
Automated Realistic Test Input
Generation and Cost Reduction in

Service-centric System Testing

Mustafa Bozkurt

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

June 4, 2013

2

This thesis is dedicated to my grandmother,

Emine Aytaç (1924 - 2006) (�
éÒ

�
ëQ

�
K
 é

��
Ë
�
@)

who wished to see me achieve this degree more than anyone.

3

Declaration

I, Mustafa Volkan Bozkurt confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that this has

been indicated in the thesis.

Abstract

Service-centric System Testing (ScST) is more challenging than testing traditional soft-

ware due to the complexity of service technologies and the limitations that are imposed

by the SOA environment. One of the most important problems in ScST is the problem

of realistic test data generation. Realistic test data is often generated manually or using

an existing source, thus it is hard to automate and laborious to generate. One of the

limitations that makes ScST challenging is the cost associated with invoking services

during testing process.

This thesis aims to provide solutions to the aforementioned problems, automated

realistic input generation and cost reduction in ScST. To address automation in realistic

test data generation, the concept of Service-centric Test Data Generation (ScTDG) is

presented, in which existing services used as realistic data sources. ScTDG minimises

the need for tester input and dependence on existing data sources by automatically gen-

erating service compositions that can generate the required test data. In experimental

analysis, our approach achieved between 93% and 100% success rates in generating re-

alistic data while state-of-the-art automated test data generation achieved only between

2% and 34%.

The thesis addresses cost concerns at test data generation level by enabling data

source selection in ScTDG. Source selection in ScTDG has many dimensions such as

cost, reliability and availability. This thesis formulates this problem as an optimisation

problem and presents a multi-objective characterisation of service selection in ScTDG,

aiming to reduce the cost of test data generation.

A cost-aware pareto optimal test suite minimisation approach addressing testing

Abstract 5

cost concerns during test execution is also presented. The approach adapts traditional

multi-objective minimisation approaches to ScST domain by formulating ScST con-

cerns, such as invocation cost and test case reliability. In experimental analysis, the

approach achieved reductions between 69% and 98.6% in monetary cost of service

invocations during testing.

Acknowledgements

First and foremost, I must thank Allah (
�

È

�
A
��
K

�
ð

�
é
�	
J
�
îD

.
�

�)1 to Whom we owe everything (

é
��
<Ë�

�
YÒ

�
êË

�
@)2. All the good in this thesis is from Him (

�
È

�
A
��
K

�
ð

�
é
�	
J
�
îD

.
�

�) and whatever mistakes

herein is due to myself, as He (
�

È

�
A
��
K

�
ð

�
é

�	
J
�
îD

.
�

�) said in the Qur’an “Whatever of good
reaches you, is from Allah, but whatever of evil befalls you, is from yourself” [4:79].

Second, I am eternally grateful to the people mentioned here as this thesis might
not have been completed without their help and guidance. I should thank my supervi-
sor, Mark Harman, for being the best supervisor I could hope for. He did not just help
me improve myself both intellectually and academically, but also showed incredible
patience and understanding throughout the completion of this thesis. I am also thankful
to my second supervisor, Nicolas Gold, for providing me with valuable criticism and
for discussions that allowed me to realise other research areas where I can apply my
ideas. I am also thankful to Youssef Hassoun for his help during the beginning of
my PhD and his contributions towards the completion of the survey which constitutes
a large part of Chapter 2. I am also thankful to William Langdon for providing me
with invaluable constructive criticism and for patiently listening to my blunt questions.
I also thank my colleagues in CREST (too many to mention) for all their help and
support.

Lastly, I’m most grateful to my parents and my sister who did not just support me
financially but also supported me emotionally. Without their help and encouragement,
I am not sure if I would had been able to complete this thesis. I should especially thank
my mother for believing in me my entire life even when I lost faith in myself from time
to time.

1
�

È

�
A
��
K

�
ð

�
é
�	
J
�
îD

.
�

� (Subhanahu wa ta’ala) means ‘Glorified and exalted be He’.
2

é
��
<Ë�

�
YÒ

�
êË

�
@ (Al-hamdu lillah) means ‘Praise be to the God’

Contents

1 Introduction 16

1.1 An Illustrative Scenario . 20

1.2 Problems Addressed by this Thesis . 22

1.2.1 Problem of Automated Realistic Test Data Generation 22

1.2.2 Problem of Cost Reduction in Test Data Generation 23

1.2.3 Problem of Cost Reduction in Runtime Testing 24

1.3 Contributions of this Thesis . 24

1.4 Technical and Scientific Challenges Faced in this Thesis 25

1.5 Assumptions Made in the Experimental Evaluation of the Proposed So-

lutions . 27

1.5.1 Automated Realistic Test Data Generation 28

1.5.2 Cost Reduction in Test Data Generation 28

1.5.3 Cost Reduction in Runtime Testing 29

1.6 Overview of this Thesis . 30

2 Literature Review 32

2.1 Background . 32

2.1.1 Definition of Service and Service-Oriented Computing 32

2.1.2 Characteristics of Service-Oriented Computing 34

2.1.3 Service-Oriented Architecture (SOA) 35

2.1.4 Web Services and Web Service Technologies 36

2.2 Perspectives in Service-centric System Testing 39

Contents 8

2.3 Test Case Generation Approaches . 40

2.3.1 Specification-based Test Case Generation 40

2.3.2 Contract-based Test Case Generation Approaches 43

2.3.3 Partition Testing Approaches 45

2.3.4 Experimental Results . 46

2.3.4.1 Experimental Results of Specification-based Ap-

proaches . 46

2.3.4.2 Experimental Results of Contract-based Approaches . 47

2.3.4.3 Experimental Results of Partition Testing Approaches 48

2.3.5 Discussion . 48

2.4 Unit Testing of Service-centric Systems 49

2.4.1 Perspectives in Unit Testing 50

2.4.2 Unit Testing Approaches . 51

2.4.3 Experimental Results . 54

2.4.4 Discussion . 55

2.5 Fault-Based Testing of Service-centric Systems 55

2.5.1 Perspectives in Fault-Based Testing 56

2.5.2 Fault-Based Testing Approaches 57

2.5.2.1 XML/SOAP perturbation 57

2.5.2.2 Network Level Fault Injection 59

2.5.2.3 Mutation of Web Service Specifications 60

2.5.3 Experimental Results and Discussion 62

2.6 Model-Based Testing and Verification of Service-centric Systems 64

2.6.1 Perspectives in Model-Based Testing 65

2.6.2 Model-Based Testing approaches 65

2.6.2.1 Model-Based Test Case Generation 65

2.6.2.2 Model-Based Testing & Verification Using Sym-

bolic Execution . 69

Contents 9

2.6.2.3 Model-Based Testing & Verification Using Model-

Checking . 70

2.6.2.4 Model-Based Testing & Verification Using Petri Nets 73

2.6.3 Experimental Results . 77

2.6.4 Discussion . 79

2.7 Interoperability Testing of Service-centric Systems 81

2.7.1 Perspectives in Interoperability Testing 82

2.7.2 Interoperability Testing Approaches 82

2.7.3 Experimental Results . 85

2.7.4 Discussion . 85

2.8 Integration Testing of Service-centric Systems 86

2.8.1 Perspectives in Integration Testing 87

2.8.2 Integration Testing Approaches 87

2.8.3 Experimental Results . 90

2.8.4 Discussion . 91

2.9 Collaborative Testing of Service-centric Systems 92

2.9.1 Perspectives in Collaborative Testing 92

2.9.2 Collaborative Testing Approaches 93

2.9.3 Experimental Results and Discussion 95

2.10 Testing Service-centric Systems for QoS Violations 96

2.10.1 Perspectives in QoS Testing 98

2.10.2 QoS Testing Approaches . 99

2.10.3 Experimental Results . 101

2.10.4 Discussion . 101

2.11 Regression Testing of Service-centric Systems 103

2.11.1 Perspectives in Regression Testing 104

2.11.2 Regression Testing Approaches 105

2.11.3 Experimental Results . 110

2.11.4 Discussion . 111

Contents 10

2.12 Conclusion . 112

3 Analysis of Trends in Service-centric System Testing 114

3.1 Service-centric System Testing Trends 114

3.2 Categorisation of Testing Approaches Applied to Service-centric Sys-

tem Testing . 118

3.3 Emerging Trends in Service-centric Systems and Testing 127

3.4 Conclusion . 130

4 Automated Realistic Test Input Generation 132

4.1 Motivaton . 132

4.2 Features and Importance of Realistic Test Data 134

4.2.1 Features of Realistic Test Data 134

4.2.2 Importance of Realistic Test Data 135

4.3 Service-centric Test Data Generation 137

4.3.1 Data Categorisation . 137

4.3.2 Services as Data Sources . 138

4.3.3 Ontology Analyser . 139

4.3.4 Service Discovery and Search Result Processing 140

4.3.5 Services with multiple inputs 142

4.4 ATAM and Tailored Test Data Generation 143

4.4.1 Tailored Test Data Generation 143

4.4.2 Constraints for Tailored Test Data Generation 143

4.4.3 Service & Data Error Handling 144

4.4.4 Implementation Details . 144

4.5 Empirical Studies . 147

4.5.1 Case Studies . 147

4.5.2 Research Questions . 148

4.5.3 Method of Investigation . 148

4.6 Results and Analysis . 151

Contents 11

4.6.1 Results . 151

4.6.2 Answers to Research Questions 155

4.6.3 Threats to Validity . 156

4.7 Related Work . 157

4.7.1 Test Data Generation for Web Services 157

4.7.2 Test Data Generation Approaches Using Existing Resources . . 158

4.8 Conclusion . 159

5 Cost Reduction Through Multi-objective Data Source Selection 161

5.1 Motivation . 161

5.2 Background . 164

5.2.1 Test Data Generation and Optimisation 164

5.2.2 Quality of Service Models . 164

5.2.3 Pareto-Optimality and NSGA-II 165

5.3 Multi-objective Service-centric Test Input Generation 167

5.3.1 Objective Functions . 167

5.3.2 Representation and Genetic Operators 171

5.3.3 Mutli-Objective Algorithm and Parameters 172

5.4 Empirical Studies . 172

5.4.1 Case Studies . 172

5.4.2 Research Questions . 174

5.4.3 Method of Investigation . 175

5.5 Results and Analysis . 176

5.5.1 Results . 176

5.5.2 Answers to Research Questions 184

5.5.3 Threats to Validity . 185

5.6 Conclusion . 186

6 Cost Reduction Through Pareto-optimal Test Suite Minimisation 187

6.1 Motivation . 187

Contents 12

6.2 Multi-Objective Test Suite Minimisation for Service-centric Systems . . 190

6.2.1 Test Suite Minimisation and HNSGA-II 190

6.2.2 Proposed Approach . 191

6.2.3 Objective Functions . 195

6.2.4 Representation and Genetic Operators 197

6.2.5 Mutli-Objective Algorithm and Parameters 198

6.3 Empirical Studies . 199

6.3.1 Case Study . 199

6.3.2 Research Questions . 204

6.3.3 Method of Investigation . 205

6.4 Results and Analysis . 206

6.4.1 Results . 206

6.4.2 Answers to Research Questions 216

6.4.3 Threats to Validity . 217

6.5 Conclusion . 218

7 Conclusion 219

7.1 Summary of Achievements . 219

7.1.1 Automated Realistic Test Input Generation 219

7.1.2 Multi-objective Data Source Selection 220

7.1.3 Cost-aware Test Suite Minimisation 221

7.2 Future Work . 222

7.2.1 ATAM as a Test Data Generator 222

7.2.2 Pareto-optimal Service Composition Problem 223

7.2.3 Need for Test Suite Prioritisation 224

7.3 Closing Remarks . 225

References 225

List of Figures

2.1 Service-Oriented Architecture . 35

2.2 Web Service Architecture . 37

3.1 Total number of publications from 2002 to 2012 115

3.2 Publication trends of testing techniques applied to ScST 116

3.3 Publication trends of testing methodologies applied to ScST 116

3.4 Distribution of case study types used in experimental validation. 117

4.1 Flow graph of the overall search process that seeks realistic test data

from composition of other services . 139

4.2 Search results for CS1 and CS2 respectively from left to right 142

4.4 Overall architecture of ATAM . 146

4.5 Complete search process for the first case study 150

4.6 Comparison of overall success rates in ISBN generation for our ap-

proach against random test data generation. 152

4.7 Comparison of overall success rates in ZIP code generation for our

approach against random test data generation. 153

5.1 Example topology scenario . 168

5.2 Illustration of the mutation and the crossover operators 171

5.3 Example reliability-price distribution of services in a group 174

5.4 Illustration of the topologies that are used in order to answer RQ2 and

RQ4. 175

5.5 Different levels of correlation for the linear correlation model 176

List of Figures 14

5.6 The effects of the parameters used in our experiments on the generated

pareto-front . 179

5.7 The difference between the globally optimal front and the front discov-

ered by our approach . 180

5.8 The effects of the parameters used in our experiments on the execution

time . 181

5.9 The effects of topology complexity on pareto-front and execution time . 182

5.10 Pareto fronts discovered from all three models with different levels of

correlation . 183

6.1 Example test suite reduction scenario 192

6.2 Illustration of the mutation operator and the crossover operators. 198

6.3 Flowchart of the second case study 201

6.4 Pareto fronts discovered from the 2 objective optimisation of CS1 . . . 210

6.5 Pareto fronts discovered from the 2 objective optimisation of CS2 . . . 210

6.6 3 objective optimisation for case study 1 with per-use payment plan . . 211

6.7 Projected view of Figure 6.6 . 211

6.8 3 objective optimisation for case study 1 with contract-based payment

plan . 212

6.9 Projected view of Figure 6.8 . 212

6.10 3 objective optimisation for case study 2 with per-use payment plan . . 213

6.11 Projected view of Figure 6.10 . 213

6.12 3 objective optimisation for case study 2 with contract-based payment

plan . 214

6.13 Projected view of Figure 6.12 . 214

List of Tables

3.1 Summary of approaches included in Chapter 2 119

4.1 Web services used in the experiments 147

4.2 Success rates for tailored ISBN generation using MID-seed 154

4.3 Success rates for tailored ZIP code generation using MID-seed 154

4.4 Success rates for tailored ISBN generation using TSD-seed 155

4.5 Success rates for tailored ZIP code generation using TSD-seed 155

5.1 Services used as a basis for the synthetically generated case study . . . 173

6.1 The list of the services used in determining the real-world reliability

scores . 200

6.2 Reliability values used in the 3-objective evaluation of fist case study . . 202

6.3 Web service compositions used in generating ZIP codes 203

6.4 The invocation costs for the services used in CS1. 204

6.5 Invocation costs for the services used in CS2. 204

6.6 Details of the test suites generated for CS1 and CS2. 205

6.7 Reduction in the number of test cases 207

6.8 Reduction in the number of service invocations 207

6.9 Reduction in the number of service invocations 207

6.10 The list of false positives caused by erroneous test inputs 208

6.11 Results from the domination analysis 209

6.12 Distances between the discovered pareto fronts 215

Chapter 1

Introduction

Service-Oriented Computing (SOC) shifts the traditional understanding of software ap-

plication design, delivery and consumption. The idea of SOC is that it ought to be able

to create a more systematic and efficient way of building distributed applications. The

vision underpinning this idea is to establish a world of loosely coupled services, able

to rapidly assemble dynamic business processes and applications.

Several software companies and market analysis institutions have highlighted the

changes SOC has brought about. The focus of businesses is migrating from product

manufacturing (hardware and software) to service provision. For example, according

to AppLabs [8], in the future, business concentration will shift away from system de-

velopment towards core business. One motivation for this shift is the ability to build

systems dynamically using services provided by other businesses. According to the

Wintergreen Research Inc. (WRI) [355], the changes in the software industry go be-

yond technical issues. With software becoming more agile in order to fit business

requirements, many businesses position themselves towards adopting Service-centric

System(s) (ScS).

The market growth of SOC-related technology also supports this claim. WRI’s es-

timation for the 2005 SOC market is $450 million and it is expected to reach $18.4 bil-

lion in 2012. According to the International Data Corporation [148], a leading market

research institution, the global spend on service-oriented software in 2006 was nearly

$2 billion. The same report projected that this spend will be $14 billion in 2011. A

17

more recent report from Gartner [36] estimated Software as a Service (SaaS) and cloud-

based business application services market as $13.4 billion in 2011 and projected that

the market will grow to $32.2 billion in 2016.

However, when compared to optimistic predictions, SOC may be yet to achieve its

full market potential. The author believes that this is due to two main reasons: The first

reason is the recent economic downturn which reduces investment in new technologies

and research. The second reason is the technological challenges that are brought by

ScS.

“Web services are not yet widely used because of security concerns. But

there’s an even bigger roadblock waiting just down the road – it’s called

trust. The big issue is ’Will the service work correctly every time when

I need it?’ As yet few are thinking about the issues of testing and certi-

fication. We suggest that testing and certification of Web services is not

business as usual and that new solutions are needed to provide assurance

that services can really be trusted” [64].

As stated by CDBI Forum [64], one of the main technological barriers to enter-

prises’ transition to ScS is denoted by the heightened importance of the issue of trust.

Web services are introduced into systems that require high-reliability and security. Us-

ing services in these systems raises the importance of establishing trust between the

service provider and the consumer. The trust issue is not just about the correct func-

tioning of a service. It has many other dimensions such as service security and Quality

of Service (QoS).

Testing provides one potential solution to the issue of establishing trust. Testing

is important to assure the correct functioning of ScS that, by nature, have the ability to

dynamically select and use services. In order to confirm the correct functioning of ScS,

interoperability among all its components, and integration of these components must

be adequately tested.

ScS also need to be tested and monitored for QoS to ensure that they perform at

expected levels. In order to compose a Service Level Agreement (SLA), an agreement

18

between the service provider and the consumer on service operation, QoS parameters

have to be measured and subsequently monitored for their compliance. This process is

a well known practice in other fields such as web hosting and network services. Due

to the number of stakeholders involved and dynamic late-binding in Service-Oriented

Architecture (SOA), establishing an SLA might not be as straightforward as those used

in other fields. These problems also affect testing and monitoring for QoS in SOA.

As a result of the aforementioned issues, ScS may require more frequent testing

than traditional software. The possibility of changes to an ScS (changes which requires

testing) might be increased due to two major benefits of services: First, for ScS using

services statically1, this possibility increases with the number of services invoked. Sec-

ond, the ease of integrating or removing a functionality (through a service) encourages

developers to make additions which increases this possibility.

In testing of software systems, one common problem that many testers face is the

problem of cost. The testing cost is often associated with the time it takes to complete

the execution of a test suite (which may also include setting up the testing environment).

However, with the introduction of services, this standard understanding of the term

‘testing cost’ has started to gain new dimensions, such as monetary cost of service

invocation. Recent surveys [44, 49], as well as Chapter 2 of this thesis, identify runtime

testing cost as one of the challenges of ScST. Testing cost is identified as a challenge

due to three side effects that might be caused by the increased frequency of testing.

These are:

1. The monetary cost of invoking service during runtime testing.

2. Service disruptions that might be caused by extensive testing.

3. Effects of testing in some systems, such as stock-exchange systems, where each

usage of the service requires a business transaction, that carries with it a monetary

cost.

There are also other challenges in ScST, such as identifying the right time to test
1Concepts of static and dynamic service use is explained in Chapter 2

19

the ScS and the number of test cases to run. This issue may occur due to different

payment plans offered for the service invocations in SOA. For example, in the case of

testing an ScS invoking services with quota-based payment plans, a test suite that can

be executed within a given period while invoking a certain number of services may be

needed in order to avoid extra charges.

There are existing approaches targeted at reducing these side effects, such as us-

ing mock/stub services or a testing environment where test cases are executed on a

special instance of the Service/System Under Test (SUT). Although these approaches

can reduce the severity of the mentioned side effects, they do not eliminate the need for

runtime testing. In order to reduce the side effects of testing for ScS, approaches that

reduce the testing cost at runtime are needed.

Another identified challenge in ScST is automated test data generation [44]. Even

though many approaches for automated test data generation are proposed for traditional

systems [166, 240, 259, 277] and ScS [16, 20, 29, 130, 185, 201, 235, 295], they are

effective in generating test inputs only for certain input types. Their ineffectiveness in

generating other input types is caused by the requirements of the inputs. This is be-

cause these inputs must be correctly formed and also contain semantics that tie them

to real-world entities. We classify these type of inputs as ‘realistic inputs’2. The inef-

fectiveness of the current automated approaches is also a factor in the testing cost. The

extra cost is the human effort incurred in two ways: the tester’s effort to verify automat-

ically generated data, and the tester’s effort to manually generate data. New automated

solutions that can effectively generate realistic test cases are needed to address this

issue.

The thesis of this dissertation is that existing web services can be used to increase

the effectiveness of automated realistic test data generation and that multi-objective

search algorithms can help reduce testing cost in ScST. The problem of effectiveness in

automated generation of realistic inputs is addressed by the concept of service-centric

test data generation. The cost reduction problem is addressed at two different levels:

2The concept of realistic data is explained in Chapter 4 in detail

1.1. An Illustrative Scenario 20

test data generation and test execution. The cost reduction is achieved by formulating

the problems at these two levels of abstraction as multi-objective optimisation prob-

lems. The approaches presented in this thesis are evaluated using real-world (where

possible) and synthetic case studies (based on real-world parameters). The results from

the experimental studies provide evidence that these approaches can be used in testing

real-world ScS.

1.1 An Illustrative Scenario

This section describes a testing scenario explaining the cost involved at each stage and

the need for realistic test data. Later part of the section also explain how this thesis

address these problems.

First, we discuss the two possible scenarios that we consider a tester might be in

SOA; testing a composition or testing a third-party service as a certifier3. In both of

these cases, the tester might need to invoke third-party service(s) for testing purposes.

Suppose that some of these invoked services require inputs such as International Stan-

dard Book Number (ISBN), Zone Improvement Plan (ZIP) code or Universal Product

Code (UPC). Generating inputs automatically for these input types is not as straight-

forward as generating others, because in order to receive positive outputs from these

services, generated test inputs must represent real-world entities. For example, a gen-

erated ISBN must represent an existing book, while a UPC must represent an existing

product.

The tester might try some of the existing automated test data generators, however,

he/she will soon realise that (as discussed in Chapter 4) these tools are not effective

enough at generating ISBNs, ZIP codes and UPCs. When automated tools fail, a tester

often regresses to one of the most practised methods: manual test data generation. The

tester knows manual generation is effective, but it is also laborious and error-prone. In

order to avoid errors and reduce effort, the tester might use some of the existing sources

for generating the required test data. These sources might include:

3Testing perspectives in SOA are discussed in detail in Chapter 2

1.1. An Illustrative Scenario 21

1. Existing data sources such as recorded user sessions and existing data bases.

2. Existing online sources such as websites like Amazon for ISBNs and the

U.S.Postal Service for ZIP codes.

3. Domain knowledge to manually generate the data. For example, the tester might

use ZIP codes or ISBNs he/she knows.

Even though these options seem to be viable for generating the required test data,

the tester will soon realise that all of them fail at some level. For example, in order to

use existing data sources the data has to be accessible to the tester, which might not be

the case in every scenario. There is also the problem of temporal data. This is a type of

data considered to be valid only for a certain period of time, such as flight details. If the

required test data is temporal, some of the existing data such as recorded user sessions

might not be reusable.

In traditional testing, it is often expected that the tester will execute each compo-

nent with a number of positive and negative test cases. However, a small number of

test cases might not be adequate in SOA due to the need for determining the Quality

of Service (QoS) scores of a service4. This need occurs, for example, in the case of

the certifier who needs to test and measure different aspects of a service such as per-

formance, security and reliability. As a result, the tester might need to acquire a high

number of test cases to perform adequate testing. However, the tester will soon realise

that generating the required number of ISBNs and ZIP codes might take long time when

they are to be generated manually.

The tester might also face the problem of data limitation, such as testing a service

from a book publisher. In this case, the tester will know or realise that generating

a valid ISBN that represents a real-world book is insufficient. What the tester needs

as a positive test case is an ISBN that represents a book published by an appropriate

publisher. This requirement is another factor that might make generation of the required

test data more challenging.

4The concept of QoS and QoS testing for services are discussed in Chapter 2 and 5

1.2. Problems Addressed by this Thesis 22

Even though the tester generates a test suite that can achieve extensive testing,

he/she might not be able to execute all test cases due to several limitations such as time

constraints and testing budget. These limitations might be more severe in environments

such as SOA, where testing frequency is higher. As a result, the tester will try to reduce

the size of the test suite and will thus face the problem of test case selection. The tester

has to find the most effective subset of the test suite that can be executed within the

given time and budget. The testing budget is often considered to comprise of testers’

wages, tool costs and other related expenses [162]. However, in ScST, there is also

another cost that increases the overall cost of testing: the cost of service invocation. As

a result, the tester must apply a cost-aware test suite minimisation.

1.2 Problems Addressed by this Thesis
This section describes the problems in the automation of test data generation for certain

input types and cost reduction at two levels of testing process in ScST. The problems

discussed in the section are real-world problems that a tester might face in ScST. How-

ever, the thesis does not claim that the provided solutions can be applicable to every

scenario. The main aim of this thesis is to highlight the importance of these challenges,

introduce new solutions and provide evidence to the feasibility and applicability of

these new solutions.

1.2.1 Problem of Automated Realistic Test Data Generation

As discussed, generating test data for input types that represent a real-world entity is

problematic. We refer to these inputs as ‘realistic inputs’. Unfortunately, the existing

automated tools are not effective enough to be used in generating data for these inputs

and manual generation is laborious and error-prone. There is a need for automated tools

that can effectively generate realistic test data.

This thesis presents a new technique called ‘Service-centric Test Data Generation’

(ScTDG) that can automate the generation of realistic test data by leveraging the data

that can be acquired from existing services. ScTDG is effective in the automation

realistic test data due to three main reasons:

1.2. Problems Addressed by this Thesis 23

1. The data provided by existing services are realistic by nature.

2. The dynamic nature of SOA which allows dynamic discovery and invocation of

services.

3. The same set of services can be used in many cases to generate a large number

of different test data.

ScTDG greatly benefits from the dynamic aspects of SOA: dynamic discovery

and invocation. As a result of these benefits, it minimises the need for the tester input

and reduce the dependency on previous data. Using ScTDG enables generation of test

data based on the tester’s specifications, thus helping in overcoming data limitation

problems. ScTDG also helps with reducing the human-oracle cost due to the realism

of the data generated from services as discussed in Chapter 4.

1.2.2 Problem of Cost Reduction in Test Data Generation

As mentioned, one of the main aims of a tester is to complete the testing process within

the given testing budget. In a scenario where ScTDG is used, the tester will also need to

consider the monetary cost of test data generation. This cost might arise due to the cost

of invoked services during ScTDG. Since in ScTDG a tester can use any combination

of suitable services, it is safe to assume he/she will want to use the services with lower

costs in order to minimise testing cost.

However, cost might not be the only concern that the tester has in ScTDG. There

are other concerns such as the reliability of the test data source (the service(s)) and the

time it takes to generate the required data that the tester might be cautious of. Because

the services used in ScTDG are third-party, it is safe to assume that, in many cases, the

tester will want to use highly reliable services to generate the required test data. He/she

might also want to use services with low response time or high availability in some

scenarios.

This thesis considers the service selection problem in ScTDG as a multi-objective

optimisation problem and introduces a pareto-optimal test data generation extension to

1.3. Contributions of this Thesis 24

ScTDG. The application of optimisation techniques (both single- and multi-objective)

have been proposed before in the field of test data generation [132]. However, none

of the previously proposed approaches consider SOA concerns. The proposed optimi-

sation benefits the existence of pre-measured QoS attributes of services and helps the

tester to make an informed decision on which services to use in ScTDG. The multi-

objective formulation also enables the tester to make trade-offs between various QoS

aspects as discussed in Chapter 5.

1.2.3 Problem of Cost Reduction in Runtime Testing

One of the limitations in ScST is the cost associated with testing. The side effects of

this limitation might be especially severe in service compositions with a large number

of services. Even though there is existing work that aims to reduce the severity of this

problem such as simulated testing [146, 186, 205, 208, 247, 270], these approaches do

not eliminate the need for runtime testing with real services.

Test suite minimisation is one of the oldest methods aimed at reducing testing

cost [374]. The aim of minimisation is reducing the testing cost through redundant test

case elimination. The existing cost-aware test case prioritisation and minimisation ap-

proaches often associate cost with the execution time of test suites. However, reduction

in the test cases brings up other concerns such as preserving branch coverage and fault

detection capability. Unfortunately, none of the existing work considers ScST concerns

such as cost of service invocations and test data reliability (based on its source).

This thesis combines the concerns of the ScST domain with some of the tradi-

tional concerns and formulates them all as optimisation problems. The application of

multi-objective algorithms to these problems enables the tester to discover low cost

subsets of the test suite, while preserving achievement of test aims such as branch cov-

erage. Pareto-optimal test suite minimisation also enables the tester to make trade-offs

between the concerns.

1.3 Contributions of this Thesis
The contributions of this thesis are as follows:

1.4. Technical and Scientific Challenges Faced in this Thesis 25

1. The analysis of the existing and future trends in ScST, which helps build a

roadmap to its future.

2. The automation of realistic test data generation with ScTDG and the empirical

evaluation of the concept using real-world scenarios, which provides evidence

for its feasibility.

3. The introduction of a prototype tool that helps automation of ScTDG.

4. The demonstration of the effectiveness of ScTDG compared to the current state-

of-the-art automated test data generation approach, which provides evidence for

its effectiveness compared to state-of-the-art.

5. The introduction of multi-objective formulation of service selection in ScTDG

and its subsequent cost reduction, which includes the formulation for several

QoS characteristics: cost, reliability, response time and availability.

6. The empirical evaluation of the multi-objective service selection in ScTDG using

simulated scenarios with real-world parameters, which provides evidence for its

ability to help reduce test data generation cost.

7. The introduction of cost-aware test suite minimisation in ScST and the empirical

evaluation of the concept, which produces evidence for its applicability to real-

world problems and to its ability to reduce runtime testing cost.

1.4 Technical and Scientific Challenges Faced in this

Thesis
During the experimental evaluation of this thesis we faced several technical and sci-

entific challenges. Some of these challenges were addressed and solutions to these

challenges are presented in the following chapters. Some of the challenges could not

be completely addressed during the duration of this thesis and left as future work. The

challenges we faced can be grouped into three main groups:

1.4. Technical and Scientific Challenges Faced in this Thesis 26

1. Challenges posed by the lack of real-world case studies.

2. Challenges posed by the lack of established standards in SOA and service speci-

fications.

3. Challenges posed by the lack of interoperability among tools, especially in the

area of semantic services.

We faced with the challenges belong to the first group at every experimental analy-

sis presented in the thesis. For example, while performing the experiments described in

Chapter 4 not having semantically described services forced us to search for ontologies

that describe the business domain of the services we used in our experiments. Unfortu-

nately, most of the existing ontologies available on the internet are simple examples and

do not adequately describe their domain. As a result, we created our own ontologies

for the domain of the each service we used.

Not having real-world services with measured QoS metrics can also be included

in this category. Experimental analysis presented in Chapter 5 and 6 are based on

QoS measurements of services. However, we could not find adequate number of real-

world services with semantic descriptions and measured QoS metrics. As a result, we

generated synthetic QoS data (based on real-world examples) for our case studies.

The problem of non-established standards in SOA especially concerning semantic

specifications is one of the major issues that prolong the transition to semantic services

from traditional services [44]. We believe that this problem affects academic research

as well. For example, as mentioned in Chapter 4 at the time of the experiments OWL-S

did not fully support WADL specifications (for grounding). As a result, we were forced

to convert all the RESTful services used in the experiments to SOAP services. Even

though recent additions to OWL-S include support for WADL in OWL-S grounding,

we are not sure if majority of the existing tools (parsers) are updated to include these

new features.

In the subject of QoS metrics (for web services) not having established standards

was also another challenge. As a result of not having established metrics and mea-

1.5. Assumptions Made in the Experimental Evaluation of the Proposed Solutions 27

surement definitions, we used the definitions from an earlier study [334]. The QoS

characteristics in this study are defined using the most common terms in the existing

work. Although, the definition and the used method of measurement for reliability met-

ric that was provided in Chapter 5 is based on this study, it might not exactly agree with

some of the existing work.

Unfortunately, best to our knowledge interoperability problems among semantic

tools is a very common problem. During the experimental analysis of the solutions

proposed in this thesis, we faced this problem several times. For example, the first time

we faced this problem was during the selection of service broker. As we mentioned in

Chapter 4, we selected Alive matchmaker [2] as the service broker. Even though, Alive

is not the most widely used matchmaker according to the literature, it uses an a more

recent OWL-S API which allows using more recent versions of OWL-S specifications.

We could not use more popular matchmakers such as OWL-S/UDDI matchmaker and

OWLS-MX due to their incompatibilities with the recent versions of OWL-S and lim-

ited OWL ontology support. One other related problem we faced was the limited XSLT

transformation support in the earlier versions of OWL-S and parsers. The issues related

to this problem forced us to use more recent version of OWL-S and tools that support

it.

The most important challenge we faced in this thesis was the limitations posed by

subsumption-based matchmaking. The challenges regarding this topic and our solu-

tions to them are discussed in Chapter 4 in detail.

1.5 Assumptions Made in the Experimental Evaluation

of the Proposed Solutions

We believe it is important to clearly state the assumptions we made throughout the

experimental evaluation of the solutions presented in this thesis. As expected, we

made several assumptions during the evaluation stage our solutions. In this section,

we grouped the assumptions into three groups based on the experiment they relate to.

1.5. Assumptions Made in the Experimental Evaluation of the Proposed Solutions 28

1.5.1 Automated Realistic Test Data Generation

In the experimental analysis of our solution to this problem (presented in Chapter 4),

we made two assumptions:

1. Existence of a semantic SOA where services are defined using OWL-S spec-

ifications and their business domain are described using OWL ontologies.

Unfortunately, non of the existing specifications are accepted as a standard to

implement SOA. Our assumption in this matter is based on the popularity of the

selected specifications in academic research and existence of tools that support

mentioned specifications. Even though, in the future the specifications for SOA

might be different than the specifications used in this experimental analysis of

the solutions in this thesis, the general principal of SOA will remain the same.

Thus, the solution presented in Chapter 4 will still be valid and applicable.

2. Existence of services that provide data that can be used as test data. In this

thesis, we investigated the possibility of testing semantic applications with the

data that can be acquired from existing services. The solution that we presented

in Chapter 4 can only automatically generate test data in the case of availability of

services that provide the required test data. This issue is identified as a limitation

in the chapter. However, as we mentioned in Chapter 7, with concepts such as

Data as a Service data is becoming easily accessible [91] and the growth in the

investment in service and service related technologies increases the transition of

businesses to services. In the light of these fact, we believe it is safe to assume

that in the future more services providing data that can be used for testing will be

available.

1.5.2 Cost Reduction in Test Data Generation

In the experimental analysis of our solution to this problem (presented in Chapter 5),

we made three assumptions:

1. Existence of a semantic SOA where QoS metrics are measured and available

to the SOA stakeholders. Even though, the literature suggest several models

1.5. Assumptions Made in the Experimental Evaluation of the Proposed Solutions 29

and measurement techniques, best to the authors knowledge currently there is

no established QoS standard for services. However, QoS is already defined and

standardised in other fields such as telecommunication and networking. It is safe

to assume that in the future a QoS standard for SOA will be established.

2. For the models used in the experiments, we did not assume a perfect world.

As a result, each service population includes certain amount of noise. We believe,

expecting a perfectly correlated population would be very unrealistic assumption

and hinder our efforts to make our case studies as realistic as possible. In the

experimental analysis, in order to sustain realism we created several levels of

correlation in the populations and investigated the effects of the level of correla-

tion in all possible combinations.

3. In the assignment of QoS metrics for the services in each population we two as-

sumption. The first assumption we made were the limits imposed on reliability

values. We defined reliability values to be between 0.50 and 0.99. The values

selected conform with the reliability study we presented in Chapter 6, however

the minimum reliability is specifically reduced to cover more possible scenarios.

The second assumption we made is the positive correlation between price and

reliability. As we mentioned in the chapter, it is hard to predict the cost and

reliability relation. However, the general assumption in the engineering field that

higher reliability is often comes with higher price and this is positive correlation

is also perceived by the general public [333]. In the light of these information

we followed the same trend and introduced a positive relation between price and

reliability.

1.5.3 Cost Reduction in Runtime Testing

In the experimental analysis of our solution to this problem (presented in Chapter 6),

we made three assumptions:

1. Testing is performed by the integrator. In SOA, it is likely that a service or

1.6. Overview of this Thesis 30

a composition is tested by multiple stakeholders. However, for service compo-

sitions structural testing or model-based testing can only be performed by the

integrator who has access to the code. In this case, it is safe to assume that the

solution presented in this chapter can only be used by an integrator.

2. We assume that the stubs that can mimic the functionality of the invoked

services can be generated. This assumption is based on the discussion presented

in Chapter 2 where we summarise the existing work on automatically generating

functional service stubs.

3. Selecting United States Postal Service ZIP Code validation service as ground

truth in reliability analysis presented in Chapter 6. We discussed the reasons

for this assumption in detail in the related section in detail.

1.6 Overview of this Thesis
The thesis is organised as follows:

Chapter 2 - Literature Survey provides a survey of the existing work on the testing and

verification of ScS. The chapter begins with the introduction of the concepts,

technologies and perspectives in SOA. The rest of the chapter surveys testing

methodologies such as unit testing, integration testing, regression testing, inter-

operability testing and testing techniques such as test case generation, fault-based

testing, model-based testing and collaborative testing.

Chapter 3 - Analysis of Trends in Service-centric System Testing provides an analysis of

existing and future trends in ScST area. The chapter first introduces an analysis

of current trends. Then, the chapter provides an overview of the existing work,

highlighting the area of testing, technologies that they are applicable to and case

studies used in their experiments. Finally, the chapter provides an analysis of

emerging trends in SOA and SCST.

Chapter 4 - Automated Realistic Test Input Generation introduces the concept of

1.6. Overview of this Thesis 31

ScTDG. The chapter first explains what ‘realistic input’ is and discuses the im-

portance of it. Then the chapter explains ScTDG in detail, including service

discovery, service grouping and composition building. Later, the chapter intro-

duces the prototype tool that is used in the experiments and details how it enables

functionalities such as service elimination and tester-specified test data genera-

tion. Finally, the chapter presents the empirical evaluation of ScTDG for two

different realistic inputs using several real-world services.

Chapter 5 - Cost Reduction Through Multi-objective Data Source Selection introduces

our multi-objective optimisation solution to the service selection problem in

ScTDG. The chapter begins with a presentation of the subject background, in-

cluding a summary of existing work in multi-objective test data generation, con-

cept of QoS and multi-objective optimisation. Then the chapter introduces the

details of multi-objective test data generation in ScTDG, including objective

functions for QoS parameters, representation and selected algorithm. Later, the

chapter presents the case studies used, the method of experimental validation and

the research questions asked in the experimental validation. Finally, the chapter

presents the empirical evaluation of the approach and the answers to the research

questions.

Chapter 6 - Cost Reduction Through Pareto-optimal Test Suite Minimisation intro-

duces the cost-aware multi-objective formulation of test suite minimisation for

ScS. The chapter first discusses the need for test suite minimisation in ScST. Fur-

thermore, it explains the concept of test suite minimisation, the multi-objective

algorithm chosen and details of our approach. Then, it presents the case studies

used, the method of experimental validation and the research questions asked in

the experimental validation. Finally, the chapter presents the empirical evaluation

of the approach and the answers to the research questions.

Chapter 7 - Conclusion completes this thesis with the summaries of its achievements and

proposals of the possible future work.

Chapter 2

Literature Review

2.1 Background
This chapter introduces the concepts and technologies used in SOA and Web services.

This chapter is aimed at software testing researchers who are unfamiliar with these

concepts.

2.1.1 Definition of Service and Service-Oriented Computing

According to Papazoglou [249], SOC is a new computing paradigm that utilises ser-

vices as lightweight constructs to support the development of rapid, low-cost and easy

composition of distributed applications. This is a widely used definition of SOC.

The concept of a ’service’ is comparatively elusive and consequently harder to

describe. The definition adopted by the author is:

“Services are autonomous, platform-independent computational elements

that can be described, published, discovered, orchestrated and pro-

grammed using standard protocols to build networks of collaborating

applications distributed within and across organisational boundaries.”

[250].

This definition describes services in terms of SOA, therefore it captures the services’

technological aspects. In order to justify this description, the terms used need to be

explained a little further.

According to the Oxford English Dictionary [243], the meaning of autonomy is:

2.1. Background 33

autonomy

1. Of a state, institution, etc.: The right of self-government, of making its own laws

and administering its own affairs. (Sometimes limited by the adjs. local, admin-

istrative, when the self-government is only partial; thus English boroughs have

a local autonomy, the former British colonies had an administrative autonomy;

political autonomy is national independence.)

(a) Liberty to follow one’s will, personal freedom.

(b) Metaph. Freedom (of the will); the Kantian doctrine of the Will giving

itself its own law, apart from any object willed; opposed to heteronomy.

2. Biol. Autonomous condition:

(a) The condition of being controlled only by its own laws, and not subject to

any higher one.

(b) Organic independence.

3. A self-governing community (cf. a monarchy).

As this definition suggests, autonomy includes self-government, self-control, in-

dependence, self-containment, and freedom from external control and constraint. As a

result, there are different definitions of autonomy in software. One of these definitions

that suits the autonomy of services comes from Erl. According to Erl [100], auton-

omy, in relation to software, is a quality that “represents the independence with which

a program can carry out its logic”.

For services, Erl defines autonomy at two levels; runtime and design-time. Run-

time autonomy is the level of control a service has over its processing logic at the time

of its invocation. The goal behind this autonomy is to increase runtime performance,

reliability and behaviour predictability. Increases in all these aspects contribute towards

reusability of services. Design-time autonomy is the level of freedom service providers

possess to make changes to a service over its lifetime. This autonomy allows scalability.

2.1. Background 34

Other sources [21, 76, 197] also define autonomy of services in a manner similar

to Erl. For example, Bechara [21] claims that services need to be autonomous in the

sense that their operation is independent from other co-operating services. According

to Bechara, this kind of autonomy is needed to enforce reusability of services.

Services need to be platform-independent in order to provide high reusability.

This, in turn, requires interoperability among services. Platform-independency in this

context means that the service user must be able to use the functions provided by the

service regardless of the platform upon which the user operates. This kind of platform-

independent usage of a service requires platform-independent description of the service

and platform-independent messaging among the service and its users.

The last part of the definition describes services in terms of SOA usage. In SOA,

services must be described, published, discovered and orchestrated in order to perform

their functions within the SOA environment. The communication between the service

and its user also needs to use standard protocols in order to ensure interoperability.

The reason for having different definitions for services lies in the context in which

services are used. For example, some researchers [70, 122, 190, 266] define services in

the context of GRID Computing, and their definition focuses on the aspects of GRID

technology. On the other hand, Jones [156] defines services in business terms and

claims that defining a service from solely a technological point of view is insufficient.

According to Jones, a service description must include other aspects that cannot be

measured or defined purely by technology alone.

2.1.2 Characteristics of Service-Oriented Computing

The characteristics of SOC applications claim to deliver advantages over the traditional

distributed applications. Such advantages include platform independence, autonomy

and dynamic discovery and composition. There are two primary characteristics of SOC

applications through which these advantages may arise [322]. These characteristics are:

1. In SOC, all the services must comply with the interface standards so that services

are guaranteed to be platform-independent.

2.1. Background 35

2. Service descriptions must enable the automation of integration process (search,

discovery and dynamic composition).

In order to achieve effective SOC, integration of many technologies and concepts

from different disciplines within software engineering is required. Of course, this in-

tegration brings numerous challenges as well as advantages. Some of these challenges

require adaptation of the existing solutions to SOC and the others need new solutions.

2.1.3 Service-Oriented Architecture (SOA)

SOA is described as a strategy for building service-oriented applications. Its aim is

to provide services that can be used by other services. In SOA, there are three main

participants: a service provider, a service user and a service broker. These three par-

ticipants perform the three fundamental SOA actions: publish, find and bind. Figure

2.1 illustrates this foundational SOA concept, its participants and the operations among

participants.

Figure 2.1: Service-Oriented Architecture

The service provider is the owner of the service and is responsible for solving

service problems and service maintenance. The service provider is also the sole con-

troller of service evolution. The host on which the service resides can also be accepted

as the provider in terms of architecture. The service provider publishes a service by

registering it to a service broker.

2.1. Background 36

The service broker can be seen as a lookup mechanism for services. It is a registry

in which services are published and with this, searches can be performed. It allows

users to find services that match their requirements and provides information on how

to access these services (details used for binding).

The service user is the most important component since it initiates the two major

operations: find and bind. After finding a service that satisfies its needs, the service

user invokes the service with the binding information from the broker. This binding

information includes the location of the service, how to access the service and the

functions that are provided by the service.

2.1.4 Web Services and Web Service Technologies

A web service (also referred to as service(s) hereafter) is defined as “a software system

designed to support interoperable machine-to-machine interaction over a network” by

W3C (World Wide Web Consortium) [350]. The aim of the Web services platform is

to provide the required level of interoperability among different applications using pre-

defined web standards. The Web services integration model is loosely coupled in order

to enable the required flexibility in integration of heterogeneous systems.

There are different web service styles, such as Representational State Transfer

(REST) and Simple Object Access Protocol (SOAP) web services. They can all be

used in SOA but differ in the interfaces that they use. For example, a SOAP web service

uses SOAP interface to carry messages and WSDL to describe the services, whereas

REST interfaces are limited to HTML using common HTTP methods (GET, DELETE,

POST and PUT) to describe, publish and consume resources. This section focuses on

the SOAP web services due to their popularity both in industry and academia.

The idea of SOA is older than that of Web services, but the ’great leap’ of SOA

has been facilitated with the introduction of Web services. Web services are generally

accepted as the core element of SOA, providing the necessary autonomy, platform-

independence and dynamic discovery and composition. Through web services, pre-

existing systems can exchange information without the need to know any technical

2.1. Background 37

information about the exchange partner. Figure 2.2 describes the web service architec-

ture and its core specifications that are used in performing each SOA operation. It also

illustrates the way in which web services implement the general concept of SOA.

Figure 2.2: Web Service Architecture

In order to provide platform-independent messaging across a network, Web ser-

vices architecture uses three core specifications:

1. Simple Object Access Protocol (SOAP): SOAP is an XML-based protocol that

allows data exchange over the Hypertext Transfer Protocol (HTTP). The W3C

definition of SOAP is “a lightweight protocol intended for exchanging structured

information in a decentralized, distributed environment” [297]. Since SOAP as a

protocol combines platform independent XML and HTTP, SOAP messages can

be exchanged between applications regardless of their platform or programming

language. The SOAP protocol allows exchange of XML messages with struc-

tured information between a web service and its users.

2. Web Service Description Language (WSDL): W3C defines WSDL as “an XML

format for describing network services as a set of endpoints operating on mes-

sages containing either document-oriented or procedure-oriented information”

[349]. A WSDL specification is a web service interface that provides users with

all the information they need, such as message formats, operations provided by

2.1. Background 38

the web service and location of the web service, to interact with the service in the

pre-defined standards.

3. Universal Description Discovery and Integration (UDDI): UDDI is defined as

“a set of services supporting the description and discovery of businesses, orga-

nizations, and other Web services providers, the web services they make avail-

able, and the technical interfaces which may be used to access those services” by

OASIS (The Organization for the Advancement of Structured Information Stan-

dards) [329]. UDDI is an industry initiative that enables businesses to publish

their services and enables potential customers to discover these services. UDDI

registries can be either private or public. A web service is not required to be

registered to any UDDI registry in order to be used.

There are also other Web services technologies that enable composition of multiple

services, such as the Business Process Execution Language (BPEL) and Semantic Web

Services (SWS), that work towards automated SOA integration.

BPEL is an executable language that defines and manages business processes that

involve multiple web services [251]. BPEL is an XML-based flow language for com-

posing multiple web services. Using BPEL, organisations can automate their business

processes by orchestrating services within their network and the services from other

businesses. The ability to use services from other organisations allows enterprises to

build complex processes that include multiple organisations.

Unfortunately, traditional web services (WSDL services) provide only syntactic

interfaces and current UDDI brokers support only index word-based searching of ser-

vices with required attributes. Using traditional web services, automated discovery and

invocation is almost impossible. In order to achieve automation, service descriptions

must be machine readable. SWS have emerged aiming to solve the problems regarding

automation. SWS are services with extended specifications that contain semantic in-

formation on input data and service behaviour. The aim of SWS is to provide a richer

semantic specification for web services. At present there are several semantic web

2.2. Perspectives in Service-centric System Testing 39

service proposals that include initiatives and projects such as WSDL-S [344], OWL-S

[242], WSMO [343], METEOR-S [218] and SWSA/SWSL [285].

2.2 Perspectives in Service-centric System Testing

As expected from a distributed environment, SOA has multiple parties involved. Can-

fora and Di Penta [48] have specified five parties in SOA (the standard three SOA

parties are depicted in Figure 2.1). These parties are the developer, the provider, the

integrator, the third-party certifier and the end-user.

Developer: The developer is the party who implements the service and has the

sole responsibility for the service evolution. There might also be situations where more

parties are involved in service evolution, but generally the developer is accepted as the

sole party to have access to the source code. Thus, developer side testing is typically

performed in a white-box manner. In SOA, the developer is the only party who can per-

form structural testing on services. Being able to perform structural testing, a developer

can perform thorough functional testing with minimal cost.

Provider: The provider is the party who deals with QoS in the SOA. The provider

ensures that the service operates within the conditions defined by the SLA. The provider

can perform structural tests if he has access to the source code. In many cases, the

provider might not have the access to the source code (e.g. due to being in a differ-

ent organisation from the developer) so he can only perform functional tests. In any

scenario for both structural and functional tests the cost of testing is minimal for the

provider. The provider can also perform non-functional tests. The main disadvantage

of the provider could be not having a test suite with realistic inputs.

Integrator: The integrator is the party who uses existing services in his composi-

tion or application. The integrator might not have access to the source code for all the

services in the system. As a result, the integrator has to test the services to verify their

behaviour with the possible inputs and scenarios of the composition (black-box test-

ing). The integrator performs tests to observe both the functional and non-functional

performance of the services involved and the service-centric system. The integrator can

2.3. Test Case Generation Approaches 40

perform very realistic non-functional tests as opposed to the provider and the developer.

The advantages of SOA, such as automated service discovery and binding, bring testing

challenges to the integrator. The integrators not having control over the evolution of the

service can also add to this challenge. The cost of testing for the integrator can be high

due to the number of invocations required to test his system.

Third-party Certifier: The third-party certifier is the party who provides testing

services to the other parties. Such third-party testing increases trust in the service and

can be more assuring to the integrator rather than testing performed by the provider

or the developer. Even when considering any added testing fees involved, third-party

testing might reduce the overall testing costs for the provider. Third-party certification

might be an efficient solution in SOA to reduce the amount of testing performed on

each service. However, third-party testing might not be as effective as integrator testing

since third-party testing is performed with a possibly different composition to that of

the integrator.

End-User: The end-user is the party who uses the service through an application

or platform. The end-user is not directly involved in testing but the effects of testing

can affect his user experience.

2.3 Test Case Generation Approaches
This section is divided into three groups based on the test data generation method used.

2.3.1 Specification-based Test Case Generation

Specification-based testing is the verification of the SUT against a reference document,

such as a user interface description, a design specification, a requirements list or a user

manual. Naturally, in specification-based testing, test cases are generated using the

available system specifications.

In SOA, the first information the tester receives about a service is its specifica-

tion. In this situation, specification-based testing becomes a natural choice. Test case

generation for web services, as expected, is based on the web service specifications.

For traditional web services, the provided WSDL specifications include abstract in-

2.3. Test Case Generation Approaches 41

formation on the available operations and their parameters. Information from WSDL

specification allows generation of test cases for boundary-value analysis, equivalence

class testing or random testing using the XML Schema datatype information.

Many proposed approaches [16, 20, 29, 130, 185, 201, 235, 295] for WSDL-based

test case generation are based on the XML Schema information. Test cases for each

service operation are generated based on different coverage criteria such as operation

coverage, message coverage and operation flow coverage.

Input data for the test cases can also be generated using schema information. The

datatype information, with various constraints for each input type, allows generation of

test data for each simple type. In XML, complex datatypes can also be defined. Test

data generation for complex datatypes simply requires decomposition of the complex

type into simple types. Test data is generated for each of these simple types and the

combined data is used as complex test data.

Li et al. [185] propose a test case generation method that combines information

from WSDL specifications and user knowledge. They introduce a tool called WSTD-

Gen that supports this method. The tool allows users to customize data types and select

test generation rules for each datatype.

Chakrabarti and Kumar [65] propose an approach that aims to generate test cases

for testing RESTful web services. The authors also introduce a prototype tool that

supports this approach.

Proposed approaches [201, 235, 295] for WSDL-based test data generation tend

to generate test cases for testing a single web service operation. Test cases that test a

single operation might work for testing most web services. However, there are cases

that might require test cases that run multiple methods. An example of this situation

is an operation that requires the execution of another operation, such as login, as a

precondition. Bai et al. [16] address this problem by using data dependencies among

the provided operations. The mapping of dependencies is based on the input and output

messages of different methods.

Test data generation using WSDL definitions is limited to input datatypes due to

2.3. Test Case Generation Approaches 42

the lack of behavioural information about the service. As a result, many researchers

look for other alternative specifications that can provide additional behavioural infor-

mation, such as contracts and semantic service specifications. For this, Semantic Web

Service (SWS) specifications are often used, since they contain more information com-

pared to WSDL. The use of semantic model OWL-S for test data generation is proposed

[17, 77, 326, 338] not only because of the behavioural information it contains, but also

because of the semantic information concerning the datatypes on which the service op-

erates. This semantic information, in the form of ontology allows, ontology-based test

data generation [338].

Ye et al. [369] introduce a static BPEL defect analysis system focusing on WSDL-

related faults. The authors defined defect patterns related to WSDL elements (partner-

LinkType, role, portType, operation, message and property) that help reveal defects

related to these elements.

One of the main problems in ScST and testing online systems is the type of test

data required [42]. Bozkurt and Harman [42] categorise the test data required by online

systems as ‘Realistic Test Data’ (RTD) and define it as data that is both structurally

and semantically valid. The authors discuss the importance of using RTD in ScST and

claim that most of the existing approaches fail to generate RTD or fail to automate the

test data generation process.

One of the earliest approaches that aims to address this issue was proposed by

Conroy et al [74]. Their approach generates test data using applications with Graphical

User Interfaces (GUI). This approach harnesses user input data from GUI elements and

uses the harnessed data to generate test cases for ScS.

An automated solution is proposed by Bozkurt and Harman [41, 42]. The pro-

posed approach is capable of generating RTD while providing a high level of automa-

tion. The authors also present a framework that supports the approach called ATAM

service-oriented test data generator. The approach exploits existing web services as

sources of realistic test data and automatically forms service compositions that are

likely to provide the required test data as output. The framework uses data ontolo-

2.3. Test Case Generation Approaches 43

gies for composition and as a result, it can generate test data for any semantic system.

The proposed approach is also capable of generating test data based on user-specified

constraints. Bozkurt and Harman [43] also proposed the use of multi-objective optimi-

sation and QoS parameters within their approach in order to reduce the cost of test data

generation and testing, as well as increasing the reliability of the testing process.

2.3.2 Contract-based Test Case Generation Approaches

Design by Contract (DbC) [219] is a software development approach, where contracts

define the conditions (pre-conditions) for a component to be accessed. Contracts also

include conditions (post-conditions) that need to be held after the execution of methods

of that component with the specified pre-conditions. Using contracts, some unexpected

behaviour of the SUT can be detected and the information from contracts can also be

used to enhance the testing process itself. Software testing using contracts has been

applied to traditional software by many researchers [153, 184, 187, 228].

Since traditional web services only provide interface information, researchers have

proposed contracts for several aspects of SOA, such as service selection, service com-

position and service verification. These contracts carry information on different aspects

of SOA, such as behaviour of services and QoS. This extra information on the behaviour

of a service, such as pre and post-conditions of operations, increases the testability of

services.

Heckel and Lochmann [136] propose the use of the DbC approach for Web ser-

vices and discuss the reasons for contracts being implemented at different levels, such

as implementation-level, XML-level and model-level. The contracts defined at model-

level are derived from model-level specifications and the reason for this is to minimize

the effort required to generate contracts. The created contracts are later used in unit

testing of services to check if the service conforms to its specifications. Using con-

tracts, the proposed testing approach enables automated creation of test cases and test

oracles.

Atkinson et al. [14, 15] propose a technique called test sheets in order to generate

2.3. Test Case Generation Approaches 44

unit test cases and test oracles. Test sheets contain contract information which identifies

the relation between the operations of a service. The included relations define the

effects of each operation from the clients perspective in order to help validation.

WSDL extensions proposed to allow WSDL files to accommodate contract infor-

mation such as pre- and post-conditions. For example, Tsai et al. [324] discuss the rea-

sons for an extension to WSDL in order to perform black-box testing, and propose an

extended WSDL that carries additional information such as input-output dependency,

invocation sequence, hierarchical functional description and sequence specifications.

Similarly, Mei and Zhang [212] propose an extended WSDL that includes contract in-

formation for the service and also a framework that uses this extended WSDL to test

services. Heckel and Lochmann’s [136] XML-level contracts also require an extension

to WSDL.

Noikajana and Suwannasart [232] propose the use of a Pair-Wise Testing (PWT)

technique to facilitate contract-based test case generation. In the proposed approach,

pre- and post-conditions are included in Web Service Semantics (WSDL-S) specifica-

tions using the Object Constraint Language (OCL).

Askarunisa et al. [11] propose the use of PWT and Orthogonal Array Testing

(OAT) in test case generation for semantic services. The authors also compare these two

approaches in order to determine which approach performs better in different testing

scenarios. The authors use the same contract specifications (OCL and WSDL-S) as

Noikajana and Suwannasart.

Liu et al. [193] also propose the use of OCL-based constraint systems. The con-

straints are included in the SAWDSL semantic service annotations. The proposed ap-

proach generates test cases by performing boundary analysis and class division.

Mani et al. [205] propose the inclusion of contract information in service stubs.

These semantically extended stubs carry contract-like information such as pre- and

post-conditions.

Dai et al. [77] propose contracts that can be contained in OWL-S process models.

Proposed contracts carry information such as pre- and post-conditions between a ser-

2.3. Test Case Generation Approaches 45

vice user and a service. Dai et al. also present a framework that is capable of generating

test cases and oracles, monitoring test execution and verifying the SUT. Bai et al. [17]

propose a testing ontology model that describes test relations, concepts and semantics,

which can serve as a contract among test participants.

Saleh et al. [278] propose contracts for data-centric services. The proposed con-

tracts consist of logical assertions and expose data-related business rules. The approach

combines DbC and formal methods to prove the correctness of service compositions.

2.3.3 Partition Testing Approaches

Partition testing is a testing technique that aims to find subsets of the test cases that can

adequately test a system. The aim of partition testing is to divide the input domain of

the SUT into subdomains, so that selecting or generating a number of test cases from

each subdomain will be sufficient for testing the entire domain. In essence, partition

testing is much like mutation testing, or sometimes mutation testing is considered a

partition testing technique [353]. In mutation testing, faults are introduced into every

subdomain that is known to function correctly, in order to measure the effectiveness of

the test suite. By introducing a fault into a subdomain, it is possible to identify the test

cases belong to that subdomain during test executions.

Heckel and Mariani [137] claim that ∆-Grammars are more suitable for testing

web services than UML diagrams, due to their ability to describe the evolution of ser-

vices. Heckel and Mariani suggest a partition-testing approach based on WSDL defini-

tions and ∆-Grammars. Similarly, Park et al. [253] also apply this approach to service

selection.

The application of partition testing to web services is proposed at two different

levels. Bertolino et al. [29] propose the use of the category-partition method [353]

with XML Schemas in order to perform XML-based partition testing. This approach

automates the generation of test data using XML Schemas. Bertolino et al. introduce

a tool that supports this approach called TAXI. Another approach is proposed by Bai

et al. [17] for OWL-S semantic services. Bai et al. introduce a test ontology model

2.3. Test Case Generation Approaches 46

that specifies the test concepts and serves as a test contract. The data partitions used by

this approach are created using the ontology information. Sun et al. [305] propose an

approach that combines random testing and partition testing. The authors introduce a

framework that automates the generation of partitions and test cases for each partition.

2.3.4 Experimental Results

This section also follows the classification from the previous section.

2.3.4.1 Experimental Results of Specification-based Approaches

Bartolini et al. [20] ran their experiment on a real service called PICO and performed

mutation analysis to observe the effectiveness of their approach. WS-TAXI achieved

72.55% mutation score, managing to kill 63% more mutants than a manually generated

test suite using an enterprise testing software.

Ma et al.’s [201] constraint-based test data generation approach is validated using

three versions of a synthetic web service. In this context, synthetic web service means

a web service implemented to test the testing approach. During the experiments, 4,096

different test data is generated for a complex datatype and revealed two bugs in two

different services.

Bai et al. [16] experimented on 356 real web services with 2050 operations in

total. For the 2,050 operations, they generated 8,200 test cases to cover all operations

and valid messages. Test cases were generated to perform two analyses (constraint

and boundary analysis) on datatypes and operation dependency analysis. According

to results, 7,500 of the generated test cases were exercised successfully on 1,800 op-

erations. The authors’ explanation for the unsuccessful test cases are the mistakes in

WSDL documents.

Conroy et al. [74] experimented on the web services of two real applications:

Accenture People Directory and University Data. The authors compared the effort

it takes to write a parser that extracts information from data files to their approach.

According to the authors, it took two hours to write a parser and ten minutes for their

approach to generate test cases.

2.3. Test Case Generation Approaches 47

Bozkurt and Harman [42] experimented on 17 existing commercial web services in

two different case studies. Testing is performed on 4 of these services while the rest are

used in the test data generation process. The authors compared their approach against

random test data generation (state of the art automated test data generation method

for ScST). In generating structurally valid test data, the random test data generation

method achieved an 8% success rate in case study 1, a 24% success rate in case study

2, whereas the proposed approach achieved 94% and 100% success rates in the same

case studies. In generating semantically valid data, random testing achieved 0% and

34% success rates, whereas the proposed approach achieved 99% and 100% success

rates. The authors also evaluated the approach’s ability to generate test data based

on tester constraints and the approach achieved 100% success rate for all of the given

constraints in both of the case studies.

2.3.4.2 Experimental Results of Contract-based Approaches

Mei and Zhang [212] experimented on two synthetic web services: triType and mMid-

dle. The test suite created by this approach achieved 95% mutation score and 81.5% to

96% reduction in test cases while maintaining the test coverage.

Askarunisa et al. [11] experimented on 2 real and 2 synthetic web services. In

their experiments, PWT managed to reveal 18 faults, whereas OAT only revealed 13

faults. In terms of test case reduction performance, PWT and OAT were compared

to random test data generation. Both PWT and OAT have shown significant ability

to reduce the number of required test cases (up to 99.76% reduction using PWT and

99.84% reduction using OAT).

Mani et al. [205] experimented on a set of services from an IBM project and their

approach achieved 37% reduction in test suite size.

Noikajana and Suwannasart [232] experimented on two example web services:

RectangleType and IncreaseDate. The authors compared the effectiveness of their test

cases generation approach against test cases generated using a decision table by per-

forming mutation testing. The test suite generated by this approach achieved 63%

2.3. Test Case Generation Approaches 48

(RectangleType) and 100% (IncreaseDate) mutation score, whereas test suite from de-

cision table achieved 85% and 56% mutation score. This approach also outperformed

the decision-table based approach in multiple condition coverage (achieved 100% cov-

erage).

2.3.4.3 Experimental Results of Partition Testing Approaches

According to Bai et al.’s experiments, using partitioning, a 76% reduction is achieved;

reducing 1,413 randomly generated tests for 17 partitions to 344. Comparing Bai et

al.’s partition technique against random generation also shows the effectiveness of this

approach. In order to cover the 1,550 lines of code used in experiments, 60 randomly

generated test cases are needed, but the 20 test cases that were selected using partition-

ing achieved the same coverage.

2.3.5 Discussion

The effort for specification based test case generation for WST is divided into two

categories, generating valid test data with the aim of revealing faults and invalid test

data with the aim of measuring the robustness of services. The approaches aiming to

test the robustness services are discussed in detail in Section 2.5.

Specification based test data generation approaches focus on generating test data

to perform boundary analysis or constraint-based tests. These test can be very valuable

and useful to all the SOA stakeholders. Most of the publications highlight the fact that

they generate high numbers of test cases with minimal effort, thereby supporting the

claim that they help reduce the manual labour of generating test cases.

A possible disadvantage of the test case generation approaches described above

is the type of test data they are able to generate. Almost all the approaches use XML

datatype constraints and other constraints provided by either the tester or the provider

and generate test cases using them. However, none of them aim to generate realistic

test data except Conroy et al. [74] and Bozkurt and Harman [42].

Unfortunately, running a large number of test cases might be a problem in WST

due to the cost of invoking services or access limitations. For example, to the stake-

2.4. Unit Testing of Service-centric Systems 49

holders for whom testing cost is minimal, such as the developer and the provider, these

approaches can be very useful. However, for the integrator and the certifier, running all

the test cases generated by these approaches can be very expensive. This signifies the

importance of test case selection/reduction techniques in WST.

The results from the experiments indicate that partition testing can help with se-

lection. Selection approaches can be very effective when combined with an automated

data generation method, such as approaches from Section 2.3.1. Partition testing can

be very useful to the integrator and the certifier for whom testing cost is high.

Contract-based WST can achieve better and more efficient testing than WSDL-

based testing due to increased testability. One of the most important benefits of con-

tracts, as was highlighted by the work in this section, is that they help with test case

selection/reduction by enabling the application of test case generation techniques, such

as PWT and OAT. The experimental results provide evidence to the effectiveness of test

case reduction using contracts. On the other hand, for the developer and the provider,

contracts increase the cost of service creation. Regardless of the benefits that contracts

provide, the cost of creating them makes DbC less widely practised. A similar problem

is also faced by SWS where creating semantic specifications is laborious.

Currently, there is no DbC standard for SOA. Some of the approaches in this

section [77, 136, 212, 324] propose extensions to standards like WSDL and OWL-S in

order to solve this problem. Many existing SWS proposals already include contract like

information, such as pre- and post-conditions and their effects on execution. However,

further additions to SWS may be required in order to improve testability.

2.4 Unit Testing of Service-centric Systems

Unit testing can be considered the most basic and natural testing technique applicable

to any system. In unit testing, individual units of a system that can be independently

executed are regarded to be units. In terms of web services, the operations provided

by a service can be considered to be units to be tested. A service composition or

choreography may also considered as a service unit.

2.4. Unit Testing of Service-centric Systems 50

Service-Centric Unit Testing (SCUT) is generally performed by sending and re-

ceiving SOAP or HTTP messages. The tester generates the SOAP/HTTP messages for

the operation/application under test using the information from the WSDL file. In this

way, unit testing can be used to verify both the correctness of the WSDL and the correct

functioning of the SUT.

There are industrial tools that provide some level of automation to SCUT, such

as Parasoft SOAtest [299], SOAP Sonar [296], HP service Test [140] and the Oracle

Application Testing Suite [238]. Even though these tools help to reduce the manual

labour required for test case generation and reporting, they do not fully automate the

testing process. In using all these tools, test cases are generated by the tester and the

tool generates the SOAP/HTTP requests for each test case. In some of these tools,

even verification of test results have to be performed manually such as in SOAtest.

Automated SCUT remains at a similarly immature and consequently labour intensive

state as more general test automation.

2.4.1 Perspectives in Unit Testing

SCUT can be performed in a white-box manner as well as a black-box manner depend-

ing on the access to the service implementation. In SOA, the developer is the only

stakeholder who can perform structural tests. Unit testing at the service level using

specifications (including contracts) is commonly performed by stakeholders other than

the developer.

Unit testing of stateless web services might be performed differently than stateful

services. While testing stateless services, each operation of a service can be accepted as

a unit. As a result, the integrator or the certifier tests the necessary operations separately

for these services. However, for stateful services, operations can be tested together and,

for some tests, it has to be so-tested to capture and test stateful behaviour. For such

services, the developer has the ability to manipulate the service state during testing.

Unit testing of service compositions can be performed in two different ways: real-

world testing and simulation. Real-world testing of service compositions can be per-

2.4. Unit Testing of Service-centric Systems 51

formed by the integrator using existing web services. The integrator may also perform

simulations by using stub or mock services to test the business process.

2.4.2 Unit Testing Approaches

The need for tools that can automate unit testing has been addressed by the research

community. For example, Sneed and Huang [295] introduce a tool called WSDLTest

for automated unit testing. WSDLTest is capable of generating random requests from

WSDL schemata. WSDLTest is also capable of verifying the results of test cases. This

capability is achieved by inserting pre-conditions and assertions in test scripts that are

manually generated by the tester. The provided verification method requires the tester

to be familiar with the SUT in order to generate the necessary assertions.

Lenz et al. [176] propose a model-driven testing framework that can perform unit

tests. In this approach, JUnit tests are generated using requirement specifications and

platform-independent test specifications, based on the UML 2 Testing Platform. Both

of these required specifications are provided by the service provider.

Zhang et al. [386] present a framework based on Haskell modules that is capable of

generating and executing test cases from WSDL specifications. The HUnit component

organises the test plans and provides unit test execution.

One of the main problems of software testing is the oracle problem [290, 320].

After the generation of test cases, in order to complete the verification process, often

a test oracle is needed. An oracle is a mechanism that is used for determining the

expected output associated with each test input. In ScST, the tester often does not have

any reliable test oracles available to support testing. The lack of a test oracle is one of

the challenges of automated ScST.

Test oracle generation is addressed by Chan et al. [66]. Chan et al. propose a

metamorphic testing framework that is capable of performing unit testing. Metamor-

phic testing [72] can potentially solve the test oracle problem by using metamorphic

relations. These relations are defined by the tester for each test suit. Chan et al. also

propose the use of metamorphic services that encapsulates a service and imitates its

2.4. Unit Testing of Service-centric Systems 52

functionality. Verification for the SUT is provided by the encapsulating metamorphic

service that verifies the input and output messages against the metamorphic relations.

Chen et al.’s framework enables web service users to determine the expected results,

but requires the use of relations which can be costly for the provider. Sun et al. [306]

also introduced another automated framework for metamorphic testing of services.

Similarly, Heckel and Lochmann [136] propose the generation of test oracles using

pre-generated contracts. The contracts, created using the DbC approach, are supplied

by the provider and carry information such as pre- and post-conditions.

Atkinson et al. [15] propose the use of a technique called test sheets in order to

generate unit test cases and test oracles. The test sheets approach uses tables that define

test cases similar to the Framework for Integrated Test (FIT) [108], a framework for

writing acceptance tests. Two types of test sheets are used in this approach: an input

test sheet that contains specifications defining a set of test cases and a result test sheet

that contains outputs from SUT for the test cases in the test sheets. Atkinson et al.

also include contract information that identifies the relation between the operations of

a service, defining their effects from the clients’ perspective in order to help validation.

An automated solution to the oracle problem is proposed by Tsai et al. [319].

Tsai et al. propose the adaptation of blood group testing to web services and call this

technique Adaptive Service Testing and Ranking with Automated oracle generation

and test case Ranking (ASTRAR) [317, 321]. ASTRAR is similar to n-version testing,

where multiple web services that have the same business logic, internal states and input

data are tested together with the same test suite. Even though the main goal of group

testing is to test multiple web services at one time (to reduce the cost of testing and

increase the efficiency), it also helps in solving the reliable test oracle problem within

its testing process. Tsai et al. [328] also proposed an extension to group testing that

allow services to be tested in parallel. The proposed approach uses cloud and a service-

level MapReduce technique.

Yue et al. [380, 381] propose a message-based debugging model for web services.

The authors present an operational model and a context inspection method for message-

2.4. Unit Testing of Service-centric Systems 53

based debugging. The proposed approach is able to trace service behaviours, dump

debugging information, and manage states and behavioural breakpoints of debugged

services.

Zhu et al. [398] introduce a testing framework called SCENETester focusing on

fault localisation for service compositions. The authors propose an execution flow

model for compositions that helps identifying the source of the fault. The framework

automates service validation using a virtual runtime environment and performs concur-

rent testing using distributed nodes.

Unit testing of web service compositions using BPEL has also been addressed in

the literature. According to Mayer and Lübke [208], BPEL unit testing is performed in

two ways: simulated testing and real-world testing. In simulated testing, as opposed to

real-world testing, BPEL processes are run on an engine and contacted through a test

API. This mechanism replaces regular deployment and invocation. In BPEL testing,

web service stubs or mocks can be used instead of the web services that participate in

the process. Mayer and Lübke [208] propose a framework that is capable of perform-

ing real-world unit testing. This framework can replace participating web services with

service mocks. The framework also provides a mechanism for asynchronous messag-

ing by providing an implementation of WS-Addressing [345]. Li et al. [186] adopt a

different approach for unit testing in which BPEL processes are represented as a com-

position model. Similar to Mayer and Lübke’s framework, Li et al.’s framework uses

stub processes to simulate the parts that are under development or inaccessible during

the testing process.

Mani et al. [205] propose the idea of semantic stubs. Semantic stubs carry addi-

tional information such as pre- and post-conditions. Semantic stubs enable input mes-

sage verification, expected output generation and exception message generation for the

simulated services. The authors also present a framework that automatically generates

stubs from semantically annotated WSDL descriptions.

Palomo-Duarte et al. [247] introduce a tool that dynamically generates invariants

for BPEL processes. The proposed invariants reflect the internal logic of BPEL pro-

2.4. Unit Testing of Service-centric Systems 54

cesses and are generated from the execution of tester provided test cases. Takuan assists

in discovering bugs and missing test cases in a test suite.

Ilieva et al. [146, 145] introduce a tool for end-to-end testing of BPEL processes

called TASSA. The TASSA framework is built according to SOA principles and is

a platform-independent and composable system. The tool provides simulated testing

and offers an injection tool, a data dependency analysis tool, a test case generation

tool and a value generation tool. Reza and Van Gilst [270] introduce a framework

that is aimed at simulating RESTful web services. Li et al. [182] introduce a toolkit

called SOArMetrics for evaluating SOA middleware performance and application test-

ing. Chandramohan et al. [67] introduce a tool that simulates distributes web server

environments called Distributed Web Service Evaluator (DWSE). DWSE helps evalu-

ating service behaviour in distributed server environments with the help of the included

test kit. Hallé [127, 128] propose an approach to simulate SOAP services using tempo-

ral logic specifications. The author introduce an extended linear temporal logic called

LTL-FO+ which is used in describing input/output parameters, messages and ordering

constraints between messages. The approach generates an on-the-fly service response

of the simulated service using previous interactions and a custom symbolic satisfiability

algorithm.

2.4.3 Experimental Results

Sneed and Huang [295] experimented on an eGovernment project with nine web ser-

vices. They generated 22 requests per service and 19 out of 47 verified responses

contained errors. They revealed 450 total errors in the whole project, of which 25 of

them were caused by the services.

Tsai et al. [317] experimented on 60 different versions of a synthetic real-time web

service. The approach achieved a 98% probability of establishing a correct oracle and

a 75% probability in ranking the test cases correctly according to their potency. The

authors claim that the high scores in these parameters should lead to a better service

ranking by detecting faulty services faster within the process.

2.5. Fault-Based Testing of Service-centric Systems 55

Mani et al. [205] experimented on a set of services from an IBM project. The au-

thors evaluated two different abilities of their approach: test suite reduction and execu-

tion efficiency. The approach achieved a 37% reduction in test cases while maintaining

the effectiveness. The results also provide evidence to support the authors’ claim that

semantic stubs provide faster executions compared to remote services.

2.4.4 Discussion

Unit testing is one of the most important testing techniques that every system must un-

dergo. The main challenge faced in SCUT is the high cost of testing due to manual

test case generation and test execution. This cost can be minimized by automating the

testing process. Most of the testing approaches explained in this section provide auto-

mated test data generation and test execution, though they lack automated test oracle

generation.

Tsai et al. [319], Chen et al. [394] and Heckel and Lochmann [136] address the

oracle problem. Tsai et al.’s approach provides fully automated test oracle generation

without the need of any extra information from the provider. However, the approach

needs to discover services with similar business logic and it must meet any costs asso-

ciated with the use of other services.

At the composition level, increased cost of testing due to invoked services can be

reduced by introducing service stubs. Approaches such as Mayer and Lübke [208],

Mani et al. [205], Van Gilst [270], Ilieva et al. [146] and Li et al. [186] address this

issue by providing functionality for generating and using stubs. Using stubs also help

in reducing the cost of invoking services that perform business transactions. Unfor-

tunately, using stubs does not overcome the need to test with real services (run-time

testing). As a result, this problem still remains as an open problem and needs more

effective solutions.

2.5 Fault-Based Testing of Service-centric Systems
According to Morell [223], fault-based testing aims to prove that the SUT does not

contain any prescribed faults. The difference between fault-based test cases and regular

2.5. Fault-Based Testing of Service-centric Systems 56

test cases is that the fault-based test cases seek to prove the non-existence of known

faults rather than trying to find unknown faults that do exist.

In SOA, fault-based testing is extremely important for the stakeholders who have

to test services for their robustness. The provider and the certifier must test services

using fault-based approaches during reliability measurement. Fault-based testing can

also help the integrator to observe how service composition and individual services

behave in unexpected conditions.

Hanna and Munro [130] classified test data generation for different testing tech-

niques and also surveyed fault-based testing research in the web services domain. These

testing techniques are:

1. Interface propagation analysis that is performed by randomly perturbing the in-

put to a software component.

2. Boundary value based robustness testing where test data is chosen around the

boundaries of the input parameter.

3. Syntax testing with invalid input where the rules of the specification of the input

parameter are violated.

4. Equivalence partitioning with invalid partition class where the input space or

domain is partitioned into a finite number of equivalent classes with invalid data

In the present section, the research undertaken in fault-based ScST is categorized

according to the level that faults are generated. Fault-based testing of ScS can be

grouped into three different categories according to the level that faults are applied

to: XML/SOAP message perturbations, network level fault injection and mutation of

web service specifications.

2.5.1 Perspectives in Fault-Based Testing

Fault-based testing can be useful to all the stakeholders of SOA, but each stakeholder

performs it in a different manner according to their level of observability and control.

For example, fault-based testing using SOAP and XML perturbation, where messages

2.5. Fault-Based Testing of Service-centric Systems 57

among services are captured, can only be performed by the integrator. On the other

hand, the other approaches where faulty messages are generated from service specifi-

cations can be performed by the remaining stakeholders in SOA. In mutation testing,

the developer has also the advantage of being able to perform standard mutation analy-

sis by introducing faults into the workflow. The integrator has a similar advantage when

performing mutation testing on compositions. However, the provider and the certifier

can only perform specification mutation on service specifications.

One important problem in fault-based testing is its cost. Performing fault-based

testing can be costly, especially at the integrator and the certifier side. For example,

approaches using mutation testing can increase the cost greatly since they require gen-

eration of many mutants and running each mutant with many test cases to kill it.

2.5.2 Fault-Based Testing Approaches

The approaches in this section are divided into three categories based on the abstraction

level at which faults are injected.

2.5.2.1 XML/SOAP perturbation

XML/SOAP perturbations are performed by using faulty SOAP messages. Faulty mes-

sages are generated from the captured messages (between services or a user) by inject-

ing faults before sending them or simply by sending a faulty SOAP message to the web

service. After perturbations, the web service’s behaviour with the faulty message is

observed for verification.

One of the earliest examples of SOAP perturbation is proposed by Offutt and Xu

[235]. Offutt and Xu propose three different types of perturbations:

1. Data Value Perturbation (DVP) that is performed by modifying the values in a

SOAP message.

2. Remote Procedure Calls Communication Perturbations (RCP) that is performed

by modifying the arguments of the remote procedures. Offutt and Xu propose

the application of mutation analysis to syntactic objects and data perturbation to

SQL code. SQL code perturbation also facilitates SQL injection testing.

2.5. Fault-Based Testing of Service-centric Systems 58

3. Data Communication Perturbations (DCP) that is used for testing messages that

include database relationships and constraints

Xu et al. [364] propose an approach where perturbation is applied to XML

Schemas in order to generate test cases. Xu et al. define XML Schema perturbation op-

erators for creating invalid XML messages by inserting or deleting data fields. Almedia

and Vergilio [79] also adopt the same approach and propose a tool called SMAT-WS

that automates the testing process. Almedia and Vergilio also introduce some new per-

turbation operators for XML perturbation. Hanna and Munro [130] test the robustness

of services by violating the input parameter specifications from WSDL files. Hanna and

Munro’s approach can test both the web service itself and the platform the service re-

sides in. Zhang and Zhang [384] propose boundary value fault-injection testing in order

to help select reliable web services. Similarly, Vieira et al. [332] propose a framework

that applies fault-injection to the captured SOAP messages. Martin et al. [207] propose

a framework called WebSob that tests web services for robustness. WebSob tests web

service methods with extreme or special parameters. Li et al. [181] propose an ap-

proach that combines SOAP data perturbation and Combinatorial Test Data Generation

(CTDG). The authors claim that the addition of CTDG to data perturbation increases

the effectiveness of the testing which leads to a higher fault detection rate compared to

data perturbation only method.

Salva and Rabhi [280] propose an approach aimed at testing the robustness of

stateful web services. The authors performed an analysis on SOAP service observabil-

ity in order to distinguish between the types of perturbations that generate SOAP faults

at the SOAP processor level and at the service level. The approach uses the only two

perturbation methods that are handled at the service level: SOAP value perturbations

and operation name perturbations. According to the authors, the other proposed pertur-

bation methods on parameter types such as deleting, adding and inverting are handled

at the SOAP processor level thus it does not test the web service itself.

Tsai et al. address the problems of test data ranking and fault-based testing within

a single approach. Tsai et al. [326] propose an approach based on boolean expression

2.5. Fault-Based Testing of Service-centric Systems 59

analysis that can generate both true and false test cases. The proposed approach is

supported by a framework that can rank test cases according to the test cases’ likelihood

to reveal errors.

Wang et al. [339] propose a fault-injection method for BPEL processes using ser-

vice stubs. The proposed stubs can generate business semantics-oriented faults by mim-

icking unexpected behaviours of real services. The stubs are generated automatically

from WSDL definitions, but the code that causes the faults needs to be implemented

and inserted manually.

Shafin et al. [287] proposed a fault-based testing method for OWL-S semantic ser-

vices. The proposed approach generate abstract test cases from OWL-S specifications.

The authors propose an extended OWL-S model which contains extra constraints in the

form of SWRL expressions. These constraints are used in generating test data. These

test cases then mutated using the eight mutation operators introduced by the authors.

2.5.2.2 Network Level Fault Injection

Network Level Fault Injection (NLFI) is a fault-injection approach in which faults are

injected by corrupting, dropping and reordering the network packages. Looker et al.

[196] propose the use of this technique along with a framework called the Web Ser-

vice Fault Injection Tool (WS-FIT). At the network level, latency injection can be per-

formed along with SOAP perturbation. WS-FIT can perform both SOAP perturbations

and latency injections. Looker et al. also propose another fault-injection approach that

simulates a faulty service. Faulty service injection is performed by replacing the values

in SOAP messages with incorrect values that are within the specified range of the pa-

rameter. Looker et al. [195] also propose an extended fault model ontology that is used

for generating faults and a failure modes ontology identifies the type of faults (seeded

or natural fault).

Farj et al. [104] introduce a framework called Network Fault Injector Service (Net-

FIS). NetFIS is capable of generating both network fault injection and SOAP message

perturbation.

2.5. Fault-Based Testing of Service-centric Systems 60

Juszczyk and Dustdar [158, 159] introduce a SOA testbed based on the Genesis2

framework for testing ScS. The testbed is capable of simulating QoS of the participat-

ing web services and also generating issues such as packet loss and delay and service

availability. The authors [157] also propose the use of aspect oriented programming to

automate generation of replicas of services and redirect service invocations at runtime.

The proposed extension is only applicable to Java-based systems.

2.5.2.3 Mutation of Web Service Specifications

One of the first examples of Web Service Mutation Testing (WSMT) was applied to

WSDL specifications. Siblini and Mansour [291] propose the use of WSDL mutation

for detecting interface errors in web services.

Mei and Zhang [212] define mutation operators for contracts. The contracts in this

approach are included in the extended WSDL specifications that are proposed by the

authors.

The next step in WSMT was to take the mutation into the SWS. The amount of

information provided by OWL-S allows for the application of mutation operators at

different levels compared to WSDL mutation. For example, Lee et al. [174] propose

an ontology-based mutation to measure semantic test adequacy for composite web ser-

vices and for semantic fault detection.

Similarly, Wang and Huang [336, 337] propose another ontology-based mutation

testing approach that uses OWL-S requirement model. Wang and Huang suggest a

modified version of the requirement model enforced with Semantic Web Rule Lan-

guage (SWRL) [309] in order to help with mutant generation. The proposed approach

uses the enforced constraints in this model to generate mutants using Aspect Oriented

Programming approach.

Apilli [7] and Watkins [340] propose the use of combinatorial testing approaches

for fault-based testing of web services. The proposed approaches focus on known faults

in order to avoid possible combinatorial explosion. The reduction in combinations is

achieved by restricting input conditions.

2.5. Fault-Based Testing of Service-centric Systems 61

The fault-injection approach of Fu et al. [112] differs from other work at the level

that the faults are injected. Fu et al. propose a fault-injection framework that is capable

of performing white-box coverage testing of error codes in Java web services using

compiler-directed fault injection. The fault injection is performed with the guidance of

the compiler around try and catch blocks during runtime.

As for all the testing methodologies, automation is important for fault-based test-

ing. Several tools for fault-based ScST are also introduced. Laranjeiro et al. [169, 171]

present a public web service robustness assessment tool called wsrbench [359]. Wsr-

bench provides an interface for sending SOAP messages with invalid web service call

parameters. Wsrbench is also capable of providing the tester with detailed test results

for a web service. Laranjeiro et al. [170] also propose the use of text classification

algorithms to automate the classification of the robustness test results. Carrozza et al.

[56] claim that the existing robustness testing tools do not consider the testing needs

of complex systems. The authors introduce a robustness tool called WSRTesting tool

which aimed at applying robustness testing to complex systems.

Bessayah et al. [31] present a fault injection tool for SOAP services called WSIn-

ject. WSInject is capable of testing both atomic services and service compositions and

combining several faults into a single injection.

Domı́nguez-Jiménez et al. [86] introduce an automated mutant generator for

BPEL processes called GAmera. GAmera uses a genetic algorithm to minimise the

number of mutants without losing relevant information. GAmera is also able to detect

potentially equivalent mutants. Boonyakulsrirung and Suwannasart [40] also intro-

duced another framework aimed at generating weak mutants of BPEL processes. The

proposed approach includes four different weak mutation operators for BPEL expres-

sions, statements and blocks (blocks have two different type based on the number of

expected iterations).

Oliveira et al. [237] claim that correctness of manual classification of robustness

test results relies on expert knowledge and it might increase the total testing time. In or-

der to address these issues, the authors propose an approach that automatically classifies

2.5. Fault-Based Testing of Service-centric Systems 62

the results of robustness tests. The approach aims to identify test cases that produced

unexpected results. The approach classifies the responses into two categories: correct

or crash. The classification is automated using rule-based classification and machine

learning algorithms.

2.5.3 Experimental Results and Discussion

Fault-based ScST at the service level can be very effective when the tester wants to

check for common errors such as interface errors, semantic errors and errors that can

be caused by the Web services platform. Similar to the boundary and constraint-based

analyses, the results from the experiments show that fault-based testing can reveal more

faults than positive test cases.

The results of SOAP perturbations prove the effectiveness of this approach in the

rate of faults revealed during experiments. For example, during Offutt and Xu.’s experi-

ments, 18 faults are inserted into the Mars Robot Communication System (MRCS) and

100 DVP, 15 RCP and 27 DCP tests are generated. The generated tests achieved 78%

fault detection rate in seeded faults (14 out of 18) and also revealed two natural faults.

Xu et al. also experimented on MRCS and additionally on the supply chain manage-

ment application from WS-I, achieving 33% fault detection. Almedia and Vergilio ran

their experiments on a system consisting of 9 web services and revealed 49 faults, of

which 18 of them were seeded by SMAT-WS. Vieira et al. experimented on 21 public

web services and observed a large number of failures. However, 7 of these services

showed no robustness problems. Vieira et al. also highlight that a significant number

of the revealed errors are related to database accesses. Tsai et al. experimented on 60

BBS web services with 32 test cases and in these experiments negative test cases re-

vealed more faults than positive test cases. Salva and Rabhi [280] experimented on the

Amazon E-Commerce service. 30% of the test cases generated using their approach

caused unexpected results.

Looker et al. [196] experimented on a simulated stock market trading system

that contains three web services. Baseline tests showed that latency injection caused

2.5. Fault-Based Testing of Service-centric Systems 63

the system to produce unexpected results 63% of the time. Faulty service injection

results showed that the users do not encounter faults by the application of this injection

method.

Domı́nguez-Jiménez et al. [86] experimented on the loan approval example. The

authors tested GAmera with different configurations and mutant sizes ranging from

50% to 90% of the possible 22 mutants in order to discover the optimal subset of

mutants. GAmera was able to reduce the size of the mutants for all subsets without

losing relevant information. However, each mutant population included 2 equivalent

mutants. In each population, between 2 and 3 of the generated mutants were not killed

by the test suite.

Bessayah et al. [31] experimented on the Travel Reservation Service (TRS is an

example BPEL process) composed of three web services. During the experiments,

WSInject was able to reveal several interface errors by applying SOAP perturbation

(invalid data) and two communication faults by applying network level fault injection

(SOAP message delay).

Laranjero et al. [170] experimented on 250 existing web services to evaluate

their automated robustness test result classification method. The authors suggested

the use of five text classification algorithms: Hyperpipes, Ibk, large linear classifica-

tion, Naı̈ve Bayes and SVM. The algorithms successfully classified 96.63%, 98.89%,

98.75%, 90.31% and 96.55% of the detected robustness problems respectively.

According to the results of the proposed approaches, mutation testing is effective

for measuring test case adequacy in web services. Mei and Zhang’s [212] WSDL mu-

tation achieved 95%, Wang and Huang’s [336] OWL-S mutation achieved 98.7% and

Lee et al.’s [174] OWL-S mutation achieved 99.4% mutation score. Results also proved

the effectiveness of mutation testing in test case selection. Mei and Zheng’s approach

achieved 96% and 81.5% reduction in test cases while maintaining the test coverage.

Approach of Lee et al. also helped with equivalent mutant detection by detecting 25

equal mutants out of 686 generated mutants.

Since the aim of fault-based testing is to observe the behaviour of a system with

2.6. Model-Based Testing and Verification of Service-centric Systems 64

faulty data, using fault-based testing error handling code can also be tested and verified.

The information on the behaviour of a service under unexpected situation is valuable

to the integrator to implement a robust service composition.

Fu et al.’s experimented on four Java web services: the FTPD ftp server, the JNFS

server application, the Haboob web server and the Muffin proxy server. The approach

achieved over 80% coverage on fault handling code during experiments. Fu et al.’s

approach can only be applied to Java web services and performed by the developer.

This approach does not guarantee the execution of the error recovery code in the case

of an error, neither the correctness of the recovery action.

2.6 Model-Based Testing and Verification of Service-

centric Systems

Model-Based Testing (MBT) is a testing technique where test cases are generated using

a model that describes the behaviour of the SUT. Advantages of model-based testing,

such as automating the test case generation process and the ability to analyse the qual-

ity of product statically, makes it a popular testing technique. The formal and precise

nature of modelling also allows activities such as program proof, precondition analy-

sis, model checking, and other forms of formal verification that increase the level of

confidence in software [93].

Formal verification of web service compositions is popular due to formal verifica-

tion methods’ ability to investigate behavioural properties. The earliest work on formal

verification of web service compositions dates back to 2002. The existing work that

has been undertaken in formal verification of web service compositions is compared by

Yang et al. [368]. Morimoto [224] surveyed the work undertaken in formal verifica-

tion of BPEL processes and categorized proposed approaches according to the formal

model used. This chapter categorizes the work undertaken after 2004 until 2009 in

MBT (including formal verification) of ScS according to the testing technique used.

2.6. Model-Based Testing and Verification of Service-centric Systems 65

2.6.1 Perspectives in Model-Based Testing

Perspectives in MBT of ScS are categorised based on the source from which test models

are created. The first category includes the MBT approaches where models are created

from service specifications, such as OWL-S or WSDL-S. In the second category models

are created from service composition languages, such as BPEL. Thus the approaches

in the second category can only be performed by the integrator.

2.6.2 Model-Based Testing approaches

This section is divided into four groups based on the MBT method used.

2.6.2.1 Model-Based Test Case Generation

The application of MBT methods to ScS has been widely proposed and the application

of different MBT and verification methods, such as symbolic execution, model check-

ing are also proposed. Many of these proposed approaches are capable of generating

test cases.

The use of Graph Search Algorithm(s) (GSA) and Path Analysis (using constraint

solving) (PA) are the earliest proposed MBT methods for ScST. The generation of

Control Flow Graph(s) (CFG) from BPEL processes is widely adopted [98, 365, 379].

In these approaches, test cases are generated from test paths that are created by applying

GSA to the CFG of the process. The difference between GSA and PA is the way that test

data is generated. In PA, test data for each path is generated using constraint solvers,

while in GSA, the algorithm itself generates the test data.

The approaches using the CFG method mainly propose extensions to standard

CFG in order to provide a better representation of BPEL processes. For example,

Yan et al. [365] propose an automated test data generation framework that uses an

extended CFG called Extended Control Flow Graph (XCFG) to represent BPEL pro-

cesses. XCFG edges contain BPEL activities and also maintain the execution of activi-

ties. Similarly, Yuan et al. [379] propose a graph based test data generation by defining

another extended CFG called BPEL Flow Graph (BFG). The BFG contains both the

structural information (control and data flow) of a BPEL process that is used for test

2.6. Model-Based Testing and Verification of Service-centric Systems 66

data generation and semantic information such as dead paths.

Lallai et al. [167, 168] propose the use of an automata called Web Service Time

Extended Finite State Machine (WS-TEFSM) and Intermediate Format (IF) in order

to generate timed test cases that aim to exercise the time constraints in web service

compositions. An IF model, which enables modelling of time constraints in BPEL, is an

instantiation of the WS-TEFSM. For IF model transformation from BPEL, Lallai et al.

use a tool called BPEL2IF, and for test case generation another tool called TESTGen-IF

is used. TESTGen-IF is capable of generating test cases for the IF Language. The IF

and WS-TEFSM can both model event and faults handlers and termination of BPEL

process. Similarly, Cao et al. [51, 52] propose the use of TEFSM for BPEL processes.

The authors also introduce a tool that automates the proposed approach called WSOTF.

Maâlej et al. [203, 204] proposed a flow graph based model called Timed Au-

tomata which include several constraints functional and temporal constraints for BPEL

processes. The authors also introduce a prototype tool called WS-BPEL Compositions

Conformance Testing (WSCCT) that automates the test data test data generation and

execution. WSCCT is capable of simulating partner processes that are not available

during testing.

Endo et al. [98] propose the use of the CFG approach in order to provide a cov-

erage measure for the existing test sets. Endo et al. propose a new graph called the

Parallel Control Flow Graph (PCFG) that contains multiple CFG representing a ser-

vice composition and communications among these CFG. They also present a tool that

supports the proposed technique called ValiBPEL.

Liu et al. [189] propose a flow-graph based model for OWL-S web services called

OCFG which can be used with graph traversal techniques to generate test cases. OCFG

is capable of modelling both atomic and composite processes and all OWL-S control

constructs as well as preconditions and results.

Li and Chou [179] propose the application of combinatorial testing to stateful ser-

vices. The authors propose a combinatorial approach that generates multi-session test

sequences from single session sequences using multiplexing. The proposed approach

2.6. Model-Based Testing and Verification of Service-centric Systems 67

generates condition transition graphs which are used with a random walk algorithm.

The authors [178] also propose an abstract guarded FSM to address testability issues in

conformance testing.

Belli and Linschulte [23] propose a model-based testing approach for testing state-

ful services. The authors introduce a model that captures events with the corresponding

request and response for each event called Event Sequence Graph (ESG). In the pro-

posed approach, ESG are supported by contract information in the form of decision

tables. The authors also introduce a tool that generates test cases from decision ta-

bles called ETES. Endo et al. [97] also propose the use of ESG in order to perform

a grey-box testing, focusing on code coverage. Belli et al. [22] also extended ESG

to ESG4WSC in order to test service compositions and introduced a new algorithm

that generates test cases from ESG4WSC model. Wu and Lee [360] propose the use

of ESGs to generate test cases SaaS services. In the proposed approach, source code

comments are used to generate WSDL-S specifications. Then, WSDL-S documents are

used in the generation of ESGs.

Hou et al. [138] address the issues of message-sequence generation for BPEL

compositions. In this approach, BPEL processes are modelled as a Message Sequence

Graph (MSG) and test cases are generated using this MSG.

Paradkar et al. [252] propose a model-based test case generation for SWS. In

this approach test cases are generated using pre-defined fault-models and input, output,

pre-conditions and effects information from semantic specification.

Guangquan et al. [125] propose the use of UML 2.0 Activity Diagram [258], a

model used for modelling workflows in systems, to model BPEL processes. After mod-

elling the BPEL process, a depth first search method combined with the test coverage

criteria is performed on the model in order to generate test cases.

Ma et al. [202] propose the application of Stream X-machine based testing tech-

niques to BPEL. A stream X-machine [172] is an extended EFSM that includes design-

for-test properties. It can be used to model the data and the control of a system and to

generate test cases.

2.6. Model-Based Testing and Verification of Service-centric Systems 68

Endo and Simao [99] propose the use of state models in order to test service com-

positions. In the approach the the state model is generated manually and there are other

artefacts that are generated from service and composition specifications. The generated

artefacts are used in automation of test case generation and execution.

Sun et al. [304] introduce another graph model for modelling BPEL compositions

called BPEL Graph Model (BGM). The authors also propose an approach that generates

test cases from BGM. Similar to the previous approaches test cases are generated using

traversal algorithms based on the testers coverage criteria.

Casado et al. [57, 58, 59, 61] claim that there is no practical approach to test

long-lived web service transactions and propose an approach that aims to generate test

cases for testing web service transactions. The authors introduce a notation and sys-

tem properties for testing the behaviour of web service transactions that comply with

WC-COOR and WS-BA. In this approach, test cases are generated using Fault Tree

diagrams. The authors [60] also proposed a framework that automates the testing of

WS transactions.

Search-based test data generation has attracted a lot of recent attention [1, 131,

209]. Search-based test data generation techniques enable automation of the test gen-

eration process, thus reducing the cost of testing. Blanco et al. [37] propose the use of

scatter search, a metaheuristic technique, to generate test cases for BPEL compositions.

In this approach, BPEL compositions are represented as state graphs and test cases gen-

erated according to transition coverage criterion. The global transition coverage goal is

divided into subgoals that aim to find the test cases that reach the required transitions.

Tarhini et al. [310, 312] propose two new models for describing composite web

services. In this approach, the SUT is represented by two abstract models: the Task

Precedence Graph (TPG) and the Timed Labelled Transition System (TLTS). The TPG

models the interaction between services and the TLTS models the internal behaviour

of the participating web services. Tarhini et al. propose three different sets of test case

generation for testing different levels of web service composition. Test cases in the

first set aim to perform boundary value testing using the specifications derived from the

2.6. Model-Based Testing and Verification of Service-centric Systems 69

WSDL file. The second set is used for testing the behaviour of a selected web service.

The third set tests the interaction between all the participating services and test cases

for this set are generated using TPG and TLTS.

2.6.2.2 Model-Based Testing & Verification Using Symbolic Execu-

tion

Symbolic execution is used as a basis for a verification technique that lies between

formal and informal verification according to King [165]. In symbolic testing, the

SUT is executed symbolically using a set of classes of inputs instead of a set of test

inputs. A class of inputs, represented as a symbol, represents a set of possible input

values. The output of a symbolic execution is generated in the form of a function of the

input symbols. An example method that generates test cases using symbolic execution

is the BZ-Testing-Tools (BZ-TT) method [175]. The BZ-TT method takes B, Z and

statechart specifications as inputs and performs several testing strategies on them, such

as partition analysis, cause-effect testing, boundary-value testing and domain testing.

It also performs several model coverage criteria testing, such as multiple condition

boundary coverage and transition coverage. BZ-TT uses a custom constraint solver to

perform symbolic execution on the input model.

Testing Web services using symbolic execution is proposed by Sinha and Parad-

kar [292]. Sinha and Paradkar propose an EFSM based approach to test the functional

conformance of services that operate on persistent data. In this approach, EFSMs are

generated by transforming a WSDL-S model into an EFSM representation. Sinha and

Paradkar propose the use of four different test data generation techniques: full predicate

coverage, mutation-based, projection coverage and the BZ-TT method. For full predi-

cate coverage, each condition of the EFSM is transformed into disjunctive normal form

[85] and test sequences covering each transition are generated. For mutation-based test

data generation, the boolean relational operator method is applied to the guard condi-

tion of each operation. For the projection coverage technique, the user specifies test

objectives by including or excluding constraints. Sinha and Paradkar’s approach is the

2.6. Model-Based Testing and Verification of Service-centric Systems 70

only approach that performs testing using WSDL-S specifications.

Bentakouk et al. [26] propose another approach that uses symbolic execution in

order to test web service compositions. In this approach, a web service composition

is first translated into a STS, then a Symbolic Execution Tree (SET) is created using

STS of the composition. Bentakouk et al.’s approach takes coverage criteria from the

tester and generates the set of execution paths on SET. These generated paths are ex-

ecuted using a test oracle over the service composition. Bentakouk et al. claim that

using symbolic execution helps avoid state-explosion, over-approximation and unim-

plementable test case problems that are caused by labelled transition systems. As a

result, Bentakouk et al.’s approach can handle rich XML-based datatypes.

Zhou et al. [393] propose an approach aimed to test service compositions using

Web Service Choreography Description Language (WS-CDL). The approach uses a

Dynamic Symbolic Execution (DSE) method to generate test inputs. In the approach,

assertions are used as test oracles. The approach uses an SMT solver for generating

inputs that satisfy path conditions.

Escobedo et al. [101] propose an approach for testing BPEL processes using a

specialised labelled transition system called IOSTS. The approach is capable of per-

forming both real-world testing and simulated testing. One important aspect of the

approach is that it assumes that web service specifications are not available. If the be-

haviour of the services can be simulated, the approach performs simulated model-based

unit testing. In real-world testing, the approach is also capable of coping with problems

of service observability.

2.6.2.3 Model-Based Testing & Verification Using Model-Checking

Model-checking is a formal verification method and is described as a technique for

verifying finite state concurrent systems by Clarke et al. [73]. Model checking verifies

whether the system model can satisfy the given properties in the form of temporal logic.

During the proofing process, the model checker detects witnesses and counterexamples

for the properties of interest. Witnesses and counterexamples are paths in the execution

2.6. Model-Based Testing and Verification of Service-centric Systems 71

model. A witness is a path where the property is satisfied, whereas a counterexample is

a path (sequence of inputs) that takes the finite state system from its initial state to the

state where the property is violated. Counterexamples are used for test case generation.

Automata, either Finite State Automata [55] or Finite State Machines (FSMs)

[119] , are often used to represent finite state systems. In BPEL testing, automata

are often the target of transformation. BPEL processes are first transformed into au-

tomata models; these models can subsequently be transformed into the input languages

of model-checking tools such as SPIN [300], NuSMV [233] or BLAST [38].

Fu et al. [114] propose a method that uses the SPIN model-checking tool. The

proposed framework translates BPEL into an XPath-based guarded automata model

(guards represented as XPath expressions [362]) enhanced with unbounded queues for

incoming messages. After this transformation, the generated automata model can be

transformed into Promela (Process or Protocol Meta Language) specifications [262]

with bounded queues (directly), or with synchronous communication based on the re-

sult of the synchronizability analysis. The SPIN tool takes Promela as the input lan-

guage and verifies its Linear Temporal Logic (LTL) [272] properties. Interactions of the

peers (participating individual web services) of a composite web service are modelled

as conversations and LTL is used for expressing the properties of these conversations.

Garcı́a-Fanjul et al. [117] use a similar method to that of Fu et al. [114] in order

to generate test cases. Garcı́a-Fanjul et al.’s approach differs from Fu et al.’s approach

in transforming BPEL directly to Promela. Garcı́a-Fanjul et al. generate test cases

using the test case specifications created from counterexamples which are obtained

from model-checking. LTL properties are generated for these test case specifications,

aiming to cover the transitions identified in the input. Transition coverage for a test

suite is achieved by repeatedly executing the SPIN tool with a different LTL formula

that is constructed to cover a transition in each execution.

Zheng et al. [392] propose another test case generation method using model-

checking for web service compositions. Test coverage criteria such as state coverage,

transition coverage and all-du-path coverage are included in the temporal logic in or-

2.6. Model-Based Testing and Verification of Service-centric Systems 72

der to perform control-flow and data-flow testing on BPEL. Zheng et al. also propose

an automata called Web Service Automaton (WSA) [391] that is used to transform

BPEL into Promela for SPIN, or SMV for NuSMV model-checker. WSA aims to

include BPEL data dependencies that cannot be represented in other automata-based

formalisms. This approach generates test cases using counterexamples to perform con-

formance tests on BPEL and using WSDL to test web service operations.

Huang et al. [141] propose the application of model-checking to SWS compo-

sitions using OWL-S. The proposed approach converts OWL-S specifications into a

C like language and the Planning Domain Definition Language (PDDL) for use with

the BLAST model checker. Using BLAST, negative and positive test cases can also

be generated. Huang et al. propose an extension to the OWL-S specifications and the

PDDL in order to support this approach and use a modified version of the BLAST tool.

Gao and Li [115] introduce a probabilistic timed interface automaton for

BPEL4WS compositions called PTIA4WS. The proposed automaton includes stochas-

tic and time-related behaviour of the composition which are not included in BPEL.

Similar to the previous approaches test cases are generated using from counter exam-

ples. The authors claim that due to the extra behavioural information the proposed

model allow generation of time and probability optimal test cases.

Zhao et al. [389] propose an approach can both verify and validate BPEL pro-

cesses using model checking. The proposed approach transform BPEL to LOTOS in

order to perform model checking with EVALUATOR (v3.0). After, verification EVAL-

UATOR tool provides an LTS which is converted to a TTCN behaviour tree to validate

BPEL behaviour.

Jokhio et al. [154] propose the application of model-checking to the WSMO goal

specifications. The approach translates the goal specifications to B abstract state ma-

chine, which is used to generate test cases using the assertion violation property of the

ProB model checker.

Qi et al. [263] claim that existing software model-checkers cannot verify liveness

in real code and propose an approach that aims to find safety and liveliness violations

2.6. Model-Based Testing and Verification of Service-centric Systems 73

in ScS. The approach uses the Finite Trace LTL Model Checking (FTLT-MC) tool to

determine whether a SUT satisfies a set of safety and liveness properties. The authors

also claim that this is the first approach for C++ web services.

Betin-Can and Bultan [32] propose the use of model-checking to verify the inter-

operability of web services. In this approach, it is assumed that the peers of a composite

web service are modelled using a Hierarchical State Machine (HSM) model. Betin-Can

and Bultan propose a modular verification approach using Java PathFinder (JPF) [150],

a Java model checker, to perform interface verification, SPIN for behaviour verification

and synchronizability analysis.

Ramsokul and Sowmya [264] propose the modelling and verification of web ser-

vice protocols via model-checking. Ramsokul and Sowmya propose a distributed mod-

elling language based on the novel Asynchronous Extended Hierarchical Automata

(ASEHA), which is designed for modelling functional aspects of the web service pro-

tocols. ASEHA model of web service protocols are translated into Promela and cor-

rectness of the protocol is verified by the SPIN tool.

Guermouche and Godart [126] propose a model-checking approach for verifying

service interoperability. The approach uses the UPPAAL model checker and includes

timed properties in order to check for timed conflicts among services. The approach is

capable of handling asynchronous timed communications.

Yuan et al. [378] propose an approach for verifying multi-business interactions.

In the approach, business processes are formalised as Pi-Calculus expressions, which

are then translated into SMV input code in order to use with SMV model-checker.

2.6.2.4 Model-Based Testing & Verification Using Petri Nets

Petri Nets are widely used for specifying and analysing concurrent, asynchronous, dis-

tributed, parallel, nondeterministic, and/or stochastic systems [226]. Petri Nets allow

different analyses on the model such as reachability, boundedness, deadlock, liveness,

reversibility, fairness and conservation analysis. Petri Nets can also be used for mea-

suring test case coverage.

2.6. Model-Based Testing and Verification of Service-centric Systems 74

Petri Nets have also been used in model-based testing of web services. For ex-

ample, Dong and Yu [87] propose a Petri Net based testing approach where HPNs

are constructed from WSDL files. This approach uses the generated HPNs for high

fault-coverage. Test cases are generated using HPNs and constraint-based test data

generation. User-defined constraints for XML datatypes and policy-based constraints

specified by the tester provide the necessary constraints for test data generation.

Wang et al. [338] propose the generation of test cases using Petri Nets and on-

tology reasoning. In this approach, Petri Net models, that are used to describe the

operational semantics of a web service, are generated from the OWL-S process model

and test data is generated using ontology reasoning.

Formal verification of BPEL processes using Petri Nets has been investigated by

Ouyang et al. [241], who proposed a method for transforming BPEL processes into

Petri Nets with formal analysis of BPEL processes using Petri Nets models. Two tools

are used to automate the transformation and analysis; BPEL2PNML [356] and Wof-

BPEL [356]. BPEL2PNML is a tool that generates the Petri Net model and WofBPEL

is a tool that performs static analysis on Petri Net models. WofBPEL is capable of

checking for unreachable BPEL activities and competition problems for inbound mes-

sages.

Schlingloff et al. [282] propose a Petri Nets-based model-checking approach us-

ing the Lola model-checking tool [283] to verify BPEL processes. Schlingloff et al.

introduced a usability analysis to verify the expected behaviour of participating web

services.

Lohmann et al. [194] address the problem of analysing the interaction between

BPEL processes, using a special class of Petri Nets called open WorkFlow Net (oWFN).

Lohmann et al. introduce two tools that support this approach called BPEL2oWFN that

transforms BPEL to oWFN or Petri Net. oWFN model is used by another tool called

Fiona that analyses the interaction behaviour of oWFNs. Petri Net models are used

with model checkers to verify the internal behaviour of a BPEL process.

Moser et al. [225] propose a method that increases the precision of Petri Net based

2.6. Model-Based Testing and Verification of Service-centric Systems 75

verification techniques. The authors claim that most of the existing verification methods

neglect data aspects of BPEL processes. The authors highlight that their approach

incorporates data dependencies into analysis. Data flow is extracted from BPEL by

creating a Concurrent Single Static Assignment Form (CSSA). Important data items in

CSSA are identified and mapped into the Petri Net model.

Different flavours of Petri Nets are also used in modelling BPEL due to their more

expressive nature. For example, Yang et al.’s [368] approach is one of the earliest

works that proposes the use of Colored Petri Nets (CP-Nets) [151], an extended Petri

Net formalism, for modelling BPEL processes. Yang et al. list the capabilities of CP-

Nets that allow different levels of verifications of BPEL processes such as reachability,

boundness, dead transition, dead marking, liveness, home, fairness and conservation

analysis. The proposed framework uses CPNTools [75] for CP-Nets analysis and can

also verify the BPEL to CP-Net transformation.

Yi et al. [371] also propose a BPEL verification framework that uses CP-Nets. Yi

et al. claim that CP-Nets are more expressive than FSM and Petri Nets, and propose

the use of CP-Nets in order to model the specifications of the web service conversation

protocols. The proposed framework can also help with composition of new BPEL

processes and verify the existing processes.

Dong et al. [88] propose the use of HPNs. The proposed approach uses a modified

version of a tool called Poses++, which is also developed by the authors. The tool is

used for automated translation from BPEL to HPN and is also capable of generating

test cases.

Dai et al. [78] propose the use of Timed Predicate Petri Nets with annotated BPEL

processes. The proposed annotations are not included in the BPEL itself, but they are

introduced in annotation layers. These annotations include constraints on the properties

of the BPEL process. Dai et al. claim that these annotations can be used in verifica-

tion of non-functional properties of BPEL as well. This is supported by a tool called

MCT4WS that allows automated verifications for web service compositions.

Xu et al. [363] propose the use of the Synchronized-Net model, a model based

2.6. Model-Based Testing and Verification of Service-centric Systems 76

on Petri Nets. For this approach, they use a transformation tool called BPEL2PNML,

capable of transforming BPEL into Petri Net Markup Language (PNML) [256]. PNML

is used as the input to the Synchronized-Net verification tool.

Similar to Petri Nets, other models are also used for coverage analysis in MBT

and verification. For example, Li et al. [180] propose a model-based approach for

test coverage analysis. The proposed approach uses Resource Description Framework

(RDF) [269], a language for representing information about resources in the WWW,

for specifying the preconditions and effects of each method in WSDL specifications.

The preconditions and effects specify, respectively, the state of the service before and

after invoking a method.

Yang et al. [367] propose an approach that increases the effectiveness of static

defect detection for BPEL processes. The approach uses a CFG representation of BPEL

processes in order to perform static analysis. The authors claim that incorporating the

effects of the BPEL’s dead-path-elimination into static defect analysis reduces both

false positives and negatives.

Felderer et al. [106, 107] propose a model-driven testing framework called Telling

TestStories (TTS). TTS enables tests-driven requirements testing for ScS. Felderer et al.

introduce a domain specific language that allows formalisation of system requirements

and test model and test cases to be specified based on the concepts of the requirements.

Two models are defined in the TTS framework: the system model which describes

system requirements at business level and the test model that contains test case specifi-

cations. The TTS framework can also ensure the quality of the test artefacts.

Frantzen et al. [111] propose a model-driven development and testing platform

called PLASTIC[260]. PLASTIC is supported by two tools that help model-based

testing called JAMBITON and MINERVA. These two tools provide support for off-

line functional validation for services. In this approach, a Symbolic Transition System

(STS) representation of services is provided by the provider. JAMBITON can automat-

ically test services using the provided STS. The authors claim that JAMBITON is the

only tool that can provide automated on-the-fly testing.

2.6. Model-Based Testing and Verification of Service-centric Systems 77

2.6.3 Experimental Results

Huang et al. [141] experimented on a synthetic online shopping system. The authors

generated 7 positive test cases using BLAST and 9 negative test cases using the so-

called Swiss-Cheese approach [326] with 100% pass rate.

Jokhio et al. [154] experimented on the WSMO example of the Amazon E-

Commerce service. The authors were able to generate test cases from two types of

trap properties: boundary coverage (3 test cases) and modified condition decision cov-

erage (30 test cases).

Paradkar et al.’s [252] automated conformance tests generation approach is val-

idated using a real industrial application with 4 web services and 84 operations. The

authors achieved 100% requirement coverage during the their experiments with a stable

version of the application. During experiments, they revealed 4 functional bugs out of

7 bugs known to be present. The authors also compared the effort and efficiency of the

approach, demonstrating that the approach can reduce the cost around 50% compared

to manual testing used by the testing team of the company.

Endo et al. [98] experimented on three different examples: CGD, loan approval

and Nice Journey. The authors presented results of required test cases to cover all

executable elements in order to prove the applicability of the used criteria. The required

number of test cases for different criteria varies between 1 to 10 test cases.

Li et al. [179] experimented with a real web service that wraps query function of a

call centre. They generated test cases for 23 out of 128 input fields of the selected ser-

vice. The authors’ approach generated 514 test cases within 10 minutes using datatype

constraints and boundary information. The authors highlighted the fact that this ap-

proach reduces cost vastly compared to manual test case generation. They compared

their results against manual test case generation, which took 3 days to generate 293 test

cases.

Belli and Linschulte [23] experimented on a real-word ISETTA service. In the

experiments, 120 test cases (4 positive and 116 negative) executed and 1 of positive

and 65 of negative test cases revealed a fault. 6 of the revealed faults are found out to

2.6. Model-Based Testing and Verification of Service-centric Systems 78

be severe.

Endo et al. [97] experimented on an example banking system. The proposed

approach achieved 100% coverage using 6 positive test cases in all requirements (all-

nodes, all-edges, all-uses and all-Pot-uses). 19 negative test cases are needed in order

to achieve 100% coverage on the faulty pairs of ESG. Test case minimisation capability

of the proposed approach is also evaluated and the approach achieved between 74% to

64% reduction in test suit size.

Yan et al. [365] experimented on three loan approval examples from ActiveBPEL

engine. The authors performed mutation testing by introducing a bug pattern into the

process and observing if any of the generated test paths covered the pattern. During the

experiments, all their test path generation methods killed the mutant.

Hou et al. [138] performed mutation analysis on six different BPEL programs:

2 versions of loan approval, ATM, market place, gymlocker, BPEL(1-5) in order to

prove the effectiveness of their approach. In these experiments, they achieved over

98% effectiveness in test case generation and average 90% mutation score for all six

programs.

Chakrabarti and Kumar [65] experimented on a real RESTful service. The authors

performed a daily testing routine which took 5 minutes to execute the 300 test cases. 5

to 10 test cases failed daily out of 300 cases. The authors also automatically generated

a test suite with 42,767 test cases covering all possible input parameters. 38,016 test

cases initially failed and in the second attempt after bug fixes, 1781 test cases still

failed.

Blanco et al.’s [37] search-based test data generation approach was run on two

example BPEL programs: loan approval and shipping service. Blanco et al.’s approach

achieved 100% coverage for both examples, whereas random generation achieved only

99% and 75% respectively. According to test results, the number of required test cases

for coverage is much lower than for random. For loan approval, this approach achieved

100% coverage using 95% fewer test cases than random and, similarly, for shipping

service 96% less test cases.

2.6. Model-Based Testing and Verification of Service-centric Systems 79

Cavalli et al. [63] evaluated model-based testing approaches using TESFM and

its variations, using TRS as a case study. In the evaluation, test cases are generated

using the tools (TestGen-IF, WSOTF and WS-AT) that are introduced in three different

TESFM-based approaches. The test results provided evidence for the correctness of

TRS. The authors also performed mutation testing with a single mutant and the test

cases generated by TestGen-IF were able to kill the mutant.

Li et al. [180] experimented on two web services: the Parlay X Conference web

service and the CSTA Routing Service. The authors performed their experiments on a

machine with a 3GHz processor and 2GB of memory. The flow analysis of Parlay X

service with 9 operations took 3.00 seconds and the CSTA service with 10 operations

took 10.00 seconds.

Garcı́a-Fanjul et al. [117] experimented within a loan approval example BPEL

program. The authors claim that the approach is capable of finding the minimum num-

ber of test cases required achieve transition coverage for a given specification. The

authors also mention the performance of the tool: it completes the verification in less

than a second using a system with 3.0GHz Pentium4 processor and 2GB of memory.

The model that was used in the experiments had 32 internal states and was represented

by a 96 bytes state-vector.

2.6.4 Discussion

MBT aims to test a system using a model that sufficiently describes the expected be-

haviour of the SUT for testing purposes. For service compositions, a model that can

sufficiently represent the process can be created, thereby allowing MBT and formal ver-

ification to be applied. Formal verification of workflows is a widely investigated subject

and the popularity of this subject is also reflected on the amount of work published in

the formal verification of BPEL compositions.

One of the most important advantages of formal verification for the integrators is

that it can be performed offline. This is an important aspect that needs to be highlighted

because it can greatly reduce the cost. Formal verification approaches can reveal errors,

2.6. Model-Based Testing and Verification of Service-centric Systems 80

such as unreachable parts or cause deadlocks without the need of execution. Formal

verification can reveal errors that are hard to detect using testing. Thus it is necessary

for the integrator to perform both the formal verification and testing.

One important contribution of formal verification methods [114, 117, 141, 392] in

testing is their ability to generate test cases. These approaches, combined with simu-

lated testing of BPEL compositions, discussed in Section 2.4, allow the integrator to

perform automated testing with low cost.

Another important aspect that needs to be highlighted in this section is the number

of tools used. In order to provide the necessary automation, both in model genera-

tion and verification, various authors have presented many tools. The tools used for

verification are well-known tools such as SPIN, BLAST, NuSMV and JPF.

In the area of translation from composition languages such as BPEL to different

models, many translation tools are introduced. Tools such as BPEL2IF, BPEL2oWFN

and BPEL2PNML allow automation, thereby reducing the cost. There are also many

other proposed methods and models that contribute towards automated BPEL transla-

tion. These publications are not mentioned in this chapter to retain a focus on testing

and verification.

Model-based test case generation is a well-known and exercised technique. Since

most of the approaches in this section are targeting service compositions, these ap-

proaches are primarily aimed at the integrator. According to the results from the ex-

periments, most of the proposed approaches can achieve high coverage with minimal

effort. For instance, the results from approaches such as Endo et al. [98] and Blanco et

al.’s [37], where required number of test cases for coverage are much fewer than ran-

dom, prove that they reduce the cost of testing not just merely by automating the input

generation process, but also by reducing the number of required test cases to run on the

service(s) under test.

Some of the model-based test case generation approaches [37, 98, 125, 138, 167,

168, 365, 379] described above have a single common feature. In traditional MBT,

models are created using requirements or specifications separately from the executable

2.7. Interoperability Testing of Service-centric Systems 81

code. However, almost all of the model-based approaches described above generate

models from the executable code itself. This abstraction/translation process leads to a

model that reflects the behaviour of the executable code, rather than a model that re-

flects the expected behaviour of the system. Thus, testing using such a model will lead

to testing of the translation process rather than testing of the actual system. By defini-

tion, the errors revealed using these approaches can only be those errors introduced by

their translation process.

This problem does not affect the approaches using formal verification methods. In

formal verification, logical properties that the SUT is checked against are not derived

from the executable code. Other approaches in this section such as Felderer et al. [106]

require the test model to be generated separately.

2.7 Interoperability Testing of Service-centric Systems

Interoperability is the ability of multiple components to work together. That is, to

exchange information and to process the exchanged information. Interoperability is a

very important issue in open platforms such as SOA. Even though web services must

conform to standard protocols and service specifications, incompatibility issues might

still arise.

The need for interoperability among service specifications is recognized by indus-

try and the WS-I, an open industry organization, formed by the leading IT companies.

The organization defined a WS-I Basic Profile [342] in order to enforce web service

interoperability. WS-I organization provides interoperability scenarios that need to be

tested and a number of tools to help testing process. Kumar et al. [286] describe the

possible interoperability issues regarding core web service specifications such as SOAP,

WSDL and UDDI and explain how the WS-I Basic Profile provides solutions for the

interoperability issues with web service specifications.

There are also interoperability problems that might be caused by web service

toolkits such as Java Axis and .Net. For example, using dynamic data structures in

services which use a certain toolkit might cause interoperability problems (due to mes-

2.7. Interoperability Testing of Service-centric Systems 82

sage consumption errors) for the clients using other toolkits [293]. Interoperability

problems do not occur only among different toolkits but might also occur in different

versions of the same toolkit. This is also another important interoperability aspect that

needs to be tested by both the developer and the certifier.

2.7.1 Perspectives in Interoperability Testing

Since the aim of the interoperability is to observe whether the services exchange mes-

sages as expected, it can be performed by all the stakeholders in SOA. Interoperability

testing of services (service protocols and interfaces) is very important for the provider

and the certifier. Testing for interoperability must be included in reliability measure-

ment. Even though most of the approaches in this section target services, there are

approaches such as Narita et al. [227] and Yu et al. [377] that target service composi-

tions. These approaches can only be performed by the integrator.

2.7.2 Interoperability Testing Approaches

The need for testing the interoperability among services is also recognized by re-

searchers. For example, Bertolino and Polini [30] propose a framework that tests the

service interoperability using service’s WSDL file along with a Protocol State Machine

Diagram (PSM) [258] provided by the service provider. The PSM diagram carries in-

formation on the order of the operation invocations for a service. The proposed frame-

work checks the order of the web service invocations among different web services and

attempts to point out possible interoperability problems.

Yu et al. [377] propose an ontology-based interoperability testing approach using

the communication data among web services. The proposed approach captures com-

munication data and stores it in an ontology library. The data in the library is analysed,

and reasoning rules for error analysis and communication data are generated in order

to run with the JESS reasoning framework [152]. Using the rules from the JESS frame-

work gives this approach the ability to adapt certain problems, such as network failure

or network delay. The framework can also replay the errors that have been identified

by using a Petri Net graphic of the communicating web services.

2.7. Interoperability Testing of Service-centric Systems 83

Smythe [294] discusses the benefits of the model-driven approach in the SOA

context and proposes an approach that can verify interoperability of services using

UML models. The author points out the need for UML-profile for SOA that contains

the interoperability specification in order to use with the proposed approach. Using the

proposed the UML-profile, test cases can be generated for testing the conformance of

the web service’s interoperability.

Similarly, Bertolino et al. [30] propose a model-based approach for testing inter-

operability. In the proposed environment, web services are tested before registration.

In this approach, service provider is expected to provide information on how to invoke

a web service using an UML 2.0 behaviour diagram.

Ramsokul and Sowmya [265] propose the use of ASEHA framework to verify

the service protocol’s implementation against its specification. They claim that the

ASEHA framework is capable of modelling complex protocols, such as Web Services

Atomic Transaction (WS-AtomicTransaction) [347] and Web Services Business Ac-

tivity (WS-BusinessActivity) [348]. The proposed ASEHA framework captures the

SOAP messages from services, maps them into ASEHA automata and verifies the pro-

tocol implementation against its specification.

Guermouche and Godart [126] propose a model-checking approach for verifying

service interoperability. The approach uses UPPAAL model checker and includes timed

properties in order to check for timed conflicts among services. The approach is capable

of handling asynchronous timed communications.

Betin-Can and Bultan [32] propose the use of a model, based on HSMs, for speci-

fying the behavioural interfaces of participating services in a composite service. Betin-

Can and Bultan suggest that verification of the web services that are developed using

the Peer Controller Pattern is easier to automate, and propose the use of HSMs as the

interface identifiers for web services in order to achieve interoperability. Betin-Can and

Bultan propose a modular verification approach using Java PathFinder to perform in-

terface verification, and SPIN for behaviour verification and synchronizability analysis.

The use of the proposed approach improves the efficiency of the interface verification

2.7. Interoperability Testing of Service-centric Systems 84

significantly as claimed by the Betin-Can and Bultan.

Narita et al. [227] propose a framework for interoperability testing to verify web

service protocols, especially aimed at reliable messaging protocols. Narita et al. claim

that none of the existing testing tools aim to perform interoperability testing for com-

munication protocols. They also highlight the need for a testing approach that covers

the reliable messaging protocols, capable of executing erroneous test cases for these

protocols. As a result, their framework is capable of creating test cases containing

erroneous messages by intercepting messaging across web services.

Passive testing is the process monitoring the behaviour of the SUT without pre-

defining the input(s) [62]. The first passive testing approach for web services is pro-

posed by Benharref et al. [25]. This EFSM-based approach introduces an online ob-

server that is capable of analysing the traces and reporting faults. The observer also

performs forward and backward walks on the EFSM of the WSUT in order to speed up

the state recognition and variable assignment procedures.

Passive conformance testing of EFSMs was proposed by Cavalli et al. [62], where

testing artefacts called ‘invariants’ enable testing for conformance. These invariants

contain information on the expected behaviour of the SUT and used in testing traces.

Several authors extended this research to web services domain.

For example, Andrés et al. [5] propose the use of passive testing for service com-

positions. The proposed invariants contain information on expected behaviour of ser-

vices in the composition and their interaction properties. The proposed passive test-

ing approach checks local logs against invariants in order to check for the absence of

prescribed faults. Morales et al. [222] propose a set of formal invariants for passive

testing. In this approach, time extended invariants are checked on collected traces. The

approach uses a tool called TIPS that enables passive testing.

Cao et al. [53] also propose a passive testing approach for service compositions.

The proposed approach enables both online and offline verification using constraints on

data and events called security rules. The security rules are defined in the Nomad lan-

guage. The authors also present a tool that automates the passive testing for behavioural

2.7. Interoperability Testing of Service-centric Systems 85

conformance called RV4WS. Cao et al. [50] extended this approach by integrating the

active testing tool WSOTF.

Yu et al. [375] investigated the number of requests required to adequately test

the interoperability of geospatial web services. In the work, the authors proposed a

specification-based service request models to help generate the requests for testing.

2.7.3 Experimental Results

Narita et al. [227] performed experiments on Reliable Messaging for Grid Services

(RM4GS) version 1.1, an open source implementation of WS-Reliability 1.1. The

framework performs coverage-based testing in order to check for conformance to its

specifications. It also performs application-driven testing to check for interoperability.

The errors introduced by the framework include losing a package, changing message

order and sending duplicate messages. During coverage testing, the framework tested

180 out of 212 WS-Reliability items. It was unable to find any errors but raised 3 warn-

ings. During application-driven testing 4 errors were revealed and 4 warnings were

raised.

Betin-Can and Bultan [32] experimented on the travel agency and the order han-

dling examples. For the travel agency, different peers of the program took between

4.61 seconds to 9.72 seconds for interface verification. The resources used in this ex-

periment is ranged from 3.95MB and 19.69MB of memory. Synchronizability analysis

of the travel agency (which was 8,911 states) took 0.38 seconds and used 5.15 MB

of memory. Order handling interface verification for peers took between 4.63 to 5.00

seconds and used 3.73MB to 7.69MB of memory. Synchronizability analysis of order

handling (which was 1,562 states) took 0.08 seconds and used 2.01MB of memory.

2.7.4 Discussion

As stated, interoperability is one of the major strengths of Web services. Web services

must be tested for interoperability in order to achieve this potential. Interoperability is-

sues that are caused by different versions of the protocols such as SOAP are addressed

by industry in WS-I. However, other challenges requires approaches, such as Tsai et

2.8. Integration Testing of Service-centric Systems 86

al. [323] and Bertolino et al. [30], where interoperability is tested before service reg-

istration. Testing web services before the registration process can prevent many of the

possible interoperability problems and this could increase confidence in the registered

services.

The approaches in this section are divided into three main groups. The first group

aims to verify service protocols, such as the work of Narita et al. [227] and Ramsokul

and Sowmya [265]. The second group verify interfaces and communication among

services, such as the work of Betin-Can and Bultan [32], Smythe [294] and Yu et al.

[377]. The third group are the passive testing approaches, such as the work of Andrés

et al. [5], Morales et al. [222] and Cao et al. [53].

The approaches in this section can also be grouped in terms of their cost. The ap-

proaches that use formal verification and passive testing approaches will reduce the cost

of testing for the integrator. Formal verification approaches cover service and protocol

verification respectively. Using them together allows a complete offline interoperabil-

ity testing for the integrator. The passive testing approaches will provide the integrator

with the ability to detect real-world usage faults. For the approaches where test cases

are generated, the cost can be higher. The passive testing approaches increase the cost

of testing for the integrator due to the effort required to create the necessary invariants.

2.8 Integration Testing of Service-centric Systems

Integration testing is crucial in most fields of engineering to make sure all the compo-

nents of a system work together as expected. The importance of performing integration

testing is also well established in software engineering. Since the idea behind SOA is to

have multiple loosely coupled and interoperable distributed services to form a software

system, integration testing in SOA is at least as important. By performing integration

testing, all the elements of a ScS can be tested including services, messages, interfaces,

and the overall composition.

Bendetto [24] defined the difference between integration testing of traditional sys-

tems and ScS. Canfora and Di Penta [48] point out the challenges in integration testing

2.8. Integration Testing of Service-centric Systems 87

in SOA. According to Bendetto and Canfora & Di Penta, the challenges of integration

testing in ScS are:

1. Integration testing must include the testing of services at the binding phase, work-

flows and business process connectivity. Business process testing must also in-

clude all possible bindings.

2. Low visibility, limited control and the stateless nature of SOA environment make

integration testing harder.

3. Availability of services during testing might also be a problem.

4. Dynamic binding makes the testing expensive due to the number of required

service calls.

2.8.1 Perspectives in Integration Testing

As might be expected, integration testing is only performed by the integrator. The rest

of the stakeholders are not capable of performing integration-oriented approaches due

to the lack of observability.

Most of the approaches in this section target service compositions using static

binding. In contrast to dynamic SOA, performing integration testing can be very chal-

lenging due to ScS’s configuration being available only at run-time (this problem is

referred as the “run-time configuration issue” in the rest of this paper). In dynamic

SOA, the integrator needs to test for all possible bindings, which can increase the cost

of testing greatly.

2.8.2 Integration Testing Approaches

One of the earliest works on integration testing of web services is Tsai et al.’s [325]

Coyote framework. Coyote is an XML-based object-oriented testing framework that

can perform integration testing. Coyote is formed of two main components: a test

master and a test engine. The test master is capable of mapping WSDL specifications

into test scenarios, generating test cases for these scenarios and performing dependency

2.8. Integration Testing of Service-centric Systems 88

analysis, completeness and consistency checking. On the other hand, the test engine

performs the tests and logs the results for these tests.

In software development, there is a concept called Continuous Integration (CI)

[90]. CI is performed by integrating the service under development frequently. CI

also requires continuous testing. Continuous Integration Testing (CIT) allows early

detection of problems at the integration level. Huang et al. [142] propose a simulation

framework that addresses the service availability problem using CIT. The proposed

framework automates the testing by using a surrogate generator, that generates platform

specific code skeleton from service specifications and a surrogate engine that simulates

the component behaviour according to skeleton code. Huang et al. claim that the

proposed surrogates are more flexible than the common simulation methods, such as

stubs and mocks, and the simulation is platform-independent.

Liu et al. [192] also propose a CIT approach in which executable test cases carry

information on their behaviour and configuration. In the proposed approach, integration

test cases are generated from sequence diagrams. The authors also introduce a test

execution engine to support this approach.

Peyton et al. [257] propose a testing framework that can perform ”grey-box” inte-

gration testing of composite applications and their underlying services. The proposed

framework is implemented in TTCN-3 [102], an European Telecommunications Stan-

dards Institute standard test specification and implementation language. It is capable of

testing the composite application behaviour and interaction between participating web

services. The framework increases the visibility and the control in testing by inserting

test agents into a web service composition. These agents are used in analysing HTTP

and SOAP messages between the participating services.

Mei et al. [214] address the integration issues that might be caused by XPath in

BPEL processes, such as extracting wrong data from an XML message. The proposed

approach uses CFGs of BPEL processes, along with another graph called XPath Rewrit-

ing Graph (XRG) that models XPath conceptually (models how XPath can be rewrit-

ten). Mei et al. created a model that combines these two graphs called X-WSBPEL.

2.8. Integration Testing of Service-centric Systems 89

Data-flow testing criteria based on def-use associations in XRG are defined by Mei

et al. and using these criteria, data-flow testing can be performed on the X-WSBPEL

model.

Sun et al. [307] introduces an approach that adapts popular fault localisation

Tarantula [155] aiming to discover integration-level faults in BPEL compositions. The

approach focuses on faults related to interactions which coordinate service invocations.

In the proposed approach, Tatantula method is applied to the execution traces of the

test suite (executed blocks) in order to discover the suspicious blocks.

De Angelis et al. [80] propose a model-checking integration testing approach. Test

cases are derived from both orchestration definition and specification of the expected

behaviour for the candidate services. The authors also present a tool that supports this

approach.

Tarhini et al. [312] address the issue of web service availability and the cost of

testing. They solve these problems by finding suitable services before the integration

process and using only the previously selected services according to their availability.

In this approach, testing to find suitable services is accomplished in four stages. The

first stage is the “find stage” in which candidate web services from a service broker

are found. In the second stage, selected web services are tested for their correct func-

tionality. At the third stage, each web service is tested for interaction as a stand-alone

component and, if it passes this stage, it is tested for interactions with the rest of the

components. When a web service passes all the required steps it is logged into the list

of services to be invoked at runtime. The proposed framework uses a modified version

of the Coyote framework for the automation of testing.

Garriga et al. [118] propose the inclusion of integration testing in the service

selection process in SOA. In this process discovered candidate services are selected

based on the results of a testing process. The approach tests services for interface and

behavioural compatibility. Similarly, Miao and Liu [220] also propose the inclusion of

a testing phase in the service selection process. In the proposed approach test cases and

sequences are generated functional scenarios. These scenarios are generated from user

2.8. Integration Testing of Service-centric Systems 90

requirements which include pre- and pos-conditions for service operations.

Yu et al. [376] address the interaction problems within OWL-S compositions. Yu

et al.’s approach tests interaction among participating web services using interaction

requirements. Yu et al. propose an extension to existing OWL-S models to carry these

requirements.

There are also previously mentioned approaches that are capable of performing

integration testing. For example, Tsai et al.’s ASTRAR framework [321] and the pro-

posed Enhanced UDDI server [323] are also capable of performing integration testing.

Similarly, Lenz et al.’s [176] model-driven testing approach can be used for integra-

tion testing. Sasikaladevi and Arockiam [281] propose a integration testing framework

that is capable of generating test cases from WSDL specifications and simulate service

clients.

2.8.3 Experimental Results

Huang et al. [142] experimented on a human resources system that is transformed

into a web service. In this system, there are 17 components in the business layer with

58 interfaces and 22 components in data layer with 22 interfaces. During the pure

simulation without real components, 7 bugs are identified caused by issues such as

reference to a wrong service, interface mismatch and missing service. During real

component tests (includes surrogates as well), 3 bugs are identified for five components.

Mei et al. [214] experimented on the eight popular BPEL examples. The authors

created mutants by injecting faults into three different layers in the composition BPEL,

WSDL and XPath. Test sets created by the approach achieved almost 100% coverage

in all test criteria considered. The authors also compared their fault detection rates with

random testing. Overall, the minimum detection rates for this approach are between

53% to 67% whereas random only achieved 18%. Mean rates of fault detection rates

for this approach are between 92% to 98% whereas random achieved 73%. The authors

also investigated the performance of the approach. It took between 0.45 to 1.2 second

for generating test sets with a 2.4 GHz processor and 512MB memory.

2.8. Integration Testing of Service-centric Systems 91

Liu et al. [192] experimented on two synthetic examples: an HR system and a

meeting room management system. The approach revealed 22 bugs in the HR system

and 7 in the meeting room system. The approach revealed faults in categories such as

incorrect method calls, incorrect parameter passing, configuration problems and inter-

face/function mismatches.

2.8.4 Discussion

Integration testing is one of the most important testing methodologies for SOA. The

challenges that the integrator faces during integration testing are addressed by some

of the approaches mentioned in this section, such as Tarhini et al. [312], Huang et al.

[142] and Liu et al.’s [192] frameworks.

Huang et al.’s [142] CI based integration testing can be very useful by starting test-

ing early. The ability to use surrogate services can also help reduce the cost of testing.

Since surrogate services can be generated automatically, using them does not increase

the overall cost. The only handicap of this approach might be finding/generating suit-

able web service specifications to be used in surrogate generation. One other issue that

can increase the cost of testing is the lack of automated test case generation within the

framework.

Liu et al. [192] partly automate test case generation in CIT using sequence dia-

grams. This approach makes use of Huang et al.’s work and is able to simulate unavail-

able components. As a result, it has the same restrictions as Huang’s work regarding

the service simulation. The approach’s ability to verify execution traces using object

comparison and expression verification is the main advantage of this approach.

Mei et al.’s [214] approach addresses a problem that is overlooked by many de-

velopers. Integration issues that can be caused by XPath are an important problem in

service compositions that need to be tested. The results from their experiments prove

the effectiveness of their approach in revealing these problems.

Almost all of the approaches discussed above will have problems adapting to dy-

namic environments. For example, Tarhini et al.’s [312] approach might be rendered

2.9. Collaborative Testing of Service-centric Systems 92

inapplicable due to not being able to know the services available at run-time and not

being able choose the service to bound at run-time. On the other hand, Huang et al.

[142], Peyton et al. [257], Tsai et al. [325] and Mei et al.’s [214] approaches might

become more expensive to perform.

2.9 Collaborative Testing of Service-centric Systems
Collaborative software testing is the testing concept where multiple stakeholders in-

volved in a web service, such as developer, integrator, tester and user, participate in

the testing process. Collaborative testing is generally used in testing techniques such

as usability walk-through, where correct functionality is tested with participation of

different stakeholders.

Challenges involving testing ScS are identified by Canfora and Di Penta [48],

some of which require collaborative solutions. These challenges that might require

collaborative solutions are:

1. Users not having a realistic test set.

2. Users not having an interface to test web service systems.

3. The need for a third-party testing and QoS verification rather than testing by each

service user.

2.9.1 Perspectives in Collaborative Testing

Collaborative testing requires collaboration among stakeholders. The proposed ap-

proaches described in this section seek to establish a collaboration between the de-

veloper and the integrator. Some of the approaches include a third-party in order to

increase testability.

Palacios et al. [246] surveyed existing approaches and identified four common

stakeholders in approaches that suggest collaboration: provider, registry, third-party

and client. In this section, we only mention three stakeholders (developer, third-party

and integrator) as we accept the developer, the provider and the registry as a single

2.9. Collaborative Testing of Service-centric Systems 93

stakeholder (the developer) since the test cases provided by all these three stakeholders

are generated by the developer.

2.9.2 Collaborative Testing Approaches

Tsai. et al. [318] propose a Co-operative Validation and Verification (CV&V) model

that addresses these challenges instead of the traditional Independent Validation and

Verification (IV&V). One example of this collaborative testing approach is Tsai et al.’s

proposed enhanced UDDI server [323]. This UDDI server further enhances the verifi-

cation enhancements in UDDI version 3 [329]. These proposed enhancements include:

1. The UDDI server stores test scripts for the registered web services.

2. The UDDI server arranges test scripts in a hierarchical tree of domains and sub-

domains.

3. The UDDI server has an enhanced registration mechanism called check-in. The

Check-in mechanism registers a web service if it passes all test scripts for its

related domain and sub-domain.

4. The UDDI server has a new mechanism before the client gets to use the selected

service called check-out. This mechanism allows the client to test any web ser-

vice before using it with the test scripts from web service’s associated domain.

5. UDDI server includes a testing infrastructure that allows remote web service test-

ing.

In the proposed framework, the provider, as suggested by Canfora and Di Penta,

can also provide test scripts to point out qualities of the web service such as robust-

ness, performance, reliability and scalability. The proposed framework also provides

an agent-based testing environment that automates the testing process both at check-in

and check-out.

Bai et al. [18] also propose a contract-based collaborative testing approach that ex-

tends Tsai et al.’s enhanced UDDI proposal. Bai et al. propose a Decentralized Collab-

orative Validation and Verification (DCV&V) framework with contracts. The proposed

2.9. Collaborative Testing of Service-centric Systems 94

framework consists of distributed test brokers that handle a specific part of the testing

process. Bai et al. suggest two types of contracts for the DCV&V approach: Test Col-

laboration Contracts (TCC) that enforce the collaboration among the test brokers and

Testing Service Contract (TSC) that is used for contract-based test case generation.

Bai et al.’s proposed test broker provides a test case repository for test cases and

test scripts, collects test results, maintains defect reports and web service evaluations.

The test broker can generate and execute test cases as well. Bai et al. suggest that by

using the DCV&V architecture, multiple test brokers can become involved in the test-

ing process. The decentralized architecture allows flexible and scalable collaborations

among the participants.

Zhu [388, 395, 396] proposes another collaborative approach. In Zhu’s approach,

service developers or third stakeholder testers provide testing services that help with

testing. Zhu also proposes a testing ontology that is based on a taxonomy of testing

concepts called the STOWS. The proposed ontology aims to solve the issues related to

the automation of test services.

Bartolini et al. [19] introduce a collaborative testing approach that “whitens” the

ScST by introducing a new stakeholder called TCov that provides the tester with cov-

erage information. Bertolini et al.’s approach requires the service provider to insert

instrumentation code inside the service in order to provide TCov with coverage infor-

mation. This information is then analysed by TCov provider and is made available to

the tester as a service.

Eler et al. [96] propose an approach to improve web service testability. The pro-

posed approach provides the tester with a instrumented version of the SUT as a testing

service. The testing service is instrumented by the developer aiming to provide the

tester with coverage information and other testing related metadata. The authors also

present a web service that automatically generates the testing service from Java byte

code called JaBUTiWS and also another tool called WSMTS, that support the testing

process.

2.9. Collaborative Testing of Service-centric Systems 95

El Ioini and Sillitti [94, 95] propose a collaborative testing framework that al-

low collaboration among service integrators. The proposed framework acts as a test

case repository where test cases submitted by integrators and their execution traces are

stored. In the proposed approach test cases generated automatically generated from

tester provided specifications and TestGen4J libraries.

2.9.3 Experimental Results and Discussion

Collaborative testing approaches aim to solve some of the challenges involved in ScST.

For example, having an adequate test suite by allowing service providers to provide

test suits or having a third stakeholder tester providing testing interfaces for the service

consumers. The claimed benefits of these approaches justify collaborative testing of

ScS.

Tsai et al.’s [323] proposed testing approach provides many benefits, such as in-

creasing the quality of testing by providing realistic test cases from the provider. This

approach also reduces the number of test runs by testing web services before the bind-

ing process has been completed. The approach also reduces the cost of testing through

automation. The framework’s ability to generate scripts for different levels of testing

makes it a complete testing solution. However, the framework’s dependence on existing

workflows might be a problem for some web services.

Bai et al.’s [18] contracts allow the test provider to supply specification-based test

case designs for the other participants. Testers can also run synchronized tests on ser-

vices and publish the test results. Test data and test knowledge can be made accessible

to others and can be exchanged among different stakeholders. Generally, contracts

aim to enforce the correct functionality of a system. Bai et al.’s contracts addition-

ally enforce collaboration among stakeholders. Through contract-based collaboration

enforcement may be effective, however, the cost of generating contracts might be dis-

couraging.

The main advantage of Zhu’s [388, 395] proposed testing environment is that test-

ing can be fully automated. Another advantage is that the SUT is not affected by the

2.10. Testing Service-centric Systems for QoS Violations 96

testing process. As a result, there will be no service disruptions due to any errors that

might happen during testing process or a decrease in the service’s performance. The

proposed environment also reduces security concerns by allowing tests to be performed

via testing servers. The only disadvantage of the proposed environment is that the test-

ing services need to be tested as well. This problem can be solved by the use of certified

third stakeholder testing services which require no testing. Using third stakeholder test-

ing services might increase the cost vastly due to the costs of testing services.

Bartolini et al. [19] provide experimental results from application of their TCov

environment. The authors highlight an important aspect of using TCov is that it enables

the tester to receive information on test coverage without violating the SOA principles.

The authors also suggest that knowing coverage results from different test cases can

greatly help the tester to perform better tests. The main advantage of this approach

is that it can be easily used in the current web service environment. The main disad-

vantage of the TCov environment is the introduction of a third-party into the testing

process which increases the cost of testing.

Eler et al. [96] provided performance analysis results based on the overhead cre-

ated by the proposed approach. The authors measured the execution time of a test suite

on the original web service and compared the execution time of the same test suite with

the testing service. The overhead added by the approach increased execution times by

2.65% outside the testing session and 5.26% in the testing session. This approach pro-

vides the benefits of Zhu’s [395, 388] approach and Bartolini et al.’s [19] without the

need for a certifier. The main disadvantage of this approach at present is that it can only

be applied to Java web services.

2.10 Testing Service-centric Systems for QoS Violations
QoS and its requirements have been discussed for many years in areas such as network-

ing. A general QoS definition is given by Campanella et al. [47] as

QoS (Quality of Service) is a generic term which takes into account sev-

eral techniques and strategies that could assure application and users a

2.10. Testing Service-centric Systems for QoS Violations 97

predictable service from the network and other components involved, such

as operating systems.

QoS for web services defined as

Quality of Service is an obligation accepted and advertised by a provider

entity to service consumers.

in W3C Web Services Glossary [350].

In the literature, QoS generally refers to non-functional properties of web services

such as reliability, availability and security. A broad definition of QoS requirements

for web services is given by Lee et al. [173]. This definition includes performance,

reliability, scalability, capacity, robustness, exception handling, accuracy, integrity, ac-

cessibility, availability, interoperability and security.

In SOA, the need for QoS is highlighted by two main questions:

1. The selection of the right service.

2. The provision of guarantees to the service consumer about service performance.

As mentioned, one of the most important benefits of SOA is the ability to use

services from other businesses. As a consequence, the consumer often has the problem

of choosing a suitable service. In such an environment, businesses must have the ability

to distinguish their services from the competition. On the other hand, the consumers

must have the ability to compare and choose the best service for their needs. As a result,

QoS ratings must be published by the provider and be accessible to the consumer within

the SOA environment.

The answer to the second question is a well-known concept called the Service

Level Agreement (SLA). SLA is an agreement/contract between the provider and the

consumer(s) of a service that defines the expected performance of a service at defined

levels. SLAs might also include penalty agreements for service transactions or usage

periods where the service performs below an agreed level.

2.10. Testing Service-centric Systems for QoS Violations 98

It is hard to define a standard SLA that fits all kinds of available services. Web

services covered by an SLA also need to be tested for their conformance to the SLA.

The service subsequently needs to be monitored during its normal operations to check

SLA conformance.

The importance of QoS in Web services and the problems surrounding it has led

to the service standard called WS-Agreement [346]. WS-Agreement is a specification

language aimed at standardising the overall agreement structure. The language speci-

fies domain-independent elements that can be extended to any specific concept.

Due to its significance in SOA, QoS testing is as important as functional testing.

The difference in QoS testing is that it needs to be performed periodically and/or the

service needs to be monitored for SLA conformance.

2.10.1 Perspectives in QoS Testing

QoS testing of web services is performed by the provider (or the certifier if requested).

The integrator can perform QoS testing on compositions to reveal possible SLA vio-

lations. QoS testing at the integrator side can be considered to be a static worst-case

execution time analysis using the non-functional parameters of services in the com-

position. Stub services can also be generated with given QoS parameters in order to

perform simulated testing. The run-time configuration issue does not affect the integra-

tor neither in simulated QoS testing nor in static analysis. For the dynamic SOA, the

integrator can use service selection constraints rather than services’ actual QoS param-

eters.

The cost of QoS testing can be higher than traditional testing. The two primary

cost drivers are the cost of service invocation and the need to generate real-usage test

data. The primary issue is due to the requirement of running each test case several

times during the testing period. The reason for multiple test case executions is that the

average of the results from multiple test runs provide a more realistic QoS score than a

single test. QoS scores also need to be updated periodically from the monitoring data

or results from tests.

2.10. Testing Service-centric Systems for QoS Violations 99

2.10.2 QoS Testing Approaches

The oldest research publication on QoS testing of services is by Chandrasekaran et al.

[68]. The authors propose an approach that is used to test performance of web ser-

vices and simulation based evaluation for service compositions. The authors introduce

their tool called Service Composition and Execution Tool (SCET) which allows ser-

vice composition as well as evaluation. Simulation in the tool is handled by JSIM, a

Java-based simulation environment.

Di Penta et al. [83] propose testing for SLAs violations using search-based meth-

ods. In this approach, inputs and bindings for ScS are generated using genetic algo-

rithms (GA). The generated inputs and bindings aim to cause SLA violations. For

service compositions, a population to cover the expensive paths are evolved by the au-

thors GA which then try to find violating conditions. The approach also monitors QoS

properties such as response time, throughput and reliability. Monitored parameters are

used as fitness function in test case selection.

Di Penta et al.’s [82] regression testing approach aims to test non-functional prop-

erties of services. It allows the developer to publish test cases along with services that

are used in the initial testing. In this approach, assertions for QoS are used for testing

SLA conformance. These assertions are generated automatically with the executions

of test cases.

Gu and Ge [124] propose another search-based SLA testing approach. Similar

to Di Penta et al.’s approach, a CFG is derived from service composition and a QoS

analysis is performed on each path. Test cases are generated around the maximum

and minimum SLA constraints. The difference in this approach is the added users’

experience which is included in defining QoS sensitivity levels.

Palacios et al. [245] propose a partition-testing based SLA testing approach. In the

proposed approach, test specifications are generated from information in SLAs which

are specified in the form of WS-Agreement specifications. The category-partition

method is applied to these specifications to generate test cases that aim to reveal SLA

violations.

2.10. Testing Service-centric Systems for QoS Violations 100

The need for test-beds in SOA is mentioned previously for functional testing.

Bertolino et al. [28] suggest that test-beds must also be able to evaluate QoS prop-

erties in SOA. The authors propose a test-bed that allows functional and non-functional

testing of service compositions. The proposed test-bed can perform testing without the

need of invoking outside services using service stubs. Stubs are generated using a tool

called Puppet (Pick Up Performance Evaluation Test-bed) [27]. The Puppet generates

service stubs using QoS parameters in SLAs expressed in WS-Agreement specification.

In this approach, functional models of the stubbed services are expected to be provided

by the provider in the form of STS. The information from STS and SLA allow genera-

tion of stubs with both functional and non-functional properties.

Another example to test-beds that can perform offline testing is Grundy et al.’s

[123] MaramaMTE [206] tool. This tool provides similar functionality to Bertolino et

al.’s test-bed. The most important functionality of this test-bed is it allows testers to per-

form offline performance tests on service compositions. In this approach, service stubs

are created from composition models such as BPMN and ViTaBal-WS. Unfortunately

this approach does not use SLAs to inform the tester about the possible violations.

Driss et al. [89] propose a QoS evaluation approach for service compositions using

discrete-event simulation. Discrete-event simulation is performed with a model that

represents the operation of a system as a chronological sequence of events. The authors

propose a model that includes BPEL activities and network infrastructure. Simulations

in this approach are performed using the NS-2 simulator.

Pretre et al. [261] propose a QoS assessment framework using model-based test-

ing called iTac-QoS. In this approach, the provider is expected to provide a UML based

test model formed of three diagrams. These diagrams contain a service interface, tem-

poral evolution and input data. Functional test data is generated from the model. The

framework uses a categorisation of tests, goals and results. In order to automate cate-

gorisation process, requirements in the form of OCL are provided. Total automation is

one of the highlights of this approach.

Yeom et al. [370] introduce a QoS model and a testing mechanism to test service

2.10. Testing Service-centric Systems for QoS Violations 101

manageability quality for this model. In this approach, a set of manageable interfaces

are provided along with web services. These interfaces provide functions to get internal

information about services to increase observability or to provide change notifications.

2.10.3 Experimental Results

Di Penta et al. [83] experimented on a synthetic audio processing workflow with four

services and an existing image manipulation service. The authors compared their GA

approach against random search to prove its effectiveness. In their experiments, GA

significantly outperformed random search. Both their black and white-box approaches

proved to generate inputs and bindings that can violate SLAs. Their comparisons be-

tween these two approaches showed that the white-box approach takes less time than

black-box approach to find a solution that violates QoS constraints.

Di Penta et al. [82] experimented on synthetically generated web services based

on five releases of dnsjava. The most important finding in their experiments was the

overall QoS increase with new releases. The only version that had lower QoS results

among the new versions was the version with new features. The authors also found that

SLAs might be violated by the new versions if they cover the newer versions.

Gu and Ge [124] performed their experiments on a synthetic service composition.

Their experiments showed that their approach was able to identify QoS risky-paths and

generate test cases that can violate QoS constraints. They have also compared their GA

approach to random search similar to Di Penta et al. and according to their results GA

outperformed the random search.

Driss et al. [89] experimented on a travel planner composite service example.

The authors focused solely on the response time parameter. The results from their

simulation was able to identify the fastest service method and also methods that have

problems with response times.

2.10.4 Discussion

One of the main topics in SOA is QoS and SLAs. In order to establish a healthy SOA

environment, it is very important to establish a standard way of representing QoS pa-

2.10. Testing Service-centric Systems for QoS Violations 102

rameters and measuring them. In SOA, it is imperative that up to date QoS parameters

are checked for their conformance to SLAs. This necessity highlights the importance of

QoS testing and SLA conformance. The need for updating QoS parameters and SLAs

with each new service version also increases the need for QoS testing.

One of the main problems the integrator faces in QoS testing is the need for testing

all possible bindings. This problem is caused by dynamic nature of SOA when the

integrator does not know which services will be selected and invoked. Even though

expected QoS parameters in SLAs give an idea about services’ performance and enable

static/simulated QoS analysis, these parameters do not reflect the network performance.

For example, determining network latency for all possible users can be unrealistic.

Existing work in QoS testing can be classified into two main areas according to the

way they are performed. These two main categories are simulation and real testing. The

difference between these two methods are the use of service stubs rather than invoked

services.

The main advantage of using stubs is its low cost. Since QoS testing can be very

expensive, using stubs is an ideal way to reduce cost. Reducing cost is invaluable for the

integrator allowing him to run more tests to reveal additional possible SLA violations.

Another benefit of simulation is its ability to adapt dynamic SOA. In simulation, QoS

ratings of existing services can be used to generate a probabilistic SLA for the whole

composition.

Although simulation can be a solution to adaptation issues in QoS, it does suffer

from network performance representation. Driss et al.’s [89] approach addresses this

issue, by including network models in their simulations. Unfortunately, this approach

cannot be used in dynamic SOA environment.

Testing with real services has the advantage of getting realistic QoS ratings and

finding runtime SLA violations. The weaknesses of testing with real services is the

need to test for all possible bindings and the high costs involved. Di Penta et al. [83]

and Gu and Ge’s [124] similar approaches can help reduce the cost of testing for SLA

violations by detecting high risk paths and focusing testing on these parts of service

2.11. Regression Testing of Service-centric Systems 103

compositions.

2.11 Regression Testing of Service-centric Systems

Regression testing is the reuse of the existing test cases from the previous system tests.

Regression testing is performed when additions or modifications are made to an existing

system. In traditional regression testing, it is assumed that the tester has access to the

source code and the regression testing is done in a white-box manner [374]. Performing

white-box regression testing helps mainly with test case management.

A number of the common test case management and prioritisation methods such

as the symbolic execution approach and the dynamic slicing-based approach require

testers’ access to the source code [374]. However, approaches like the Graph Walk

Approach (GWA) by Rothermel and Harrold [271] that does not require access to the

source code, can be used in ScS Regression Testing (ScSRT). This chapter distinguishes

the Regression Test Selection (RTS) methods that require access to source code in order

to identify those RTS methods applicable to testing web services. Since the integrator

does not have source code access at the service level, RTS methods that require access

to the source code are inapplicable in ScST.

According to the literature [48, 230], one of the main issues in ScSRT at the con-

sumer side is not knowing when to perform regression testing. Since the consumer has

no control over the evolution of the web service, he might not be aware of the changes

to the web service. There are two possible scenarios for informing the consumer about

such modifications. These scenarios are based on the provider’s knowledge about the

consumers.

The first scenario arises when the SUT is registered to a UDDI broker or is not a

free service. The subscription service in UDDI v3 allows automated notification of the

consumers when changes are made to a service. For paid services, it is assumed that the

provider has the details of the consumers through billing or service agreements. In this

scenario, informing the consumers about the changes that are made to a web service

will not be a problem. Even so, there is still a small room for error. If the consumers

2.11. Regression Testing of Service-centric Systems 104

are not properly informed about which methods of the web service are modified, they

might either perform unnecessary tests or fail to perform necessary tests.

The second scenario arises when the web service that requires regression testing

is a public web service with no UDDI registration and the provider does not have in-

formation about its consumers. This scenario is the most problematic one, because the

consumer can only be aware of the modifications by observing errors in system be-

haviour or changes in the system performance. During the period, between changes

being made to a service and the consumers discovering the changes, confidence in the

service might decrease due to errors or decreases in QoS.

Another challenge in ScSRT is the concurrency issues that might arise during test-

ing due to the tester not having control over all participating web services. Ruth and

Tu [275] discussed these issues and identified possible scenarios. They identified three

different scenarios, all of which are based on the issue of having a service or a method

modified other than the SUT during the regression test process. The problem attached

to this issue is called fault localisation. During the regression testing process, if a tester

is not informed about the modifications to a web service that is invoked by the SUT,

then the faults that are caused by this service can be seen as the faults in the SUT.

2.11.1 Perspectives in Regression Testing

Regression testing is another essential testing methodology that can be performed by all

the stakeholders in SOA. ScSRT for the developer is the same as traditional regression

testing.

The ScSRT approaches in this section are divided into two categories: regression

testing for single services and the service compositions. The approaches for service

compositions such as Ruth and Tu [276], Liu et al. [191], Mei et al. [213] and Tarhini

et al. [310] are aimed to be performed by the integrator. Approaches such as Tsai et

al. [327], Di Penta et al. [82] and Hou et al. [139] are expected to be performed by

the integrator and the certifier. Lin et al.’s [188] approach can only be performed by the

developer.

2.11. Regression Testing of Service-centric Systems 105

2.11.2 Regression Testing Approaches

As explained earlier, the RTS method of Rothermel and Harrold is used by many ScSRT

researchers. The proposed approaches by the researchers usually differ in the method

of the Control Flow Graph (CFG) generation.

Ruth and Tu [276] propose a regression testing approach that is based on Rother-

mel and Harrold’s GWA technique. This approach assumes that the CFGs of partic-

ipating services are provided by their developers. Ruth and Tu also propose that the

test cases and a table of test cases’ coverage information over the CFG must also be

provided along with WSDL file via WS-Metadata Exchange Framework [351]. The

required CFG needs to be constructed at the statement level, meaning every node in the

CFG will be a statement. These nodes will also keep a hash code of their corresponding

statements. When a change is made to the system, the hash of the modified service will

be different from the hash of the original service so that the RTS algorithm detects the

modified parts in the service without seeing the actual source code.

Ruth et al. [274] also propose an automated extension to their RTS technique

that tackles the concurrency issues that might arise during ScSRT. This approach helps

in solving the multiple modified service problem by using call graphs [276]. It is

possible to determine the execution order of the modified services by using the call

graphs. A strategy called ‘downstream services first’ is applied in order to achieve fault

localisation. In this strategy, if a fault is found in a downstream service, none of the

upstream services are tested until the fault is fixed. Ruth et al. also take the situation

into consideration where a service makes multiple calls to different services in parallel.

Lin et al. [188] propose another GWA based regression testing approach where

CFGs are created from Java Interclass Graph (JIG) [135]. A framework that performs

RTS on the transformed code of a Java based web service is also proposed by Lin et

al. The code transformation can be performed only in Apache Axis framework [6].

The proposed approach uses the built-in WSDL2Java [357] generated classes both on

the server and the tester side, and replaces messaging with local method invocation. A

simulation environment is created by combining stub and skeleton objects into a local

2.11. Regression Testing of Service-centric Systems 106

proxy in a local Java virtual machine. Execution of the simulation allows the generation

of JIG on which the GWA can be performed. Compared to the previously presented

approaches, Lin et al.’s approach is able to generate CFGs in an automated fashion

without the knowledge of internal behaviour of the web service. The main limitation

of this approach is its restricted application to Java-based web services.

Liu et al. [191] address the issues that occur due to concurrency in BPEL regres-

sion testing. Lui et al. propose a test case selection technique based on impact analysis.

The impact analysis is performed by identifying the changes to the process under test

and discovering impacted paths by these changes.

Tarhini et al. [310] propose another model-based regression testing approach us-

ing the previously explained model in Section 2.6. The proposed model is capable of

representing three types of modifications to the composite services:

1. Addition of a new service to the system.

2. Functional modifications to an existing service in the system.

3. Modifications to the specification of the system.

The changes that are made to the system are represented in the modified version of the

original TLTS. The second and third type of modifications are represented by adding

or removing states or edges from the TLTS of the original system.

An approach that performs regression testing for BPEL processes is proposed by

Wang et al. [335]. This approach uses the BFG [379] that was described in Section

2.6.2.1. Wang et al. propose a BPEL regression testing framework that can generate

and select test cases for regression testing using Rothermel and Harrold’s RTS tech-

nique. Wang et al. extended the BFG model into another graph called eXtensible BFG

(XBFG) that the authors claim is better suited to regression testing. Li et al. [177]

introduce another XBFG based ScSRT approach where test case generation and selec-

tion is based on the comparison of different versions of BPEL applications. Yang et

al. [366] propose an approach that aims at providing effective fault localisation using

recorded testing symbols. The proposed symbols contain the test step number and the

2.11. Regression Testing of Service-centric Systems 107

service interface information. The approach is supported by test scripts that contain

information test data and test behaviour.

Mei et al. [213] propose a different black-box test case prioritisation technique

for testing web service compositions. In this approach, test case prioritisation is based

on the coverage of WSDL tags in XML Schemas for input and output message types.

Askarunisa et al. [12] also proposed a black-box prioritisation approach for OWL-S

services. The proposed approach provides prioritisation based on several criteria such

as fault rate, fault severity and number of activities or transitions covered.

Mei et al. [217] also propose another coverage model which captures BPEL pro-

cess, XPath and WSDL that enables test case prioritisation. In this approach, test cases

can be sorted by XRG branch coverage and WSDL element coverage in addition to

their BPEL branch coverage.

Athira and Samuel [13] propose a model-based test case prioritisation approach

for service compositions. The approach discovers the most important activity paths

using a UML activity diagram of the service composition under test.

Chen et al. [71] also propose a model-based test case prioritisation approach based

on impact analysis of BPEL processes. The authors introduce a model called BPEL

Flow Graph (BPFG) into which BPEL processes are translated for change impact anal-

ysis. Test cases are prioritised according to the proposed weighted dependence propa-

gation model.

Zhai et al. [383] propose a test case prioritisation technique that incorporates

service selection for location-aware service compositions. In order to overcome the

potential issues caused by dynamic service selection, the authors propose a service

selection phase. In this phase, a service known to behave as expected is selected and

bound to the composition before the testing process. The authors introduce a concept

called Point Of Interest (POI) aware prioritisation technique that is more effective than

traditional input directed techniques for location-aware services.

Nguyen et al. [231] propose a test case prioritisation approach for “audit testing”

of web services. Audit testing aims to validate the interoperability of new versions

2.11. Regression Testing of Service-centric Systems 108

of the invoked services. The proposed prioritisation approach determines change sen-

sitivity of each test case and uses this metric to prioritise them. Change sensitivity is

measured using a mutation analysis where the execution of monitored service responses

are compared to the execution of their mutants. Mutant responses are generated by ap-

plying the nine mutation operators (introduced by the authors) to the monitored service

responses.

Nguyen et al. [229] also proposed another prioritisation approach using past ex-

ecution traces and Information Retrieval (IR). In the approach past execution traces

are used to generate test case identifier documents which contain terms that appear in

method signatures, variable and class names. Then, IR is applied to search for test cases

that are related to the given service change description (by the provider). The ranking

of the identifier documents provided by IR tools is used for test case prioritisation.

Mei et al. [216] propose a regression testing approach that addresses the issues

regarding late service binding in service compositions called Preemptive Regression

Testing (PRT). The approach is aimed at regression testing of services that can change

processing logic or invoke external services during their execution. During the curse of

regression testing when a change detected PRT takes control of the regression testing

and searches for test cases (in the current test suite) that cover the recently modified

part of the service. If test case(s) covering the modified part is found these test case(s)

first get executed then the regression testing continues if there is no more modifications

are found.

Zhang et al. [385] propose a regression testing model called WSRTM aiming to

test semantic web services. The model captures help identifying changes to the WSDL

ad IOPEs of the service. Based on the generated model and testers coverage choice,

test cases are generated for regression testing. Generated test cases aim to validate the

sequential functional behaviour of services.

Srikanth and Cohen [301] propose a regression testing approach for SaaS environ-

ment. In the approach use cases of previous failures are modelled as abstract events.

Then, event sequences are created using these models and the tester provided con-

2.11. Regression Testing of Service-centric Systems 109

straints according to the testers coverage criteria selection.

The need for a visual testing tool is addressed by Pautasso [254]. The author pro-

poses a framework called JOpera. JOpera is capable of performing unit and regression

testing on web service compositions. The proposed tool is implemented using a lan-

guage called JOpera Visual Composition Language [255]. One of the most important

features of JOpera is its ability to reflect changes and allow better regression testing.

JOpera separates the composition model from the service descriptions. Therefore, it

can test both independently. JOpera regression testing starts with registry query to

discover existing test cases. The approach uses snapshots to capture and compare exe-

cution states with expected states. Data flow information helps with fault localisation.

Chaturvedi [69] also propose a framework automates the regression testing of web ser-

vices. The tool generates a graph of the web service (based on WSDL) which is used

to determine the modified parts of the code.

Tsai et al. [327] propose a Model-based Adaptive Test (MAT) case selection ap-

proach that can be applied to both regression testing and group testing. This approach

defines a model called the Coverage Relationship Model (CRM) that is used for test

case ranking and selection. Using this model, test cases with similar aspects and cov-

erage can be eliminated. Tsai et al. define multiple rules that guarantee the selection

of the most potent test cases and prove that the less potent test cases never cover the

more potent test cases. Tsai et al. claim that this approach can be applied to regression

testing when a new version of a service with the same specifications is created.

In ScSRT, test case management has other test case prioritisation considerations

such as service access quotas. Hou et al. [139] address the issue of quota-constraints

for ScSRT. The quota problem might occur when performing regression testing on web

services with a limited number of periodic accesses. The use of quotas can affect a

service user in two ways:

1. It might increase the cost of testing if the service user is on a pay-per-use agree-

ment. Each time a test case is executed, the cost of testing will increase.

2.11. Regression Testing of Service-centric Systems 110

2. It might cause an incomplete test run if the service user runs out of access quota

before completing the regression test.

Hou et al. [139] propose a scheduled regression testing that divides the testing

process into several parts according to the user’s access quotas, while ignoring the

actual execution time of the regression testing. The aim of this approach is to divide

test cases into groups based on time slots that suit the user’s web service access quotas.

The proposed test case prioritisation approach is based on a multi-objective selection

technique, which defines an objective function that aims to attain maximum coverage

within the quota constraints of services.

Di Penta et al. [82] propose a collaborative regression testing approach that aims

to test both functional and non-functional properties of web services. Di Penta et al.’s

approach allows the developer to publish test cases along with services that are used in

the initial testing and regression testing. The approach also reduces the cost of regres-

sion testing by monitoring service input-output. All these functionalities are provided

by a testing tool that supports this approach.

2.11.3 Experimental Results

Mei et al. [213] experimented on eight BPEL examples and randomly generated 1,000

test cases for these programs. Using these test cases, 100 test suites with average 86

test cases were generated. The authors claim that their black-box testing approaches

can achieve similar fault detection rates to white-box testing approaches.

Mei et al. [217] also used the same case study to evaluate their coverage based

approach. The authors proposed 10 different techniques for prioritisation. All 10 tech-

niques were found to be more effective then random prioritisation. The results also

suggest that the techniques augmenting additional coverage information from WSDL

elements and XRG provide more effective prioritisation.

Di Penta et al. [82] experimented on five synthetically generated web services

based on five releases of dnsjava. The outputs are analysed from two different perspec-

tives. The first perspective is the comparison against all other service releases. The

2.11. Regression Testing of Service-centric Systems 111

second perspective is checking the output from a single service. The results using the

first perspective highlighted that this method can easily detect errors that arise with a

new release of a web service.

Zhai et al. [383] experimented on a real-world service composition called City

Guide. The proposed service selection method reduced service invocations by 53.18%.

The POI-aware techniques outperformed the input guided techniques in invocation re-

duction.

2.11.4 Discussion

The issues that relate to ScSRT for all the stakeholders in SOA are addressed by some

of the work discussed above. For example, one of the major issues in ScSRT is that of

the integrator not having a realistic test suite. This issue is addressed by Ruth and Tu

[276] and Di Penta et al. [82].

Ruth et al.’s regression testing approach can be very efficient if all CFGs for called

services are available and granularities of CFGs are matched, but it also requires the

developers to create CFGs and hashes. This approach is also limited to static composite

services. Furthermore, it might not be desirable to inform all integrators of a service

at once and allow them to perform tests at the same time in order to avoid service

disruptions.

This issue of possible service disruptions is a big problem at the provider side.

Multiple services provided by the same provider might be affected from the regression

testing of another service. As a result, the QoS of services other than the SUT might

also be reduced.

ScSRT exacerbates some of the cost related problems, such as high cost due to

service invocations. Unfortunately, none of the approaches in this section provides

a complete solution to this problem. The approaches that reduce the number of test

cases, such as Tsai et al. [327], can help to minimise this problem. Nevertheless, a

large regression test suite might require a high number of executions.

An additional concern related to the limitations in performing ScSRT due quota

2.12. Conclusion 112

restrictions is addressed by Hou et al. [139]. This approach does not reduce the cost

but helps towards completing the test within a budget.

Some of the issues mentioned in this section and their solutions are based on static

web service usage. The issues such as informing integrators about the changes to a ser-

vice or quota limitations will be phased out with the coming transition to dynamic SOA.

In dynamic SOA, the integrator’s need for testing the system with new service versions

and service disruptions due to regression testing by many integrators are expected to be

eliminated. This is because in dynamic SOA, testing for new service versions may be

hampered by the lack of knowledge concerning run-time binding.

2.12 Conclusion
In this chapter we provided a summary of testing techniques and approaches that have

been proposed for testing web services. The chapter focused on fundamental functional

testing methodologies such as unit testing, regression testing, integration testing and in-

teroperability testing of Web services. The chapter also included testing methodologies

such as model-based testing, fault-based testing, formal verification, partition testing,

contract-based testing and test case generation. There are two other sections: collab-

orative testing (testing approaches where multiple stakeholders participate in testing)

and QoS violation testing. Each section introduced the relevant approaches, discussed

their strengths and weaknesses. Each section also discussed the experimental results

that are presented by the authors of each work in order to highlight achievements of

these work.

As Web services increasingly attract more attention from the industry and the

research communities, new issues involving ScST are being identified. Some of the

previously identified issues are addressed by the approaches discussed in this chapter,

while others still await effective solutions. Several of the unaddressed issues in ScST

need new and more efficient solutions, thus bringing new opportunities and challenges.

According to the authors, the current open problems in ScST are:

1. Lack of real-world case-studies.

2.12. Conclusion 113

2. Solutions that can generate realistic test data.

3. Solutions to reduce the cost of ScST.

4. Solutions that improve the testability of ScS.

5. Solutions that combine testing and verification of ScS.

6. Modelling and validation of fully decentralised ScS.

We believe in order to provide a better understanding of the open problems in

ScST, the current trends needs to be analysed and discussed. As a result, the following

chapter first provides an analysis of the current trends in ScST, and then discusses the

open issues in order to predict emerging and possible future trends.

Chapter 3

Analysis of Trends in Service-centric

System Testing

3.1 Service-centric System Testing Trends

In order to understand the trends in ScST, all the existing work in this field are analysed

from several different perspectives. To give a better idea about the different aspects of

this field, comparisons with different research fields are also presented.

One of the most important factors that proves the significance of a research field is

the number of research publications. Figure 3.1 shows the total number of publications

from 2002 to 2012. Total number of publications in 2012 might not reflect the actual

number due to its recency. In Sharma et al.’s [288] study, the authors identified 146

papers published between 2002 and 2011 in web service testing subject. In our study,

for the same period we identified 215 papers.

Analysis of the research publications on the subject revealed its rapid growth.

The trend line plotted on Figure 3.1 with coefficient determination value (R2) 0̃.995 is

very reassuring to make future predictions. The trend line suggests that if this trend

continues until 2014, the number of publications will be around 325, close to twice the

number of publications in 2010.

Furthermore, the present survey only focuses on functional ScST. The total num-

ber of research publications in ScST can be much higher than stated since the present

3.1. Service-centric System Testing Trends 115

survey does not include other important testing areas such as security testing and per-

formance testing.

Figure 3.1: Total number of publications from 2002 to 2012

Analysis of the publication volume for the testing techniques and methodologies

used in ScST is presented in Figure 3.2 and Figure 3.3. Formal verification, model-

based testing and fault-based testing are the three methodologies on which the larger

volumes are noted.

Existing information on the application of ScST in industry allows for some com-

parison of the evolution of ScST in industry and academia. According to Bloomberg

[39], the history of web service testing is divided into three phases, based on the func-

tionalities that are added to ScST tools during these periods:

1. During phase one (2002-2003), web services were considered to be units and

testing was performed in a unit testing fashion using web service specifications.

2. During phase two (2003-2005), testing of SOA and its capabilities emerged. The

testing in this phase included testing the publishing, finding, binding capabili-

ties of web services, the asynchronous web service messaging capability and the

3.1. Service-centric System Testing Trends 116

SOAP intermediary capability of SOA. Testing for QoS also emerged as a topic

of interest during this period.

3. During phase three (2004 and beyond), the dynamic runtime capabilities of web

services were tested. Testing web service compositions and web service version-

ing testing emerged during this period.

Figure 3.2: Publication trends of testing techniques applied to ScST

Figure 3.3: Publication trends of testing methodologies applied to ScST

3.1. Service-centric System Testing Trends 117

Analysis of the academic work in Figure 3.2 and Figure 3.3 do not yield results

similar to Bloomberg’s analysis. For example, in the 2002-2003 period, 5 publications

on formal verification, 1 on test data generation, 1 on integration, 1 on QoS and 1 on

collaborative testing were published. In academic research, the first work using unit

testing appeared in 2005. Analysis for the remaining periods also shows a relatively

small apparent correlation between the industry and academia.

Figure 3.4: Distribution of case study types used in experimental validation. Number
inside the circle indicate absolute number of papers.

The final analysis on existing research covers the experiments performed in the

publications to validate the applicability and the effectiveness of the proposed ap-

proaches. This analysis gives an idea of the case studies used by others. Figure 3.4

presents the type of case studies used by the researchers.

This figure highlights one of the great problems in ScST research - lack of real-

world case studies. Unfortunately, 62% of the research publications discussed in Chap-

ter 2 provide no experimental results. The synthetic service portion of the graph mainly

includes approaches for testing Business Process Execution Language (BPEL) compo-

sitions. The most common examples are the loan approval and the travel agency (travel

booking) systems that are provided with BPEL engines. There are also experiments on

existing Java code that are turned into services such as javaDNS, JNFS and Haboob.

3.2. Categorisation of Testing Approaches Applied to Service-centric System Testing118

The real services used in experiments are generally existing small public services that

can be found on the Internet. There are four experiments performed on existing projects

such as government projects, Mars communication service and an HR system.

3.2 Categorisation of Testing Approaches Applied to

Service-centric System Testing
In this section we provide an overview of the work discussed in Chapter 2. Table 3.1

highlights certain aspects of each work, such as category, web service technologies,

testing tools and case studies, making the comparison of the existing work easier. We

believe that having a summary of all case studies used in the existing work is invaluable

at least for two reasons. First, it helps reduce the effects of the lack of experimental

validation in ScST research, which is a major problem. As mentioned in Section 3.1,

71% of the work covered in Chapter 2 do not provide any experimental results. The

information presented in Table 3.1 may give the researchers an idea on the available

case studies that can be used in their work for experimental validation. Second, having

a summary of all used case studies enables researchers to apply their techniques on the

same/similar case studies used in the existing work, allowing better comparison among

the approaches.

Presenting the summary of the tools used is also important to both researchers and

industry. We believe this information enables researchers to discover available tools on

a specific testing methodology and use the publicly available ones in their experiments,

or for integrating them to their tool/framework. For industry, discovering the state-of-

the-art tools developed by research communities might provide opportunities for the

application of these approaches to real-world systems.

Table 3.1 also enables researchers to easily notice the gaps in service technologies

that are not covered by any of the existing work. The information from the table might

bring opportunities as well as questions on the reasons that limit application of the

existing approaches to that specific service technology.

3.2. Categorisation of Testing Approaches Applied to Service-centric System Testing119

Ta
bl

e
3.

1:
Su

m
m

ar
y

of
Sc

S
Te

st
in

g
an

d
V

er
ifi

ca
tio

n
A

pp
ro

ac
he

s

A
ut

ho
r

Te
st

in
g

C
at

eg
or

y
W

S
Te

ch
no

lo
gy

To
ol

s
Se

rv
ic

es
/S

cS
U

se
d

in
E

xp
er

im
en

ts

B
ar

to
lin

ie
ta

l.
[2

0]
Sp

ec
ifi

ca
tio

n
ba

se
d

te
st

da
ta

ge
ne

ra
tio

n
W

SD
L

W
S-

TA
X

I
Pi

co
se

rv
ic

e

M
a

et
al

.[
20

1]
Sp

ec
ifi

ca
tio

n-
ba

se
d

te
st

da
ta

ge
ne

ra
tio

n
W

SD
L

–
Sy

nt
he

tic
or

de
rs

ys
te

m
(3

ve
rs

io
ns

)

B
ai

et
al

.[
16

]
Sp

ec
ifi

ca
tio

n-
ba

se
d

te
st

da
ta

ge
ne

ra
tio

n
W

SD
L

–
35

6
pu

bl
ic

se
rv

ic
es

L
ie

ta
l.

[1
85

]
Sp

ec
ifi

ca
tio

n-
ba

se
d

te
st

da
ta

ge
ne

ra
tio

n
W

SD
L

W
ST

D
-G

en
C

al
lc

en
te

rq
ue

ry
se

rv
ic

e

C
ha

kr
ab

ar
ti

an
d

K
um

ar
[6

5]
Te

st
da

ta
ge

ne
ra

tio
n

W
A

D
L

–
R

ea
lR

E
ST

fu
lw

eb
se

rv
ic

e
B

oz
ku

rt
an

d
H

ar
m

an
[4

2]
Sp

ec
ifi

ca
tio

n-
ba

se
d

te
st

da
ta

ge
ne

ra
tio

n
O

W
L

-S
–

15
pu

bl
ic

se
rv

ic
es

Pa
ra

dk
ar

et
al

.[
25

2]
M

od
el

-b
as

ed
te

st
in

g
O

W
L

-S
–

A
n

on
lin

e
ap

pl
ic

at
io

n
fo

r
as

se
t

m
an

ag
e-

m
en

t
D

on
g

an
d

Y
u

[8
7]

M
od

el
-b

as
ed

te
st

in
g

W
SD

L
–

–
M

a
et

al
.[

20
2]

M
od

el
-b

as
ed

te
st

in
g

B
PE

L
–

–
G

ua
ng

qu
an

et
al

.[
12

5]
M

od
el

-b
as

ed
te

st
in

g
B

PE
L

–
B

oo
k

re
ne

w
al

pr
oc

es
s

C
on

ro
y

et
al

.[
74

]
Te

st
da

ta
ge

ne
ra

tio
n

W
SD

L
–

A
cc

en
tu

re
Pe

op
le

D
ir

ec
to

ry
an

d
U

ni
ve

rs
ity

D
at

a
ap

pl
ic

at
io

ns
Y

an
et

al
.[

36
5]

M
od

el
-b

as
ed

te
st

in
g

B
PE

L
–

L
oa

n
ap

pr
ov

al
Y

ua
n

et
al

.[
37

9]
M

od
el

-b
as

ed
te

st
in

g
B

PE
L

–
–

E
nd

o
et

al
.[

98
]

M
od

el
-b

as
ed

te
st

in
g

B
PE

L
V

al
iB

PE
L

G
C

D
,L

oa
n

ap
pr

ov
al

an
d

ni
ce

jo
ur

ne
y

K
as

ch
ne

ra
nd

L
oh

m
an

n
[1

64
]

M
od

el
-b

as
ed

te
st

in
g

B
PE

L
–

E
xa

m
pl

e
on

lin
e

sh
op

H
ou

et
al

.[
13

8]
Te

st
ca

se
ge

ne
ra

tio
n

B
PE

L
–

L
oa

n
ap

pr
ov

al
(1

-2
),

A
T

M
,

m
ar

ke
t

pl
ac

e,
gy

m
lo

ck
er

,B
PE

L
(1

-5
)

C
as

ad
o

et
al

.[
59

]
M

od
el

-b
as

ed
te

st
in

g
W

S-
C

O
O

R
,W

S-
B

A
–

L
oa

n
ap

pr
ov

al
C

as
ad

o
et

al
.[

57
,6

0,
58

,6
1]

M
od

el
-b

as
ed

te
st

in
g

–
–

–
B

la
nc

o
et

al
.[

37
]

Te
st

ca
se

ge
ne

ra
tio

n
us

-
in

g
se

ar
ch

-b
as

ed
m

et
h-

od
s

B
PE

L
–

L
oa

n
ap

pr
ov

al
an

d
sh

ip
pi

ng
se

rv
ic

e

C
on

tin
ue

d
on

N
ex

tP
ag

e.
..

3.2. Categorisation of Testing Approaches Applied to Service-centric System Testing120

Ta
bl

e
3.

1
–

C
on

tin
ue

d

A
ut

ho
r

Te
st

in
g

C
at

eg
or

y
W

S
Te

ch
no

lo
gy

To
ol

s
Se

rv
ic

es
/S

cS
U

se
d

in
E

xp
er

im
en

ts

H
ec

ke
la

nd
M

ar
ia

ni
[1

37
]

Pa
rt

iti
on

te
st

in
g

W
SD

L
–

–
Pa

rk
et

al
.[

25
3]

Pa
rt

iti
on

te
st

in
g

W
SD

L
–

–
B

er
to

lin
o

et
al

.[
29

]
Pa

rt
iti

on
te

st
in

g
W

SD
L

TA
X

I
–

Su
n

et
al

.[
30

5]
Pa

rt
iti

on
te

st
in

g
W

SD
L

–
Sy

nt
he

tic
el

ec
tr

on
ic

pa
ym

en
ts

ys
te

m
B

ai
et

al
.[

17
]

Pa
rt

iti
on

te
st

in
g

O
W

L
-S

–
Sy

nt
he

tic
tr

av
el

sy
st

em
H

ec
ke

la
nd

L
oc

hm
an

n
[1

36
]

C
on

tr
ac

t-
ba

se
d

te
st

in
g

W
SD

L
–

–
M

ei
an

d
Z

ha
ng

[2
12

]
C

on
tr

ac
t-

ba
se

d
te

st
in

g
W

SD
L

–
2

sy
nt

he
tic

se
rv

ic
es

(T
ri

ty
pe

an
d

M
id

dl
e)

D
ai

et
al

.[
77

]
C

on
tr

ac
t-

ba
se

d
te

st
in

g
O

W
L

-S
C

B
T

4W
S

–
A

nd
ré

s
et

al
.[

5]
C

on
tr

ac
t-

ba
se

d
te

st
in

g
–

–
–

N
oi

ka
ja

na
an

d
Su

w
an

na
sa

rt
[2

32
]

C
on

tr
ac

t-
ba

se
d

te
st

in
g

W
SD

L
-S

–
2

sy
nt

he
tic

se
rv

ic
es

R
ec

ta
ng

le
Ty

pe
an

d
In

-
cr

ea
se

D
at

e
A

sk
ar

un
is

a
et

al
.[

11
]

C
on

tr
ac

t-
ba

se
d

te
st

in
g

W
SD

L
-S

–
2

re
al

se
rv

ic
es

(c
on

ve
rt

te
m

p
an

d
co

n-
ve

rt
va

lu
e)

an
d

2
sy

nt
he

tic
se

rv
ic

es
(s

ha
pe

,c
om

pl
ex

sh
ap

e)
L

iu
et

al
.[

19
3]

C
on

tr
ac

t-
ba

se
d

te
st

in
g

SA
W

SD
L

–
Sy

nt
he

tic
e-

le
ar

ni
ng

se
rv

ic
e

Sa
le

h
et

al
.[

27
8]

C
on

tr
ac

t-
ba

se
d

te
st

in
g

–
–

–
Sn

ee
d

an
d

H
ua

ng
[2

95
]

U
ni

tt
es

tin
g

W
SD

L
W

SD
LT

es
t

eG
ov

er
m

en
t

pr
oj

ec
t

w
ith

9
W

eb
Se

rv
ic

es
(W

S)
L

en
z

et
al

.[
17

6]
M

od
el

-d
riv

en
un

it
te

st
-

in
g

–
–

–

C
ha

n
et

al
.[

66
]

U
ni

t
te

st
in

g
us

in
g

m
et

a-
m

or
ph

ic
re

la
tio

ns
–

–
–

Su
n

et
al

.[
30

6]
U

ni
t

te
st

in
g

us
in

g
m

et
a-

m
or

ph
ic

re
la

tio
ns

W
SD

L
–

Sy
nt

he
tic

A
T

M
ex

am
pl

e

T
sa

ie
ta

l.
[3

21
,3

17
]

U
ni

tt
es

tin
g

W
SD

L
A

ST
R

A
R

60
ve

rs
io

ns
of

sy
nt

he
tic

B
B

S
w

eb
se

rv
ic

e
T

sa
ie

ta
l.

[3
28

]
U

ni
tt

es
tin

g
–

–
–

M
ay

er
an

d
L

üb
ke

[2
08

]
U

ni
tt

es
tin

g
B

PE
L

B
PE

L
U

ni
t

–
L

ie
ta

l.
[1

86
]

U
ni

tt
es

tin
g

B
PE

L
–

–
M

an
ie

ta
l.

[2
05

]
U

ni
tt

es
tin

g
W

SD
L

Ta
uk

an
–

Pa
lo

m
o-

D
ua

rt
e

et
al

.[
24

7]
U

ni
tt

es
tin

g
B

PE
L

Ta
uk

an
–

Z
hu

et
al

.[
39

8]
U

ni
tt

es
tin

g
–

SC
E

N
E

Te
st

er
4

sy
nt

he
tic

co
m

po
si

tio
ns

C
on

tin
ue

d
on

N
ex

tP
ag

e.
..

3.2. Categorisation of Testing Approaches Applied to Service-centric System Testing121

Ta
bl

e
3.

1
–

C
on

tin
ue

d

A
ut

ho
r

Te
st

in
g

C
at

eg
or

y
W

S
Te

ch
no

lo
gy

To
ol

s
Se

rv
ic

es
/S

cS
U

se
d

in
E

xp
er

im
en

ts

Il
lie

va
et

al
.[

14
6,

14
5]

U
ni

tt
es

tin
g

B
PE

L
TA

SS
A

–
R

ez
a

an
d

V
an

G
ils

t[
27

0]
U

ni
tt

es
tin

g
R

E
ST

fu
ls

er
vi

ce
s

–
–

C
ha

nd
ra

m
oh

an
et

al
.[

67
]

U
ni

tt
es

tin
g

–
–

–
H

al
lé

[1
27

,1
28

]
U

ni
tt

es
tin

g
SO

A
P,

W
SD

L
–

Sy
nt

he
tic

se
rv

ic
e

ex
am

pl
e

L
ie

ta
l[

18
2]

U
ni

tt
es

tin
g

–
SO

A
rM

et
ri

cs
–

Si
nh

a
an

d
Pa

ra
dk

ar
[2

92
]

M
od

el
-b

as
ed

te
st

in
g

W
SD

L
-S

–
–

B
en

ta
ko

uk
et

al
.[

26
]

M
od

el
-b

as
ed

te
st

in
g

–
–

–
E

sc
ob

ed
o

et
al

.[
10

1]
M

od
el

-b
as

ed
te

st
in

g
B

PE
L

–
–

Fu
et

al
.[

11
4]

M
od

el
-c

he
ck

in
g

B
PE

L
SP

IN
–

G
ar

cı́
a-

Fa
nj

ul
et

al
.[

11
7]

M
od

el
-b

as
ed

te
st

in
g

B
PE

L
SP

IN
L

oa
n

ap
pr

ov
al

ex
am

pl
e

Z
he

ng
et

al
.[

39
2]

M
od

el
-b

as
ed

te
st

in
g

B
PE

L
SP

IN
,N

uS
M

V
–

H
ua

ng
et

al
.[

14
1]

M
od

el
-b

as
ed

te
st

in
g

O
W

L
-S

B
L

A
ST

Sy
nt

he
tic

sh
op

pi
ng

W
S

E
nd

o
an

d
Si

m
ao

[9
9]

M
od

el
-b

as
ed

te
st

in
g

O
W

L
-S

,B
PE

L
,W

S-
C

D
L

JS
ta

te
M

od
el

Te
st

T
hi

rd
Pa

rt
yC

al
l-

SO
A

,Q
ua

liP
So

-F
ac

to
ry

Jo
kh

io
et

al
.[

15
4]

M
od

el
-c

he
ck

in
g

W
SM

O
Pr

oB
A

m
az

on
E

-c
om

m
er

ce
se

rv
ic

e
D

iP
et

ro
et

al
.[

84
]

M
od

el
-c

he
ck

in
g

–
SM

C
4W

S,
N

uS
M

V
Sy

nt
he

tic
B

PE
L

ex
am

pl
e

Ib
ra

hi
m

an
d

K
ha

lil
[1

44
]

M
od

el
-c

he
ck

in
g

B
PE

L
U

PA
A

L
–

Pa
ch

ar
oe

n
et

al
.[

24
4]

M
od

el
-c

he
ck

in
g

B
PE

L
LT

SA
–

Fu
an

d
C

he
n

[1
13

]
M

od
el

-c
he

ck
in

g
–

–
–

Z
ha

o
et

al
.[

38
9]

M
od

el
-c

he
ck

in
g

B
PE

L
E

VA
L

U
A

TO
R

sy
nt

he
tic

ba
nk

in
g

pr
oc

es
s

L
uo

et
al

.[
19

8]
M

od
el

-c
he

ck
in

g
O

W
L

-S
M

C
T

K
B

ra
vo

A
ir

Pr
oc

es
s

G
ao

an
d

L
i[

11
5]

M
od

el
-c

he
ck

in
g

B
PE

L
–

Sy
nt

he
tic

on
lin

e
pa

ym
en

ts
ys

te
m

G
ao

et
al

.[
11

6]
M

od
el

-c
he

ck
in

g
–

PR
IS

M
Sy

nt
he

tic
se

rv
ic

es
Q

ie
ta

l.
[2

63
]

M
od

el
-c

he
ck

in
g

–
FT

LT
-M

C
W

S-
R

el
ia

bl
eM

es
sa

gi
ng

ex
am

pl
e

O
gh

ab
ie

ta
l.

[2
36

]
M

od
el

-c
he

ck
in

g
O

W
L

-S
PR

IS
M

–
To

di
ca

et
al

.[
31

6]
M

od
el

-c
he

ck
in

g
B

PE
L

SP
IN

–
Z

ha
o

et
al

.[
39

0]
M

od
el

-c
he

ck
in

g
–

–
–

B
et

in
-C

an
an

d
B

ul
ta

n
[3

2,
33

]
M

od
el

-c
he

ck
in

g
B

PE
L

Ja
va

Pa
th

fin
de

r,
SP

IN
Sy

nt
he

tic
tr

av
el

ag
en

cy
se

rv
ic

e
an

d
pu

r-
ch

as
e

or
de

rs
er

vi
ce

K
ac

em
et

al
.[

16
1]

M
od

el
-c

he
ck

in
g

B
PE

L
B

PE
LV

T,
SP

IN
Sy

nt
he

tic
B

PE
L

pr
oc

es
s

R
am

so
ku

la
nd

So
w

m
ya

[2
64

]
M

od
el

-c
he

ck
in

g
W

S
pr

ot
oc

ol
s

SP
IN

W
S-

A
T

H
w

an
g

et
al

.[
14

3]
M

od
el

-c
he

ck
in

g
B

PE
L

,W
S-

C
D

L
–

Sy
nt

he
tic

sh
op

pi
ng

pr
oc

es
s

C
on

tin
ue

d
on

N
ex

tP
ag

e.
..

3.2. Categorisation of Testing Approaches Applied to Service-centric System Testing122

Ta
bl

e
3.

1
–

C
on

tin
ue

d

A
ut

ho
r

Te
st

in
g

C
at

eg
or

y
W

S
Te

ch
no

lo
gy

To
ol

s
Se

rv
ic

es
/S

cS
U

se
d

in
E

xp
er

im
en

ts

H
am

el
et

al
.[

12
9]

M
od

el
-c

he
ck

in
g

B
PE

L
R

O
D

IN
–

L
al

la
ie

ta
l.

[1
68

]
M

od
el

-b
as

ed
te

st
in

g
B

PE
L

B
PE

L
2I

F,
Te

st
G

en
-I

F
O

ra
cl

e
ex

am
pl

e
lo

an
Se

rv
ic

e
C

ao
et

al
.[

51
,5

2]
M

od
el

-b
as

ed
te

st
in

g
B

PE
L

W
SO

T
F,

T
G

SE
O

ra
cl

e
ex

am
pl

e
lo

an
Se

rv
ic

e
D

on
g

an
d

Y
u

[8
7]

M
od

el
-b

as
ed

te
st

in
g

W
SD

L
–

–
W

an
g

et
al

.[
33

8]
M

od
el

-b
as

ed
te

st
in

g
O

W
L

-S
T

C
G

en
4W

S
–

Z
ah

oo
re

ta
l.

[3
82

]
Fo

rm
al

ve
ri

fic
at

io
n

us
-

in
g

sa
tis

fia
bi

lit
y

so
lv

in
g

B
PE

L
SA

T
so

lv
er

Sh
ip

pi
ng

se
rv

ic
e

Pa
pa

pa
na

gi
ot

ou
an

d
Fl

eu
ri

ot
[2

48
]

Fo
rm

al
ve

ri
fic

at
io

n
us

-
in

g
lin

ea
rl

og
ic

–
H

O
L

L
ig

ht
Sy

nt
he

tic
ho

m
e

pu
rc

ha
se

O
uy

an
g

et
al

[2
41

]
Fo

rm
al

ve
ri

fic
at

io
n

us
-

in
g

Pe
tr

iN
et

s
B

PE
L

B
PE

L
2P

N
M

L
,

W
of

-
B

PE
L

–

Sc
hl

in
gl

of
fe

ta
l.

[2
82

]
M

od
el

-c
he

ck
in

g
us

in
g

Pe
tr

iN
et

s
B

PE
L

L
ol

a
–

L
oh

m
an

n
et

al
.[

19
4]

Fo
rm

al
ve

ri
fic

at
io

n
Pe

tr
i

N
et

s
B

PE
L

B
PE

L
2o

W
FN

,F
io

na
O

nl
in

es
ho

p
ex

am
pl

e

Y
an

g
et

al
.’s

[3
68

]
Fo

rm
al

ve
ri

fic
at

io
n

Pe
tr

i
N

et
s

B
PE

L
,W

SC
I

C
PN

To
ol

s
–

Y
ie

ta
l.

[3
71

]
Fo

rm
al

ve
ri

fic
at

io
n

Pe
tr

i
N

et
s

B
PE

L
C

PN
To

ol
s

A
ir

lin
e

an
d

tr
av

el
ag

en
cy

se
rv

ic
e

D
on

g
et

al
.[

88
]

Fo
rm

al
ve

ri
fic

at
io

n
Pe

tr
i

N
et

s
B

PE
L

Po
se

++
–

D
ai

et
al

.[
78

]
Fo

rm
al

ve
ri

fic
at

io
n

Pe
tr

i
N

et
s

B
PE

L
M

C
T

4W
S

–

X
u

et
al

.[
36

3]
Fo

rm
al

ve
ri

fic
at

io
n

Pe
tr

i
N

et
s

B
PE

L
B

PE
L

2P
N

M
L

–

M
os

er
et

al
.[

22
5]

Fo
rm

al
ve

ri
fic

at
io

n
us

-
in

g
Pe

tr
iN

et
s

B
PE

L
–

–

L
ie

ta
l.

[1
83

]
Fo

rm
al

ve
ri

fic
at

io
n

Pe
tr

i
N

et
s

–
–

–

Z
hu

et
al

.[
39

7]
Fo

rm
al

ve
ri

fic
at

io
n

Pe
tr

i
N

et
s

–
–

–

C
on

tin
ue

d
on

N
ex

tP
ag

e.
..

3.2. Categorisation of Testing Approaches Applied to Service-centric System Testing123

Ta
bl

e
3.

1
–

C
on

tin
ue

d

A
ut

ho
r

Te
st

in
g

C
at

eg
or

y
W

S
Te

ch
no

lo
gy

To
ol

s
Se

rv
ic

es
/S

cS
U

se
d

in
E

xp
er

im
en

ts

L
ie

ta
l.

[1
80

]
M

od
el

-b
as

ed
te

st
in

g
W

SD
L

W
S-

St
ar

G
az

e
Pa

rl
ay

X
C

on
fe

re
nc

e
W

S,
C

ST
A

R
ou

te
in

g
Se

rv
ic

e
Ta

rh
in

ie
ta

l.
[3

13
]

M
od

el
-b

as
ed

te
st

in
g

W
SD

L
–

–
Fe

ld
er

er
et

al
.[

10
6,

10
7]

M
od

el
-b

as
ed

te
st

in
g

–
–

–
Fr

an
tz

en
et

al
.[

11
1]

M
od

el
-b

as
ed

te
st

in
g

W
SD

L
JA

M
B

IT
O

N
,M

IN
E

RV
A

Sy
nt

he
tic

A
la

rm
D

is
pa

tc
he

rS
er

vi
ce

Y
an

g
et

al
.[

36
7]

M
od

el
-b

as
ed

te
st

in
g

–
–

–
L

ia
nd

C
ho

u
[1

79
]

M
od

el
-b

as
ed

te
st

in
g

–
–

Pa
ra

la
yX

C
on

fe
re

nc
e

se
rv

ic
e

L
iu

et
al

.[
18

9]
M

od
el

-b
as

ed
te

st
in

g
O

W
L

-S
–

–
M

aâ
le

je
ta

l.
[2

03
,2

04
]

M
od

el
-b

as
ed

te
st

in
g

B
PE

L
W

SC
C

T
Sy

nt
he

tic
bl

oo
d

se
ar

ch
B

PE
L

pr
oc

es
s

B
el

li
an

d
L

in
sc

hu
lte

[2
3]

M
od

el
-b

as
ed

te
st

in
g

B
PE

L
C

PP
&

E
T

E
S

IS
E

LT
A

w
eb

se
rv

ic
e

E
nd

o
et

al
.[

97
]

M
od

el
-b

as
ed

te
st

in
g

–
–

Sy
nt

he
tic

ba
nk

in
g

sy
st

em
W

u
an

d
L

ee
[3

60
]

M
od

el
-b

as
ed

te
st

in
g

W
SD

L
-S

–
–

Su
n

et
al

.[
30

4]
M

od
el

-b
as

ed
te

st
in

g
B

PE
L

–
Sm

ar
th

Sh
el

fs
yn

th
et

ic
B

PE
L

B
el

li
et

al
.[

22
]

M
od

el
-b

as
ed

te
st

in
g

B
PE

L
C

PP
&

E
T

E
S

IS
E

LT
A

w
eb

se
rv

ic
e

O
ff

ut
ta

nd
X

u
[2

35
]

Fa
ul

t-
ba

se
d

te
st

in
g

W
SD

L
–

M
ar

s
R

ob
ot

C
om

m
un

ic
at

io
n

Se
rv

ic
e

(M
R

C
S)

X
u

et
al

.[
36

4]
Fa

ul
t-

ba
se

d
te

st
in

g
W

SD
L

–
M

R
SC

,W
S-

Ie
xa

m
pl

e
su

pp
ly

ch
ai

n
ap

pl
i-

ca
tio

n
A

lm
ed

ia
an

d
V

er
gi

lio
[7

9]
Fa

ul
t-

ba
se

d
te

st
in

g
W

SD
L

SM
A

T-
W

S
9

go
ve

rm
en

ts
er

vi
ce

s
H

an
na

an
d

M
un

ro
[1

30
]

Fa
ul

t-
ba

se
d

te
st

in
g

W
SD

L
–

–
V

ie
ir

a
et

al
.[

33
2]

Fa
ul

t-
ba

se
d

te
st

in
g

SO
A

P
–

21
pu

bl
ic

W
S

T
sa

ie
ta

l.
[3

26
]

Fa
ul

t-
ba

se
d

te
st

in
g

O
W

L
-S

–
60

ve
rs

io
ns

of
sy

nt
he

tic
B

B
S

w
eb

se
rv

ic
e

M
ar

tin
et

al
.[

20
7]

Fa
ul

t-
ba

se
d

te
st

in
g

W
SD

L
W

eb
So

b
–

Sa
lv

a
an

d
R

ab
hi

[2
80

]
Fa

ul
t-

ba
se

d
te

st
in

g
W

SD
L

–
A

m
az

on
E

-C
om

m
er

ce
se

rv
ic

e
L

ie
ta

l.
[1

81
]

Fa
ul

t-
ba

se
d

te
st

in
g

W
SD

L
–

5
un

di
sc

lo
se

d
pu

bl
ic

se
rv

ic
es

Sh
afi

n
et

al
.[

28
7]

Fa
ul

t-
ba

se
d

te
st

in
g

O
W

L
-S

FI
T

O
nl

in
e

B
an

k
se

rv
ic

e
fr

om
W

eb
L

og
ic

L
oo

ke
re

ta
l.

[1
96

,1
95

]
Fa

ul
t-

ba
se

d
te

st
in

g
SO

A
P

W
S-

FI
T

Sy
nt

he
tic

st
oc

k
m

ar
ke

tt
ra

di
ng

sy
st

em
w

ith
3

W
S

Fa
rj

et
al

.[
10

4]
Fa

ul
t-

ba
se

d
te

st
in

g
SO

A
P

N
et

FI
S

B
io

in
fo

rm
at

ic
s

W
eb

se
rv

ic
es

Ju
sz

cz
yk

an
d

D
us

td
ar

[1
58

,1
59

,1
57

]
Fa

ul
t-

ba
se

d
te

st
in

g
–

G
en

es
is

2
A

pa
ch

e
C

X
F,

G
ro

ov
y

SO
A

P
M

od
ul

e,
D

A
IO

S
C

on
tin

ue
d

on
N

ex
tP

ag
e.

..

3.2. Categorisation of Testing Approaches Applied to Service-centric System Testing124

Ta
bl

e
3.

1
–

C
on

tin
ue

d

A
ut

ho
r

Te
st

in
g

C
at

eg
or

y
W

S
Te

ch
no

lo
gy

To
ol

s
Se

rv
ic

es
/S

cS
U

se
d

in
E

xp
er

im
en

ts

Si
bl

in
ia

nd
M

an
so

ur
[2

91
]

Fa
ul

t-
ba

se
d

te
st

in
g

W
SD

L
–

C
re

di
tc

ar
d

ch
ec

ki
ng

se
rv

ic
e

M
ei

an
d

Z
ha

ng
[2

12
]

Fa
ul

t-
ba

se
d

te
st

in
g

W
SD

L
–

2
sy

nt
he

tic
se

rv
ic

es
(T

ri
ty

pe
an

d
M

id
dl

e)
L

ee
et

al
.[

17
4]

Fa
ul

t-
ba

se
d

te
st

in
g

O
W

L
-S

–
B

oo
k

fin
de

re
xa

m
pl

e
O

W
L

-S
W

an
g

an
d

H
ua

ng
[3

36
]

Fa
ul

t-
ba

se
d

te
st

in
g

O
W

L
-S

–
Sy

nt
he

tic
ba

nk
in

g
sy

st
em

D
om

ı́n
gu

ez
-J

im
én

ez
et

al
.[

86
]

Fa
ul

t-
ba

se
d

te
st

in
g

B
PE

L
–

Sy
nt

he
tic

lo
an

ap
pr

ov
al

B
oo

ny
ak

ul
sr

ir
un

g
an

d
Su

w
an

na
sa

rt
[4

0]
Fa

ul
t-

ba
se

d
te

st
in

g
B

PE
L

–
–

Fu
et

al
.[

11
2]

Fa
ul

t-
ba

se
d

te
st

in
g

–
–

4
Ja

va
w

eb
se

rv
ic

e
ap

pl
ic

at
io

ns
(F

T
PD

,
JN

FS
,H

ab
oo

b,
M

uf
fin

)
B

es
sa

ya
h

et
al

.[
31

]
Fa

ul
t-

ba
se

d
te

st
in

g
SO

A
P

W
SI

nj
ec

t
Sy

nt
he

tic
T

R
S

A
pi

lli
[7

]
Fa

ul
t-

ba
se

d
te

st
in

g
–

–
–

W
at

ki
ns

[3
40

]
Fa

ul
t-

ba
se

d
te

st
in

g
–

–
–

C
ar

ro
zz

a
et

al
.[

56
]

Fa
ul

t-
ba

se
d

te
st

in
g

W
SD

L
W

SR
Te

st
in

g
Te

rr
aS

er
vi

ce
,A

ir
Tr

af
fic

C
on

tr
ol

se
rv

ic
es

O
liv

ei
ra

et
al

.[
23

7]
Fa

ul
t-

ba
se

d
te

st
in

g
W

SD
L

–
25

0
pu

bl
ic

w
eb

se
rv

ic
es

B
er

to
lin

o
an

d
Po

lin
i[

30
]

In
te

ro
pe

ra
bi

lit
y

te
st

in
g

W
SD

L
–

–
Y

u
et

al
.[

37
7]

In
te

ro
pe

ra
bi

lit
y

te
st

in
g

O
W

L
-S

–
–

R
am

so
ku

la
nd

So
w

m
ya

[2
65

]
M

od
el

-c
he

ck
in

g
fo

r
in

-
te

ro
pe

ra
bi

lit
y

W
S

pr
ot

oc
ol

s
–

W
S-

A
T

G
ue

rm
ou

ch
e

an
d

G
od

ar
t[

12
6]

M
od

el
-c

he
ck

in
g

fo
r

in
-

te
ro

pe
ra

bi
lit

y
–

U
PP

A
A

L
Sy

nt
he

tic
E

-g
ov

er
nm

en
ts

er
vi

ce

Sm
yt

he
[2

94
]

In
te

ro
pe

ra
bi

lit
y

te
st

in
g

–
–

–
B

et
in

-C
an

an
d

B
ul

ta
n

[3
2]

M
od

el
-c

he
ck

in
g

fo
r

in
-

te
ro

pe
ra

bi
lit

y
–

–
Sy

nt
he

tic
tr

av
el

ag
en

cy
se

rv
ic

e
an

d
pu

r-
ch

as
e

or
de

rs
er

vi
ce

N
ar

ita
et

al
.[

22
7]

In
te

ro
pe

ra
bi

lit
y

te
st

in
g

W
S

pr
ot

oc
ol

s
W

S
-V

S
A

n
op

en
so

ur
ce

W
S-

R
el

ia
bi

lit
y

im
pl

em
en

-
ta

tio
n

A
nd

ré
s

et
al

.[
5]

In
te

ro
pe

ra
bi

lit
y

te
st

in
g

–
–

–
M

or
al

es
et

al
.[

22
2]

In
te

ro
pe

ra
bi

lit
y

te
st

in
g

–
–

–
C

ao
et

al
.[

53
]

In
te

ro
pe

ra
bi

lit
y

te
st

in
g

–
–

–
C

ao
et

al
.[

50
]

In
te

ro
pe

ra
bi

lit
y

te
st

in
g

–
W

SO
T

F,
RV

4W
S

Pr
od

uc
t

re
tr

ie
ve

r
se

rv
ic

e
fr

om
N

et
be

an
s

ID
E

Y
u

et
al

.[
37

5]
In

te
ro

pe
ra

bi
lit

y
te

st
in

g
–

–
–

T
sa

ie
ta

l.’
s

[3
25

]
In

te
gr

at
io

n
te

st
in

g
W

SD
L

C
oy

ot
e

–
C

on
tin

ue
d

on
N

ex
tP

ag
e.

..

3.2. Categorisation of Testing Approaches Applied to Service-centric System Testing125

Ta
bl

e
3.

1
–

C
on

tin
ue

d

A
ut

ho
r

Te
st

in
g

C
at

eg
or

y
W

S
Te

ch
no

lo
gy

To
ol

s
Se

rv
ic

es
/S

cS
U

se
d

in
E

xp
er

im
en

ts

H
ua

ng
et

al
.[

14
2]

In
te

gr
at

io
n

te
st

in
g

–
–

H
R

m
an

ag
em

en
ts

ys
te

m
Pe

yt
on

et
al

.[
25

7]
In

te
gr

at
io

n
te

st
in

g
SO

A
P,

W
SD

L
T

T
C

N
-3

–
M

ei
et

al
.[

21
4]

In
te

gr
at

io
n

te
st

in
g

B
PE

L
–

8
B

PE
L

ex
am

pl
e

ap
pl

ic
at

io
ns

G
ar

ri
ga

et
al

.[
11

8]
In

te
gr

at
io

n
te

st
in

g
W

SD
L

–
O

nl
in

e
m

es
se

ng
er

se
rv

ic
e

M
ia

o
an

d
L

iu
[2

20
]

In
te

gr
at

io
n

te
st

in
g

W
SD

L
–

Pr
od

uc
tm

an
ag

em
en

ts
er

vi
ce

D
e

A
ng

el
is

et
al

.[
80

]
In

te
gr

at
io

n
te

st
in

g
B

PE
L

–
1

sy
nt

he
tic

B
PE

L
ap

pl
ic

at
io

n
Su

n
et

al
.[

30
7]

In
te

gr
at

io
n

te
st

in
g

B
PE

L
–

Sy
nt

he
tic

B
PE

L
ex

am
pl

es
Su

pp
ly

C
ha

in
an

d
Sm

ar
tS

he
lf

Y
u

et
al

.[
37

6]
In

te
ra

ct
io

n
te

st
in

g
O

W
L

-S
–

–
T

sa
ie

ta
l.

[3
23

]
C

ol
la

bo
ra

tiv
e

te
st

in
g

U
D

D
I

–
–

B
ai

et
al

.[
18

]
C

ol
la

bo
ra

tiv
e

te
st

in
g

–
–

–
Z

hu
[3

88
,3

95
,3

96
]

C
ol

la
bo

ra
tiv

e
te

st
in

g
–

–
–

B
ar

to
lin

ie
ta

l.
[1

9]
C

ol
la

bo
ra

tiv
e

te
st

in
g

–
PI

C
A

SS
O

–
E

le
re

ta
l.

[9
6]

C
ol

la
bo

ra
tiv

e
te

st
in

g
–

PI
C

A
SS

O
–

E
lI

oi
ni

an
d

Si
lli

tti
[9

4,
95

]
C

ol
la

bo
ra

tiv
e

te
st

in
g

W
SD

L
Te

st
G

en
4J

,S
O

A
PU

I
Sy

nt
he

tic
bo

ok
sh

op
se

rv
ic

e
C

ha
nd

ra
se

ka
ra

n
et

al
.[

68
]

Q
oS

Te
st

in
g

SC
E

T
–

–
D

iP
en

ta
et

al
.[

83
]

Q
oS

Te
st

in
g

–
–

sy
nt

he
tic

au
di

o
pr

oc
es

si
ng

an
d

an
ex

is
tin

g
im

ag
e

m
an

ip
ul

at
io

n
se

rv
ic

e.
D

iP
en

ta
et

al
.’s

[8
2]

Q
oS

Te
st

in
g

–
–

5
W

S
fr

om
5

ve
rs

io
ns

of
dn

sj
av

a
G

u
an

d
G

e
[1

24
]

Q
oS

Te
st

in
g

–
–

Sy
nt

he
tic

se
rv

ic
e

co
m

po
si

tio
n

Pa
la

ci
os

et
al

.[
24

5]
Q

oS
Te

st
in

g
W

S-
A

gr
ee

m
en

t
–

–
B

er
to

lin
o

et
al

.[
28

]
Q

oS
Te

st
in

g
–

Pu
pp

et
–

G
ru

nd
y

et
al

.’s
[1

23
]

Q
oS

Te
st

in
g

B
PM

N
,V

iT
aB

al
-W

S
M

ar
am

aM
T

E
–

D
ri

ss
et

al
.[

89
]

Q
oS

Te
st

in
g

–
N

S-
2

si
m

ul
at

or
Tr

av
el

pl
an

ne
r

Pr
et

re
et

al
.[

26
1]

Q
oS

Te
st

in
g

–
iT

ac
-Q

oS
–

Y
eo

m
et

al
.[

37
0]

Q
oS

Te
st

in
g

–
–

–
R

ut
h

an
d

Tu
[2

76
]

R
eg

re
ss

io
n

te
st

in
g

–
–

–
R

ut
h

et
al

.[
27

4]
R

eg
re

ss
io

n
te

st
in

g
–

–
–

L
in

et
al

.[
18

8]
R

eg
re

ss
io

n
te

st
in

g
–

–
Pu

rc
ha

se
or

de
rW

S
L

iu
et

al
.[

19
1]

R
eg

re
ss

io
n

te
st

in
g

B
PE

L
–

–
C

on
tin

ue
d

on
N

ex
tP

ag
e.

..

3.2. Categorisation of Testing Approaches Applied to Service-centric System Testing126

Ta
bl

e
3.

1
–

C
on

tin
ue

d

A
ut

ho
r

Te
st

in
g

C
at

eg
or

y
W

S
Te

ch
no

lo
gy

To
ol

s
Se

rv
ic

es
/S

cS
U

se
d

in
E

xp
er

im
en

ts

M
ei

et
al

.[
21

3]
R

eg
re

ss
io

n
te

st
in

g
B

PE
L

–
6

B
PE

L
ex

am
pl

es
fr

om
IB

M
re

po
si

tio
ry

:
at

m
,

bu
yb

oo
k,

gy
m

lo
ck

er
,

lo
an

ap
pr

ov
al

,
m

ar
ke

tp
la

ce
,p

ur
ch

as
e,

tr
ip

ha
nd

lin
g

Sr
ik

an
th

an
d

C
oh

en
[3

01
]

R
eg

re
ss

io
n

te
st

in
g

–
–

E
nt

er
pr

is
e-

le
ve

lS
aa

S
ap

pl
ic

at
io

n
Ta

rh
in

ie
ta

l.
[3

11
]

R
eg

re
ss

io
n

te
st

in
g

–
–

–
W

an
g

et
al

.[
33

5]
R

eg
re

ss
io

n
te

st
in

g
B

PE
L

–
E

xa
m

pl
e

on
lin

e
sh

op
fr

om
To

ol
s4

B
PE

L
M

ei
et

al
.[

21
6]

R
eg

re
ss

io
n

te
st

in
g

B
PE

L
–

6
B

PE
L

ex
am

pl
es

fr
om

IB
M

re
po

si
tio

ry
:

at
m

,
bu

yb
oo

k,
gy

m
lo

ck
er

,
lo

an
ap

pr
ov

al
,

m
ar

ke
tp

la
ce

,p
ur

ch
as

e,
tr

ip
ha

nd
lin

g
L

ie
ta

l.
[1

77
]

R
eg

re
ss

io
n

te
st

in
g

B
PE

L
–

L
oa

n
ap

pr
ov

al
Z

ha
ng

et
al

.[
38

5]
R

eg
re

ss
io

n
te

st
in

g
–

–
Sy

nt
he

tic
ba

nk
in

g
se

rv
ic

e
T

sa
ie

ta
l.

[3
27

]
Te

st
ca

se
se

le
ct

io
n

W
SD

L
,O

W
L

-S
–

–
M

ei
et

al
.[

21
3,

21
7]

Te
st

ca
se

pr
io

ri
tis

at
io

n
B

PE
L

–
at

m
,

bu
yb

oo
k,

gy
m

lo
ck

er
,

lo
an

ap
pr

ov
al

,
m

ar
ke

tp
la

ce
,

pu
rc

ha
se

,
tr

ip
ha

nd
lin

g,
bu

y-
bo

ok
an

d
ds

ls
er

vi
ce

A
sk

ar
un

is
a

et
al

.[1
2]

Te
st

ca
se

pr
io

ri
tis

at
io

n
O

W
L

-S
–

tw
o

ex
is

tin
g

w
eb

se
rv

ic
es

:w
ea

th
er

se
rv

ic
e

an
d

B
ib

le
se

rv
ic

e
A

th
ir

a
an

d
Sa

m
ue

l[
13

]
Te

st
ca

se
pr

io
ri

tis
at

io
n

–
–

A
ir

lin
e

re
se

rv
at

io
n

ex
am

pl
e

C
he

n
et

al
.[

71
]

Te
st

ca
se

pr
io

ri
tis

at
io

n
B

PE
L

–
A

T
M

ex
am

pl
e

Z
ha

ie
ta

l.
[3

83
]

Te
st

ca
se

pr
io

ri
tis

at
io

n
–

–
C

ity
gu

id
e

se
rv

ic
e

N
gu

ye
n

et
al

.[
23

1]
Te

st
ca

se
pr

io
ri

tis
at

io
n

W
SD

L
–

eB
ay

fin
de

r
N

gu
ye

n
et

al
.[

22
9]

Te
st

ca
se

pr
io

ri
tis

at
io

n
W

SD
L

–
eB

ay
fin

de
r

Pa
ut

as
so

[2
54

]
R

eg
re

ss
io

n
te

st
in

g
–

JO
pe

ra
–

D
iP

en
ta

et
al

.[
82

]
R

eg
re

ss
io

n
te

st
in

g
–

–
5

W
S

fr
om

5
ve

rs
io

ns
of

dn
sj

av
a

H
ou

et
al

.[
13

9]
R

eg
re

ss
io

n
te

st
in

g
–

–
Sy

nt
he

tic
tr

av
el

pl
an

ne
rs

ys
te

m

3.3. Emerging Trends in Service-centric Systems and Testing 127

3.3 Emerging Trends in Service-centric Systems and

Testing

In order to speculate upon the future of ScST, the future of SOA and services needs

to be discussed first. Web services are receiving increased attention with the switch

towards Web 3.0. Many existing web sites may transform into web services as a result

of this transition [149, 273]. Existing sites such as Amazon, Google and Microsoft have

transformed their businesses towards services. We believe that this transformation trend

will continue to grow faster, especially with the increase in mobile applications and

cloud services. According to Flurry [109], a mobile analytics company, it is estimated

that mobile application downloads reached 2.6 billion in October 2011. The estimated

number of downloads for the same month in 2010 was 600 million. The examples of

Bing mobile [35] and Google search [121] application (which are built around services)

are a testimony to this transformation.

Traditional Web services fail to exploit full potential of SOA because of difficul-

ties in meeting web service requirements [34]. One of the next goals of the services

community is the establishment of a dynamic SOA. In order to bring this vision to

fruition, it is expected that Semantic Web Services (SWS) will become the new stan-

dard service practice [110]. Even though there are many promising initiatives for SWS,

unfortunately none of these initiatives have yet been accepted as a standard.

We believe one of the future trends will be testing and certification of web services

and ScS. As mentioned by several authors [18, 19, 323], it is feasible to expect services

to be tested by the provider or the certifier before registration. SLAs are also created

by the provider after testing with integrator trust being established by the provider. A

similar business model is used by application store providers. For example, the Apple

iTunes [9] store acts as a provider for many developers while maintaining QoS for the

products in the store.

It is also important to identify the open issues in ScST in order to draw a roadmap

for the future trends in ScST. As mentioned, the open issues and the issues that require

3.3. Emerging Trends in Service-centric Systems and Testing 128

more research in ScST are:

1. Lack of real-world case-studies.

2. Solutions that can generate realistic test data.

3. Solutions to reduce the cost of ScST.

4. Solutions that improve the testability of ScS.

5. Solutions that combine testing and verification of ScS.

6. Modelling and validation of fully decentralised ScS.

We believe that one of the most important current problems of ScST research is the

lack of fully functioning and fully available real-world examples. ScST research needs

case-studies in order to measure the effectiveness and scalability of the proposed testing

approaches. As mentioned in Chapter 2.2, 62% of the publications surveyed provide

no experimental results. Furthermore, 22% of the papers, though they did provide

experimental results, drew these results from synthetic services or compositions. Only

16% of the papers used real-world case-studies (as depicted in Figure 3.4).

The realistic test data generation problem, mentioned in Section 2.3, is also a ma-

jor problem in ScST. The importance of realistic test data in testing (especially in ScST)

is discussed by Bozkurt and Harman [42] and in Chapter 2. An example to this problem

is a web service that requires composite material specifications as input. In order to test

this service, the tester will require very specialised data that existing automated test

data generation techniques cannot effectively generate. In such a situation, the tester

has two options: either to get test data from the developer or to find data from other

available resources. This scenario highlights the need for collaboration in ScST, as well

as the need for approaches that can use existing resources. Approaches that promote

collaboration in testing are presented in Section 2.9. Unfortunately, testing that uses

only the test cases that are provided by the developer might not provide the necessary

level of assurance for other SOA stakeholders. Most of the surveyed test case and test

3.3. Emerging Trends in Service-centric Systems and Testing 129

data generation approaches are able to generate test data to perform boundary analysis

or robustness testing, but lack the ability to generate realistic data. The only two ap-

proaches aiming to generate realistic test data are proposed by Conroy et al. [74] and

Bozkurt and Harman [42] (presented in Chapter 4). The low number of publications

addressing this issue is an indicator to the need for more research.

Solutions that reduce the cost of testing are also required. Increased test frequency

in SOA exacerbates the severity of this issue in ScST. This issue has two dimensions

in ScST: cost of testing at composition level and at service level. The cost at both of

these levels is increased by the integrator’s need to test compositions with real services.

The cost of invoking services during testing is the problem at service level. The cost at

this level depends on the number of services in the composition and the size of the test

suite. Simulated testing approaches for service compositions [186, 205, 208] can help

with validation. However, they do not eliminate the need to test with real services.

The cost of testing at the service level are twofold: service disruptions due to

testing and business transactions that might be required to occur during testing. Un-

fortunately, there is no existing mechanism to avoid these costs. Approaches such as

Zhu et al. [395] may provide a solution in which testing is performed on services with

the same functionality rather than the actual service itself. These approaches provide

benefits similar to simulated testing though they also carry the same disadvantages.

The need for testability improvement is one of the issues that almost all authors of

ScST agree upon. Although the proposed solutions to this problem look at the issues

from different perspectives, they can be divided into two categories. One of these cat-

egories is the use of contracts that provide information such as pre or post-conditions.

The second one is the use of models or new stakeholders that provide coverage infor-

mation to the tester. As mentioned in Section 2.3, the effort required to create contracts

or external models can be discouraging for the developer. There is also the problem

of the adoption of a standard model and its integration into web service specifications.

Automated model comparison can be useful in order to provide the tester with test cov-

erage information. Models that are built from tests can be compared with the models

3.4. Conclusion 130

created by the tester. An example solution to this issue is Bartolini et al.’s [19] and Eler

et al.’s [96] approaches in which coverage information is provided with the involvement

of another stakeholder. Salva and Rabhi [279] discuss problems regarding observability

and controllability of ScS.

The main aim of the verification approaches presented in this survey is checking

for interface and protocol conformance. Monitoring is generally proposed to verify

QoS aspects of services. However, monitoring based approaches such as passive test-

ing [5, 25, 222] provide run-time fault detection and a degree of fault localisation using

artefacts such as invariants and contracts. Unfortunately, the proposed monitoring ap-

proaches primarily check service interactions for prescribed faults.

Decentralised system testing and service choreographies are different to testing

service compositions. According to Canfora and Di Penta. flexibility of service chore-

ographies brings new challenges to testing and monitoring. Bucchiarone et al. [45]

also state the problem of formalising choreographies into standard models and testing

them. Recent work [215, 302, 303, 354] address the issues of testing of service chore-

ographies. The number of related publications in this subject compared to the number

of publications in testing service compositions shows the need for more research.

3.4 Conclusion

This chapter provided the necessary information that helps build a roadmap into the

future of ScST for researchers. The chapter presented the analysis of the current trends

in ScST explaining the reasons behind some of the open issues. The overview of all

approaches provided in the chapter aimed at highlighting areas where researchers focus

and where the gaps are. Lastly, the chapter provided a discussion on the emerging

trends in ScST and current open problems that needs more research.

In the following chapters we focus on two of the open problems discussed in this

section: automated realistic test data generation and cost reduction. Their importance

in ScST is the reason that led us to focus on these subjects.

The realism of test data is not only important in ScST but also important in test-

3.4. Conclusion 131

ing of traditional systems as discussed by McMinn [211]. This problem is becoming

increasingly important with the adoption of online APIs, mashups and services. In

Chapter 4, we discuss the importance of realistic test data in ScST and introduce the

concept of service-centric test data generation as a solution to the realistic test data

generation problem.

The problem of cost occurs at different levels of testing, such as human-oracle

cost and generation cost in test data generation level, as well as service invocation cost

during runtime testing level. For example, in the case of cost of test data generation, the

cost might be high if test data is generated manually. This is because manual generation

of test data is laborious and error prone [134]. This problem might become more severe

for systems where testing frequency is high such as ScS. In order to avoid these costs,

test data generation needs to be automated. However, the automation of realistic test

data generation is not as straightforward as the others. The current state-of-the art

automated approaches fail to generate realistic data effectively and requires the tester

to verify the generated inputs. Thus, these approaches incur another type of cost called

’human-oracle cost’. Service-centric test data generation, discussed in Chapter 4, also

provides a solution to the automation problem while minimising the human-oracle cost.

The cost reduction problem at test data generation level is addressed in Chapter 5 and

at runtime level in Chapter 6.

Chapter 4

Automated Realistic Test Input

Generation

4.1 Motivaton

One of the most expensive activities in a software project is the construction of test

data [147]. As revealed by Chapter 2 and 3, this problem might be more severe in

environments like SOA, where testing frequency is high, binding times can be late and

services composed of systems provided by many different third parties. One way of

reducing this cost is automation of the test data generation process.

Unfortunately, automated test data generation for most online systems is not as

straightforward as it is for traditional systems. The problems in test data generation

for online systems are mainly caused by the type of required test data. Most online

systems require data that cannot be effectively generated by traditional automated test

data generation algorithms. For example, the existing semantic web service (SWS) ex-

amples from Mindswap [221] require realistic test data, such as ISBNs, United States

Zone Improvement Plan (ZIP) codes and English and French words. It is a consider-

able challenge for any automated test data generation technique to generate realistic

test data, not merely ‘structurally valid’ test data. Realistic data must not only be cor-

rectly formed, according to structural rules (which can be automated), it must also have

semantics that ties it to real-world entities. This latter property poses challenges to au-

4.1. Motivaton 133

tomated testing. More precisely, realistic test data, in this context, is realistic in two

respects:

1. Structural Validity: Realistic data must conform to syntactic constraints. For

example, a structurally valid ISBN consists of 10 digits x1, ..., x10, such that:

x10 = 11− (10x1 + 9x2 + ...+ 2x9) mod 10.

(This algorithm will be referred as check-digit algorithm in the rest of the present

chapter.)

2. Semantic validity: Realistic test data must represent a real-world entity. For

example, a realistic ISBN must correspond to a real-world book, not merely a

structurally valid ISBN.

Traditional automated testing can generate tests that achieve coverage, while man-

ual testing can generate realistic test cases. The former is efficient yet unrealistic, while

the latter is laborious yet realistic. What is needed is a technique that is both realistic

and automated.

In this chapter, we introduce a novel service-centric test data generation approach

that addresses this problem of effectiveness in automated generation of realistic test

data. In our approach, the need for previous data and manual tester input are minimised

by leveraging the data that can be acquired from compositions of many existing web

services.

The advantages of the proposed approach are:

1. Automated: Improved effectiveness in automated test data generation for the

input types that cannot be effectively generated.

2. Tailored: Test data generation/selection based on the tester criteria and optimised

test data generation based on the data source.

3. Applicability: Ability to generate test data to test any system with semantic

information.

4.2. Features and Importance of Realistic Test Data 134

4. Minimised: Minimal dependence on the existing data sources such as databases

and session data.

We named our tool ATAM by combining the initial letters of these four advantages.

The rest of this chapter is organised as follows. Section 4.2 discusses the features

and importance of test data in software testing. Section 4.3 introduces our service-

centric test data generation approach. Section 4.4 introduces ATAM and the details

of tailored data generation process. Sections 4.5 presents our case studies, research

questions and our method of investigation. Section 4.6 presents the results from our

experiments and answers the research questions. Section 4.7 summarises existing re-

search on test data generation for web services and approaches similar to the proposed

approach in other testing application domains. Section 4.8 presents future work and

concludes the chapter.

4.2 Features and Importance of Realistic Test Data

The concept of realistic test data and its importance needs to be established clearly

before discussing the proposed solution to avoid confusion. Event though, we provided

our description of realistic test data and its features in the previous section, we believe

we need to discuss further to clear misconceptions.

4.2.1 Features of Realistic Test Data

In order to make our definition clear and explain the features of realistic test data, we

will focus on what our definition of realistic test data does not entail.

1) Realistic test data relates to the requirements of the input and it’s free from

business requirements of the SUT. This feature might not be clearly understood from

our definition of realistic test data and cause misunderstandings in some situations. For

example, this feature can be easily explained for inputs such as ZIP Code or ISBN.

However, in generating test data for services such as a compiler service or virtual ma-

chine service this feature might cause misunderstandings. In testing the latter services,

the tester might assume that a realistic test data (for testing these services) is a source

4.2. Features and Importance of Realistic Test Data 135

code that can be compiled or a binary code that can be executed. However, this is

not implied in our definition since a realistic test data for these services is a correctly

formed file address which points to an existing file. An input such as this is considered

a realistic input according to our description.

2) Realistic test data is not a guaranteed positive or a negative test input. For

example, in the case of an ISBN if it belongs to a book that ISBN number is considered

realistic. Even though, it is realistic we cannot expect all web services that requires an

ISBN to recognise this ISBN. Thus for some services a realistic test ISBN might not

be a positive input. In the case of a compiler service, a file address that points to a file

is a realistic input. The correct or incorrect compiling of the file does not affect the

realism of this input. For example, if a file that contains Java code might be a positive

input for a Java compiler service but for a C# compiler service it might not compile and

considered negative input.

There are also exceptions to this feature due to the nature of realistic test data. For

any system that validates a given input a realistic test input should always be a positive

input. For example, for an ISBN validation service a realistic ISBN is always expected

to generate a valid response.

1) Realistic test data does follow the features of the datatype. For example, if

a certain datatype is temporal, a realistic data of this type is also temporal. Based on

the example we discussed earlier, in the case of a test data such as flight location, the

realistic test data generated at a certain time will be invalid after a period of time.

4.2.2 Importance of Realistic Test Data

After establishing the concept of realistic test data, we need to explain the importance

of realistic test input in testing (especially in ScST). Realism is very important in testing

for at least the following four reasons:

1) Faults Found by Realistic Test Cases are More Likely to be Prioritised for

Fixing: A test case that reveals a fault but uses special values that seldom or never occur

in practice is unlikely to attract the attention of a tester who is preoccupied with many

4.2. Features and Importance of Realistic Test Data 136

other such ‘bug reports’ from the field. Finding a test input that convinces the tester of a

problem is important. If an automated tool generates many unusual and peculiar inputs

that a user is unlikely to use, then the tester will soon abandon the tool or disregard its

findings.

2) Realistic Test Inputs May Denote Important ‘Corner Cases’: There is a

role to be played in searching for corner cases that are, in some sense, atypical (and

therefore less realistic). Such cases as invalid data values are important to test the

robustness of the system under test. However, realistic test cases can often denote a

kind of ‘corner case’ too. Suppose there is an input that requires a domain specific

value, selected from a narrow potential range of values that lie within a wider input

type. For instance, a ZIP code consists of a five digit number, so there are potentially

105 correctly typed candidates. However, only very few of these candidate five-digit

numbers will correspond to a location in Huntsville, Alabama (these are the 15 codes

from 35801 to 35816). Suppose a large part of the system under test is concerned with

this particular geographic region and there is a predicate that checks, early on in any

user session, whether the address is valid. All code beyond such a predicate test will

be inaccessible to (and therefore untested by) any automated testing approach that is

unable to focus on the generation of valid Huntsville ZIP codes. We believe that these

situations are far from atypical, particularly in ScS, where the services provided carry

with them a great deal of inherent domain-specific properties. By generating realistic

test data, we are simultaneously providing a mechanism for addressing the problem of

generating domain specific data.

3) Realism is Important for Testing Service Compositions: When two services

are composed, the interface through which they communicate is likely to specialise

the kinds of values that may pass between the services. For instance, a generic train

booking service might be composed with a service offering a specific holiday package.

Suppose that the holiday package may offer only a very limited set of possible train

bookings. This restriction creates another kind of ‘realistic value’. That is, though the

train service must be tested for any possible seat on any train, on any line, at any time

4.3. Service-centric Test Data Generation 137

and date, the composition that provides the holiday package requires a specific set of

seats on certain trains at restricted times. In generating test cases for such a service

composition, a tool that is able to generate realistic test cases for this scenario will

only generate correctly restricted journeys. For the same number of test cases, such a

tool will be able to test the many of the various aspects of this restricted functionality

intensively, while a more general tool will simply repeatedly test the ‘invalid journey’

functionality.

4) Realistic Test Data Reduces Human Oracle Cost: McMinn et al. [211] high-

lighted another benefit of realistic test data: the reduction human oracle cost. Oracle

costs may be increased by unrealistic test data that are hard to comprehend and check.

This process is laborious and the time required for checking and verifying test data can

be undesirably long while generating large test suits.

The need for human oracle might have a bigger impact in SOA testing. This is

caused by the fact that in SOA, services need to be tested not only by the developer

but also by other stakeholders (such as the third-party certifier and the provider). If

the tester does not have adequate domain knowledge to judge whether the test data

used is realistic, the test results using this data might not provide the expected level of

assurance.

4.3 Service-centric Test Data Generation
In this section, we introduce the concept of service-centric test data generation, explain-

ing every step of the data generation process from service discovery to input generation.

4.3.1 Data Categorisation

In our approach, each input type lies in one of three categories:

1. Data Originated from a Service (DOS) is the type of data that can be attained

from an existing web service.

2. Tester Specified Data (TSD) is the type of data that needs to be provided by the

tester (such as a login and password). When our tool requires an input data that

4.3. Service-centric Test Data Generation 138

cannot be generated, it requests assistance from the tester.

3. Method Independent Data (MID) is the type of data which can be systematically

generated. In order to be identified as MID, a data generation method for this

input type must be known to ATAM prior to the test data generation process.

MID data can be classified into two groups based on the structural validity crite-

rion:

Formed data is a type of data where a random but structurally valid instance of

the data can be generated.

An example of this category is an ISBN generated using the check-digit algorithm.

Non-formed data is randomly generated data that lies within a supertype for

which even structural validity cannot be guaranteed.

An example of this category is an ‘ISBN’ constructed merely by generating 10

random digits; the set of all 10 digit numbers is a supertype of the ISBN type.

All non-MID data is initially considered to be TSD data. However, for TSD data

that can be provided by a web service composition becomes DOS data within our test

data generation process. Our goal is to maximally automate the production of realistic

test data by migrating TSD to DOS.

4.3.2 Services as Data Sources

To address this issue of realism in automated test data generation of services, we pro-

pose to use services themselves as the solution to the problem. We shall seek compo-

sitions of services that are able to build realistic test cases. If Service A is not able to

generate the required realistic value then we will seek to compose it with ServiceB, the

output of which, when fed to serviceA does result in the desired set of possible realistic

values. For example, if we have a service that can produce an ISBN given an author

and a service that can generate and author name given a keyword, then the composition

can generate an ISBN from a keyword. When further composed with a dictionary ser-

vice, we obtain a service composition that can produce a valid ISBN with little or no

4.3. Service-centric Test Data Generation 139

input. In this way, we seek arbitrary service compositions that will progressively build

the realism we seek into the test data we seek.

Our approach is limited to semantic systems. The reason for this limitation drives

from the need for semantic information concerning input and output messages, which

are core elements of our approach. Semantic information for messages not only allows

us to automatically discover existing web services with required data, but also allows

automatically discover relations among different data structures that might contain the

required test data.

ATAM is intended to be used with all semantic systems. As a result, it uses two

different types of initial user inputs. If the service/system under test (SUT) is an SWS

the tester can provide a semantic service description such as OWL-S description. For

any other system, the tester has to provide a semantic description of the required input

data in the form of an ontology class. The overall flow graph of our search, analyse and

compare process implemented by ATAM, is depicted in Figure 4.1.

The information on test data to be generated is passed to the ontology analyser to

search for possible relations defined within the specified ontologies.

Figure 4.1: Flow graph of the overall search process that seeks realistic test data from
composition of other services

4.3.3 Ontology Analyser

Automated service discovery is one of the main topics of SOA. In our approach, we

benefit from the ability provided by SOA to automatically discover services that provide

4.3. Service-centric Test Data Generation 140

the required test data.

There are several existing tools that provide subsumption based service discovery/-

matchmaking. Subsumption relation-based matchmaking is capable of finding super or

subclass of the provided ontology class. For example, suppose we take an ontology

where book class is defined as a subclass of ISBN class and try to discover services

using this ontology. In this scenario, it is possible to discover the services (among the

web services using this ontology) that provide book information while searching for

services that provide ISBN.

Discovering the relations between service messages, such as ISBN and book, is

one of the most important requirements that needs to be facilitated in our approach.

Unfortunately, this direct relation might not be specified in the ontology. We analysed

many of the available ontologies that include a definition of ISBN in Swoogle [308],

a popular ontology database, and found that none of the existing ontologies with an

ISBN definition contains this relation. Interestingly, in all except one ontology, ‘ISBN’

is defined as a DatatypeProperty, a property used in defining relation between instances

of an ontology class and RDF literals and XML Schema datatypes, of book class.

In light of the results from our analysis, we introduced an ontology analyser that

discovers relations between ontology entities. The ontology analyser currently dis-

covers two different possible relations among classes and properties. The discovered

relations are, as mentioned earlier, the relation between a DatatypeProperty and its

defining classes, and relation between two separate classes defined using a Datatype-

Property. The ontology analyser is not only able to process a single ontology, but it is

also able to process ontologies where relations to external classes are specified as well.

4.3.4 Service Discovery and Search Result Processing

After the ontology analysis stage, ATAM queries the service broker(s) for services that

provide any of the discovered ontology classes as output. Search queries used in the

experiments include only an output specification.

In order to achieve this functionality, the generated search queries use the Ontol-

4.3. Service-centric Test Data Generation 141

ogy Web Language (OWL) ‘Thing’ class, a built-in class ‘global base class’ that de-

notes superclass of all classes. The reason for using ‘Thing’ class is to find all available

web services with the given output message. Using this class as input with a subclass

based subsumption criteria on inputs guarantees a service matching regardless of the

service inputs.

After obtaining the search results, services from the results need to be analysed for

their inputs. This is to identify whether they require MID or TSD type input data, as

explained in Section 4.3.1. After the analysis, services with TSD type inputs go trough

an additional iteration of the discovery process in order to investigate whether there

exist services that provide inputs of this service.

As mentioned in Section 4.3.1, some of the TSD can be provided by other web

services. A TSD service with an input that can be provided by another service becomes

a DOS service. When a web service proving the data for another TSD service is found,

these two services are considered to form an abstract service composition (referred to

as composition). In compositions, the service providing the data is considered as higher

level than the service that requires the data.

A search result might contain many TSD services with the same functionality. In

such a situation, performing the discovery process for all TSD services involves running

the same query several times. This is an unwanted side effect that increases the time

and cost of service discovery.

In order to avoid this potential overhead, a grouping stage is introduced. During

this stage, web services from search results are grouped based on their inputs. Services

with same input(s) are grouped together and a single service from each category is used

to represent the group. As a result, all the services in a group require a single query for

each input data they need.

During the grouping process, services also go through an elimination process. At

present, we introduced the following two natural elimination criteria:

1. Services that require the same input data as SUT are eliminated.

2. Services that already exist in lower levels in the existing compositions are elimi-

4.3. Service-centric Test Data Generation 142

nated.

4.3.5 Services with multiple inputs

Using services that require multiple inputs is more expensive than those that require a

single input. Of course, it may not be possible to avoid services with multiple inputs,

so we also considered ways to reduce the cost of using these services.

One obvious solution is to reduce the number of services that provide the required

inputs. There might be situations where several of the required inputs of a service can

be provided by a single web service. In such situations, it is possible to reduce the

execution time of the test data generation process by reducing the number of search

queries and service invocations. In order to achieve this goal, a ‘partition stage’ is

introduced.

In this stage, the ontology analyser finds classes that contain the required data for

each input as normal. After the initial analysis, the ontology analyser examines the

resulting classes for the possibility of containing an input other than that for which the

search was conducted. If an ontology class containing more than one TSD input is

found, it is marked as a combined solution for all the inputs it contains. As a result,

during the next search iteration only one search query is used on combined solutions

rather than the number of inputs they provide.

This functionality is only partly developed in the present version of ATAM. Its

extension and other efficiency-improvement technique remain topics for future work.

Figure 4.2: Search results for CS1 and CS2 respectively from left to right

4.4. ATAM and Tailored Test Data Generation 143

4.4 ATAM and Tailored Test Data Generation
In this section we introduce ATAM and how it enables tailored data generation. Details

of error handling mechanisms implemented in ATAM are also presented in this section.

4.4.1 Tailored Test Data Generation

After the completion of the search process, ATAM presents the tester with a graphical

view of the discovered compositions in an interactive GUI as shown in Figure 4.2. This

window provides the tester with the group view of the compositions and it also allows

the tester to see the details of each web service in each group.

In the GUI, nodes with green colour represent MID service groups which can be

automatically generated by ATAM. The red nodes represent TSD and DOS services.

The node that all compositions are connected to represents the searched data.

The tester starts the data generation process from the node at the end of one com-

position. This might be the case for compositions that end with a MID group. On

the other hand, for compositions that end with a TSD service, the tester might want to

start the process from a different group. ATAM allows the tester to start the test data

generation process at any point in a composition.

If the tester decides to start from a TSD group, ATAM asks the tester to provide

the input data for the starting group in order to invoke a service from the selected group.

Similarly, if the tester selects a DOS group then this group is considered to be a TSD

group and the tester is asked for inputs.

This feature handles those cases where no MID services are found. It provides a

‘basecase’, allowing the tester to start test data generation process from a service group

where he/she has knowledge on the required input data.

4.4.2 Constraints for Tailored Test Data Generation

When the tester selects a service group to start, ATAM asks the tester for constraints.

Constraints are not essential but they do allow tailoring of test data. Using constraints,

the tester can refine the outputs of each service group, thereby guiding the test data

generation process towards the requirements of the SUT. The constraint input window

4.4. ATAM and Tailored Test Data Generation 144

and all windows a tester can provide inputs to ATAM is depicted in Figure 4.3.

To eliminate outputs that do not satisfy the constraints, we use XPath queries in

ontology class instances. These queries are provided by the service developer within

the xsltTransformationString element of the OWL-S grounding. As a result, the tester

is not expected to provide a complete query, merely the constraint part of the XPath

query such as “contains(hasAuthor,‘rowling’)” or “hasPublisher = ‘Springer’”.

The ontology analyser helps the tester to build constraints by providing the struc-

tures of ontologies. The tester is provided with this information through a constraint

input window.

4.4.3 Service & Data Error Handling

During test data generation process, errors might occur due to service faults or the

datum that are passed among services. ATAM handles both types of error. Service-

specific errors, such as interface errors and availability problems, are handled by the

soapUI libraries. For other errors, such as SOAP faults and web server errors, ATAM

introduces an error handling mechanism. Error messages from soapUI libraries are

fed into this mechanism. In the case of a an error, ATAM replaces the erroneous ser-

vice with another service from the same group. Where such an alternative exists, this

replacement process happens seamlessly without interrupting the test data generation

process. ATAM records the input data that are used for each service group in order to

avoid using the same input multiple times. In the case of an error, the corresponding

input is discarded.
4.4.4 Implementation Details

The selection of semantic service specifications is based on expedient of tool availabil-

ity. That is, the OWL-S semantic markup language is chosen due to the availability

of tools that support OWL-S. WSDL2OWLS [358] is used to automatically generate

OWL-S templates from WSDL documents. JXML2OWL [160] is used to generate

the transformation strings in the OWL-S grounding. WSDL2OWLS uses OWL-S ver-

sion 1.1 specifications and generates OWL-S specifications. The architecture of ATAM

based on the selected service specifications is depicted in Figure 4.4.

4.4. ATAM and Tailored Test Data Generation 145

(a) Ontology input type selection window

(b) Method and input selection window (for test data generation using OWL-S specification)

(c) Service group information window

(d) Tester constraint input window

Figure 4.3: ATAM user input widows

4.4. ATAM and Tailored Test Data Generation 146

Figure 4.4: Overall architecture of ATAM

Even though all the OWL-S specifications used in our experiments are in OWL-S

version 1.1 format, the OWL-S parsing mechanism uses the OWL-S API version 2.

This was necessitated by a major technical problem faced with OWL-S API 1.1 which

was the API’s inability to parse xsltTransformationString elements correctly. Our use

of two different OWL-S versions creates issues, such as grounding incompatibilities,

which we had to solve by modifying the OWL-S Grounding structure.

ATAM supports OWL Full, a version of OWL that allows mixing of RDF

Schemata with OWL, and which enjoys a high degree of compatibility with RDF. Even

though ATAM supports OWL Full, it does not support pure RDF ontologies due to

constraint incompatibilities. However, despite these technical details and compatibility

issues, we have been able to use ATAM to provide realistic test data, as our two case

studies illustrate.

The service query mechanism uses the open source version of the soapUI [298]

framework to send and receive SOAP messages. The soapUI framework supports mul-

tiple messaging protocols for services REST and SOAP. The web service broker/match-

maker selection is based on OWL-S support. The Alive matchmaker [2] was used for

simulating a real-world semantic service broker. It is open source and offers flexible

search query generation.

4.5. Empirical Studies 147

4.5 Empirical Studies
In this section, we introduce the case studies we used in our experiments, present the

research questions we asked and explain our method of investigation.

4.5.1 Case Studies

For the experiments, we selected the set of related services shown in Table 4.1, most of

which are commercial real-world services. We used these services for two reasons:

1. Commercial services are more likely to exhibit issues concerned with ‘realistic
data’.

2. Commercial services allow a degree of ‘real-world’ evaluation of our ATAM
approach.

Service Input(s) Output

C
as

e
St

ud
y

1

ISBNdb by ISBN (ISBNS) ISBN Book
ISBNdb by keyword (ISBNK) Keyword Book
ISBNdb by title (ISBNT) Title Book
ISBNdb find author ID Author AuthorID
ISBNdb by author ID AuthorID Book
ISBNdb find publisher ID Publisher PublisherID
ISBNdb by publisher ID PublisherID Book
Amazon Book Search (ABS) ISBN Item
Validate ISBN (vISBN) ISBN Boolean

C
as

e
St

ud
y

2

Google Search (GS) Keyword Search result
Strikeiron IP Lookup (SIP) Http address IP address
FraudLabs IP2Location (FIPL) IP address US location
CDYNE CheckPhone (CC) Phone number US location
FraudLabs AreaCodeWorld NPA + NXX US location
ZipCode Validator (ZCV) ZipCode Boolean
CDYNE Weather (CW) ZipCode W. forecast

Table 4.1: Web services used in the experiments

Only 6 out of 16 these services are free to use: ABS, vISBN, ZCV, GS, CW and

CC. Even though these services are free, most of them are provided by commercial

companies such as Google, Amazon and CDYNE. We only used the GS service in test

data generation. The rest of the free services were used as services under test in the

experiments.

One side effect of using commercial services is the potentially prohibitive cost

involved in running our experiments. Fortunately, for most of the services used in

4.5. Empirical Studies 148

our case studies, we have been given limited but sufficient access which facilitated

our experiments. However, we could not get cost-free access for the SIP service. As

a result, we had to emulate the functionality of the SIP service by creating a SOAP

service that mimics the SIP service’s functionality. This new SOAP service relies on

the Selfseo [284] website to provide the necessary data.

Some of the services are wrapped in SOAP web service wrappers in order to over-

come two technical problems:

1. Most of these services are REST services. Unfortunately, WSDL2OWLS tool

does not support REST services even those with a WSDL description.

2. Some of these services are intended to be used statically. For example, ABS re-

quires a signature with each SOAP message and can not be invoked dynamically.

4.5.2 Research Questions

We ask the following research questions:

RQ1. Is our approach more effective than random test data generation in generating

realistic data?

RQ2. Is our approach more effective than random test data generation in situations

where formed test data can be generated?

RQ3. Does using formed data rather than non-formed data as MID input data affect the

effectiveness of our approach?

RQ4. Can our approach effectively generate tailored test data which fulfils given con-

straints?

4.5.3 Method of Investigation

In order to answer the research questions, we use two real-world case studies: CS1 and

CS2. The services in each case study are listed in Table 4.1.

In CS1, we seek to generate realistic ISBNs using existing services. In order to

evaluate the effectiveness of our approach, we selected vISBN and ABS services for

4.5. Empirical Studies 149

evaluation and the rest of the services for generating ISBNs. vISBN is used to verify

the structural validity of ISBNs and ABS is used to check if the ISBNs represent a

real-world book. The search process for this case is presented in Figure 4.5 and the

resulting service compositions are presented in Figure 4.2.

In CS2, we seek to generate realistic ZIP codes. In this case study, we selected

ZCV and CW services for evaluation and the rest of the services for generating ZIP

codes. ZCV is used to verify the structural validity of the generated ZIP codes and

ABS is used to check whether the generated ZIP codes represent a real-world location

in US. The resulting compositions for this case are presented in Figure 4.2.

In order to answer RQ1, we generated 100 ISBNs and 100 ZIP codes using both

our approach and random test data generation. Then we compared the effectiveness of

these approaches in creating structurally valid test cases (valid ISBNs) and in testing

real-world services (i.e. generating semantically valid test cases.)

For the answer to RQ2, we generated 100 unique formed ISBNs using the check-

digit algorithm. Then we used the same evaluation criteria used for RQ1 and compared

ISBNs generated by our approach against the formed ones.

For the answer to RQ3, we introduced a keyword generator that generates valid

English words. Using this generator, we generated 100 unique formed inputs and also

generated unique 2 character long strings as non-formed data. The generated input data

was used as input to service compositions that require keyword as input; ISBNK and

GS. We ran these inputs and compared their effectiveness at test data generation with

our approach.

There are two methods for generating tailored test data: the MID-seed method and

the TSD-seed method. In the MID-seed method, ATAM generates test data using MID

input data while eliminating data that does not fulfil the constraints. The TSD-seed

method uses selected TSD input data which intend to direct ATAM towards data that

fulfils the constraints. In order to answer RQ4, we evaluated these two methods using

both case studies with five different constraints for each case study.

4.5. Empirical Studies 150

Figure 4.5: Complete search process for the first Case Study (CS1), explaining each
step of the service composition generation in detail. The search process for CS1 is im-
portant because it illustrates the effectiveness of our grouping mechanism in finding the
shortest compositions. The whole search process presented in this figure is automated.
As a result, ATAM considerably reduces the manual effort required for service-based
realistic test data generation.

4.6. Results and Analysis 151

4.6 Results and Analysis

In this section, we present the results from our experiments, provide answers to the

research questions we asked and discuss the threats to the validity of the experiments

we conducted.

4.6.1 Results

In generating valid ISBNs (depicted in Figure 4.6), our approach achieved a 100%

success rate using formed data and 93% using non-formed data. Random test data

generation achieves only an 8% success rate in generating valid ISBNs, whereas ISBNs

generated using the check-digit algorithm achieved a 92% success rate.

In testing the ABS service (depicted in Figure 4.6), our approach achieved a 100%

success rate with formed data and a 93% success rate with non-formed data. Only 2 out

of 92 valid ISBNs generated with the ISBN validation algorithm successfully tested the

ABS service. Valid ISBNs are unlikely to correspond to real books. As expected, none

of the randomly generated ISBNs tested ABS successfully.

There are two unexpected results in Figure 4.6. The first one is the 92% validity

score for ISBNs generated using the check-digit algorithm. This result is unexpected

because we expected all ISBNs generated using this algorithm to be valid. We tested the

8 invalid ISBNs (4663277421, 2546962401, 8135892901, 5265526961, 7445203631,

1976505021, 3914584191, 6863093121) with other online ISBN validation tools. Un-

expectedly, some of these tools identified these ISBNs as valid while others did not.

This further confirms the need for realistic test data, even in cases where the syntactic

structure is well defined. Even in these apparently straightforward cases, we cannot be

sure to have valid instances without real-world validation of test cases.

The second unexpected result is the 93% validity score for our approach with non-

formed inputs using ISBNK service. The same inputs achieved 96% validity score

when used with ISBNT service. This is unexpected because the ISBNT service returns

only a subset of possible ISBNK service results with the same input. According to

developer functionality description ISBNK perform searches for books using all details

4.6. Results and Analysis 152

(a) Comparison of valid ISBN generation success rates

(b) Comparison of realistic ISBN generation success rates

Figure 4.6: Comparison of overall success rates for our approach against random test
data generation for the first case study: the image on the top presents the effectiveness
at successfully generating structurally valid test data. In this evaluation, our approach
achieved a 100% success rate with formed input data and a 93% success rate using
non-formed input data. On the other hand, 92% of the ISBNs generated using the
check-digit algorithm and only 2% generated using random generation were found to
be structurally valid. The image on the bottom presents the effectiveness at generating
realistic test data. Our approach achieved 100% success rate with formed input data
and a 93% success rate using non-formed input data. Whereas only 2% of the ‘ISBNs’
were generated by the check-digit algorithm and none of the randomly generated ISBNs
successfully tested a real-world service.

of the indexed book information (which includes the title field) and ISBNT perform

searches using only the title field.

To the best of the authors’ knowledge, there is no algorithm to generate structurally

valid ZIP codes other than requiring that they consist of 5 digits. As a result, in the

second case study (CS2), our approach is compared to random test data generation

only. For the problem of structurally valid ZIP code generation (depicted in Figure

4.7), our approach achieved a 94% success rates using both formed and non-formed

data, whereas random test data generation only achieved a 24% success rate.

In testing the CW service (depicted in Figure 4.7), our approach achieved a 99%

4.6. Results and Analysis 153

success rate with formed data and a 98% success rate with non-formed data. On the

other hand, only 34% of the randomly generated ZIP codes successfully tested the CW

service.

(a) Comparison of valid ZIP code generation success rates

(b) Comparison of realistic ZIP code generation success rates

Figure 4.7: Comparison of overall success rates for our approach against random test
data generation for the second case study. The image on the top presents the effec-
tiveness in successfully generating structurally valid test data. In this evaluation, our
approach achieved a 94% success rate with both formed and non-formed input data.
On the other hand, only 24% of the ZIP codes generated using random generation were
found out to be structurally valid. The image on the bottom presents the effectiveness
at generating realistic test data (structurally and semantically valid). In generating re-
alistic data, our approach achieved a 99% success rate with formed input data and a
98% success rate using non-formed input data. Whereas, only 34% of the randomly
generated ZIP codes successfully tested a real-world service.

The service reliability problem can be observed by comparing the results of CW

and ZCV tests with the same ZIP codes. After investigating possible underlying causes

of these inconsistencies in results, we discovered the following:

1. CW is not 100% reliable and returned unexpected results for 7 valid ZIP codes

(20001, 20005, 20212, 03867, 04469, 20420, 97086). This also is the reason for

our approach scoring less than 100% using formed input data.

4.6. Results and Analysis 154

2. ZCV’s reliability appears to be lower than of CW. As a result, the achieved suc-

cess rates are lower than expected.

3. The website used by the SIP replacement service also exhibited reliability issues.

This caused a lower score than expected in 2 cases.

In order to test the ability to generate tailored test data, we used two different

scenarios for the case studies. For CS1, we tried to generate an ISBN which is published

by a chosen publisher. For CS2, we tried to generate a ZIP code which belongs to a

given state. In this part of the experimental analysis, we did not compare our approach

to random test data generation due to the expected low success rates it would achieve

based on the previous evaluations.

Publisher Constraint Success Rate
Random House contains(hasPublisher,‘Random House’) 5%
Pearson contains(hasPublisher,‘Pearson’) 2%
Hachette contains(hasPublisher,‘Hachette’) 0%
HarperCollins contains(hasPublisher,‘HarperCollins’) 7%
Simon&Schuster contains(hasPublisher,‘Simon&Schuster’) 3%

Table 4.2: Success rates for tailored ISBN generation using MID-seed

State Constraint Success Rate
California contentsEqual(State,‘CA’) 93%
Texas contentsEqual(State,‘TX’) 29%
New York contentsEqual(State,‘NY’) 17%
Floria contentsEqual(State,‘FL’) 7%
Illinois contentsEqual(State,‘IL’) 5%

Table 4.3: Success rates for tailored ZIP code generation using MID-seed

As mentioned in Section 4.5.3, there are two different methods for tailored test

data generation depending upon whether MID or TSD is used as a ‘seed’. Table 4.2

and Table 4.3 present the results for the MID-seed method. By analysing the results,

we concluded that in most cases ATAM is able to find a test input that fulfils the given

criterion. Unfortunately, the success rates for the MID-seed method vary greatly de-

pending on the selected criterion and the test data domain. The achieved success rates

4.6. Results and Analysis 155

can be as high as 93% (as shown in Table 4.3) and as low as 0% (as shown in Table

4.2).

Publisher Used input Success Rate
Random House Random House 100%
Pearson Pearson 100%
Hachette Hachette 100%
HarperCollins HarperCollins 100%
Simon & Schuster Simon & Schuster 100%

Table 4.4: Success rates for tailored ISBN generation using TSD-seed

Table 4.4 and Table 4.5 present the results for the TSD-seed method. Using the

TSD-seed method, ATAM successfully generated test data fulfilling the given con-

straints in both cases studies and achieved a 100% success rate.

State Used input Success Rate
California website in California 100%
Texas website in Texas 100%
New York website in New York 100%
Florida website in Florida 100%
Illinois website in Illinois 100%

Table 4.5: Success rates for tailored ZIP code generation using TSD-seed

4.6.2 Answers to Research Questions

The results from the experiments provide evidence for the effectiveness of our approach

compared to random test data generation and give an answer to RQ1. In all the scenar-

ios, our tool noticeably outperformed random test data generation. On the other hand,

results from both case studies indicated that random generation is not effective when

it comes to generating realistic test data. However, existing service testing, whether

it is automated at all, relies heavily on random testing. The results from CS1 clearly

show how ineffective random generation can be in some domains. In CS1, random

generation failed to generate a single ISBN that successfully test ABS service. Even

the highest success rate achieved by random generation (34% in CS2) is significantly

lower than the success rate of our approach in the same case study.

4.6. Results and Analysis 156

For RQ2, the results shows that even with a valid generation algorithm random

test data generation cannot guarantee a high success rate for realistic test data gener-

ation. Even though the ISBNs generated using ISBN validation algorithm achieved a

high structural validity rate, as shown in Figure 4.6, these ISBNs achieved only 2%

success rate when testing the ABS service. On the other hand our approach for the

same scenario achieved 100% success rate with formed input data.

The benefits of using formed input data can be observed in the results of both case

studies, as shown in Figure 4.6 and Figure 4.7. Using formed data achieved 100% suc-

cess rates in both case studies, while non-formed data achieved 93% and 98% success

rates. These results provide evidence that using formed input data allows our approach

to achieve better testing (answering RQ3).

In terms of tailored test data generation, as asked in RQ4, the results provide

evidence for our approach’s ability to generate test data fulfilling given constraints. This

functionality has the potential to achieve 100% success rates using TSD-seed method

(as shown in Table 4.4 and Table 4.5). Unfortunately, the success rates are not as

consistent with MID-seed method (as shown in Table 4.2 and Table 4.3).

4.6.3 Threats to Validity

In the experiments, the most important external threat which limits the general appli-

cability of the proposed approach is the test scenarios representing real-world ones.

This concern is especially important for work in which experimental validation is per-

formed using simulation and synthetic case studies. In fact, in our experiments there are

few synthetically generated artefacts (such as ontologies and service wrappers) which

might lead to a sense of unrealism. In order to clarify these issues, we discussed how

we maintained realism in all aspects of the experiments below:

1. Realistic ontologies: Due to a lack of well-structured ontologies that represent

the concepts used in our experiments, we were forced to generate ontologies. As

well as the representation problem, there were two main technical problems with

existing ontologies: syntactic problems and incompatibilities with the match-

4.7. Related Work 157

maker. In order to overcome these problems, we generated new ontologies by

modifying existing ontologies. By making minor modifications we achieved two

goals: maintained realism and increased conformance to OWL [341] specifica-

tions.

2. Realistic services: As mentioned, we wrapped some of the services in SOAP ser-

vices wrappers in order to make them compatible with the tools and service spec-

ifications and to maintain their conformity to the ontologies. In order to main-

tain realism, we implemented the wrappers to not modify data syntax or content.

Also, for the SIP service, we introduced a wrapper that simulates its functionality

using a website due to access restrictions. SIP provides an ‘IP Lookup’ service

which is a common service provided by many websites (even before the intro-

duction of web services). We chose one of the highly rated websites [284] as a

substitute to SIP and manually tested for correct functioning.

3. Realistic matchmaking and service compositions: Realism in matchmaking is not

an issue since we used an existing matchmaking tool with realistic ontologies.

Due to data being unmodified by the wrapper services, generated compositions

of these services are some of the possible real-world orchestrations of them.

The only internal threat which might have affected the results obtained is the issue

of the correctness of the check-digit algorithm (used in generating valid ISBNs). The

correctness of the algorithm is verified using an external ISBN verification service as

mentioned in the results.

4.7 Related Work
This section is divided into two categories: test data generation for web services and

test data generation approaches that reuse existing resources.

4.7.1 Test Data Generation for Web Services

Test case generation for web services is usually based on the web service specification.

Traditional web services provide specifications that include abstract information on the

4.7. Related Work 158

available operations and their parameters. Information from these specifications can be

used to support test data generation for black-box testing techniques.

Existing WSDL-based test data generation approaches [16, 20, 29, 130, 185, 201,

235, 295] depend on XML Schema datatype information. The datatype information,

which defines various constraints for each input type, allows data generation for each

simple type. Since it is possible to define complex datatypes, test data generation for

these types simply requires decomposition of the complex type into simple types and

application of data generation for each simple type. This approach can generate struc-

turally valid test inputs, but may not generate realistic test inputs.

Fault-based test data generation tests for prescribed faults in web services. Unlike

other testing approaches, in fault-based test data generation, erroneous test data is gen-

erated intentionally. Proposed fault-based testing approaches [130, 235, 326, 332, 364,

384] generate test data from communications among services by inserting erroneous

data. The focus of fault-based testing is often the generation of tests able to reveal the

fault in question. However, there is no guarantee that the tests so-generated will be

realistic.

Test data generation from a WSDL definition is limited to generating structurally

valid test data, but this cannot be guaranteed to be realistic because WSDL contains no

behavioural information about the service under test. This limitation is reduced with the

introduction of semantic web services. The use of semantic models such as OWL-S for

test data generation is proposed [17, 77, 326, 338] not only because of the behavioural

information they provide, but also because of the semantic information on the input

types. This semantic information (in the form of an ontology) allows ontology-based

test data generation. However, this semantic information does not necessarily code

realism, nor can it always guarantee to do this.

4.7.2 Test Data Generation Approaches Using Existing Resources

Test cases can be generated using existing data, such as existing test cases and recorded

user session data. The use of session data for web application testing has been sug-

4.8. Conclusion 159

gested by several researchers [3, 163, 199].

Thummalapenta et al. [315] propose an approach that aids test generation ap-

proaches in reaching desired states. The proposed approach mines code bases and

extracts sequences that are related to the object types of the method under test.

However, the only approach that aims to generate test data for ScS was proposed

by Conroy et al. [74]. In this approach test cases are generated using the data from

applications with Graphical User Interfaces (GUIs). The approach harnesses data from

GUI elements and uses the harnessed data to generate test cases for ScS. Compared to

approaches presented in Section 4.7.1, this approach might be expected to be more ef-

fective in generating realistic test data. Unfortunately, however, the proposed approach

remains unautomated.

McMinn et al. [211] also proposed automatic generation of realistic test data, aim-

ing to reduce the human oracle cost. The authors propose the use of genetic algorithms

combined with data and input domain knowledge to increase the fault-finding capa-

bility, and the branch coverage probability of the generated test data. The approach

also includes re-using of test data among related units of the system under test. Even

though this approach is capable of generating ‘realistic’ test data, as with most of the

automated approaches it can only provide structural realism.

Alshahwan and Harman [4] use search based testing to generate branch adequate

test data for server side code in PHP. Their approach was shown to be effective at branch

coverage. The proposed approach could be used to seed our approach for generatable

input data as a base case. This remains a topic for future work.

4.8 Conclusion

In this chapter, we introduced a novel approach that can automate realistic test data

generation. The proposed approach not only effectively generates realistic inputs, it

also minimises the dependence on existing data. Another major benefit of this approach

is its ability to produce customised and realistic test data. The test results obtained in

the experiments provide evidence for the effectiveness of our approach compared to

4.8. Conclusion 160

the state of the art automated test data generation approach. In both case studies, our

approach comfortably outperformed random test data generation.

Chapter 5

Cost Reduction Through

Multi-objective Data Source Selection

5.1 Motivation

Testing is one of the most widely used and important ways in which software engi-

neers gain confidence in systems’ behaviour and with which they find faults. Testing is

important for all kinds of software systems, but this chapter is concerned with web ser-

vice based systems. Trust is considered as one of the technical barriers’ to enterprises

transition to such ScS [64]. One of the potential solutions for establishing trust among

different stakeholders is testing, which potentially provides the necessary assurance in

correct functioning of ScS. Not surprisingly, this pressing need has led to a dramatic

recent increase in the number of publications on ScS testing, as discussed in Chapter 2.

Service oriented systems present many challenges to the tester. The services avail-

able for use can change repeatedly, frequently and unpredictably, while many may offer

substantially similar services, but with different quality and performance attributes and

at different costs. For the tester, this presents the challenge of a rapidly changing, non-

deterministic system with important choices to be made about the costs involved in

testing; not merely execution costs, but monetary costs accrued from charges for third

party service use.

In additional to the inherent complexities of web service testing, there is also a

5.1. Motivation 162

need to construct realistic test cases [3, 74, 163, 200, 210, 211]; test data that achieves

fault revelation and which does so with test cases that are achievable in practice and

understandable to the human tester and user alike. For instance, it has been argued

that user session data is valuable precisely because it is real data [3, 163, 200]. Other

authors have also developed testing approaches to harness realism in testing, drawing

realistic data from the Graphical User Interfaces of the systems under test [74] and from

‘web scavenging’ for suitable test data [210, 211].

Our approach to the challenge of testing web services is to seek to exploit the

flexibility and, more specifically, the composability of services as a key mechanism

for finding suitable solutions. Essentially, we seek, not only to ameliorate problems

in web service testing, but to turn these problems around using these very same de-

manding characteristics as the basis for potential solutions. Our approach recommends

composition topologies that deploy existing services to generate realistic tests.

In the previous chapter, we introduced the tool ATAM, which implements this ap-

proach. ATAM finds services that combine to form a composition topology (an acyclic

graph in which nodes are services and edges denote input-output connectivity between

each service). We demonstrated that this approach has the potential to help automate

the process of finding realistic test data.

ATAM recommends a set of candidate topologies from which a user can select a

suitable choice, resulting in an approach to generate realistic test data for the service

under test. However, this does not completely solve the tester’s problem. There may

be many services available from which to choose for each node of the topology. Since

services may come at a cost and may offer differing degrees of reliability, there is an

inherent multi-objective optimisation problem underpinning the final choice of services

to select in order to concretise the topology. This choice is to balance the cost-benefit

trade off.

In this chapter, we study this problem as a bi-objective typed selection problem,

in which services of the right types for each node in the composition topology must

be selected to balance testing cost against the reliability of the overall composition se-

5.1. Motivation 163

lected. We used NSGA-II to investigate the effect of three factors (composition size,

composition topology and the number of services discovered) on performance (com-

putation time) and quality (approximation to the pareto front). We used real world data

on price to inform the cost choices and the results from previous chapter to determine

the topologies to consider. However, we have no real-world reliability data available.

Therefore, we study the effects of various models of the relationship between cost

and reliability (logarithmic, linear and exponential) and various degrees of correlation

strength (stronger, medium, weaker) between cost and reliability.

The primary contribution of this chapter as follows:

1. We introduce a multi-objective solution to service-centric test data generation.

This approach is the first to apply multi-objective optimisation to service-based

testing.

2. We present an investigation of the behaviour of our approach using different

price-reliability models. We confirm that NSGA-II performs almost optimally on

those problems for which problem size is sufficiently small to support exhaustive

search for the globally optimal pareto front. On larger problems, we find that

size and topology have more effect on quality and performance than the number

of service choices discovered. This is encouraging because it provides evidence

that the approach may cope with (widely anticipated) significant increases in the

number of services that will become available in the coming years.

The rest of this chapter is organised as follows. Section 5.2 discusses existing test

data generation approaches that use optimisation techniques and the concept of QoS

in SOA. Section 5.3 explains the details of the proposed multi-objective optimisation

for our approach. Sections 5.4 presents our case studies, research questions and our

method of investigation. Section 5.5 presents the results from our experiments and

answers the research questions. Section 5.6 concludes the chapter.

5.2. Background 164

5.2 Background
In this section, we discuss the approaches to test data generation that are most closely

related to our approach and also provide a brief information on the concept of QoS in

SOA.

5.2.1 Test Data Generation and Optimisation

Our approach formulates test data generation as application for multi-objective SBSE

[132]. We seek service compositions that generate realistic tests of a given type using

services not are necessarily designed for testing.

Multi-objective optimisation is not new to the test data generation domain. Though

our work is the first to use a multi-objective approach to service-based testing. Lakhotia

et al. [166], Oster and Saglietti [240] and Pinto and Vergilio [259] already proposed

multi-objective test data generation. These approaches focus on structural coverage as

the main objective and use additional objectives such as execution time, memory con-

sumption and size of test set. There are other approaches, such as Sagarna and Yao

[277] where branch coverage is formulated as constrained optimisation problem. Simi-

larly, Alshahwan and Harman [4] used a single objective search-based testing approach

to generate test data to achieve branch coverage of server side code in PHP. The use of

multi-objective optimisations in test case selection has also been proposed. For exam-

ple, Yoo and Harman [373] used objectives such as code coverage and execution cost

in test case selection.

5.2.2 Quality of Service Models

Our approach leverages the ability to compose and orchestrate web services to achieve

goals for which individual services may not have been defined. One of the advantages

of SOA is the ability to discover and compare services with similar business logic. The

ability to compare services is enabled by a well-known concept called QoS in SOA.

QoS requirements generally refer to several functional and non-functional qual-

ities of services in SOA [44, 334]. According to Wan Ab. Rahman [334], the most

common QoS characteristics are service response time, performance, reliability, exe-

5.2. Background 165

cution price (price from here on), availability and security. The explanation given to

four of these characteristics that are covered in this chapter are:

1. Price: The monetary cost of invoking a service. There might exist multiple price

plans for services but ATAM only considers the pay per use option.

2. Reliability: The capability of maintaining the quality of service. We accept

reliability as the percentage of invocations that maintained the expected QoS

levels.

3. Availability: The presence of a service for invocation. We consider availability

as the percentage of time that the service available for invocation.

4. Response time: The amount of time that a service takes to respond various re-

quests. Response time might be provided in different ways, such as maximum or

average time. In this research, we assume maximum response times are provided

by QoS.

The need for a QoS model that covers necessary quality aspects of SOA are also

addressed by industry. OASIS introduced a QoS specification called Business QoS

(bQoS) [234] in 2010.

5.2.3 Pareto-Optimality and NSGA-II

Pareto efficiency is a concept in economics which is also applied to many other subjects

such as engineering [239]. It is used in the optimization of a vector of multiple criteria

by enabling the decision maker to investigate the trade-offs among optimal combina-

tions of these criteria. Pareto frontier (or pareto front) is a set of solutions that are

pareto efficient. A solution is accepted as pareto efficient when it is not dominated by

any other solution in the solution space [120]. A solution s is said to dominate another

solution s′ if s are equal or better than s′ in all attributes/objectives.

Non-dominated Sorting Genetic Algorithm-II (NSGA-II), is introduced by Deb et

al. [81]. NSGA-II does not produce a single result, but provides a pareto front of best

solutions by using elitism and pareto optimality. Elitism is maintained by ranking each

5.2. Background 166

of the discovered solutions after each generation according to nondomination level, as

presented in Algorithm 1. NSGA-II also uses a mechanism called crowding distance,

which helps achieving a wider pareto front with distant solutions [54]. In order to

achieve a wider front, the mechanism measures the distance of each solution from

the rest of the population and assigns a higher fitness value to more distant solutions

(maintaining a crowding distance among individuals). The execution of NSGA-II is

described in Algorithm 1 in more detail.

Algorithm 1 NSGA-II Algorithm [54]
1: procedure NSGA-II (N ′, g, fk(xk)) B N members evolved g generations to

solve fk(x)
2: Initialize Population P′
3: Generate random population - size N ′
4: Evaluate Objective Values
5: Assign Rank (level) Based on Pareto dominance - sort
6: Generate Child Population
7: Binary Tournament Selection
8: Recombination and Mutation
9: for i = 1 to g do

10: for each Parent and Child in Population do
11: Assign Rank (level) based on Pareto - sort
12: Generate sets of nondominated vectors along known pareto front
13: Loop (inside) by adding solutions to next generation starting from the first

front until N ′ individuals found determine crowding distance between points on
each front

14: end for
15: Select points (elitist) on the lower front (with lower rank) and are outside a

crowding distance
16: Create next generation
17: Binary Tournament Selection
18: Recombination and Mutation
19: end for
20: end procedure

Deb et al. [81] also introduced a distance metric (Υ) which is used for measuring

how close the discovered set of solutions are to the optimal front. In order to mea-

sure this metric, the minimum Euclidean distance between each of the solutions from

the generated set S ′ and the optimal front (or the optimal set S) is calculated and the

average of these distances is used as the distance metric.

The Euclidean formula for the distance between two points p = {p1, p2, ..., pn}

5.3. Multi-objective Service-centric Test Input Generation 167

and q = {q1, q2, ..., qn} in Euclidean n-space is:

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2 (5.1)

The distance metric is formulated as:

Υ = d(S ′, S) =
1

m

m∑
i=1

(dmin(S ′i, S)) (5.2)

where m is the number of solutions in S ′, dmin(i) denotes the minimum Euclidean

distance between the ith solution in S ′ and S.

5.3 Multi-objective Service-centric Test Input Genera-

tion

In this section, we explain the necessary elements required to support replication of

results for the multi-objective optimisation approach we propose here: the objective

function and genetic operators. We also discuss the choice of our algorithm and param-

eter values selected for the genetic algorithm.

5.3.1 Objective Functions

We introduce three different functions for the four QoS parameters we intend to include

in the next version of ATAM: price, reliability, availability and response time. The

reason for having three different objective functions is caused by our perception of

combined reliability, availability and response time for compositions.

The objective function for the price parameter is straightforward. The function is

the sum of the costs of all services required in a topology. In our approach, we consid-

ered price as an objective rather than a constraint, in order to allow the tester to explore

all the possible solutions on the pareto-optimal front. The following is introduced as

the objective function for minimising total cost of test data generation:

5.3. Multi-objective Service-centric Test Input Generation 168

Figure 5.1: Example topology scenario for generating realistic test data using services.
In the figure, each node in the topology represents a service description. In this sce-
nario, service S1 is the service that provides the required test input. The services on the
other end, such as S5, S6 and S7, are services that either require tester input or automat-
ically generated input using a predefined algorithm. Each edge in the figure represents
an input required by the service that is targeted by the edge. The source of the edge is
the service that provides the required input. For example, in this scenario, the input for
S1 is provided by S2.

Minimize
n∑

i=1

psi

where n is the total number of services in the selected topology and psi is price of the

ith service.

The objective function for the other three QoS characteristics are not as straight-

forward. The total reliability, availability or response time of a topology is as high

as the combined value of each characteristic for all the services used in that topology.

We introduced the concept of ‘combined characteristic value’ (referred to as combined

value from this point on) because the reliability, availability and response time of an

individual service is not solely defined by the behaviour of that service in isolation.

For example, in the case of reliability, the reliability of a service S also depends on the

reliability of the services that generate the necessary input for S. Figure 5.1 illustrates

an example solution and explains necessary concepts in combined value calculations.

The same formulation can be used in the calculation of combined values for relia-

bility and availability. For response time, however, we provide a third formulation. Due

to space constraints, we explain our formulation for reliability and availability focus-

ing on the reliability only. The combined value for reliability (referred to as combined

reliability (cr)) of a service is formulated as:

5.3. Multi-objective Service-centric Test Input Generation 169

cr(Sn) = rSn × ir(Sn)

where cr(Sn) is the combined reliability and rSn is the reliability of the service Sn and

ir(Sn) is the reliability function that calculates the combined reliability of the services

that provide inputs for Sn.

The reliability calculation for inputs (ir(Sn)) varies based on the number of ser-

vices providing the input. This is because in our approach, a service in the composition

can get the required inputs in two possible manner:

case1 From the tester or predefined algorithm: In this case, the input reliability of the

service is accepted 100% reliable (i.e. reliability score = 1.0). Services S5, S6

and S7 in Figure 5.1 are examples to this case.

case2 From some arbitrary number of services: In this case, the input reliability of

the service is equal to the lowest of the combined reliability of the services that

provide its inputs. For example, service S3 takes input from service S5 while S4

takes input from two services S6 and S7 as depicted in Figure 5.1.

In the light of these definitions, we formulated our input reliability function to suit

these two cases as follows:

ir(Sn) =

1.0 if Sn is case 1

MIN(cr(S1
n), cr(S2

n), ... , cr(S
in(Sn)
n)) if Sn is case 2

where Si
n is the service providing ith input for service Sn and in(Sn) is the total number

of inputs service Sn has.

The reliability score of a composition is equal to the combined reliability of the

first service (service at the highest level). In light of the given combined reliability

calculation, the objective function for maximising the total reliability is formulated as:

5.3. Multi-objective Service-centric Test Input Generation 170

Maximise rS1 × ir(S1)

Having services that require inputs from multiple services allows ATAM to invoke

the services which provide the inputs in parallel. Due to this parallel invocation ability,

response time needs to be calculated in a similar fashion to reliability and availability.

We formulated combined response time as:

cres(Sn) = resSn + ires(Sn)

where cres(Sn) is the combined response time and resSn is the response time of the

service Sn and ires(Sn) is the response time function that calculates the combined

response time of the services that provide inputs for Sn.

There is also a minor difference in combined response time calculation. Even

though the cases (case1 and case2) are also valid for response time, the values for the

cases are different. The function that suits these two cases for response time is as

follows:

ires(Sn) =

0 if Sn is case 1

MAX(cres(S1
n), cres(S2

n), ... , cres(S
in(Sn)
n)) if Sn is case 2

where Si
n is the service providing ith input for service Sn and in(Sn) is the total number

of inputs service Sn has.

We believe the testers use expected response time as a means to minimise the time

it takes to generate test cases. As a result, the objective function needs to minimise the

response time.

Minimise resS1 + ires(S1)

5.3. Multi-objective Service-centric Test Input Generation 171

Figure 5.2: Illustration of the mutation and the crossover operators

5.3.2 Representation and Genetic Operators

After discovering all possible topologies, ATAM asks the tester to select one topol-

ogy for test data generation. Then ATAM applies the optimisation process only to the

selected topology using the service groups for this topology.

ATAM was implemented in a way to facilitate genetic operators (mutation and

crossover) with service groups and topologies. As a result, in our multi-objective solu-

tion, genomes are represented as an array of integers as depicted in Figure 5.2. Each

element in the array represents a ‘service group’ and values in each element represent a

service that belongs to that group. The numbering of service groups and web services

are based on the order of their discovery. For example, if the tester selects one of the

topologies from Figure 5.2, the values of the elements in each genome represent the

services which are in the places of S1, S2, ..., S9 based on their order in the genome.

The initial population is generated using the number of services in each service

group that form the selected topology. Each solution in the initial population is gen-

erated by randomly assigning a number to each array between 0 and the number of

services in the service group which is represented by the element.

The mutation operator modifies the value in an element with a number between 0

and the number of services that the group contains. The crossover operator produces a

new solution by combining two solutions into a new solution as depicted in Figure 5.2.

5.4. Empirical Studies 172

5.3.3 Mutli-Objective Algorithm and Parameters

We selected the NSGA-II as optimization technique for our problem due to its reported

performance against other algorithms for similar problems [387]. We used a modi-

fied version of the popular ECJ framework [92] which provides a built-in NSGA-II

algorithm, and integrated it to ATAM. After some tuning, we found out that the ideal

parameters that provide the most diverse solutions for our problem are 35% mutation

probability for each gene and one-point crossover with 50% crossover probability.

5.4 Empirical Studies

In this section, we introduce the case studies we used in our experiments, present the

research questions we asked and explain our method of investigation.

5.4.1 Case Studies

Not having real-world case studies is one of the major set backs in SOA testing research

[44]. As expected, we were unable to find existing services with measures of suitable

QoS values. The only QoS characteristic that the authors have access to is service cost.

As a result, we selected a group of existing commercial services with publicly available

pricing details (presented in Table 5.1) which are collected from the Remote Methods

website [268]. Due to access restrictions on non-commercial users, we were unable

to verify the accuracy of the provided prices. We were also unable to verify continual

service availability.

For 7 out of 9 groups in Table 5.1, we were able to identify at least two exist-

ing services with price details as a basis for determining the maximum and minimum

prices. For groups 3 and 4, we were unable to find multiple services. However, for

these two groups, we used the prices from different subscription models of the same

service. In some of the groups, outputs of free to use services might not be the same as

the paid ones (due to the level of detail provided), however, we accepted these services

as alternatives to the paid ones due to their similar service descriptions.

5.4. Empirical Studies 173

Service Group Price (per query)
No Description Max Company Min Company

1 Phone verification $0.300 StrikeIron Free WebServiceMart
2 Traffic information $0.300 MapPoint Free MapQuest
3 Geographic data $0.165 Urban Mapping $0.010 Urban Mapping
4 Bank info verification $0.160 Unified $0.090 Unified
5 IP to location $0.020 StrikeIron Free IP2Location
6 Stock Quote $0.020 XIgnite $0.008 CDYNE
7 Financial data $0.017 Eoddata $0.007 XIgnite
8 Nutrition data $0.010 CalorieKing Free MyNetDiary
9 Web search $0.005 Google Free Bing

Table 5.1: Services used as a basis for the synthetically generated case study. The
services and the given prices in this table are collected from Remote Methods website
[268].

In our case study, we focused on two QoS characteristics: cost and reliability.

The reason for choosing cost is due to existence of real-world references. We chose

reliability due to our better understanding of the concept compared to availability and

response time.

At present, making a realistic projection on the relation between reliability and

cost is a challenging task due to lack of real-world reliability data. To compensate, we

defined three price-reliability models (referred to as model) that construe the relation

between price and reliability as illustrated in Figure 5.3.

We started generating our case study with the assumption that reliability and price

are positively correlated. The reliability value for each service in each group cover is

between 0.50 to 0.99. The cost value for each service in each group is assigned using

the minimum and maximum prices given on the Table 5.1. We generated 9 service

groups with 40 services in each group for all 3 models initially. Data for other group

sizes (20 and 30) are generated by removing service entries from the initially generated

groups.

Composition size in the experiments represents the number of groups (starting

from Group 1) that are included in a given topology. For example, composition size 4

means a composition which includes the first 4 groups.

5.4. Empirical Studies 174

(a) Linear model (b) Logarithmic model

(c) Exponential model

Figure 5.3: Example reliability-price distribution of services in a group (Group size:
40 services) for all three models (with three very strong correlation).

5.4.2 Research Questions

We ask the following four questions:

RQ1 Is there a relation between the used price-reliability model and the discovered

pareto front?

RQ2 How is discovered pareto front affected by different levels of price-reliability

correlation in the models?

RQ3 What are the effects of parameters such as composition size, group size and topol-

ogy complexity on the discovered pareto front?

RQ4 What are the effects of parameters on performance?

5.4. Empirical Studies 175

Figure 5.4: Illustration of the topologies that are used in order to answer RQ2 and RQ4.

5.4.3 Method of Investigation

In order to answer RQ1, we generated pareto fronts for all three models with most of

the possible combinations (allowed by our case study) using different group sizes (20,

30 and 40) and composition sizes (3, 4, 5, 7 and 9). Then we investigated the fronts

generated from these groups.

In order to answer RQ2, we created new case studies by introducing 3 different

level of correlation (low, medium and high) in each model and investigated the fronts

generated from these case studies. Figure 5.5 illustrates these three levels of correlation

on the linear model.

In order to answer RQ3 and RQ4, we developed 7 different topologies with differ-

ent complexities as depicted in Figure 5.4. First, we investigated the fronts generated

from these topologies to answer RQ3. We also compared the execution times of the

generated topologies using different population size and number of generations in or-

der to answer RQ4.

5.5. Results and Analysis 176

(a) High (b) Medium

(c) Low

Figure 5.5: Different levels of correlation for the linear correlation model. The cal-
culated Pearson’s correlation coefficients for each correlation level from low to high
are 0.8574, 0.9459 and 0.98412. The original distribution for this group is depicted in
Figure 5.3a.

5.5 Results and Analysis

In this section, we present the results from our experiments, provide answers to the

research questions we asked and discuss the threats to the validity of the experiments

we conducted.

5.5.1 Results

The discovered pareto fronts for all models are depicted in Figure 5.6 and 5.10 (using

the topology complexity (c1) in Figure 5.4). As can be observed from these figures, the

discovered fronts are very closely related to the model used. This similarity can be also

observed in Figure 5.10.

5.5. Results and Analysis 177

(a) Group size: 20, Model: Exponential

(b) Group size: 30, Model: Exponential

(c) Group size: 40, Model: Exponential

Figure 5.6: Continued on next page...

5.5. Results and Analysis 178

(d) Sequence size: 9, Model: Exponential

(e) Group size: 40, Model: Linear

(f) Sequence size: 9, Model: Linear

Figure 5.6: Continued on next page...

5.5. Results and Analysis 179

(g) Group size: 40, Model: Logarithmic

(h) Sequence size: 9, Model: Logarithmic

Figure 5.6: The effects of the parameters used in our experiments on the generated
pareto-front. Composition size represents the number of service groups that form a
topology. Group size represents the number of web services in a service group. Model
represents price-reliability relation.

The results suggest that the group size and composition size do have a minor ef-

fect on the overall form of the discovered pareto front. Composition size, as expected,

causes a shift on the position of the discovered front. The results provide evidence for

the fact that the observed shift is closely related with price of the added/eliminated ser-

vice group in the composition. As depicted in Figure 5.6g, the biggest shift is observed

5.5. Results and Analysis 180

between composition sizes 3 and 4, due to the relatively high price of the services in

group 4. The effect of the reliability in this case is less observable due to the relatively

low difference between reliability scores of services in each group.

Figure 5.7: The difference between the globally optimal front and the front discovered
by our approach. Measured distance (Υ) between fronts is ∼ 0.00024 price-reliability
points.

Search-based optimisation techniques are often applied to problems with large

solution sets due to their effectiveness in such scenarios. In our problem, the search

space is not fixed and it can vary greatly (based on the composition and group sizes).

We investigated the performance of our approach in small search spaces in order to

compare to known globally optimal fronts. For topologies small enough for exhaustive

search, we found that NSGA-II finds a pareto front very near the true pareto front

as depicted in Figure 5.7. The Euclidean distance between the optimal front and the

discovered front is ∼ 0.00024 price-reliability points. We also measured the average

execution time of our approach and the time it takes to calculate the optimal pareto front

in Figure 5.7. Exhaustive calculation of the optimal front took 4.5 seconds whereas our

approach (using NSGA-II with population size 400 and 100 generations) took 0.8347

seconds.

5.5. Results and Analysis 181

(a) Effect of group size on execution time (b) Effects of population size and number of gener-
ations on execution time

Figure 5.8: The effects of the parameters used in our experiments on the execution
time. The values in each graph represent the composition sizes. The average execution
times for different group and composition sizes are provided in Figure 5.8a. The av-
erage execution times in Figure 5.8b are for different population sizes and number of
generations (given in the format “population size : number of generations”).

The effects of the parameters such as group size, composition size, population

size and number of generations on the execution time are depicted in Figure 5.8. The

results suggest that the effect of group size is negligible as depicted in Figure 5.8a.

The performance difference between groups’ sizes is only a fraction of a second for all

composition sizes ranging from 0.02s up to 0.13s, whereas for almost all group sizes

there is about 1s difference in execution times between composition sizes 9 and 3.

One unexpected effect which is very noticeable in both graphs is the negative

correlation between the composition size and the execution time. We believe that this

negative correlation is caused by ECJ’s internal mechanism that maintains crowding

distance. In order to prove our hypothesis, we measured the execution of the same case

study with different population sizes and different number of generations. The results

from these experiments are depicted in Figure 5.8b.

During our experiments, we also investigated the relation among composition size,

number of generations and execution time. Our initial assumption was that the higher

the composition size and the number of generations, the longer it should take to execute.

The results provided evidence for the validity of our assumption. When we increased

the number of generations from 100 to 200, execution time increased 2.21 times for

composition size 9, whereas 2.03 times for composition size 3.

5.5. Results and Analysis 182

(a) Effect on execution time

(b) Effect on pareto front form
Figure 5.9: The effects of topology complexity on pareto-front and execution time. The
labels on the graphs ((c1) to (c7)) represent the results for the topologies in Figure 5.4.
Pareto fronts in Figure 5.9b are presented in a different form (lines instead of individual
solutions as points) than the previous figures in order to make these 7 pareto fronts more
distinguishable.

As mentioned, the results up to this point in the chapter are collected using the

topology (c1) in Figure 5.4. The effects of complexity on execution time and pareto

front are depicted in Figure 5.9. Investigation of the results in Figure 5.9a shows a

positive correlation between the number of services that require multiple inputs and the

execution time. In the case of topology (c1) the lowest execution time was achieved

because this topology does not contain any services with multiple inputs, whereas the

topologies (c4), (c6) and (c7) (topologies containing 2 multiple input services) have the

highest execution times. Another important observation was that a topology’s form has

a negligible effect on execution times. For example, very similar topologies such as

(c5) and (c7) have different execution times.

5.5. Results and Analysis 183

(a) Linear

(b) Logarithmic

(c) Exponential

Figure 5.10: Pareto fronts discovered from all three models (Composition Size: 9,
Group size: 40 services) with different levels of correlation. The original distribution
for this group is depicted in Figure 5.6.

5.5. Results and Analysis 184

Complexity is found to have the highest effect among all parameters on the from

of the discovered pareto front. This effect can clearly be observed in Figure 5.9b, where

the discovered fronts are separated into two distinct groups. The first group consists of

topologies (c5), (c6) and (c7) and the second group consists of (c1), (c2), (c3) and (c4).

The cause of this grouping is the similarities between the forms of the topologies in

each group. The effect of complexity is almost negligible in higher reliability scores,

whereas for the rest of the pareto front it is more visible. The fronts (c1) and (c7) in

Figure 5.9b are a distance of ∼ 0.073 price-reliability points apart.

The results suggest that correlation level in models have the highest effect on the

form of the discovered pareto fronts as depicted in Figure 5.10. Comparison between

the fronts of the original case study (Figure 5.6) and the modified ones show that there

is a positive correlation between the correlation level and the number of solutions on the

discovered front. Correlation level has the same effect on all three models as depicted

in Figure 5.10. We believe that this effect is caused by NSGA-II tendency to generate

solutions around the services with better QoS scores than expected in the model.

5.5.2 Answers to Research Questions

The results depicted in Figure 5.6 and 5.10 answer RQ1 by providing evidence for the

fact that the cost-reliability relationship is replicated in the discovered pareto fronts

when correlation is high. However, as the price-reliability correlation decreases, less

smooth fronts with fewer solutions are discovered.

The results also provide evidence for the fact that the level of correlation in a model

can effect the form of the discovered pareto fronts. The results, which answer RQ2,

suggest a negative correlation between the model correlation level and the number of

solutions on the discovered front.

In order to answer RQ3, we have to provide a separate explanation for each pa-

rameter. The evidence from Figure 5.6h suggests that group size has a negligible effect

on the discovered pareto front compared to composition size and topology complex-

ity. As for the effects of the composition size, the results suggest that as one might

5.5. Results and Analysis 185

hope, the lower the composition size, the cheaper and more reliable the solution will

be (using the same set of services and topology). The results from Figure 5.9b suggest

that among all the three parameters we investigated, topology complexity has relatively

highest impact.

As for the answer to RQ4 regarding the performance, we find that composition

size has the strongest effect, with smaller topologies consuming more machine time;

a curious effect we believe is due to the influence of crowding distance. The results

suggest that group size has a negligible effect.

5.5.3 Threats to Validity

In the experiments, the most important external threat which limits the general applica-

bility of the proposed approach is the test scenarios representing real-world ones. This

concern is especially important for work in which experimental validation is performed

using simulation and synthetic case studies. Although we performed our experiments

using simulations in order to ensure maximum realism, we attempted to solve the real-

ism problem on two fronts: realistic prices and realistic price-reliability models.

1. Realistic prices: Due to access restrictions and the high number of services

needed to perform experiments, we could not use the actual prices for each ser-

vice we simulated in the experiments. In order to make our simulation more real-

istic, we used the prices of existing services as a basis (maximum and minimum

prices) for each service group. We believe the prices used in the experiments can

serve a basis for a realistic scenario since they are real-world prices.

2. Realistic price-reliability models: Presenting a real-world model that represents

price-reliability relation was one of the major challenges for the experiments pre-

sented in this chapter. To the best of the author’s knowledge, there is no empirical

study on this subject. Chapter 6 of this thesis includes an empirical reliability

study (in Table 6.1) with existing services, however, the number of services anal-

ysed in this study were substantially less than the number of reliability scores

needed for the experiments in this chapter. As a result, we chose the three com-

5.6. Conclusion 186

mon statistical models to represent the price-reliability relation. In addition to

this, we also simulated three different levels of correlation for all three models.

We believe that some of the combinations of these three models and correlations

might represent real-world scenarios.

The only internal threat which might have affected the results obtained are the

reliability and price scores assignment to each service. In order to maintain consistency

in each group, we automated this process using three algorithms (for three models) to

generate scores for a given number of services, with maximum and minimum prices.

The algorithms are also set to generate reliability scores between 0.55 and 0.99, which

we believe covers all possible real-world scenarios. The correctness of the algorithms

was manually inspected.

5.6 Conclusion
In this chapter, we presented a multi-objective solution to service-oriented test data

generation. We focused on the cost of test data generation and the reliability of the

test data sources as our primary objectives. We chose a widely used multi-objective al-

gorithm NSGA-II and investigated the behaviour of our approach in various situations,

drawn from different models and parameters for our problem and solution domain. The

results provided evidence for robustness of our approach.

Chapter 6

Cost Reduction Through

Pareto-optimal Test Suite

Minimisation

6.1 Motivation

As discussed in Chapter 2, one of the limitations of ScST is the cost associated with

invoking services. Increased test frequency for ScS exacerbates the severity of the

issues regarding testing cost. The cost of invoking services during testing is a major

problem at composition level. Solutions aimed at reducing the cost of testing, such

as simulated testing have previously been proposed [146, 186, 205, 208, 247, 270].

However, these approaches do not eliminate the need for runtime testing (testing with

real services).

In the previous chapters, we addressed testing cost reduction at different levels

of ScST. For example, ATAM (discussed in Chapter 4) aimed at reducing the cost of

(manual) realistic test input generation through automation. In Chapter 5, we intro-

duced another solution that aimed at reducing test input generation cost by using ser-

vices with lower invocation cost. Although the work introduced in these chapters can

help in reducing the testing cost in ScST, there remains the issue of controlling the test

cost at runtime.

6.1. Motivation 188

One widely studied solution aimed at reducing runtime testing cost is test suite

minimisation [374]. The purpose of test suite minimisation and prioritisation is to re-

duce testing cost through removing redundant test cases. In test suite minimisation,

there are concerns such as retaining coverage, test suite effectiveness or fault detection

capability, execution time and resource usage, such as memory. According to the lit-

erature, problems where there are multiple competing and conflicting concerns can be

investigated using pareto optimal optimisation approaches [133].

A tester is often faced with making decisions based on multiple test criteria during

runtime testing. This is due to the fact that, in many situations, it is not expected that

the tester aims to achieve a single goal during the testing process. According to the

literature, one goal that is often used is code coverage. Achieving a high coverage

is often regarded as a major goal in testing [361, 314]. However, achieving a high

coverage is expensive and expecting to achieve 100% coverage might not be realistic

when testing complex systems.

The cost of a test suite is one of the most important criteria, since a tester wants

to get maximum value (e.g. number of branches covered) from the execution of a test

suite [133]. In the literature, the cost of a test suite is often associated with the time

it takes to execute it [374]. However, with the introduction of web services, service

compositions and online APIs, the concept of monetary cost of testing is starting to

gain acceptance in software testing literature.

The reliability (also referred to as quality) of a test suite is also an important con-

cern. In Chapter 5, we introduced a formulation for the reliability score of a test input

based on the reliability of its sources. We believe reliability is an important aspect

especially in ScST, because it can help reduce the testing cost. A test suite with high

reliability might reduce the cost of testing in two ways:

1. Human-oracle reduction due to the tester’s trust in the test input source. If the

test data used in testing has a high reliability, the tester will not need to inspect

all test inputs for errors such as invalidity and conformance to input requirements

(e.g. input format).

6.1. Motivation 189

2. Avoiding extra testing cost due to erroneous test inputs. The extra cost in this

case occurs due to service invocations with invalid test data during the execution

and the tester’s investigation of the unexpected test results that might occur as a

result of invalid inputs.

For instance, consider the case of U.S. ZIP codes. Zip codes can be decommis-

sioned or new ones might be assigned to new areas over time. As a result, during the

testing of an ScS that requires ZIP codes as inputs, only valid codes must be used. In

this scenario, if the ZIP codes (used in testing) are generated from unreliable services,

then the test suite’s reliability will be low, which means the test suite might include

decommissioned or invalid ZIP codes. It is safe to assume that testing with decom-

missioned ZIP codes can be classified as unnecessary execution (except if the tester

is performing robustness testing), which is likely to produce false positives. The re-

sults from our experimental studies for ZIP codes (discussed in Section 6.4) provided

some evidence for the correctness of this assumption. The problem with false posi-

tives is that they might cause the tester to invest time in investigating the reasons for

unexpected output(s).

In order to avoid the side effects of extensive runtime testing, a test suite minimisa-

tion approach could be used to remove ‘redundant’ test cases; those which merely cover

previously covered features. On the other hand, to avoid side effects of a low reliabil-

ity test suite, the selected approach must be able to manage multiple objectives. Thus,

we propose to adapt the multi-objective test suite minimisation approach of Yoo and

Harman [374] to ScST with the objectives, such as cost of service invocation, branch

coverage and test suite reliability.

In this chapter, we introduce a pareto-optimal, multi-objective test suite minimi-

sation approach to ScST aiming at reducing the runtime testing cost. The advantages

of the proposed application of multi-objective test suite minimisation for ScS are:

1. Reduced cost in runtime testing through test suite minimisation.

2. Its ability to discover trade-offs between cost of test runs and system coverage.

6.2. Multi-Objective Test Suite Minimisation for Service-centric Systems 190

3. Its ability to select a more reliable test suite without increasing the cost and af-

fecting the coverage of the test suite.

The rest of this chapter is organised as follows. Section 6.2 briefly introduces

the concept test suite minimisation and explains the proposed multi-objective test suite

minimisation approach for ScST. Section 6.3 presents our case studies, research ques-

tions and our method of investigation. Section 6.4 presents the results from our experi-

ments and answers the research questions. Section 6.5 concludes the chapter.

6.2 Multi-Objective Test Suite Minimisation for Service-

centric Systems
In this section, we explain the concept of test suite minimisation, our approach and

present our objective functions.

6.2.1 Test Suite Minimisation and HNSGA-II

Test suite minimisation (or test suite reduction) techniques aim to reduce the size of

a test suite by eliminating redundant test cases [374]. Test suite minimisation is con-

sidered as a hitting set (or set cover) problem which is an NP-complete problem and

defined as follows:

Input: A test suite T ={t1, ..., tn} and a set of testing requirements R = {r1, ..., rn}which

need to be satisfied in order to provide the desired level of testing.

Goal: To find a representative set of test cases T0, from T (T0 ⊆ T) that satisfies all

requirements. In order to satisfy all requirements, each ri must at least be sat-

isfied by one of the test cases that belongs to T0. The effect of minimisation is

maximised when T0 is the minimal hitting set of the test cases in T.

Due to the test suite reduction problem (which is a minimal set cover problem)

being NP-complete, the use of heuristics is proposed by many researchers [374]. Ac-

cording to the literature, another well known solution to the set cover problem is the

greedy approximation. Yoo and Harman [372] proposed a solution (using an algorithm

6.2. Multi-Objective Test Suite Minimisation for Service-centric Systems 191

called ‘HSNGA-II’) which combines these two solutions into a pareto-optimal test suite

minimisation approach. HNSGA-II uses the additional greedy algorithm, described in

Algorithm 2 along with multi-objective algorithms.

Algorithm 2 Additional Greedy Algorithm (U ,S) [373]

1: C ← ∅ . covered elements in U
2: repeat
3: j ← mink(costk/|Sk − C|)
4: add Sj to solution
5: C = C

⋃
Sj

6: until C = U

Where U is the universe, S is the set that contains S1, S2, ..., Sn (with execution

costs cost1, cost2, ..., costn) which cover subsets of U , such that
⋃

i Si = U . The as-

sumption in this scenario is the existence of a subset of S which covers all elements

of U . The additional algorithm is cost cognisant, thus it does not just pick the subset

that covers the most elements, but it aims at finding the subset that provides maximum

coverage increase with the lowest cost at each iteration (at Line (4)) [373].

HNSGA-II is a variant of the standard NSGA-II and it may be more effective in

multi-objective minimisation problems compared to NSGA-II. HNSGA-II combines

the effectiveness of greedy algorithm for set cover problems with NSGA-II’s global

search. Results from the execution of additional greedy algorithm are added to the ini-

tial population of NSGA-II in order to create an initial population with better solutions

compared to a ‘random only’ population. The goal in using a better initial population

is to guide NSGA-II to a better approximation to the optimal pareto front. This process

can be especially beneficial in problems with very large search spaces.

6.2.2 Proposed Approach

Our approach consists of two stages: test suite artefact calculation and multi-objective

minimisation. After test suite generation, our approach requires the calculation of three

measurements in order to apply multi-objective approaches. These are coverage, relia-

bility and execution cost of each test case.

6.2. Multi-Objective Test Suite Minimisation for Service-centric Systems 192

The reliability score of a test case is based on the reliability of its inputs. Reliabil-

ity scores for generated inputs are provided by ATAM (details of reliability calculation

for test cases were discussed in Chapter 5).

Unlike reliability, execution cost and branch coverage cannot be acquired from

an external source. The easiest way of acquiring this information is by executing the

whole test suite. Unfortunately, performing a runtime execution for the whole test suite

in order to measure its artefacts will increase the overall cost of testing which is an un-

acceptable side effect for an approach that aims to reduce testing cost. In order to avoid

this cost, we propose the use of simulated testing using mock/stub services as discussed

in Chapter 2. Using stub/mock services will allow us to measure branch coverage and

service invocation information for each test case without incurring additional costs.

Figure 6.1: Example test suite reduction scenario for a ScS. The table depicts test cases
in the suite with their reliability, branch coverage and execution cost calculated. For
the given test suite (T1,...,T6) it is expected that test cases T1 and T2 will be eliminated
to get the optimal test suite (T3,T4,T5,T6) which achieves 100% coverage with lowest
cost and highest reliability.

Service invocation costs can occur in several ways (based on the type of contract

agreed between the provider and the integrator). Two of the most prominent payment

plans used at present are: pay per-use and invocation quota-based plans. As a result,

6.2. Multi-Objective Test Suite Minimisation for Service-centric Systems 193

two different cost calculation functions are introduced. Details of these two payment

plans and the cost calculation associated with them are discussed in Section 6.2.3.

After completing stub/mock service generation, a simulated run for the test suite

is performed in order to measure testing artefacts for each test case. An illustration of

an example ScS and its test suite with the test case measurement is depicted in Figure

6.1.

In order to adapt Yoo and Harman’s minimisation approach to ScST, we modified

the original greedy algorithm by replacing its objective functions with the objective

functions from our approach. We used the following algorithms for the 2-objective and

the 3-objective optimisation scenarios. The additional algorithm for 2-objective opti-

misation (described in Algorithm 3) uses the cost and coverage calculation algorithms

discussed in Section 6.2.3.

Algorithm 3 2-objective Additional Greedy Algorithm

Require: Test suite S
1: DEFINE current fitness
2: DEFINE test case subset S ′ := ∅
3: while not stopping rule do
4: current fitness := 0
5: for all test cases in the test suite S do
6: if test case T is not in S ′ then
7: current fitness := coverage score of S ′ (CovS′)
8: ADD T to S ′

9: new fitness := CovS′− current fitness
cost of S′

10: end if
11: if new fitness is better than current fitness then
12: current fitness := new fitness
13: MARK T as selected
14: REMOVE T from S ′

15: end if
16: if No test case is selected then
17: End
18: else
19: ADD T to S ′

20: end if
21: end for
22: end while

The 3-objective additional algorithm (described in Algorithm 4) considers an ad-

6.2. Multi-Objective Test Suite Minimisation for Service-centric Systems 194

ditional objective, reliability. In this algorithm, the objectives coverage, cost and relia-

bility are combined into a single objective using the weighted-sum model (as depicted

in Line(12)). In our experiments, both coverage and reliability objectives were given

equal weights.

Algorithm 4 3-objective Additional Greedy Algorithm

Require: Test suite S
1: DEFINE current fitness
2: DEFINE test case subset S ′ := ∅
3: while not stopping rule do
4: current fitness := 0
5: for all test cases in the test suite S do
6: if test case T is not in S ′ then
7: coverage fitness := coverage score of S ′ (CovS′)
8: reliability fitness := reliability score of S ′ (RelS′)
9: ADD T to S ′

10: coverage fitness := CovS′− coverage fitness
cost of S′

11: reliability fitness := RelS′− reliability fitness
cost of S′

12: new fitness := coverage fitness + reliability fitness
2 . reliability and coverage are given equal

weight
13: end if
14: if new fitness is better than current fitness then
15: current fitness := new fitness
16: MARK T as selected
17: REMOVE T from S ′

18: end if
19: if No test case is selected then
20: End
21: else
22: ADD T to S ′

23: end if
24: end for
25: end while

As mentioned, HNSGA-II uses the results from the greedy algorithm runs as an

initial population. In the second stage of our approach, we run the greedy algorithm and

feed its results to NSGA-II algorithm (explained in detail in Chapter 5) which produces

the pareto optimal front enabling the tester to investigate the trade-offs between the

measured testing artefacts. In the cases where the size of resulting set from greedy

algorithm is less than the required population size for NSGA-II, we compensate for

6.2. Multi-Objective Test Suite Minimisation for Service-centric Systems 195

this shortcoming by adding randomly generated solutions to the greedy results.

6.2.3 Objective Functions

Branch coverage is calculated as the percentage of branches of ScS under test covered

by the given test suite. In our approach, we considered coverage as an objective rather

than a constraint, in order to allow the tester to explore all the possible solutions on

the pareto-optimal front. The following objective function is used for branch coverage

since our aim is to maximise the coverage of the test suite.

Maximize
branches covered by test suite

total number of branches
(6.1)

The objective function for the cost is not as straightforward as branch coverage

because it has multiple options for service invocation cost. Several different payment

plans might exist for service usage. However, we considered only the two prominent

ones: pay per-use and quota based payment plans.

Pay per-use plan: In this case, the integrator is charged for each service invocation

individually. The total cost of executing a test case is calculated as the total cost of

services invoked by the test case and is formulated as:

cs(tcm) =
n∑

i=1

XSi
∗ CSi

where n is the number of services invoked by executing the test case tcm, Si is the ith

executed service, CSi
is the cost of invoking service Si and XSi

is the number of times

service Si invoked by this test case.

The cost for each service can be determined by discovering available services and

their prices. At runtime, it is safe to assume that multiple alternatives for each service

in the composition will be discovered. As a result, the tester might not know which

services will be invoked at runtime. However, the tester needs to assign a static service

cost to each service in the composition in order to calculate the cost artefact for each

test case. In order to determine the price of each service, the tester might choose to

6.2. Multi-Objective Test Suite Minimisation for Service-centric Systems 196

use one of several criteria, such as using maximum, average or minimum price of the

discovered services alternatives. This is flexibility essential because the tester might

choose to change the runtime service selection criteria during the test runs (to force the

invocation of low-cost services) in order to reduce the cost of testing. In this case, the

lowest invocation costs for each service in composition is used to calculate cost of test

cases. However, the tester might also choose to use the average or maximum invocation

costs if a more realistic runtime testing is desired.

The objective function for pay-per use plan is formulated as:

Minimise

k∑
i=1

cs(tci) (6.2)

where k is the total number of test cases and cs(tci) is the total cost of executing

the ith test case in the test suite.

Invocation quota based plan: In this case, the integrator pays a subscription fee for

a number of service invocations within a period of time (such as monthly or annually).

In our scenario, we presume that all the services used in the composition are selected

from a single provider and a total invocation quota applies to all services rather than an

individual quota for each service. The objective function for this plan is formulated as:

Minimise number of services invocations. (6.3)

Generating test data using ATAM also enables the use of another test case artefact:

reliability. Reliability of a test case is based on the reliability of its inputs. Reliability

of a test input is calculated by ATAM as the combined reliability of the data sources

used in generation of this input. The reliability calculation and data source selection in

ATAM are discussed elsewhere [43].

Each test case might include a combination of inputs generated using ATAM and

user generated inputs. In the case of user generated inputs we consider the input to

be 100% reliable and for ATAM generated inputs the reliability score is provided by

ATAM. The reason behind considering the tester input as 100% reliable is our assump-

6.2. Multi-Objective Test Suite Minimisation for Service-centric Systems 197

tion of the tester’s likely verification of the input data before test execution. Since we

do not modify the tester inputs and use them as they are, we did not foresee any reason

for having variations in the reliability score of the tester generated data.

In light of these possible cases, a reliability function covering these two cases is

formulated as:

rf(inx) =

1.0 if inx is user generated

ATAM score if inx is generated using ATAM

where rf(inx) is the reliability score of the input inx.

The reliability score of each test case is calculated as the average reliability of its

inputs, and is formulated as:

rel(tcm) =
1

y

y∑
i=1

rf(ini)

where y is the number of test inputs and rf(ini) is the reliability of the ith input (ini)

of the test case tcm.

Reliability of a test suite is calculated as the average reliability of its test cases.

Since our aim is to increase the reliability of the test suite, the objective function for

test suite reliability is formulated as:

Maximise
1

z

z∑
i=1

rel(tci) (6.4)

where z is the number of test cases in the test suite and rel(tci) is the reliability of the

ith test case (tci) in the test suite.

6.2.4 Representation and Genetic Operators

Our aim is to find test case subsets of the test suite. We represented test suites and their

subsets as bit vectors (as depicted in Figure 6.2), where each bit in the vector represents

a test case. The bits that are set to ‘true’ represent the test cases that are to be included

in the subset.

6.2. Multi-Objective Test Suite Minimisation for Service-centric Systems 198

The mutation operator generates a new solution by modifying the value of a bit

element in the vector. It replaces the current value of a bit element to the opposite

value. The crossover operator produces a new solution by combining two solutions

into a new solution as depicted in Figure 6.2. The illustrated operator is a single-point

crossover operator, used in our approach.

Figure 6.2: Illustration of the mutation operator and the crossover operators.

6.2.5 Mutli-Objective Algorithm and Parameters

To implement and evaluate our approach, we used the popular ECJ framework [92]

which provides a built-in NSGA-II algorithm. We used a single population with a

size of 2000 and set the number of generations to 100. After some tuning, we found

that the ideal parameters that provide the most diverse solutions for our problem are:

5% mutation probability for each gene and single-point crossover with 90% crossover

probability.

As mentioned, the only difference between HNSGA-II and NSGA-II is the initial

population. The initial population of NSGA-II is generated by ECJ’s internal mech-

anism. However, the initial population for HNSGA-II requires the use of additional

greedy algorithms. The results from the additional greedy algorithm combined with

the randomly generated solutions (in order to match the stated population size) are fed

to EJC as the initial population of NSGA-II algorithm.

6.3. Empirical Studies 199

6.3 Empirical Studies

In this section, we introduce the case studies we used in our experiments, present the

research questions we asked and explain our method of investigation.

6.3.1 Case Study

In order to evaluate our approach, we selected two case studies with different character-

istics. The reason behind this selection is to observe the effectiveness of our approach

in different scenarios by providing results that might challenge the findings from the

other case study.

The first case study (CS1) is an example code used as a benchmark for applica-

tions/approaches that aim to achieve branch coverage called ‘Complex’. Complex is

a artificial test object with complex branching conditions and loops [352]. However,

in its original form, Complex is not an ScS. In order to evaluate our approach, we

transformed Complex into an ScS by replacing all mathematical, relational and logi-

cal operators with service calls1. We choose an existing calculator web service [46]

to replace the 4 mathematical operators: addition, subtraction, division and multiplica-

tion. For the other five operators, we implemented a web service providing the required

services. The list of used services are presented in Table 6.4.

The second case study (CS2) is a synthetically created shipping workflow that

combines the functionality of a number of available online services [105, 289, 330,

331]. In order to make CS2 as realistic as possible, the shipping service invokes a

combination of existing web services and other synthetically created services. We were

required to use synthetic services in order to simulate the functions of existing services

that we have restricted access to.

The most important aspect of CS2 is that it works with real-world services, which

requires realistic test inputs. The workflow requires a total of 14 inputs and 2 of these

inputs are realistic (ZIP codes). The other inputs are user generatable shipping options

such as mail type, delivery type, box weight and dimensions. The realism of CS2 is

1The source code available at http://www0.cs.ucl.ac.uk/staff/M.Bozkurt/files/public/complex source.zip

6.3. Empirical Studies 200

also strengthened by the fact that the ZIP codes used in this study are generated from

existing web services. The flow graph for the workflow is depicted in Figure 6.3 and

the 14 web services invoked are presented in Table 6.5.

As discussed, one of the advantages of ATAM is its ability to generate test data

based on the reliability of the test data source. In order to carry out our experiments,

we needed to measure the reliability of the services we used for generating test in-

puts. However, this was not possible for some of the services we used due to access

restrictions. In order to overcome this limitation and to increase the realism of our case

studies, we need real-world reliability scores. Thus, we measured the reliability of 8

publicly available existing services, presented in Table 6.1.

Service Type Number of errors Reliability Score
USPS.com ZIP code validation 0 0.999
Websitemart.com ZIP code validation 3102 0.744
Zip-codes.com ZIP code validation 50 0.995
Webservicesx.com ZIP code validation 727 0.939
NOOA.gov Weather service 410 0.965
Myweather2.com Weather service 146 0.987
CYDNE.com Weather service 1218 0.899
Weatherbug.com Weather service 550 0.954
Webservicesx.com State ZIP code info 727 0.939

Table 6.1: The list of the services used in determining the real-world reliability scores
used in our experiments. Services in the list are tested with 12171 ZIP codes belong
to 23 U.S. States. The USPS service on the list is accepted as the ground truth for the
validity of the ZIP codes. The rest of the ZIP validation services are evaluated with the
generated ZIP codes to observe if they correctly identify given ZIP codes’ validity. As
for the weather services, we observed if they return weather information only for the
valid ZIP codes.

There are three main reasons that led us to choose these services for this part of

our experiments:

1. The public availability and having no access restrictions, evidently supporting

replication.

2. Requiring the same input that can be validated using a service which can be

accepted as the ground truth.

6.3. Empirical Studies 201

3. Similar functionality of services allowing determination of the expected output.

Figure 6.3: Flowchart of the second case study

The services in the list are categorised into two main groups based on their func-

6.3. Empirical Studies 202

tionality; ZIP code verification services and weather services. Verification services

check if a given 5-digit US ZIP code is valid. Weather services provide current weather

information for a given ZIP code.

Services in the list were tested using 12171 ZIP codes of 23 different U.S. states.

The ZIP codes used in reliability analysis are generated using the the 9th service from

Table 6.1. The USPS service in the table is accepted as the ground truth for the validity

of the ZIP codes. As a result, the number of errors observed for this service is set to

0 and its reliability score is set to the highest reliability score: 0.999. The rest of the

ZIP validation services are evaluated with the generated ZIP codes to observe whether

they correctly identify the given ZIP code’s validity. As for the weather services, we

only considered the valid ZIP codes in order to maintain consistency and checked if

they return weather information for all valid ZIP codes. For the reliability of the last

service, we simply counted the number of invalid ZIP codes from the generated outputs.

Input Reliability
Positive Negative

A 0.999 0.744
B 0.995 0.939
C 0.965 0.987
D 0.899 0.954
E 1.0 1.0
F 1.0 1.0

Table 6.2: Reliability values used in the 3-objective evaluation of CS1. Positive and
negative values for each input are assumed to be generated by a single web service
with the given reliability on the list. The last two inputs are assumed to be human
generated thus their reliability scores are 100%.

After acquiring the reliability scores, we generated test inputs for both case studies.

As for the test inputs, Complex does not require realistic inputs, but requires 6 integer

numbers which can be automatically generated. As a result, we did not use ATAM

in generating test inputs for CS1. Instead, we generated the required test inputs using

a random number generation method. However, in order to maintain consistency in

our experiments, we also evaluated the 3-objective formulation of our approach on

CS1. Thus, we needed to generate a fictional scenario where inputs are generated using

6.3. Empirical Studies 203

different services such as the Random.org integer generator [267]. In this scenario, we

assumed that the positive and negative values for each of the first four inputs (A to

D) are generated using 8 different services. We assigned 8 of the measured reliability

scores to these services as presented in Table 6.2.

For CS2 we determined 3 web service compositions, as presented in Table 6.3,

to generate ZIP codes. The services and test inputs used in evaluating this case study

are real-world entities. However, we were unable to measure the actual reliabilities of

the three services in the first composition due to access restrictions. As a result, we

assigned 3 of the reliability scores from Table 6.1 to the 3 services in the first compo-

sition (in Table 6.3) and used these scores in the combined reliability score calculation

of this composition.

Service Reliability
Publisher Input(s) Output Individual Combined

1
Google Search Keyword Search result 0.999
Strikeiron Http address IP address 0.744 0.881
FraudLabs IP address US location 0.899

2 Codebump.com – US state names 0.954
0.947

Webservicesx US state name ZIP code 0.939
3 Webservicesx US area code ZIP code 0.899 0.899

Table 6.3: Web service compositions used in generating ZIP codes. Individual relia-
bility scores represent the scores for each service and combined scores represent the
reliability of the composition. The combined score of a composition also determines
the reliability scores of inputs generated using this composition.

The other needed artefact is the cost of invoking services. This raises the issue

of how to choose realistic values for this characteristic. In Chapter 5, we discussed

this issue of generating realistic invocation cost values for the services used in the

experiments and presented a solution where realistic costs values are obtained using

costs of existing services as a basis. We adopted the same approach again and used the

cost values from Table 5.1.

The real-world web service we used in CS1 is a free-to-use web service and pro-

vides 4 of the services used in this case study. Unfortunately, the free services presented

challenges for maintaining consistency especially on CS1 due to these services being

the most invoked services. This problem had an impact on our experiments using a

6.3. Empirical Studies 204

per-use payment plan, causing most of the test cases having the same execution cost

even though there were large differences in the number of the services invoked. As a

result, we assigned the invocation cost values presented in Table 6.4 to the services in

CS1.

Service PriceNo Description
1 Multiplication $0.300
2 Division $0.300
3 Logical AND $0.165
4 Logical OR $0.160
5 Greater Than $0.020
6 Less Than $0.020
7 Equal To $0.017
8 Subtract $0.010
9 Add $0.005

Table 6.4: The invocation costs for the services used in CS1.

For CS2, we used a combination of real service costs (for free to use services) and

synthetically generated values (using the same method adopted in CS1) as presented in

Table 6.5.

Service PriceNo Name Description
1 WebserviceMart ZIP code verification Free
2 WebServicesx ZIP code info $0.090
3 Bike messenger 1 Find bike messenger for CA, NY, WA $0.008
4 Bike messenger 2 Find bike messenger for FL, MD, TX $0.007
5 Bike messenger 3 Find bike messenger for all other states $0.007
6 WebServicesx ZIP code distance $0.020
7 USPS Get delivery price Free
8 Fedex Get delivery price Free
9 TNT Get delivery price Free

10 DHL Get delivery price Free
11 UPS Get delivery price Free
12 Payment system get card payment $0.30
13 Label system print mail label $0.017
14 Courier finder find courier $0.010

Table 6.5: Invocation costs for the services used in CS2.

6.3.2 Research Questions

We ask the following three questions:

6.3. Empirical Studies 205

RQ1 Can multi-objective test suite minimisation reduce the testing cost by finding

optimal test suite subset(s) for ScST?

RQ2 Is using a test suite with low reliability (containing invalid inputs) likely to gen-

erate false positives which might increase the testing cost?

RQ3 Can HNSGA-II algorithm discover dominating solutions compared to NSGA-II

and the additional greedy algorithm in our problem?

6.3.3 Method of Investigation

In order to answer RQ1, we applied our minimisation technique to both of the case

studies. Initially, we tried to randomly generate a test suite that achieves 100% branch

coverage for each case study. However, we experienced two issues while using random

test generation. It was found to be ineffective in achieving full coverage in CS2 and

many of the generated test cases cover exactly the same branches as another test case

(equivalent test cases). For CS1 the test suite reached 100% coverage after 1000 test

cases and for CS2, test cases covering 3 of the branches (where two ZIP codes of the

same city are required) could not be randomly generated within several thousand tries.

As a result, we manually generated 4 test cases that cover the uncovered branches in

CS2 and applied a simple test case reduction technique to eliminate equivalent test

cases.

The resulting test suite sizes were 50 test cases for CS1 and 100 test cases for CS2.

The details of both test cases are presented in Table 6.6. We applied our approach to

both of the test suites and measured the minimisation rates achieved by our approach

for two different respects: reduction in the number of test cases and reduction in the

test cost for both payment models.

Experiment Test suite size Coverage Service invocations Cost
CS1 50 100% 29760 $1302.90
CS2 100 100% 693 $212.45

Table 6.6: Details of the test suites generated for CS1 and CS2.

6.4. Results and Analysis 206

The main reason for seeking the answer to RQ2 is to investigate our assumption

that there is a need for reliable test suite. In order to answer RQ2, we measured the

false positives occurred during testing of the four weather information services. In

this scenario, a false positive occurs when one of the four services returns a negative

response to the given ZIP code which is identified as ‘invalid’ by USPS service.

In order to answer RQ3, we evaluated the generated pareto fronts from two dif-

ferent aspects. First, we ran greedy, NSGA-II and HNSGA-II2 with all possible com-

binations of configurations (both payment plans and both number of objectives) in our

approach for both case studies and performed a domination analysis to compare the per-

formance of the algorithms. We also measured the distances between discovered pareto

fronts to give us a better understanding of the differences between the fronts. The dis-

tance metric we used (Υ) is described in Chapter 5. In this part of the experiment, we

used the pareto front generated by HNSGA-II as a reference front and measured the

distance of the pareto front generated by NSGA-II to it.

6.4 Results and Analysis
In this section, we present the results from our experiments, provide answers to the

research questions and discuss the threats to the validity of the results from experiments

we conducted.

6.4.1 Results

We analysed the results of test suite reduction after the application of our approach to

the initial test suites for both case studies in three different aspects. The first aspect is

the reduction in number of test cases while retaining the branch coverage of the subject.

As presented in Table 6.7, our approach achieved 84% reduction in the number of test

cases for CS1 and 68% reduction for CS2.

During the experiments, we also found that only 12% of the test cases for CS1 and

34% of the test cases for CS2 in the initial test suites found out to be equivalent test

cases. This is an important finding that justifies the diversity of the initial test suites, it

2We ran NSGA-II and HNSGA-II for 10 times in order to statistically evaluate their performance.

6.4. Results and Analysis 207

also provides evidence for the effectiveness of our approach, since the reduction rates

are higher than the equivalent test case rates.

Experiment
Number of Test Cases

Test Suite Our approach Reduction
CS1 50 8 84%
CS2 100 32 68%

Table 6.7: Reduction in the number of test cases with the application of our approach.
The results from our approach are the minimum number of test cases from the initial
test suite that provide 100% branch coverage.

The second aspect is the reduction in the number of service invocations. This as-

pect relates to the testing cost when using a contract-based payment plan. Our approach

in this case targeted for finding the minimum number of service invocations required

to achieve 100% branch coverage. As presented in Table 6.8, our approach found a

solution that reduces the number of invocations from 29760 to 415 for CS1 achieving

98.6% reduction while retaining the branch coverage of the test suite. As for CS2, our

approach achieved a 72% reduction in the number of service invocations.

Experiment
Cost (contract based)

Test Suite Our approach Reduction
CS1 29760 415 98.6%
CS2 693 197 72%

Table 6.8: Reduction in the number of service invocations with the application of our
approach. The number for test suite represents the number of service invocations per-
formed by executing the initial test suite. The results from our approach are the mini-
mum number of invocations necessary to achieve 100% branch coverage.

Experiment
Cost (per-use based)

Test Suite Our approach Reduction
CS1 $1302.90 $19.86 98.5%
CS2 $212.45 $65.99 69%

Table 6.9: Reduction in the number of service invocations with the application of our
approach. The number for test suite represents the number of service invocations per-
formed by executing the initial test suite. The results from our approach are the mini-
mum number of invocations necessary to achieve 100% branch coverage.

6.4. Results and Analysis 208

The third aspect is the reduction in the monetary cost of testing. This aspect relates

to the testing cost when using a per-use payment plan. Our approach in this scenario

seeks to find the set of test cases with the least expensive execution cost and achieves

100% branch coverage. As presented in Table 6.9, our approach found a solution that

reduces the total cost of testing from $1302.90 to $19.86 for CS1 achieving 98.5% re-

duction while retaining the branch coverage of the test suite. As for CS2, our approach

achieved a 69% reduction in the total cost of testing.

A general assumption was that one might expect our approach to achieve the same

or very similar reduction rates for contract-based plan and the per-use plan. However,

the results from Table 6.8 and Table 6.9 suggest that this assumption might not hold

in all cases. According to the results, in the case of CS1, the difference between the

reduction rates is minor. However, for CS2 the difference is significantly higher.

In order to answer RQ2, we investigated the false positives generated by the 727

ZIP codes which are identified as invalid by the USPS web service. We tested all

the weather services with invalid ZIP codes in order to observe whether they cause a

false positive. In this scenario, a false positive occurs when a service does not return a

weather information for an invalid ZIP code.

Service Type False Positives FP Rate Error Rate
NOOA.gov Weather service 232 0.32 0.035
Myweather2.com Weather service 1 0.0014 0.013
CYDNE.com Weather service 493 0.68 0.101
Weatherbug.com Weather service 196 0.27 0.046

Table 6.10: The list of false positives caused by erroneous test inputs. In this scenario,
a false positive occurs when one of the four services return a negative response to the
given ZIP code which is identified as ‘invalid’ by USPS service. Values in ‘FP rate’
column represent the false positive generation rate for invalid inputs. The values in
‘Error rate’ column represent the erroneous output generation rates for the test cases in
the test suite.

As it is presented in Table 6.10, there is a big variance in the number of false

positives generated by the weather services. We believe this variance might be caused

by weather services having ZIP code databases (or using an external ZIP code ser-

6.4. Results and Analysis 209

vice) from different sources. For example, ‘MyWeather2’ service might be using a

database which is very similar to the service (Webservicesx) we used in generating the

ZIP codes. However, for the other weather services, we observed a much higher false

positive rate. For example, for the ‘NOAA’ service, the tester needs to check the test

results for 232 ZIP codes and verify each of these ZIP codes if they used this test suite.

There is also another interesting result observed in Table 6.10: an invalid ZIP code

is more likely to generate a false positive than a valid one to cause an erroneous output.

For all services except one, the false positive rate is much higher than error rate.

One other important finding we need to discuss in this analysis is that none of the

services generated the all 727 false positives we expected to observe. Only 561 of the

invalid ZIP codes caused a false positive and for the remainder of the codes the weather

services returned a valid response. We believe this is a further indication that supports

our claim regarding weather services not using up-to-date ZIP code databases/services.

Experiment
Contract Per Use

n
HNSGA-II NSGA-II

n
HNSGA-II NSGA-II

Avg. σ Avg. σ Avg. σ Avg. σ
CS1 (2 obj.) 23.0 0.5 0.67 1.5 1.43 23.0 0.1 0.3 1.0 1.48
CS2 (2 obj.) 32.7 22.2 1.89 0.3 0.46 32.3 25.1 2.98 0 0
CS1 (3 obj.) 201.8 14.8 3.68 25.1 7.88 204.6 15.8 4.29 23.6 4.03
CS2 (3 obj.) 238.9 212 6.03 1.0 1.18 241 209 10.14 0.7 0.71

Table 6.11: Results from our domination analysis. The column ‘n’ represents the av-
erage size of the discovered pareto fronts. ‘Avg.’ column for each algorithm represents
the average number of dominating solutions discovered by the algorithm. The results
lead to two important findings that NSGA-II and HNSGA-II’s performances are similar
for problems in which greedy algorithm does not outperform NSGA-II (such as CS1).
However, for problems (such as CS2) where greedy outperforms NSGA-II, HNSGA-II
outperforms NSGA-II.

The results from the domination analysis (presented in Table 6.11) revealed results

that conform with the analysis of Yoo and Harman [372]. Our first finding came from

the results of CS1 that NSGA-II might outperform HNSGA-II (by a small margin)

where additional greedy algorithm cannot outperform NSGA-II (as depicted in Figure

6.4, 6.7 and 6.9). We believe this is due to HSNGA-II starting with a good initial

population, leading it to discover solutions around this set whereas NSGA-II explored

6.4. Results and Analysis 210

a larger space using random population. However, as can be observed in Figure 6.4, 6.5

6.6 and 6.8, the majority of the solutions discovered by both algorithms are the same.

(a) Contract-based payment plan (b) Per-use payment plan

Figure 6.4: Pareto fronts discovered from the 2 objective optimisation of CS1

(a) Contract-based payment plan (b) Per-use payment plan

Figure 6.5: Pareto fronts discovered from the 2 objective optimisation of CS2

On the other hand, the results of CS2 provide evidence for the improvements

HNSGA-II can provide for problems in which greedy outperforms NSGA-II. The re-

sults from both 2- and 3-objective runs indicate that HNSGA-II outperforms NSGA-II

by a high margin. For example, on average, 68% of the discovered solutions with 2 ob-

jectives for CS2 (contract-based plan) dominate NSGA-II and the domination rate goes

up to 89% for the same scenario with 3 objectives. A similar trend was also observed

for other configurations of CS2.

6.4. Results and Analysis 211

Figure 6.6: 3 objective optimisation for CS1 with per-use payment plan

Figure 6.7: Projected view of Figure 6.6 focusing on the solutions with 100% coverage
score.

6.4. Results and Analysis 212

Figure 6.8: 3 objective optimisation for CS1 with contract-based payment plan

Figure 6.9: Projected view of Figure 6.8 focusing on the solutions with 100% coverage
score.

6.4. Results and Analysis 213

Figure 6.10: 3 objective optimisation for CS2 with per-use payment plan

Figure 6.11: Projected view of Figure 6.10 focusing on the solutions with 100% cover-
age score.

6.4. Results and Analysis 214

Figure 6.12: 3 objective optimisation for CS2 with contract-based payment plan

Figure 6.13: Projected view of Figure 6.12 focusing around the solutions with 100%
coverage score.

6.4. Results and Analysis 215

The results revealed that the difference between the generated pareto fronts are not

as high as presented in Table 6.12. Before the analysis, we expected the results to have

a direct relation with the number of dominant solutions discovered. Our assumption

was that the higher the number of dominant solutions, the higher the distance between

the pareto fronts must be. The results from the analysis did not validate this assump-

tion. However, the results provide evidence for the fact that for problems in which

NSGA-II outperforms greedy, NSGA-II discovers solutions further from HNSGA-II.

This can be observed in Figure 6.6 and 6.8 (a closer look of the high coverage areas

of these two figures are depicted in Figure 6.7 and 6.9), where NSGA-II discovered

solutions (especially around 100% coverage) that are far from the solutions discovered

by HNSGA-II.

Experiment
Contract Per Use

Average σ Average σ
CS1 (2 objectives) 0.6999 0.71219 0.0353 0.05036
CS2 (2 objectives) 5.4224 1.83578 0.9128 0.24409
CS1 (3 objectives) 4.5524 2.28092 0.07 0.08572
CS2 (3 objectives) 1.521 0.42198 0.4014 0.11026

Table 6.12: The average distances between the pareto fronts generated by both algo-
rithms. Both algorithms are run 10 times and the average Euclidean distance between
pareto fronts are measured using the distance metric Υ discussed in the previous chap-
ter.

The distances (between discovered fronts) depicted in figures mentioned here

might not accurately represent the actual distance between the solutions due to cost

values being normalised. The cost values (for both per-use and contract-based) are nor-

malised in order to fit all discovered fronts into a single graph. However, the distances

provided in tables are based on the calculations with the actual cost values and reflect

the real distances between fronts.

The results provide evidence for the effectiveness of HSNGA-II over both NSGA-

II and greedy algorithm. For example, results from Figure 6.11 and 6.13 clearly indicate

that HNSGA-II can match greedy’s performance for problems in which greedy discov-

ers a pareto front close to optimum front and can outperform NSGA-II. On the other

6.4. Results and Analysis 216

hand, results from Figure 6.7 and 6.9 indicate that for problems in which greedy can

outperform NSGA-II, HNSGA-II also can outperform greedy by matching NSGA-II’s

performance.

6.4.2 Answers to Research Questions

The results from our experiments provide evidence for the effectiveness of our approach

in testing cost reduction using multi-objective algorithms and answered RQ1. For both

case studies, our approach achieved high reduction rates, with up to 84% reduction in

the size of test suite and up to 99% reduction in the testing cost (for both payment

plans) while retaining the coverage of the initial test suite.

With regards to RQ2, the results provide evidence for the fact that invalid inputs

have a significant possibility of generating a false positive which might increase the

testing cost in ScST. The observed false positive generation rates during the experi-

ments were high (varying between 27% to 68%) for all the services we analysed except

for one where the rate was 0.0014. The results also suggest that an invalid input is

more likely to cause a false positive than the possibility of a realistic input causing an

erroneous output in ScST.

As for RQ3, the results provide evidence for the fact that HNSGA-II performance

is highly related to the performance of greedy algorithm. Since HNSGA-II executes the

same NSGA-II algorithm for problems in which NSGA-II outperforms greedy (such as

CS1), it performs similarly to NSGA-II. However, for the problems in which greedy

outperforms NSGA-II, we observe the real benefit of HNSGA-II. The evidence for

this claim came from the results of CS2, for both payment plans greedy discovered a

very good set of solutions and HNSGA-II could not discover better results and resulted

with the same pareto front. The advantage of using HNSGA-II is that it can match the

performance of the best performing algorithm (out of the two) in any scenario, while

outperforming the other one.

6.4. Results and Analysis 217

6.4.3 Threats to Validity

In the experiments, the most important external threat which limits the general appli-

cability of the proposed approach is the test subjects representing real-world scenarios.

This concern is especially important for synthetic cases studies. Although the ScS used

in our experiments are synthetic examples, they are implemented merely to orchestrate

the selected existing web services. Thus, these synthetic services definitely represent

one of the possible orchestrations of these aforementioned services.

The other threat is the concept of test input reliability which is based on the re-

liability of the services used in generating it. The concept of service reliability, its

formulation and threats regarding it were discussed in detail in Chapter 5.

The internal threats which might have affected the results obtained are:

1. Coverage measurement: We used a manual instrumentation method to measure

the coverage scores of test cases. However, the correctness of the instrumentation

was verified using the coverage measurement plug-in provided by Netbeans IDE.

2. Service reliability measurements: The most important factor that might affect the

obtained reliability scores is our use of USPS as the ground truth for ZIP code

validation. However, we believe that USPS must use one of the most up-to-date

ZIP code databases since it is one of the government bodies that is responsible

for address standardisation in the U.S.

3. Price measurements: Actual invocation prices of some of the services used in the

experiments were not available to the authors during the experiments. As a result,

the authors are forced to assign the invocation prices obtained for the experiments

presented in Chapter 5 to these services. Despite not being the actual prices of

these services, we believe they can serve a basis for a realistic scenario since they

are real-world prices.

6.5. Conclusion 218

6.5 Conclusion
In this chapter, we introduced a solution aimed at reducing the runtime testing cost in

ScST by using multi-objective optimisation, and presented an experimental study that

investigated the relative effectiveness of proposed approach. We also investigated the

HNSGA-II algorithm and compared its effectiveness in ScST against the other two well

known algorithms (NSGA-II and greedy) used in test suite minimisation. In this part

of our research agenda, we focused on the cost of runtime testing, branch coverage

of the test suite and test suite reliability as our three primary objectives. The results

provide evidence for the applicability and the effectiveness of the approach to ScS. Our

approach achieved high reduction rates in both case studies with all possible payment

plans without reducing the coverage of the test suite. The results also affirm the benefits

of using HNSHA-II over NSGA-II especially for certain problems.

Chapter 7

Conclusion

7.1 Summary of Achievements
The two main goals of this thesis were automating the generation of realistic test inputs

and reducing the cost of testing in ScST. Cost reduction was addressed at two different

levels: test data generation level and runtime level. The details of each goal are as

follows:

1. To automate generation of realistic test inputs using ScTDG, which is achieved

through the exploitation of the existing web services.

2. To reduce cost at test data generation level through the multi-objective formu-

lation of the objectives at this level. This enables the tester to select low cost

test cases and make trade-offs in test data source selection based on different

QoS characteristics. To provide further cost reduction by minimising the human-

oracle cost by enabling testers to select and use more reliable data sources.

3. To reduce testing cost at runtime level by adapting traditional multi-objective test

suite minimisation to ScST by formulating the ScST concerns.

7.1.1 Automated Realistic Test Input Generation

Automated test data generation is one of the major goals of automated software testing.

Many different techniques such as random generation and search-based techniques are

used for automating this process. These techniques are effective in generating inputs for

7.1. Summary of Achievements 220

systems such as embedded systems and control systems. However, their effectiveness is

very limited when it comes to generating data for other systems, such as online systems.

This limitation is caused by the fact that many online systems require test inputs that

are not only correctly formed according to structural rules, but also contain semantics

that ties them to real-world entities. The challenge in automation of these inputs is

posed by the latter requirement.

Test data generation for ScS was performed using the available service specifi-

cations such as WSDL and OWL-S. Existing WSDL-based test data generation ap-

proaches [16, 20, 29, 130, 185, 201, 235, 295] combine XML data information and

domain knowledge to generate valid and ‘more realistic’ test inputs. Even though these

approaches can generate structurally valid test inputs, they cannot generate semantic re-

alism. Ontology based approaches [17, 77, 326, 338] also fail in the aspect of semantic

realism.

With the introduction of services, SOA and concepts such as Data as a Service,

data is becoming easily accessible to consumers [91]. SOA enables the automation

of finding and accessing the data source. This thesis considered existing services as

sources of realistic test inputs and proposes their use for the automation of realistic test

data generation.

This thesis proposed a new technique called ScDTG. In ScTDG, compositions

of existing services which can provide the required realistic inputs are discovered and

invoked in an automated fashion. The automation aspect of ScTDG helps reduce de-

pendence on existing data and the need for tester input. The technique also brings

benefits such as tester specified test data generation and reduction in human-oracle

cost. The empirical study provides evidence for the feasibility of the technique and its

effectiveness.

7.1.2 Multi-objective Data Source Selection

One of the factors that contribute to the overall testing cost is the cost of test data

generation. This cost is often associated with the effort it takes in manual test data

7.1. Summary of Achievements 221

generation and/or the time it takes to generate the test data in automated generation

[162]. However, when the tester uses ScTDG, the cost of manual effort is replaced

by the monetary cost of invoking services. There are also other concerns in ScTDG,

such as reliability of test data (based on its source), response time of services and

availability of services, that might affect the test data generation process. Consider a

situation where the tester has to use services with high response time which determines

the test data generation time. In this case, he/she might prefer to use the services with

low response time in order to reduce the total test data generation time.

As with many real-world situations, it is safe to assume that the tester will end up

dealing with multiple objectives in ScTDG. Thus, he/she will want to be able to select

and use services based on multiple criteria. This thesis formulates service selection

problem in ScTDG as a multi-objective optimisation problem using the mentioned ob-

jectives: cost, reliability, response time and availability. The tester also benefits from

the pareto-optimality of the approach which enables him to observe the trade-offs be-

tween objectives and to make a more informed decision based on his preferences. The

empirical study provides evidence for the ability of the approach to discover solution

sets very near optimal pareto fronts and the benefits it provides even in problems with

small solution sets, such as reduced execution time.

7.1.3 Cost-aware Test Suite Minimisation

According to the literature, one of the limitations in ScST is the cost that is associated

with invoking services. Existing approaches that address this problem offer solutions

such as simulated testing and the use of stub/mock services. However, these approaches

do not eliminate the need for runtime testing where ScS tested with real service invo-

cations.

The literature also suggests that one of the well-known ways of reducing the cost

of testing is test suite minimisation [374]. Even though the cost (of a test case) is often

regarded as the execution time in existing work, this thesis replaces this notion with the

invocation cost of services. The thesis introduces the concept of cost-aware test suite

7.2. Future Work 222

minimisation in ScST. The proposed approach is a multi-objective formulation of the

problem which also considers other concerns such as test suite reliability and coverage.

The approach enables the tester to make trade-offs between objectives due to its pareto-

optimality. The empirical study provides evidence for the ability of the approaches to

reduce the cost of testing while retaining branch coverage. The results also provide ev-

idence to its ability to discover highly reliable test suites without increasing the testing

cost.

7.2 Future Work
This section describes the future research direction where exactly the solutions de-

scribed in this thesis can be extended.

7.2.1 ATAM as a Test Data Generator

An automated realistic test data generator is a goal not yet accomplished. The existing

tools require too much manual effort and remains highly dependent on existing accessi-

ble test data sources. Unfortunately, these approaches might not be sufficient for testing

ScS. What is required is a tool that is capable of generating realistic data and that can

also be used in professional testing environments. ATAM was developed to fill this

gap. Although ATAM helped automate realistic test data generation in experimental

analysis, it does not fulfil the latter requirement.

As mentioned in Chapter 4, ATAM is designed as a prototype tool and does not

support all possible service interactions and web service specifications. There are three

major improvements needed to be implemented in order to make ATAM a complete

testing tool: The first needed improvement is the redesign of the UI in order to make

ATAM capable of representing services with multiple inputs and services that provide

inputs for multiple services. The new design will also need to incorporate the missing

functionality in the existing version such as dynamic constraint window building based

on the structure of the data ontology and a more expressive data window for service

groups. The second important addition is the support of all service specifications such

as WSDL-S and especially Web Application Description Language (WADL), which is

7.2. Future Work 223

commonly used for describing RESTful services. The increase in the acceptance of

REST among data services makes this improvement a top priority. The third improve-

ment is the addition of full support for RDF. This addition combined with its OWL

support will make ATAM compatible with most existing ontologies. The aforemen-

tioned additions are the first step in making ATAM a complete test data generator.

7.2.2 Pareto-optimal Service Composition Problem

Selection of optimal set of services is one of the major goals in automated service com-

position. Almost all of the existing approaches consider global composition constrains

as hard goals that needs to be fulfilled. However, they are divided into two main cat-

egories when it comes to the level where optimisation is applied [10]. The first group

applies optimisation at the global level, whereas the other group suggest optimisation

at the local level. However, we believe that these approaches are not well suited to ex-

treme changes in the QoS where a solution that fulfils the global requirements cannot

be found. Ardagna and Pernici [10] address this issue by integrating the concept of

QoS negotiation into the composition process. Unfortunately, the negotiation process

cannot always guarantee a solution.

In the human decision process, it is important to see trade-offs between differ-

ent solutions [103]. In order to make a more informed decision in multiple-criteria

problems, humans often look at the improvements and decrements and assess their im-

portance based on their situation. Unfortunately, at present the “optimal solution” in

service composition is only based on the calculation of a few given QoS constraints.

Existing work expects that the given constraints are good for any situation and expect

the developer to specify these constraints. However, it is safe to assume that in an ideal

composition process, the developer might expect to see the behaviour of the systems

in situations where a composition fulfilling the given constraints cannot be found and

specify some actions for those cases.

In order to address this problem, we propose the integration of human decisions (in

the form of an oracle) from a range of possible scenarios into service composition prob-

7.2. Future Work 224

lem especially targeting extreme situations. Decision oracles could be generated using

the developer’s decisions in various situations. The decisions will be collected from the

training session where the developer is asked to choose the composition of their choice

from the pareto-optimal solutions of different extreme QoS scenarios. The QoS scenar-

ios used in training can be generated from existing trends in order to make the scenarios

more realistic. This approach might also increase the developer’s confidence by defin-

ing the expected composition in extreme situations. The proposed approach will be an

extension of the work presented in Chapter 5 as it will benefit from its experiences and

use its service selection framework.

7.2.3 Need for Test Suite Prioritisation

Selecting the execution order of the test cases can be as important as selecting the right

test cases in many testing scenarios. Ordering is especially important if the tester is

unsure if he/she will be able to execute all test cases in the time allocated for testing.

As a result, the tester will want to run the most important/effective test cases as early as

possible in order to get maximum benefit. Test case prioritisation seeks to find the ideal

ordering of the test cases in order to maximise testing benefit if the process is stopped

before the completion [374].

This scenario might occur in ScST where a developer is using a contract-based

payment plan for service invocations. In this case, the testing might need to end after

a certain number of invocations or a certain duration in order to avoid extra charges.

Even though the test suite minimisation technique introduced in this thesis can help

reduce runtime testing cost and help the developer to choose which test cases to run,

there is still a need for the application of test suite prioritisation in ScST.

Hou et al [139] addressed some of these concerns in their multi-objective priori-

tisation approach, however, unaddressed concerns still remain. We believe their ap-

proach does not address two main concerns: assurance for the execution time of the

selected test cases will not be more than the given time slot and execution of the test

cases that cover the untested/selected parts of the SUT as early as possible. A new so-

7.3. Closing Remarks 225

lution targeting these concerns might allow the developer to release their service earlier

and it might be beneficial in projects with fast development cycles.

7.3 Closing Remarks
This thesis aimed at providing solutions to three important problems in ScST and in-

troduced three novel solutions addressing these problems. The evidence acquired from

the experimental analysis supports the hypothesis of using existing web services to

automate realistic test data generation and using multi-objective search algorithms to

reduce testing cost. The experimental results also provided evidence for the effective-

ness of the proposed solutions compared to the state-of-the-art and the feasibility of

their application to real world scenarios. The thesis also provided a roadmap to ScST

researchers. The background information (in Chapter 2) and the analysis of the trends

in ScST (in Chapter 3) might be useful especially to researchers who are new to the

ScST domain.

References

[1] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A systematic

review of the application and empirical investigation of search-based test case

generation,” IEEE Transactions on Software Engineering, vol. 36, pp. 742–762,

November 2010.

[2] Alive Matchmaker. Accessed: 27.07.2012. [Online]. Available: http:

//wiki.bath.ac.uk/display/alivedocs/

[3] N. Alshahwan and M. Harman, “Automated session data repair for web applica-

tion regression testing.” in ICST ’08: Proceedings of the 1st IEEE International

Conference on Software Testing, Verification and Validation. Lillehammer,

Norway: IEEE, April 2008, pp. 298–307.

[4] N. Alshahwan and M. Harman, “Automated web application testing using search

based software engineering,” in ASE ’11: Proceedings of 26th IEEE/ACM Inter-

national Conference On Automated Software Engineering, Lawrence,KS,USA,

November 2011, pp. 3–12.

[5] C. Andrés, M. Cambronero, and M. Núñez, “Passive testing of web services,”

in Web Services and Formal Methods, ser. Lecture Notes in Computer Science,

M. Bravetti and T. Bultan, Eds. Berlin / Heidelberg: Springer-Verlag, 2011,

vol. 6551, pp. 56–70.

[6] Apache Web Services Project - Apache Axis. Accessed: 27.07.2012. [Online].

Available: http://ws.apache.org/axis/

References 227

[7] B. S. Apilli, “Fault-based combinatorial testing of web services,” in OOPSLA

’09: Proceedings of the 24th ACM SIGPLAN conference companion on Object

oriented programming systems languages and applications. Orlando, Florida,

USA: ACM, October 2009, pp. 731–732.

[8] AppLabs. (2007, May) Web services testing a primer. Accessed:

27.03.2012. [Online]. Available: http://www.docstoc.com/docs/4248976/

Web-Services-Testing-A-Primer

[9] Apple iTunes. Accessed: 27.03.2012. [Online]. Available: http://www.apple.

com/itunes/

[10] D. Ardagna and B. Pernici, “Adaptive service composition in flexible processes,”

IEEE Trans. Softw. Eng., vol. 33, no. 6, pp. 369–384, Jun. 2007.

[11] A. Askarunisa, A. M. Abirami, and S. MadhanMohan, “A test case reduction

method for semantic based web services,” in 2010 Second International con-

ference on Computing Communication and Networking Technologies. Karur,

India: IEEE, July 2010, pp. 1–7.

[12] A. Askarunisa, K. Punitha, and A. Askarunisa, “Black box test case prioritiza-

tion techniques for semantic based composite web services using OWL-S,” in

ICRTIT 2011: Proceeding of the International Conference on Recent Trends in

Information Technology. Chennai, India: IEEE, July 2011, pp. 1215–1220.

[13] B. Athira and P. Samuel, “Web services regression test case prioritization,”

in CISIM 2010: Proceedings of the 2010 International Conference on Com-

puter Information Systems and Industrial Management Applications. Kraków,

Poland: IEEE Computer Society, October 2010, pp. 438–443.

[14] C. Atkinson, F. Barth, D. Brenner, and M. Schumacher, “Testing web-services

using test sheets,” in ICSEA ’10: Proceedings of the 5th International Con-

ference on Software Engineering Advances. Nice, France: IEEE Computer

Society, August 2010, pp. 429–434.

References 228

[15] C. Atkinson, D. Brenner, G. Falcone, and M. Juhasz, “Specifying high-assurance

services,” Computer, vol. 41, no. 8, pp. 64–71, Aug. 2008.

[16] X. Bai, W. Dong, W. T. Tsai, and Y. Chen, “WSDL-based automatic test case

generation for web services testing,” in SOSE ’05: Proceedings of the 2006

IEEE International Workshop on Service-Oriented System Engineering. Bei-

jing, China: IEEE Computer Society, Oct. 2005, pp. 207–212.

[17] X. Bai, S. Lee, W. T. Tsai, and Y. Chen, “Ontology-based test modeling and

partition testing of web services,” in ICWS ’08: Proceedings of the 2008 IEEE

International Conference on Web Services. Beijing, China: IEEE Computer

Society, Sept. 2008, pp. 465–472.

[18] X. Bai, Y. Wang, G. Dai, W. T. Tsai, and Y. Chen, “A framework for contract-

based collaborative verification and validation of web services,” in CBSE 2007:

Proceeedings of the 10th International Symposium on Component-Based Soft-

ware Engineering, ser. Lecture Notes in Computer Science, H. W. Schmidt,

I. Crnkovic, G. T. Heineman, and J. A. Stafford, Eds., vol. 4608. Medford,

Massachusetts, USA: Springer, 2007, pp. 258–273.

[19] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Whitening SOA test-

ing,” in ESEC/FSE ’09: Proceedings of the 7th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering. Amsterdam, The Netherlands: ACM,

August 2009, pp. 161–170.

[20] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “WS-TAXI: A WSDL-

based testing tool for web services,” in ICST ’09: Proceedings of the 2nd IEEE

International Conference on Software Testing, Verification and Validation. Den-

ver, Colorado, USA: IEEE Computer Society, 2009, pp. 326–335.

References 229

[21] G. Bechara. (2009, March) What is a reusable service? Accessed:

27.03.2012. [Online]. Available: http://www.oracle.com/technetwork/articles/

bechara-reusable-service-087796.html

[22] F. Belli, A. Endo, M. Linschulte, and A. Simao, “Model-based testing of web

service compositions,” in SOSE ’11: Proceedings of the 2011 IEEE Symposium

on Service-Oriented System Engineering. Irvine, CA, USA: IEEE Computer

Society, December 2011, pp. 13–24.

[23] F. Belli and M. Linschulte, “Event-driven modeling and testing of real-time web

services,” Service Oriented Computing and Applications, vol. 4, pp. 3–15, 2010.

[24] C. Benedetto. (2006, September) SOA and integration testing: The end-to-end

view. Accessed: 27.03.2012. [Online]. Available: http://soa.sys-con.com/node/

275057

[25] A. Benharref, R. Dssouli, M. Serhani, A. En-Nouaary, and R. Glitho, “New ap-

proach for EFSM-based passive testing of web services,” in Testing of Software

and Communicating Systems, ser. Lecture Notes in Computer Science, A. Pe-

trenko, M. Veanes, J. Tretmans, and W. Grieskamp, Eds. Berlin / Heidelberg:

Springer, 2007, vol. 4581, pp. 13–27.

[26] L. Bentakouk, P. Poizat, and F. Zaı̈di, “A formal framework for service orches-

tration testing based on symbolic transition systems,” in TestCom/FATES: 21st

IFIP WG 6.1 International Conference, TESTCOM 2009 and 9th International

Workshop, FATES 2009, Eindhoven, The Netherlands, November 2-4, 2009. Pro-

ceedings, ser. Lecture Notes in Computer Science, vol. 5826/2009. Berlin /

Heidelberg: Springer, November 2009, pp. 16–32.

[27] A. Bertolino, G. De Angelis, L. Frantzen, and A. Polini, “Model-based gener-

ation of testbeds for web services,” in Proceedings of the 8th Testing of Com-

municating Systems and Formal Approaches to Software Testing (TESTCOM/-

References 230

FATES 2008), ser. Lecture Notes in Computer Science, no. 5047. Tokyo, Japan:

Springer, 2008, pp. 266–282.

[28] A. Bertolino, G. De Angelis, and A. Polini, “Automatic generation of test-beds

for pre-deployment QoS evaluation of web services,” in Proceedings of the Sixth

International Workshop on Software and Performance (WOSP 2007). Buenos

Aires, Argentina: ACM, February 2007, pp. 137–140.

[29] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “Automatic test data genera-

tion for XML Schema-based partition testing,” in AST ’07: Proceedings of the

2nd International Workshop on Automation of Software Test. Minneapolis,

Minnesota, USA: IEEE Computer Society, May 2007, pp. 4–.

[30] A. Bertolino and A. Polini, “The audition framework for testing web services

interoperability,” in Proceedings of the 31st EUROMICRO Conference on Soft-

ware Engineering and Advanced Applications (SEAA). Porto, Portugal: IEEE

Computer Society, Aug. 2005, pp. 134–142.

[31] F. Bessayah, A. Cavalli, W. Maja, E. Martins, and A. Valenti, “A fault injection

tool for testing web services composition,” in Testing – Practice and Research

Techniques, ser. Lecture Notes in Computer Science, L. Bottaci and G. Fraser,

Eds. Berlin / Heidelberg: Springer, 2010, vol. 6303, pp. 137–146.

[32] A. Betin-Can and T. Bultan, “Verifiable web services with hierarchical inter-

faces,” in ICWS ’05: Proceedings of the 2005 IEEE International Conference on

Web Services. Orlando, Florida, USA: IEEE Computer Society, July 2005, pp.

85–94 vol.1.

[33] A. Betin-Can, S. Hallé, and T. Bultan, “Modular verification of asynchronous

service interactions using behavioral interfaces,” IEEE Transactions on Services

Computing, vol. PP, p. 1, November 2011.

[34] S. Bhiri, W. Gaaloul, M. Rouached, and M. Hauswirth, “Semantic web services

for satisfying SOA requirements,” in Advances in Web Semantics I, ser. Lecture

References 231

Notes in Computer Science, T. Dillon, E. Chang, R. Meersman, and K. Sycara,

Eds. Berlin / Heidelberg: Springer, 2009, vol. 4891, pp. 374–395.

[35] Bing mobile. [Online]. Available: http://itunes.apple.com/us/app/bing/

id345323231?mt=8

[36] F. Biscotti, Y. V. Natis, and M. Pezzini. (2012, October) Market trends:

Platform as a service, worldwide, 2012-2016, 2h12 update. Gartner. Accessed:

20.11.2012. [Online]. Available: http://my.gartner.com/portal/server.pt?

open=512&objID=202&&PageID=5553&mode=2&in hi userid=2&cached=

true&resId=2188816&ref=AnalystProfile

[37] R. Blanco, J. Garcı́a-Fanjul, and J. Tuya, “A first approach to test case gen-

eration for BPEL compositions of web services using scatter search,” in ICSTW

’09: Proceedings of the 2nd IEEE International Conference on Software Testing,

Verification, and Validation Workshops. Denver, CO, USA: IEEE Computer

Society, 2009, pp. 131–140.

[38] BLAST. Accessed: 27.03.2012. [Online]. Available: http://mtc.epfl.ch/

software-tools/blast/

[39] J. Bloomberg. (2002, September) Web services testing: Beyond SOAP.

Accessed: 27.03.2012. [Online]. Available: http://searchsoa.techtarget.com/

news/article/0,289142,sid26 gci846941,00.html

[40] P. Boonyakulsrirung and T. Suwannasart, “A weak mutation testing framework

for WS-BPEL,” in JCSSE 2011: Proceeding of the 8th International Joint Con-

ference on Computer Science and Software Engineering. Nakhon Pathom,

Thailand: IEEE, May 2011, pp. 313–318.

[41] M. Bozkurt and M. Harman. (2008, August) Finding test data on the web.

Presented at the 2008 Testing: Academic & Industrial Conference (TAIC

PART 2008). [Online]. Available: http://www2008.taicpart.org/FastAbstracts/

camera ready/FastAbstract-11551.pdf

References 232

[42] M. Bozkurt and M. Harman, “Automatically generating realistic test input from

web services,” in SOSE ’11: Proceedings of the 2011 IEEE Symposium on

Service-Oriented System Engineering. Irvine, CA, USA: IEEE Computer So-

ciety, December 2011, pp. 13–24.

[43] M. Bozkurt and M. Harman, “Optimised realistic test input generation using web

services,” in SSBSE 2012: Proceedings of the 4rd International Symposium on

Search Based Software Engineering, G. Fraser and J. Teixeira de Souza, Eds.,

vol. 7515. Riva Del Garda, Italy: Springer Berlin / Heidelberg, September

2012, pp. 105–120.

[44] M. Bozkurt, M. Harman, and Y. Hassoun, “Testing & verification in

service-oriented architecture: A survey,” Software Testing, Verification

and Reliability (STVR), 2012, To Appear. [Online]. Available: http:

//dx.doi.org/10.1002/stvr.1470

[45] A. Bucchiarone, H. Melgratti, and F. Severoni, “Testing service composi-

tion,” in Proceedings of the 8th Argentine Symposium on Software Engineering

(ASSE07), Mar del Plata, Argentina, 2007.

[46] Calculator web service. Accessed: 27.07.2012. [Online]. Available: http:

//www.html2xml.nl/Services/Calculator/Version1/Calculator.asmx?WSDL

[47] M. Campanella, P. Chivalier, A. Sevasti, and N. Simar, Quality of Service Def-

inition, Service Quality across Independently Managed Networks (SEQUIN),

March 2001.

[48] G. Canfora and M. Di Penta, “Testing services and service-centric systems: chal-

lenges and opportunities,” IT Professional, vol. 8, no. 2, pp. 10–17, March 2006.

[49] G. Canfora and M. Di Penta, “SOA: Testing and self-cheking,” in Proceedings

of the International Workshop on Web Services Modeling and Testing (WS-

MaTe2006), A. Bertolino and A. Polin, Eds., Palermo, Italy, June 2006, pp. 3–12.

[Online]. Available: www.selab.isti.cnr.it/ws-mate/WS-MaTe\ Proceedings.pdf

References 233

[50] T.-D. Cao, R. Castanet, P. Félix, and G. Morales, “Testing of web services: Tools

and experiments,” in APSCC 2011: IEEE Asia-Pacific Services Computing Con-

ference. Jeju, Korea: IEEE, December 2011, pp. 78–85.

[51] T.-D. Cao, P. Felix, R. Castanet, and I. Berrada, “Testing web services composi-

tion using the TGSE tool,” in Proceedings of the 2009 Congress on Services - I.

Los Angeles, CA, USA: IEEE Computer Society, July 2009, pp. 187–194.

[52] T.-D. Cao, P. Felix, R. Castanet, and I. Berrada, “Online testing framework for

web services,” in ICST ’10: Proceedings of the 3rd IEEE International Con-

ference on Software Testing, Verification and Validation. Paris, France: IEEE

Computer Society, April 2010, pp. 363–372.

[53] T.-D. Cao, T.-T. Phan-Quang, P. Flix, and R. Castanet, “Automated runtime ver-

ification for web services,” in ICWS ’10: Proceedings of the 2010 IEEE Interna-

tional Conference on Web Services. Miami,FL,USA: IEEE Computer Society,

July 2010, pp. 76–82.

[54] G. B. L. Carlos A. Coello Coello and D. A. V. Veldhuizen, Evolutionary Algo-

rithms for Solving Multi-Objective Problems Second Edition, 2nd ed. Springer

US, 2007.

[55] J. Carroll and D. Long, Theory of finite automata with an introduction to formal

languages. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1989.

[56] G. Carrozza, A. Napolitano, N. Laranjeiro, and M. Viera, “Wsrtesting: Hands-

on solution to improve web services robustness testing,” in LADCW 2011: The

5th Latin-American Symposium on Dependable Computing Workshops. Sao

Jose dos Campos, Brazil: IEEE, April 2011, pp. 41–46.

[57] R. Casado, J. Tuya, and M. Younas, “An abstract transaction model for testing

the web services transactions,” in ICWS 2011: Proceedings of the 9th IEEE

International Conference on Web Services. Washington DC, USA: IEEE, July

2011, pp. 730–731.

References 234

[58] R. Casado, J. Tuya, and C. Godart, “Dependency-based criteria for testing web

services transactional workflows,” in NWeSP 2011: Proceedings of the 7th Inter-

national Conference on Next Generation Web Services Practices. Salamanca,

Spain: IEEE, October 2011, pp. 74–79.

[59] R. Casado, J. Tuya, and M. Younas, “Testing long-lived web services transac-

tions using a risk-based approach,” in QSIC ’10: Proceedings of the 10th Inter-

national Conference on Quality Software. Zhangjiajie, China: IEEE Computer

Society, July 2010, pp. 337–340.

[60] R. Casado, J. Tuya, and M. Younas, “A framework to test advanced web services

transactions,” in ICST 2011: Proceeding of the 4th International Conference on

Software Testing, Verification and Validation. Berlin, Germany: IEE, March

2011, pp. 443–446.

[61] R. Casado, J. Tuya, and M. Younas, “Testing the reliability of web services trans-

actions in cooperative applications,” in SAC ’12: Proceedings of the 27th Annual

ACM Symposium on Applied Computing. Trento, Italy: ACM, 2012, pp. 743–

748.

[62] A. Cavalli, C. Gervy, and S. Prokopenko, “New approaches for passive testing

using an extended finite state machine specification,” Information and Software

Technology, vol. 45, no. 12, pp. 837–852, 2003.

[63] A. R. Cavalli, T.-D. Cao, W. Mallouli, E. Martins, A. Sadovykh, S. Salva, and

F. Zadi, “Webmov: A dedicated framework for the modelling and testing of web

services composition,” in ICWS ’10: Proceedings of the 2010 IEEE Interna-

tional Conference on Web Services. Paris, France: IEEE Computer Society,

April 2010, pp. 377–384.

[64] CBDI Forum. (2002) Accessed: 27.03.2012. [Online]. Available: http:

//www.cbdiforum.com/

References 235

[65] S. K. Chakrabarti and P. Kumar, “Test-the-rest : An approach to testing restful

web-services,” in ComputationWorld 2009 Future Computing Service Compu-

tation Cognitive Adaptive Content Patterns. Athens, Grece: IEEE Computer

Society, July 2009, pp. 302–308.

[66] W. Chan, S. Cheung, and K. Leung, “Towards a metamorphic testing methodol-

ogy for service-oriented software applications,” in Proceedings of the 5th Inter-

national Conference on Quality Software (QSIC 2005). Melbourne, Australia:

IEEE Computer Society, Sept. 2005, pp. 470–476.

[67] D. Chandramohan, S. Jayakumar, S. Khapre, and M. Kishore, “DWSE-simulator

for distributed web service environment,” in ICRTIT 2011: Proceedings of the

2011 International Conference on Recent Trends in Information Technology.

Chennai, India: IEEE, June 2011, pp. 1203–1208.

[68] S. Chandrasekaran, J. Miller, G. Silver, I. B. Arpinar, and A. Sheth, “Composi-

tion, performance analysis and simulation of web services,” Electronic Markets:

The International Journal of Electronic Commerce and Business Media (EM),

vol. 13, no. 2, p. 120132., Nuje 2003.

[69] A. Chaturvedi, “Reducing cost in regression testing of web service,” in CONSEG

2012: Proceedigs of the 6th International Conference on Software Engineering.

Indore, India: IEEE, September 2012, pp. 1–9.

[70] H. Chen, H. Jin, F. Mao, and H. Wu, “Q-GSM: QoS oriented grid service

management,” in Proceedings of the 7th Asia-Pacific web conference on Web

Technologies Research and Development (APWeb 2005). Shanghai, China:

SpringerLink, March 2005, pp. 1041–1044.

[71] L. Chen, Z. Wang, L. Xu, H. Lu, and B. Xu, “Test case prioritization for web

service regression testing,” in SOSE ’10: Proceedings of the 2010 IEEE Inter-

national Symposium on ServiceOriented System Engineering. Loughborough,

United Kingdom: IEEE Computer Society, June 2010, pp. 173–178.

References 236

[72] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new approach

for generating next test cases,” Department of Computer Science, Hong Kong

University of Science and Technology, Tech. Rep. HKUST-CS98-01, 1998.

[73] E. M. Clarke and B.-H. Schlingloff, “Model checking,” in Handbook of Auto-

mated Reasoning, J. A. Robinson and A. Voronkov, Eds. Amsterdam, The

Netherlands: Elsevier Science Publishers B. V., 2001, vol. 2, ch. 24, pp. 1635–

1790.

[74] K. Conroy, M. Grechanik, M. Hellige, E. Liongosari, and Q. Xie, “Automatic

test generation from GUI applications for testing web services,” in ICSM ’07:

Proceedings of the 23rd IEEE International Conference on Software Mainte-

nance (ICSM 2007). Paris, France: IEEE Computer Society, Oct. 2007, pp.

345–354.

[75] CPNTOOLS. Accessed: 27.03.2012. [Online]. Available: http://wiki.daimi.au.

dk/cpntools/cpntools.wiki

[76] U. Dahan. (2006, ,July) Autonomous services and enterprise entity aggregation.

[Online]. MSDN. Accessed: 27.03.2012. [Online]. Available: http://msdn.

microsoft.com/en-us/library/bb245672.aspx

[77] G. Dai, X. Bai, Y. Wang, and F. Dai, “Contract-based testing for web services,” in

COMPSAC ’07: Proceedings of the 31st Annual International Computer Soft-

ware and Applications Conference, vol. 1. Beijing, China: IEEE Computer

Society, July 2007, pp. 517–526.

[78] G. Dai, X. Bai, and C. Zhao, “A framework for model checking web service

compositions based on bpel4ws,” in ICEBE 2007: Proceedings of the IEEE In-

ternational Conference on e-Business Engineering. Hong Kong, China: IEEE

Computer Society, Oct. 2007, pp. 165–172.

[79] L. F. J. de Almeida and S. R. Vergilio, “Exploring perturbation based testing

for web services,” in ICWS ’06: Proceedings of the 2006 IEEE International

References 237

Conference on Web Services. Chicago, IL, USA: IEEE Computer Society,

2006, pp. 717–726.

[80] F. De Angelis, A. Polini, and G. De Angelis, “A counter-example testing ap-

proach for orchestrated services,” in ICST ’10: Proceedings of the 3rd IEEE In-

ternational Conference on Software Testing, Verification and Validation. Paris,

France: IEEE Computer Society, 2010, pp. 373–382.

[81] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist multiob-

jective genetic algorithm: Nsga-ii,” IEEE Trans. Evolutionary Computation, pp.

182–197, 2002.

[82] M. Di Penta, M. Bruno, G. Esposito, V. Mazza, and G. Canfora, “Web services

regression testing,” in Test and Analysis of Web Services, L. Baresi and E. Di

Nitto, Eds. Berlin / Heidelberg: Springer-Verlag, 2007, pp. 205–234.

[83] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno, “Search-based

testing of service level agreements,” in Proceedings of the 9th Annual Confer-

ence on Genetic and Evolutionary Computation (GECCO 2007). London, Eng-

land, UK: ACM, July 2007, pp. 1090–1097.

[84] I. Di Pietro, F. Pagliarecci, and L. Spalazzi, “Model checking semantically an-

notated services,” IEEE Transactions on Software Engineering, vol. 38, pp. 592

– 608, January 2012.

[85] Disjunctive Normal Form. Accessed: 27.03.2012. [Online]. Available:

http://mathworld.wolfram.com/DisjunctiveNormalForm.html

[86] J. J. Domı́nguez-Jiménez, A. Estero-Botaro, A. Garcı́a-Domı́nguez, and

I. Medina-Bulo, “Gamera: An automatic mutant generation system for WS-

BPEL compositions,” in Proceedings of the 7th European Conference on Web

Services (ECOWS’09). Eindhoven, Netherlands: IEEE Computer Society,

November 2009, pp. 97–106.

References 238

[87] W.-L. Dong and H. Yu, “Web service testing method based on fault-coverage,”

in EDOC Workshops: The 10th IEEE International Enterprise Distributed Ob-

ject Computing Conference (EDOC’06). Hong Kong, China: IEEE Computer

Society, Oct. 2006, pp. 43–.

[88] W.-L. Dong, H. Yu, and Y.-B. Zhang, “Testing BPEL-based web service com-

position using high-level petri nets,” in EDOC’06: The 10th IEEE International

Enterprise Distributed Object Computing Conference. Hong Kong, China:

IEEE Computer Society, Oct. 2006, pp. 441–444.

[89] M. Driss, Y. Jamoussi, and H. H. B. Ghezala, “QoS testing of service-based

applications,” in Proceedings of the 3rd IEEE International Design and Test

Workshop (IDT ’08). Monastir, Tunisia: IEEE, December 2008, pp. 45–50.

[90] P. Duvall, S. Matyas, and A. Glover, Continuous integration: improving software

quality and reducing risk. Upper Saddle River, NJ, USA: Addison-Wesley

Professional, 2007.

[91] J. Dyche. (2007, July) Data-as-a-service, explained and defined. Accessed:

24.10.2012. [Online]. Available: http://searchdatamanagement.techtarget.com/

answer/Data-as-a-service-explained-and-defined

[92] ECJ 20. [Online]. Available: http://cs.gmu.edu/∼eclab/projects/ecj/

[93] I. K. El-Far, “Enjoying the perks of model-based testing,” in STARWEST 2001:

Proceedings of the Software Testing, Analysis, and Review Conference, San Jose,

CA, USA, Oct. 2001.

[94] N. El Ioini, “Web services open test suites,” in Proceedings of the 2011 IEEE

World Congress on Services (SERVICES). Washington, DC, USA: IEEE, July

2011, pp. 77–80.

References 239

[95] N. El Ioini and A. Sillitti, “Open web services testing,” in Proceedings of the

2011 IEEE World Congress on Services (SERVICES). Washington, DC, USA:

IEEE, July 2011, pp. 130–136.

[96] M. M. Eler, M. E. Delamaro, J. C. Maldonado, and P. C. Masiero, “Built-in

structural testing of web services,” in SBES ’10: Proceedings of the 2010 Brazil-

ian Symposium on Software Engineering. Salvador, Brasil: IEEE Computer

Society, October 2010, pp. 70–79.

[97] A. T. Endo, M. Linschulte, A. S. Simão, and S. R. S. Souza, “Event- and

coverage-based testing of web services,” in Proceedings of the 2010 Fourth In-

ternational Conference on Secure Software Integration and Reliability Improve-

ment Companion, ser. SSIRI-C ’10. Singapore, Singapore: IEEE Computer

Society, April 2010, pp. 62–69.

[98] A. T. Endo, A. S. Simão, S. R. S. Souza, and P. S. L. Souza, “Web services

composition testing: A strategy based on structural testing of parallel programs,”

in TAIC-PART ’08: Proceedings of the 2008 Testing: Academic & Industrial

Conference - Practice and Research Techniques. Windsor, UK: IEEE Computer

Society, Aug. 2008, pp. 3–12.

[99] A. Endo and A. Simao, “Model-based testing of service-oriented applications

via state models,” in Proceedings of the 2011 IEEE International Conference on

Services Computing (SCC). Washington, DC: IEEE, July 2011, pp. 432–439.

[100] T. Erl, SOA Principles of Service Design. Prentice Hall PTR, 2007.

[101] J. P. Escobedo, C. Gaston, P. Le Gall, and A. Cavalli, “Testing web service

orchestrators in context: A symbolic approach,” in SEFM ’10: Proceedings of

the 8th IEEE International Conference on Software Engineering and Formal

Methods. Pisa, Italy: IEEE Computer Society, September 2010, pp. 257–267.

References 240

[102] ETSI ES 201 873-1. The Testing and Test Control Notation version 3, Part1:

TTCN-3 Core notation, V2.1.1. Accessed: 27.03.2012. [Online]. Available:

http://www.ttcn-3.org/StandardSuite.htm

[103] M. Farina and P. Amato, “A fuzzy definition of “optimality” for many-criteria

optimization problems,” IEEE Transactions on Systems, Man, and Cybernetics,

Part A, pp. 315–326, 2004.

[104] K. Farj, Y. Chen, and N. Speirs, “A fault injection method for testing de-

pendable web service systems,” in ISORC 2012: Proceedings of the 15th In-

ternational Symposium on Object/Component/Service-Oriented Real-Time Dis-

tributed Computing. Guangdong, China: IEEE, April 2012, pp. 47–55.

[105] FedEx Rate Calculator. Accessed: 27.07.2012. [Online]. Available: https:

//www.fedex.com/ratefinder/home?cc=US&language=en&locId=express

[106] M. Felderer, R. Breu, J. Chimiak-Opoka, M. Breu, and F. Schupp, “Concepts

for model-based requirements testing of service oriented systems,” in Software

Engineering, SE 2009. Innsbruck, Austria: IASTED, Mar. 2009, pp. 152–157.

[107] M. Felderer, P. Zech, F. Fiedler, and R. Breu, “A tool-based methodology for sys-

tem testing of service-oriented systems,” in VALID ’10: Proceedings of the 2nd

International Conference on Advances in System Testing and Validation Lifecy-

cle. Nice, France: IEEE Computer Society, August 2010, pp. 108–113.

[108] FIT: Framework for Integrated Test. Accessed: 27.03.2012. [Online]. Available:

http://fit.c2.com/

[109] Flurry.com. [Online]. Available: http://blog.flurry.com/?BBPage=1

[110] J. Fox and J. Borenstein. (2003, March) Semantic discovery for web

services. SOA World Magazine. Accessed: 27.03.2012. [Online]. Available:

http://soa.sys-con.com/node/39718

References 241

[111] L. Frantzen, M. Las Nieves Huerta, Z. G. Kiss, and T. Wallet, “On-the-fly model-

based testing of web services with jambition,” in Web Services and Formal Meth-

ods, ser. Lecture Notes in Computer Science, R. Bruni and K. Wolf, Eds. Berlin,

Heidelberg: Springer-Verlag, 2009, vol. 5387, pp. 143–157.

[112] C. Fu, B. G. Ryder, A. Milanova, and D. Wonnacott, “Testing of java web ser-

vices for robustness,” in ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT

international symposium on Software testing and analysis. Boston, Mas-

sachusetts, USA: ACM, July 2004, pp. 23–34.

[113] D. Fu and G. Chen, “A verification method for web services combination based

on abstract and refinement technology,” in CECNet 2012: Proceedings of the

2nd International Conference on Consumer Electronics, Communications and

Networks. Yichang, China: IEEE, April 2012, pp. 119 – 122.

[114] X. Fu, T. Bultan, and J. Su, “Analysis of interacting BPEL web services,” in

WWW ’04: Proceedings of the 13th international conference on World Wide

Web. New York, New York, USA: ACM, May 2004, pp. 621–630.

[115] H. Gao and Y. Li, “Generating quantitative test cases for probabilistic timed web

service composition,” in Proceedings of the 2011 IEEE Asia-Pacific Services

Computing Conference (APSCC). Jeju, Korea: IEEE, December 2011, pp.

275–283.

[116] H. Gao, H. Miao, S. Chen, and J. Mei, “Probabilistic timed model checking for

atomic web service,” in SERVICES 2011: Proceedings of the 2011 IEEE World

Congress on Services. Washington, DC, USA: IEEE, July 2011, pp. 459 – 466.

[117] J. Garcı́a-Fanjul, C. de la Riva, and J. Tuya, “Generating test cases specifications

for compositions of web services,” in Proceedings of International Workshop

on Web Services Modeling and Testing (WS-MaTe2006), A. Bertolino and

A. Polini, Eds., Palermo, Italy, June 2006, pp. 83–94. [Online]. Available:

www.selab.isti.cnr.it/ws-mate/WS-MaTe\ Proceedings.pdf

References 242

[118] M. Garriga, A. Flores, A. Cechich, and A. Zunino, “Testing-based process for

service-oriented applications,” in Proceedings of the 30th International Confer-

ence of the Chilean Computer Science Society. Curico, Chile: IEEE, November

2011, pp. 64–73.

[119] A. Gill, Introduction to the theory of finite-state machines. McGraw-Hill, 1962.

[120] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, 1st ed. Addison-Wesley Professional, Jan. 1989.

[121] Google search. [Online]. Available: http://itunes.apple.com/us/app/

google-search/id284815942?mt=8

[122] E. Grishikashvili, D. Reilly, N. Badr, and A. Taleb-Bendiab, “From component-

based to service-based distributed applications assembly and management,” in

EUROMICRO ’03: Proceedings of the 29th EUROMICRO Conference. An-

talya, Turkey: IEEE Computer Society, Sept. 2003, pp. 99–106.

[123] J. Grundy, J. Hosking, L. Li, and N. Liu, “Performance engineering of service

compositions,” in SOSE ’06: Proceedings of the 2006 IEEE International work-

shop on Service-oriented software engineering. Shanghai, China: ACM, 2006,

pp. 26–32.

[124] Y. Gu and Y. Ge, “Search-based performance testing of applications with com-

posite services,” in Proceedings of the 2009 International Conference on Web

Information Systems and Mining (WISM 2009). Shanghai, China: IEEE Com-

puter Society, November 2009, pp. 320–324.

[125] Z. Guangquan, R. Mei, and Z. Jun, “A business process of web services testing

method based on uml2.0 activity diagram,” in IITA’07: Proceedings of the Work-

shop on Intelligent Information Technology Application. Nanchang, China:

IEEE Computer Society, Dec. 2007, pp. 59–65.

References 243

[126] N. Guermouche and C. Godart, “Timed model checking based approach for web

services analysis,” in ICWS ’09: Proceedings of the 2009 IEEE International

Conference on Web Services. Los Angeles, CA, USA: IEEE Computer Society,

July 2009, pp. 213–221.

[127] S. Hallé, “Model-based simulation of soapweb services from temporal logic

specifications,” in ICECCS 2011: proceedings of the 16th IEEE International

Conference on Engineering of Complex Computer Systems. Las Vegas, NV,

USA: IEEE, April 2011, pp. 95–104.

[128] S. Hallé, R. Villemaireand, O. Cherkaoui, and R. Deca, “A logical approach

to data-aware automated sequence generation,” Lecture Notes in Computer Sci-

ence, vol. 7050, pp. 192–216, 2012.

[129] L. Hamel, M. Graiet, M. Kmimech, M. T. Bhiri, and W. Gaaloul, “Verifying

composite service transactional behavior with EVENT-B,” in Proceeedings of

the 2011 Seventh International Conference on Semantics, Knowledge and Grids.

Beijing, China: IEEE, October 2011, pp. 99 – 106.

[130] S. Hanna and M. Munro, “Fault-based web services testing,” in ITGN: 5th In-

ternational Conference on Information Technology: New Generations (ITNG

2008). Las Vegas, NV, USA: IEEE Computer Society, April 2008, pp. 471–

476.

[131] M. Harman, “Automated test data generation using search based software en-

gineering,” in AST ’07: Proceedings of the 2nd International Workshop on Au-

tomation of Software Test. Minneapolis, MN, USA: IEEE Computer Society,

May 2007, p. 2.

[132] M. Harman, “The current state and future of search based software engineering,”

in FOSE: Future of Software Engineering 2007 (FOSE ’07), Washington, DC,

USA, May 2007, pp. 342–357.

References 244

[133] M. Harman, “Making the case for MORTO: Multi objective regression test opti-

mization,” in Regression 2011, Berlin, Germany, March 2011.

[134] M. Harman, F. Islam, T. Xie, and S. Wappler, “Automated test data generation

for aspect-oriented programs,” in Proceedings of the 8th ACM international con-

ference on Aspect-oriented software development, ser. AOSD ’09. New York,

NY, USA: ACM, 2009, pp. 185–196.

[135] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha,

S. A. Spoon, and A. Gujarathi, “Regression test selection for java software,”

in OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN conference on Ob-

ject oriented programming, systems, languages, and applications. Tampa Bay,

Florida, USA: ACM, 2001, pp. 312–326.

[136] R. Heckel and M. Lohmann, “Towards contract-based testing of web services,”

in Proceedings of the International Workshop on Test and Analysis of Compo-

nent Based Systems (TACoS 2004), vol. 116, Barcelona, Spain, March 2005, pp.

145–156, proceedings of the International Workshop on Test and Analysis of

Component Based Systems (TACoS 2004).

[137] R. Heckel and L. Mariani, “Automatic conformance testing of web services,” in

FASE 2005: Proceedings of the Fundamental Approaches to Software Engineer-

ing. Edinburgh, Scotland: Springer, April 2005, pp. 34–48.

[138] S. S. Hou, L. Zhang, Q. Lan, H. Mei, and J. S. Sun, “Generating effective test se-

quences for BPEL testing,” in QSIC 2009: Proceedings of the 9th International

Conference on Quality Software. Jeju, Korea: IEEE Computer Society Press,

August 2009, pp. 331–340.

[139] S.-S. Hou, L. Zhang, T. Xie, and J.-S. Sun, “Quota-constrained test-case prior-

itization for regression testing of service-centric systems,” in ICSM ’08: Pro-

ceedings of the 24th IEEE International Conference on Software Maintenance

(ICSM 2008). Beijing, China: IEEE, Oct. 2008, pp. 257–266.

References 245

[140] HP Service Test. Accessed: 27.03.2012. [Online]. Available: http://h71028.

www7.hp.com/enterprise/cache/19054-0-0-225-121.html

[141] H. Huang, W.-T. Tsai, R. A. Paul, and Y. Chen, “Automated model checking and

testing for composite web services,” in ISORC: 8th IEEE International Sym-

posium on Object-Oriented Real-Time Distributed Computing (ISORC 2005).

Seattle, WA, USA: IEEE Computer Society, May 2005, pp. 300–307.

[142] H. Y. Huang, H. H. Liu, Z. J. Li, and J. Zhu, “Surrogate: A simulation apparatus

for continuous integration testing in service oriented architecture,” in IEEE SCC:

2008 IEEE International Conference on Services Computing (SCC 2008), vol. 2.

Honolulu, Hawaii, USA: IEEE Computer Society, July 2008, pp. 223–230.

[143] S.-Y. Hwang, W.-F. Hsieh, and C.-H. Lee, “Verifying web services in a chore-

ography environment,” in SOCA 2011: Proceedings of the 2011 IEEE Interna-

tional Conference on Service-Oriented Computing and Applications. Irvine,

CA, USA: IEEE, December 2011, pp. 1–4.

[144] N. Ibrahim and I. Khalil, “Verifying web services compositions using UPPAAL,”

in Proceedings of the 2012 International Conference on Computer Systems and

Industrial Informatics (ICCSII). Sharjah, UAE: IEEE, January 2012, pp. 1 – 5.

[145] S. Ilieva, I. Manova, and D. Petrova-Antonova, “Towards a methodology for

testing of business processes,” in Proceeding of the 2012 Federated Conference

on Computer Science and Information Systems (FedCSIS). Wrocaw, Poland:

IEEE, September 2012, pp. 1315–1322.

[146] S. Ilieva, V. Pavlov, and I. Manova, “A composable framework for test automa-

tion of service-based applications,” in QUATIC ’10: Proceedings of the 7th

International Conference on the Quality of Information and Communications

Technology. Oporto, Portugal: IEEE Computer Society, 2010, pp. 286–291.

[147] D. C. Ince, “The automatic generation of test data,” The Computer Journal,

vol. 30, no. 1, pp. 63–69, 1987.

References 246

[148] International Data Corporation (IDC). Accessed: 27.03.2012. [Online].

Available: http://www.idc.com/

[149] A. Iskold. (2007, March) Web 3.0: When web sites become web services.

Accessed: 27.03.2012. [Online]. Available: http://www.readwriteweb.com/

archives/web 30 when web sites become web services.php

[150] Java PathFinder. Accessed: 27.03.2012. [Online]. Available: http:

//javapathfinder.sourceforge.net/

[151] K. Jensen, “Coloured petri nets: Status and outlook,” in Applications and Theory

of Petri Nets 2003, ser. Lecture Notes in Computer Science, W. van der Aalst and

E. Best, Eds. Berlin / Heidelberg: Springer, 2003, vol. 2679, pp. 1–2.

[152] JESS rule engine. Accessed: 27.03.2012. [Online]. Available: http:

//www.jessrules.com/jess/index.shtml

[153] Y. Jiang, S.-S. Hou, J.-H. Shan, L. Zhang, and B. Xie, “Contract-based mutation

for testing components,” in ICSM ’05: Proceedings of the 21st IEEE Interna-

tional Conference on Software Maintenance (ICSM’05). Budapest, Hungary:

IEEE Computer Society, Sept. 2005, pp. 483–492.

[154] M. S. Jokhio, G. Dobbie, and J. Sun, “A framework for testing semantic web

services using model checking,” in SEEFM ’09: Proceedings of the 4th South-

East European Workshop on Formal Methods. Thessaloniki, Grece: IEEE

Computer Society, December 2009, pp. 17–24.

[155] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for fault localization,”

in in Proceedings of ICSE 2001 Workshop on Software Visualization, Toronto,

Canada, May 2001, pp. 71–75.

[156] S. Jones, “Toward an acceptable definition of service [service-oriented architec-

ture],” IEEE Software, vol. 22, no. 3, pp. 87–93, May-June 2005.

References 247

[157] L. Juszczyk and S. Dustdar, “Automating the generation of web service testbeds

using aop,” in ECOWS 2011: Proceedings of the 9th IEEE European Conference

on Web Services. Lugano, Switzerland: IEEE, September 2011, pp. 143–150.

[158] L. Juszczyk and S. Dustdar, “Script-based generation of dynamic testbeds for

SOA,” in ICWS ’10: Proceedings of the 2010 IEEE International Conference

on Web Services. Miami, FL, USA: IEEE Computer Society, July 2010, pp.

195–202.

[159] L. Juszczyk and S. Dustdar, “Testbeds for emulating dependability issues of mo-

bile web services,” in SERVICES ’10: Proceedings of the 6th World Congress on

Services. Miami, FL, USA: IEEE Computer Society, July 2010, pp. 683–686.

[160] JXML2OWL Project. Accessed: 27.03.2012. [Online]. Available: http:

//jxml2owl.projects.semwebcentral.org/

[161] H. Kacem, W. Sellami, and A. Kacem, “A formal approach for the validation of

web service orchestrations,” in WETICE 2012: IEEE 21st International Work-

shop on Enabling Technologies: Infrastructure for Collaborative Enterprises.

Toulouse, France: IEEE, June 2012, pp. 42 – 47.

[162] C. Kaner, J. Bach, and B. Pettichord, Lessons learned in software testing. John

Wiley & Sons, 2008.

[163] S. Karre, “Leveraging user-session data to support web application testing,”

IEEE Trans. Softw. Eng., vol. 31, no. 3, pp. 187–202, 2005, member-Elbaum,,

Sebastian and Member-Rothermel,, Gregg and Member-Fisher II,, Marc.

[164] K. Kaschner and N. Lohmann, “Automatic test case generation for interacting

services,” in Service-Oriented Computing - ICSOC 2008 Workshops: ICSOC

2008 International Workshops, Sydney, Australia, December 1st, 2008, Revised

Selected Papers, ser. Lecture Notes in Computer Science, G. Feuerlicht and

W. Lamersdorf, Eds., vol. 5472. Sydney, Australia: Springer-Verlag, April

2009, pp. 66–78.

References 248

[165] J. C. King, “Symbolic execution and program testing,” Communications of the

ACM, vol. 19, no. 7, pp. 385–394, 1976.

[166] K. Lakhotia, M. Harman, and P. McMinn, “A multi-objective approach to search-

based test data generation,” in GECCO ’07: Proceedings of the 9th Annual Con-

ference on Genetic and Evolutionary Computation. London, UK: ACM, July

2007, pp. 1098–1105.

[167] M. Lallali, F. Zaidi, and A. Cavalli, “Timed modeling of web services compo-

sition for automatic testing,” in SITIS ’07: Proceedings of the 2007 Interna-

tional IEEE Conference on Signal-Image Technologies and Internet-Based Sys-

tem. Shanghai, China: IEEE Computer Society, Dec. 2007, pp. 417–426.

[168] M. Lallali, F. Zaidi, A. Cavalli, and I. Hwang, “Automatic timed test case gen-

eration for web services composition,” in ECOWS ’08: Proceedings of the 2008

6th European Conference on Web Services. Dublin, Ireland: IEEE Computer

Society, Nov. 2008, pp. 53–62.

[169] N. Laranjeiro, S. Canelas, and M. Vieira, “wsrbench: An on-line tool for robust-

ness benchmarking,” in SCC ’08: Proceedings of the 2008 IEEE International

Conference on Services Computing. Honolulu, HI, USA: IEEE Computer So-

ciety, 2008, pp. 187–194.

[170] N. Laranjeiro, R. Oliveira, and M. Vieira, “Applying text classification algo-

rithms in web services robustness testing,” in SRDS 2010: 29th IEEE Symposium

on Reliable Distributed Systems. New Delhi, India: IEEE Computer Society,

November 2010, pp. 255–264.

[171] N. Laranjeiro, M. Vieira, and H. Madeira, “Improving web services robustness,”

in ICWS ’09: Proceedings of the 2009 IEEE International Conference on Web

Services. Los Angeles, CA, USA: IEEE Computer Society, July 2009, pp.

397–404.

References 249

[172] G. Laycock, “The theory and practice of specification based software testing,”

Ph.D. dissertation, University of Sheffield, 2003.

[173] K. Lee, J. Jeon, W. Lee, S.-H. Jeong, and S.-W. Park. (2003, November) QoS for

web services: Requirements and possible approaches. Accessed: 27.03.2012.

[Online]. Available: http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

[174] S. Lee, X. Bai, and Y. Chen, “Automatic mutation testing and simulation on

OWL-S specified web services,” in ANSS-41 ’08: Proceedings of the 41st An-

nual Simulation Symposium. Ottawa, Canada: IEEE Computer Society, April

2008, pp. 149–156.

[175] B. Legeard, “BZ-Testing-Tools: Model-based test generator,” in The

18th IEEE International Conference on Automated Software Engi-

neering (ASE 2003) - Demo Paper, Montreal, Canada, Oct. 2003.

[Online]. Available: http://www.ase-conferences.org/ase/past/ase2003/demos/

BZ-Testing-Tools%20at%20ASE2003.pdf

[176] C. Lenz, J. Chimiak-Opoka, and R. Breu, “Model Driven Testing of SOA–based

software,” in Proceedings of the Workshop on Software Engineering Methods

for Service-oriented Architecture (SEMSOA 2007), D. Lübke, Ed. Hannover,

Germany: Leibniz Universität Hannover, FG Software Engineering, May 2007,

pp. 99–110.

[177] B. Li, D. Qiu, S. Ji, and D. Wang, “Automatic test case selection and genera-

tion for regression testing of composite service based on extensible BPEL flow

graph,” in ICSM ’10: Proceedings of the 26th IEEE International Conference on

Software Maintenance. Timişoara, Romania: IEEE Computer Society, Septem-

ber 2010, pp. 1–10.

[178] L. Li and W. Chou, “An abstract GFSM model for optimal and incremental con-

formance testing of web services,” in ICWS ’09: Proceedings of the 2009 IEEE

References 250

International Conference on Web Services. Los Angeles, CA, USA: IEEE

Computer Society, July 2009, pp. 205–212.

[179] L. Li and W. Chou, “A combinatorial approach to multi-session testing of state-

ful web services,” in Proceedings of the 2009 Congress on Services - I. Los

Angeles, CA, USA: IEEE Computer Society, July 2009, pp. 179–186.

[180] L. Li, W. Chou, and W. Guo, “Control flow analysis and coverage driven testing

for web services,” in ICWS ’08: Proceedings of the 2008 IEEE International

Conference on Web Services. Beijing, China: IEEE Computer Society, Sept.

2008, pp. 473–480.

[181] Q. Li, J. Chen, Y. Zhan, and C. Mao, “Combinatorial mutation approach to

web service vulnerability testing based on SOAP message mutations,” in ICEBE

2012: Proceedings of the IEEE 9th International Conference on e-Business En-

gineering. Hangzhou, China: IEEE, September 2012, pp. 156–162.

[182] X. Li, J. Huai, X. Liu, J. Zeng, and Z. Huang, “SOArMetrics: A toolkit for

testing and evaluating SOA middleware,” in Proceedings of the 2009 Congress

on Services - I. Los Angeles, CA, USA: IEEE Computer Society, 2009, pp.

163–170.

[183] X. Li, Y. Fan, Q. Sheng, and Z. Maamar, “A petri net approach to analyzing

behavioral compatibility and similarity of web services,” IEEE Transactions on

Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 41, pp. 510 –

521, January 2011.

[184] Z. J. Li and T. Maibaum, “An approach to integration testing of object-oriented

programs,” in QSIC ’07: Proceedings of the Seventh International Conference

on Quality Software. Portland, OR, USA: IEEE Computer Society, Oct. 2007,

pp. 268–273.

[185] Z. J. Li, J. Zhu, L.-J. Zhang, and N. Mitsumori, “Towards a practical and effec-

tive method for web services test case generation,” in Proceedings of the ICSE

References 251

Workshop on Automation of Software Test (AST’09). Vancouver, Canada: IEEE

Computer Society, May 2009, pp. 106–114.

[186] Z. Li, W. Sun, Z. B. Jiang, and X. Zhang, “BPEL4WS unit testing: framework

and implementation,” in ICWS ’05: Proceedings of the 2005 IEEE International

Conference on Web Services. Orlando, FL, USA: IEEE Computer Society, July

2005, pp. 103–110 vol.1.

[187] D. Liang and K. Xu, “Testing scenario implementation with behavior contracts,”

in COMPSAC ’06: Proceedings of the 30th Annual International Computer Soft-

ware and Applications Conference, vol. 1. Chicago, IL, USA: IEEE Computer

Society, Sept. 2006, pp. 395–402.

[188] F. Lin, M. Ruth, and S. Tu, “Applying safe regression test selection techniques

to java web services,” in NWESP ’06: Proceedings of the 3rd International Con-

ference on Next Generation Web Services Practices. Seoul, South Korea: IEEE

Computer Society, Sept. 2006, pp. 133–142.

[189] C.-H. Liu, S.-L. Chen, J. Y. Kuo, and T.-Y. Huang, “A flow graph-based test

model for owl-s web services,” in Proceedings of the 2011 International Con-

ference on Machine Learning and Cybernetics (ICMLC) (Volume:2). Guilin,

China: IEEE, July 2011, pp. 897–902.

[190] F. Liu, F. yuan Ma, , M. lu Li, and L. peng Huang, “A framework for semantic

grid service discovery,” in Web Information Systems - WISE 2004 Workshops.

Brisbane, Australia: SpringerLink, November 2004, pp. 3–10.

[191] H. Liu, Z. Li, J. Zhu, and H. Tan, “Business process regression testing,” in Pro-

ceedings of the 5th international conference on Service-Oriented Computing,

ser. ICSOC ’07. Vienna, Austria: Springer-Verlag, 2007, pp. 157–168.

[192] H. Liu, Z. Li, J. Zhu, H. Tan, and H. Huang, “A unified test framework for

continuous integration testing of SOA solutions,” in ICWS ’09: Proceedings of

References 252

the 2009 IEEE International Conference on Web Services. Los Angeles, CA,

USA: IEEE Computer Society, July 2009, pp. 880–887.

[193] J. Liu, X. Lu, X. Feng, and J. Liu, “Ocl-based testing for e-learning web service,”

in ICWL ’10: Proceedings of the 9th international conference on New horizons

in web-based learning. Shanghai, China: Springer-Verlag, December 2010, pp.

161–168.

[194] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg, “Analyzing interacting

BPEL processes,” in BPM 2006: 4th International Conference on Business Pro-

cess Management, ser. Lecture Notes in Computer Science, S. Dustdar, J. Fi-

adeiro, and A. Sheth, Eds., vol. 4102. Vienna, Austria: Springer-Verlag,

September 2006, p. 1732.

[195] N. Looker, M. Munro, B. Gwynne, and J. Xu, “An ontology-based approach

for determining the dependability of service-oriented architectures,” in WORDS

’05: Proceedings of the 10th IEEE International Workshop on Object-Oriented

Real-Time Dependable Systems. Sedona, AZ, USA: IEEE Computer Society,

Feb. 2005, pp. 171–178.

[196] N. Looker, J. Xu, and M. Munro, “Determining the dependability of service-

oriented architectures,” International Journal of Simulation and Process Mod-

elling, vol. 3, no. 26, pp. 88–97, Jul. 2007.

[197] B. Lublinsky. (2007, October) Use service-oriented decomposition to meet your

architectural goals. [Online]. IBM. Accessed: 27.03.2012. [Online]. Available:

http://www.ibm.com/developerworks/library/ar-soadecomp/

[198] X. Luo, L. Luo, and M. Zou, “An epistemic model checking approach for owl-

s web services,” in Proceedings of the 2012 IEEE Symposium on Electrical &

Electronics Engineering (EEESYM). Kuala Lumpur, Malaysia: IEEE, June

2012, pp. 694 – 697.

References 253

[199] X. Luo, F. Ping, and M.-H. Chen, “Clustering and tailoring user session data for

testing web applications,” in ICST ’09: Proceedings of the 2009 International

Conference on Software Testing Verification and Validation. Denver, Colorado,

USA: IEEE Computer Society, April 2009, pp. 336–345.

[200] X. Luo, F. Ping, and M.-H. Chen, “Clustering and tailoring user session data

for testing web applications,” in ICST ’09: Proceedings of the 2nd IEEE Inter-

national Conference on Software Testing, Verification and Validation. Denver,

CO, USA: IEEE, April 2009, pp. 336–345.

[201] C. Ma, C. Du, T. Zhang, F. Hu, and X. Cai, “WSDL-based automated test data

generation for web service,” in CSSE ’08: Proceedings of the 2008 International

Conference on Computer Science and Software Engineering. Wuhan, China:

IEEE Computer Society, Dec. 2008, pp. 731–737.

[202] C. Ma, J. Wu, T. Zhang, Y. Zhang, and X. Cai, “Testing BPEL with Stream

X-Machine,” in ISISE ’08: Proceedings of the 2008 International Symposium

on Information Science and Engieering. Shanghai, China: IEEE Computer

Society, Dec. 2008, pp. 578–582.

[203] A. Maalej, M. Krichen, and M. Jmaiel, “Conformance testing of ws-bpel com-

positions under various load conditions,” in COMPSAC 2012: Proceedings of

the IEEE 36th Annual Computer Software and Applications Conference. Izmir,

Turkey: IEEE, July 2012, pp. 371–376.

[204] A. Maalej, M. Krichen, and M. Jmaiel, “Model-based conformance testing of

ws-bpel compositions,” in COMPSACW 2012: Proceedings of the IEEE 36th

Annual Computer Software and Applications Conference Workshops. Izmir,

Turkey: IEEE, July 2012, pp. 452–457.

[205] S. Mani, V. S. Sinha, S. Sinha, P. Dhoolia, D. Mukherjee, and S. Chakraborty,

“Efficient testing of service-oriented applications using semantic service stubs,”

in ICWS ’09: Proceedings of the 2009 IEEE International Conference on Web

References 254

Services. Los Angeles, CA, USA: IEEE Computer Society, July 2009, pp.

197–204.

[206] MaramaMTE. Accessed: 27.03.2012. [Online]. Available: https://wiki.

auckland.ac.nz/display/csidst/MaramaMTE

[207] E. Martin, S. Basu, and T. Xie, “Automated testing and response analysis of web

services,” in ICWS ’07: Proceedings of the 2007 IEEE International Conference

on Web Services. Salt Lake City, UT, USA: IEEE Computer Society, July 2007,

pp. 647–654.

[208] P. Mayer and D. Lübke, “Towards a BPEL unit testing framework,” in TAV-WEB

’06: Proceedings of the 2006 workshop on Testing, analysis, and verification of

web services and applications. Portland, Maine, USA: ACM, 2006, pp. 33–42.

[209] P. McMinn, “Search-based software test data generation: A survey,” Software

Testing, Verification & Reliability (STVR), vol. 14, no. 2, pp. 105–156, 2004.

[210] P. McMinn, M. Shahbaz, and M. Stevenson, “Search-based test input generation

for string data types using the results of web queries,” in ICST ’12: Proceedings

of the 5th IEEE International Conference on Software Testing, Verification and

Validation. Montreal, Canada: IEEE, April 2012, p. 141150.

[211] P. McMinn, M. Stevenson, and M. Harman, “Reducing qualitative human oracle

costs associated with automatically generated test data,” in STOV ’10: 1st Inter-

national Workshop on Software Test Output Validation, in conjuntion with ICST

’10. Trento, Italy: ACM, July 2010, pp. 1–4.

[212] H. Mei and L. Zhang, “A framework for testing web services and its supporting

tool,” in SOSE ’05: Proceedings of the 2005 IEEE International Workshop on

Service-Oriented System Engineering. Beijing, China: IEEE Computer Society,

Oct. 2005, pp. 199–206.

References 255

[213] L. Mei, W. K. Chan, T. H. Tse, and R. G. Merkel, “Tag-based techniques for

black-box test case prioritization for service testing,” in Proceedings of the 9th

International Conference on Quality Software (QSIC 2009). Jeju, Korea: IEEE

Computer Society Press, August 2009, pp. 21–30.

[214] L. Mei, W. K. Chan, and T. H. Tse, “Data flow testing of service-oriented work-

flow applications,” in ICSE ’08: Proceedings of the 30th international confer-

ence on Software engineering. Leipzig, Germany: ACM, May 2008, pp. 371–

380.

[215] L. Mei, W. K. Chan, and T. H. Tse, “Data flow testing of service choreography,”

in ESEC/FSE ’09: Proceedings of the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations

of software engineering. Amsterdam, The Netherlands: ACM, 2009, pp. 151–

160.

[216] L. Mei, K. Zhai, B. Jiang, and W. Chan, “Preemptive regression test scheduling

strategies: A new testing approach to thriving on the volatile service environ-

ments,” in COMPSAC 2012: Proceedings of the IEEE 36th Annual Computer

Software and Applications Conference. Izmir, Turkey: IEEE, July 2012, pp.

72–81.

[217] L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse, “Test case prioritization for re-

gression testing of service-oriented business applications,” in Proceedings of the

18th international conference on World wide web, ser. WWW ’09. Madrid,

Spain: ACM, 2009, pp. 901–910.

[218] METEOR-S. Accessed: 27.03.2012. [Online]. Available: http://lsdis.cs.uga.

edu/projects/meteor-s/

[219] B. Meyer, “Applying ‘Design by Contract’,” Computer, vol. 25, no. 10, pp. 40–

51, Oct 1992.

References 256

[220] W. Miao and S. Liu, “A formal specification-based testing approach to accurate

web service selection,” in Proceedings of the 2011 IEEE Asia-Pacific Services

Computing Conference (APSCC). Jeju, Korea: IEEE, December 2011, pp.

259–266.

[221] MINDSWAP: Maryland information and network dynamics lab semantic web

agents project. OWL-S services. Accessed: 27.03.2012. [Online]. Available:

http://www.mindswap.org/2004/owl-s/services.shtml

[222] G. Morales, S. Maag, and A. Cavalli, “Timed extended invariants for the passive

testing of web services,” in ICWS ’10: Proceedings of the 2010 IEEE Interna-

tional Conference on Web Services. Miami,FL,USA: IEEE Computer Society,

July 2010, pp. 76–82.

[223] L. J. Morell, “A theory of fault-based testing,” IEEE Transactions on Software

Engineering, vol. 16, no. 8, pp. 844–857, 1990.

[224] S. Morimoto, “A survey of formal verification for business process modeling,”

in ICCS ’08: Proceedings of the 8th international conference on Computational

Science, Part II. Kraków, Poland: Springer-Verlag, June 2008, pp. 514–522.

[225] S. Moser, A. Martens, K. Görlach, W. Amme, and A. Godlinski, “Advanced ver-

ication of distributed WS-BPEL business processes incorporating CSSA-based

data flow analysis,” in Proceedings of the 2007 IEEE International Conference

on Services Computing (SCC 2007). Salt Lake City, Utah, USA: IEEE Com-

puter Society, July 2007, pp. 98–105.

[226] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the

IEEE, vol. 77, no. 4, pp. 541–580, Apr 1989.

[227] M. Narita, M. Shimamura, K. Iwasa, and T. Yamaguchi, “Interoperability ver-

ification for web service based robot communication platforms,” in ROBIO

2007: Proceedings of the 2007 IEEE International Conference on Robotics and

References 257

Biomimetics. Sanya, China: IEEE Computer Society, Dec. 2007, pp. 1029–

1034.

[228] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel, “Requirements by con-

tracts allow automated system testing,” in ISSRE ’03: Proceedings of the 14th

International Symposium on Software Reliability Engineering. Denver, CO,

USA: IEEE Computer Society, Nov. 2003, pp. 85–96.

[229] C. Nguyen, A. Marchetto, and P. Tonella, “Test case prioritization for audit test-

ing of evolving web services using information retrieval techniques,” in ICWS

2011: Proceedings of the 9th International Conference on Web Services. Wash-

ington, DC, USA: IEEE, July 2011, pp. 636–643.

[230] C. Nguyen, A. Marchetto, and P. Tonella, “Challenges in audit testing of web

services,” in Proceedings of the 4th International Conference on Software Test-

ing, Verification and Validation Workshops. Berlin Germany: IEEE, March

2011, pp. 103–106.

[231] C. Nguyen, A. Marchetto, and P. Tonella, “Change sensitivity based prioriti-

zation for audit testing of webservice compositions,” in Proceedings of the 4th

International Conference on Software Testing, Verification and Validation Work-

shops. Berlin Germany: IEEE, March 2011, pp. 103–106.

[232] S. Noikajana and T. Suwannasart, “An improved test case generation method for

web service testing from WSDL-S and OCL with pair-wise testing technique,”

in Proceedings of the 33rd Annual IEEE International Computer Software and

Applications Conference - Volume 01. Seattle, WA, USA: IEEE Computer

Society, July 2009, pp. 115–123.

[233] NuSMV. Accessed: 27.03.2012. [Online]. Available: http://nusmv.irst.itc.it/

[234] OASIS. SOA-EERP business quality of service (bQoS). Accessed: 27.03.2012.

[Online]. Available: http://docs.oasis-open.org/ns/soa-eerp/bqos/200903

References 258

[235] J. Offutt and W. Xu, “Generating test cases for web services using data pertur-

bation,” ACM SIGSOFT Software Engineering Notes, vol. 29, no. 5, pp. 1–10,

2004.

[236] G. Oghabi, J. Bentahar, and A. Benharref, “On the verification of behavioral and

probabilistic web services using transformation,” in ICWS 2011: proceedings

of the 9th International Conference on Web Services. Washington, DC, USA:

IEEE, July 2011, pp. 548 – 555.

[237] R. Oliveira, N. Laranjeiro, and M. Vieira, “A composed approach for automatic

classification of web services robustness,” in Proceedings of the 2011 IEEE In-

ternational Conference on Services Computing. Washington, DC, USA: IEEE,

July 2011, pp. 176–183.

[238] Oracle Application Testing Suite. Accessed: 27.03.2012. [On-

line]. Available: http://www.oracle.com/technetwork/oem/app-quality-mgmt/

application-quality-management-092933.html

[239] M. J. Osborne and A. Rubinstein, A Course in Game Theory, 1st ed. The MIT

Press, July 1994.

[240] N. Oster and F. Saglietti, “Automatic test data generation by multi-objective op-

timisation,” in Computer Safety, Reliability, and Security, ser. Lecture Notes in

Computer Science, J. Górski, Ed. Springer Berlin, 2006, vol. 4166, pp. 426–

438.

[241] C. Ouyang, H. M. W. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Dumas, and

A. H. M. ter Hofstede, “WofBPEL: A tool for automated analysis of BPEL pro-

cesses,” in Service-Oriented Computing - ICSOC 2005, B. Benatallah, F. Casati,

and P. Traverso, Eds. Berlin / Heidelberg: Springer-Verlag, 2005, vol. 3826,

pp. 484–489.

[242] OWL-S: Semantic Markup for Web Services. Accessed: 27.03.2012. [Online].

Available: http://www.w3.org/Submission/OWL-S/

References 259

[243] Oxford English Dictionary 2nd. ed. (2010) Accessed: 27.03.2012. [Online].

Available: http://dictionary.oed.com/cgi/entry/50015226

[244] W. Pacharoen, T. Aoki, A. Surarerks, and P. Bhattarakosol, “Back to results con-

formance verification between web service choreography and implementation

using learning and model checking,” in Proceedings of the 2011 IEEE Interna-

tional Conference on Web Services. Washington, DC, USA: IEEE, July 2011,

pp. 722 – 723.

[245] M. Palacios, J. Garcı́a-Fanjul, J. Tuya, and C. de la Riva, “A proactive approach

to test service level agreements,” in ICSEA ’10: Proceedings of the 5th Inter-

national Conference on Software Engineering Advances. Nice, France: IEEE

Computer Society, August 2010, pp. 453–458.

[246] M. Palacios, J. Garcı́a-Fanjul, and J. Tuya, “Testing in service oriented archi-

tectures with dynamic binding: A mapping study,” Information and Software

Technology, vol. 53, no. 3, pp. 171–189, March 2011.

[247] M. Palomo-Duarte, A. Garcı́a-Domı́nguez, I. Medina-Bulo, A. Álvarez Ayllón,

and J. Santacruz, “Takuan: A tool for ws-bpel composition testing using dy-

namic invariant generation.” in ICWE ’10: Proceedings of the 10th International

Conference on Web Engineering, Vienna, Austria, July 2010, pp. 531–534.

[248] P. Papapanagiotou and J. Fleuriot, “Formal verification of web services composi-

tion using linear logic and the pi-calculus,” in Proceedings of the 20119th IEEE

European Conference on Web Services (ECOWS). Lugano, Switzerland: IEEE,

September 2011, pp. 31 – 38.

[249] M. P. Papazoglou, “JDL special issue on service-oriented computing: Advanced

user-centered concepts,” International Journal on Digital Libraries, vol. 6, pp.

233–234, 2006.

[250] M. P. Papazoglou, “Introduction to special issue on service oriented computing

(SOC),” ACM Transactions on the Web, vol. 2, no. 2, pp. 1–2, 2008.

References 260

[251] M. P. Papazoglou and J. jacques Dubray, “A survey of web service

technologies,” University of Trento, Tech. Rep., Jun. 2004. [Online].

Available: http://eprints.biblio.unitn.it/archive/00000586/;http://eprints.biblio.

unitn.it/archive/00000586/01/mike.pdf

[252] A. Paradkar, A. Sinha, C. Williams, R. Johnson, S. Outterson, C. Shriver, and

C. Liang, “Automated functional conformance test generation for semantic web

services,” in ICWS ’07: Proceedings of the 2007 IEEE International Conference

on Web Services, Salt Lake City, UT, USA, July 2007, pp. 110–117.

[253] Y. Park, W. Jung, B. Lee, and C. Wu, “Automatic discovery of web services

based on dynamic black-box testing,” in Proceedings of the 33rd Annual IEEE

International Computer Software and Applications Conference - Volume 01.

Seattle,WA, USA: IEEE Computer Society, July 2009, pp. 107–114.

[254] C. Pautasso, “JOpera: An agile environment for web service composition with

visual unit testing and refactoring,” in VLHCC ’05: Proceedings of the 2005

IEEE Symposium on Visual Languages and Human-Centric Computing. Dallas,

TX, USA: IEEE Computer Society, Sept. 2005, pp. 311–313.

[255] C. Pautasso and G. Alonso, “The JOpera visual composition language,” Journal

of Visual Languages and Computing (JVLC), vol. 16, no. 1-2, pp. 119–152, 2005.

[256] Petri Net Markup Language (PNML). Accessed: 27.03.2012. [Online].

Available: http://www2.informatik.hu-berlin.de/top/pnml/about.html

[257] L. Peyton, B. Stepien, and P. Seguin, “Integration testing of composite applica-

tions,” in HICSS ’08: Proceedings of the Proceedings of the 41st Annual Hawaii

International Conference on System Sciences. Waikoloa, Big Island, Hawaii:

IEEE Computer Society, Jan. 2008, pp. 96–96.

[258] D. Pilone and N. Pitman, UML 2.0 in a Nutshell (In a Nutshell (O’Reilly)). Se-

bastopol, CA, USA: O’Reilly Media, Inc., 2005.

References 261

[259] G. H. L. Pinto and S. R. Vergilio, “A multi-objective genetic algorithm to test

data generation,” in ICTAI ’10: Proceedings of the 22th IEEE International

Conference on Tools with Artificial Intelligence, vol. 1. Arras, France: IEEE,

October 2010, pp. 129–134.

[260] PLASTIC Framework. Accessed: 27.03.2012. [Online]. Available: http:

//plastic.isti.cnr.it/wiki/tools

[261] V. Pretre, F. Bouquet, and C. Lang, “Using common criteria to assess quality of

web services,” in ICSTW ’09: Proceedings of the 2nd IEEE International Con-

ference on Software Testing, Verification, and Validation Workshops. Denver,

CO, USA: IEEE Computer Society, 2009, pp. 295–302.

[262] Promela Manual. Accessed: 27.03.2012. [Online]. Available: http://spinroot.

com/spin/Man/promela.html

[263] Z. Qi, L. Liu, F. Zhang, H. Guan, H. Wang, and Y. Chen, “FLTL-MC: On-

line high level program analysis for web services,” in Proceedings of the 2009

Congress on Services - I. Los Angeles, CA, USA: IEEE Computer Society,

July 2009, pp. 171–178.

[264] P. Ramsokul and A. Sowmya, “ASEHA: A framework for modelling and ver-

ification of web services protocols,” in SEFM ’06: Proceedings of the Fourth

IEEE International Conference on Software Engineering and Formal Methods.

Pune, India: IEEE Computer Society, Sept. 2006, pp. 196–205.

[265] P. Ramsokul and A. Sowmya, “A sniffer based approach to ws protocols con-

formance checking,” in ISPDC ’06: Proceedings of The 5th International Sym-

posium on Parallel and Distributed Computing. Timisoara, Romania: IEEE

Computer Society, July 2006, pp. 58–65.

[266] O. Rana, A. Akram, R. A. Ali, D. Walker, G. von Laszewski, and K. Amin,

“Quality-of-service based grid communities,” in Extending Web Services Tech-

References 262

nologies, ser. Multiagent Systems, Artificial Societies, and Simulated Organi-

zations, L. Cavedon, Z. Maamar, D. Martin, B. Benatallah, and G. Weiss, Eds.

Berlin, Heidelberg: SpringerLink, August 2005, vol. 13, pp. 161–186.

[267] Random.org integer generator. Accessed: 27.07.2012. [Online]. Available:

http://www.random.org/clients/http/

[268] Remote Methods. Accessed: 27.03.2012. [Online]. Available: http://www.

remotemethods.com/

[269] Resource Description Framework (RDF). Accessed: 27.03.2012. [Online].

Available: http://www.w3.org/RDF/

[270] H. Reza and D. Van Gilst, “A framework for testing RESTful web services,”

in ITNG ’10: Proceedings of the 7th International Conference on Information

Technology: New Generations. Las Vegas, NV, USA: IEEE Computer Society,

April 2010, pp. 216–221.

[271] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selec-

tion technique,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 6, no. 2, pp. 173–210, 1997.

[272] K. Y. Rozier, “Linear temporal logic symbolic model checking,” Computer

Science Review, vol. 5, no. 2, pp. 163–203, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1574013710000407

[273] S. Rubel. (2008, March) The future is web services, not web sites. Accessed:

27.03.2012. [Online]. Available: http://www.micropersuasion.com/2008/03/

the-future-is-w.html

[274] M. Ruth, S. Oh, A. Loup, B. Horton, O. Gallet, M. Mata, and S. Tu, “Towards

automatic regression test selection for web services,” in COMPSAC ’07: Pro-

ceedings of the 31st Annual International Computer Software and Applications

Conference, vol. 2, Beijing, China, July 2007, pp. 729–736.

References 263

[275] M. Ruth and S. Tu, “Concurrency issues in automating RTS for web services,”

in ICWS ’07: Proceedings of the 2007 IEEE International Conference on Web

Services. Salt Lake City, UT, USA: IEEE Computer Society, July 2007, pp.

1142–1143.

[276] M. Ruth and S. Tu, “A safe regression test selection technique for web services,”

in ICIW ’07: Proceedings of the Second International Conference on Internet

and Web Applications and Services. Mauritius: IEEE Computer Society, May

2007, pp. 47–.

[277] R. Sagarna and X. Yao, “Handling constraints for search based software test data

generation,” in ICST ’08: Proceedings of the 1st IEEE International Conference

on Software Testing, Verification and Validation. Lillehammer, Norway: IEEE,

April 2008, pp. 232–240.

[278] I. Saleh, G. Kulczycki, and M. B. Blake, “Formal specification and verifica-

tion of data-centric service composition,” in ICWS ’10: Proceedings of the 2010

IEEE International Conference on Web Services. Miami,FL,USA: IEEE Com-

puter Society, July 2010, pp. 131–138.

[279] S. Salva and I. Rabhi, “A preliminary study on BPEL process testability,” in

ICSTW ’10: Proceedings of the 3rd IEEE International Conference on Software

Testing, Verification, and Validation Workshops. Paris, France: IEEE Computer

Society, April 2010, pp. 62–71.

[280] S. Salva and I. Rabhi, “Stateful web service robustness,” in ICIW ’10: Proceed-

ings of the 5th International Conference on Internet and Web Applications and

Services. Barcelona, Spain: IEEE Computer Society, May 2010, pp. 167–173.

[281] N. Sasikaladevi and L. Arockiam, “Correctness evaluation model for composite

web service,” in TISC 2011: Proceedings of the 3rd International Conference on

Trendz in Information Sciences and Computing, 2011.

References 264

[282] H. Schlingloff, A. Martens, and K. Schmidt, “Modeling and model checking

web services,” Electronic Notes in Theoretical Computer Science, vol. 126, pp.

3–26, 2005, proceedings of the 2nd International Workshop on Logic and Com-

munication in Multi-Agent Systems (2004).

[283] K. Schmidt, “LoLA: A Low Level Analyser,” in Proceedings of the 21st Inter-

national Conference on Application and Theory of Petri Nets (ICATPN 2000),

ser. Lecture Notes in Computer Science, vol. 1825/2000. Aarhus, Denmark:

Springer, June 2000, pp. 465–474.

[284] Selfseo. Find ip address of a website. Accessed: 27.03.2012. [Online].

Available: http://www.selfseo.com/find ip address of a website.php

[285] Semantic Web Services Language (SWSL). Accessed: 27.03.2012. [Online].

Available: http://www.daml.org/services/swsl/

[286] K. Senthil Kumar, A. S. Das, and S. Padmanabhuni, “WS-I Basic Profile: A

practitioner’s view,” in ICWS ’04: Proceedings of the 2004 IEEE International

Conference on Web Services. San Diego, CA, USA: IEEE Computer Society,

July 2004, pp. 17–24.

[287] S. Shafin, L. Zhang, and X. Xu, “Automated testing of web services system based

on OWL-S,” in WICT 2012: Proceeding of the 2012 World Congress on Infor-

mation and Communication Technologies. Trivandrum, India: IEEE, October

2012, pp. 1103–1108.

[288] A. Sharma, T. D. Hellmann, and F. Maurer, “Testing of web services – a sys-

tematic mapping,” in SERVICES ’12: Proceedings of the 2012 IEEE 8th World

Congress on Services. Washington, DC, USA: IEEE Computer Society, 2012,

pp. 346–352.

[289] Shipping Calculator. Accessed: 27.07.2012. [Online]. Available: http:

//www.unitedstateszipcodes.org/shipping-calculator/

References 265

[290] R. Shukla, D. Carrington, and P. Strooper, “A passive test oracle using a com-

ponent’s API,” in APSEC ’05: Proceedings of the 12th Asia-Pacific Software

Engineering Conference. Tapei, Taiwan: IEEE Computer Society, Dec. 2005,

pp. 561–567.

[291] R. Siblini and N. Mansour, “Testing web services,” in Proceedings of the 3rd

ACS/IEEE International Conference on Computer Systems and Applications.

Cairo, Egypt: IEEE Computer Society, Jan. 2005, p. 135.

[292] A. Sinha and A. Paradkar, “Model-based functional conformance testing of web

services operating on persistent data,” in TAV-WEB ’06: Proceedings of the 2006

workshop on Testing, analysis, and verification of web services and applications.

Portland, Maine: ACM, 2006, pp. 17–22.

[293] A. Skonnard. (2003, April) Web services and datasets. MSDN magazine.

Accessed: 27.03.2012. [Online]. Available: http://msdn.microsoft.com/en-us/

magazine/cc188755.aspx

[294] C. Smythe, “Initial investigations into interoperability testing of web

services from their specification using the unified modelling language,” in

Proceedings of the International Workshop on Web Services Modeling and

Testing (WS-MaTe2006), A. Bertolino and A. Polini, Eds., Palermo, Italy,

June 2006, pp. 95–119. [Online]. Available: www.selab.isti.cnr.it/ws-mate/

WS-MaTe Proceedings.pdf

[295] H. M. Sneed and S. Huang, “WSDLTest - a tool for testing web services,” in

WSE ’06: Proceedings of the 8th IEEE International Symposium on Web Site

Evolution. Philadelphia, PA, USA: IEEE Computer Society, Sept. 2006, pp.

14–21.

[296] SOAP Sonar. Accessed: 27.03.2012. [Online]. Available: http://www.

crosschecknet.com/products/soapsonar.php

References 266

[297] SOAP Version 1.2. Accessed: 27.03.2012. [Online]. Available: http:

//www.w3.org/TR/soap12-part1/

[298] SoapUI. Accessed: 27.03.2012. [Online]. Available: http://www.soapui.org/

[299] SOATest. Accessed: 27.03.2012. [Online]. Available: http://www.parasoft.com/

jsp/products/soatest.jsp?itemId=101

[300] SPIN. Accessed: 27.03.2012. [Online]. Available: http://spinroot.com/spin/

whatispin.html

[301] H. Srikanth and M. Cohen, “Regression testing in software as a service: An

industrial case study,” in ICSM 2011: Proceedings of the 27th IEEE Interna-

tional Conference on Software Maintenance. Williamsburg, VI, USA: IEEE,

September 2011, pp. 372–381.

[302] A. Stefanescu, M.-F. Wendland, and S. Wieczorek, “Using the UML testing pro-

file for enterprise service choreographies,” in 36th EUROMICRO Conference on

Software Engineering and Advanced Applications (SEAA), vol. 0. Lille, France:

IEEE Computer Society, 2010, pp. 12–19.

[303] A. Stefanescu, S. Wieczorek, and A. Kirshin, “MBT4Chor: A model-based test-

ing approach for service choreographies,” in Model Driven Architecture - Foun-

dations and Applications, ser. Lecture Notes in Computer Science, R. Paige,

A. Hartman, and A. Rensink, Eds. Berlin / Heidelberg: Springer-Verlag, 2009,

vol. 5562, pp. 313–324.

[304] C. Sun, Y. Shang, Y. Zhao, and T. Y. Chen, “Scenario-oriented testing for web

service compositions using BPEL,” in QSIC 2012: Proceedings of the 12th In-

ternational Conference on Quality Software. Xi’an, China: IEEE, August 2012,

pp. 171–174.

[305] C. Sun, Y. Shang, Y. Zhao, and T. Y. Chen, “Towards dynamic random testing

for web services,” in COMPSAC 2012: Proceedings of the IEEE 36th Annual

References 267

Computer Software and Applications Conference. Izmir, Turkey: IEEE, July

2012, pp. 164 – 169.

[306] C. Sun, G. Wang, B. Mu, H. Liu, ZhaoShunWang, and T. Chen, “Metamorphic

testing for web services: Framework and a case study,” in ICWS 2011: Proceed-

ings of the 2011 IEEE International Conference on Web Services. Washington,

DC, USA: IEEE, July 2011, pp. 283–290.

[307] C. Sun, Y. Zhai, Y. Shang, and Z. Zhang, “Toward effectively locating

integration-level faults in BPEL programs,” in QSIC 2012: Proceedings of the

12th International Conference on Quality Software. Xi’an, China: IEEE, Au-

gust 2012, pp. 17 – 20.

[308] Swoogle. Semantic web search. Accessed: 27.03.2012. [Online]. Available:

http://swoogle.umbc.edu/

[309] SWRL: A Semantic Web Rule Language. Accessed: 27.03.2012. [Online].

Available: http://www.w3.org/Submission/SWRL/

[310] A. Tarhini, H. Fouchal, and N. Mansour, “Regression testing web services-based

applications,” in Proceedings of the 4th ACS/IEEE International Conference on

Computer Systems and Applications. Sharjah, UAE: IEEE Computer Society,

Mar. 2006, pp. 163–170.

[311] A. Tarhini, H. Fouchal, and N. Mansour, “Regression testing web services-based

applications,” in Proceedings of the 4th ACS/IEEE International Conference on

Computer Systems and Applications. Washington, DC, USA: IEEE Computer

Society, Mar. 2006, pp. 163–170.

[312] A. Tarhini, H. Fouchal, and N. Mansour, “A simple approach for testing web

service based applications,” in Proceedings of the 5th International Workshop

on Innovative Internet Community Systems (IICS 2005), ser. Lecture Notes in

Computer Science, A. Bui, M. Bui, T. Böhme, and H. Unger, Eds., vol. 3908.

Paris, France: Springer, 2005, pp. 134–146.

References 268

[313] A. Tarhini, H. Fouchal, and N. Mansour, “A simple approach for testing

web service based applications,” in Proceedings of the 5th International

Workshop on Innovative Internet Community Systems (IICS 2005), ser.

Lecture Notes in Computer Science, A. Bui, M. Bui, T. Böhme, and

H. Unger, Eds., vol. 3908. Springer, 2005, pp. 134–146. [Online]. Available:

http://dx.doi.org/10.1007/11749776 12

[314] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and Z. Su, “Synthesizing

method sequences for high-coverage testing,” in OOPSLA ’11: Proceedings of

the 2011 ACM international conference on Object oriented programming sys-

tems languages and applications. New York, NY, USA: ACM, 2011, pp. 189–

206.

[315] S. Thummalapenta, T. Xie, N. Tillmann, P. de Halleux, and W. Schulte, “MSeq-

Gen: Object-oriented unit-test generation via mining source code,” in ESEC/FSE

’09: Proceedings of the 7th joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering on European Software Engineering Conference and Foundations of

Software Engineering Symposium. Amsterdam, The Netherlands: ACM Press.,

August 2009, pp. 193–202.

[316] V. Todica, M.-F. Vaida, and M. Cremene, “Formal verification in web services

composition,” in Proceedings of the 2012 IEEE International Conference on

Automation Quality and Testing Robotics (AQTR). Cluj-Napoca, Romania:

IEEE, May 2012, pp. 195 – 200.

[317] W. T. Tsai, X. Bai, Y. Chen, and X. Zhou, “Web service group testing with win-

dowing mechanisms,” in SOSE ’05: Proceedings of the 2005 IEEE International

Workshop. Beijing, China: IEEE Computer Society, Oct. 2005, pp. 221–226.

[318] W. T. Tsai, Y. Chen, R. Paul, N. Liao, and H. Huang, “Cooperative and group

testing in verification of dynamic composite web services,” in COMPSAC ’04:

References 269

Proceedings of the 28th Annual International Computer Software and Applica-

tions Conference - Workshops and Fast Abstracts, vol. 2. Hong Kong, China:

IEEE Computer Society, Sept. 2004, pp. 170–173.

[319] W. T. Tsai, Y. Chen, D. Zhang, and H. Huang, “Voting multi-dimensional data

with deviations for web services under group testing,” in ICDCSW ’05: Pro-

ceedings of the 4th International Workshop on Assurance in Distributed Systems

and Networks (ADSN). Columbus, OH, USA: IEEE Computer Society, June

2005, pp. 65–71.

[320] W. T. Tsai, Y. Chen, Z. Cao, X. Bai, H. Huang, and R. A. Paul, “Testing web

services using progressive group testing,” in Advanced Workshop on Content

Computing (AWCC 2004), ser. Lecture Notes in Computer Science, C.-H. Chi

and K.-Y. Lam, Eds., vol. 3309. Zhenjiang, Jiangsu, China: Springer, 2004,

pp. 314–322.

[321] W. T. Tsai, Y. Chen, R. Paul, H. Huang, X. Zhou, and X. Wei, “Adaptive testing,

oracle generation, and test case ranking for web services,” in COMPSAC ’05:

Proceedings of the 29th Annual International Computer Software and Applica-

tions Conference, vol. 2. Edinburgh, UK: IEEE Computer Society, July 2005,

pp. 101–106.

[322] W. T. Tsai, M. Malek, Y. Chen, and F. Bastani, “Perspectives on service-oriented

computing and service-oriented system engineering,” in SOSE ’06: Proceedings

of the 2006 IEEE International Symposium on Service-Oriented System Engi-

neering. Shanghai, China: IEEE Computer Society, Oct. 2006, pp. 3–10.

[323] W. T. Tsai, R. Paul, Z. Cao, L. Yu, and A. Saimi, “Verification of web ser-

vices using an enhanced UDDI server,” in Proceedings of the 8th International

Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2003).

Turku, Finland: IEEE Computer Society, Jan. 2003, pp. 131–138.

References 270

[324] W. T. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang, “Extending WSDL to fa-

cilitate web services testing,” in HASE ’02: Proceedings of the 7th IEEE Inter-

national Symposium on High Assurance Systems Engineering. Tokyo, Japan:

IEEE Computer Society, October 2002, pp. 171–172.

[325] W. T. Tsai, R. Paul, W. Song, and Z. Cao, “Coyote: An XML-based framework

for web services testing,” in HASE ’02: Proceedings of the 7th IEEE Interna-

tional Symposium on High Assurance Systems Engineering. Tokyo, Japan:

IEEE Computer Society, Oct. 2002, p. 173.

[326] W. T. Tsai, X. WEI, Y. Chen, R. Paul, and B. Xiao, “Swiss cheese test case

generation for web services testing,” IEICE - Transactions on Information and

Systems, vol. E88-D, no. 12, pp. 2691–2698, 2005.

[327] W. T. Tsai, X. Zhou, R. Paul, Y. Chen, and X. Bai, “A coverage relationship

model for test case selection and ranking for multi-version software,” in HASE

’07: Proceedings of the 10th IEEE High Assurance Systems Engineering Sym-

posium. Dallas, TX, USA: IEEE Computer Society, Nov. 2007, pp. 105–112.

[328] W.-T. Tsai, P. Zhong, J. Balasooriya, Y. Chen, X. Bai, and J. Elston, “An ap-

proach for service composition and testing for cloud computing and testing for

cloud computing,” in ISADS 2011: Proceedings of the 10th International Sym-

posium on Autonomous Decentralized Systems. Tokyo & Hiroshima, Japan:

IEEE, March 2011, pp. 631 – 636.

[329] UDDI Spec Technical Committee Draft. Accessed: 27.03.2012. [Online]. Avail-

able: http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.

2-20041019.htm

[330] UPS Calculate Time and Cost. Accessed: 27.07.2012. [Online]. Available:

https://wwwapps.ups.com/ctc/request?loc=en US

[331] USPS Postage Price Calculator. Accessed: 27.07.2012. [Online]. Available:

http://postcalc.usps.com/

References 271

[332] M. Vieira, N. Laranjeiro, and H. Madeira, “Benchmarking the robustness of

web services,” in PRDC ’07: Proceedings of the 13th Pacific Rim International

Symposium on Dependable Computing. Melbourne, Victoria, Australia: IEEE

Computer Society, Dec. 2007, pp. 322–329.

[333] I. Vlaev, N. Chater, R. Lewis, and G. Davies, “Reason-based judgments: Using

reasons to decouple perceived price-quality correlation,” Journal of Economic

Psychology, vol. 30, no. 5, pp. 721–731, October 2009.

[334] W. Wan Ab. Rahman and F. Meziane, “Challenges to describe QoS requirements

for web services quality prediction to support web services interoperability in

electronic commerce,” in IBIMA ’08: Proceedings of 10th IBIMA conference on

Innovation and Knowledge Management in Business Globalization, vol. 4, no. 6.

Kuala Lumpur, Malaysia: International Business Information Management As-

sociation (IBIMA), June 2008, pp. 50–58.

[335] D. Wang, B. Li, and J. Cai, “Regression testing of composite service: An XBFG-

based approach,” in Proceedings of the 2008 IEEE Congress on Services Part II

(SERVICES-2 ’08). Beijing, China: IEEE Computer Society, 2008, pp. 112–

119.

[336] R. Wang and N. Huang, “Requirement model-based mutation testing for web

service,” in NWESP ’08: Proceedings of the 4th International Conference on

Next Generation Web Services Practices. Seoul, Korea: IEEE Computer Soci-

ety, Oct. 2008, pp. 71–76.

[337] X. Wang, N. Huang, and R. Wang, “Mutation test based on OWL-S requirement

model,” in ICWS ’09: Proceedings of the 2009 IEEE International Conference

on Web Services. Los Angeles, CA, USA: IEEE Computer Society, July 2009,

pp. 1006–1007.

[338] Y. Wang, X. Bai, J. Li, and R. Huang, “Ontology-based test case generation for

testing web services,” in ISADS ’07: Proceedings of the Eighth International

References 272

Symposium on Autonomous Decentralized Systems. Sedona, AZ, USA: IEEE

Computer Society, Mar. 2007, pp. 43–50.

[339] Y. Wang, F. Ishikawa, and S. Honiden, “Business semantics centric reliability

testing for web services in BPEL,” in SERVICES ’10: Proceedings of the 2010

6th World Congress on Services, ser. SERVICES ’10. Los Angeles, CA, USA:

IEEE Computer Society, July 2010, pp. 237–244.

[340] K. Z. Watkins, “Introducing fault-based combinatorial testing to web services,”

in Proceedings of the IEEE SoutheastCon 2010. Charlotte-Concord, NC, USA:

IEEE Computer Society, March 2010, pp. 131–134.

[341] Web Ontology Language (OWL). Accessed: 27.03.2012. [Online]. Available:

http://www.w3.org/2004/OWL/

[342] Web Service Interoperability Organisation (WS-I). Basic Profile 1.2. Ac-

cessed: 27.03.2012. [Online]. Available: http://www.ws-i.org/deliverables/

workinggroup.aspx?wg=basicprofile

[343] Web Service Modelling Ontology (WSMO). Accessed: 27.03.2012. [Online].

Available: http://www.wsmo.org/

[344] Web Service Semantics (WSDL-S). Accessed: 27.03.2012. [Online]. Available:

http://www.w3.org/Submission/WSDL-S/

[345] Web Services Addressing (WS-Addressing). Accessed: 27.03.2012. [Online].

Available: http://www.w3.org/Submission/ws-addressing/

[346] Web Services Agreement Specication (WSAgreement). Accessed: 27.03.2012.

[Online]. Available: www.ogf.org/documents/GFD.107.pdf

[347] Web Services Atomic Transaction (WS-AtomicTransaction). Accessed:

27.03.2012. [Online]. Available: http://schemas.xmlsoap.org/ws/2004/10/wsat/

References 273

[348] Web Services Business Activity (WS-BusinessActivity). Accessed: 27.03.2012.

[Online]. Available: http://docs.oasis-open.org/ws-tx/wsba/2006/06

[349] Web Services Description Language (WSDL 1.1). Accessed: 27.03.2012.

[Online]. Available: http://www.w3.org/TR/wsdl

[350] Web Services Glossary. Accessed: 27.03.2012. [Online]. Available: http:

//www.w3.org/TR/ws-gloss/

[351] Web Services Metadata Exchange (WS-MetadataExchange). Ac-

cessed: 27.03.2012. [Online]. Available: http://www.w3.org/TR/2009/

WD-ws-metadata-exchange-20090317/

[352] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment for au-

tomatic structural testing,” Information and Software Technology, vol. 43, no. 14,

pp. 841 – 854, 2001.

[353] E. Weyuker and B. Jeng, “Analyzing partition testing strategies,” IEEE Transac-

tions on Software Engineering, vol. 17, no. 7, pp. 703–711, Jul 1991.

[354] S. Wieczorek, V. Kozyura, A. Roth, M. Leuschel, J. Bendisposto, D. Plagge, and

I. Schieferdecker, “Applying model checking to generate model-based integra-

tion tests from choreography models,” in TESTCOM ’09/FATES ’09: Proceed-

ings of the 21st IFIP WG 6.1 International Conference on Testing of Software

and Communication Systems and 9th International FATES Workshop. Eind-

hoven, The Netherlands: Springer-Verlag, 2009, pp. 179–194.

[355] Wintergreen Research, Inc. (2006) Services oriented architecture (SOA) market

opportunities, strategies, and forecasts, 2006 to 2012. Accessed: 27.03.2012.

[Online]. Available: http://www.wintergreenresearch.com/reports/soa.html

[356] WofBPEL and BPEL2PNML. Accessed: 27.03.2012. [Online]. Available:

http://www.bpm.fit.qut.edu.au/projects/babel/tools/

References 274

[357] WSDL2Java. Accessed: 27.03.2012. [Online]. Available: http://cwiki.apache.

org/CXF20DOC/wsdl-to-java.html

[358] WSDL2OWL-S Project. Accessed: 27.03.2012. [Online]. Available: http:

//www.semwebcentral.org/projects/wsdl2owl-s/

[359] wsrbench. Accessed: 27.03.2012. [Online]. Available: http://wsrbench.dei.uc.pt/

[360] C.-S. Wu and Y.-T. Lee, “Automatic saas test cases generation based on soa in the

cloud service,” in CloudCom 2012: Proceedings of the IEEE 4th International

Conference on Cloud Computing Technology and Science. Tapei, Taiwan: IEE,

December 2012, pp. 349 – 354.

[361] X. Xiao, “Problem identification for structural test generation: First step towards

cooperative developer testing,” in ICSE ’11: Proceedings of the 33rd Interna-

tional Conference on Software Engineering, May 2011.

[362] XML Path Language (XPath). Accessed: 27.03.2012. [Online]. Available:

http://www.w3.org/TR/xpath/

[363] C. Xu, H. Wang, and W. Qu, “Modeling and verifying BPEL using synchro-

nized net,” in SAC ’08: Proceedings of the 2008 ACM symposium on Applied

computing. Fortaleza, Ceara, Brazil: ACM, March 2008, pp. 2358–2362.

[364] W. Xu, J. Offutt, and J. Luo, “Testing web services by XML perturbation,” in

ISSRE ’05: Proceedings of the 16th IEEE International Symposium on Software

Reliability Engineering. Chicago, IL, USA: IEEE Computer Society, Nov.

2005, pp. 257–266.

[365] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang, “BPEL4WS unit testing: Test case

generation using a concurrent path analysis approach,” in ISSRE ’06: Proceed-

ings of the 17th International Symposium on Software Reliability Engineering.

Raleigh, NC, USA: IEEE Computer Society, Nov. 2006, pp. 75–84.

References 275

[366] B. Yang, J. Wu, C. Liu, and L. Xu, “A regression testing method for composite

web service,” in ICBECS 2010: 2010 International Conference on Biomedical

Engineering and Computer Science. Wuhan, China: IEEE Computer Society,

April 2010, pp. 1–4.

[367] X. Yang, J. Huang, and Y. Gong, “Defect analysis respecting dead path elimina-

tion in bpel process,” in APSCC ’10: Proceedings of the 2010 IEEE Asia-Pacific

Services Computing Conference. Hangzhou, China: IEEE Computer Society,

December 2010, pp. 315–321.

[368] Y. Yang, Q. Tan, and Y. Xiao, “Verifying web services composition based on hi-

erarchical colored petri nets,” in IHIS ’05: Proceedings of the first international

workshop on Interoperability of heterogeneous information systems. Bremen,

Germany: ACM, Nov. 2005, pp. 47–54.

[369] K. Ye, J. Huang, Y. Gong, and X. Yang, “A static analysis method of wsdl related

defect pattern in bpel,” in ICCET 2010: Proceedings of the 2nd International

Conference on Computer Engineering and Technology. Chengdu, China: IEEE

Computer Society, April 2010, pp. V7–472 – V7–475.

[370] G. Yeom, T. Yun, and D. Min, “QoS model and testing mechanism for quality-

driven web services selection,” in SEUS-WCCIA ’06: Proceedings of the The

Fourth IEEE Workshop on Software Technologies for Future Embedded and

Ubiquitous Systems, and the Second International Workshop on Collaborative

Computing, Integration, and Assurance. Gyeongju, Korea: IEEE Computer

Society, 2006, pp. 199–204.

[371] X. Yi and K. Kochut, “A CP-nets-based design and verification framework for

web services composition,” in ICWS ’04: Proceedings of the 2004 IEEE Inter-

national Conference on Web Services. San Diego, CA, USA: IEEE Computer

Society, July 2004, pp. 756–760.

References 276

[372] S. Yoo and M. Harman, “Using hybrid algorithm for pareto effcient multi-

objective test suite minimisation,” Journal of Systems Software, vol. 83, no. 4,

pp. 689–701, April.

[373] S. Yoo and M. Harman, “Pareto efficient multi-objective test case selection,”

in Proceedings of International Symposium on Software Testing and Analysis

(ISSTA 2007). ACM Press, July 2007, pp. 140–150.

[374] S. Yoo and M. Harman, “Regression testing minimisation, selection and pri-

oritisation: A survey,” Software Testing, Verification, and Reliability, 2010, To

appear.

[375] J. Yu, P. Baumann, and X. Wang, “RPRA: A novel approach to mastering

geospatial web service testing complexity,” in ICSDM 2011: Proceedings of

the IEEE International Conference on Spatial Data Mining and Geographical

Knowledge Services. Fuzhou, China: IEEE, June 2011, pp. 252 – 25.

[376] Y. Yu, N. Huang, and Q. Luo, “OWL-S based interaction testing of web service-

based system,” in NWESP ’07: Proceedings of the 3rd International Conference

on Next Generation Web Services Practices. Seoul, South Korea: IEEE Com-

puter Society, Oct. 2007, pp. 31–34.

[377] Y. Yu, N. Huang, and M. Ye, “Web services interoperability testing based on

ontology,” in CIT ’05: Proceedings of the The Fifth International Conference on

Computer and Information Technology. Binghamton, NY, USA: IEEE Com-

puter Society, Sept. 2005, pp. 1075–1079.

[378] M. Yuan, Z. Huang, X. Li, and Y. Yan, “Towards a formal verification approach

for business process coordination,” in ICWS ’10: Proceedings of the 2010 IEEE

International Conference on Web Services. Miami, FL, USA: IEEE Computer

Society, 2010, pp. 361–368.

[379] Y. Yuan, Z. Li, and W. Sun, “A graph-search based approach to BPEL4WS test

generation,” in ICSEA ’06: Proceedings of the International Conference on Soft-

References 277

ware Engineering Advances. Tahiti, French Polynesia: IEEE Computer Society,

Oct. 2006, p. 14.

[380] Q. Yue, X. Lu, Z. Shan, Z. Xu, H. Yu, and L. Zha, “A model of message-

based debugging facilities for web or grid services,” in Proceedings of the 2009

Congress on Services - I. Los Angeles, CA, USA: IEEE Computer Society,

July 2009, pp. 155–162.

[381] Q. Yue, Z. Xu, H. Yu, W. Li, and L. Zha, “An approach to debugging grid or web

services,” in ICWS ’07: Proceedings of the 2007 IEEE International Conference

on Web Services. Salt Lake City, UT, USA: IEEE Computer Society, July 2007,

pp. 330–337.

[382] E. Zahoor, O. Perrin, and C. Godart, “Web services composition verication us-

ing satisability solving,” in ICWS 2012: proceedings of the 10th International

Conference on Web Services. Honolulu, HI, USA: IEEE, July 2012, pp. 242 –

249.

[383] K. Zhai, B. Jiang, W. K. Chan, and T. H. Tse, “Taking advantage of service

selection: A study on the testing of location-based web services through test

case prioritization,” in ICWS ’10: Proceedings of the 2010 IEEE International

Conference on Web Services. Miami, FL, USA: IEEE Computer Society, July

2010, pp. 211–218.

[384] J. Zhang and L.-J. Zhang, “Criteria analysis and validation of the reliability of

web services-oriented systems,” in ICWS ’05: Proceedings of the 2005 IEEE

International Conference on Web Services. Orlando, FL, USA: IEEE Computer

Society, July 2005, pp. 621–628.

[385] T. Zhang, Q. Yao, X. Zheng, C. Ma, and H. Wang, “An approach of end user

regression testing for semantic web services,” in MASS 2011: Proceedings of the

2011 International Conference on Management and Service Science. Wuhan,

China: IEEE, August 2011, pp. 1–4.

References 278

[386] Y. Z. Zhang, W. Fu, and J. Y. Qian, “Automatic testing of web services in haskell

platform,” Journal of Computational Information Systems, vol. 6, no. 9, pp.

2859–2867, 2010.

[387] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-objective next release

problem,” in GECCO ’07: Proceedings of the 9th Annual Conference on Genetic

and Evolutionary Computation, London, UK, July 2007, pp. 1129–1137.

[388] Y. Zhang and H. Zhu, “Ontology for service oriented testing of web services,” in

SOSE ’08: Proceedings of the 2008 IEEE International Symposium on Service-

Oriented System Engineering. Jhongli, Taiwan: IEEE Computer Society, 2008,

pp. 129–134.

[389] H. Zhao, J. Sun, and X. Liu, “A model checking based approach to automatic test

suite generation for testing web services and BPEL,” in APSCC 2012: Proceed-

ings of the 2012 IEEE Asia-Pacific Services Computing Conference. Guilin,

China: IEEE, December 2012, pp. 61 – 69.

[390] H. Zhao, W. Wang, J. Sun, and Y. Wei, “Research on formal modeling and ver-

ification of bpel-based web service composition,” in Proceedings of the 2012

IEEE/ACIS 11th International Conference on Computer and Information Sci-

ence, 2012.

[391] Y. Zheng, J. Zhou, and P. Krause, “Analysis of BPEL data dependencies,” in EU-

ROMICRO ’07: Proceedings of the 33rd EUROMICRO Conference on Software

Engineering and Advanced Applications. Lübeck, Germany: IEEE Computer

Society, August 2007, pp. 351–358.

[392] Y. Zheng, J. Zhou, and P. Krause, “A model checking based test case generation

framework for web services,” in ITNG ’07: Proceedings of the International

Conference on Information Technology. Las Vegas, NV, USA: IEEE Computer

Society, April 2007, pp. 715–722.

References 279

[393] L. Zhou, J. Ping, H. Xiao, Z. Wang, G. Pu, and Z. Ding, “Automatically test-

ing web services choreography with assertions,” in ICFEM’10: Proceedings of

the 12th international conference on Formal engineering methods and software

engineering. Shanghai, China: Springer-Verlag, November 2010, pp. 138–154.

[394] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang, and T. Y. Chen, “Meta-

morphic testing and its applications,” in Proceedings of the 8th International

Symposium on Future Software Technology (ISFST 2004), Xian, China, October

2004.

[395] H. Zhu, “A framework for service-oriented testing of web services,” in COMP-

SAC ’06: Proceedings of the 30th Annual International Computer Software and

Applications Conference, vol. 2. Chicago, IL, USA: IEEE Computer Society,

September 2006, pp. 145–150.

[396] H. Zhu and Y. Zhang, “Collaborative testing of web services,” IEEE Transac-

tions on Services Computing, vol. 5, no. 1, pp. 116 – 130, March 2012.

[397] J. Zhu, K. Zhang, and G. Zhang, “Verifying web services composition based on

ltl and colored petri net,” in Proceedings of the 2011 6th International Confer-

ence on Computer Science & Education (ICCSE). Singapore: IEEE, August

2011, pp. 1127 – 1130.

[398] Z. Zhu, J. Li, Y. Zhao, and Z. Li, “SCENETester: A testing framework to support

fault diagnosis for web service composition,” in CIT 2011: Proceedings of the

11th IEEE International Conference on Computer and Information Technology.

Pafos, Cyprus: IEEE, August 2011, pp. 109 – 114.

