implement tasks to solve

2.6. AI PLANNING 28

the problem. The refinement process is continued until only primitive tasks

remain in the plan for each operation. A graphical representation of the

refinement process for the online bookstore problem is illustrated in Figure

2.8. The node with no outgoing arrows indicates a primitive action. There

are three partial-order plans, namely find a book, credit check and shipping,

and the composite plan is generated by combining these three partial-order

plans with task decomposition.

Figure 2.8: Action decomposition for an online bookstore problem

The main advantage of HTN planning is its ability to deal with very large

problem domains by decomposing the goal into smaller manageable subtasks

that can be solved directly. However, this technique requires experts to

provide the planner with a task that it needs to accomplish. Despite this

disadvantage, HTN planning is still a good way to provide different levels

of abstractions. This means that the users do not need to possess complete

knowledge about the services in order to select them.

2.7. SUITABILITY OF HTN PLANNING TO WEB SERVICES
COMPOSITION 29

2.7 Suitability of HTN Planning to Web Ser-

vices Composition

Sirin et al. [49] mentioned various reasons why HTN planning is suitable

for Web services composition. This was taken further in the current study

by comparing HTN planning to other planning techniques [15]. The results

show that HTN planning does indeed have various advantages over the other

planning techniques in Web service composition. In this section, the two

most important reasons why HTN planning is suitable for Web services com-

position are presented.

The concept of compound tasks in HTN planning is very similar to the

concept of Web services composition. A Web services composition workflow

has a complex structure with many execution paths. Information concerned

with the composition can be fed to an HTN planner as a planning domain,

and planner would compose a sequence of actions that would constitute a

valid composition as specified using HTN methods. The designer of a method

does not have to have close knowledge of how the further decompositions will

go or how prior decomposition occurred. This eliminates problems such as

early-commitment, which is one of the problems in the current approaches

in composition. It also implies that HTN encourages modularity. Since the

method author does not have to possess complete knowledge of the methods,

he/she is allowed to focus on the particular level of decomposition at hand.

Such modularity fits in well with Web services, meaning that methods coming

from different sources can be integrated to produce suitable workflows.

Another important reason why HTN planning is suitable for Web services

composition is its ability to scale well to large and complex problems. To

accomplish scalability, HTN planning has the ability to scale to large numbers

of methods and operators as method decompositions provide the means to

prune the search space by ignoring unrelated method descriptions.

2.8. CONCLUSION 30

2.8 Conclusion

This chapter examined ways of describing a Web service and the way in which

services can be combined into a composite service, known as Web service

composition. Current composition techniques have been briefly discussed

and their problems in the dynamic composition of Web services have been

identified.

The application of AI planning techniques in Web service composition

was touched upon and special attention was paid to the representation of

planning problems in both classical planning and HTN planning. The chapter

concluded with discussions on the suitability of HTN planning for Web service

composition.

The next chapter explores problems encountered during Web service com-

position in a dynamic environment and the need for self-healing Web service

composition. Moreover, a list of requirements for self-healing Web service

composition is identified.

31

Chapter 3

Failures and Self-healing

3.1 Introduction

The previous chapter concluded that using semantic Web ontology to de-

scribe Web services is useful for automatic service composition. AI planning

techniques can be used for automating Web service composition, provided

that the service is described by using ontology and by representing it as a

planning problem. The solution to a planning problem is known as a plan.

Nevertheless, in realistic domains or entities the plan does not always execute

as planned. Therefore, it is important to monitor the execution of a plan and

react to unexpected events. A composition may fail either because it does

not comply with the requirements and specifications, or because the spec-

ification does not adequately describe its function. An error is the part of

the composition state that may cause a subsequent failure. A failure occurs

when an error reaches the service interface and alters the service. A fault is

the adjusted or hypothesised cause of an error. Maintaining the correctness

of composition requires knowing what “correctness” is and recognising when

a composition needs to be healed. The first step is to establish the criterion

for correctness, which depends on the user requirements and specification.

The second step is to recognise the difference between correct and incorrect

conditions (i.e. failures). To react to such incorrect conditions, it is vital

that we know the cause and effect of the failures.

The chapter (Section 3.2) starts off with a discussion on the cause of fail-

3.2. THE CAUSE OF FAILURES 32

ures that may occur during the composition process. In describing the dif-

ferent faults that make up the taxonomy, examples in Oracle BPEL Process

Manager Suite [39] are used. The reason for choosing Oracle BPEL Process

Manager Suite for demonstration is to provide better visualation of the prob-

lem. In addition, the examples can easily be transformed into HTN operators

at a later stage for experimentation purposes.

In Section 3.3, the taxonomy is presented and the most critical effects are

identified. Sections 3.2 and 3.3 recount the foundations of the research and

proceed to the needs for self-healing Web service composition. These needs

are explained in Section 3.4. The chapter is ended with a list of requirements

for self-healing composition of Web service. These requirements will be used

in Chapter 4 to evaluate the applicability of HTN planners in a self-healing

context.

3.2 The Cause of Failures

Languages that are being developed to detect failures in Web services can re-

late the effects observed to a possible cause, and then pass on this information

to the recovery process [7], [9]. Different causes (faults) clearly impose differ-

ent reactions, but a case-by-case decision is not feasible. The identification

of classes of faults helps abstract the problem, identify generalised reactions

(or reaction patterns), and also organise new faults to automatically identify

the most suitable reactions. Following the work of [6], the faults are divided

into three major, yet partially overlapping groups:

• Physical faults: include all faults arising from hardware problems,

including in the network.

• Development faults: include all faults that can be traced to errors

made during development.

• Interaction faults: include all faults that occur during services inter-

action.

3.2. THE CAUSE OF FAILURES 33

3.2.1 Physical Faults

Physical faults are observed as failures in the network medium, or failures on

the server side. They include communication infrastructure exceptions and

failures in the correct operation of the middleware of the hosting servers.

Good examples of such failures would be a server that is out of action or a

severed connection to the server.

Web services are the building blocks for Web service composition. In

most trivial cases, a composition fails because of the building blocks are

unavailable. The availability of a Web service is influenced by the server

and by the networking media.

There are two causes of service unavailability – either the service is down

or the network connection to the service is down. It is difficult to pinpoint

the exact problem but any failure that results in no response from the above

two forms can be classified as an unavailability fault. This fault, and any

other faults residing at the host, can only be fixed by the service provider.

3.2.2 Development Faults

Development faults may be introduced into a system by its environment,

especially by human developers, development tools, and production facilities.

Such development faults may contribute to partial or complete failures, or

they may remain undetected until the usage phase.

A parameter incompatibility fault is the case of a service receiving

incorrect arguments or incorrect parameter types as input. Under normal

circumstances, such a fault can be avoided if catch blocks and exception

handlers are used. Consider the error message in Figure 3.1, as produced

by Oracle BPEL Process Manager Suite [39]. In the experiment, the service

that was invoked expected an integer value as input, but received a string

value instead. The service failed to be invoked since we did not give it the

appropriate exception-handling mechanisms.

This type of failure can occur when using a composite service. If we

dynamically compose a composite service, we might end up using two services

that send incompatible types to each other. This can be handled by an

3.2. THE CAUSE OF FAILURES 34

Figure 3.1: Error produced on incorrect input

appropriate translator between the two services, but only if we are able to

anticipate the incompatibility. In some cases, if a Web service is invoked

using incorrect parameter types, the service will return an error message or

error code that can be used to identify the type of fault that occurred, as

shown in Figure 3.1. When using Web services in the .NET environment,

translation tools exist that will translate the Web service’s WSDL file into

usable and readable program code which can be used to invoke the service.

When using a Web service in such a way, it is almost impossible to cause

such a fault, since the compiler will pick up on an incompatible parameter

before it can be invoked.

A Web service often does not have full knowledge about services that

it will interact with. Selection of the services is based on the interfaces

or ontologies (descriptions) provided. Often assumptions need to be made

during the selection procedure, but these assumptions can be violated. This

could happen simply because the developers are too optimistic or pessimistic

about their assumptions or the service update changes its interface. After

the update, the interface might have changed and subsequent queries to

the old interface would fail.

The worst-case scenario is that the interface changes, but the workflow

logic stays the same. This can cause a workflow inconsistency problem.

In the case of such a fault, the service cannot be invoked since the interface

does not correspond to the workflow description. If service users are not

informed about such changes, they would assume that the service is broken

or no longer exists. These types of errors can occur after updating the Web

3.2. THE CAUSE OF FAILURES 35

service description. Unfortunately these errors are also the hardest to pick

up, since they will behave very much like a physical fault. The error might

even be mistaken for a physical fault unless the service returns a sensible and

usable notification of the type of error that occurred.

As an example, consider the following pieces of code (Figure 3.2 and

Figure 3.3). In the example code, the BPEL code was left unchanged, but

the developer changed the interface (the WSDL code). If such a change was

made whilst a requestor was using this service, the service would become

unavailable.

The highlighted sections of Figure 3.2 and Figure 3.3 represent the parts

that were affected. The interface to the service was changed (the WSDL

code) and the workflow code was left unchanged (the BPEL code). Then

some of the variables’ message types were changed in the interface (WSDL

code). The input variable was changed from MapServiceRequestMessage to

MapServiceInvoked-Message. The fault variable was also affected.

Figure 3.2: BPEL code of service with workflow error

A fault due to non-deterministic actions is the case where a service

will have more than one possible outcome or return value. Such a service

might produce any one of a number of outputs that are determined by an

operation that might or might not precede the output. Figure 3.4 depicts a

a generic service with two identical outputs going to two different services.

Such a scenario is known as non-deterministic actions.

3.2. THE CAUSE OF FAILURES 36

Figure 3.3: Corresponding WSDL code of service

Figure 3.4: Example of Non-deterministic Actions

3.2. THE CAUSE OF FAILURES 37

3.2.3 Interaction Faults

Faults from various classes can manifest and propagate from one service to

another during the execution phase of the composite service. The faults

may cause unacceptably degraded performance or total failure to deliver the

specified service.

An interaction fault occurs when the given composite service fails more

frequently or more severely than acceptable. Overall, interaction faults can

be further subdivided into the following two categories:

• Content faults: include incorrect service, misunderstood behaviour, re-

sponse error, QoS and SLA faults.

• Timing faults: include incorrect order, time out, misbehaving workflow

faults.

Content faults occur when the content of the service delivered, based on the

service description, deviates from the expected composite service. Timing

faults, on the other hand, are concerned with the time of arrival or the

timing of the service delivery that will result in the system deviating from

its original specified functional requirement.

The integration of Web services into a composite service requires commu-

nication between all participating Web services. The communication protocol

used by Web services to carry messages between each other is normally Sim-

ple Object Access Protocol (SOAP). During message-passing the message

packets may arrive in a different order to the order in which they were sent.

The cause of this scenario is often due to a slow network. In a composi-

tion, services are often dependent on each other to reach a desired result. In

the case where a message arrives in a different order it may cause undesir-

able results. A possible solution to this problem is to make use of Lamport

timestamps [28].

Another possible fault caused by a slow network is a time-out excep-

tion. If proper measures are taken, time-out exceptions and communication

medium failures can be caught in time, using exception handlers. For exam-

ple, catch blocks and exception handlers in BPEL can be used to recover from

3.2. THE CAUSE OF FAILURES 38

certain failures and exceptions. Baresi et al. [8] give an example in which

they make use of the appropriate exception handlers to catch a time-out

exception.

There are several classes of faults that form part of the interaction fault

category, one of which is misbehaving execution flow. Dynamic service

composition means creating a composite service on the fly. Predefined in-

teraction is not possible and it varies according to the dynamic situation.

This increases the probability of a fault, because a single service may have

several dependencies that are stimulated to correctly perform their tasks, but

the developers may not know the identity of the services that will fulfil the

request. In the same way, the service that will be used to satisfy a depen-

dency may not be aware of this fact until deployment. To better understand

a misbehaving execution flow fault, consider the example shown in Figure

3.5. The composite service is defined by its interface and the internal work-

flow of the composition that is contributed by participating Web services

(wa, . . . , wz). A misbehaving workflow fault may therefore be caused by one

of the following:

• The workflow of a composite service is not correct. That is, the result

returned is not what was expected or the service returns no results at

all.

• An individual service (e.g. wc) used by a composite service is not

correct.

• An individual service (e.g. wf) used by a composite service does not

work well with other participating services.

A misunderstood behaviour fault is the case of a service requestor

that requests a service from a service provider, expecting a service different

from the provided one. A simple example would be if the requestor requests a

service for stock exchange quotes, and the provider returns a service supply-

ing exchange rate quotes. These types of faults can occur if the description

of a service is incorrect, or if the service provider misinterpreted the request

from the requestor.

3.2. THE CAUSE OF FAILURES 39

Figure 3.5: Composite service example

Response faults are closely related to behaviour faults and incompatible

input. A service that exhibits this type of failure will sometimes produce

incorrect results even if the correct input was received. The incorrect results

will be caused by the incorrect internal logic of the service. Some faulty

services might even randomly produce outputs for a requestor. In this case,

it would be better to rebind to a different service. While response faults

generate wrong values, they are often due to the misunderstanding of service

behaviour and wrong input values.

Non-functional aspects of Web services include the Service Level Agree-

ment (SLA) and the Quality of Service (QoS) agreement. These non-

functional properties can be captured at runtime and used to monitor the

performance of the service with respect to the contract between different

parties.

According to Ludwig et al. [11], SLAs are used for the reservation of

service capacity. They were traditionally used only between organisations

to reserve the use of services between them. SLAs have only recently been

used as a way to ensure delivery of services in Web services and SOA. A

fault caused by or during the SLA will manifest in the requestor receiving

an incorrect service. During SLA negotiations all parties involved will have

to agree on the interface and the service provided by the provider. If the

provider is providing a service that was not originally promised or agreed

3.3. FAULT TAXONOMY 40

upon, then we have an SLA disagreement fault.

QoS includes not only SLAs, but also the promise to deliver quality service

in terms of speed and information. If any of these factors are not of good

quality (i.e. if the speed is slow or if there are delays in the responses from

the service) then we have a fault caused by the QoS factors. There are ways

to use QoS constraints to ensure that a service can deliver what is promised.

Yu and Lin [56] propose a method for binding to a service by making use of

QoS constraints as a heuristic to choose the service. Faults caused by these

and other non-functional aspects can only be caught after execution and use

of the service, and the best way to fix them would be to rebind to a different

service that promises to offer a better quality of service.

An incorrect service fault is closely related to SLA and QoS faults. It

occurs when the provider provides a service under false pretences. It does

not mean that the service is not working. The service may be working and

may deliver the best results yet, but it is not the service that you requested.

This can happen if the ontological description of the service is incorrect. It

can also happen if the WSDL description of the service is incorrect. Most of

the time, this fault goes hand in hand with SLA and QoS faults.

3.3 Fault Taxonomy

The preceding section provided an overview of faults and the observed effects

in a composition process. A summary of our findings is presented in Table

3.1. The three broad categories of faults are shown along the top of the table,

broken down into the subcategories identified in Section 3.2. Alongside the

table six fault classes are shown that are relevant for Web service, based on

the sixteen elementary fault classes identified Avižienis et al. [6].

Phase of occurrence:

Development faults occur during system development and mainte-

nance. They may be introduced into the system by its environment, es-

pecially by human developers, development tools, and production facilities.

3.3. FAULT TAXONOMY 41

Such development faults may contribute to partial or complete failures, and

they may remain undetected until the usage phase.

Operational faults occur during service delivery or during use of the

Web service. These types of faults can be traced back to any one of a wide

array of causes. Sometimes the cause lies at the server’s side and can only

be fixed by the service developer. In a few cases, the cause can be traced to

the client’s side. In such a case it can be fixed easily by fixing the underlying

problem that caused the failure in the first place.

Table 3.1: The classes of the combined faults

FAULTS

P
h
y
si

ca
l

D
ev

el
op

m
e n

t

In
te

ra
ct

io
n

U
n
av

ai
la

b
il
it
y

P
ar

am
et

er
In

co
m

p
at

ib
il
it
y

In
te

rf
ac

e
C

h
an

ge

W
or

k
fl
ow

In
co

n
si

st
en

cy

N
on

-D
et

er
m

in
is

ti
c

A
ct

io
n
s

In
co

rr
ec

t
O

rd
er

T
im

e
O

u
t

M
is

b
eh

av
in

g
F
lo

w

M
is

u
n
d
er

st
o
o
d

B
eh

av
io

u
r

R
es

p
on

se
E

rr
or

S
er

v
ic

e
L
ev

el
A

gr
ee

m
en

t

Q
u
al

it
y

of
S
er

v
ic

e

In
co

rr
ec

t
se

rv
ic

e

FAULTS

Development X X X X
Operational X X X X X X X X X
Internal X X X
External X X X X X X X X X X
Hardware X X X
Software X X X X X X X X X X

3.3. FAULT TAXONOMY 42

System boundaries:

Internal faults originate inside a single service. Some of the most

common faults classified as internal faults are interface change, workflow

inconsistency and non-deterministic actions.

External faults originate outside a single service and are propagated

into the composition by interaction or interference. These include all types

of hardware faults and input faults. A good example of this type of fault

would be a parameter incompatibility fault.

Dimension:

Hardware faults originate in or affect the hardware. This can include

a broken communication medium, a server down time, or even hardware

faults on the client’s side.

Software faults are caused by mistakes made in the code of the Web

service. These faults occur during development or maintenance of the ser-

vice and can only be fixed by the developer of the service. It also includes

composition faults, if the composition is done on the client’s side. In such a

case, the composition can be fixed on the client’s side.

Figure 3.6 presents an alternative representation of our taxonomy, along

with the observed effects shown at the bottom of the matrix. The observed

effects were obtained through various testing and experiments. From the ma-

trix it can further be observed that the majority of faults lead to the following

outcomes, namely unresponsive Web service, incorrect results, incoherent re-

sults and slow service. These outcomes, together with the fault classes from

where they originated, are shown in Table 3.2. Since the outcomes originated

mostly from development and interaction faults, it can be concluded that the

most critical faults are development and interaction faults.

3.3. FAULT TAXONOMY 43

Figure 3.6: Matrix representation of the combined classes and observed ef-
fects

3.3. FAULT TAXONOMY 44

Table 3.2: Outcomes and their origin

Outcomes Main fault
categories

Fault subcategories Elementary
fault classes

Unresponsive
Web service

- Physical - Unavailability - Operational
- Development - Interface change - External
- Interaction - Workflow inconsistency - Software

- Time-out
- Misbehaving flow
- QoS

Incorrect
results

- Development - Interface change - Operational
- Interaction - Workflow inconsistency - External

- Parameter incompatibility - Software
- Time-out
- Incorrect service
- Misbehaving flow
- Misunderstood behaviour
- QoS

Incoherent
results

- Development - Interface change - Development
- Interaction - Workflow inconsistency - Operational

- Non-deterministic actions - External
- Response error - Software
- SLA
- QoS

Slow service - Physical - Unavailability - Operational
- Interaction - Incorrect order - Internal

- Time-out - External
- SLA - Hardware
- QoS - Software

3.4. REQUIREMENTS 45

3.4 Requirements

Web service composition depends on specifications defined by users, but it

is often impractical to obtain precise specifications of the desired compos-

ite service. Most users are inarticulate about their criteria for correctness,

performance and Quality of Service (QoS). Furthermore, the criteria for ac-

ceptable behaviour vary from time to time and from one user to another.

The need for self-healing arises because the composition may be subject to

unpredictable external requirements and/or it may be too complex to pre-

dict its internal behaviours precisely. In this study self-healing Web service

composition is defined as follows:

”A Web service composition process that has the ability to

heal itself from errors and exceptions in dynamic and uncertain

environments.”

In designing a cycle for self-healing Web service composition, it is wise to

first ask what the requirements for such a cycle should be. If such a list can

be complied, then a base can be established against which implementation

can be achieved in the development of self-healing Web service composition.

Below is a list of requirements that are essential in self-healing Web service

composition. These requirements have been distilled from numerous sources

by evaluating current approaches in self-healing systems [54], [36], [35], [40],

[26], [25], [22], [21], [29]. The self-healing Web service composition cycle

is shown in Figure 3.7. It is comprised of three modules, namely Plan

Generation Module, Plan Execution Module and Failure Analysis

Module. These proceed in several steps, shown in Figure 3.7.

The user sends the request to the plan generation module (Step 1). The

request is then passed by the request parser (Step 2) to the planning system

to generate a plan (Step 3). During the plan generation process, verification

is undertaken to ensure the quality and correctness of the plan generated.

The verification process includes checking that the plan generated matches

the request that was sent by the user, as well as checking all the constraints

that need to be satisfied.

3.4. REQUIREMENTS 46

Figure 3.7: Self-healing Web Service Composition Cycle

After a plan has been successfully generated, it is passed to the plan ex-

ecution module for real-time execution in the dynamic environment. During

the execution phase, the plan is monitored by a run-time monitor (Step 5)

to ensure the plan is executed as expected. If, at any stage during the exe-

cution, the monitor detects some unexpected occurrences, it will send them

to the Failure Analysis Module to analyse the exact problem and its cause

(Step 5.2.1). In the event where the problem is not recognised, a Sensemaker

(Step 5.2.2) is used to reason about the problem, based on the current world

condition, in order to come up with a reasonable description of the problem.

In our self-healing cycle, sensemaking is the process of creating situation

awareness and understanding, in run-time, situations of high complexity and

uncertainty in order to come up with a description of the problem. After

3.5. CONCLUSION 47

the problem has been correctly identified, there are two ways to overcome it,

based on its severity:

1. Re-execute the original plan from the current state with the belief that

the environment will return to a more conducive state (Step 5.1).

2. Re-plan from the current state to incorporate the latest available in-

formation and develop a partially new or completely new plan. Then,

re-execute (Step 5.2).

Now consider a more detailed description of the requirements identified.

• Run-time monitoring of the composition checks consistency of the

specification. Based on the user request specification, the run-time

monitor can verify and detect run-time faults/errors (Step 5).

• Analysis is used to identify faults/errors according to the fault tax-

onomy and to provide a recommendation (Step 5.2.1).

• Sensemaking is required to reason over the faults/errors that are not

recognised by the analysis step (Step 5.2.2).

• Planning and verification change the plan according to the fault-

s/errors detected. The output can be a new plan or most often an

alternated plan. The plan that is generated is then verified for correct-

ness. The verification can either be done at each step during the plan

generation or it can be done once the complete plan has been generated

(Step 3).

• Execution of the plan generated by the planner (Step 4).

3.5 Conclusion

In this chapter the Web service composition problems were examined by

providing the background against which self-healing Web service composition

is needed.

3.5. CONCLUSION 48

Three main categories of service composition faults were identified, namely

physical faults, development faults and interaction faults. Each of these cat-

egories was further mapped into six elementary faults. It was concluded that

the most critical faults mostly originated from development and interaction

faults. Based on these observations, a list of requirements for self-healing

Web service composition was drawn up and explained. The requirements

included monitoring, analysis, sensemaking, planning and verification, and

lastly, execution.

In the next chapter we intend to determine the applicability of HTN

planners against the requirements identified.

49

Chapter 4

Evaluation of HTN Planners

4.1 Introduction

In the preceding chapter, possible faults were identified during the execution

of a composite service that would alter its behaviour. A fault taxonomy

was drawn up to identify these faults. The need for self-healing Web service

composition was explained and a list of requirements was drawn up. In this

chapter, we elucidate how these requirements can be achieved using features

provided by HTN planning systems.

In Section 4.2, several HTN planning systems are presented. The evalua-

tion of their strengths and weaknesses forms the basis for the final assessment

of the requirements identified for self-healing Web service composition. The

result of the analysis is used to match up the list of requirements identified

in Section 3.4 and our findings are presented in Section 4.3.

4.2 HTN Planning Systems

As was remarked in Section 2.6.2, HTN planning is a technique that creates

plans by task decomposition. A variety of systems, such as SIPE-2 [52], [53],

O-Plan [17] and JSHOP2 [27] have been implemented based on the HTN

planning technique. An overview of these planning systems is given in the

subsequent sections, followed by an evaluation of their features with respect

to the self-healing requirements identified. The self-healing requirements

4.2. HTN PLANNING SYSTEMS 50

involved are monitoring, analysis, sensemaking, planning and verification,

and execution. The evaluation is aimed at verifying the applicability of HTN

planning systems in self-healing Web service composition.

4.2.1 SIPE-2

4.2.1.1 Introduction

The System for Interactive Planning and Execution Monitoring (SIPE-2)

[53] was developed by the AI centre at the SRI International and is based

on its predecessor SIPE [52]. The underlying techniques for the system are

its support for resources and temporal constraints that allow for execution

monitoring, user intervention and replanning.

The main improvement of SIPE-2 from SIPE is that it has the ability to

reason about the arbitrary ordering of actions. This means that SIPE-2, if

provided with an arbitrary initial situation and a set of goals, will be able to

generate solution plans automatically or under interactive control by com-

bining operators. SIPE-2 performs planning hierarchically at different levels

of abstraction. Formalisms for describing actions as operators are provided

at each decomposition level. At each level, the planner needs to predict how

the world will change as actions are performed. The SIPE-2 architecture is

capable of efficiently reasoning about actions in order to generate a novel

sequence of actions that corresponds precisely to the situation at hand. In

addition, it will use as much as possible of the old plan when new situations

arise and can perform replanning during execution.

The following paragraphs explain the features that are offered by SIPE

and focus on its execution monitor and replanner module (shown in Figure

4.1).

4.2. HTN PLANNING SYSTEMS 51

Figure 4.1: SIPE-2 Architecture [51]

Figure 4.2: SIPE Modules and Flow of Control [52]

4.2. HTN PLANNING SYSTEMS 52

Figure 4.2 depicts the various modules in the SIPE execution-monitoring

system. At any point during execution, the execution monitor will accept two

types of information about the domain: 1) the plan that is being executed;

and 2) unexpected situation(s). SIPE first checks whether the “unexpected

situation” is really “unexpected”. It checks whether the situation differs from

its expectations and if it does, then replanning is needed.

Once the description of the unexpected situation(s) has been gathered,

the execution monitor calls the problem recogniser. It provides the problem

recogniser with the plan and the unexpected situation(s), and the recogniser

returns a list of all the problems it has detected in the plan. The general

replanner is then given a list of the problems found by the problem recogniser

and it tries certain replanning actions in various cases. However, it will not

always find a solution.

The general replanner changes the plan so that the latter will look like an

unsolved problem to the standard planner in SIPE. Once the replanner has

dealt with all the problems that were found, the planner is called and the

plan, which now includes unsolved goals, is send through. If the planner pro-

duces a new plan, this new plan should solve correctly all the problems that

were found. Next the plan is given to the execution monitor for continuing

execution. If not, the whole cycle is repeated.

4.2.1.2 Evaluation

The requirements for the SIPE-2 planning system self-healing Web service

composition are summarised in Table 4.1. The first column lists the self-

healing requirements belonging to the Web service composition cycle under

discussion. The second column represents the corresponding modules of the

planning system in terms of those requirements.

The attributes chosen by SIPE-2 and the ways in which they conform to

each identified self-healing requirement are discussed in the text that follows.

4.2. HTN PLANNING SYSTEMS 53

Table 4.1: Mapping between self-healing requirements and SIPE-2’s replan-
ner modules

Self-healing requirements SIPE-2 module

Planning and verification Planner

Run-time monitoring
Execution monitor
General replanner
Replanning actions

Analysis Problem recognizer
Sensemaking Problem recognizer

Execution
Planner
Execution monitor

Planning and verification: To generate a plan, the SIPE-2 planner takes

in four inputs, namely a description of the initial state, a description of a

set of actions, a problem descriptor and a set of rules describing the problem

domain. All these inputs provide the planner with the current state of the

world.

The description of the initial state is encoded with a sort hierarchy, a

world model and a set of deductive rules. The sort hierarchy is the order

sort logic that has the ability to represent the hierarchy of the concept. For

example, we understand the meaning of ’blue’. The meaning is decided by the

meaning of ’colour’ which is more general than ’blue’ in the sort hierarchy.

In the SIPE-2 planner, the sort hierarchy represents the invariant predicate

instance of objects, it describes the classes to which an object belongs and it

allows inheritance of properties. The world model is a set of predicates that

hold over objects in the sort hierarchy. Some predicates are given explicitly

in the database, while others are deduced by applying deductive rules to the

database.

An operator is the representation of actions, at different levels of abstrac-

tion, which may be performed in the given domain. An operator contains

information about the objects that participate in the actions, the constraints

on the objects in the action, a set of instructions for performing the action

to achieve a goal, and the main effects accomplished by the action.

The SIPE-2 planner produces a plan through instantiation of operators

4.2. HTN PLANNING SYSTEMS 54

by binding their variables. It combines these instantiations by ordering them,

and then adds additional constraints to avoid problematic interactions be-

tween actions. A set of operators for each goal in an abstract plan is chosen

to produce a more detailed plan. To this plan the planner adds deductions

and orderings that avoid problems it has detected. Thus, it provides verifica-

tion on the plan that is being generated. The plan generated is represented

by a partially ordered set of primitive actions and conditions that are to be

carried out.

Run-time monitoring : The execution monitor and replanner are respon-

sible for run-time monitoring. At any given time, the execution monitor can

accept new information about the world and the plan that is being executed.

If some unexpected events occurred, the replanning module will determine

how these unexpected events have affected the plan and will modify it accord-

ingly. As far as analysis is concerned, the problem recogniser is responsible

for analysing the problems. To first recognise the problem, a ’Mother-Nature’

(MN) node is inserted into the plan after the action that is presumed to bring

about the unexpected effects. The purpose of the MN node is to help de-

termine how the remainder of the plan is being affected based on its effects.

Two aspects are involved in analysing the problem: the first involves finding

the problem on the current plan and the second involves deductions on the

world state, all based on the effects of the MN node.

Given the way the plan was produced, there are only six problems that

need to be checked by the problem recogniser (Table 4.2). After the problem

has been recognised by the problem recogniser, SIPE-2 offers eight replanning

actions that can be used to alter the plan. The replanning actions Reinstanti-

ate, Insert, Insert-conditional, Retry, Redo, Insert-parallel and Pop-redo are

used to solve problems found by the problem recogniser, while Pop-remove

is used to take full advantage of serendipitous effects.

The general replanner takes a list of problems as well as possible serendip-

itous effects from the problem recogniser, and calls one or more of the re-

planning actions in an attempt to solve each problem. The corresponding

problems and replanning actions used by the replanner are shown in Table

4.3.

4.2. HTN PLANNING SYSTEMS 55

Table 4.2: Problems to be checked by SIPE-2 problem recogniser

Problem Explanation

Purpose not achieved Problem occurs if the MN node
negates any of the main effects of
the action just executed.

Previous phantoms not maintained Problem occurs if the MN node
negates a list of phantom nodes
that occur before the current execu-
tion point and whose protect-until
slot requires their truth to be main-
tained.

Process node using unknown vari-
able as argument

If a variable has been declared un-
known, then the first action using it
as an argument must be preceded by
a perception action for determining
the value of the variable. Otherwise
problems will occur.

Future phantoms no longer true A phantom node5 may no longer
be true after the current execution
point. It must be changed to a goal
node so that it can be solve by the
planner.

Future precondition no longer true Problem occurs if a precondition
node is no longer true after the cur-
rent execution point.

Parallel post-condition not true Problem occurs when if any of the
parallel post-conditions is not true
at a join node.

5A phantom node is similar to a goal node except that it is already true in the situation
represented by its location in the plan. A phantom node is part of the plan because it
may become a goal node if the plan that precedes it changes. Therefore, the truth of a
phantom node must be monitored as the plan is being executed.

4.2. HTN PLANNING SYSTEMS 56

Table 4.3: Current Algorithm of General Replanner (adapted from [52])

Problem General Re-planner’s response

Purpose not achieved Redo
Previous phantom untrue Re-instantiate, then Retry
Unknown variable Insert-conditional
Future phantom untrue Retry
Precondition untrue Re-instantiate, the Pop-redo
Parallel post-condition untrue Insert-parallel

Sensemaking : Since the problem recogniser has the ability to recognise

problems in the plan and only six problems need to be checked, there will not

be a situation where a problem cannot be recognised. Therefore, sensemaking

is not necessary. However, at the same time, one can argue that sensemaking

and problem analyser co-exist as part of the problem recogniser.

Execution: After the general replanner has applied the appropriate re-

planning actions to the problems in the current plan, it sends to the planner

a new unresolved problem on which to perform planning. Once the plan is

ready, the planner gives it to the execution monitor for continued execution

and, at the same time, to monitor the execution of this ’new plan’.

4.2.2 O-Plan

4.2.2.1 Introduction

The O-Plan (Open Planning Architecture) [17] project explores the issues of

coordinated command, planning and control. The objective of the O-Plan

project is to develop an architecture with which different agents have task

assignment, planning and execution monitoring roles. The O-Plan comprises

three distinct components, each with distinct responsibilities (as shown in

Figure 4.3):

1. A User Interface that takes in the domain specification, initial state

and the goal state from the user.

2. A Plan Generator that is responsible for the plan generation.

4.2. HTN PLANNING SYSTEMS 57

3. An Execution System that consists of an execution monitor used to

gather information from the sensors or reports by the agents partici-

pating in the operation, in order to gain knowledge about the current

state of the world. The information gathered is used to detect prob-

lems, to determine their effects on the plan and hence to initiate a plan

repair process.

Figure 4.3: O-Plan overview [17]

O-Plan uses schemas to represent task decompositions. The Plan Gen-

erator receives a specific set of tasks to generate a plan. It then recursively

expands the high-level tasks, instantiating variables as it goes, into a set

of subtasks that will accomplish those tasks. A plan is then generated by

choosing suitable expansions for tasks in the plan and by ordering actions

and variable constraints that satisfy (and continue to satisfy) the conditions

of the effects and the use of other actions.

The following example code shows an online bookstore (ref. Section 2.4)

that is described by using schemas.

4.2. HTN PLANNING SYSTEMS 58

1 types item = (Textbook Fict ionbook) ;

types author = (Bishop King) ;

types t i t l e = (CSharp TheEyesOfTheDragon) ;

r e s o u r c e un i t s qty = count ;

r e s o u r c e un i t s p r i c e = count ;

6 r e s o u r c e un i t s d o l l a r s = count ;

r e s ou r c e t yp e s c on sumab l e s t r i c t l y { r e s ou r c e book (item Textbook)

(author Bishop) (t i t l e CSharp) (qty 5) (p r i c e 80)} ;

r e s ou r c e t yp e s c on sumab l e s t r i c t l y { r e s ou r c e book (item Fict ionbook)

(author King) (t i t l e TheEyesoftheDragon) (qty 10) (p r i c e 50)} ;

11 r e s ou r c e t yp e s

c on sumab l e s t r i c t l y { r e s ou r c e fund} = do l l a r s ;

task buy book ;

nodes

16 1 s ta r t ,

2 f i n i s h ,

3 ac t i on {purchase book } ;

o rd e r i ng s 1 −−−> 3 , 3 −−−> 2 ;

end task ;

21

schema purchase ;

expands {purchase book } ;

nodes

1 ac t i on { f i nd book } ,

26 2 ac t i on { t r a n s f e r fund } ,

3 a c t i on {purchase book } ;

c ond i t i on s

supe rv i s ed {book found} at 2 from [1]

31 supe rv i s ed { fund t r an s f e r e d } at 3 from [2]

supe rv i s ed {book purcahsed } at 4 from [3]

end schema ;

; ; ; P r im i t i v e s

36 schema f i nd ;

expands { f i nd book } ;

o n l y u s e f o r e f f e c t s {book found} = true ;

end schema ;

schema t r a n s f e r ;

41 expands { t r a n s f e r fund } ;

o n l y u s e f o r e f f e c t s { fund t r an s f e r e d } = true ;

end schema ;

schema purchase ;

expands {purchase book } ;

46 o n l y u s e f o r e f f e c t s {book purchased } = true ;

end schema ;

Listing 4.1: An online bookstore example in O-Plan

4.2. HTN PLANNING SYSTEMS 59

Lines 1-12 define the variables to be used for the expansion of the task

buy book (line 14). The resource that is defined consumable strickly

means that the set amount of the resource cannot be topped up.

The task buy book is comprised of three nodes, and the order of execution

is defined as start→ purchase book→ finish. The purchase book action

is expanded using the purchase schema, which in turn uses three primitive

schemas, namely find, transfer and purchase to aid its own expansion.

The output of the plan generated is shown in Figure 4.4.

Figure 4.4: Solution to the online bookstore problem in O-Plan

During the execution phase of a plan, the execution monitor is used to

gather information from sensors or reports by the agents that are participat-

ing in the operation, in order to gain knowledge about the current state of the

world. The information gathered is used to detect problems, to determine

their effects on the plan and hence to initiate a plan repair process.

When the execution monitor detects a problem, it sends a report to the

plan generator to indicate which actions in the plan have already been com-

pleted and what other events have occurred. A search is then performed to

check which effects of the action have been damaged by the event and what

needs to be reinstated.

A number of plan repair mechanisms are possible, depending on the cur-

rent situation:

1. Identify those parts of the plan that are intimidated by the changes in

the current situation;

4.2. HTN PLANNING SYSTEMS 60

2. Integrate subplan requirements into the plan; or

3. Generate a completely new plan.

In particular, there are two types of problems, namely Execution Failure and

Unexpected World Event, that are dealt by the O-Plan plan repair algo-

rithm [19]. The plan representation generated by O-Plan contains two tables

used by the plan repair algorithms to determine the consequences of failures,

namely the Table Of Multiple Effects (TOME) and the Goal Structure

Table (GOST). The plan contains nodes and each node has effects attached

to it. Effects can take place at either end of a node and they are recorded in

the TOME. The dependency of an effect on the node asserted is recorded in

the GOST.

An execution failure occurs when one or more of the expected effects at

the node-end fail to be asserted. This type of failure may cause problems

if the expected effects of the action are needed to satisfy the preconditions

of a later action. For example, if the begin of node 1-2 from end of 1

(depicted in Figure 4.5) fails to assert the condition as promised, then it may

cause those nodes that follow to produce a result that differs from the one

expected. To resolve such execution failure, an algorithm has been developed,

shown in Listing 4.2. The algorithm is used by the planning system to track

execution and initiate repairs, and it works as follows:

• Mark the node-end as having been executed.

• If Action (A) contains failed effects (e), then remove (RMV) the

corresponding TOME entries. If there are no failed effects, then no

repair is needed. Thus it can skip all the operations and jump to the

end.

• Determine those GOST entries (G) that are affected by e . If there are

none, then no repair is needed and it can skip all the operations and

jump to the end. If G exists, then search through the affected GOST

entries in turn and check the validity of the contributors.

4.2. HTN PLANNING SYSTEMS 61

• If after the validation process the contributors are still valid, the reduce

the contributors list, otherwise record GOST entry is “truly broken”

(g). If there is no truly broken G, then the repair is completed.

• For each truly broken g , post a KS-FIX6 agenda entry. When the

agenda entry is processed, the KS-FIX knowledge source will be in-

voked, and it will choose and apply the most satisfying repair method

to the GOST entry:

– Find an existing alternative contributor in the plan.

– Introduce a repair plan that asserts the appropriate effect. Any

new nodes will be linked after the net point (highlighted in Figure

4.5).

– Post a KS-CONTINUE-EXECUTION to continue execution after

the fixes have been made.

Figure 4.5: Nodes Relationship

Precondition : Mark the node−end as having been executed

2

begin

i f A conta in s e then

RMV cor re spond ing TOME en t r i e s

i f G then

7 search g

HAS ! (va l i d) con t r i bu to r

g i s t r u l y broken

post KS−FIX agenda

invoke KS−FIX knowledge source

12 post KS−CONTINUE−EXECUTION

JUMP end

HAS va l i d con t r i bu to r

JUMP end

6For more details on Planning Knolwedge Source see O-Plan Architecture Guide [50]

4.2. HTN PLANNING SYSTEMS 62

JUMP end

17 JUMP end

end

Listing 4.2: O-Plan Plan Repair Algorithm for Dealing with Execution Fail-

ure

Unexpected world events are defined as events that are not in the plan that

causes the planned actions to fail. They can be resolved by using the algo-

rithm shown in Listing 4.3, which works as follows:

• Add an Event Node (E) and mark it as having been already executed

(Figure 4.6).

• If there are any contributors who can no longer contribute, then remove

(RMV) them from the GOST and get a list of g .

• A contributor is removed in the following cases:

– The condition is at a node-end that has not been executed.

– The contributor is a node-end that has been executed.

– The unexpected world event has a conflicting effect.

• For each g , post KS-FIX agenda. When the agenda entry is processed,

the KS-FIX knowledge source will be invoked, using end of E as a

neck point.

• Add e at end of E .

• If there is no g , that means a resolution has been reached. Else, post

KS-CONTINUE-EXECUTION to continue execution after the fixes

have been made.

Figure 4.6: Linking of the Event Node

4.2. HTN PLANNING SYSTEMS 63

1 Add E

Mark E as having a l r eady been executed

begin

i f ! (c on t r i bu t e) then

6 RMV con t r i bu to r

GET g . l i s t ()

f o r each g

post KS−FIX agenda

11 add e to node−end E

post KS−CONTINUE−EXECUTION

end

Listing 4.3: O-Plan Plan Repair Algorithm for Dealing with Unexpected

World Events

4.2.2.2 Evaluation

The requirements for the O-Plan planning system self-healing Web service

composition is summarised in Table 4.4. The table presented is to be inter-

preted in the same way as Table 4.1.

Table 4.4: Mapping between self-healing requirements and O-Plan module

Self-healing requirements O-Plan

Planning and verification Plan generator

Run-time monitoring
Execution monitor
Plan repair algorithms

Analysis Knowledge sources
Sensemaking Knowledge sources

Execution
Plan generator
Execution monitor

Planning and verification: When the O-Plan is given a specific set of

tasks to generate a plan, it recursively expands the high-level tasks into a

set of subtasks which will accomplish those tasks. Plans are generated by

choosing suitable expansions for tasks in the plan and by including the set

of more detailed subtasks described by the chosen expansion. The ordering

of the subtasks and variable constraints are then satisfied to ensure that the

4.2. HTN PLANNING SYSTEMS 64

asserted effects of the actions satisfy (and continue to satisfy) conditions on

the use of other actions. The expansion and instantiation occur according to

a backtracking algorithm, returning the first plan that satisfies the problem

constraints. By ensuring that the constraints are satisfied, the planner can

ensure the correctness of the plan that is being generated.

Run-time monitoring : During execution of the plan, the execution mon-

itor gathers information from the sensors or from the agents to determine

the current state of the world. The information gathered is used to detect

problems, to determine their effects on the plan, and hence to initiate plan

repair. For each failing effect that is necessary for some other action to

execute, additional actions, in the form of a repair plan, are added to the

plan.

Analysis : The O-Plan uses the knowledge sources to determine the con-

sequences of unexpected events or of actions that do not execute as intended.

It is also responsible for making decisions on what actions are taken when a

problem is detected, and for making repairs to the affected plan. However,

there is no explanation on how a failure is represented.

Sensemaking : Since there is no explanation of a failure, all the reasoning

of unexpected events and failures is done through the knowledge sources. In

this case, the analysis and sensemaking can be viewed as a single operation.

Execution: After the repairing algorithm has been applied, the execution

is resumed and monitored by the execution monitor.

4.2.3 JSHOP2

4.2.3.1 Introduction

JSHOP2 [27] is a Java implementation of SHOP2 (Simple Hierarchical Or-

dered Planner 2) [37]. JSHOP2 is a domain-independent HTN planning

system based on ordered task decomposition. Ordered task decomposition

means that the planning system plans tasks in the same order that they will

later be executed.

4.2. HTN PLANNING SYSTEMS 65

Figure 4.7: JSHOP2 Compilation Process [27]

Figure 4.7 depicts the compilation process of JSHOP2. From the fig-

ure it is clear that the generation of the solution plan involves two phases,

each consisting of two different sets of inputs. The first set consisting of

domain description and domain-independent templates is fed into JSHOP2

for compilation. The second set consists of domain-specific planner (that is

the output from the compilation phase), and the problem description.

In the first phase, a domain description is fed into JSHOP2. The domain

description is composed of operators, methods, axioms and logical expression.

Both the operators and methods include logical expressions that describe

their preconditions. In JSHOP2, an operator takes the following form:

(: operator h pre del add [c])

where

• h is the operator’s head – an operator begins with an exclamation mark

and denotes a primitive task;

• pre is the precondition in logical expression form;

• del is a delete list and its elements could be any of the following:

– a logical atom

– a protection condition

4.2. HTN PLANNING SYSTEMS 66

– an expression

• add is an add list of logical atoms that has the same form as del;

• [c] is the operator’s cost. If omitted, the cost is 1.

A method is written in the following form:

(: method h [n1] C1 T1 [n2] C2 T2 [nk] Ck Tk)

where

• h is the method’s head (which is a task atom);

• Ci is the precondition in a logical expression form;

• Ti is the method’s tail (which is a task list);

• ni is the name for Ci Ti pair. These names can be omitted and a unique

name will be assigned for each pair.

The following example (Listing 4.4) considers an online bookstore.

1 ; ; ;

; ; ; Dec la r ing the data

; ; ;

(: operator (! purchase ?a) () ()

((have ?a)))

6 (: operator (! t rans fe rFunds ?amount) () ()

((f und s t r an s f e r r ed ?amount)))

(: operator (! purchase ?amount) () ()

((f und s t r an s f e r r ed ?amount)))

; ; ;

11 ; ; ; The methods f o r the ta sk s

; ; ;

(: method (buy ? author ? t i t l e ?amount)

((s h o p l i s t (item ? item) (author ? author)

(t i t l e ? t i t l e) (qty ? quant i ty)

16 (p r i c e ? p r i c e))

(c a l l >= ?amount ? p r i c e))

((! purchase ? author) (! noproblem ? author)

(! t rans fe rFunds (c a l l − ?y ? p r i c e)))

)

Listing 4.4: An online bookstore domain

4.2. HTN PLANNING SYSTEMS 67

The example shows three primitive operations that are responsible for check-

ing the availability of the book, checking for sufficient funds and initiating

payment.

(:operator (!purchase ?a) () () ((have ?a))) checks the availabil-

ity of the book(a). The precondition and the delete list were left empty,

because there is no precondition that needs to be satisfied at this stage

and nothing needs to be removed from the list. Furthermore, (:operator

(!transferFunds ?amount) () () ((fundstransferred ?amount))) is

the basic operation to transfer the funds from the user. Lastly, (:operator

(!purchase ?amount) () () ((fundstransferred ?amount))) is used to

confirm the purchase by checking whether the amount required to purchase

the book has been successfully transferred into the account or not.

The method that follows from the operations is responsible for the actual

purchasing process. It first takes in a list that is the description of the book

the user requested and checks for availability. The availability of the book is

the first precondition that needs to be satisfied. Secondly, it checks for suffi-

cient funds in the user’s account using (call >= ?amount ?price). This is

the second precondition that needs to be satisfied. If both preconditions are

satisfied, then it will process the transfer and complete the purchase.

The axioms are ’horn clause’-like statements that can be used to infer

preconditions that are not explicitly presented in the current state of the

world. An axiom has the following form:

(: − a [name1] E1 [name2] E2 [namen] En)

where

• a is the axiom’s head, and

• [namei] is the name of the expression Ei.

Besides the domain description, another set of input to the JSHOP2 is

the domain-independent templates for methods, operators, axioms, logical

expressions and SHOP2 algorithms. For each corresponding element occur-

ring in the domain description, the template will be instantiated accordingly.

4.2. HTN PLANNING SYSTEMS 68

The result after the compilation is a piece of code that implements the behav-

iour of the corresponding element and a specific instance of SHOP2 algorithm

for the domain.

To solve the action problem in a compiled domain, one needs to know

the domain of the problem before it could generate any plans as output.

Therefore, a problem description has to be compiled. The following syntax

is used to define the domain:

(defdomain domain− name (i1 i2 in)

where

• domain−name is a symbol which represents the problem domain, and

• ii could either be an operator, a method or an axiom.

The problem description consists of an initial state and a task list and it

has the following form:

(defproblem problem− name domain− name (a1 a2 an) T)

where

• problem − name and domain − name are symbols that represent the

problem and the problem domain respectively;

• ai is a logical atom, and

• T is a task list.

The following code (Listing 5.1) illustrates an online shopping problem
domain (ref. Listing 4.4).

(defprob lem problem Webservice

((s h o p l i s t (item Textbook) (author Bishop)

(t i t l e Java) (qty 1) (p r i c e 65))

)

5 ((buy Bishop Java 70))

)

Listing 4.5: An online bookstore problem domain

4.2. HTN PLANNING SYSTEMS 69

In this problem domain, we specify the book we would like to purchase

as a shoplist, and the task that needs to be performed is the purchasing of

the book specified. (buy Bishop Java 70) denotes that the book we would

like to purchase is by Bishop called Java and we have $70.

A problem template is then again instantiated according to the problem

description. The result is an execution code (in Java) which can be run to

solve the problem. The solution to the problem is represented as a sequence

of actions. An example of the plan generated from the online bookstore is

shown in 4.8.

Figure 4.8: Solution to the online bookstore problem in JSHOP2

4.2.3.2 Evaluation

SHOP2/JSHOP2 does not follow the approach of the SIPE-2 and O-Plan,

where monitors are used during run-time to monitor the execution of the

plan and to react to unexpected events as they may arise. Instead, JSHOP2

generates a plan based on the current world state and executes the plan later.

It guarantees that a plan will be found if all the necessary requirements are

satisfied at the time of plan generation. As such, JSHOP2 lacks the built-in

notions of unexpected events. That is, we have to assume we know everything

about the state of the world, and know exactly how our actions will affect

the state. Therefore, there will never be a situation where the state of the

world is not what was expected. However, the effort required to create a

knowledge base of domain-independent information can be tedious.

Some advantages of SHOP2/JSHOP2 include ordered task decomposi-

tion, the combination of HTN decomposition and the reasoning power in the

4.3. SUMMARY OF EVALUATION 70

preconditions. It provides the ability to write domain-dependent knowledge

bases that contribute to efficient planning performance. The ability to plan

in the order that those tasks will be performed makes it possible to know

the current state of the world at each step in its planning process. In this

way, it is possible to incorporate significant reasoning power in the precon-

dition evaluation. While HTN decomposition focuses the search on the goal,

the reasoning over the precondition prunes the search space by eliminating

inapplicable methods and operators in the search spaces.

4.3 Summary of Evaluation

The preceding sections evaluate each individual HTN planning system with

respect to the list of self-healing requirements identified in Section 3.4. Table

4.5 summarises the findings that emerged from the evaluation.

Table 4.5: Evaluation summary of HTN planner

Planning
system

Monitoring Analysing Sense-
making

Replanning Executing

SIPE-2 Execution
monitor

Problem
recogniser

Problem
recogniser

General re-
planner

Planner

Replanning
actions

Execution
monitor

O-Plan Execution
monitor

Knowledge
sources

Knowledge
sources

Replanning
algorithms

Plan gen-
eration
Execution
monitor

JSHOP2 Assume to have knowledge about the world at any given time

The features offered by SIPE-2 and O-Plan satisfy the self-healing require-

ments identified. On the other hand, JSHOP2 takes a different approach as

opposed to SIPE-2 and O-Plan. In particular, the plan representation of

JSHOP2 is an ordered network, meaning that the planner plans for tasks

in the same order that they will later be executed. Using this approach

greatly reduces the complexity of the planning process by avoiding some

task-interaction issues.

4.3. SUMMARY OF EVALUATION 71

Another feature that distinguishes JSHOP2 from the other two HTN

planning systems is the way it reacts to unexpected events and failures. Tech-

nically speaking, JSHOP2 does not have any run-time monitoring techniques

available. However, when specifying the domain description, the developers

can put in various methods that can be adopted during plan generation. In

the case where the method does not generate a desirable plan, an alternative

method is selected, and so forth.

That means the domain should have sufficient knowledge of the world

state to anticipate any changes in order to write methods to handle unex-

pected events or failures. Having to anticipate all the world states is a tedious

procedure and nearly impossible to do in a real-life domain. If the planner

fails to find any methods that would generate a satisfactory plan, it will

return a ’zero plan found’.

In terms of monitoring, SIPE-2 and O-Plan both have a run-time monitor

available. While SIPE-2’s execution monitor constantly receives information

about the plan that is being executed and about unexpected events as they

arise, it does not monitor the world directly. Instead, upon encountering

unexpected events, it translates their description into its own language before

replanning is initiated. Information on how the translation is performed is not

clear. By performing the translation, the monitor could potentially hamper

the performance of the replanning. However, considering the fact that SIPE-

2 supports resource constraints, the translation process is not going affect

the overall performance. This is because the current available resources will

be checked periodically against the resources required for the translation. In

O-Plan, sensors and agents are used for monitoring the plan and reporting

unexpected events and/or failures to the execution monitor. Descriptions of

these failures are not available.

According to the self-healing cycle (ref. Figure 3.7), the run-time mon-

itor should first try to re-execute the plan once it has detected a problem.

Replanning should be performed only if re-execution has failed. The Web

service that it is trying to access could probably be slow, and re-executing

the plan a few times could potentially resolve the problem. However, none of

the HTN planners has the ability to automatically re-execute the plan before

4.3. SUMMARY OF EVALUATION 72

performing replanning. In the Web service paradigm, this can cause lots of

unnecessary replanning. SIPE-2 and O-Plan both offer mixed-intuitive plan-

ning, which means the user can interact with the planning system during

planning. In this way, users would manually initiate the re-execution of the

plan. To re-execute the plan in JSHOP2, we have to force the planner to call

the same method repeatedly.

During replanning, the nature of the problem needs to be analysed and

suitable replanning actions must be applied. In SIPE-2, the problem recog-

niser is responsible for both analysing and reasoning (i.e. Sensemaking) about

the problems. Given the representation of the SIPE-2 plan, there are only six

problems that could occur, hence there is a predefined finite set of problems.

The replanning part of SIPE-2 tries to change the old plan, using the heuris-

tics to retain significant parts of its plan wherever possible. An important

contribution of SIPE-2 is its general set of replanning actions that are used

to modify plans. These replanning actions are used in the replanner and have

the potential to facilitate the addition of domain-specific knowledge about

error recovery, as the user could specify which replanning actions to take in

response to certain anticipated errors. After the problems have been success-

fully identified, the general replanner applies suitable replanning actions to

the problem and the end result is a plan with an unresolved goal. This plan

is then passed to the planner to perform the necessary planning in order to

come up with a solution. In many cases, SIPE-2 is able to retain most of the

original plan by making some modifications, and also capable of shortening

the original plan when serendipitous events occur.

O-Plan offers two distinctive plan repair algorithms that deal with: 1)

execution failure, and 2) unexpected world events. A number of knowledge

sources are used when dealing with plan repairs. The knowledge sources are

responsible for reasoning about the problems detected and deciding what

actions need to be taken to repair the affected plan. Plan repair is done

through backtracking. During replanning O-Plan tries successive combina-

tions of schemas and variables, without any indication of whether these com-

binations are likely to be better or worse than the ones it has tried before.

By trying various combinations in such a way, O-Plan may perhaps exhaust

4.4. CONCLUSION 73

its resources before finding an optimal plan.

4.4 Conclusion

In this chapter three HTN planning systems - SIPE-2, O-Plan and JSHOP2

- were chosen for detailed evaluation against the self-healing requirements

identified in Chapter 3. The evaluation outcomes revealed the capability of

HTN planning systems in self-healing Web service composition at a theo-

retical level. In particular, reactive strategy planning, SIPE-2 and O-Plan,

seems more promising than JSHOP2. What remains, is to demonstrate the

practical applications of the HTN planning systems in self-healing Web ser-

vice composition processes. Out of the three planning systems discussed in

this chapter, the author was unable to make use of the SIPE-2 due to licens-

ing issues. In the next chapter experiments using O-Plan and JSHOP2 are

conducted to address their practical applications in self-healing Web service

composition.

74

Chapter 5

Experiments

5.1 Introduction

At this point the reader should be conversant with the self-healing Web

service composition problem. Chapter 2 provided an overview of the com-

position process and its relevant technologies. Next, Chapter 3 clarified the

problems in Web service composition and identified five requirements needed

for self-healing Web service composition. Lastly, Chapter 4 examined the

available HTN planners, and to this end the features of each planner have

been mapped out to the requirements identified in Chapter 3. What remains

now is to check the applicability of HTN planners in real application with

respect to the faults and requirements mentioned in Chapters 3 and 4.

Chapter 5 reports on the experiments conducted on the applicability of

the HTN planners in self-healing Web service composition. The experiments

were conducted using the O-Plan and JSHOP2 planners. The goal of the

experiments was to test the proof-of-concept as was identified in the preceding

chapters.

5.2 Experimental Setup

Two planners were chosen for our experiments, namely O-Plan and JSHOP2.

Our choice was based on the evaluation conducted. O-Plan was found to sat-

isfy all the requirements of the self-healing cycle, while JSHOP2 has to make

5.2. EXPERIMENTAL SETUP 75

assumptions about the current state of the world. Thus it was considered

worthwhile to investigate whether the concept of plan first and execute later

has any advantages over a reactive strategy planning.

The experiments are of a proof-of-concept nature. Their focus is not on

evaluating the computational properties per se. In fact, the experimental

studies are intended to obtain basic insights into the following questions:

• How does an HTN planning system match the requirements of self-

healing Web service composition?

• What faults can be handled by the HTN planning system?

• Can an HTN planning system handle unknown faults?

Unknown faults are defined as faults that cannot be identified as one of

the groups in our taxonomy.

To illustrate how O-Plan and JSHOP2 fare in answering the above ques-

tions, the online shopping domain described in Section 2.4 will be used for

the experiments.

For the purpose of replanning, we expanded the shopping domain to in-

clude two dummy web catalogues and a dummy credit checker as rebinding

services. Figure 5.1 depicts a detailed operation taking place in the shop-

ping domain. The Initial State is responsible for initiating the composition.

It sends through a shopping service request in the form of SR=(ItemList),

which defines one type of problem in the shopping domain. For the sake of

simplicity, our experiments will look only at the online bookstore problem.

An example of a shopping list (shopping for two items) is as follows:

((s h o p l i s t (

((item Textbook) ((author Bishop)

(t i t l e ”Java Gently ”)) (qty 1))

4 ((item Fict ionbook) ((author King)

(t i t l e ”The Eyes o f the Dragon ”)) (qty 1))

)))

Listing 5.1: An example shopping list for the online bookstore problem

Each Web catalogue consists of a set of items and their features. For each

item, information on its features, prices and current availability is presented.

The current availability of an item is also updated during execution.

5.2. EXPERIMENTAL SETUP 76

Figure 5.1: An expanded shopping domain

After a request has been sent through, the planning system tries to es-

tablish a plan that will satisfy the requirements. This step involves searching

through the current participating Web catalogues that have the items spec-

ified and checking on their availability. Once such an item has been found

and all the requirements have been met, it will go through to the check-

out process. The credit checker checks for sufficient funds before payment

is processed, and a plan is generated. During the execution of a plan, var-

ious verification and monitoring measures have to be taken into account.

For example, if the current participating Web catalogues fail to satisfy the

requirement, a recovery mechanism is needed to compromise the situation.

The dummy web catalogues and dummy credit checker are there to act as

replacements in the event that the current participating Web services fail to

deliver their service as expected.

In Table 5.1, a list of test cases is presented, together with the effects

we are trying to achieve when faults (cf. Section 3.3) are triggered (injected

manually into the planning system).

5.2. EXPERIMENTAL SETUP 77

Table 5.1: Test cases of an online bookshop domain

Case Test Case Effects

1 Get the price of
a specific item

- Unresponsive Web service
- Slow service
- Incorrect result

2 Purchase a
specified item

- Unresponsive Web service
- Slow service
- Incorrect result

3 Find the best
prices of a
specified item;
then purchase

- Unresponsive Web service
- Slow service
- Incorrect result
- Incoherent results

The following three strategies are used for each of the faults triggered:

• Strategy 1: Generation of a plan followed by a single attempt at exe-

cution.

• Strategy 2: Generation of a plan, followed by multiple attempts at

execution. If failures occur, the original plan is re-executed.

• Strategy 3: Generation of a plan, followed by multiple attempts at exe-

cution. If failures occur, replanning is performed, followed by execution

of the new plan.

Table 5.2 summarises the failure setting and the strategies to be followed:

5.3. HYPOTHESES 78

Table 5.2: Failure settings and strategies

Strategies Fault setting Expected Outcomes

Strategy 1 Without fault Execute normally
With fault Fail

Strategy 2 Without fault Execute normally
With fault Possible to continue the execution if

faults were caused by slow and unre-
sponsive service.

Strategy 3 Without fault Execute normally
With fault Execute normally after replanning

5.3 Hypotheses

In view of the goal of our experiments, the following hypotheses were formu-

lated:

Hypothesis 1: HTN planning will be able to find a plan if a plan exists

and it will execute this plan successfully.

Hypothesis 2: To re-execute a plan takes less time than to repair the plan.

However, this is only possible if the Web service has not failed completely

(i.e. due to slow and unresponsive service).

Hypothesis 3: The HTN planning system is able to perform replanning

when re-execution of the plan fails. Replanning may also identify alternative

shorter plans.

Hypothesis 4: Incoherent results will not occur.

5.4 Results

In this section, the results of our experiments will be discussed. For illustra-

tive purposes, test case 3 was chosen to demonstrate the power of O-Plan

and JSHOP2 in self-healing Web service composition. For full details of

5.4. RESULTS 79

other test cases in O-Plan and JSHOP2, please refer to Appendices A and B

respectively.

Based on the fault outcomes and their origin (deduced from Table 3.2

(Section 3.3)), the relevant faults to be triggered were selected in order to

obtain the desirable effects as shown in Table 5.3. The first column of the

table shows the faults to be triggered in the experiments and their corre-

sponding effects are shown in the second column.

The faults related to SLA and QoS will not be tested in the experiments,

since they are non-functional and beyond the scope of this study. The aim

of the current study was to concentrate only on the functional aspect of the

composition.

Table 5.3: Faults and effects

Faults to be triggered Effects

Interface change
- Unresponsive Web service
- Incorrect result
- Incoherent results

Time-out
- Unresponsive Web service
- Incorrect result
- Slow service

Workflow inconsistency
- Unresponsive Web service
- Incorrect result
- Incoherent results

5.4.1 Experimental Results (O-Plan)

Given that the Task Formalism is correctly defined, we would like to generate

a plan in O-Plan that satisfies a specific problem. A plan generated in O-

Plan does not show the value of each action taken; instead it shows what

actions need to be taken in order to satisfy the user’s request. For example,

if we would like to purchase a book authored by Bishop called Java for the

best price available, then the following actions (refer to Listings 5.2) need to

be performed within a task to generate a plan.

5.4. RESULTS 80

task buy book a l l c a s e s ;

vars ? author=?{not none } , ? t i t l e =?{not none } ;

4 nodes

1 s ta r t ,

2 f i n i s h ,

3 ac t i on { g e t p r i c e ? author ? t i t l e } ,

4 a c t i on {buy book ? author ? t i t l e } ,

9 5 ac t i on { g e t b e s t p r i c e ? author ? t i t l e } ,

6 a c t i on {purchase book } ;

o rd e r i ng s 1 −−−> 3 , 3 −−−> 4 , 4 −−−> 5 , 5 −−−> 6 , 6 −−−> 2 ;

end task ;

Listing 5.2: O-Plan code for purchasing a book

The task has local variables that capture the user request and the actions

need to be performed in order to generate a plan. Each action is defined as

a number of schemas, which are responsible for network expansion. Once all

primitive actions have been identified, they are solved individually, and the

desired effect is achieved. The output of case 3 in our example is shown in

Figure A.5 in Appendix A.

Observation: Given the correct semantics of the request, O-Plan was

able to generate a plan that satisfies the requirement. O-Plan goes through

a series of steps and eventually ends the plan on NODE-2, at which stage it

is executed properly. It uses a backtracking mechanism for plan generation,

so if there is such a goal that can be reached, then the plan will find it.

Various faults were triggered to test O-Plan’s response. In O-Plan the

specification of a fault is difficult, and often there is no clear distinction be-

tween different faults. Therefore, we randomly removed the available services

in order to trigger faults such as interface change and workflow inconsistency.

When we used strategy 2 (re-execution), we were unable to recover any in-

terface change and workflow inconsistency faults. And it terminiates the

execution at the end node (NODE-4).

Each task in O-Plan may be given a specific time frame for execution. In

the event of the task failing to meet the time frame specified, that particular

task is skipped and the task that follows is commenced with. However, this

implies that a failure has occurred. Re-execution of the plan may fix the

problem, depending on execution of the task. If re-execution is successful,

5.4. RESULTS 81

the normal path is followed and the process ends on NODE-2. If not, it will

end on NODE-4.

Observation: When a time-out fault is triggered, it is possible that the

original plan will be selected once again after re-execution. However, when

interface change and workflow inconsistency faults are triggered, re-execution

of the plan cannot fix the problem.

From our observation we noticed that strategy 2 (re-execute) was able

only occasionally to fix the time-out faults and it was not able to fix any

other faults that were triggered. Therefore, strategy 3 was next applied to

test O-Plan’s ability in replanning. Figure A.6 (in Appendix A) illustrates

a plan generated after replanning has been applied to the problem. Various

contingency plans were provided to handle faults as they may arise. In the

event of the book with a specific price being out of stock (see code below),

then either NODE-4 or NODE-8 will be reached, depending on the input.

For example, the lowest price of the book Java by Bishop in the database

is $35. However, the quantity counter of the book that is sold at this price

indicates that it is out of stock. Therefore, the operation will be terminated

and alternatives will be looked for.

resource_types consumable_strictly {resource book

(item Textbook) (author Bishop) (title Java) (qty 0) (price 35)};

The replanning procedure goes through each node, starting from NODE-

9, moving up to NODE-6 and then NODE-5 if necessary, to look for a plan

that can satisfy the user request. If such a plan exists, then it will exe-

cute normally and the process will end on NODE-2. NODE-3 ACTION UN-

AVAILABLE TITLE and NODE-7 ACTION UNAVAILABLE AUTHOR are

flags used to determine availability after a plan has been generated of that

specified book. In our test cases, the quantity counter of the book we pur-

chased indicated zero, and therefore created a flag to report that the book

was no longer available.

Observation: Replanning was able to fix all the faults that had been

triggered by choosing alternative plans. Despite the incomplete information

to the planner, it was able to reason upon the given input and performed

5.4. RESULTS 82

replanning based on this information. However, if none of the input can be

reasoned upon, O-Plan will simply return an error message indicating that

it is not possible find a plan, for example:

Plan option n - Planner out of alternatives

where n is the number of the task that you chose to run.

5.4.2 Experimental Results (JSHOP2)

Given that the problem domain and the problem description are correctly

defined, we would like to know whether JSHOP2 is capable of generating

a plan to solve a specific problem. For example, we would like to pay the

best price for the book Java authored by Bishop and the maximum amount

that we are willing to pay is $100. In this case the request will look as

follows: (getBestPrice db Bishop Java 100). During the experiment, we

sent through multiple requests and the results showed that the planning

system is indeed able to generate a plan and execute successfully if a plan

exists. An example of the request mentioned above and the corresponding

output is shown in Listing 5.3:

1 plan (s) were found :

2

Plan #1:

Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop java 20 . 0)

7 (! purchase bishop java 20 . 0)

−−−−−−−−−−−−−−−−−−−−

Time Used = 0.016

Listing 5.3: Plan for case 3 in JSHOP2

During the plan generation process, JSHOP2 goes through a list of meth-

ods and makes use of the methods that are appropriate to the current prob-

lem. When a method is invoked, the preconditions and constraints are

checked. Thus, it provides verification of the plan that is being generated.

Observation: When the request and the methods that cater for the

world condition are correctly defined, JSHOP2 will be able to generate a

5.4. RESULTS 83

plan that satisfies the requirement. Various faults are triggered to test the

resilience of the composition. The first fault that we looked at was the fault

triggered by interface change. This fault can result in unresponsive Web

service, as well as incorrect and incoherent results.

(getBestPrice db Bishop Java 100)

(getBestPrice db Bishop)

The request was changed so that it would contain only the name of the

author. The results, using Strategy 1, showed that the planning system was

not able to generate a plan to reach a desirable output. Our request was

then executed multiple times, and the same results were generated. After

several consecutive failed attempts to generate any plans, strategy 3 was used.

To incorporate replanning, multiple methods were introduced with various

parameters that cater for all possible situations. The results after replanning

showed all the books that were authored by Bishop. It was discovered that if

there were no alternative methods to cater for any interface change, JSHOP2

was not able to generate any plan.

Observation: When an interface is changed, it causes the service to

become unavailable (i.e. unresponsive). Since the service cannot be called

upon, JSHOP2 returns the result ’no plan found’. Of course, one cannot

conclude that it returns an incorrect result, yet to return no result is also

not desirable. Therefore, from the user’s point of view, it indeed provides an

incorrect result. Lastly, regardless of the number of re-executions, the results

do not vary during execution. Henceforth it seems that incoherent results

will not occur when a plan is generated using JSHOP2.

The next fault triggered was the time-out fault. As was expected, JSHOP2

was unable to generate a plan (strategy 1), even after several re-execution

attempts (strategy 2). The replanning strategy was then implemented. To fa-

cilitate such replanning mechanism, the replanning method was incorporated

in the domain description. The result after replanning was that we found

the best price for the book Java by Bishop and the purchase process was com-

pleted. ((!replan ?author) (reassignBestPrice ?s ?newPrice ?author

?title)) was responsible for initiating the replanning process. It called

5.4. RESULTS 84

upon the alternative reassignBestPrice method to perform the operation

of finding the best price.

(: method (r e a s s i gnBe s tP r i c e ? s ? l ? author ? t i t l e)

((s h o p l i s t (item ? item) (author ? author) (t i t l e ? t i t l e)

(qty ? quant i ty) (p r i c e ? p r i c e))

(lowest (l owe s tPr i c e ? lowest))

5 (c a l l <= ? p r i c e ? lowest)

(a s s i gn ? lowest ? p r i c e)

)

((! d i s p l a yPr i c e ? author ? t i t l e ? p r i c e)

(! purchase ? author ? t i t l e ? p r i c e))

10)

(: method (getBestPr i ceUnrespons ive ?db ? author ? t i t l e ? newPrice)

(f o r a l l (? s)

(s h o p l i s t ? s)

15 ((in ? s ?db)

((c a l l <= ?newPrice ? p r i c e)

(a s s i gn ? newPrice ? p r i c e)

)

)

20)

(

((! r ep lan ? author) (r e a s s i gnBe s tP r i c e ? s ? newPrice ? author ? t i t l e))

)

)

Listing 5.4: Re-planning method for time-out fault

Observation: A time-out fault not only causes the service to become

unavailable, but also slows down the service. Since the service cannot be

reached, the result returned by JSHOP2 is ’no plan found’. Thus, for the

same reason that an interface change causes the incorrect result, the time-out

fault also produces an incorrect result.

Lastly, the workflow inconsistency fault was triggered. It was observed

that the first two strategies did not work in response to workflow incon-

sistency. The replanning mechanism was able to pick up the fact that the

book title was misspelt and returned all the books by this author. Some

would have expected the planner to return results that contained only the

Java books. However, based on the knowledge presented, the planner only

acknowledged that the book title does not exist, but recognised the author.

As a result, it returned all the books written by the author concerned.

5.4. RESULTS 85

5.4.3 Summary of Experimental Results

In Section 5.3, a number of hypotheses were proposed regarding the ability of

O-Plan and JSHOP2 in self-healing Web service composition. These expecta-

tions will be discussed next in the light of the presented results. Referring to

the hypotheses that were established at the beginning of these experiments,

the following can be noted:

Hypothesis 1: [HTN planning will be able to find a plan if a plan exists

and it will execute this plan successfully.] This was confirmed in all cases.

Hypothesis 2: [Re-execute a plan takes less time than to repair the plan.

However, this is only possible if the Web service has not failed completely

(i.e. due to slow and unresponsive service).] Unless it changed the method

in the domain description, JSHOP2 was unable to resolve the problem that

had been caused by the unresponsive service. O-Plan, on the other hand,

occasionally succeeded in fixing the problem, depending on each individual

execution.

Hypothesis 3: [HTN planning system is able to perform replanning when

re-execution of the plan fails. Replanning may also identify alternative shorter

plans.] During replanning, O-Plan generated various alternative plans. How-

ever, the plans generated were not shorter than the original ones.

Replanning in JSHOP2 did not return a shorter alternative plan. Instead,

in most case, it returned more alternative plans with various combinations.

For a more detailed description, see the results shown in Appendix B: Table

B.1 (Interface changed and incorrect service faults).

Hypothesis 4: [Incoherent results will not occur.] This was confirmed.

Each plan generated was executed multiple times throughout the course of

the experiments to ensure that the results were coherent.

Based on our observations, answers can now be provided to the questions

that were set out at the beginning of this chapter, namely:

5.4. RESULTS 86

Q: How does an HTN planning system fit into the requirements of

self-healing Web service composition?

O-Plan fulfils the self-healing requirements for Web service composition,

except for the fact that re-execution of the plan has to be triggered manually

by the user.

JSHOP2 partially fulfils the self-healing requirements for Web service

composition, namely planning and verification, and execution without mod-

ification of the domain specification. The other requirements execution

monitor, analyser, sensemaking and replanning are implemented as meth-

ods in the domain specification by the developer. Lastly, re-execution is done

manually by the user.

Q: What faults can be handled by the HTN planning system?

O-Plan is able to handle interface change and workflow inconsistency faults.

However, the exact details of how the planner describes the faults are un-

clear. (In our experiments the available Web services were randomly removed

in order to trigger the faults.) Furthermore, each task in O-Plan is given a

specific execution time-frame. If the task fails to meet a specific time-frame,

it will be re-executed and sometimes such faults can be fixed. Alternatively,

replanning will generate an alternative path for execution. O-Plan therefore

proves to have the ability to handle time-out faults.

JSHOP2 is also able to handle the time-out, interface and workflow in-

consistency faults. However, this is done through the use of methods defined

in the domain specification.

Q: Can an HTN planning system handle unknown faults?

Since the exact details of how the faults are described in O-Plan are un-

known, it is difficult to pinpoint whether it is possible to handle unknown

faults. It was observed that if none of the inputs can be reasoned about by

the planner, then it is unable to generate a plan. On the other hand, if one

of the inputs to the planner can be reasoned about, then it is able to gener-

ate a plan. Therefore, it was concluded that O-Plan may be able to handle

unknown faults as long as one of the inputs to the planner can be reasoned

5.5. CONCLUSION 87

about.

JSHOP2 can partially handle unknown faults, provided that at least one

of the parameters in the query is valid. The result showed that JSHOP2 was

unable to pinpoint the exact problem (the unknown fault), and therefore it

returned all the results that contained valid parameters. More details can be

found in Appendix B: Listing B.6.

5.5 Conclusion

This chapter presents the practical results of HTN planning systems in self-

healing Web service composition. Starting with the experiments, the book-

store example shown in Figure 2.5 (Section 2.4) was refined to incorporate

a set of alternative services for replanning purposes. A list of faults to be

triggered and their effects were deduced from Table 3.2 (Section 3.3), which

aided the investigation of how HTN planning systems respond to those faults.

The results of our experiments were presented, and the faults and HTN

planning systems’ response to those faults were examined according to the

model defined in Section 3.4. After summarising the results of these ex-

periments, it was concluded that the HTN planning systems can indeed be

used for self-healing Web service composition. Moreover, reactive strategy

planning has proven to have advantages over planning that plan first and

execute later, as it does not have to make assumption and predict the world

at design-time.

This chapter completes the main contents of the dissertation. The next

and final chapter will discuss the achievements of the current study and draw

some general conclusions from them. Recommendations on possible future

work will also be presented in Chapter 6.

88

Chapter 6

Conclusions and

Recommendations

6.1 Summary

In the introduction to this dissertation, it was stated that although the Web

service paradigm allows applications to electronically interact with one an-

other over the Internet, the integration of Web services with respect to failure

handling is still lacking at this point. Self-healing Web service composition

was selected as the topic for discourse.

Throughout the current study, various problems associated with Web ser-

vice composition were encountered. To better understand each of these prob-

lems, a fault taxonomy was proposed. The identification of classes of faults

has helped to abstract the problem and organise new faults to automatically

identify the most suitable reactions. Three categories of faults were defined

and discussed, namely physical faults, development faults and interaction

faults. These three categories were further expanded to incorporate three

distinctive groups of viewpoints to add knowledge about where the faults

originated from. The viewpoints included the phase of occurrences, system

boundaries and system dimensions. The fault taxonomy that was presented

also gave rise to the issue of fault recovery and continued process execution.

From this, a list of self-healing requirements for Web services composition

was identified. The requirements identified were used to construct a self-

6.2. LIMITATIONS 89

healing cycle, which in turn demonstrated how a composition should react

when an unexpected event occurs during the execution.

To facilitate the use of the self-healing cycle proposed, three HTN plan-

ning systems were evaluated based on the requirements defined. Reasons

as to why a particular module of the planning system satisfies a particular

requirement was also offered. Based on the evaluation outcomes, it was ob-

served that the HTN planning systems were able to perform self-healing Web

service composition.

The theoretical evaluation of the HTN planning systems was substanti-

ated through practical experiments. The purpose of the experiments was to

investigate the impact of HTN planning systems in self-healing Web service

composition. A series of tests was conducted to gauge how the HTN planning

systems withstand both normal and abnormal behaviours of the composition

process. The test results suggested that HTN planning systems were able

to meet the self-healing requirements. The results also suggested that they

have a significant impact on retaining the correctness of the composition even

during unexpected occurrences.

6.2 Limitations

Throughout this dissertation, several limitations have been identified and

they are:

• Only a single domain has been investigated. The test scenario

presented in this dissertation, namely a shopping domain, was limited

to sending a shopping list consisting only of books. Only three test

cases were use for the experiments. Such limitation was mainly due to

the manual injection of faults into the planning system.

• A limited set of faults have been triggered. Only three faults

were triggered in the experiments and they were not formally specified.

Faults should be expressed in a specification language, and the devel-

opment of a fault simulator can then be used to inject faults into the

planning systems for testing purposes. In such a way, even the small-

6.3. RECOMMENDATIONS 90

est defects which may remain hidden due to manually injection can be

ironed out, especially the faults that are related to QoS and SLA (non-

functional aspects of a composition). However, this was considered

beyond the scope of this dissertation.

• Only HTN planning systems have been studied. Studies of

other planning systems and their applications in self-healing Web ser-

vice composition should be carried out in order to compare and identify

their strengths and weaknesses.

6.3 Recommendations

With regard to Web service composition, contributions have been made in

this dissertation by introducing a novel fault taxonomy, as well as defining

various requirements that are important in the self-healing composition cycle.

The concept of applying HTN planning systems in a self-healing composition

context was also presented. Throughout this study several new directions for

future research presented themselves. These ideas are summarised briefly

below.

Formal specification of fault taxonomy The fault taxonomy for the

composition of services, introduced in Section 3.3, identifies possible causes

and effects for each of the faults. The purpose of the taxonomy was to

determine under which categories of fault detected faults would fall. In order

to perform such a cross-reference check, a clear connection between the faults

appearing in the taxonomy and a detected fault is needed. Therefore, possible

future research could be conducted to formally specify the fault taxonomy in

a representation language, so that it could fulfil its purpose.

An evaluation framework The self-healing requirements presented in

Section 3.4 were intended for the evaluation of tools/systems in self-healing

Web service composition. At the same time, they would also serve as a

guideline for the development of self-healing Web service composition ap-

plications. Selecting a tool/system that satisfies these requirements can be

6.3. RECOMMENDATIONS 91

problematic, since the existing work on automatic failure recognition and

recovery is based on different techniques and they tend to address only a

certain type of faults. Therefore, possible future research could focus on the

development of an evaluation framework that can analyse the capability of

a tool/system and realise the possible improvements that would meet the

requirements of the self-healing cycle.

Robust service composition methodology Further investigation into

fault behaviour patterns can be used to understand where and when faults

will normally occur. This investigation will reveal a behaviour pattern of

faults, which will in future lead to the question of how monitoring and re-

covery mechanisms can co-exist with the faults. Such research work could

culminate in a methodology for robust Web service composition.

92

Appendix A

Shopping Domain in O-Plan

This appendix describes the bookstore shopping domain, implemented in

O-Plan version 3.37, that was used in Chapter 5.

A.1 Task Formalism

The bookstore domain is defined as Task Formalism (TF) in O-Plan, and

the code is given below:

resource_units dollars = count;

types item = (Textbook Fictionbook);

types author = (Bishop King);

types title = (CSharp Java DesignPatterns TheEyesOfTheDragon);

resource_units qty = count;

resource_units price = count;

resource_units lowest = count;

resource_types consumable_strictly {resource book (item Textbook) (author Bishop) (title CSharp)

(qty 1) (price 80)};

resource_types consumable_strictly {resource book (item Textbook) (author Bishop) (title CSharp)

(qty 1) (price 45)};

resource_types consumable_strictly {resource book (item Textbook) (author Bishop) (title Java)

(qty 1) (price 65)};

resource_types consumable_strictly {resource book (item Textbook) (author Bishop) (title Java)

(qty 0) (price 35)};

resource_types consumable_strictly {resource book (item Textbook) (author Bishop) (title Java)

(qty 2) (price 75)};

resource_types consumable_strictly {resource book (item Textbook) (author Bishop)

(title DesignPatterns) (qty 3) (price 20)};

resource_types consumable_strictly {resource book (item Fictionbook) (author King)

7Available on http://www.aiai.ed.ac.uk/∼oplan

A.1. TASK FORMALISM 93

(title TheEyesoftheDragon) (qty 1) (price 50)};

resource_types consumable_strictly {resource book (item Fictionbook) (author King)

(title TheEyesoftheDragon) (qty 1) (price 60)};

resource_types

consumable_strictly {resource money} = dollars;

task buy_book_all_cases;

vars ?author=?{not none}, ?title=?{not none};

nodes

1 start,

2 finish,

3 action {get_price ?author ?title},

4 action {buy_book ?author ?title},

5 action {get_best_price ?author ?title},

6 action {purchase book};

orderings 1 ---> 3, 3 ---> 4, 4 ---> 5, 5 ---> 6, 6 ---> 2;

end_task;

;;;buys a book using the title of the book

task buy_book;

vars ?item=undef, ?author=undef, ?title=?{not none}, ?qty=undef, ?price=undef, ?bookTitle=undef;

expands {buy_book ?author ?title};

only_use_for_effects {location book} = store;

nodes

sequential

1 action {get_price ?title},

2 action {purchase ?title}

end_sequential;

conditions only_use_if {title ?title}={?bookTitle},

achieve {bought ?title};

effects {unavailable book (item ?item) (author ?author) (title ?title) (qty ?qty)

(price ?price)}, {bought ?author ?title};

end_schema;

schema get_price;

vars ?item=undef, ?author=undef, ?title=?{not none}, ?qty=undef, ?price=undef, ?bookTitle=undef,

?bookAuthor=undef;

expands {get_price ?author ?title};

conditions only_use_if {title ?title}={?bookTitle},

only_use_if {author ?author}={?bookAuthor},

only_use_if {priceDisplayed ?author ?title};

effects {book (item ?item) (author ?author) (title ?title) (qty ?qty) (price ?price) exists} = true;

time_windows duration self = 1 seconds;

end_schema;

schema get_price_author;

vars ?item=undef, ?author=undef, ?title=?{not none}, ?qty=undef, ?price=undef, ?bookAuthor=undef;

A.1. TASK FORMALISM 94

expands {get_price ?author};

conditions only_use_if {author ?author}={?bookauthor};

effects {book (item ?item) (author ?author) (title ?title) (qty ?qty)

(price ?price) exists} = true, {priceDisplayed ?author ?title};

time_windows duration self = 1 seconds;

end_schema;

schema get_price_title;

vars ?item=undef, ?author=undef, ?title=?{not none}, ?qty=undef, ?price=undef, ?bookTitle=undef;

expands {get_price ?title};

conditions only_use_if {title ?title}={?bookTitle};

effects {book (item ?item) (author ?author) (title ?title) (qty ?qty)

(price ?price) exists} = true, {priceDisplayed ?author ?title};

time_windows duration self = 1 seconds;

end_schema;

schema get_best_price;

vars ?item=undef, ?author=undef, ?title=?{not none}, ?qty=undef, ?price=undef, ?bookTitle=undef,

?bookAuthor=undef;

expands {get_best_price ?author ?title};

nodes

sequential

1 action {get_price ?title ?author},

2 action {buy_book ?title ?author},

3 action {purchase ?title}

end_sequential;

conditions only_use_if {title ?title}={?bookTitle},

only_use_if {author ?author}={?bookAuthor},

only_use_if {fn_leq ?price lowest};

effects {book (item ?item) (author ?author) (title ?title) (qty ?qty) (price ?price) exists} = true,

{lowest} = ?price, {priceDisplayed ?author ?title};

time_windows duration self = 1 seconds;

end_schema;

schema get_best_price_author;

vars ?item=undef, ?author=undef, ?title=?{not none}, ?qty=undef, ?price=undef, ?bookAuthor=undef;

expands {get_best_price ?author};

nodes

sequential

1 action {get_price ?author},

2 action {buy_book ?author},

3 action {purchase ?author}

end_sequential;

conditions only_use_if {author ?author}={?bookAuthor},

only_use_if {fn_leq ?price lowest};

effects {book (item ?item) (author ?author) (title ?title) (qty ?qty) (price ?price) exists} = true,

{lowest} = ?price, {priceDisplayed ?author ?title};

time_windows duration self = 1 seconds;

end_schema;

A.2. EXPERIMENTAL RESULT SETS (O-PLAN) 95

schema get_best_price_title;

vars ?item=undef, ?author=undef, ?title=?{not none}, ?qty=undef, ?price=undef, ?bookTitle=undef;

expands {get_best_price ?title};

nodes

sequential

1 action {get_price ?title},

2 action {buy_book ?title},

3 action {purchase ?title}

end_sequential;

conditions only_use_if {title ?title}={?bookTitle},

only_use_if {fn_leq ?price lowest};

effects {book (item ?item) (author ?author) (title ?title) (qty ?qty) (price ?price) exists} = true,

{lowest} = ?price, {priceDisplayed ?author ?title};

time_windows duration self = 1 seconds;

end_schema;

schema purchase;

expands {purchase};

effects {success} = true;

time_windows duration self = 1 seconds;

end_schema;

A.2 Experimental Result Sets (O-Plan)

A.2.1 Case 1: Get price of a specific item

Figure A.1 depicts the output of a plan for obtaining the price of a specific

item. When given the correct semantics (i.e. if both the author’s name and

the book title are supplied), strategy 1 is able to find a plan that finds the

price of the book specified. It goes through a series of steps and eventu-

ally ends the plan on NODE-2, in which the operation executes properly.

However, when a fault occurs whether an interface change fault or workflow

inconsistency fault – strategy 2 (re-execute) is not able to recover the fault.

Instead it will reach the end node (NODE-4) for the termination of execution.

With regard to a time-out fault, each task in O-Plan is given a specific time

in which to be executed. In the event of the task failing to meet the time

specified, that particular task will be skipped and the plan will go on with

the task that follows. A failure therefore occurs. The re-execution of the plan

may fix the problem, depending on the execution of that task at run-time.

A.2. EXPERIMENTAL RESULT SETS (O-PLAN) 96

If the re-execution is successful, then the normal path will be followed and

the plan will end on NODE-2. Otherwise it will end in NODE-4.

Figure A.1: O-Plan output for Case 1 (Strategy 1 and 2)

Strategy 3 (replanning) for Case 1 (getting the price for a specific item) is

illustrated in Figure A.2. Various contingency plans are provided in order to

handle faults as they may arise. In case the price cannot be retrieved because

the interface has been changed and/or due to workflow inconsistency, then

either NODE-4 END, NODE-5 or NODE-6 will be reached, depending on the

input. The replanning procedure will go through each node, starting from

NODE-6 and moving up to NODE-5 and NODE-4 if necessary, to look for a

plan that can satisfy the user request. If such a plan exists, it will execute

normally and end on NODE-2.

Figure A.2: O-Plan output for Case 1 (Strategy 3)

A.2. EXPERIMENTAL RESULT SETS (O-PLAN) 97

A.2.2 Case 2: Purchase an item specified

The output of Case 2 is very similar to that of Case 1, except for the series of

nodes that need to be followed to purchase a book. The node before NODE-2

acts as a flag to check the availability of a specific book after the purchase

has been completed. In our experiment, the quantity counter of the book

indicates zero and therefore flags that the book is no longer available.

Figure A.3: O-Plan output for Case 2 (Strategy 1 and 2)

Figure A.4: O-Plan output for Case 2 (Strategy 3)

A.2. EXPERIMENTAL RESULT SETS (O-PLAN) 98

A.2.3 Case 3: Find the best prices and purchases the

item

Case 3 follows the same patterns as Case 2, except that now we also check

for the best price of a specific book before purchase.

Figure A.5: O-Plan output for Case 3 (Strategy 1 and 2)

Figure A.6: O-Plan output for Case 3 (Strategy 3)

99

Appendix B

Shopping Domain in JSHOP2

This appendix describes the bookstore shopping domain, implemented in

JSHOP2 version 1.0.28, that was used in Chapter 5.

B.1 Domain Definition (JSHOP2)

The bookstore domain is defined as follows:

(defdomain bookstore

(

;;;

;;; Declaring the data

;;;

(:operator (!return ?a) ((have ?a)) ((have ?a)) ())

(:operator (!nostockerror ?a) (not (have ?a)) ((missing ?a)) ())

(:operator (!nofunds ?a) (not (have ?a)) ((fundserror ?a)) ())

(:operator (!noproblem ?a) () () ((have ?a)))

(:operator (!transferFunds ?amount) () () ((fundstransferred ?amount)))

(:operator (!balance ?amount) ()()())

(:operator (!purchase ?author ?title ?amount) () () ((fundstransferred ?amount)))

(:operator (!notrespond ?author) () () ((unresponsive ?author)))

(:operator (!incorrectAuthor ?author) () () ((incor ?author)))

(:operator (!incorrectTitle ?title) () () ((incor ?title)))

(:operator (!incorrectAuthor ?author) () () ((incor ?author)))

(:operator (!incorrectPrice ?price) () () ((incor ?price)))

(:operator (!displayPrice ?author ?title ?price) () () ((success ?author)))

(:operator (!noResponse ?author) () () ((slow ?author)))

8Available on sourceforge https://sourceforge.net/projects/shop

B.1. DOMAIN DEFINITION (JSHOP2) 100

(:operator (!replan ?author) () () ((replan ?author)))

(:operator (!bestprice ?author ?title ?price) () () ((foundBestPrice ?author ?title ?price)))

;;;

;;;The methods for the tasks

;;;

;;;;;;;;;;;

;;;CASE 1;;

;;;;;;;;;;;

(:method (getPrice ?author ?title)

(shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

((!displayPrice ?author ?title ?price) (!noproblem ?author)))

(:method (getPrice ?title ?author) ;swap the title and author order - interface change

(shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

((!displayPrice ?author ?title ?price) (!noproblem ?author)))

(:method (getPrice ?author) ;interface change

(shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

((!displayPrice ?author ?title ?price) (!noproblem ?title)))

(:method (getPrice ?title) ;interface change

(shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

((!displayPrice ?author ?title ?price) (!noproblem ?title)))

(:method (getPrice ?author ?title) ;incorrect title

(shoplist (item ?item) (author ?author) (title ?title1) (qty ?quantity) (price ?price))

((!displayPrice ?author ?title1 ?price) (!incorrectTitle ?title)))

(:method (getPrice ?author ?title) ;incorrect author

(shoplist (item ?item) (author ?author1) (title ?title) (qty ?quantity) (price ?price))

((!displayPrice ?author1 ?title ?price) (!incorrectAuthor ?author)))

;;;;;method with replanning (when timeout occurs)

(:method (getPriceUnresponsive ?author ?title)

(shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

((!noresponse ?author) (!replan ?author) (!displayPrice ?author ?title ?price))

)

;;;;;method without replanning (when timeout occurs)

(:method (getPriceUnresponsive ?author ?title)

(shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

((!noresponse ?author) (getPriceUnresponsive ?author ?title))

)

B.1. DOMAIN DEFINITION (JSHOP2) 101

;;;;;;;;;

;;CASE2;;

;;;;;;;;;

(:method (buy ?author ?title ?amount) ;CASE 2 - Strategy 1

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((!purchase ?author ?title ?price) (!transferFunds ?price)

(!balance(call - ?amount ?price)) (!noproblem ?author))

)

(:method (buy ?author ?amount ?title)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((!purchase ?author ?title ?amount) (!transferFunds ?price)

(!balance(call - ?amount ?price)) (!noproblem ?author))

)

(:method (buy ?title ?author ?amount)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((!purchase ?author ?title ?amount) (!transferFunds ?price)

(!balance(call - ?amount ?price)) (!noproblem ?author))

)

(:method (buy ?title ?amount ?author)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((!purchase ?author ?title ?amount) (!transferFunds ?price)

(!balance(call - ?amount ?price)) (!noproblem ?author))

)

(:method (buy ?amount ?title ?author)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((!purchase ?author ?title ?amount) (!transferFunds ?price)

(!balance(call - ?amount ?price)) (!noproblem ?author))

)

(:method (buy ?amount ?author ?title)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((!purchase ?author ?title ?amount) (!transferFunds ?price)

B.1. DOMAIN DEFINITION (JSHOP2) 102

(!balance(call - ?amount ?price)) (!noproblem ?author))

)

(:method (buy ?author)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call = ?price ?price)

)

((!purchase ?author ?title ?price) (!noproblem ?author) (!noproblem ?author))

)

(:method (buy ?title)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call = ?price ?price)

)

((!purchase ?author ?title ?price) (!noproblem ?author))

)

(:method (buy ?amount)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?amount))

(call >= ?amount ?price)

)

((!purchase ?author ?title ?price) (!noproblem ?author))

)

(:method (buy ?author ?title)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call = ?price ?price)

)

((!purchase ?author ?title ?price) (!noproblem ?author))

)

(:method (buy ?author ?amount)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call = ?price ?price)

)

((!purchase ?author ?title ?price) (!noproblem ?author))

)

(:method (buy ?title ?author)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call = ?price ?price)

)

((!purchase ?author ?title ?price) (!noproblem ?author))

)

(:method (buy ?title ?amount)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

B.1. DOMAIN DEFINITION (JSHOP2) 103

)

((!purchase ?author ?title ?price) (!noproblem ?author))

)

(:method (buy ?amount ?author)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((!purchase ?author ?title ?price) (!noproblem ?author))

)

(:method (buy ?amount ?title)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((!purchase ?author ?title ?price) (!noproblem ?author))

)

(:method (buy ?author ?title ?amount) ;CASE 2 - Strategy 3 (author misspelt)

((shoplist (item ?item) (author ?author1) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((!incorrectAuthor ?author) (!purchase ?author1 ?title ?amount)

(!transferFunds ?price) (!balance(call - ?amount ?price)) (!noproblem ?author1))

)

(:method (buy ?author ?title ?amount) ;CASE 2 - Strategy 3 (title misspelt)

((shoplist (item ?item) (author ?author) (title ?title1) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((!incorrectTitle ?title) (!purchase ?author ?title1 ?amount)

(!transferFunds ?price) (!balance(call - ?amount ?price)) (!noproblem ?author))

)

(:method (buy ?author ?title ?amount) ;insufficient fund

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call < ?amount ?price)

)

((!nofunds ?author))

)

(:method (buyUnresponsive ?author ?title ?amount) ;;;;;;;;;;;;;;Strategy 2

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

((buyUnresponsive ?author ?title ?amount))

)

B.1. DOMAIN DEFINITION (JSHOP2) 104

(:method (buyUnresponsive ?author ?title ?amount) ;;;;;;;;;;;;;;Strategy 3

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(call >= ?amount ?price)

)

(

(!noresponse ?author) (!replan ?author)

(buy ?author ?title ?amount)

;represents slow service.

)

)

;;;;;;;;;

;;CASE3;;

;;;;;;;;;

(:method (getBestPrice ?db ?author ?title ?newPrice)

(forall (?s)

(shoplist ?s)

((in ?s ?db)

((call <= ?newPrice ?price)

(assign ?newPrice ?price)

)

)

)

(

(reassignBestPrice ?s ?newPrice ?author ?title)

)

)

(:method (reassignBestPrice ?s ?l ?author ?title)

((shoplist (item ?item) (author ?author) (title ?title) (qty ?quantity) (price ?price))

(lowest (lowestPrice ?lowest))

(call <= ?price ?lowest)

(assign ?lowest ?price)

)

((!displayPrice ?author ?title ?price) (!purchase ?author ?title ?price))

)

(:method (getBestPrice ?db ?author ?title ?newPrice) ; CASE 3 - Strategy 3 (Title misspelt)

(forall (?s)

(shoplist ?s)

((in ?s ?db)

((call <= ?newPrice ?price)

(assign ?newPrice ?price)

)

)

)

(

B.1. DOMAIN DEFINITION (JSHOP2) 105

((!incorrectTitle ?title) (reassignBestPrice ?s ?newPrice ?author ?title1))

)

)

(:method (getBestPrice ?db ?author ?title ?newPrice) ; CASE 3 - Strategy 3 (Author misspelt)

(forall (?s)

(shoplist ?s)

((in ?s ?db)

((call <= ?newPrice ?price)

(assign ?newPrice ?price)

)

)

)

(

((!incorrectAuthor ?author) (reassignBestPrice ?s ?newPrice ?author1 ?title))

)

)

(:method (getBestPrice ?db ?author) ; CASE 3 - Strategy 3 (Missing 2 parameters)

(forall (?s)

(shoplist ?s)

((in ?s ?db)

((call <= ?newPrice ?price)

(assign ?newPrice ?price)

)

)

)

(

((reassignBestPrice ?s ?newPrice ?author ?title))

)

)

(:method (getBestPriceUnresponsive ?db ?author ?title ?newPrice) ;CASE3 - Startegy 2 (Unresponsive)

(forall (?s)

(shoplist ?s)

((in ?s ?db)

((call <= ?newPrice ?price)

(assign ?newPrice ?price)

)

)

)

(

(getBestPriceUnresponsive ?db ?author ?title ?newPrice)

(reassignBestPrice ?s ?newPrice ?author ?title)

)

)

(:method (getBestPriceUnresponsive ?db ?author ?title ?newPrice)

(forall (?s)

(shoplist ?s)

B.2. PROBLEM DEFINITION (JSHOP2) 106

((in ?s ?db)

((call <= ?newPrice ?price)

(assign ?newPrice ?price)

)

)

)

(

((!replan ?author) (reassignBestPrice ?s ?newPrice ?author ?title))

)

)

)

)

B.2 Problem Definition (JSHOP2)

(defproblem problem bookstore

(

(shoplist (item Textbook) (author Bishop) (title CSharp) (qty 1) (price 80))

(shoplist (item Textbook) (author Bishop) (title Java) (qty 1) (price 65))

(shoplist (item Textbook) (author Bishop) (title DesignPatterns) (qty 3) (price 20))

(shoplist (item Textbook) (author Bishop) (title Java) (qty 2) (price 75))

(shoplist (item Fictionbook) (author King) (title TheEyesoftheDragon) (qty 1) (price 50))

(database db)

(in (shoplist (item Textbook) (author Bishop) (title DesignPatterns) (qty 3) (price 20)) db)

(in ((shoplist (item Textbook) (author Bishop) (title Java) (qty 1) (price 65)) db))

(in((shoplist (item Fictionbook) (author Bishop) (title Java) (qty 1) (price 75)) db))

(in((shoplist (item Otherbook) (author Bishop) (title CSharp) (qty 1) (price 80)) db))

(in ((shoplist (item Fictionbook) (author King) (title TheEyesoftheDragon) (qty 1) (price 50)) db))

(lowest (lowestPrice 50))

;;

;;PUT BOOKS INTO A DATABASE (e.g. listat shoplistname, dbname);;

;;

)

(

;;;

;;;CASE 1: Get the price of the book ;;;

;;;

(getPrice Bishop Java) ;valid input

(getPrice Bishop) ;Interface change - S3)

(getPrice Bishop Javaa) ;Workflow Inconsistency

(getPrice King Java) ;invalid combination of inputs

(getPriceUnresponsive Bishop Java) ;Time-out error

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 107

;;;

;;;CASE 2: Buy a book ;;;

;;;

(buy Bishop Java 70)

(buy King TheEyesoftheDragon 20)

(buy Bishop)

(buy CSharp 80)

(buy King CShaer 50)

(buyUnresponsive Bishop Java 100)

;;;

;;;CASE 3: Get the best price for a book ;;;

;;;

;;; The last parameter is uses to specify the largest price allowed

;;;

(getBestPrice db Bishop Java 100) ;Valid input

(getBestPrice db King EyesofTheDragon 100) ;valid input

(getBestPrice db Bishop) ;Interface change - S3)

(getBestPrice db Bishop Javaa 100) ;Workflow Inconsistency

(getBestPriceUnresponsive db Bishop Java 100) ;Time-out error

)

)

B.3 Experimental Result Sets (JSHOP2)

B.3.1 Case 1: Get price of a specific item

1

2 plan (s) were found :

Plan #1:

Plan co s t : 2 . 0

6

(! d i s p l a yp r i c e bishop java 65 . 0)

(! noproblem bishop)

−−−−−−−−−−−−−−−−−−−−

11 Plan #2:

Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop java 75 . 0)

(! noproblem bishop)

16 −−−−−−−−−−−−−−−−−−−−

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 108
T
ab

le
B

.1
:

E
x
p
er

im
en

ta
l
re

su
lt

s
of

T
es

t
C

as
e

1
in

J
S
H

O
P

2

F
a
u
lt

s
T
ri

g
g
e
re

d
S
tr

a
te

g
ie

s
S
ta

tu
s

In
d
ic

a
to

r

In
te

rf
ac

e
ch

an
ge

d
(g

e
tP

r
ic

e

B
is

h
o
p

J
a
v
a
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
su

cc
es

sf
u
l

S
ee

L
is

ti
n
g

B
.1

In
te

rf
ac

e
c h

an
ge

d
(g

e
tP

r
ic

e

B
is

h
o
p
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
p
ar

ti
al

ly
fa

il
ed

F
ou

n
d

al
l

th
e

b
o
ok

s
b
y

B
is

h
op

,
h
ow

ev
er

,
th

e
re

su
lt

s
re

tu
rn

co
n
ta

in
tw

o
ex

tr
a

b
o
ok

s
th

at
ar

e
n
ot

p
ar

t
of

th
e

re
q
u
es

t.
(S

ee
L
is

ti
n
g

B
.2

)

In
te

rf
ac

e
ch

an
ge

d
(g

e
tP

r
ic

e

J
a
v
a
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
p
ar

ti
al

ly
fa

il
ed

F
ou

n
d

al
l
J
av

a
b
o
ok

s
av

ai
la

b
le

.
(S

ee
L
is

ti
n
g

B
.3

)

T
im

e-
ou

t
(g

e
tP

r
ic

e
D

e
la

y
e
d

B
is

h
o
p

J
a
v
a
)

1
fa

il
ed

N
o

p
la

n
w

as
fo

u
n
d

d
u
e

to
u
n
re

ac
h
ab

le
se

rv
ic

e
2

fa
il
ed

N
o

p
la

n
w

as
fo

u
n
d

d
u
e

to
u
n
re

ac
h
ab

le
se

rv
ic

e.
T

h
e

p
la

n
ge

n
-

er
at

io
n

w
as

te
rm

in
at

ed
af

te
r

se
rv

er
al

u
n
su

cc
es

sf
u
l
at

te
m

p
t

of
re

-e
x
ec

u
ti
on

.
3

su
cc

es
sf

u
l

T
w

o
p
la

n
s

w
er

e
fo

u
n
d
.

S
ee

L
is

ti
n
gs

B
.4

In
co

rr
ec

t
in

p
u
t

(w
or

k
fl
ow

in
co

n
si

st
en

cy
)

-
(g

e
tP

r
ic

e

B
is

h
o
p

J
a
v
a
a
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
p
ar

ti
al

ly
fa

il
ed

R
e-

p
la

n
n
in

g
sh

ow
s

fo
u
r

it
em

s.
S
ee

L
is

ti
n
gs

B
.5

U
n
k
n
ow

n
fa

u
lt

s
-(

g
e
tP

r
ic

e

K
in

g
J
a
v
a
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
p
ar

ti
al

ly
fa

il
ed

R
e-

p
la

n
n
in

g
sh

ow
s
al

l
th

e
re

su
lt

s
th

at
co

n
si

st
in

g
of

th
e

co
rr

ec
t

au
th

or
n
am

e
an

d
th

e
ti

tl
e

of
th

e
b
o
ok

.
S
ee

L
is

ti
n
gs

B
.6

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 109

Time Used = 0.016

Listing B.1: Plans for Case 1 Interface Changed - (getPrice Bishop Java)

2 4 plan (s) were found :

Plan #1:

Plan co s t : 2 . 0

7 (! d i s p l a yp r i c e bishop csharp 80 . 0)

(! noproblem csharp)

−−−−−−−−−−−−−−−−−−−−

Plan #2:

12 Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop java 65 . 0)

(! noproblem java)

−−−−−−−−−−−−−−−−−−−−
17

Plan #3:

Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop de s i gnpa t t e rn s 20 . 0)

22 (! noproblem de s i gnpa t t e rn s)

−−−−−−−−−−−−−−−−−−−−

Plan #4:

Plan co s t : 2 . 0

27

(! d i s p l a yp r i c e bishop java 75 . 0)

(! noproblem java)

−−−−−−−−−−−−−−−−−−−−

32 Time Used = 0 .0

Listing B.2: Plans for Case 1 Interface Changed - (getPrice Bishop)

2

2 plan (s) were found :

Plan #1:

Plan co s t : 2 . 0

7

(! d i s p l a yp r i c e bishop java 65 . 0)

(! noproblem java)

−−−−−−−−−−−−−−−−−−−−

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 110

12 Plan #2:

Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop java 75 . 0)

(! noproblem java)

17 −−−−−−−−−−−−−−−−−−−−

Time Used = 0 .0

Listing B.3: Plans for Case 1 Interface Changed - (getPrice Bishop)

2 plan (s) were found :

4 Plan #1:

Plan co s t : 3 . 0

(! noresponse bishop)

(! r ep lan bishop)

9 (! d i s p l a yp r i c e bishop java 65 . 0)

−−−−−−−−−−−−−−−−−−−−

Plan #2:

Plan co s t : 3 . 0

14

(! noresponse bishop)

(! r ep lan bishop)

(! d i s p l a yp r i c e bishop java 75 . 0)

−−−−−−−−−−−−−−−−−−−−
19

Time Used = 0 .0

Listing B.4: Plans for Case 1 Time-out - (getPriceDelayed Bishop Java)

4 plan (s) were found :

4 Plan #1:

Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop csharp 80 . 0)

(! i n c o r r e c t t i t l e javaa)

9 −−−−−−−−−−−−−−−−−−−−

Plan #2:

Plan co s t : 2 . 0

14 (! d i s p l a yp r i c e bishop java 65 . 0)

(! i n c o r r e c t t i t l e javaa)

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 111

−−−−−−−−−−−−−−−−−−−−

Plan #3:

19 Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop de s i gnpa t t e rn s 20 . 0)

(! i n c o r r e c t t i t l e javaa)

−−−−−−−−−−−−−−−−−−−−
24

Plan #4:

Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop java 75 . 0)

29 (! i n c o r r e c t t i t l e javaa)

−−−−−−−−−−−−−−−−−−−−

Time Used = 0 .0

Listing B.5: Plans for Case 1 Time-out - (getPrice Bishop Javaa)

2 5 plan (s) were found :

Plan #1:

Plan co s t : 2 . 0

7 (! d i s p l a yp r i c e king theeyeso f thedragon 50 . 0)

(! i n c o r r e c t t i t l e java)

−−−−−−−−−−−−−−−−−−−−

Plan #2:

12 Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop java 65 . 0)

(! i n c o r r e c t au tho r king)

−−−−−−−−−−−−−−−−−−−−
17

Plan #3:

Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop java 65 . 0)

22 (! i n c o r r e c t au tho r king)

−−−−−−−−−−−−−−−−−−−−

Plan #4:

Plan co s t : 2 . 0

27

(! d i s p l a yp r i c e bishop java 75 . 0)

(! i n c o r r e c t au tho r king)

−−−−−−−−−−−−−−−−−−−−

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 112

32 Plan #5:

Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop java 75 . 0)

(! i n c o r r e c t au tho r king)

37 −−−−−−−−−−−−−−−−−−−−

Time Used = 0 .0

Listing B.6: Plans for Case 1 Unknown Fault - (getPrice King Java)

B.3.2 Case 2: Purchase an item specified

1 plan (s) were found :

Plan #1:

5 Plan co s t : 4 . 0

(! purchase bishop java 65 . 0)

(! t r an s f e r f und s 65 . 0)

(! ba lance 5 . 0)

10 (! noproblem bishop)

−−−−−−−−−−−−−−−−−−−−

Time Used = 0 .0

Listing B.7: Plans for Case 2 Interface Changed - (buy Bishop Java 70)

1

4 plan (s) were found :

Plan #1:

Plan co s t : 3 . 0

6

(! purchase bishop csharp 80 . 0)

(! noproblem bishop)

−−−−−−−−−−−−−−−−−−−−

11 Plan #2:

Plan co s t : 3 . 0

(! purchase bishop java 65 . 0)

(! noproblem bishop)

16 −−−−−−−−−−−−−−−−−−−−

Plan #3:

Plan co s t : 3 . 0

21 (! purchase bishop de s i gnpa t t e rn s 20 . 0)

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 113

T
ab

le
B

.2
:

E
x
p
er

im
en

ta
l
re

su
lt

s
of

T
es

t
C

as
e

2
in

J
S
H

O
P

2

F
a
u
lt

s
T
ri

g
g
e
re

d
S
tr

a
te

g
ie

s
S
ta

tu
s

In
d
ic

a
to

r

In
te

rf
ac

e
ch

an
ge

d
(b

u
y

B
is

h
o
p

J
a
v
a

7
0
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
su

cc
es

sf
u
l

S
ee

L
is

ti
n
g

B
.7

In
te

rf
ac

e
c h

an
ge

d
(b

u
y

B
is

h
o
p
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
su

cc
es

sf
u
l

F
ou

n
d

al
l
th

e
b
o
ok

s
b
y

B
is

h
op

.
S
ee

L
is

ti
n
g

B
.8

In
te

rf
ac

e
c h

an
ge

d
(b

u
y

C
S
h
a
r
p

8
0
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
su

cc
es

sf
u
l

F
ou

n
d

al
l

se
rv

ic
e

th
at

h
av

e
C

S
h
ar

p
b
o
ok

s
av

ai
la

b
le

.
(S

ee
L
is

ti
n
g

B
.9

)

T
im

e-
ou

t
(b

u
y
U

n
r
e
sp

o
n
si

v
e

B
is

h
o
p

J
a
v
a

7
0
)

1
fa

il
ed

N
o

p
la

n
w

as
fo

u
n
d

d
u
e

to
u
n
re

ac
h
ab

le
se

rv
ic

e
2

fa
il
ed

N
o

p
la

n
w

as
fo

u
n
d

d
u
e

to
u
n
re

ac
h
ab

le
se

rv
ic

e.
T

h
e

p
la

n
ge

n
-

er
at

io
n

w
as

te
rm

in
at

ed
af

te
r

se
rv

er
al

u
n
su

cc
es

sf
u
l
at

te
m

p
t

of
re

-e
x
ec

u
ti
on

.
3

su
cc

es
sf

u
l

R
e-

p
la

n
n
in

g
b
in

d
s

to
ot

h
er

se
rv

ic
ew

w
h
ic

h
h
av

e
th

e
sa

m
e

b
o
ok

av
ai

la
b
le

.
S
ee

L
is

ti
n
gs

B
.1

0

In
co

rr
ec

t
in

p
u
t

(w
or

k
fl
ow

in
co

n
si

st
en

cy
)

-
(b

u
y

K
in

g

c
sh

a
e
r

5
0
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
p
ar

ti
al

ly
fa

il
ed

R
e-

p
la

n
n
in

g
sh

ow
s

on
e

b
o
ok

b
y

K
in

g.
S
ee

L
is

ti
n
gs

B
.1

1

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 114

(! noproblem bishop)

−−−−−−−−−−−−−−−−−−−−

Plan #4:

26 Plan co s t : 3 . 0

(! purchase bishop java 75 . 0)

(! noproblem bishop)

−−−−−−−−−−−−−−−−−−−−
31

Time Used = 0 .0

Listing B.8: Plans for Case 2 Interface Changed - (buy Bishop)

1 plan (s) were found :

3

Plan #1:

Plan co s t : 2 . 0

(! purchase bishop csharp 80 . 0)

8 (! noproblem bishop)

−−−−−−−−−−−−−−−−−−−−

Time Used = 0.016

Listing B.9: Plans for Case 2 Interface Changed - (buy CSharp 80)

3 4 plan (s) were found :

Plan #1:

Plan co s t : 6 . 0

8 (! noresponse bishop)

(! r ep lan bishop)

(! purchase bishop java 65 . 0)

(! t r an s f e r f und s 65 . 0)

(! ba lance 35 . 0)

13 (! noproblem bishop)

−−−−−−−−−−−−−−−−−−−−

Plan #2:

Plan co s t : 6 . 0

18

(! noresponse bishop)

(! r ep lan bishop)

(! purchase bishop java 75 . 0)

(! t r an s f e r f und s 75 . 0)

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 115

23 (! ba lance 25 . 0)

(! noproblem bishop)

−−−−−−−−−−−−−−−−−−−−

Plan #3:

28 Plan co s t : 6 . 0

(! noresponse bishop)

(! r ep lan bishop)

(! purchase bishop java 65 . 0)

33 (! t r an s f e r f und s 65 . 0)

(! ba lance 35 . 0)

(! noproblem bishop)

−−−−−−−−−−−−−−−−−−−−

38 Plan #4:

Plan co s t : 6 . 0

(! noresponse bishop)

(! r ep lan bishop)

43 (! purchase bishop java 75 . 0)

(! t r an s f e r f und s 75 . 0)

(! ba lance 25 . 0)

(! noproblem bishop)

−−−−−−−−−−−−−−−−−−−−
48

Time Used = 0.015

Listing B.10: Plans for Case 2 Time-out - (buyUnresponsive Bishop Java

70)

1 plan (s) were found :

Plan #1:

5 Plan co s t : 5 . 0

(! i n c o r r e c t t i t l e c shaer)

(! purchase king theeyeso f thedragon 50 . 0)

(! t r an s f e r f und s 50 . 0)

10 (! ba lance 0 . 0)

(! noproblem king)

−−−−−−−−−−−−−−−−−−−−

Time Used = 0.015

Listing B.11: Plans for Case 2 Incorrect Input (Workflow inconsistency) -

(buy King cshaer 50)

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 116

B.3.3 Case 3: Find the best prices and purchases the

item

3 plan (s) were found :

Plan #1:

5 Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop csharp 45 . 0)

(! purchase bishop csharp 45 . 0)

−−−−−−−−−−−−−−−−−−−−
10

Plan #2:

Plan co s t : 2 . 0

(! d i s p l a yp r i c e bishop java 35 . 0)

15 (! purchase bishop java 35 . 0)

−−−−−−−−−−−−−−−−−−−−

Plan #3:

Plan co s t : 2 . 0

20

(! d i s p l a yp r i c e bishop de s i gnpa t t e rn s 20 . 0)

(! purchase bishop de s i gnpa t t e rn s 20 . 0)

−−−−−−−−−−−−−−−−−−−−

25 Time Used = 0.016

Listing B.12: Plans for Case 3 Interface Changed - (getBestPrice db

Bishop)

1 plan (s) were found :

4 Plan #1:

Plan co s t : 3 . 0

(! r ep lan bishop)

(! d i s p l a yp r i c e bishop java 35 . 0)

9 (! purchase bishop java 35 . 0)

−−−−−−−−−−−−−−−−−−−−

Time Used = 0.016

Listing B.13: Plans for Case 3 Time-out - (getBestPriceUnresponsive db

Bishop)

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 117

T
ab

le
B

.3
:

E
x
p
er

im
en

ta
l
re

su
lt

s
of

T
es

t
C

as
e

3
in

J
S
H

O
P

2

F
a
u
lt

s
T
ri

g
g
e
re

d
S
tr

a
te

g
ie

s
S
ta

tu
s

In
d
ic

a
to

r

In
te

rf
ac

e
c h

an
ge

d
(g

e
tB

e
st

P
r
ic

e
d
b

B
is

h
o
p
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
su

cc
es

sf
u
l

S
ee

L
is

ti
n
g

B
.1

2

T
im

e-
ou

t
(g

e
tB

e
st

P
r
ic

e
U

n
r
e
sp

o
n
si

v
e

B
is

h
o
p

J
a
v
a

1
0
0
)

1
fa

il
ed

N
o

p
la

n
w

as
fo

u
n
d

d
u
e

to
u
n
re

ac
h
ab

le
se

rv
ic

e
2

fa
il
ed

N
o

p
la

n
w

as
fo

u
n
d

d
u
e

to
u
n
re

ac
h
ab

le
se

rv
ic

e.
T

h
e

p
la

n
ge

n
-

er
at

io
n

w
as

te
rm

in
at

ed
af

te
r

se
rv

er
al

u
n
su

cc
es

sf
u
l
at

te
m

p
t

of
re

-e
x
ec

u
ti
on

.
3

su
cc

es
sf

u
l

R
e-

p
la

n
n
in

g
b
in

d
s

to
ot

h
er

se
rv

ic
e

w
h
ic

h
h
av

e
th

e
sa

m
e

b
o
ok

av
ai

la
b
le

.
S
ee

L
is

ti
n
gs

B
.1

3

In
co

rr
ec

t
in

p
u
t

(w
or

k
fl
ow

in
co

n
si

st
en

cy
)

-
(g

e
tB

e
st

P
r
ic

e

d
b

B
is

h
o
p

J
a
v
a
a

1
0
0
)

1
fa

il
ed

n
o

p
la

n
fo

u
n
d

2
fa

il
ed

n
o

p
la

n
fo

u
n
d

3
p
ar

ti
al

ly
fa

il
ed

T
h
e

sy
st

em
is

ab
le

to
d
et

ec
t

th
e

ti
tl

e
of

th
e

b
o
ok

re
q
u
es

te
d

is
in

co
rr

ec
t.

R
e-

p
la

n
n
in

g
sh

ow
s

al
l
th

e
b
o
ok

s
b
y

th
e

au
th

or
B

is
h
op

.
S
ee

L
is

ti
n
gs

B
.1

4

B.3. EXPERIMENTAL RESULT SETS (JSHOP2) 118

2 3 plan (s) were found :

Plan #1:

Plan co s t : 3 . 0

7 (! i n c o r r e c t t i t l e javaa)

(! d i s p l a yp r i c e bishop csharp 45 . 0)

(! purchase bishop csharp 45 . 0)

−−−−−−−−−−−−−−−−−−−−

12 Plan #2:

Plan co s t : 3 . 0

(! i n c o r r e c t t i t l e javaa)

(! d i s p l a yp r i c e bishop java 35 . 0)

17 (! purchase bishop java 35 . 0)

−−−−−−−−−−−−−−−−−−−−

Plan #3:

Plan co s t : 3 . 0

22

(! i n c o r r e c t t i t l e javaa)

(! d i s p l a yp r i c e bishop de s i gnpa t t e rn s 20 . 0)

(! purchase bishop de s i gnpa t t e rn s 20 . 0)

−−−−−−−−−−−−−−−−−−−−
27

Time Used = 0.015

Listing B.14: Plans for Case 3 Incorrect Inputer (Workflow Inconsistency) -

(getBestPrice db Bishop Javaa 100)

119

Appendix C

Derived Publications

• K.S. May Chan, Tim Grant and Judith Bishop, Self-Healing Web

Service Composition Using HTN Planners , Proceedings of SAIC-

SIT 2006, pp. 268. Somerset West, South Africa (Poster).

• K.S. May Chan, Judith Bishop, Johan Steyn, Luciano Baresi and Sam

Guinea, A Fault Taxonomy for Web Service Composition , Pro-

ceedings of the Third International Workshop on Engineering Service

Oriented Applications (WESOA’07), Springer LNCS. Vienna, Austria,

2007.

• K.S. May Chan and Judith Bishop, A Self-healing Composition

Cycle for Web Services , Technical Report, 2008.

• K.S. May Chan, Judith Bishop and Luciano Baresi, Survey and

Comparison of Planning Techniques for Web Services Com-

position , Technical Report, 2008.

120

Acronyms

AI Artificial Intelligent

BPEL Business Process Execution Language

BPML Business Process Modeling Language

DAML-S Darpa Agent Markup Language for Services

GOST Goal Structure Table

HTN Hierarchical Task Network

JSHOP Java implementation of Simple Hierarchical Ordered Planner

MAPE Monitor, Analyzer, Planner, Executive

O-Plan Open Planning Architecture

OWL Web Ontology Language

OWL-S Web Ontology Language for Services

QoS Quality of Service

SHOP Simple Hierarchical Ordered Planner

SIPE System for Interactive Planning and Execution Monitoring

SLA Service Level Agreement

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOC Service-Oriented Computing

TOME Table of Multiple Effects

UDDI Universal Description Discovery and Integration

WSDL Web Service Description Language

WSDL-S Web Service Description Language with Semantics

XML Extensible Markup Language

XSD XML Schema Definition

BIBLIOGRAPHY 121

Bibliography

[1] Marco Aiello, Mikio Aoyama, Francisco Curbera, and Mike P. Papa-

zoglou (eds.). Hybrid Web Service Composition: Business Processes

Meet Business Rules. ACM, 2004.

[2] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth,

and K. Verma. Web Service Semantics – WSDL-S. A joint UGA-IBM

Technical Note, version, vol. 1, 2005.

[3] Assaf Arkin. Business Process Modeling Language, 2002. URL http:

//xml.coverpages.org/BPML-2002.pdf, last accessed on 18 February

2008.

[4] Muhammad Ahtisham Aslam, Sören Auer, Jun Shen, and Michael Her-

rmann. Expressing Business Process Models as OWL-S Ontologies. In

Second International Workshop on Grid and Peer-to-Peer based Work-

flows, Lecture Notes in Computer Science, vol. 4103. Springer, 2006, pp.

400–415.

[5] Daniel Austin, Abbie Barbir, Christopher Ferris, and Sharad Garg. Web

Services Architecture Requirements, 2004. W3C Working Group Note,

11 February 2004. W3C (World Wide Web Consortium).

[6] Algirdas Avižienis, Jean-Claude Laprie, Brain Randell, and Carl

Landwehr. Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Transactions on Dependable and Secure Computing,

(1), 2004, pp. 11–33.

BIBLIOGRAPHY 122

[7] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart monitors for

composed services. In Marco Aiello, Mikio Aoyama, Francisco Curbera,

and Mike P. Papazoglou (eds.), ICSOC. ACM, 2004, pp. 193–202.

[8] Luciano Baresi, Carlo Ghezzi, and Same Guinea. Towards Self-healing

Compositions of Service. Contributions to Ubiquitous Computing, 2007,

pp. 27–46.

[9] Luciano Baresi and Sam Guinea. Towards Dynamic Monitoring of WS-

BPEL Processes. In Boualem Benatallah, Fabio Casati, and Paolo Tra-

verso (eds.), ICSOC, Lecture Notes in Computer Science, vol. 3826.

Springer, 2005, pp. 269–282.

[10] Tom Bellwood, Steve Capell, Luc Clement, John Colgrave, Matthew J.

Dovey, Daniel Feygin, and Andrew Hately. UDDI, 2004. URL http:

//uddi.org/pubs/uddi\ v3.htm, last accessed on 18 February 2008.

[11] Boualem Benatallah, Fabio Casati, and Paolo Traverso (eds.). Template-

Based Automated Service Provisioning - Supporting the Agreement-

Driven Service Life-Cycle, Lecture Notes in Computer Science. Springer,

2005.

[12] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.

Scientific American, vol. 284(5), 2001, pp. 34–43.

[13] D. Chakraborty and A. Joshi. Dynamic Service Composition: State-of-

the-Art and Research Directions. Baltimore County, Baltimore, USA,

2001. Technical Report TR-CS-01-19.

[14] D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha. A Re-

active Service Composition Architecture for Pervasive Computing Envi-

ronments. In 7th Personal Wireless Communications Conference (PWC

2002). 2002.

[15] K.S. May Chan, Judith Bishop, and Luciano Baresi. Survey and Com-

parison of AI Planning Techniques in Web Service Composition. Tech-

nical Report, 23 February 2007.

BIBLIOGRAPHY 123

[16] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-

awarana. Web Services Description Language (WSDL) 1.1, 2001. URL

http://www.w3.org/TR/wsdl, last accessed on 18 February 2008.

[17] Ken Currie and Austin Tate. O-Plan: the Open Planning Architecture.

Artificial Intelligence, vol. 52(1), 1991, pp. 49–86.

[18] Prashant Doshi, Richard Goodwin, Rama Akkiraju, and Kunal Verma.

Dynamic Workflow Composition: Using Markov Decision Processes. In-

ternational Journal of Web Service Research, vol. 2(1), 2005, pp. 1–17.

[19] Brian Drabble, Austin Tate, and Jeff Dalton. Repairing Plans On-the-

fly. In NASA Workshop on Planning and Scheduling for Space. Oxnard,

California, USA, 1997.

[20] Dieter Fensel, Katia P. Sycara, and John Mylopoulos (eds.). Adapting

BPEL4WS for the Semanitc Web: The Bottom-Up Approach to Web

Service Interoperation, Lecture Notes in Computer Science, vol. 2870.

Springer, 2003.

[21] Thomas Friese, Jörg P. Müller, and Bernd Freisleben. Self-healing Execu-

tion of Business Processes Based on a Peer-to-Peer Service Architecture.

In ARCS. 2005, pp. 108–123.

[22] David Garlan and Bradley Schmerl. Model-based adaptation for self-

healing systems. In WOSS ’02: Proceedings of the first workshop on

Self-healing systems. ACM Press, New York, NY, USA, 2002, pp. 27–

32.

[23] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:

Theory and Practice. Morgan Kaufman Publishers, San Francisco, Cal-

ifornia, USA, 2004.

[24] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau,

and Henrik Frystyk Nielsen. SOAP Version 1.2, 2003. URL http:

//www.w3.org/TR/soap12-part1/, last accessed on 18 February 2008.

BIBLIOGRAPHY 124

[25] Sherif A. Gurguis and Amir Zeid. Towards autonomic web services:

achieving self-healing using web services. ACM SIGSOFT Software En-

gineering Notes Archive, vol. 30(4), 2005, pp. 1–5.

[26] IBM. Automating problem determination: A first step toward self-

healing computing systems, 2003. IBM White Paper.

[27] Okhtay Ilghami. Documentation for JSHOP2, 2006. Technical Report

CS-TR-4694.

[28] Leslie Lamport. Concurrent Reading and Writing of Clocks. ACM Trans.

Comput. Syst., vol. 8(4), 1990, pp. 305–310.

[29] Therani Madhusudan and N. Uttamsingh. A declarative approach to

composing web services in dynamic environments. Decis. Support Syst.,

vol. 41(2), 2006, pp. 325–357.

[30] David Martin, Anupriya Ankolekar, Mark Burstein, Grit Denker, Daniel

Elenius, Jerry Hobbs, Lalana Kagal, Ora Lassila, Drew McDermott,

Deborah McGuinness, Sheila McIlraith, Massimo Paolucci, Bijan Par-

sia, Terry Payne, Marta Sabou, Craig Schlenoff, Evren Sirin, Monika

Solanki, Naveen Srinivasan, Katia Sycara, and Randy Washington.

OWL-S 1.1 Release, 2004. URL http://www.daml.org/services/

owl-s/1.1/, last accessed on 18 February 2008.

[31] Drew V. McDermott. Estimated-Regression Planning for Interactions

with Web Services. In Sixth International Conference on Artificial In-

telligence Planning Systems. AAAI, 2002, pp. 204–211.

[32] Deborah L. McGuinness and Frank van Harmelen. OWL Web

Ontology Language Overview, 2004. URL http://www.w3.org/TR/

owl-features/, last accessed on 19 February 2008.

[33] Sheila McIlraith and Tran Cao Son. Adapting Golog for Composition

of Semantic Web Services. In 8th International Conference on Princi-

ples and Knowledge Representation and Reasoning. Morgan Kaufmann,

2002, pp. 482–496.

BIBLIOGRAPHY 125

[34] Brahim Medjahed, Athman Bouguettaya, and Ahmed K. Elmagarmid.

Composing Web services on the Semantic Web. VLDB J., vol. 12(4),

2003, pp. 333–351.

[35] Marija Mikic-Rakic, Nikunj Mehta, and Nenad Medvidovic. Architec-

tural style requirements for self-healing systems. In WOSS ’02: Pro-

ceedings of the first workshop on Self-healing systems. ACM Press, New

York, NY, USA, 2002, pp. 49–54.

[36] Henri Naccache and Gerald C. Gannod. A Self-Healing Framework for

Web Services. In 2007 IEEE International Conference on Web Services

(ICWS). IEEE Computer Society, 2007, pp. 398–345.

[37] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Mur-

dock, Dan Wu, and Fusun Yaman. SHOP2: An HTN Planning System.

Journal of Artificial Intelligence Research, 2003, pp. 379–404.

[38] OASIS. Web Services Business Process Execution Language Version

2.0, 2007. URL http://docs.oasis-open.org/wsbpel/2.0/CS01/

wsbpel-v2.0-CS01.pdf, last accessed on 02 October 2007.

[39] Oracle. Oracle BPEL Process Manager Suite 10g. URL http://

www.oracle.com/technology/products/ias/bpel/index.html, last

accessed on 19 February 2008.

[40] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis He-

imbigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S.

Rosenblum, and Alexander L. Wolf. An Architecture-Based Approach to

Self-Adaptive Software. IEEE Intelligent Systems, vol. 14(3), 1999, pp.

54–62.

[41] Massimo Paolucci, Naveen Srinivasan, Katia P. Sycara, and Takuya

Nishimura. Towards a Semantic Choreography of Web Services: From

WSDL to DAML-S. In Proceedings of the International Conference on

Web Services. CSREA Press, 2003, pp. 22–26.

[42] M.P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing.

Communication of the ACM, vol. 46(10), 2003, pp. 25–28.

BIBLIOGRAPHY 126

[43] Joachim Peer. Web Service Composition as AI Planning - a Survey,

2005. URL http://elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf,

last accessed on 19 February 2008.

[44] Randall Perrey and Mark Lycett. Service-Oriented Architecture. In 2003

Symposium on Applications and the Internet Workshops (SAINT 2003).

IEEE Computer Society, 2003, pp. 116–119.

[45] Marco Pistore, Fabio Barbon, Piergiorgio Bertoli, D. Shaparau, and

Paolo Traverso. Planning and Monitoring Web Service Composition.

2004.

[46] Marco Pistore, Paolo Traverso, and Piergiorgio Bertoli. Automated Com-

position of Web Services by Planning in Asynchronous Domains. In 15th

International Conference on Automated Planning and Scheduling. The

AAAI Press, 2005, pp. 2–11.

[47] Jun Shen, Yun Yang, Chengang Wan, and Chuan Zhu. From BPEL4WS

to OWL-S: Integrating E-Business Process Descriptions. In SCC ’05:

Proceedings of the 2005 IEEE International Conference on Services

Computing. IEEE Computer Society, Washington, DC, USA, 2005, pp.

181–190.

[48] E. Sirin and B. Parsia. Planning for Semantic Web Services,

2004. URL http://citeseer.ist.psu.edu/sirin04planning.html,

last accessed on 19 February 2008.

[49] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau.

HTN Planning for Web Service Composition Using SHOP2. Journal of

Web Semantics, vol. 1, 2004, pp. 377–396.

[50] Austin Tate and Brian Drabble. O-Plan - Architecture Guide Version

2.3, 1995. URL citeseer.ist.psu.edu/tate95oplan.html, last ac-

cessed on 17 February 2008.

[51] David E. Wilkins. SIPE-2 Architecture. URL http://www.ai.sri.com/

∼sipe/architecture.html, last accessed on 19 February 2008.

BIBLIOGRAPHY 127

[52] David E. Wilkins. Practical Planning: Extending the Classical AI Plan-

ning Paradigm. Morgan Kaufman Publishers, San Mateo, California,

USA, 1988.

[53] David E. Wilkins. SIPE-2: System for Interactive Planning and Execu-

tion, 2000. URL http://www.ai.sri.com/∼sipe/, last accessed on 19

February 2008.

[54] David E. Wilkins and Marie desJardins. A call for knowledge-based plan-

ning, 2000. URL citeseer.ist.psu.edu/article/wilkins00call.

html, last accessed on 19 February 2008.

[55] WSDL2OWLS. URL http://www.daml.ri.cmu.edu/wsdl2owls, last

accessed on 19 February 2008.

[56] Tao Yu and Kwei-Jay Lin. Service Selection Algorithms for Composing

Complex Services with Multiple QoS Constraints. In Thired Interna-

tional Conference on Service-Oriented Computing (ICSOC 2005), Lec-

ture Notes in Computer Science, vol. 3826. Springer, 2005, pp. 130–143.

