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Resumen

La Computación Orientada a Servicios (Service Oriented Computing o SOC en inglés) se ha
convertido en el paradigma principal para el desarrollo de aplicaciones distribuidas. A diferen-
cia del paradigma monolı́tico tradicional, donde las aplicaciones se conciben como procesos
centrales gestionados por organizaciones individuales, el paradigma SOC se apoya en el con-
cepto de los servicios como los componentes básicos de construcción para el desarrollo de
aplicaciones distribuidas, facilitando tanto la construcción, como el mantenimiento o la reuti-
lización mediante composición.

Los servicios son componentes software débilmente acoplados, que exponen una fun-
cionalidad claramente definida a través de interfaces estándar y con capacidad de interope-
rabilidad a través de la red. Dado que los servicios son componentes independientes y auto-
contenidos, tienen la ventaja de que pueden ser fácilmente publicados, localizados e invocados
a través de la red, lo que permite el desarrollo de nuevas aplicaciones mediante la explotación
de la colaboración y la integración heterogénea de servicios entre distintas organizaciones.

En la práctica, este modelo conceptual para el desarrollo de aplicaciones distribuidas usan-
do los servicios como principales actores se implementa mediante lo que se conoce como
Arquitecturas Orientadas a Servicios (Service Oriented Architectures o SOA en inglés). Una
arquitectura SOA es un conjunto de principios, patrones y criterios de diseño orientados a la
construcción de sistemas distribuidos mediante el uso de servicios alineados con los procesos
de negocio con el objetivo de mejorar la escalabilidad y flexibilidad de las organizaciones.

En general, en una SOA se identifican tres tipos de roles o participantes. Dichos roles son:
1) el proveedor de servicios, responsable de proporcionar la implementación de los servicios
ası́ como de la definición y publicación de su descripción; 2) el cliente, que puede ser tanto
un usuario como otro componente software y desempeña el rol de consumidor de servicios, a
través del descubrimiento del servicio adecuado y su posterior ejecución, con el objetivo de
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satisfacer una necesidad concreta; y 3) el registro de servicios, cuya función es la de man-
tener localizada la información de los servicios publicados por los proveedores, además de
facilitar los mecanismos necesarios para el descubrimiento de dichos servicios por parte de
los clientes.

De la misma forma que los servicios son la piedra angular del paradigma SOC, los ser-

vicios Web son la tecnologı́a más usada a la hora de implementar servicios en una SOA. Los
servicios Web son aplicaciones modulares descritas por una serie de operaciones accesibles
a través de la red soportadas por un conjunto de capas (pila de especificaciones) que definen
los servicios a distintos niveles de abstracción, como son: la capa de transporte, encargada
de la comunicación a nivel de red; la capa de mensajerı́a, responsable de los protocolos de
comunicación necesarios para la codificación y el intercambio de mensajes entre las distintas
partes (XML-RPC, SOAP...); la capa de calidad de servicio, encargada de proporcionar in-
formación relevante sobre las caracterı́sticas no funcionales de los servicios como pueden ser
el tiempo de respuesta, la disponibilidad, el coste...; la capa de descripción, que especifica la
forma en la que se describen las caracterı́sticas funcionales de los servicios mediante el uso
del lenguaje WSDL (Web Service Description Language), etc.

A nivel funcional, la capa de descripción es interesante ya que define los elementos ne-
cesarios para poder invocar un servicio, es decir, qué entradas y tipos de datos requiere la
función implementada por el servicio, y qué datos devuelve tras la ejecución. Sin embargo,
una limitación importante de esta capa es que sólo describe la funcionalidad desde un punto
de vista sintáctico, es decir, se define la estructura y los tipos de las funciones que implementa
un servicio pero no el significado de éstos. Esta limitación dificulta la automatización de ta-
reas crı́ticas tales como el descubrimiento, la composición o la invocación de servicios. Para
superar esta limitación, se han llevado a cabo diversos esfuerzos en aras de proporcionar in-
formación semántica a las descripciones de los servicios. Como resultado, diversos lenguajes
de anotación semántica para servicios como SAWSDL, WSMO u OWL-S han sido creados,
dando paso a un nuevo tipo de servicios denominados servicios Web semánticos.

Los servicios Web semánticos se consideran una extensión de los servicios tradicionales
que incorporan anotaciones semánticas con el fin de proporcionar definiciones declarativas
formales de sus interfaces, ası́ como para capturar de forma declarativa la funcionalidad de los
servicios. Sobre la base de estas descripciones semánticas se establecen nuevos mecanismos
para automatizar las tareas implicadas en el ciclo de vida de aplicaciones orientadas a servi-
cios, por ejemplo, permitiendo el razonamiento acerca de los tipos de datos de las entradas
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y salidas para mejorar el descubrimiento de servicios o para automatizar el encadenamiento
de múltiples servicios mediante el correcto emparejamiento de sus entradas y salidas con el
fin de generar nuevas funcionalidades mediante la creación de composiciones de servicios
complejas.

Precisamente, una de las promesas clave de la computación orientada a servicios es la
capacidad para generar nuevas aplicaciones distribuidas a bajo coste mediante la reutilización
y combinación de servicios existentes. A este proceso de creación de nuevos servicios se le
denomina composición de servicios. La composición de servicios conduce a la creación de
nuevos servicios compuestos bajo demanda mediante la combinación de las entradas y salidas
de los servicios existentes de una manera que este nuevo servicio cumpla alguna funcionalidad
especı́fica que no puede ser satisfecha por un único servicio aislado.

Aunque las composiciones pueden ser diseñadas manualmente, esta aproximación tiene
limitaciones importantes. Por una parte, el diseño manual de una composición de servicios
es una tarea compleja que requiere mucho esfuerzo para localizar los servicios adecuados y
descubrir la mejor forma de combinarlos para conseguir obtener la funcionalidad buscada de
manera óptima. A pesar de que el diseño manual es factible en dominios concretos, donde el
número de servicios es limitado y relativamente estable, no es práctico cuando se trabaja con
grandes volúmenes de servicios. Por otra parte, este enfoque requiere de la anticipación por
parte de los implementadores de servicios a las posibles necesidades de los clientes y casos de
uso comunes con el fin de diseñar las composiciones apropiadas que satisfagan dichas deman-
das. Esto limita en gran parte la flexibilidad de las organizaciones, dado que es prácticamente
imposible prever las necesidades de todos los usuarios con antelación, y menos aún diseñar,
depurar y desplegar múltiples composiciones para cada posible demanda. Además, el fallo en
algún servicio de una composición puede provocar un incorrecto funcionamiento o un fallo
total en la composición, lo que requiere más mano de obra para localizar el servicio afectado
y buscar la forma de reemplazarlo por uno o por varios servicios que suplan dicha funciona-
lidad. Esto se traduce en paradas en los servicios que pueden impactar de forma negativa el
normal funcionamiento de las organizaciones.

Estas limitaciones pueden ser superadas mediante el uso de técnicas automáticas para la
composición de servicios Web. Sin embargo, la automatización de todo el proceso de compo-
sición es una tarea compleja que requiere no sólo de la automatización de muchas actividades
necesarias para la composición, como el emparejamiento automático de entradas y salidas o
el descubrimiento de servicios relevantes para la composición, sino también de la optimiza-
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ción de los diferentes aspectos que afectan a la calidad de las soluciones, como pueden ser
el número total de servicios o la calidad de servicio de dicha composición (por ejemplo, el
tiempo de respuesta total o el número de peticiones por segundo que soporta).

Los beneficios de la composición automática de servicios han motivado la aparición de
muchas propuestas distintas centradas en diferentes aspectos de la problemática y bajo diver-
sas asunciones. En general, las técnicas existentes pueden clasificarse en métodos basados en

plantilla si el workflow de composición viene determinado por una plantilla con un número
fijo de servicios que el usuario debe proporcionar al sistema, o basados en búsqueda si to-
da la composición es creada de forma automática y por tanto el número de servicios puede
ser variable. Un workflow, en el contexto de la composición de servicios, define un conjunto
de tareas abstractas junto con las dependencias de control y de datos entre ellas, donde cada
tarea especifica una funcionalidad abstracta que puede ser implementada por algún servicio
concreto de entre todos los posibles candidatos para dicha tarea.

En los métodos basados en plantilla, el workflow de la composición es definido previa-
mente por un experto, responsable de identificar las distintas tareas abstractas y modelar las
dependencias de datos y control entre ellas. Una vez el workflow está diseñado, el sistema de
composición automático se encarga de seleccionar el servicio más adecuado para cada tarea
intentando optimizar uno o varios parámetros de la composición, generalmente referidos a
propiedades no funcionales de calidad de servicio, como el coste, el tiempo de respuesta total,
etc. Por tanto, los problemas que se abordan en este tipo de composiciones son principal-
mente: 1) cómo automatizar y realizar un descubrimiento adecuado de los servicios de forma
eficiente y/o 2) cómo hacer la selección de servicios para cada tarea de forma que se optimice
la calidad de servicio global sujeto a una o varias restricciones impuestas por el cliente sobre
los parámetros deseados.

Aunque estas aproximaciones son capaces de buscar composiciones óptimas soportando
restricciones complejas para múltiples parámetros, también tienen importantes limitaciones.
Por una parte, dado que el workflow de composición está predefinido, el número de servicios
está ligado al número de tareas abstractas definidas en el workflow, lo que impide optimizar el
propio tamaño de la composición. Por otra parte, si una tarea no tiene ningún servicio válido
que pueda implementarla, no es posible generar una composición alternativa que pueda reem-
plazar dicha tarea sin afectar al funcionamiento esperado. Por contra, en los métodos basados
en búsqueda, todo el workflow de composición es generado de manera automática, incluyendo
tanto las dependencias de control como de datos necesarias para la correcta ejecución de la
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composición, lo que permite generar composiciones de tamaño y estructura variable. Este tipo
de técnicas son más potentes pero computacionalmente más costosas, dado que, en general,
el número de posibles composiciones y de formas de combinar los servicios crece de manera
exponencial con el número de servicios disponibles. Este tipo de técnicas se pueden clasificar
en al menos dos grandes bloques: centradas en control (control-centric) o centradas en datos
(data-centric).

El objetivo de las aproximaciones centradas en control es el de buscar la mejor forma de
combinar la funcionalidad de los servicios adecuados con las estructuras de control (como
pueden ser ejecución en secuencia, ejecución en paralelo, bucles, etc) usadas para coordinar
el flujo de control de la composición resultante, mientras que el enfoque centrado en los datos
analiza las dependencias de datos entre las entradas y salidas de los servicios (es decir, qué sa-
lidas pueden ser potencialmente usadas como entradas de otros servicios) y luego infieren las
dependencias de control a partir de dichas dependencias de datos. En general, los enfoques
centrados en control son computacionalmente más difı́ciles ya que el uso de diferentes cons-
trucciones de control incrementa la variabilidad de las soluciones, ası́ como el número de
composiciones funcionalmente equivalentes para el mismo objetivo. Este aumento de la com-
plejidad juega en contra de la capacidad de obtener soluciones razonables en poco tiempo.
Por contra, los enfoques centrados en datos son más fáciles de generar y validar, pero a costa
de una menor expresividad ya que no todas las posibles construcciones de control pueden in-
ferirse simplemente mediante el análisis de dependencias de datos. Cada estrategia tiene sus
propias ventajas y limitaciones, y su eficacia dependerá de las necesidades particulares y el
contexto especı́fico en el que la composición se llevará a cabo.

La mayor parte de las técnicas centradas en control para la generación automática de com-
posiciones se basan en algoritmos evolutivos y en redes jerárquicas de tareas para planifica-
ción (Hierarchical Task Networks o HTNs en inglés). Las técnicas evolutivas, y concretamente
la programación genética, son especialmente adecuadas ya que ofrecen un buen rendimiento
en la optimización de problemas complejos con espacios de búsqueda de gran tamaño. La
programación genética es un tipo de algoritmo evolutivo que genera y evoluciona de forma
estocástica una población de individuos (soluciones) por medio de mecanismos de selección
natural. La información de cada individuo se codifica a través del genotipo: una colección
de genes que codifican las caracterı́sticas de los individuos. La principal diferencia con res-
pecto a otro tipo de algoritmos evolutivos es que la programación genética utiliza estructuras
tipo árbol para representar el genotipo de los individuos, ası́ como operadores genéticos que
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operan sobre dichos árboles para transformar el genotipo de los individuos en el proceso de
optimización. Estas estructuras en forma de árbol utilizadas para codificar las instancias del
problema guardan mucha semejanza con la forma en que se definen los workflows de compo-
sición mediante la combinación recursiva de estructuras de control y servicios.

Del mismo modo, las HTNs utilizan una descomposición jerárquica de tareas de arriba
abajo para generar automáticamente composiciones pero de una manera completamente di-
ferente. En lugar de evolucionar una serie de composiciones generadas aleatoriamente, las
HTNs aplican ciertos operadores de dominio especı́fico que permiten descomponer los obje-
tivos de composición a alto nivel planteados por un usuario (como podrı́a ser la planificación
de un viaje) en tareas de más bajo nivel (como podrı́a ser reserva de un vuelo) hasta que di-
chas tareas puedan ser implementadas directamente por servicios Web. Las HTNs comparten
algunas similitudes con los métodos basados en plantillas ya que se les debe proporcionar
una descripción de las diferentes tareas y métodos de descomposición de dichas tareas, las
cuales deben ser modeladas con antelación por un experto. Pero independientemente de la
estrategia adoptada, existe una falta clara de estudios que analicen cómo se pueden generar
composiciones óptimas, es decir, cómo generar composiciones de servicios de forma que se
optimicen distintos parámetros de las composiciones resultantes, como el número de servicios
implicados en la composición o la calidad de servicio global, además de una falta de análisis
en términos de escalabilidad y rendimiento con un gran número de servicios.

Por otra parte, las técnicas centradas en datos se enfocan más en el problema de cómo
extraer composiciones válidas mediante el análisis semántico de las dependencias entre las
entradas y salidas de servicios relevantes. La mayor parte de estas técnicas se agrupan en: 1)
técnicas clásicas de planificación automática, donde el problema de composición se traduce a
un problema en el dominio de la planificación automática y se resuelve usando planificadores
generales basados en espacio de estados, y 2) métodos basados en grafos que se encargan de
construir grafos de dependencias de servicios mediante el análisis semántico de sus entradas y
salidas para después aplicar algoritmos de búsqueda sobre el grafo para extraer composiciones
válidas. Las técnicas clásicas de planificación automática se han venido usando en el campo
de la composición automática de servicios para generar, mediante la traducción de servicios
en acciones en el dominio de planificación, secuencias de servicios encadenados de manera
que la ejecución secuencial transforme las entradas proporcionadas en las salidas esperadas,
garantizando que se cumplen las precondiciones y efectos de cada uno de los servicios de la
composición.
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Estas técnicas funcionan bajo el supuesto de que los servicios son operadores complejos
bien definidos en términos de entradas, salidas, precondiciones y efectos, y por lo tanto el pro-
blema de composición puede ser traducido de forma directa al dominio de planificación para
ser resuelto con algoritmos generales de planificación. La mayor parte de la investigación en
este tipo de técnicas aplicadas a la composición se han centrado en explotar técnicas semánti-
cas y desarrollar mejores heurı́sticas para el rendimiento de los planificadores en el dominio
de la composición. Como resultado, y en parte debido a la complejidad computacional del
problema de composición con precondiciones y efectos, las propuestas existentes basadas en
planificación no son capaces de generar soluciones óptimas en términos de número de servi-
cios y/o calidad de servicio. Por contra, las técnicas basadas en grafos son por lo general más
escalables pero a costa de sacrificar algunas caracterı́sticas soportadas por los planificadores,
como el manejo de precondiciones y efectos complejos. Este tipo de algoritmos suelen hacer
uso de técnicas semánticas para buscar relaciones entre entradas y salidas de servicios, para
a continuación aplicar distintos tipos de búsquedas para extraer composiciones optimizando
distintos criterios, como tamaño de las soluciones o la calidad de servicio global.

Aunque este tipo de técnicas son por lo general capaces de generar soluciones buenas y
de manera rápida, un análisis del estado del arte revela al menos dos problemas importantes y
recurrentes: 1) En la mayorı́a de sistemas de composición, la noción de registro de servicios
externo no existe, lo que implica que toda la información requerida se preprocesa y se carga en
memoria principal antes de realizar la búsqueda. Esta es una importante limitación que impide
el desarrollo de motores de composición que son capaces de trabajar con grandes conjuntos
de datos y/o con registros distribuidos; y 2) las técnicas actuales fallan a la hora de generar
soluciones óptimas minimizando eficazmente el número de servicios de las soluciones y/o la
calidad de servicio global. Esto se debe principalmente a que, dada la complejidad del pro-
blema, la mayorı́a de las técnicas se centran sólo en la generación de soluciones rápidas pero
subóptimas, en lugar de explorar la mejor forma de lograr un buen equilibrio entre velocidad
y optimalidad.

El objetivo de esta tesis es hacer frente a estas limitaciones mediante el desarrollo de
nuevas técnicas de composición de servicios que permitan generar composiciones óptimas
minimizando el número de servicios de las soluciones ası́ como la calidad de servicio global.
Como parte de una investigación exploratoria inicial nos enfocamos en las técnicas centra-
das en control para generar composiciones complejas mediante la combinación de diferentes
estructuras de control. Para ello, en el Capı́tulo 2 presentamos un algoritmo de programa-
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ción genética que usa una gramática de contexto libre y un conjunto de operadores genéticos
para generar workflows de composición válidos, minimizando el número de servicios y ma-
ximizando el paralelismo en la ejecución de los servicios seleccionados en la composición.
Aunque los resultados obtenidos con esta técnica demuestran la eficacia de este enfoque en
la generación de soluciones complejas usando las distintas estructuras de control definidas en
la gramática formal, la complejidad del espacio de búsqueda y el tiempo de cálculo necesario
para obtener soluciones buenas hacen que esta técnica no sea la más apropiada para la genera-
ción de soluciones online, pero sı́ para la generación y optimización offline de composiciones
con estructuras de control complejas.

Para hacer frente a esta limitación, nos trasladamos hacia un enfoque centrado en los datos
basado en la idea de construcción de grafos de dependencias de servicios mediante el análisis
de las relaciones semánticas entre las entradas y salidas. Para ello, en el Capı́tulo 3 propo-
nemos una serie de técnicas para generar, dada una petición de composición compuesta por
una serie de entradas proporcionadas por el usuario y una serie de salidas esperadas, el grafo
con los servicios relevantes y las relaciones semánticas entre ellos para dicha petición. Una
vez generado el grafo, se aplican distintas optimizaciones para reducir su tamaño mediante la
detección de servicios equivalentes y/o dominados en términos de funcionalidad. A continua-
ción, se aplica un algoritmo basado en A* para extraer la composición con el menor número de
servicio y la menor longitud del grafo. La validación con un conjunto de repositorios estándar
del Web Service Challenge 2008 demuestra que esta aproximación obtiene soluciones con un
menor número de servicios que otras aproximaciones.

En el Capı́tulo 4, y en base a estos resultados previos, definimos un framework formal para
composición basada en grafos que integra el descubrimiento de servicios basado en entradas
y salidas como parte esencial en el proceso de composición, de forma que se puedan llevar a
cabo composiciones de servicios sin necesidad de asumir disponibilidad local ni precarga en
memoria del registro completo de servicios. En base a este framework, realizamos un análisis
teórico de las implicaciones que tiene la integración entre el descubrimiento y la composi-
ción en términos de eficiencia y proponemos una serie de estrategias dirigidas a minimizar la
sobrecarga del proceso de descubrimiento en la composición.

En el Capı́tulo 5 presentamos una extensión del anterior framework para incluir soporte
para la optimización de la calidad de servicio global. Para ello, se extienden las optimizaciones
presentadas en el capı́tulo anterior para detectar servicios equivalentes y dominados también
en términos de calidad de servicio. Con el fin de extraer la composición óptima de este nuevo
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grafo, minimizando tanto la calidad de servicio global como el número de servicios, se define
un nuevo algoritmo hı́brido que combina una búsqueda local rápida con una búsqueda global.
La búsqueda local obtiene solución con un número de servicios subóptimo al tiempo que se
satisface la calidad de servicio global de forma óptima. Por otra parte, la búsqueda global
puede mejorar la solución obtenida con la estrategia de búsqueda local mediante la realiza-
ción de una búsqueda exhaustiva combinatoria para seleccionar la composición con el menor
número de servicios posible para la calidad de servicio óptima. Los resultados con los con-
juntos de datos del Web Service Challenge 2009-2010 y con un conjunto de datos generado
aleatoriamente demuestran que con esta técnica es posible alcanzar un buen equilibrio entre
optimalidad y velocidad.

La tesis termina con las conclusiones y el trabajo futuro presentados en el Capı́tulo 6.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The growing importance of Service Oriented Computing (SOC) within the domain of dis-
tributed computing has led to an important increase in the number of available services both
inside and outside of different organizations and companies worldwide. In this context, Web
services have increased in popularity and have become established as the preferred technology
for the development of distributed systems due to their interesting properties. Web services
are self-described, loosely coupled software components that are network-accessible through
standardized web protocols [78]. Each service exports certain functionality that can be in-
voked by passing the inputs and outputs required in the service signature. One of the key
promises of services is the ability to compose and reuse their functionality to create new
high-level components, a process known as service composition. Service composition leads
to the creation of new services on-demand by combining the inputs and outputs of existing
services in a way that fulfills some specific functionality that cannot be satisfied by a single
service. Although the composition of services can be carried out by locating and designing
compositions by hand, in a large-scale scenario it becomes necessary the use of automatic
composition techniques to bring services to their full potential without the need of human
intervention. However, automating the entire service composition process is a very hard and
challenging task that requires not only the automation of other related activities, such as the
matchmaking of input/outputs descriptions or the discovery of relevant services for the com-
positions, but also the optimization of different aspects that affect the solutions, such as the
size of the resulting composition or the overall end-to-end Quality-of-Service (QoS). Partic-
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ularly, optimizing both the size and the overall QoS of compositions is especially important
in order to i) obtain small and manageable compositions that are easier to execute, debug and
deploy and ii) to guarantee that the provided solutions are optimal in terms of response time,
throughput or other non-functional quality attributes of the compositions. These problems
have motivated researchers to approach the problem of automatic composition from different
perspectives and applying different techniques [15, 61, 84, 92, 113, 114]. AI Planning tech-
niques [61,84] have been traditionally used in service composition to generate valid composi-
tion plans by translating services into actions in the planning domain. These techniques work
under the assumption that services are complex operators that are well defined in terms of
inputs, outputs, preconditions and effects, so the problem can be directly solved using classi-
cal planning algorithms. However, given the complexity of generating satisfiable plans in the
planning domain, these techniques are usually slow, do not generate neither optimal plans (in
terms of minimizing the number of actions) nor optimal QoS-aware compositions, and present
scalability issues in large repositories. Other approaches consider the composition problem
as a data transformation process that can be described only in terms of inputs and outputs,
leaving aside preconditions and effects. These approaches usually rely on graph-based tech-
niques [41, 42, 44, 48, 54, 57, 75, 107, 120, 124, 125, 129] to efficiently extract compositions
from a graph that contains both services and their input-output dependencies, generally using
semantic techniques to enhance the automatic matching of inputs and outputs. Although these
techniques are usually faster than other approaches, most techniques generate overly complex
graphs with similar or redundant information which may negatively affect the overall perfor-
mance and scalability in large service registries. Consequently, suboptimal search algorithms
are used to explore only a subset of the space of possible solutions, and thus optimal solutions
in terms of both the size and the overall QoS are not guaranteed.

But besides these current limitations, one of the assumptions that is also often made is
that discovery and composition are two different and unrelated problems. As a result, most
composition techniques do not deal with service discovery and assume instead that all the
required services are locally available during the composition process. This unrealistic as-
sumption requires preimporting all services locally which is only viable for those registries
providing entire public dumps of the service descriptions they hold. Both discovery and com-
position are two interrelated activities that need to be addressed together in order to design
better composition engines that can be integrated in real systems.

In this thesis we study the problem of generating automatic compositions of Web services,
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optimizing both the size and the end-to-end QoS of the solutions and focusing on the seman-
tic input-output parameter matching of services interfaces, i.e., given a composition request
defined by a set of semantically annotated inputs and outputs, the goal is to select an optimal
composite service whose invocation leads from the provided inputs to the expected outputs.

To this end, we devise an integrated graph-based framework that efficiently integrates the
automatic service composition and semantic service discovery. The framework also includes
a set of optimizations to improve the efficiency of the different steps involved in the whole
composition and a set of algorithms that are able to efficiently extract optimal compositions
in terms of both size and QoS. Our contributions have been validated with a comprehensive
set of experiments using standard datasets, showing an improvement of the optimality of the
solutions over state-of-the-art. Moreover, some of the techniques developed in this thesis are
being currently used within the European COMPOSE project [88], coordinated by IBM Israel.

1.2 Web services

Service-Oriented Computing (SOC) has become the main paradigm for developing distributed
applications [78]. In contrasts with the traditional monolithic paradigm, where applications
are conceived as single processes managed by single organizations, SOC paradigm promotes
the use of services as the main building blocks for the development of effective distributed
applications that are easier to build, reuse and compose. Services are network-available,
loosely-coupled software components that expose some business functionality through the
use of standard interfaces [78]. Since services are self-contained and autonomous pieces of
software, they can be easily described, published, located and invoked over a network, en-
abling the development of new applications by exploiting the collaboration and integration of
applications across different organizations.

The requirements imposed by the SOC paradigm can be addressed in practice by the
implementation of Service-Oriented Architectures. A Service-Oriented Architecture (SOA)
is an architectural style that defines a set of principles and patterns for implementing service-
based systems that fulfill an organization’s business processes and goals [10]. A SOA is
based on an interaction model which consists of three primary roles, represented in Figure
1.1. These roles are: service providers, responsible for providing the implementation of a
service and publishing its description; service clients, that locate and request the execution
of services; and service registries, which store information about the service capabilities,



4 Chapter 1. Introduction

Service
Broker

Service
Provider

Service
Client

Pu
bl
is
h

D
iscover

Bind

(registry)

Figure 1.1: The three primary roles in Service Oriented Architectures.

interfaces, quality and other properties of the published services and provide a way to discover

services for any potential service client.

Depending on their purpose, services can be categorized into two groups: information-

providing services and world-altering services [64]:

• Information-providing services. These services are intended to: 1) provide some data
(outputs), or 2) transform some inputs into some outputs. For example, a service offered
by a thermal sensor only reads the information of the environment and returns a concrete
value that represents the temperature at the time the service is queried. This service does
not require any input since its main function is to read and retrieve information. Other
services may require some inputs to operate. For example, a sentiment analysis service
translates a text fragment (input) into a score associated to the positive or negative
sentiment of the text (output). Information-providing services do not alter the state of
the world, they only read data or transform data, but do not produce any side effect. As
a result, their functionality can be described only in terms of inputs and outputs.

• World-altering services. The invocation of these services produces side effects that
change the current state of the world. For example, a purchase service may use some
inputs and produce some outputs, as in the case of information-providing services, but
also produces some side effects: the number of available items changes after the invo-
cation, as well as the money in the credit card of the client. In addition to the inputs and
outputs, the functionality of these services is also described in terms of preconditions
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(logical statements that must be satisfied in order to invoke the service) and effects1

(logical statements that describe how the state of the world changes after the invocation
of the service).

In this thesis we focus on information-providing services since: 1) are more lightweight;
and 2) information-providing services greatly outnumber [105] world-altering services2.

In the same way that services are the cornerstone of the SOC paradigm, Web services are
the preferred way to implement services in SOAs. Web services are self-contained pieces of
software that are implemented using a set of standard technologies to support inter-operable
machine-to-machine interaction over a network [118]. The functionality of a Web service is
described by a machine-readable interface description using WSDL (Web Service Descrip-
tion Language [29]), while the message interaction is specified through SOAP (Simple Object
Access Protocol). WSDL abstractly describes the functionality of services in terms of oper-
ations, inputs and outputs, and provides mechanisms for binding the operations to concrete
protocols and data format specification.

However, WSDL describes Web services only on the syntactic level, i.e., it does not pro-
vide the semantic information needed to declaratively define the functionality of Web services.
This limitation hampers the automation of critical tasks such as the discovery, the composition
or the invocation of services. Researchers have made many efforts to overcome this limitation
by enriching service descriptions with semantic-based knowledge. As a result, many semantic
description languages were proposed, such as SAWSDL [55], WSMO [102] or OWL-S [20],
leading to the concept of Semantic Web Services. Semantic Web Services (SWS) were intro-
duced by McIlraith et al. [64] as an extension of traditional services by annotating them with
semantic descriptions in order to provide formal declarative definitions of their interfaces as
well as to capture declaratively what the services do. On the basis of these semantic descrip-
tions, SWS technologies introduce new powerful mechanisms to automate the tasks involved
in the life cycle of service-oriented applications, for example by enabling the reasoning about
inputs/outputs concepts to improve service discovery or to automate the chaining of multi-
ple services by matching and connecting their inputs and outputs in order to create complex
service compositions.

1Usually, the term effect from the planning domain is refered as postcondition in service modeling. We use both
terms interchangeably.

2Here we consider that a service is a world-altering service if its preconditions and effects are explicitly modeled,
regardless of whether its invocation produces some side effects or not.
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Besides these syntactic and semantic functional properties of services, service descrip-
tions can also include Quality-of-Service attributes (QoS). QoS refers to the non-functional

properties that characterize the quality of the service, such as response time (the average
time required to complete a web service request), throughput (the average number of web
service requests served in a given time interval), availability (percentage of time that a ser-
vice is available to consume), among others. These attributes provide a quantitative mea-
surement of the performance and capabilities of services that are offered by different service
providers. In order to support the QoS specification of Web services, a wide variety of alter-
natives have been proposed, that range from extensions to service registries [90] and service
descriptions [35, 116] to more advanced mechanisms that enable the negotiation and moni-
tor of QoS [31, 106]. These non-functional properties apply both to single services and to
composite services. In a service composition, each individual service may affect the global
end-to-end QoS of the composition. Thus, selecting the best combination of services with the
appropriate QoS levels for a composition is a complex problem but fundamental to meet the
customer’s expectations.

In this thesis, we focus on the problem of generating optimal QoS-aware service compo-
sitions. For this purpose, we assume that the QoS attributes of a service are static values and
are part of the service description itself.

1.3 Service Composition

One of the key SOC promises is the ability to rapidly deliver low-cost distributed applica-
tions by reusing and combining existing services [79]. This process of building new services
by combining the functionality of many different services is called service composition. Al-
though compositions can be manually created, this approach has important limitations:

• First, the manual design of service compositions is a very time-consuming task that
requires to locate the appropriate services and to figure out the best way to combine
them. Although this is feasible in some concrete domains with only few services, it is
impractical when dealing with large repositories of services.

• Second, this approach requires to identify in advance the possible client needs and
common use cases in order to design appropriate compositions that satisfy the demands.
However, it is impossible to anticipate all users’ needs in advance, even less to design,
debug and deploy multiple compositions for every possible demand.
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• Third, a failure in a single service of the composition can break the entire functionality
of the composite service. This requires further manual labor to replace and redesign
part of the composition, which means long downtimes that may negatively impact on
business. It would be interesting to be able to recover from this unexpected situation by
automatically generating an alternative composition that replaces the affected service
or services in short time.

These limitations can be overcome by resorting to an automatic generation of Web service
compositions. In this thesis we study the problem of generating automatic composition by
finding the optimal way to combine the functionality of many information-providing services
to generate data-flow compositions that satisfy a concrete goal. Informally, this problem can
be formulated as follows:

Given a composition request expressed as a set of provided inputs and expected

outputs, how can we quickly generate an optimal composition of services, mini-

mizing both the number of services and the end-to-end QoS of the composition,

that transforms the provided inputs into the expected outputs?

The automatic composition of services comprises many challenges that range from how to
discover relevant services to how to optimize the number of services or the overall QoS of the
solution. Concretely, in this thesis we study this problem taking into account the following
tasks that are strongly related with the generation of compositions:

• I/O Matchmaking. In a composition, the functionality of different services is com-
bined by chaining the outputs produced by some services to the inputs required by
other services. I/O matchmaking refers to the problem of computing an accurate match
between inputs and outputs to generate valid compositions.

• Service Discovery. It is not possible to generate compositions if there is no mechanism
for discovering relevant services. Service discovery is a fundamental task that needs to
be carried out by any composition algorithm in order to locate adequate services, using
the information available (inputs/outputs) at every step of the composition.

• Optimal Service Composition. This is the central problem of this thesis. The genera-
tion of optimal compositions comprises not only the efficient integration and execution
of the previous tasks but also: 1) a formal model for computing the aggregated QoS of



8 Chapter 1. Introduction

a composition; 2) the design of efficient algorithms for the generation of optimal com-
positions, minimizing the size and optimizing the overall QoS of the composition, and
3) the development of optimization techniques to improve the scalability of the whole
composition system.

In the following subsections, we analyze the available state-of-the-art methods and tech-
niques as well as the main assumptions that are made in this thesis.

1.3.1 I/O Matchmaking

A fundamental issue that needs to be addressed for generating compositions and even for dis-
covering services, is the ability to analyse the compatibility between inputs types and outputs
types. Basically, in a composition, the functionality of many services is combined by connect-
ing (matching) the outputs of a service with the inputs of other service, generating a complex
data-flow of inputs and outputs. The correct behavior of the entire composite service depends
in part on the correctness of the I/O matching process, i.e., an I/O mismatch can cause the
malfunction of an entire composition. Automating this process while ensuring correctness
can be very hard to accomplish using only the syntactic description of the services’ function-
ality, since potentially compatible inputs and outputs can differ due to syntactic differences
in their definitions [76]. For example, suppose that a ContactInfoService is a service
that given the name of a worker, returns information such as her phone and the information
of the building where she is located in. On the other hand, a service LocationService
takes a location and returns the geographical coordinates of that location. If we want to obtain
the geolocation of a worker, we could compose both services, and so the output Building
of the first service can be passed as a Location to the LocationService to obtain the
geolocation of the building. However, it is impossible for a syntactic-based system to realize
that both terms are semantically related. Clearly, using syntactic descriptions of the inputs
and outputs is insufficient to detect these potentially valid matches.

To enhance the automatic I/O matchmaking, inputs and outputs of services can be an-
notated with semantic concepts from an ontology [37]. An ontology models a common and
structured vocabulary which defines the concepts and their logic relationships used to describe
a concrete domain. By using semantic annotations, the I/O matching process can perform log-
ical inferences to derive additional information about the concepts of the ontology, leading to
the recognition of valid input-output matches despite their syntactic differences. This func-
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tionality, which we refer to as I/O semantic matchmaking, is in charge of assessing the level of
semantic compatibility between concepts. To do so, semantic matchmaking relies on semantic
reasoning in order to be able to determine the relationships between the concepts.

dbo:Placedbo:Location

dbo:Park

dbo:Community

dbo:Architectural
Structure

dbo:Infraestructure dbo:Building

Contact
Service

Geoloc
Service

dbo:Building

dbo:phoneNumber

dbo:Locationdbo:Name

geo:latitude

geo:longitude

rdfs:isSubclassOf

rdfs:isSubclassOf

rdfs:isSubclassOf

owl:equivalentClass

rdfs:isSubclassOfrdfs:isSubclassOf

dbo:Building dbo:Location⊒
Plugin match

Figure 1.2: I/O Matchmaking in a composition.

Figure 1.2 shows the same example as before, using semantic concepts to annotate in-
puts and outputs. The ontology is depicted on the right of the figure. As it is shown, by
exploring the relations in the ontology, it is possible to see that a Building is a type of
ArchitecturalStructure, which in turn is a type of Place. Also, since a Place
is equivalent to a Location, we can conclude that a Building is a type of Location.
This reasoning process allows to derive facts that are not explicitly expressed in the ontology.
Depending on their relationship, concepts can match with different qualities (or matching
degrees). The different matching degrees that are typically contemplated in the literature
are [76]: exact, if both concepts are equivalent; plug-in, if a concept c1 is more specific than
a concept c2; subsume, if a concept c1 is more general than a concept c2; and fail if both
concepts are not related to each other.

This reasoning process can be used for example, to discover services that can consume or
produce a concrete input/output by finding semantically compatible types, as well as to find
out which services can be used to pass some information to other services. In this thesis, we

use this type of subsumption reasoning as a tool to improve the I/O matchmaking process,

by assuming that inputs and outputs of services are correctly annotated with concepts from

ontologies.
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1.3.2 Service Discovery

Service discovery has traditionally been considered as the problem of finding the services
that best match a given request in terms of its functional behavior and user preferences [64].
As a consequence the interface exposed by discovery engines assumes that requests are fully
specified in terms of a well-defined interface and categorization, i.e., discovery systems expect
a precise description of the service in terms of inputs and outputs, and/or other characteristics
such as preconditions and effects (service signature). Research efforts in this area have led to
the development of powerful (though generally slow) service matchmakers [52, 59].

However, one of the reasons for which service composition is required in first place is be-
cause there is usually no single service that can fully match a request, but it could be matched
by the composition of many individual services instead. In fact, during automatic composi-
tion an exploratory search is usually required to guess which relevant services can be selected
using incomplete and partial information. Figure 1.3 shows an example of these differences.
A typical service discovery is represented on the left, where the goal is to find all those ser-
vices that fully satisfy the discovery request (all those services that consume in1 and in2

and produce out1 and out2 in this case). In the figure on the right, there is no single service
that can consume and produce the whole set of inputs and outputs, so a suitable combination
of services should be found instead. In this case, the discovery is performed using the infor-
mation provided by the user and the information generated by other candidate services. This
requires to launch many simple requests (or fine-grained queries), rather than fully specified
requests, in order to locate relevant services that match some partial information available to
the algorithm (e.g., services that consume some inputs and/or produce some outputs). Hence,
response time of discovery systems becomes a crucial issue to be addressed in order to design
better discovery engines that can seamlessly be integrated within the whole discovery process
without a great impact on the overall response time.

However, most of the work has been focused on improving the retrieval performance (i.e.,
precision-recall curve) without much concern about the response time requirements and/or
the API requirements to provide an efficient input/output fine-grained discovery granularity
for automatic composition. As a result, response times of discovery engines are orders of
magnitude above what would be acceptable for a composition engine that should delegate the
thousands of discovery requests it needs to issue at composition time, although this aspect is
recently gaining in importance [49].

A direct consequence of this is that most composition engines re-implement locally their



1.3. Service Composition 11

in1

in2

out1

out2

in1

in2

in3

out1

out2

out3
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produced at this step of the composition

Single service candidates that consume the inputs 
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Figure 1.3: Traditional service discovery (left figure) where only single candidate services that fully match the
inputs and outputs of the request are retrieved vs. service discovery in a composition using partial
information (right figure), where services are discovered using the information (inputs, outputs)
available at the current step of the composition.

own discovery methods. For example, in [54], the authors present an efficient framework for
Web service composition that supports semantic Web service discovery, but the notion of an
external service registry is missing, so all the information required is preprocessed and loaded
in the main memory. This assumption requires preimporting all services locally which is
only viable for those registries providing entire public dumps of the service descriptions they
hold. This is a recurrent issue shared by many other composition systems [3, 44, 68, 70, 89,
107, 129]. There is remarkably little research about: i) how to efficiently integrate semantic
discovery and composition, ii) how this integration affects the performance of the overall
composition, and iii) how the overhead of the discovery can be minimized in order to obtain
optimal compositions faster. Some interesting frameworks that partially address the first issue
are [34, 57]. In [57] Lécué et al. develop an integrated framework for dynamic Web service
composition that exploits the semantic matchmaking to discover relevant services. However,
the discovery is performed at a very high level, assuming that services have a well-defined
semantic goal description of their functionality instead of directly exploiting the input/output
information of the services, and it is used to find all the possible candidate services before
the composition takes place. One of the problems is that it is not always possible to detect
every potential service beforehand using a very high level description of the goals. This can
prevent the selection of services whose functionality indirectly contributes towards the goals,
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for example by translating some data between services, or performing authentication required
by some service in the composition. Also, there is a lack in terms of how the discovery process
affects the response time of the whole composition. Similarly, in [34], the authors present a
composition framework that supports both automatic semantic discovery and composition,
among other relevant phases of the composition life-cycle, such as service publication and
service selection, taking into account non-functional properties. Again, since the discovery
is not interleaved with the composition phase, this approach shares the same problems as the
previous work. Although in this work the authors offer a more detailed evaluation of the
response time of both the discovery and the composition, they do not discuss any strategy to
reduce the overhead of the discovery phase.

Other works, such as [11] and [19], offer an interesting alternative view of the service dis-
covery. Instead of considering the discovery as a key part of the whole composition process,
the discovery is viewed as a single process that is able to not only discover single services but
also composite services when there is no single service that fully matches the request, so there
is no clear distinction between discovery and composition. However, this lack of clear separa-
tion between discovery and composition may hamper the development of better composition
systems by integrating the latest advances in both fields, and can also prevent the study of the
relation of these tasks in order to build better systems. Furthermore, the lack of experimental
validation in these works makes it hard to judge the real effectiveness and the advantages of
the automatic discovery by means of composition.

All these current limitations prevent the development of faster composition systems where
discovery and composition are two interrelated activities. In this thesis, we consider the dis-

covery of services as an interrelated task that is interleaved with the composition task. To do

so, we clearly separate both activities through a simple fine-grained API to discover services

based on the semantic information of their inputs and outputs. We also analyze the impact

that this implication has in terms of response time. Moreover, we provide a reference imple-

mentation based on the integration of discovery and composition to validate this approach,

and we discuss different mechanisms to minimize the overhead of the discovery process in the

whole composition process.

1.3.3 Optimal Service Composition

Optimal service composition refers to the generation of composite services optimizing one or
more different properties such as the size or the end-to-end QoS. However, due to the large
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amount of available services, the generation of optimal compositions is a very complex and
broad task that comprises many different kinds of problems, and so there is no an unique
category of techniques. As a result, many different approaches have been proposed, each
one focusing on different aspects of the composition problem and under different assump-
tions [15, 61, 84, 92, 113, 114]. According to [1], automatic composition techniques can be
broadly classified into template-based and search-based depending on whether the compo-
sition workflow is manually generated (where a template or a set of possible templates are
provided to the composition system) or automatically generated from scratch. A workflow,
in the context of service composition, defines a set of tasks and their control and data de-
pendencies, where each task in the workflow specifies an abstract functionality that can be
implemented by many different concrete services.

In template-based compositions, a template of the composition workflow is defined in
advance by an expert, who is in charge of defining the different abstract tasks and modeling
their control and data dependencies in advance. Once the template is designed, the com-
position system is responsible of instantiating each task in the template in order to obtain an
executable workflow. There are usually two main problems these approaches focus on: 1) how
to efficiently discover and match services for each task and 2) how to optimize the end-to-end
QoS for a fixed set of service candidates. The former problem is more focused on efficient
discovery and matching of services using semantic techniques [2, 23, 65, 109] whereas in the
latter problem, also referred as QoS-aware service selection [131, 132], services candidates
are usually in place (there is no explicit discovery) and the goal is to select the best service
(from the fixed set of candidates) for each task in order to locally or globally optimize the
overall QoS of the composition workflow [8, 21, 119, 133].

Although these approaches are very flexible and can handle complex user requirements,
template-based approaches have some important limitations. On one hand, since the compo-
sition workflow is predefined, the number of services is also tied to the number of abstract
tasks in the workflow, making impossible the optimization of the composition size. Thus, if
an abstract task in the workflow has no candidate services, it is not possible to generate an
alternative composition workflow that could replace the non-instantiable task with a different
but functionally equivalent combination of services for that task. On the other hand, there
can be situations where certain QoS values are missing or cannot be measured, and so opti-
mizing only the overall QoS may be not sufficient to obtain good solutions. In this context,
optimizing not only the available QoS but also the number of services of the composition may
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indirectly improve other missing QoS properties.

In search-based compositions, the composition process includes the automatic generation
of the entire composition workflow, enabling the construction of compositions with variable
size and structure. Certainly, these kind of automatic service compositions are more powerful
but computationally harder since, in general, there is an exponential number of ways in which
different services can be combined to accomplish the same task. Moreover, the generation of
automatic composition workflows requires not only the generation of the control-flow but also
the correct information exchanging (data-flow) through the interaction of inputs and outputs
between services.

Considering this distinction, there are at least two ways to approach the automatic com-
position problem depending on the strategy used to generate the workflows: a control-centric

and a data-centric approach [67]. The control-centric approach combines different control
constructions that are used to coordinate the control-flow of the composition, and then places
suitable services for each task, whereas the data-centric approach analyzes the data depen-
dencies between the inputs and outputs of services (i.e., which outputs can be potentially
used to pass as inputs of other services) and then infers the control dependencies from the
data once the data dependencies are resolved. Control-centric approaches are usually com-
putationally harder since the use of different control constructions increments the variability
of the solutions as well as the number of similar compositions to accomplish the same goal.
This increased complexity works against obtaining reasonable good solutions in short time.
In contrast, data-centric approaches are simpler to model and to validate but at the cost of
less expressiveness since not all the possible control constructions can be inferred just by
analyzing data dependencies. Each strategy has its own advantages and limitations, and its
effectiveness would depend on the particular requirements and the specific context in which
the composition will take place.

Most of the control-centric techniques for automatic generation of composition workflows
are mainly based on evolutionary algorithms [12,26,117,127] and Hierarchical-Task-Network
planners [27, 110, 112]. Evolutionary techniques, and concretely Genetic Programming (GP)
algorithms, are well suited since GP offers good performance in combinatorial optimization
problems with large search spaces. GP is a type of Evolutionary Algorithm (EA) that stochas-
tically generates and evolves a population of individuals (solutions) via natural selection. The
information of each individual is represented by its genotype: a collection of genes that en-
code the characteristics (or phenotype) of the individuals. The main difference with other
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EAs is that GP uses tree structures to represent the genotype of the individuals, as well as
tree-based operators to transform the genotype during the optimization process. These tree-
like structures used to encode the instances of the problem bear much resemblance with the
way in which control-centric compositions of services are defined, i.e., by means of a hier-
archical, recursive combination of control constructions. Similarly, HTNs use a hierarchical
top-down decomposition of tasks to automatically generate plans (workflows) but in a com-
pletely different manner. Instead of evolving a set of randomly generated workflows, HTNs
apply domain-specific operators to decompose high-level descriptions of the composition goal
into fine-grained tasks that are directly implemented by Web services. HTNs share some sim-
ilarities with template-based methods since a description of the different tasks and decompo-
sitions have to be modeled in advance by an expert. But regardless of the strategy adopted,
there is a lack of works that analyze how these workflows can be optimized, i.e., how to gen-
erate optimized workflows maximizing parallelism and reducing the number of services for
a concrete problem. Furthermore, there is also a lack of analysis in terms of scalability and
performance in large-scale scenarios.

On the other hand, data-centric techniques are focused on how to extract compositions
by inspecting semantic dependencies between inputs and outputs of candidate services that
are potentially eligibles for the final composition. Most approaches can be categorized into:
1) classical AI planning approaches, where the composition problem is translated into the
planning domain and solved using general planners [61, 84], and 2) graph-based approaches
that build a graph with the services and their input/output semantic relations (usually ignoring
preconditions and effects), and apply graph search techniques to extract service compositions
from the graph [41, 42, 44, 48, 54, 57, 75, 107, 120, 124, 125, 129]. AI Planning techniques
have been traditionally used in service composition to generate valid composition plans by
mapping services to actions in the planning domain. These techniques work under the as-
sumption that services are complex operators that are well defined in terms of inputs, outputs,
preconditions and effects, so the problem can be translated to a planning problem and solved
using classical planning algorithms. Most of these approaches have been mainly focused on
exploiting semantic techniques [5, 43, 110] and developing heuristics [5, 51, 70] to improve
the performance of the planners. As a result, and partly due to the complexity of generating
satisfiable plans in the planning domain, these approaches do not generate neither optimal
plans (minimizing the number of actions) nor optimal QoS-aware service compositions. On
contrast, graph-based composition approaches are usually more scalable [72], but at the ex-
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pense of ruling out some of the features supported by AI planners, such as preconditions and
effects. These approaches exploit the semantic relations between inputs and outputs of ser-
vices in order to generate graphs of related services. Then, different optimizations and search
algorithms can be applied on the graph to extract valid compositions, optimizing different cri-
teria such as complexity of the solutions or QoS. Although these approaches show generally
good performance and low response times, we identified two important recurrent problems:

1. In most composition systems, the notion of an external service registry is missing,
which implies that all the information required is preprocessed and loaded in the main
memory. This is an important limitation that prevents the development of composition
engines that are able to cope with large and/or distributed datasets.

2. Current techniques fail to generate optimal solutions by effectively minimizing the num-

ber of services in large datasets. This is mainly because, given the complexity of the
problem, most approaches focus only on generating fast, suboptimal solutions instead
of exploring how to achieve a good tradeoff between speed and optimality. This has led
to a lack of composition engines based on efficient algorithms and optimization tech-
niques that can generate optimal compositions in terms of number of services but also
in terms of the end-to-end QoS of the solutions.

Concretely, the second problem is very interesting and important, since optimizing the
composition size can bring important benefits to the different roles in a service scenario,
namely: brokers, service providers and clients. From the point of view of a broker, the genera-
tion of smaller compositions is interesting to achieve manageable compositions that are easier
to debug, execute, monitor, deploy and scale. Clients can also benefit from smaller compo-
sitions, especially when there are multiple solutions with the same optimal end-to-end QoS
but different number of services. This is the case when, for example, a concrete functionality
cannot be achieved without consuming some critical service that acts as a bottleneck by lim-
iting the optimal end-to-end QoS achievable and for which there is no possible replacement.
In scenarios like this, it is better to return the smallest composition among the whole set of
possible valid compositions that share the same end-to-end QoS, since decreasing the number
of services involved in the composition may indirectly improve other quality parameters such
as communication overhead, risk of failure, connection latency, etc. Minimizing the number
of services of a composition is also interesting from the perspective of service providers. For
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example, if the client wants the cheapest composition, the solution with fewer services from
the same provider may also require less resources for the same task.

However, despite the clear benefits that the service minimization can bring to the different
parties involved in a service composition scenario, remarkably little research has been done so
far. Most of the work focused on minimizing also the size of the compositions started ganing
momentum since the appearance of the Web Service Challenge [13]. This challenge motivated
the development of new algorithms for service composition, mostly graph-based approaches,
that introduce some ideas inspired by different fields, such as AI Planning, Heuristic Search
or Operations Research. Most notable works are the top-3 winners of the WSC’08 [3,70,129]
and the winners of the WSC’09-10 [4, 46, 130]. Although these approaches show generally
good performance with low response times, they cannot guarantee to obtain optimal solutions
in terms of both number of services and end-to-end QoS. Additionally, none of these systems
consider neither the integration with service registries nor the use of service optimizations to
deal with potential scalability problems.

The work presented in this thesis contributes towards developing better techniques to cope

with these issues. To this end, we explore the limitations of the current control-centric and

data-centric approaches on large datasets and we propose new methods aimed to achieve

better tradeoffs between speed and optimality of the solutions in terms of number of services

and QoS.

1.4 Research Contributions

The aim of this thesis is to advance the state-of-the-art in the field of Web service composition,
focusing on information-providing services, by developing new algorithms and techniques to
cope with the limitations presented in the previous section. As part of a first exploratory re-
search, we first developed a novel control-centric approach based on a genetic algorithm to
generate composition workflows minimizing the number of services and maximizing the par-
allel execution of services (C1). Despite demonstrating the effectiveness of this approach to
deal with the extremely large search space of all the possible combinations of services and
control constructions, the high computation time required to solve some particularly large in-
stances of the problem prevents its application for generating “on the fly” compositions at run
time. To deal with this difficulty, we moved towards a more lightweight data-centric approach
based on the generation of I/O matching graphs (C2). We developed a set of algorithms and
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optimization techniques to generate optimized graphs and to select the best combination of
services from the graph, minimizing the number of services of the solutions and the end-
to-end QoS (C4). All the developed methods are collected into an integrated graph-based
framework for service composition that supports I/O based service discovery from external
registries (C3 and C4). More concretely, the contributions of this thesis are:

C1. Composition of Web Services through Genetic Programming

We developed a genetic programming algorithm that automatically generates compo-
sition workflows of services. The algorithm uses a context-free grammar to limit the
valid control structures, takes into account the attributes updating, and minimizes both
the number of services of the composite solution and the workflow length or execution
path needed to achieve the desired result.

C2. An Optimal and Complete Algorithm for Automatic Web Service Composition

We addressed the problem of the web service composition as a graph search problem
from the point of view of the semantic input-output message structure matching, i.e, we
did not take into consideration the non-functional properties. The contributions are: (1)
the method is able to calculate, given a request, an extended service dependency graph
which represents a valid but sub-optimal solution for the request; (2) the heuristic search
algorithm, based on the well-known A*, finds all optimal solutions from the point of
view of the number of services and execution path, maximizing the parallel execution of
services and minimizing the total number of services; 3) we define a set of optimizations
to reduce the graph size, based on the redundancy analysis and service dominance; and
4) we include a method to dynamically reduce the possible paths to explore during the
search by filtering equivalent compositions.

C3. An Integrated Semantic Web Service Discovery and Composition Framework

Based on our previous research, we defined a formal graph-based framework focused
on the semantic input-output parameter matching of services’ interfaces that efficiently
integrates the automatic service composition and semantic service discovery. The con-
tributions are: (1) a formal framework that presents a theoretical analysis of graph-based
service composition in terms of its dependency with a service discovery, and we provide
a fine-grained I/O discovery interface which reduces the performance overhead without
having to assume the local availability and in-memory preloading of service registries.
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The framework also includes an optimal composition search algorithm to extract the
best composition from the graph minimizing the length and the number of services,
and different graph optimizations to improve the scalability of the system, which as
far as we now are not included in other frameworks; (2) a reference implementation of
this formal framework based on the adaptation of two independently developed com-
ponents, namely ComposIT and iServe, respectively in charge of service composition
and discovery; (3) a detailed performance analysis of the integrated system, highlight-
ing both the unacceptable performance achieved when using the typical out of the box
discovery implementations, as well as the fact that top performance is achievable with
the adequate discovery granularity and corresponding indexing optimizations.

C4. Hybrid Optimization Algorithm for Large-Scale QoS-Aware Service Composition

We extended the graph-based framework to incorporate Quality-of-Service aspects and
service minimization. The contributions are: (1) a multi-step optimization pipeline
based on the analysis of non-relevant, equivalent and dominated services in terms of
interface functionality and QoS; (2) a fast local search strategy that guarantees to obtain
a near-optimal number of services while satisfying the optimal end-to-end QoS for
an input-output based composition request; and (3) an optimal combinatorial search
that can improve the solution obtained with the local search strategy by performing an
exhaustive combinatorial search to select the composition with the minimum number
of services for the optimal QoS.

1.5 Publications

The following publications are the result of this PhD thesis:

• Journal Papers:

– Pablo Rodrı́guez-Mier, Manuel Mucientes, and Manuel Lama. Hybrid Optimiza-
tion Algorithm for Large-Scale QoS-Aware Service Composition. IEEE Transac-

tions on Services Computing, 2015 (DOI 10.1109/TSC.2015.2480396).

– Pablo Rodrı́guez-Mier, Carlos Pedrinaci, Manuel Lama, and Manuel Mucientes.
An Integrated Semantic Web Service Discovery and Composition Framework.
IEEE Transactions on Services Computing, 2015 (DOI 10.1109/TSC.2015.2402679).
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– Pablo Rodrı́guez-Mier, Manuel Mucientes, Juan Carlos Vidal, and Manuel Lama.
An Optimal and Complete Algorithm for Automatic Web Service Composition.
International Journal of Web Service Research, 9(2):1–20, 2012.

– Pablo Rodrı́guez-Mier, Manuel Mucientes, Manuel Lama, and Miguel I. Couto.
Composition of web services through genetic programming. Evolutionary Intelli-
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Local-Global Optimization Strategy for QoS-aware Service Composition. In
Proceedings of the 22nd IEEE International Conference on Web Services
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∗ Pablo Rodrı́guez-Mier, Adrián González-Sieira, Manuel Mucientes, Manuel
Lama, and Alberto Bugarı́n. Hipster: An Open Source Java Library for
Heuristic Search. In Proceedings of the 9th Iberian Conference on Infor-
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ceedings of IEEE 9th International Conference on Web Services (ICWS),
pages 81–88, 2011.
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Hı́brido de Composición Automática de Servicios con QoS. In Jornadas de
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1.6 Thesis Outline

This dissertation is organized as follows:

• Chapter 2 presents a Genetic Algorithm that uses a formal context-free grammar to
generate valid populations of composite services using the different control structures
defined in the grammar. The algorithm makes use of different operators to evolve the
initial population of solutions and different techniques to reduce the complexity of the
workflows during the search. The goal of the algorithm is to optimize a fitness function
that takes into account both the number of services in the workflow and the execu-
tion path. In order to validate the performance of the approach, we present a detailed
evaluation using different datasets with up to 1,090 services.

• Chapter 3 focuses on the composition problem from a data-centric perspective that is
better suited to generate compositions faster. For this purpose, we develop a graph-
based algorithm that analyzes the semantic information of the services to generate a
graph that contains all the relevant services for the composition. Once the graph is
generated, we apply different optimizations to reduce its size by detecting services that
are equivalent or dominated in terms of their functional interface. Then, an A*-based
algorithm is applied to find the optimal composition from the graph, minimizing the
total number of services and the length of the solution, and we provide a comprehensive
validation of the algorithm with the standard datasets of the Web Service Challenge
2008.

• Chapter 4 presents a graph-based framework that integrates both service discovery and
optimal service composition. This formal framework provides a theoretical analysis
of graph-based service composition in terms of its dependency with a service discov-
ery without assuming the local availability and in-memory preloading of service reg-
istries. We also provide a reference implementation of this formal framework based
on the adaptation of two independently developed components, that is used to empir-
ically study the impact of the discovery task in the whole composition using different
optimization mechanisms under different conditions.

• Chapter 5 presents an extension of the previous framework to include support for both
service minimization and end-to-end QoS optimization. We extend the optimizations
presented in the previous chapter to take into account QoS and we introduce a new step
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in the optimization pipeline to prune suboptimal QoS services. In order to extract the
optimal composition from this new extended graph, minimizing both the end-to-end
QoS and the number of services, we develop a novel hybrid local-global search algo-
rithm that combines a fast local search with a global search. The local search obtains a
near-optimal number of services while satisfying the optimal end-to-end QoS. On the
other hand, the global search can improve the solution obtained with the local search
strategy by performing an exhaustive combinatorial search to select the composition
with the minimum number of services for the optimal QoS. A comprehensive valida-
tion with the datasets of the Web Service Challenge 2009 and with random generated
datasets is also provided.

• Chapter 6 presents the main conclusions and the future work.



CHAPTER 2

COMPOSITION OF WEB SERVICES

THROUGH GENETIC PROGRAMMING

Control-centric approaches for service composition focus on the automatic generation of com-
plex composition workflows by combining different control structures such as sequences,
choices, splits or loops, among others, that are used to coordinate the control-flow of the ser-
vices in the workflow. One of the limitations of current approaches, as commented in Chapter
1, is the lack of works that analyze how to generate optimized composition workflows max-
imizing the paralellism and minimizing the number of services used within the workflow, in
order to avoid the generation of overly complex and inefficient compositions. Furthermore,
there is also a lack of analysis in terms of scalability and performance using standard datasets.
As part of a first exploratory research made in this thesis, in this work we develop a Genetic
Algorithm that uses a formal context-free grammar to generate valid populations of composite
services using the different control structures defined in the grammar. The algorithm uses dif-
ferent genetic operators to evolve the initial population of solutions and different techniques
to reduce the complexity of the workflows during the search. The goal of the algorithm is to
optimize a fitness function that takes into account both the number of services in the workflow
and the execution path. In order to validate the performance of the approach, we present a
detailed evaluation using different datasets with up to 1,090 services.

This chapter includes a full copy of the following journal paper that describes in detail the
proposed approach:
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Pablo Rodrı́guez-Mier1, Manuel Mucientes1, Manuel Lama1, and Miguel I. Couto1.
Composition of web services through genetic programming. Evolutionary Intelligence,
3(3-4):171–186, 2010. Springer. ISSN: 1864-5909. DOI: 10.1007/s12065-010-0042-z.
URL: http://dx.doi.org/10.1007/s12065-010-0042-z.

2.1 Abstract

Web Services are interfaces that describe a collection of operations that are network-accessible
through standardized web protocols. When a required operation is not found, several services
can be compounded to get a composite service that performs the desired task. To find this
composite service a search process in a, generally, huge search space must be performed. The
algorithm that composes the services must select the adequate atomic processes and, also,
must choose the correct way to combine them using the different available control structures.
In this paper a genetic programming algorithm for web services composition is presented.
The algorithm has a context-free grammar to generate the valid structures of the composite
services and, also, it includes a method to update the attributes of each node. Moreover,
the proposal tries to minimize the number of services, and looks for compositions with the
minimum execution path. A full experimental validation with four different repositories with
up to 1,090 web services has been done, showing a great performance in all the tests as the
algorithm finds a valid solution with a short execution path.

2.2 Introduction

Web Services are interfaces that describe a collection of operations that are network-accessible
through standardized web protocols, and whose features are described using a standard XML-
based language [7,33]. This includes functional features that indicate the input/output needed
to invoke the execution of a web service; nonfunctional features such as cost, robustness,
reliability, etc.; interaction features or choreography that describe how a client dialogs with
the service in order to consume its functionality; and structural features or orchestration that
model how the internal components of the service are combined to execute it.

1Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela.

http://dx.doi.org/10.1007/s12065-010-0042-z
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In this way, as the characteristics are available through the interfaces, web services can be
automatically discovered and invoked by extern programs (clients). When programs do not
find a service with the required functionality (inputs and outputs), it is possible to compose
a new service automatically. This composite service combines the functionalities of other
services to get the desired outputs. This combination consists of a set of services that are
executed in a sequence or in a set of workflow-like structures that control the execution of the
services (specified through web services composition languages as OWL-S [62] or BPEL4WS
[32]).

In the last years several papers have dealt with the composition of web services. Some
approaches consider the composition problem as a planning problem of several actions (ser-
vices) that operate on an initial state (inputs and preconditions) and generate an output state
(postconditions) [45, 50, 73, 86, 91, 110, 126]. In these proposals, the planning techniques are
blended with semantic reasoning to combine the outputs of some services with the inputs of
others. The main drawback is that in these approaches the result of the composition is a se-
quence of services and, therefore, they do not take into account other control constructions
that are part of the OWL-S or BPEL4WS models. In this way, this particular problem has
a computational complexity much lower that those compositions that follow languages like
OWL-S or BPEL4WS.

Other papers solve the composition of services with machine learning techniques like
genetic programming [12, 26, 117, 127]. In these approaches, the minimum execution path
needed to achieve a solution is not considered in the fitness function, and therefore optimal
individuals are not assured. Furthermore, these proposals are validated with a low number of
services and then the effectiveness of the proposed algorithms cannot be really evaluated.

In this paper we present a genetic programming algorithm that solves the problem of com-
position of web services. The algorithm uses a context-free grammar to limit the valid struc-
tures, takes into account the attributes updating, and minimizes both the number of services
of the composite solution and the execution path needed to achieve the desired result. A full
validation has been done in four different repositories: OWL-S TC [56], a hand-made reposi-
tory with 1,000 services, and three program-generated repositories proposed for the 2008 Web
Service Challenge of the EEE conference [13]. The behavior of the algorithm shows a great
performance, as in all the cases a correct composition was found. This validation demon-
strates the generality of the evolutionary algorithm, as it does not depend on the structure and
features of a given repository.



26 Chapter 2. Composition of Web Services through Genetic Programming

The paper is structured as follows: Sec. 2.3 introduces the web services composition
problem, and Sec. 2.4 describes the different approaches that have already been proposed.
Then, Sec. 2.5 presents the proposed genetic programming-based algorithm for web services
composition, Sec. 2.6 comments the obtained results and, finally, Sec. 2.7 points out the
conclusions.

2.3 Problem Description

In this paper, we consider that web services are only characterized by their functional features
(that is, inputs and outputs), which are semantically described through ontologies. With this
semantic description the output of a service OSo matches the input of other service ISi when
OSo is a subclass of ISi. In general, when a concept Ci is a subclass of a concept C j (Ci ⊆C j),
then there is a semantic matching between Ci and C j. This semantic matching will be used
when two o more concepts are compared in the different stages of our algorithm.

Considering this description for web services, the composition problem can be formulated
as the automatic construction of a workflow that coordinates the execution of a set of services
that interact among them through their inputs and outputs (applying the semantic matching).
This workflow, therefore, has services and a set of control structures that define both the
behavior of the execution flow and the inputs/outputs of the services related to those structures.
Thus typical control structures of web services composition languages are:

• Sequence structure, where the output of a service is the input of one of the following
services of the sequence. This is the simplest control structure of the workflow lan-
guages.

• Selection (choice) structure, where an output can be achieved through two or more
services, which therefore share the same output, but only one service will be selected
and executed.

• Parallel (split) structure, where two o more services are executed in parallel and, as
result, produce several and different outputs.

• Parallel and synchronized (splitJoin) structure, where the execution ending of services
that run in parallel is synchronized. In this construction the services outputs are tipically
different.
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• Loop structure, where a set of services are executed until a given condition is verified.
This structure does not impose any condition to the input/output concepts, although
some approaches [12] assume that there must be a set of data in order to be individually
used in each loop iteration.

These structures are shared by OWL-S2 and BPEL4WS, which are the languages of the
service repositories we have used to validate the proposed algorithm. In this sense it is impor-
tant emphasize that the proposed algorithm is independent of the web services composition
language, because the behavior of the control structures is defined in a general way.

As has been mentioned, the composition of web services consists of a set of services that
are executed in a sequence or in a set of workflow-like structures that control the execution of
the services. These two problems are very different from the point of view of the computa-
tional complexity:

• Sequence-based compositions: the complexity is O(n!), where n is the size of the ser-
vices repository3.

• Workflow-like structures: the complexity is O(n! t), where t is the number of different
structures that can be generated. The structures can be represented by trees, and can
be defined by a context-free grammar. Therefore, t depends on the grammar and on
the maximum tree depth (d). If we assume that the grammar generates a complete
binary tree4, the maximum number of leaf nodes is 2d . Thus, if the grammar has m

different control structures, then the number of different structures that can be generated
is t ∝ m2d

, as for each leaf node a different control structure can be selected. t is
proportional to this expression because not all the rules in the grammar generate two
internal nodes and/or not all the leaf nodes are control structures. This is the case for
the context-free grammar defined in this paper (described in section Sec. 2.5.1, Fig.
2.2). Finally, the complexity of workflow-like structures is O

(
n! m2d

)
.

2In OWL-S a process is used with the same meaning as a service. Thus a single service is named as an atomic
process, and composite services are named as composite processes. We use this notation in the grammar that describes
the chromosomes of our evolutionary algorithm.

3This complexity is for the worst case: a composition which uses all the services of the repository. However, if
we knew in advance the size of the composition (this is, in general, not truth), the complexity would be O

(
n!

(n−p)!

)
,

where p is the number of services of the composition.
4In a complete binary tree every level, except possibly the last, is completely filled, and all nodes are as far left

as possible.
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As can be seen, workflow-like compositions have a much higher number of candidate
solutions than sequence-based compositions, which makes classical search methods not ap-
plicable for this kind of web services composition. Fig. 2.1 shows the size of the search
space for both sequence and workflow-like compositions and two different services reposito-
ries with sizes 100 and 8,000. The x-axis represents the depth of the tree for workflow-like
compositions and the corresponding search space size has been calculated using the context-
free grammar defined in this paper (Fig. 2.2). The size of the search space has been calculated
in a precise way, generating all the valid structures for each tree depth and calculating the
number of different compositions using the number of services of the corresponding services
repository. Even if the number of services used for workflow-like compositions is 80 times
lower than that of a sequence-based approach (100 vs. 8,000), the size of the search space for
a depth of five is larger for workflow-like compositions.
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Figure 2.1: Search space size of sequence and workflow-like structures for different services repository sizes.
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2.4 Related Work

Web services composition has attracted widespread attention in recent years. Although there
are several proposals to classify the approaches that focus on this topic [6,36], in this paper we
distinguish two kinds of algorithms depending on the complexity of the problem they solve:

1. Algorithms that solve the problem of generating services sequences whose execution
leads to the desired result.

2. Algorithms whose aim is to obtain a workflow composed by a set of control structures
that coordinate the service execution. Usual control structures in most workflow lan-
guages are sequences, parallel executions, synchronizations, selections and loops. The
complexity of this kind of services compositions is higher than the sequence generation
(Fig. 2.1) because, to achieve a solution, they must be taken into account the dependen-
cies among control structures and how each structure deals with input/output data.

2.4.1 Services Sequence-based Composition

An extensive research in services composition has been focused on planning-based approaches
in which the composition is modeled as a planning problem [45,72]. In these approaches there
is an initial state defined by a set of both inputs and preconditions that the composite service
must verify; a set of operators (or services) that are executed to obtain new and intermediate
states; and a final state defined by a set of both outputs and postconditions that the solution
must also verify. The composite service is therefore generated by a sequence of services
whose ordered execution allows to achieve the requested outputs from the inputs.

Following this general model, different planners have been applied, such as graph analysis-
based planners [50,126], where the GraphPlan [18] algorithm is adapted to find services com-
positions with optimal paths from inputs to outputs; logic-based planners [91], where the
reasoning capabilities of a logic paradigm are used to obtain the services whose execution
is compliant with the description of the state where they are applied to; hierarchical plan-
ners [60, 69, 110], where the hierarchical representation of composite services is considered
to reduce the complexity in generating automatic sequences at different hierarchy levels; or
planning as model checking [9, 17, 86], where the non-determinism and partial observabil-
ity of services is managed for the generation of compositions. In these approaches, as for
hierarchical planners, it is necessary to have an abstract representation of the workflow that
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models the composite service ( with abstract service descriptions). The planner has to select
the concrete services that better fit to the predefined compositions.

The main drawback of these approaches is their low performance when the search space

is huge, that is, when the number of services and the input/output interactions among them
is high. In this case the number of operators (services) that could be applied to a given state
(verifying partially its inputs and preconditions) is high and, therefore, the number of poten-
tial intermediate states is huge. In this situation, finding a solution is a hard problem that
requires the use of optimal search techniques. To deal with this issue some strategies have
been proposed:

• In [73] the planning algorithm is combined with regression search to minimize the
number of services that could be applied to a given state. Thus, once a services sequence
is obtained, an heuristic greedy search is applied in a backward sense to approximate
the optimal sequence of services.

• In [93] a query index with semantic information about inputs/outputs concepts of the
services is created in order to reduce the reasoning time needed to obtain a matching
between the inputs and outputs of the services.

The other disadvantages of these approaches are that: (i) they have not been validated in
large services repositories; and (ii) the generation of services sequences, usually, has not the
optimal execution path, because parallel structures are not considered as part of the solution.
However, as implicit loops are allowed in the algorithm, a solution to this issue would be to
apply a pattern matching algorithm to discover control structures in the sequences [50].

2.4.2 Automatic Workflow Composition

Several approaches based on evolutionary algorithms have been proposed to obtain services
compositions whose description is carried out through workflows [12, 26, 117, 127]. For ex-
ample, [12] describes an algorithm for services composition in BPEL that follows a similar
approach to the one presented in this paper. The main differences with our proposal are that:
(i) it does not show a formal description of the grammar to compound services; (ii) attributes
updating after crossover and mutation is not explicitly managed. Therefore, it is difficult to
evaluate to which degree all the interactions among services are fulfilled to get a correct solu-
tion; (iii) minimum execution paths are not assured because this parameter is not included as
part of the fitness function; and (iv) the algorithm has been validated in a private repository.
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In [26], authors consider a workflow of tasks and a set of services that may execute each
of those tasks. The proposal presents an evolutionary algorithm to associate a task with an op-
timal service, and considers a fitness function implemented as a multi-objective and distance-
based algorithm that evaluates quality of service parameters. In this algorithm, therefore, it
makes no sense to include the minimum execution path of the composite service as a crite-
rion to select individuals, because the workflow is predefined. A similar approach has been
presented in [117], where the fitness function is calculated as a formula with weights for the
different quality of service parameters.

In [127] a particle swarm optimization algorithm is applied to optimize the selection of
services that are part of the solution. In order to do that, the semantic similarity between
the service characteristics is calculated, obtaining a set of measures (or distances) that define
the relation between a service and the other services of the repository. When these measures
are available, the algorithm obtains a services sequence with optimal distances among the
services. This work has not been validated in a large repository; it used the Amazon services
to demonstrate the viability of the algorithm.

Furthermore, in the bibliography many other approaches for composition of service work-
flows have been proposed, approximating the solution with different search strategies such
as heuristic search [3] or graph analysis [134]. Common drawbacks of these proposals is
that they cannot manage all the control structures as are defined in workflow languages as
BPEL4WS and OWL-S, and the performance of the algorithm decreases as the number of
services and interactions among them is huge.

With this state of the art, we can conclude that the main differences between other ap-
proaches and our proposal are:

• Current approaches focusing on automatic generation of workflows do not consider all
the control structures of the workflow languages like OWL-S and BPEL4WS. Thus,
planning algorithms only obtain services sequences and evolutionary or optimization
techniques do not manage the complete set of workflow-like structures.

• Some approaches do not minimize the execution path needed to execute the composite
service, that is, they do not maximize the use of parallel control structures to reduce
execution times.

• Existing proposals have not been validated in several repositories with different features
in order to demonstrate the generality of the algorithm.
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All these drawbacks have been tackled by our genetic programming-based approach to
web services composition, which is described in the next section.

2.5 Genetic programming for web services composition

Web services composition requires the combination of many atomic services using several
control structures. This combination of elements can be modeled, in a natural way, with a
tree that represents the solution to a web services composition. As not all the combinations
of atomic services and control structures are valid from a syntactical point of view, restric-
tions in the syntactical structure of a solution (web services composition) can be described
with a context-free grammar. Genetic programming is especially adequate for web services
composition due to:

• Genetic programming can deal with solutions with very different structures as the in-
dividuals are usually represented by trees and, moreover, the trees can have different
depths and number of nodes.

• A context-free grammar can be naturally included to generate new individuals, and to
produce right structures for the individuals after crossover and mutation.

• Web services composition has a hierarchical structure, i.e., several atomic services gen-
erate a composite service, several composite services produce a more complex compo-
sition and so on, until the desired solution is found. Therefore, the subtrees of a tree
represent simple compositions that contribute to the solution. Intermediate composi-
tions can be interchanged between trees, in order to improve the performance of the
new trees (solutions). This is exactly what is implemented with the crossover operator
in genetic programming.

The first step in the design of an algorithm for web services composition requires the
definition of the type of composite services that are going to be build. A compact definition of
the valid structures of a tree (chromosome) for a web services composition can be described
by a context-free grammar.
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2.5.1 Context-free grammar

A context-free grammar is a quadruple (V,Σ,P,S), where V is a finite set of variables, Σ is
a finite set of terminal symbols, P is a finite set of rules or productions, and S is an element
of V called the start variable. The grammar that defines the valid structures for web services
composition is described in Fig. 2.2. The first item enumerates the variables, then the terminal
symbols, in third place the start variable is defined, and finally the rules for each variable are
enumerated. When a variable has more than one rule, rules are separated by symbol “|”.

• V = {initialProcess, process, compositeProcess}
• Σ = {atomicProcess, choice, sequence, split, splitJoin}
• S = initialProcess

• Rules:

– <initialProcess>::= <compositeProcess>| atomicProcess

– <process>::= <compositeProcess><process>| atomicProcess <process>|
<compositeProcess>| atomicProcess

– <compositeProcess> ::= choice <process><process> | sequence <process>
<process> | split <process> <process> | splitJoin <process> <process>

Figure 2.2: Context-free grammar for web services composition.

The grammar has been defined to fulfill the syntax of the most common web services com-
position languages (OWL-S and BPEL4WS), and is completely independent of the services
repository. <initialProcess> is the start variable of the grammar and generates an atomic or
a composite process.

Variable <process> defines either composite processes or atomic processes. Two of the
four rules of this variable are recursive and, therefore, a process can be composed of any
number of atomic and composite processes. Finally, variable <compositeProcess> represents
the combination of a control structure and two processes (of any type), i.e., a composition of
at least two processes.

All the nodes of type variable, together with terminal symbol atomicProcess constitute the
service nodes. They are characterized by the following attributes:

• Control structure: the node of type control structure ({choice, sequence, split, splitJoin})
of which the service node depends on. The control structure manages the interaction
among the services that share that control.
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• Available inputs: are those inputs available for a service. A subset of them are selected
as inputs to the service. An input can be available in two ways. First, if the user
introduces that input. In second place, if a service that belongs to the composition and
has been executed before (in the composition flow), generates as output that service
functionality.

• Necessary inputs: are the inputs that the node needs for running all the atomic processes
in the subtree for which the node is the root node. These inputs or their subclasses have
to be provided by the user or by other services of the composition.

• Obligatory inputs: in some situations, the outputs of several services have to be used
as inputs to the current service. This means that at least one of those outputs has to
be selected as input to the current service (a semantic matching among thme must
exist). An example of this situation is the sequence of two services Sa and Sb. Let
Oa = {oa

1, . . . , oa
na} be the set of outputs generated by service Sa, and In

b = {ib1, . . . , ibnb
}

be the set of necessary inputs of Sb. Then, Oa∩ In
b 6= /0. If this condition is not fulfilled,

the composition of services Sa and Sb is not a sequence, and the structure is not valid.
Therefore, the inputs of the service must contain a subset of the obligatory inputs. Fol-
lowing the example, the obligatory inputs of service Sb are the outputs of service Sa,
i.e., Io

b = Oa.

• Outputs: generated by the service. They can be directly generated by the service (if it is
an atomic process) or by the subtree with the service as root node (composite process).

2.5.2 Attributes updating

The initialization of a tree (web services composition), or a modification of it due to crossover
or mutation, requires the updating of all the attributes of each node. The initial step of the
algorithm resets all the attributes of all the nodes in the tree, and then initializes the necessary
inputs of the root node (<initialProcess>) to the set of inputs of the web services composition
to be solved. Then, the tree is traversed in preorder, updating the attributes of each node. To
traverse a tree in preorder, the following operations must be performed recursively at each
node, starting with the root node: first, visit the root. Then, traverse the subtrees that have as
root node the children of the root. Children are traversed in order, starting with the leftmost
node and continuing to the right. Updating the attributes of each node is done in a different
way depending on the type of attribute:
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• Control structure (cs): this attribute is propagated in a top-down way. This means that a
node inherits the attribute value from its parent. There is an exception to this rule. The
node will set its control structure to its leftmost brother when that brother is a control
structure.

• Available inputs (Ia): they are propagated in a top-down way. If an input is available
for a node, it will also be available for all its children. When the control structure of
the node is sequence, all the outputs of the brothers to the left of the node will also be
added as available inputs.

• Necessary inputs (In): the propagation is done in a bottom-up way. This means that, if
and only if the node is a leaf node, all its ancestor nodes will add as necessary inputs
the necessary inputs of the node.

• Obligatory inputs (Io): they are propagated in a top-down way. When the control struc-
ture of the node is sequence and the brother node immediately to the left is a service
node, the obligatory inputs will be set with the following algorithm:

1. Traverse in preorder the subtree that has as root node the brother node just to
the left of the current node (the one for which the obligatory inputs are being
calculated).

2. Get the last node traversed in that process. It will be the rightmost node of the
subtree.

3. If both the last and current nodes depend on the same control structure (they have
a reference to the same node of type controlStructure), then the outputs of the last
node will be the obligatory inputs of the current node.

4. Else, the outputs of the brother node immediately to the left will be the set of
obligatory inputs of the current node.

• Outputs (O): the attribute is propagated in a bottom-up way (the outputs of a node will
also be outputs of its parent), except when the leftmost child of the node is a choice

control structure. Outputs for this situation are obtained as: O = O1∩ . . .∩On, i.e., the
intersection of the outputs of all the children of the node.
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Figure 2.3: A chromosome representing the composition of several atomic processes.

An example

Fig. 2.3 shows a services composition. Terminal symbols (leaves of the tree) are represented
by rectangles or squares, and variables are shown as flatted circles. Each node includes the
values of the different attributes: the control structure governing the node (cs), the available
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inputs (Ia), the necessary inputs (In), the obligatory inputs (Io) and the outputs (O). In this
example the initial available inputs are ia and ib, and the outputs required to solve the compo-
sition are o6.1 and o6.2.

Attributes updating starts from the root node, traversing the tree in preorder. When the first
atomic process node (3.1) is reached, its available and obligatory inputs are set to its parent
values, which were also taken from its ancestor (top-down updating)). This service uses ia as
input and generates o3.1 as output. Therefore, the necessary inputs and the outputs will be set
to these values and propagated to all the ancestors of the node.

Following the preorder traversal, node 2.3 is visited. As this node has a sequence control
structure and has brother service nodes on the left, both the available and obligatory inputs
require a different updating. The available inputs are those inherited from the parent (top-
down updating) plus all the outputs generated by the brother nodes to the left, i.e., o3.1 is
added as an available input. On the other hand, the obligatory inputs are the outputs of the
brother node (o3.1). These attribute values are propagated down to node 3.2. This node is
an atomic process that generates output o3.2 using inputs ib and o3.1. Attributes output and
necessary inputs are consequently updated and propagated to its ancestors.

The next traversed node is 3.3. Again, this node has a sequence control structure and has
brother service nodes on the left. Therefore, the output of node 3.2 is added as available input
to the node and, also, the obligatory inputs attribute is set to this value.

Both the available and obligatory inputs are propagated down. Thus, nodes 6.1 and 6.2
have to use o3.2 as input. Both nodes propagate up the necessary inputs (ia, o3.2) and the
outputs (o6.1, o6.2), and the updating process ends with the configuration shown in Fig. 2.3.

2.5.3 Genetic programming-based algorithm

Fig. 2.4 describes the genetic programming algorithm that has been used for web services
composition. The first three steps of the algorithm correspond to an initialization. t represents
the number of iterations, while timesRun will be used to detect situations in which the search
gets stuck. The iterative part of the algorithm starts at step four. This part will be repeated
until the maximum number of iterations is reached or the best possible solution is found.
The main stages of the iterative part are the selection of the individuals, the crossover and
mutation to generate new individuals, the post-processing, their evaluation, the replacement
of the population, the local search, and the checking of stuck situations in the search process.
All of them are described in detail in the next sections.
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1. Initialize population

2. Evaluate population

3. t = 1, timesRun = initialTimesRun

4. While t≤maxT and fitnessbest < maxFitness

a) Selection

b) Crossover

c) Mutation

d) Post-processing

e) Evaluate new individuals

f) Replace population

g) Run the local search

h) t = t +1

i) If bestInd(t) = bestInd(t−1), then timesRun = timesRun−1

j) If none of the individuals of the population have been created in the current itera-
tion, then timesRun = timesRun−1

k) If timesRun < 0, then:

i. Reinitialize population, keeping only the best individual.
ii. Evaluate new individuals
iii. timesRun = initialTimesRun

5. Final post-processing

Figure 2.4: Genetic programming algorithm for web services composition.

Initialization

The first step of the algorithm is the generation of the initial population. A new individual is
generated applying randomly the rules of the grammar. If the depth of the tree reaches the
maximum predefined value, then all the nodes of type service at that depth are transformed
to atomicProcess nodes. Once the structure of the tree has been defined, the attributes of the
nodes must be initialized using the algorithm defined in Sec. 2.5.2.

This attributes updating algorithm is run with one special characteristic. When an atomicProcess

node is reached during the traversal of the tree, as no specific service has been assigned to it,
one has to be selected from the repository. The selection is done randomly from the set of
services that fulfill: Ia

j ⊇ Ik and Io
j ∩ Ik 6= /0. Thus, a service k can be selected if its inputs are a

subset of the available inputs of the atomicProcess node j (Ia
j ) and if at least one of the inputs
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of k belongs to the set of obligatory inputs of j (Io
j ).

Evaluation

The calculation of the fitness of each individual of the population is done analyzing four
criteria: generated outputs, used inputs, execution time of the composite service and number
of nodes of type atomicProcess:

fitness = ω1 ·

∑
|Oobj|
i

1
DOi+1∣∣Oobj
∣∣ +

∣∣In
root∩ Iobj

∣∣∣∣Iobj
∣∣

+

ω2 ·
1

runPath
+ω3 ·

1
#atomicProcess

(2.1)

where Oobj are the outputs that are required to solve the composition, DOi is the distance of
the individual to the i-th required output, In

root are the necessary inputs of the root node (this
node is the result of the composition of the services), Iobj are the inputs provided to solve the
composition, runPath is the execution time of the composite service, #atomicProcess is the
number of atomic processes in the tree, and ωk are values that weight the importance of each
criterion.

The first and second criteria indicate the degree to which a valid solution has been found.
The first one is the number of outputs (or subclasses of them), of those that were required,
that have been generated by the composition. The second criterion is the number of inputs (or
superclasses of them), of those provided by the user, that have been used.

In order to guide the composition, the use of a crisp criterion for the outputs is not ade-
quate, and the concept of distances to outputs (DOi) must be introduced. For example, if the
expected result of a composition is a sequence of ten services, and the desired output is pro-
vided by the last service, a composition of the first nine services will not generate the desired
output and, therefore, with a crisp criterion, this part of the fitness function would be evaluated
as 0. However, if the fitness function measures the distance between the composite service
(of nine atomic processes) and the desired output, it will reflect that the composite process is
close to find a valid solution (only a new atomic service needs to be added). The distance of
an individual to the i-th desired output (DOi) is calculated in the following way:

DOi = min
j

DOij (2.2)

where DOij is the distance of the j-th atomic service of the individual to the i-th output. Thus,
the distance of the individual to the output is the minimum of the distances of its atomic
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services to that output. Also,

DOij = min
k

DO(S j, Sk) : oi ∈ Ok (2.3)

where S j and Sk are services, Ok is the set of outputs generated by service Sk, and oi is the
i-th output. DO is the distance between two atomic services, and is defined as the minimum
number of atomic services that need to be composed in sequence, starting with S j, in order to
generate an output of Sk. For example, if O j ∩Ok 6= /0, then DO(S j, Sk) = 0.

The third criterion is the execution time of the composite service. This time depends on
the execution time of each atomic service but, also, on the control structures in the following
way:

• sequence: the execution time is the sum of the times of all the services in the sequence.

• split and splitJoin: the execution time is equal to the time of the slowest service belong-
ing to this control structure, as all the services are executed in parallel.

• choice: in this control structure, only one service of the composition is executed. As
the selected service is only known at run time, the worst time of all the services in the
choice composition has to be selected. Therefore, the execution time is calculated in
the same way as for the split control structure.

Finally, the last criterion is related with the complexity of the composite service. The
higher the number of atomic processes in the composition, the higher the complexity.

Selection

The selection mechanism that has been used is the binary tournament selection. In a k-
tournament selection, k individuals are randomly picked from the population with replace-
ment, and the best of them is selected. In this case, k = 2 (binary tournament selection).

Crossover

The crossover operator replaces a subtree of an individual with a subtree of other individual.
The process is as follows:

• Select randomly a node of type service in the first individual.
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• Generate the set of candidate nodes in the second individual. These nodes must have
the following characteristics:

– They must be of type service.

– (In
2 −O2)∩ Io

1 6= /0. In
2 −O2 represents all the inputs that are used by the subtree of

the second individual and that have not been generated inside that subtree. This
set of inputs must contain at least one of the obligatory inputs (or their subclasses)
of the subtree that is going to be replaced in the first individual.

– In
2 −O2 ⊆ Ia

1 . Also, the set of inputs used in the subtree of the second individual
must be a subset of the available inputs (or their subclasses) for the subtree of the
first individual.

• Select randomly a node of the candidate nodes set, and replace the subtree of the first
individual with the selected subtree of the second individual.

• Execute the attributes updating algorithm. During the execution of the algorithm, if a
leaf node of type atomicProcess is reached, two conditions must be checked: Ia

j ⊇ Ik

and Io
j ∩ Ik 6= /0, i.e., the inputs of the process (Ik) must be a subset of the available

inputs (or subclasses of them) of the node and, also, they must contain at least one of
the obligatory inputs (or their subclasses) of the node. If the conditions are not fulfilled,
a new atomic process must be selected using the same procedure as in the initialization
stage (Sec. 2.5.3).

Mutation

The mutation operator modifies a subtree of the individual. First, a node must be randomly
selected. If the node is of type variable, then the subtree that has as root the selected node is
eliminated. The new subtree is generated applying the rules of the grammar randomly for that
variable in the same way as in the initialization stage (Sec. 2.5.3). On the other hand, if the
node is of type terminal, there are two cases:

• If the node is a control structure, a new one is randomly selected.

• If the node is an atomic process, there are two posibilities:

– A new process is randomly selected from the repository using the same conditions
defined in the initialization stage (Sec. 2.5.3)
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– The node is substituted with a process node and a subtree is generated applying
the rules of the grammar in the same way as for nodes of type variable.

In all the cases, the attributes updating algorithm must be run. Also, the validity of the
atomic processes must be checked and, if necessary, a new selection of the atomic processes
is done.

Replacement

The selection mechanism is a population-based selection approach, i.e., parents and their
corresponding offspring are combined generating a population with a size 2N (being N the
size of the initial population), and the best N individuals are selected for the next population.

Post-processing

The size and complexity of the trees representing the individuals has to be managed in order
to improve the search, reduce the time per iteration and, also, to simplify the final composite
service. The post-processing stage consists of four steps that are executed at the end of the
algorithm. Moreover, two of these steps are also executed at the end of each iteration. The
steps must be executed in the following order:

1. Eliminate useless atomic services: an atomic service is useless if none of their outputs
neither contribute to the objective outputs nor are inputs to other services. Elimination
of this kind of services is recursive, i.e., it is repeated while in the previous step a
service was eliminated. New useless services can appear due to the elimination of a
useless service. This procedure is executed at the end of the algorithm.

2. Eliminate useless control structures: a control structure is useless when only one atomic
service depends on that control structure. A control structure is used to compose ser-
vices and, therefore, a minimum of two services are needed. Useless control structures
have to be eliminated, and the atomic process belonging to it is assigned to the control
structure of its closer ancestor. This step needs to be done at the end of each iteration.

3. Eliminate consecutive and equal control structures: when a node and its parent have the
same type of control structure and it is an split or an splitJoin, both control structures
can be merged. This step is executed only at the end of the algorithm.
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4. Tree flatten: the depth of the trees is limited in order to prevent an infinite growth of the
individuals. The proposed context-free grammar is unambiguous, and this means that
an individual can be only represented by a tree. However, due to crossover, mutation
and, also, due to the recursive rules in the grammar, the number of nodes and the depth
of the trees can grow at a high rate. In large trees, usually some of the internal nodes
are useless, i.e., they could be deleted without modifying the fenotype of the individ-
ual (the composition remains equal), although the genotype is changed. This process
generates smaller individuals, which improves the search for better compositions. Tree
flatten transforms a tree in its equivalent with the minimum depth, and it is done in each
iteration. To keep the same fenotype, it is necessary to respect the precedence among
the different control structures in the individual. The process is started in the leaf nodes
and ends when the root node is reached. Each node in the tree is gone up to the depth
of its control structure node.

Local search

The objective of the local search is to improve some of the individuals of the population imple-
menting a search process with a low degree of exploration and a high degree of exploitation,
i.e., a very exhaustive search in the neighborhood of the individual. In this case, the local
search has been applied to only one individual of the current population: the best individ-
ual. If the local search was already run for that individual in previous iterations, then a new
individual is randomly selected to execute the local search.

The local search algorithm is described in Fig. 2.5. It is a greedy algorithm (proceeds by
changing the current assignment by always trying to increase the fitness) called steepest ascent
hill climbing [104]. This algorithm fulfills two requirements that are necessary for its adequate
cooperation with the genetic programming algorithm for web services composition: it makes
a complete search in the neighborhood of the solution until it finds the local maximum, and it
is very fast. A loop (lines 2-14) is run until the local search fails to improve the best solution
in one iteration. The best solution of the iteration (Ω′) is initially set to the best solution (Ω).
For all the neighbors of the the best solution, the best one is picked if it improves the best
solution of the iteration (lines 5-9). Finally (lines 10-13), if the best solution of the iteration
improves the best solution, the best solution is updated and the local search continues. Else,
the best solution is returned and it will replace the original solution in the population if it is
better.
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The local search requires the generation of the neighbors of an individual (line 5). The
neighborhood can be obtained substituting each atomic process of the individual with another
atomic process from the repository (fulfilling some conditions that will be detailed later). As
there can be several candidates for each replacement and there are also several atomicProcess

nodes in the individual, making all the combinations can generate a huge number of neighbors.
Thus, in order to speed up local search, a reduced number of neighbors will be generated as
follows:

1: Obtain the initial solution, Ω.
2: repeat
3: Ω′ = Ω

4: continue = false
5: for all neighbors Ω′′ of Ω do
6: if fitness(Ω′′)> fitness(Ω′) then
7: Ω′ = Ω′′

8: if fitness(Ω′)> fitness(Ω) then
9: Ω = Ω′

10: continue = true
11: until continue
12: Return Ω

Figure 2.5: Steepest ascent hill climbing algorithm [104].

1. Select randomly the number of atomicProcess nodes of the individual that will be mod-
ified (#apLS).

2. Pick randomly those atomicProcess nodes that will be modified.

3. For each node of type atomicProcess (ap j) that has been picked, look for all the pro-
cesses in the repository that fulfill the follwing conditions:

a) Ia
j ⊇ In

jk

b) Io
j ∩ In

jk 6= /0

c) Ojk ⊇ On
j

where In
jk are the necessary inputs of process apjk, k = 1, . . . ,α j. apjk is the k-th atomic

process of the repository that fulfills the conditions for node j (which corresponds to
atomic process ap j), Ojk are the outputs of apjk, and On

j are the outputs that were gen-
erated by atomic process ap j and that were used as inputs by other atomic processes of
the individual.
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4. Calculate for each apjk the probability to be selected: pjk = η fitnessjk, where fitnessjk

is the fitness of the individual after the replacement of the atomic process of node j by
apjk, and η is a normalization factor.

5. For each considered ap j, pick randomly one of the apjk using the calculated probabili-
ties (pjk).

6. The neighborhood is composed of all the individuals obtained after replacing or keeping
the corresponding nodes (ap j). The size of this neighborhood is 2#apLS −1.

Reinitialization

The last steps of each iteration (Fig. 2.4) update the value of timesRun, decreasing it when
the best individual has not improved and also when no individuals of the current iteration
have survived the replacement process. If timesRun takes a value below 0, the population is
reinitialized in the same way as in the initialization stage, but keeping the best individual.

2.6 Results

1. Obtain the time interval and the diagnostic process for a hospital:

• Inputs: HOSPITAL

• Outputs: TIMEINTERVAL, DIAGNOSTICPROCESS

• Solution: HOSPITAL DIAGNOSTICPROCESSTIMEINTERVAL SERVICE

• List of atomic processes:

– HOSPITAL DIAGNOSTICPROCESSTIMEINTERVAL SERVICE:

∗ Inputs: HOSPITAL

∗ Outputs: TIMEINTERVAL, DIAGNOTICPROCESS

2. Confirm if, given a town, country and a price, it is possible to

buy coffee and whiskey:

• Inputs: COUNTRY, TOWN, RECOMMENDEDPRICE

• Outputs: COFFEE, WHISKEY

• Solution: sequence(TOWNCOUNTRY HOTEL SERVICE,

HOTELRECOMMENDEDPRICE COFFEEWHISKEY SERVICE)

• List of atomic processes:

– TOWNCOUNTRY HOTEL SERVICE:

∗ Inputs: COUNTRY, TOWN
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∗ Outputs: HOTEL

– HOTELRECOMMENDEDPRICE COFFEEWHISKEY SERVICE:

∗ Inputs: RECOMMENDEDPRICE, HOTEL

∗ Outputs: COFFEE , WHISKEY

3. Obtain the maximum price of a book given the academic item number

of the author:

• Inputs: ACADEMIC-ITEM-NUMBER

• Outputs: MAXPRICE, BOOK

• Solution: sequence(ACADEMIC-ITEM-NUMBER BOOKAUTHOR SERVICE,

AUTHOR BOOKMAXPRICE SERVICE)

• List of atomic processes:

– ACADEMIC-ITEM-NUMBER BOOKAUTHOR SERVICE:

∗ Inputs: ACADEMIC-ITEM-NUMBER

∗ Outputs: AUTHOR , BOOK

– AUTHOR BOOKMAXPRICE SERVICE:

∗ Inputs: AUTHOR

∗ Outputs: MAXPRICE , BOOK

4. Get the maximum price of a book, its type and the recommended price

in dollars using the academic item number of the author:

• Inputs: ACADEMIC-ITEM-NUMBER

• Outputs: MAXPRICE , BOOK-TYPE , RECOMMENDEDPRICEINDOLLAR

• Solution: sequence(ACADEMIC-ITEM-NUMBER BOOKAUTHOR SERVICE,

split(AUTHOR BOOKMAXPRICE SERVICE,

BOOK RECOMMENDEDPRICEINDOLLAR SERVICE,

BOOK AUTHORBOOK-TYPE SERVICE))

• List of atomic processes:

– ACADEMIC-ITEM-NUMBER BOOKAUTHOR SERVICE:

∗ Inputs: ACADEMIC-ITEM-NUMBER

∗ Outputs: AUTHOR , BOOK

– AUTHOR BOOKMAXPRICE SERVICE:

∗ Inputs: AUTHOR

∗ Outputs: MAXPRICE , BOOK

– BOOK RECOMMENDEDPRICEINDOLLAR SERVICE:

∗ Inputs: BOOK

∗ Outputs: RECOMMENDEDPRICEINDOLLAR

– BOOK AUTHORBOOK-TYPE SERVICE:

∗ Inputs: BOOK

∗ Outputs: BOOK-TYPE

5. Get the weather, map and hotel given the city:

• Inputs: CITY, DURATION, COUNTRY

• Outputs: WHEATHERSEASON, MAP, HOTEL
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• Solution: split(CITYCITY MAP SERVICE,

CITY WHEATHERSEASON SERVICE, DURATIONCOUNTRYCITY HOTEL SERVICE)

• List of atomic processes:

– CITYCITY MAP SERVICE:

∗ Inputs: CITY

∗ Outputs: MAP

– CITY WHEATHERSEASON SERVICE:

∗ Inputs: CITY

∗ Outputs: WHEATHERSEASON

– DURATIONCOUNTRYCITY HOTEL SERVICE:

∗ Inputs: CITY, DURATION, COUNTRY

∗ Outputs: HOTEL

Figure 2.6: Description of the web services compositions used for testing on repository OWL-S TC V2.2.

1. Web Service Challenge testset 1:

• Inputs: con1233457844, con1849951292, con864995873

• Outputs: con1220759822, con2119691623

• Solution: sequence(splitJoin(serv75024910, serv1599256986,

serv1668689219), serv976005395, serv283321609,

splitJoin(serv1738121452, serv1114869861), serv1876985918,

split(serv1184302094, serv491618308))

• List of atomic processes:

– serv75024910

∗ Inputs: con1653328292, con1849951292, con241744282

∗ Outputs: con1211952995, con1482103504

– serv1599256986

∗ Inputs: con1653328292, con1849951292, con241744282

∗ Outputs: con100012944, con1810216552, con406825148

– serv1668689219

∗ Inputs: con1653328292, con1849951292, con241744282

∗ Outputs: con1257011377, con95711533

– serv976005395

∗ Inputs: con1348154594, con424848942, con588701442,

con848610623

∗ Outputs: con1189013645, con134421950, con1399563071,

con30170533, con51881517, con633555781

– serv283321609

∗ Inputs: con10304228, con1189013645, con30170533,
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con53520061

∗ Outputs: con1289781877, con1489681927, con149168694,

con351525476, con730842958, con912923257

– serv1738121452

∗ Inputs: con1489681927, con149168694, con1631823443,

con666530324, con912923257

∗ Outputs: con1804686775, con1910780741, con556545125

– serv1114869861

∗ Inputs: con1489681927, con149168694, con1631823443,

con666530324, con912923257

∗ Outputs: con164119443, con189107477, con582761525

– serv1876985918

∗ Inputs: con2129932951, con582761525, con764841824

∗ Outputs: con1498488754, con1869203452, con801503557,

con851887673

– serv1184302094

∗ Inputs: con2049645207, con323056349, con761564774

∗ Outputs: con1357575604, con365862042

– serv491618308

∗ Inputs: con2049645207, con323056349, con761564774

∗ Outputs: con1335046394, con1772940636, con427511809

2. Web Service Challenge testset 2:

• Inputs: con1498435960, con189054683, con608925131,

con1518098260

• Outputs: con357002459

• Solution: sequence(splitJoin(sequence(serv1189164894,

serv496481108), serv1258597127, serv2020713184),

serv1328029360)

• List of atomic processes:

– serv1189164894

∗ Inputs: con1233815228, con1498435960, con1518098260,

con189054683

∗ Outputs: con2040171441, con2050616774, con2085025818,

con915123190

– serv496481108

∗ Inputs: con2050616774, con699658208, con915123190

∗ Outputs: con115731217, con1545953204, con276510710,

con29503594, con395302698

– serv1258597127

∗ Inputs: con1233815228, con1498435960, con1518098260,

con189054683
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∗ Outputs: con1531820643, con1609445520, con965917446

– serv2020713184

∗ Inputs: con1233815228, con1498435960, con1518098260,

con189054683

∗ Outputs: con1027771256, con140513116, con2027267284,

con2085025818, con674466131, con699658208,

con763764707, con781788463, con794896663

– serv1328029360

∗ Inputs: con1038626729, con146453033, con395302698,

con794896663, con798787896, con813330597, con918400240

∗ Outputs: con368472115, con669754580, con841389546

Figure 2.7: Description of the web services compositions 1 and 2 used for testing on repositories from WSC 2008.

1. Web Service Challenge testset 5:

• Inputs: con428391640, con2100909192

• Outputs: con1092196197, con1374634550, con2055848680

• Solution: sequence(serv247333572, splitJoin(serv316765805,

serv386198038, serv1840997881), serv1217746328,

splitJoin(serv525062504, sequence(serv2049294580,

serv663926970), serv40675417, serv802791436),

splitJoin(serv110107650, serv872223669, serv248972116,

serv1703771959), splitJoin(sequence(serv1011088135,

serv318404349), serv1080520368), split(serv387836582,

sequence(serv1842636425, serv457268815)))

• List of atomic processes:

– serv247333572

∗ Inputs: con1368696763, con2100909192,

∗ Outputs: con1060243885, con1837312783, con1899780776,

con28797675,

– serv316765805

∗ Inputs: con1822359942, con384151484, con98229908,

∗ Outputs: con1196037436, con1275915002, con2140027657,

con507448888, con6676551, con81844658,

– serv386198038

∗ Inputs: con1822359942, con384151484, con98229908,

∗ Outputs: con1681242749, con17328019, con2082065080,

con960704019,

– serv1840997881
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∗ Inputs: con1822359942, con384151484, con98229908,

∗ Outputs: con1082569052, con220709124, con369404740,

– serv1217746328

∗ Inputs: con1196037436, con1606076734, con1749856794,

con359573590, con369404740, con418968538,

∗ Outputs: con1516982201, con1897732092, con361212134,

con671505431, con82458841, con834129565,

– serv525062504

∗ Inputs: con131614591, con1602799684, con361212134,

con844574898,

∗ Outputs: con215587433, con254912033,

– serv2049294580

∗ Inputs: con131614591, con1602799684, con361212134,

con844574898,

∗ Outputs: con1121483512, con1464139261, con1548114195,

con1944839158, con486968400,

– serv663926970

∗ Inputs: con1133159303, con1529884266, con2022463997,

∗ Outputs: con1269975085, con1310117911, con417330032,

con524244316, con578519665,

– serv40675417

∗ Inputs: con131614591, con1602799684, con361212134,

con844574898,

∗ Outputs: con1137664719, con1625739034, con1963069049,

con459113456,

– serv802791436

∗ Inputs: con131614591, con1602799684, con361212134,

con844574898,

∗ Outputs: con1116567918, con1412526779, con32688908,

con414052982, con540015383,

– serv110107650

∗ Inputs: con1302131402, con1582113061, con1739819509,

con1834035733, con1963069049, con27159169,

con459113456,

∗ Outputs: con1120051103, con2077355659,

– serv872223669

∗ Inputs: con1302131402, con1582113061, con1739819509,

con1834035733, con1963069049, con27159169,

con459113456,

∗ Outputs: con308165151, con374114199, con427981500,

– serv248972116
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∗ Inputs: con1302131402, con1582113061, con1739819509,

con1834035733, con1963069049, con27159169,

con459113456,

∗ Outputs: con1091786019, con1224710568, con1967574465,

con292598089,

– serv1703771959

∗ Inputs: con1302131402, con1582113061, con1739819509,

con1834035733, con1963069049, con27159169,

con459113456,

∗ Outputs: con1210374002, con1395731351, con1928864048,

con85939934,

– serv1011088135

∗ Inputs: con1070281170, con1818468709, con1882167160,

con1967574465, con241599790, con427981500, con84711568,

∗ Outputs: con1620003160, con1753748027, con2101933515,

con379850073, con76108784,

– serv318404349

∗ Inputs: con1141966130, con1753748027, con2101933515,

con570327021,

∗ Outputs: con1759687944, con841297848,

– serv1080520368

∗ Inputs: con1070281170, con1818468709, con1882167160,

con1967574465, con241599790, con427981500, con84711568,

∗ Outputs: con1119844968, con1264035168, con1613245017,

con589171133,

– serv387836582

∗ Inputs: con1119844968, con1613245017, con1759687944,

con658603366,

∗ Outputs: con1324864617, con1374634550, con1876431248,

con240985607, con374934517, con424090267, con529978098,

con793166421, con832491021,

– serv1842636425

∗ Inputs: con1119844968, con1613245017, con1759687944,

con658603366,

∗ Outputs: con124240173, con1286564378, con1687592844,

con495775189,

– serv457268815

∗ Inputs: con495775189, con952511413, con998186070,

∗ Outputs: con1740843832, con396235323, con465871599,

con64435085, con885742047,

Figure 2.8: Description of the web service composition 5 used for testing on repositories from WSC 2008.
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Table 2.1: Average results (x±σ ) for the test examples

Example Search time (ms)

∣∣∣In
root∩Iobj

∣∣∣∣∣∣Iobj
∣∣∣

∑

∣∣∣Oobj
∣∣∣

i
1

DOi+1∣∣∣Oobj
∣∣∣ fitness runPath #atomicProcess

OWL-S TC V2.2–1 749.00 ± 364.10 1.00 ± 0.00 1.00 ± 0.00 1.0000 ± 0.0000 1.00 ± 0.00 1.00 ± 0.00
OWL-S TC V2.2–2 484.50 ± 139.20 1.00 ± 0.00 1.00 ± 0.00 0.9750 ± 0.0000 2.00 ± 0.00 2.00 ± 0.00
OWL-S TC V2.2–3 473.60 ± 76.19 1.00 ± 0.00 1.00 ± 0.00 0.9750 ± 0.0000 2.00 ± 0.00 2.00 ± 0.00
OWL-S TC V2.2–4 3010.20 ± 422.91 1.00 ± 0.00 1.00 ± 0.00 0.9296 ± 0.0042 2.20 ± 0.40 5.70 ± 1.19
OWL-S TC V2.2–5 1098.30 ± 240.72 1.00 ± 0.00 1.00 ± 0.00 0.9654 ± 0.0019 1.00 ± 0.00 3.30 ± 0.46

WSC 2008–1 6919.70 ± 1612.99 1.00 ± 0.00 1.00 ± 0.00 0.9112 ± 0.0012 6.00 ± 1.26 15.8 ± 5.71
WSC 2008–2 11137.30 ± 3106.75 1.00 ± 0.00 1.00 ± 0.00 0.9233 ± 0.0023 3.50 ± 0.67 6.00 ± 0.89
WSC 2008–5 95390.20 ± 43521.30 1.00 ± 0.00 1.00 ± 0.00 0.9069 ± 0.0011 9.20 ± 2.96 49.90 ± 16.84

The validation of the genetic programming algorithm for web services composition has
been done with a set of experiments with different degrees of complexity. Four different
repositories have been used for test:

1. OWL-S TC V2.2, with 1,000 services described with the OWL-S profile5.

2. Web Service Challenge 2008 (WSC 2008) repository 1, with 158 services represented
in WSDL and whose inputs and outputs are semantically described6.

3. Web Service Challenge 2008 (WSC 2008) repository 2, with 558 services represented
in WSDL and whose inputs and outputs are semantically described.

4. Web Service Challenge 2008 (WSC 2008) repository 5, with 1,090 services represented
in WSDL and whose inputs and outputs are semantically described.

The services compositions that have been tested are shown in Figs. 2.6-2.8. For each
example, a short description of the task that the composite service solves is given. Also, the
available inputs (those provided by the user) and the desired outputs are enumerated. Then,
the solution to the requested service is indicated: it is a combination of control structures and
atomic processes. In most of the cases there are a few possible best solutions, but only one
has been indicated in Figs. 2.6-2.8. Finally, each of the atomic processes that are part of the
solution are described. It should be noticed that, as the inputs and outputs of the repositories
WSC 2008 are semantically described, the names of the inputs and outputs of the atomic
processes (Figs. 2.7 and 2.8) do not match up. For example, the output of a service in a

5http://projects.semwebcentral.org/frs/download.php/386/owls-tc2 2 rev 2.zip
6http://cec2008.cs.georgetown.edu/wsc08/downloads/ChallengeResults.rar
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sequence could not be an input to the next service. This is because the input of the next
service is a superclass of the previous output (semantics has to be taken into account).

Table 2.1 shows the results for all the test examples described in Figs. 2.6-2.8. Each
row in the table represents the results of the evolutionary algorithm for a test example. As
evolutionary algorithms are nondeterministic, the result of one run over an example is not
meaningful. Thus, for each of them 10 runs were executed. The columns represent the time
to obtain the best solution found by the algorithm, the percentage of provided inputs that
have been used by the atomic processes, the degree of fulfillment of the required outputs,
the fitness value, the execution time (runPath) of the composite service (the execution time
of each atomic service has been established to 1) and the number of atomic processes of the
tree. For each of these columns, two values are represented: χ is the arithmetic mean over
10 runs, and σ is the standard deviation over the 10 runs, which reflects the robustness of
the probabilistic algorithm to obtain similar results regardless the followed pseudo-random
sequence.

The values that have been used for the parameters of the evolutionary algorithm are:
maxT = 100, initialTimesRun = 20, population size = 200, crossover probability = 0.9, mu-
tation probability = 0.03 (per gene), maximum depth of the tree = 9, ω1 = 0.45, ω2 = 0.05,
ω3 = 0.05, percentage of the individuals to apply local search = 0.5%.

The first thing that must be noticed is that the fitness is, in nearly all the cases, under 1,
as the execution time of the composite service and the number of atomic processes in the tree
are greater than one (Eq. 2.1). The performance of the algorithm is good, as in all the tests
an acceptable solution has been found for all the runs. This means that In

root ∩ Iobj = Iobj and
Oroot ∩Oobj = Oobj. Also, the search times7 that have been obtained are quite low, which is
specially important for web services composition, as users require a fast answer to their query.
Going into the details for each test:

• OWL-S TC V2.2–1: this test is very simple, as it is just an atomic process and not a
services composition. However, it has been included to verify that also under simple
conditions the algorithm works properly (the best fitness was always reached). The
number of atomic processes is always the right one, while the depth is always the min-
imum possible one.

7These times have been obtained with an Intel Xeon(R) Quadcore E5320 1.86GHz processor with 8GB of RAM,
and the algorithm was implemented in Java and run on Linux.
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• OWL-S TC V2.2–2: in this example all the executions reached the best possible services
composition (two atomic processes connected in a sequence).

• OWL-S TC V2.2–3: this example is similar to the previous one (a sequence of two
services). The best values for all the objectives (inputs, outputs, execution time, and
number of atomic processes) have been reached in all the runs.

• OWL-S TC V2.2–4: this composition requires the use of two nested control structures:
a sequence and an split. This solution cannot be constructed with sequence-based com-
positions. The execution time of the composite process was most of the times the lower
one (it was over only two times). The number of atomic processes has a higher vari-
ability, indicating that correct compositions have been obtained in many different ways.
A valid composition was found in all the runs.

• OWL-S TC V2.2–5: this composition is an split of atomic processes. In all the runs, a
valid composition was obtained. Moreover, the execution time was always the lower
one (1). The number of atomic processes was also, most of the times, the minimum.

• WSC 2008–1: this composition is very complex, as it requires the sequence of 6 pro-
cesses, three of them composite processes. These composite processes are constructed
with split and splitJoin control structures (this is one of the possible solutions to this
composition). In all the runs, a valid solution was found. Results show a very low vari-
ability in the execution time of the composite process. On average, the execution time
(6) is the same of the solution shown in Fig. 2.7. The number of atomic processes is
higher than expected (10), as other valid solutions have been found with more than 10
atomic services.

• WSC 2008–2: this is also a complex composition, with three nested control structures:
a sequence, an splitJoin, and a sequence. The first sequence controls two services.
The first of them is a composite service of type splitJoin of three services. Again, the
first of them is a composite process of type sequence over two atomic processes. The
composition algorithm was able to find a valid solution in all the runs. Moreover, the
execution time of the composite process was very close to the minimum one (3), and
also the number of atomic processes was close to the minimum (5).

• WSC 2008–5: this is the most complex composition of all the tests and, also, the repos-
itory is the largest one (1,090 services). One of the solutions to this composition (the
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one described in Fig. 2.8) uses three different control structures (sequence, split, and
splitJoin), some of them nested three times. There are a total of 9 control structures and
20 atomic processes. The solution is a sequence of seven processes. Five of them are
composite processes of type split and splitJoin. Moreover, some of these processes have
other composite processes nested. For example, the second splitJoin has four processes,
and the second one is a sequence of two atomic processes. Of course, this composition
cannot be obtained with sequence-based compositions. Although the complexity of the
solution, the proposed composition algorithm was always able to find a valid solution.
Moreover, the execution time was very low. On the other hand, the number of atomic
processes was, on average, over the minimum one.

In summary, the performance of the algorithm is very good. The tests have been selected
to cover different types of compositions, using several control structures. Moreover, the com-
plexity of the tests is really high (three of them come from the WSC 2008), with up to nine
control structures in a composition, control structures nested up to three times, and more than
twenty atomic services in some of the obtained solutions. Although these complex tests, the
composition algorithm was always able to find a valid solution: in the 80 runs the result were
always valid. Also, the execution time of the obtained solutions (runPath) was the lowest
(or close to the minimum), which reflects the ability of the algorithm to exploit the different
control structures that it can manage. Finally, the number of atomic processes of the solutions
was, in most of the tests, close to the minimum.

2.7 Conclusions

A genetic programming algorithm for web services composition has been presented. The
algorithm is able to compound services using different control structures, generates composi-
tions following a context-free grammar, and manages explicitly the attributes updating. A full
validation has been done for eight different composition problems coming from four differ-
ent repositories (three of them from the Web Service Challenge 2008) with 158, 558, 1,000,
and 1,090 services, showing a very good performance. In all the tests and runs a valid solu-
tion was found, indicating that the algorithm is robust and reliable for different repositories.
Moreover, the execution times of the obtained composite processes were also low, showing
the ability of the algorithm to exploit the available control structures. Also, the search times
of the evolutionary algorithm are quite low, allowing to use our proposal on-line.





CHAPTER 3

AN OPTIMAL AND COMPLETE ALGORITHM

FOR AUTOMATIC WEB SERVICE

COMPOSITION

One of the main advantages of control-centric vs. data-centric approaches is that control-
centric approaches are more expressive since they can encode a wide variety of composition
patterns using different control structures such as sequences, splits, choices and loops, among
many other control structures, that cannot be expressed in a data-centric approach. However,
this expressivity also works against obtaining optimal compositions at run time due to the vast
search space that these algorithms are required to explore, as shown in Chapter 2. Thus, in
this work we address the composition problem from a data-centric perspective that is better
suited for the fast composition of information-providing services. For this purpose, we de-
velop a graph-based algorithm that firstly analyzes the semantic information of the services
to generate a service dependency graph that contains all the relevant services for the compo-
sition request together with their valid input-output matches. Once the graph is generated, we
optimize its size by detecting services that are equivalent or dominated in terms of their func-
tional interface. Then, an A*-based algorithm is used to extract the optimal composition from
the graph, minimizing the total number of services and the runpath (or length) of the solution.
In order to further improve the scalability, we enhance the search process using an admissible
state pruning optimization that detects redundant states during the search, i.e., combinations
of services that are functionally equivalent or dominated. We also provide a comprehensive
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validation of the algorithm with the standard datasets of the Web Service Challenge 2008.
All these contributions are described in the following publication:

Pablo Rodrı́guez-Mier1, Manuel Mucientes1, Juan Carlos Vidal1, and Manuel Lama1.
An Optimal and Complete Algorithm for Automatic Web Service Composition. Interna-

tional Journal of Web Service Research, 9(2):1–20, 2012. IGI-GLOBAL. ISSN: 1545-
7362. DOI:10.4018/jwsr.2012040101.
URL: http://dx.doi.org/10.4018/jwsr.2012040101.

3.1 Abstract

The ability of web services to build and integrate loosely-coupled systems has attracted a
great deal of attention from researchers in the field of the automatic web service composi-
tion. The combination of different web services to build complex systems can be carried out
using different control structures to coordinate the execution flow and therefore, finding the
optimal combination of web services represents a non-trivial search effort. Furthermore, the
time restrictions together with the growing number of available services complicate further
the composition problem. In this paper we present an optimal and complete algorithm which
finds all valid compositions from the point of view of the semantic input-output message struc-
ture matching. Given a request, a service dependency graph which represents a suboptimal
solution is dynamically generated. Then, the solution is improved using a backward heuristic
search based on the A* algorithm which finds all the possible solutions with different num-
ber of services and runpath. Moreover, in order to improve the scalability of our approach, a
set of dynamic optimization techniques have been included. The proposal has been validated
using eight different repositories from the Web Service Challenge 2008, obtaining all optimal
solutions with minimal overhead.

3.2 Introduction

Nowadays, Service-Oriented Architectures (SOA) [80] are gaining importance because of
the ability to build interoperable services that can be shared over a network within multiple

1Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela.

http://dx.doi.org/10.4018/jwsr.2012040101
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platforms. Thus, companies are starting to apply this principles to their business, allowing
them to remain cost effective, flexible and competitive. Applications in SOA are built based
on services consumed by clients that are not concerned with the underlying implementation.
Specifically, web services are the preferred standard-based way to realize SOA.

Web Services are self-contained modular applications described by a collection of opera-
tions that are network-accessible through standardized web protocols, and whose features are
defined using a standard XML-based language [7]. One of the advantages of web services is
to enable greater and easier integration and interoperability among systems and applications
through web service composition. This advantage allows web services to be combined by
connecting their inputs and ouputs to create larger services (composite services) whose ex-
ecution is orchestrated by a set of control structures defined in composition languages like
WS-BPEL [103,121]. Thus, the goal of web service composition is to construct new services
from existing web services in order to satisfy a request (basically a set of provided inputs and
a set of wanted outputs by the client) which cannot be solved by a single web service. The
matching between inputs and outputs can either be done syntactically, using the information
described in WSDL [29], or semantically, using semantic markup languages like OWL-S [62]
or WSMO [101].

The automatic composition problem may seem trivial problem when there are a limited
number of services in a single-service architecture. However, the problem increases in com-
plexity when the goal is to obtain optimal compositions over large web service repositories
using different control structures to manage the composition flow. In fact, the web service
composition problem can be reduced to the boolean satisfiability problem, i.e., the problem is
NP-complete and therefore it cannot be solved in polynomial time [72].

Research in this field has grown rapidly in recent years. Some approaches, such as [45,50,
85, 110, 128] treat the service composition as an artificial intelligence (AI) planning problem,
where a sequence of actions lead from a initial state (inputs and preconditions) to a goal
state (required outputs). These techniques work well when the repository size is relatively
small and the number of constraints is high. However, most of these proposals have some
drawbacks: high complexity, high computational cost and inability to maximize the parallel
execution of web services.

Other approaches, such as [12, 38, 98] scale better than other techniques when the inter-
actions among services and the number of constraints is huge. Despite being scalable, these
techniques do not guarantee to obtain the optimal solution, and also are extremely slow and
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memory intensive.
The most recent approaches, such as [41, 44, 48, 54, 75, 107, 124, 125, 129], consider the

problem as a graph/tree search problem, where a search algorithm is applied over a sub-
optimal graph in order to find a optimal (or near-optimal) solution. These proposals are sim-
pler than the AI planners due, in part, to the use of a smaller number of constraints during
the search. However, most of these approaches rely on very complex dependency graphs that
have not been optimized to reduce data redundancy. Therefore, the scalability of these algo-
rithms may also be adversely affected when the interaction among services and data is huge
due to the redundancy of the repository.

This paper addresses the problem of the web service composition as a graph search prob-
lem from the point of view of the semantic input-output message structure matching, i.e, we
do not take into consideration the non-functional properties (NFPs). The novelties of our
proposal are:

1. The method is able to calculate, given a request, an extended service dependency graph
which represents a valid but sub-optimal solution for the request.

2. The heuristic search algorithm, based on the well-known A*, finds all optimal solutions
from the point of view of the number of services and execution path (runpath). This, it
maximizes the parallel execution of services and minimizes the number of services.

3. We define set of optimizations to reduce the graph size, based on the redundancy anal-
ysis and service dominance.

4. We include a method to reduce dynamically the possible paths to explore during the
search by filtering equivalent compositions.

We have validated our algorithm with the eight datasets defined by the Web Service Chal-
lenge 2008 of the EEE conference [13]. Also we have compared our approach with the results
of the participants of the Web Service Challenge 2008.

The rest of the paper is organized as follows: Section 3.3 describes the different ap-
proaches that have already been proposed. Section 3.4 introduces the basis of web service
composition. Section 3.5 illustrates the proposed A* algorithm for web service composition.
Section 3.6 presents some optimization techniques to improve the performance of the algo-
rithm. Section 3.7 analyzes the algorithm with eight different repositories and compares the
results with other approaches. Section 3.8 points out the conclusions.
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3.3 Related Work

Heuristic algorithms have proved their efficiency in the field of the automatic web service
composition. Particularly, the use of graph-based and tree-based search algorithms has been
studied before [58,66] to solve a web service composition in large repositories, showing great
results. Although there are similarities among all proposals, they differ in many concepts,
such as performance, information handling, graph/tree encoding, solution quality, etc. In this
section, a brief analysis of some approaches is presented.

Shiaa et al. [107] present an approach to automatic service composition with semantic
matching. Given a request (goals, inputs and outputs), a set of matching services are dis-
covered from the repository, applying semantic matching between service properties and the
composition request. Then, a graph is created dynamically by connecting semantically sim-
ilar nodes (single services) to each other. Once the graph is created, a search over it is per-
formed building acyclic tree structures from goal nodes to start nodes. One major drawback
of this proposal is that it does not take into account the use of heuristics in order to speedup
the search, so searching for an optimal composition in large repositories may be infeasible.
Moreover, there are no experimental results to validate the model.

Kona et al. [54] propose a simple but effective approach for semantic web service compo-
sition. In this work, a composition is generated as a directed acyclic graph from a user request.
The graph (divided in a set of layers) is calculated iteratively, starting with the input param-
eters provided by the requester. In each step, all possible services from the repository that
can be invoked are added to the current layer. Although the useless services are filtered, the
algorithm cannot find an optimal composition. A heuristic search over the graph is required
in order to minimize the number of services in the composition.

Yan et al. [129], present an automatic service composition algorithm using AND/OR
graph. In this proposal, an AND/OR graph is created from a request, connecting services
by their inputs and outputs. Then, a search over the graph is performed using the AO* search
algorithm. Although this proposal shows a great performance over large repositories, the
algorithm does not guarantee to obtain the optimal compositions from the point of view of
the number of services, as can be seen in the results of the competition2. Moreover, the au-
thors have not implemented optimization techniques in order to improve the scalability of the
algorithm.

2http://cec2008.cs.georgetown.edu/wsc08/downloads/WSCResult.pdf
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Oh et al. [70,74] propose a Web-Service Planner using the A* search algorithm (WSPR*),
an improvement of the WSPR planner, which was at third place in the WSC’08. In this
approach, the use of the A* algorithm allows finding an optimal composition based on some
heuristic costs. The heuristic function is defined as the set of required parameters found by
the algorithm. This heuristic function has an important drawback: it is not able to guide the
search when only the last services of a composition produce all the required parameters. On
the other hand, the transition function only allows the addition of a single service in each step.

Wu et al. [125] presented AWSP, an automatic web service planner based on heuristic
state space search. In this work, an A* is used to search minimal compositions in terms of
execution path. The search is performed using different operators which allow the movement
from one state to another, adding a new service in each step. This movement can be done
either forward or backward, although the last one is clearly better. To do this, two differ-
ent heuristics were implemented based on a parameter distance defined by the authors. This
approach has some drawbacks: firstly, authors do not consider the use of stratified methods
previous to the search. These methods allow to quickly reduce the search space size, and can
be used in dynamic environments as the computation of service graphs has not an important
impact on the overall performance. This, in dynamic environments, where inputs and outputs
can change, the recalculation of the graph can be done without affecting too much the perfor-
mance. In second place, the algorithm cannot manage parallel execution of services. Third,
they do not take into account the detection of redundancy, which can seriously affect search
performance. Finally, in forth place, more tests are required to confirm the advantages of this
approach, comparing it with other similar AI planners as WSPR*.

Benthem et al. [3] got the second place in the Web Service Challenge 2008 with RugCo,
an automatic web service compositor. This algorithm uses a tree based search to find compo-
sitions that satisfy a request. The search is performed expanding nodes and resolving the new
dependencies generated in each step until no more dependencies are discovered. Since during
the search a large number of expanded nodes is generated, the authors introduce a heuristic
approximation (beam search) to analyze only the most promising nodes. Despite the authors
found solutions for the three datasets proposed in the WSC’08, the major drawbacks of this
approach are: 1) the beam search does not guarantee to obtain optimal solutions, as only
the most promising nodes are expanded, so the algorithm is neither complete nor optimal, 2)
the search minimizes the number of services in the composition, but not the execution path
and 3) beam search does not scale well with the size of the space search, which implies bad
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performance in large datasets.
Weise et al. [124] obtained the forth place in the WSC’08 with an architecture which

combines three different algorithms (uninformed search based on ID-DFS, a greedy search
and a genetic algorithm [123]). The architecture integrates a module called “Strategy Plan-
ner” which decides the best algorithm in each case. The results obtained with this system are
not surprising. The ID-DFS is an uninformed search based on the depth-first search (DFS)
with iterative deepening (ID). This method is very simple and ineffective to solve a web ser-
vice composition problem as the time complexity grows exponentially with the depth. When
the dataset is too big for the ID-DFS algorithm, the greedy algorithm is used instead of the
ID-DFS. This approach is very similar to the DFS, but a heuristic is used to sort the set of can-
didate nodes to explore. The greedy algorithm works as bad as the ID-DFS in the worst case
scenario. On the other hand, a genetic algorithm is used for all those cases where the ID-DFS
and the greedy search cannot find a solution. This algorithm uses a set of evolutionary opera-
tors to obtain near-optimal compositions minimizing multiple objectives. However, the results
obtained in the WSC’08 show the ineffectiveness of this approach. The major drawback of
this algorithm is the fitness function. The fitness is measured by calculating two objectives:
composition size and number of wanted (unsatisfied) parameters. This evaluation does not
work well when the solutions have a long runpath and the last service or services provide all
wanted parameters. In this scenario, there are no information about which solution is better
until the complete composition is reached, so in each generation, the best individuals are those
with a less number of services. This evaluation can prevent the algorithm to find a solution.
Moreover, the algorithm is an order of a magnitude slower than the other approaches.

With this state of the art, we can conclude that the main differences between our proposal
and other approaches are:

• The construction of a non-redundant service dependency graph at the first stage by
removing unused services and combining the equivalent ones. Other approaches use
simple filtering techniques that do not remove all data redundancy.

• The use of the A* algorithm backwards, handling multiple services in each step in order
to maximize the execution in parallel of the web services.

• The detection of all valid compositions with different number of services and runpath.
Other approaches only find an optimal composition with minimum number of services
or minimum runpath.
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• The use of dynamic optimization during the search, that reduces the number of possible
paths to explore by combining equivalent combination of services.

In the following sections we describe in detail the composition problem and how it can be
solved with our proposal.

3.4 Web services composition

In order to compose web services, we must define the relationship among services. From a
functional point of view, a web service is a software component that receives a set of inputs
and generates a set of outputs after the execution. Thus, a web service w can be described by a
set of inputs Win = {I1, I2, ...} and a set of outputs Wout = {O1,O2, ...}. Outputs from a service
can be provided as inputs to other service only if there is a semantic relationship between
them. In our approach, we have modeled this restriction as a hierarchical class/subclass rela-
tionship between concepts, so we consider that an output of a service Oso matches the input
of other service Isi when Oso is a subclass of Isi. In general, when a concept Ci is a subclass of
a concept C j (Ci ⊆C j), then there is a semantic matching between Ci and C j.

Another important concept is a web service request. A request R is composed by a
set of inputs (Rin = {I1

in, I
2
in, ...}) provided by the requester, and a set of outputs (Rout =

{O1
out ,O

2
out , ...}) that the requester expects to obtain. Given a request Ruser = {Rin,Rout},

where Rin = {I1
R, I

2
R, ...} and Rout = {O1

R,O
2
R, ...}, and given a web service S = {Sin,Sout}

where Sin = {I1
S , I

2
S , ...} and Sout = {O1

S,O
2
S, ...}, the web service S can be invoked only if

Rin ⊇ Sin, i.e., for each input IS ∈ Sin there exists an input IR ∈ Rin such that IR is equal or
subclass of IS (IR ⊆ IS). Also, Rout will be satisfied only if Rout ⊆ Sout , i.e., for each output
OR ∈ Rout there exists an output OS ∈ Sout such that OS is equal or subclass of OR (OS ⊆OR).

Considering this description for web services, the composition problem can be formulated
as the automatic construction of a workflow that coordinates the execution of a set of services
that interact among them through their inputs and outputs (applying the semantic matching).
This workflow, therefore, has services and a set of control structures that define both the
behavior of the execution flow and the inputs/outputs of the services related to those structures.
Despite the amount of different control structures defined in composition languages like WS-
BPEL, we take into account only two of the most important ones: sequence and split. These
structures allow to build most of the possible compositions and they work as follows:
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• Sequence structure: the output of a service is the input of one of the following services
of the sequence. This is the basic control structure of the workflow languages.

• Parallel (split): two or more services are executed in parallel and, as result, produce
several and different outputs.

Regarding to the complexity analysis of the search space, the number of combinations
to be analyzed using a brute-force algorithm grows very fast. To demonstrate this, we can
assume that, given a service, each of its inputs is provided by a different service (worst case).
The complexity in this scenario is O(mnd), where m is the average number of services in the
repository that generate the same output, n is the average number of inputs from web services
and d is the depth at which all inputs are resolved. Since there are m services that provide each
required input, the number of possible choices in order to resolve all inputs from a service is
mn. Each of these combinations represent a set of services executed in parallel, that can be
expanded again. Fig. 3.1 shows the size of the search space for different values of the runpath
(d = 1...5), with n = 1, n = 2, n = 3 (one, two and three inputs respectively for each service
in repository) and m = 5 (5 services per output on average).

Figure 3.1: Search space size for n=1, n=2, n=3 (1, 2 and 3 inputs per service) and m=5 (5 services per output on
average) with variable runpath.
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As can be seen, this kind of compositions have an exponential growth of paths to explore.
The search space size in the case of a repository of services with three inputs on average
(n) and four possible choices to provide an input to a service (m), where the solution has a
runpath of 10 (i.e, d=10 splits connected in sequence), reaches the value of 53·10 = 9.3132×
1020 possible paths to explore. Given the large number of combinations, the problem of
searching an optimal execution path is not trivial, and it is therefore necessary to reduce the
number of combinations. In order to reduce the search space size, our algorithm includes
some optimization techniques, which are described in Sec. 3.6.

3.5 A* algorithm for web services composition

As previously discussed, given the large number of possible paths to explore, a fast algorithm
is required in order to find an optimal solution in a reasonable period of time. Although the
high space complexity makes the use of traditional search algorithms unpractical for large
repositories, the problem can be solved by using a good heuristic in the search and applying
some optimization techniques and data preprocessing.

The A* algorithm, developed by Hart et al. [40], is one of the most popular pathfinding
algorithms. This algorithm uses a heuristic function h(n) to estimate the cost from the current
node to a goal node, and a function g(n) to calculate the cost from the starting node to the
current node. Therefore, the path cost is defined as f (n) = g(n)+ h(n). Choosing a good h

function has an important impact on the search process. The better this function is, the faster
the solution will become. However, there is a restriction on it: h cannot overestimate the cost
to reach the goal, otherwise, the algorithm could find a solution with higher cost than the
optimal one.

Our proposal, based on A* algorithm, follows the next steps: first, a web service depen-
dency graph is computed (Sec. 3.5.1). Then, a reduction on the number of services is per-
formed by eliminating unused services and combining equivalent services (Sec. 3.6). Finally,
the A* search is applied over the reduced graph, which finds all optimal service composi-
tions, with minimum number of services and execution path (Sec. 3.5). These steps will be
described in the following sections.
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3.5.1 Extended web service dependency graph

Web services composition requires the combination of many atomic services that can be exe-
cuted in sequence or in parallel as previously mentioned. Given a service request, an extended
service dependency graph (SDG) with a subset of the original services from an external repos-
itory is dynamically generated. This subset contains the solutions that meet the request and
consists of a set of layered services (splits) connected in sequence. Each layer contains all
services from the repository that can be executed with the outputs of the previous one. Fig.
3.2 shows an example of a SDG with i layers and n services in each layer. The expression for
a layer can be defined as follows:

Li = {Si : Si /∈ L j( j < i)∧ ISi∩Oi−1 6= /0∧ ISi ⊆ IR∪O0∪ . . .∪Oi−1}

where, for each layer Li:

• Si is a service on the i-th layer.

• Oi is the set of outputs generated in the i-th layer.

• ISi is the set of inputs required for the execution of service Si.

• IR is the set of inputs provided by the requester.

The construction of the graph can be done in a simple manner. Alg. 1 explains with
pseudocode the construction of the graph iteratively. Lines 1-5 initialize the variables used
throughout the algorithm: newOut puts (outputs generated in the last layer that have not been
generated previously), Ia (available inputs for the current layer), i (current layer) and Layers

(set of all generated layers). Note that newOut puts and Ia are initialized with the same value
IR, as the provided inputs are the first available inputs to the composition and have not been
used yet by any service. The main loop starts at line 6. Inside this loop, each layer is calculated
following these steps:

1. Obtain all outputs from the previous layers. This outputs are the available inputs to the
current layer (L. 8-10).

2. For each service in the repository:

a) Check if the service has not appeared in previous layers (L. 13).
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b) Check if the service can be invoked (i.e. receives all its inputs from previous
layers) (L.14).

c) Check if the service uses at least one output that has not been used previously (L.
15).

d) If (a), (b) and (c) are true, then the service is added to the current layer.

3. If the available inputs to this layer contain the wanted outputs (solution reached) and
the previous layer produces at least one of the wanted outputs, then a dummy service
(Rn

o) is added to the current layer. All Rn
o services are the initial nodes of the search

(each initial node will lead to a solution with different runpath). (L. 20-25)

4. Once all services are selected for the i-th layer, newOut puts is updated by adding the
outputs of the i-th layer and deleting the outputs generated in previous layers. Note that
with this operation, only the outputs that have not been used before will remain for the
next iteration (L. 26).

In order to speed up the calculation of the graph, we used a pre-computed table that
maps each input to the services that use it. Thus, for each output generated in a layer,
we can obtain all possible services for the next layer very quickly. Fig. 3.3 shows an
example of a service dependency graph with five layers and two different solutions. The
dark gray services correspond with the services of the solution with the largest runpath (the
first and the last layers are not computed for the runpath). Ri, R1

o and R2
o are dummy ser-

vices. Ri is a service which provides the requested inputs, R1
o is a service which uses the

requested outputs (so there is a solution with a runpath of 2) and R2
o is a service which uses

the requested outputs but in layer 4 (runpath of 3). Thus, in this example, two different
solutions for the same request can be observed: Sequence(Ri,Split(S1,2,S2,3),S2,2,R1

o) and
Sequence(Ri,S1,1,S2,1,Split(S3,1,S3,2),R2

o).

Generally, stratified methods like this have a high performance, and allow to reduce the
total search space easily, as some constraints (in this case, inputs and outputs) are exploited
to reduce the number of services that can be used. These methods work well in static en-
vironments, where the service information does not change. In real word, where the inputs
and outputs, service availability and other parameters may change, these methods must be
adapted. Basically, to ensure the validity in dynamic environments, a fast check can be done
while the algorithm is searching for a solution. If any change is detected on any of the services
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Algorithm 1 Extended service dependency graph algorithm
1: newOut puts := IR
2: Ia := IR
3: i := 0
4: Layers := /0
5: n := 0
6: repeat
7: Li := /0
8: for L j ( j < i) do
9: Ia := Ia∪Out puts{L j}

10: for Service Si ∈ Repository do
11: Os := Out puts{Si}
12: isNewService := Si /∈ L j( j < i)
13: hasInputsAvailable := Inputs{Si} ⊆ Ia
14: usesNewInputs := Inputs{Si}∩newOut puts 6= /0
15: if isNewService∧hasInputsAvailable∧usesNewInputs then
16: Li := Li∪Si

17: if Ia ⊇ wantedOut puts∧newOut puts∩wantedOut puts 6= /0 then
18: Rn

o.inputs = wantedOut puts
19: Rn

o.out puts = /0
20: Li := Li∪Rn

o
21: n := n+1
22: newOut puts := newOut puts∪Os− Ia
23: Layers := Layers∪Li
24: i = i+1
25: until Li 6= /0

selected by the search algorithm, the service dependency graph must be recalculated starting
from the layer which contains the service. Specifically, two situations may occur:

• A service is not accessible: given that our algorithm finds all possible solutions, when a
service becomes unavailable, the solutions which contain the unavailable service must
be discarded. The other solutions will be still valid.

• A new service is available: in this case, the service dependency graph must be partially
rebuilt starting from layer Li+1, where Li is the layer at which the inputs required by
the new service are provided (i.e., the layer which contains the service, according to the
definition of Li defined before).
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Figure 3.2: Example of i layers, with n services per layer

3.5.2 A* algorithm description

Once the graph is calculated, a search over it must be performed. The search algorithm will
traverse the graph backwards, from the solution (the service whose inputs are the outputs
wanted by the requester), to the initial node (the service whose outputs are the provided in-
puts). As mentioned before, our heuristic algorithm is based on an implementation of the A*
heuristic search. There are three principal concepts in this type of algorithms: the neighbor-
hood function, the cost function and the heuristic function.

In order to perform the search process, the search space must be divided into nodes. Each
node will contain a set of services from a graph layer that can be executed in parallel. Thus, a
path will be composed of a list of neighbor nodes, which represents the sequential execution
of the path. Thus, the starting node will only contain the service labeled as R0 in Fig. 3.2.
This service represents the outputs wanted by the requester, as their inputs match with them.
To generate all possible neighbors from a node, the following steps are performed:

1. Calculate, for each input of a node, a list of services from the previous layer that provide
it. If there are no services in the previous layer for that input, a dummy service that
generates this input and receives the same input is created. This dummy holds the
dependency so it can be resolved later.

2. Make all combinations among services from each list. These combinations will gener-
ate all possible neighbors from the current node.
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3. Remove all equivalent neighbors. This process will be described in Sec. 3.6.

For example, given a node N with a service S in the layer Li, with Is = {a,b} and a set of
services X ,Y,Z in the layer Li−1 where Ox = {a}, Oy = {b} and Oz = {a,b}, we construct a
list of services for each input of S:

• Set(a) = {X ,Z}

• Set(b) = {Y,Z}

Then, we generate all combinations. Each combination will constitute a neighbor node
from N. The possible combinations are: (X,Y), (X,Z), (Y,Z), (Z). All these nodes generate all
the required inputs for node N (a, b).

On the other hand, the behavior of the A* algorithm depends on two functions: g(N), the
cost, and h(N), the heuristic. N is a composite service obtained as a path over a set of nodes
(Ni), where Ni is the set of services in layer Li. One of the goals is to minimize the number
of web services in a composition, therefore, the cost function should calculate the length of a
composition based on the number of services. On this basis, we define a function g(N) as:

g(N) =
#L

∑
i=LN

cost(Ni) (3.1)

where LN is the first layer of the current composition service, #L is the number of layers and
cost is a function that retrieves the number of services from node Ni. The dummy services in
a node will not contribute to this cost.

The other function is the heuristic. This function should estimate the cost to the solution.
A good choice is to use, as heuristic, the layer in which the node is located. The layer number
indicates the distance to the initial node. Thus, a service in layer 3 means that the algorithm
needs three more steps in order to reach the start node. The heuristic function is defined as:

h(N) = distance(Ni) (3.2)

Putting (3.1) and (3.2) together, function f (n) is defined as (3.3):

f (N) = ∑cost(Ni)+distance(Ni) (3.3)

Figure 3.3 shows an example of a minimum composition path detected with this algorithm.
In the next section, a set of optimization techniques are explained.
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3.6 Optimization techniques

In order to achieve a significant performance improvement on the search process, we designed
two techniques that reduce the number of possible paths to explore: Offline Service Compres-

sion and Online Node Reduction.

3.6.1 Offline Service Compression

The essence of this technique is to replace equivalent services from each layer in the graph
by the representative service, which implies a lower number of paths to explore during the
search. This process is subdivided into two steps: remove unused services and detect equiva-
lent services. These steps are described below:

• Remove unused services:

1. Create an empty list M. This list will contain all the required inputs to get the
solution.

2. Create an empty list U . This list will contain all unused services.

3. Traverse backwards the graph, starting from the final layer.
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4. For each layer Li in the graph:

a) Create an empty list R. This list will contain all the required inputs for this
layer.

b) For each service S in the current layer:

i. Check if Os ⊆M, where Os are the service outputs. If M is empty, skip
this step.

ii. If S meets the condition or M is empty, add all inputs from S to the list R.

iii. In other case, add S to the list U

c) Add all inputs from R to the list M.

5. Finally, remove from the graph, each service in U

• Detect and combine equivalent services. For each layer in the graph:

1. Group services by the equivalence of their inputs. Two services have equivalent
inputs if the services from the graph that provide their inputs are the same.

2. For each group:

a) Check if Si � S j for each service Si and S j from a group.

b) If Si meets the previous restrictions, then select S j as the representative ser-
vice. S j must be deleted.

One service Si with parameters PSi = {P1
Si
,P2

Si
, ...,Pn

Si
} dominates other service S j (Si � S j)

with parameters PS j = {P1
S j
,P2

S j
, ...,Pn

S j
} if:

∀ k ∈ {1, . . . ,n} Pk
Si
≥ Pk

S j
∧∃ k ∈ {1, . . . ,n},Pk

Si
> Pk

S j

In our case, we consider only the outputs of a service Si (OSi ) as the single parameter of Si.
The inputs are not considered as the services are grouped by the equivalence of their inputs.
To clarify this point, the dominance between two services Si and S j with outputs OSi and OS j

respectively can be done as follows:

1. Set Listi as the list of services from the graph such that their inputs are a subset of OSi .

2. Set List j as the list of services from the graph such that their inputs are a subset of OS j .

3. Compare both lists. If Listi ⊇ List j then go to the next step. Else, the restriction is not
met and therefore Si and S j cannot be combined.
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4. Check if OSi resolves the same or more inputs from each common service than OS j . For
example, if OSi = {a,b} and OS j = {a,c}, and Listi = List j = X(a,b,c),Y (a,c), where
X(a,b,c) and Y (a,c) are services that receive as inputs (a,b,c) and (a,c) respectively,
we must verify which inputs are resolved with OSi and OS j . So, in this example, OSi

resolves input a,b from X and a from Y , and OS j resolves a from X and a,c from Y .
Therefore, Si � S j.

This technique can be used in both static and dynamic environments. Suppose that the
service S, which generates the outputs a and b (S→ (a,b)) is the representative service of
the group which contains the services U → (a) and V → (b). If the service S becomes un-
available, then the services U and V can be selected to replace the representative service. The
generation of the all possible replacements can be done in the same way as the calculation of
the neighborhood of a node, as explained in Section 3.5.

3.6.2 Online Node Reduction

This technique consists in the combination of equivalent neighbors during the A* search pro-
cess. Given that a node can generate equivalent neighbors (different combination of services
that together are equivalent), a mechanism to delete this type of redundancy must be imple-
mented. Two nodes are equivalent if they meet two conditions:

1. Neighbors from the node must have the same f (n) value.

2. Services from graph that provide the inputs required for each neighbor must be the
same.

The first condition is obvious: two neighbors cannot be reduced if the f (n) value is dif-
ferent, as they will generate different paths to the solution. The second condition refers to
the equivalence of the inputs. As before, a list of services that provides the required input for
each neighbor must be calculated and then compared. Only nodes with same lists of services
and f (n) value can be combined. This technique is performed while the neighbors are being
generated.
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3.7 Experiments

Our analysis consists in two parts: (1) we validate the algorithm with eight different reposi-
tories from Web Service Challenge 2008 and (2) we measure the speed up obtained with the
optimization techniques.

3.7.1 Web Service Challenge 2008 Datasets

In order to evaluate the correctness and the performance of our algorithm in different sit-
uations, we have carried out some experiments3 using eight public repositories from Web
Service Challenge 20084. These repositories contain from 158 to 8119 services defined using
WSDL. Also, inputs and outputs are semantically described in a XML file. Although there
are other benchmark datasets for automatic web service composition [71], the most efficient
algorithms have been evaluated using the WSC datasets.

Table 3.1: Characteristics of the Web Service Challenge repositories.

Test #Services #Inputs #Outputs

WSC’01 158 735 778
WSC’02 558 2,972 2,890
WSC’03 604 3,254 3,129
WSC’04 1,041 5,781 5,611
WSC’05 1,090 5,816 5,953
WSC’06 2,198 12,218 11,831
WSC’07 4,113 22,324 22,392
WSC’08 8,119 44,569 44,628

Table 3.1 shows in detail the characteristics of each dataset. The first column indicates the
number of services in the repository (#Services). As can be seen, the number of services is
variable and enough for a full validation. Table also shows the total number of inputs (#Inputs)
and the total number of outputs (#Outputs).

3An online application is available to test our algorithm with the same datasets used in this experiments:
http://citius.usc.es/wiki/inv:composit

4 http://cec2008.cs.georgetown.edu/wsc08/downloads/ChallengeResults.rar
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The solutions provided by the WSC’08 are showed in Table 3.2. Column ‘#Services”
indicates the number of services for the shortest5 solution (in number of services). Column
“exec. path” shows the runpath for that solution. Finally, column “#Solutions” indicates the
number of different solutions for that dataset.

Table 3.2: Web Service Challenge: Solutions provided by the WSC’08

Test #Services Exec. path #Solutions

WSC’01 10 3 3
WSC’02 5 3 4
WSC’03 40 23 1
WSC’04 10 5 2
WSC’05 20 8 2
WSC’06 40 9 2
WSC’07 20 12 2
WSC’08 30 20 2

Table 3.3: Algorithm results for the eight datasets

Solution with min. Services Solution with min. Runpath

Test Gr.serv #Sol. Iter. Time(ms) #Serv Runpath Iter. Time(ms) #Serv Runpath

WSC’08-1 46 7 25 81 10 3 25 81 10 3
WSC’08-2 45 4 9 147 5 3 9 147 5 3
WSC’08-3 42 1 24 436 40 23 24 436 40 23
WSC’08-4 27 2 11 101 10 5 11 101 10 5
WSC’08-5 72 6 69 487 20 8 69 487 20 8
WSC’08-6 132 12 115 3,306 35 14 126 3,508 42 7
WSC’08-7 110 2 33 3,345 20 12 33 3,345 20 12
WSC’08-8 78 3 128 3,608 30 20 128 3,608 30 20

3.7.2 Results

Our algorithm was implemented using JavaTM JDK 1.6 and tested with JavaTM SE build
1.6.0 22-b04 64-bit. All the experiments were performed under an Ubuntu 64-bit server

5Note that these values are only indicative. Smaller values have been found by our algorithm and by other
participants
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Table 3.4: Comparison with the participants of the WSC’08

Tsinghua Groningen Pennsylvania Kassel USC

Result Points Result Points Result Points Result Points Result Points

WSC’08-4

Min services 10 6 10 6 10 6 10 6 10 6
Min execution 5 6 5 6 5 6 5 6 5 6

Time (ms) 312 2 219 4 28,078 0 828 0 101 6

WSC’08-5

Min services 20 6 20 6 20 6 21 0 20 6
Min execution 8 6 10 0 8 6 8 6 8 6

Time (ms) 250 6 14,734 2 726,078 0 300,219 0 487 4

WSC’08-6

Min services 46 0 37 6 - 0 - 0 42/35 0/6
Min execution 7 6 17 0 - 0 - 0 7/14 6/0

Time (ms) 406 6 241,672 2 - 0 - 0 3,508/3,306 4/4

TOTAL 44 32 24 18 44

workstation (kernel 2.6.32-27) with 2.93GHz Intel R© Xeon R© X5670 and 16GB RAM DDR-
3. Table 3.3 shows the results obtained with a minimum runpath and a minimum number of
services. This table is organized as follows: the first column indicates the dataset name. The
second column indicates the number of services in the service dependency graph (including
dummy services). “#Sol” represents the number of solutions obtained by our algorithm, and
“Iter.” indicates the number of steps executed by the A* search algorithm until the solution
was reached. “Time” is the elapsed time until a solution was found (including the time spent
in the generation of the service dependency graph), while “#Serv.” indicates the number of
services obtained by the algorithm. Finally, “runpath” represents the length of the execu-
tion path of the solution. Columns 8-11 have the same meaning as columns 4-7 but for the
solutions with minimum runpath.

As can be seen, in all cases (except in WSC’08-6) the solution with minimum number of
services is the solution with minimum runpath too. The first thing that must be noticed is that
the solutions obtained by our algorithm are the best for all datasets (according to the solutions
provided by WSC’08, see Table 3.2), except in the case of the dataset WSC’08-6, where our
algorithm finds a solution with lower number of services (35 vs 40) and a solution with shorter
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runpath (7 vs 10). Our approach also scales well with the number of services (3,345 ms for
the dataset with 4,113 services and 3,608 ms for the dataset with 8,119 services).

Moreover, the algorithm finds all possible solutions (column “#Sol.”) for all datasets,
showing a great performance as in all cases the bests solutions were found in a very short
period of time. This feature is an important advantage over the other approximations since
it shows that is possible to compose services automatically using an optimal and complete
algorithm.

3.7.3 Comparison

In order to prove the validity of our approach, a comparison with the participants of the chal-
lenge has been done, following the rules defined by the WSC’086. The quality of each com-
position is measured using three parameters (number of services, runpath and time) in accor-
dance with the scoring rules as follows:

• +6 Points for finding the minimum set (Min. Services) of services that solves the chal-
lenge.

• +6 Points for finding the composition with the minimum execution length (Min. Exe-
cution) that solves the challenge.

– +6 Points for the composition system which finds the minimum set of services or
execution steps that solves the challenge in the fastest time (Time (ms)).

– +4 Points for the composition system which solves the challenge in the second
fastest time.

– +2 Points for the composition system which solves the challenge in the third
fastest time.

As can be seen, these rules are conflicting, given that some solutions have the minimum
runpath but not the minimum number of services. For example, in the WSC’06 dataset, the
solution with the minimum number of services (35 services) has a runpath of 14. On the
other side, the solution with the minimum runpath has 42 services. With these rules, both
solutions obtain 6 points, as the first one has the minimum number of services and the second
one the minimum runpath. Despite our algorithm finds both solutions, only one solution is

6http://cec2008.cs.georgetown.edu/wsc08/downloads/WSCResult.pdf
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taken into account. Thus, our algorithm is clearly penalized by this rating. Regardless of this
disadvantage, our algorithm obtained 44 points, the same score as the winners. Note that the
time has not been measured under the same conditions because the source code of the other
participants was not available. Therefore, the objective criteria for the comparative analysis
should be only the number of services and the runpath.

If we compare the quality of the solutions, our algorithm finds better solutions than the
other approaches. As can be seen in Table 3.3, the result with the minimum runpath for the
dataset WSC’08-6 obtained by our algorithm has 42 services, while the University of Ts-
inghua obtained a solution with 46 services and the same runpath. On the other hand, if we
compare the solution with the minimum number of services, our algorithm finds a composi-
tion with 35 services and a runpath of 14, which is clearly better than that provided by the
University of Groningen with 37 services and a runpath of 17.

3.7.4 Optimization effect

All the above experiments were performed using all the optimization techniques described on
Section 3.6. In this section, we compare the effect of the optimization over the global perfor-
mance on each dataset, and it is divided into three parts: (1) performance using offline service

compression; (2) performance using online node reduction and (3) performance improvement
with both optimizations.

Offline service compression

the results are presented in Table 3.5. As can be seen, the average compression obtained over
the graph using “Offline service compression“ was close to 40%. The other columns show the
average inputs per service, the average outputs per service and the average number of available
services in the service dependency graph that provides the same output (with and without op-
timization). This values can be used to estimate the complexity for each dataset, as explained
in Sec. 3.4. Note that the number of services per output decreases as the compression ratio
increases (Column 11). This ratio has an important effect on the search performance. More
specifically, a worse performance occurs when the number of available services per output is
high, since the generation of neighbors in each step is slower. Despite the reduction obtained
over the graph size, the complexity of the repository 6 still remained too high, so the algorithm
cannot find a solution in a reasonable period of time (all tests were executed using a time limit
of 5 minutes).
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Table 3.5: Complexity of the Service Dependency Graph (SDG) with and without using Offline Service
Compression

SDG Services Avg inputs/service Avg outputs/service Avg services/input

Non-opt. Opt. % Compr. Non-opt. Opt. Non-opt. Opt. Non-opt. Opt. % Compr.

WSC’01 64 46 28.13 3.35 3.15 4.09 4.06 2.09 1.32 36.84
WSC’02 67 45 32.84 3.23 3.17 4.05 4.02 3.19 1.66 47.96
WSC’03 107 42 60.75 3.84 3.95 4.04 4.23 3.80 1.00 73.68
WSC’04 46 27 41.30 4.69 4.66 4.28 4.25 5.20 2.05 60.58
WSC’05 106 72 32.08 3.25 3.11 4.56 4.68 2.43 1.39 42.80
WSC’06 208 132 36.54 5.77 5.87 4.31 4.59 3.83 2.10 45.17
WSC’07 166 110 33.73 3.12 3.05 4.54 4.85 4.47 2.32 48.10
WSC’08 134 78 41.79 3.60 3.56 4.25 4.57 2.61 1.24 52.49

Average 38.39 50.95

Table 3.6: Performance of the algorithm using different optimizations

No opt. (ms) Offline service comp. (ms) Online node reduction (ms) All opt. (ms)

WSC’01 98.09 82.91 83.96 81.56
WSC’02 157.59 148.03 152.33 147.36
WSC’03 552.92 432.37 438.17 436.48
WSC’04 118.97 115.77 103.26 101.73
WSC’05 1,930.84 490.67 511.28 487.66
WSC’06 ∞ ∞ 23,704.44 3,306.36
WSC’07 3,476.31 3,377.66 3,363.01 3,344.28
WSC’08 5,117.71 3,609.55 3,598.46 3,608.58

Online node reduction

This technique reports a large improvement in performance, as the algorithm obtains solutions
in all repositories, including the WSC 2008-6 (23,704 ms, see Table 3.6). In most cases, this
method obtains at least the same performance as the offline service compression. Table 3.6
shows in detail the time obtained for each dataset and using different optimizations. Column 2
indicates the time needed to get the solution with the minimum number of services without any
optimization. Columns 3, 4 and 5 show the same information but using different techniques.
Note that ”Offline Service Compression“ is not enough to obtain a solution in the dataset
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Table 3.7: Speedup obtained with the different optimizations

Offline service compr. Online node reduction All optimizations

WSC’01 18 % 17 % 20 %
WSC’02 6 % 3 % 7 %
WSC’03 28 % 26 % 27 %
WSC’04 3 % 15 % 17 %
WSC’05 494 % 478 % 496 %
WSC’06 0,00 % ∞ ∞

WSC’07 3 % 3 % 4 %
WSC’08 42 % 42 % 42 %

WSC’08-6.

Both optimizations

After applying both techniques, our algorithm is able to solve the eight datasets showing a
good performance. Table 3.7 shows the percentage of optimization obtained with the different
techniques.

In Figure 3.4, we compare the speedup7 obtained with each optimization over the non-
optimized algorithm. Note that with all optimizations, the speedup is over 1.0x, i.e., there is
a substantial performance improvement. The improvement on the WSC’06 dataset cannot be
measured as there are no results without optimizations, but a comparison can be done using
only the results obtained with “Online node reduction” and “All optimizations”. For this case,
using the values in Table 3.6, we obtain a speedup of 7x with all optimizations (23,704 ms vs
3,306 ms). This is due to the large number of equivalent combinations of services (neighbor
nodes) that can be generated in each step.

3.8 Conclusions

In this paper we have presented a complete and optimal algorithm for automatic web ser-
vice composition based on a heuristic search over a services graph. The graph has been
optimized applying different techniques that reduce useless and equivalent services. The pro-

7The speedup is calculated as the division of the non-optimized result by the optimized result. Thus, a speedup
of 2.0x indicates that the optimized result is two times faster than the non-optimized one.
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Figure 3.4: Speedup with different optimizations

posed A*-based composition algorithm is executed over the reduced graph using dynamic
node reduction and a cost function, which minimizes the number of services and maximizes
the parallelization. Moreover, a full validation has been done using eight different reposito-
ries from Web Service Challenge 2008, showing a good performance as in all the tests the
best solutions, regarding the number of services and runpath, were always found. Also, our
algorithm is able to find all the existing solutions. This is not fulfilled by the other algorithms
of the WSC’08.

As future work we plan to extend our algorithm by including non-functional properties
in our model, such as cost, reliability, throughput, etc. Quality of Service (QoS) characteris-
tics are important criteria for building real world compositions. Our algorithm can be easily
adapted to handle these features.



CHAPTER 4

AN INTEGRATED SEMANTIC WEB SERVICE

DISCOVERY AND COMPOSITION

FRAMEWORK

As mentioned in Chapter 1, the discovery of services is a fundamental activity that needs
to be carried out in service composition. Yet, despite being two interrelated tasks, most of
the research in automatic service discovery and automatic service composition has evolved
independently. This has led to: 1) interfaces exposed by state-of-the-art discovery engines
are not adequate for service composition and 2) composition engines usually assume that
services candidates are in place and can be indexed and processed in memory. As a result,
there is a lack of integrated approaches that consider the performance and the scalability of
the overall integrated system as well as the impact of the discovery in terms of response time
during the automatic composition task. With the aim of overcoming these limitations, and
based on the research presented in chapter 3, we developed a graph-based framework that
integrates both service discovery and optimal service composition. The formal framework
presented in this chapter provides a theoretical analysis of graph-based service composition
in terms of its dependency with a service discovery by means of a fine-grained I/O discovery
interface which reduces the performance overhead without assuming the local availability and
in-memory preloading of service registries. We also provide a reference implementation of
this formal framework based on the adaptation of two independently developed components,
namely ComposIT and iServe, respectively in charge of service composition and discovery.
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This reference implementation has been used to empirically study the impact of the discovery
task in the whole composition using different optimization mechanisms with varying perfor-
mance.

All these contributions are encompassed in the following publication:

Pablo Rodrı́guez-Mier1, Carlos Pedrinaci2, Manuel Lama1, and Manuel Mucientes1.
An Integrated Semantic Web Service Discovery and Composition Framework. IEEE

Transactions on Services Computing, 2015. IEEE. ISSN: 1939-1374. DOI:
10.1109/TSC.2015.2402679.
URL: http://dx.doi.org/10.1109/TSC.2015.2402679.

4.1 Abstract

In this paper we present a theoretical analysis of graph-based service composition in terms
of its dependency with service discovery. Driven by this analysis we define a composition
framework by means of integration with fine-grained I/O service discovery that enables the
generation of a graph-based composition which contains the set of services that are semanti-
cally relevant for an input-output request. The proposed framework also includes an optimal
composition search algorithm to extract the best composition from the graph minimising the
length and the number of services, and different graph optimisations to improve the scalability
of the system. A practical implementation used for the empirical analysis is also provided.
This analysis proves the scalability and flexibility of our proposal and provides insights on
how integrated composition systems can be designed in order to achieve good performance in
real scenarios for the Web.

4.2 Introduction

Service discovery and composition are in general complex tasks that require considerable ef-
fort, especially when vast amounts of services are available. Service discovery solutions range
from the initial UDDI proposal that relied on the syntactic description of services and a pre-
fixed categorisation [7], to more advanced generic solutions able to discover Web APIs and

1Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela.

2Knowledge Media Institute (KMi), The Open University, Milton Keynes, UK.

http://dx.doi.org/10.1109/TSC.2015.2402679
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Web services across domains exploiting rich user-provided semantic service descriptions [81].
Similarly, a plethora of service composition solutions have been produced spanning from mere
graphical support to completely automated solutions [36, 92, 113]. Both discovery and com-
position engines essentially rely on the processing of service descriptions, which increasingly
go beyond syntactic representations to include the semantics of the service(s) to enable more
advanced computations [64, 77].

An analysis of the service composition literature highlights that, regardless of the ap-
proach, a central task that needs to be frequently performed throughout the composition activ-
ity, is the discovery of suitable services to use. Whether one looks at fully automated composi-
tion engines based on Artificial Intelligence (AI) planning techniques [24,51,110], or at more
constrained solutions that rely on pre-defined skeletal plans [63, 109], or at graph based ap-
proaches focused on semantic input-output parameter matching [3,44,54,68,70,89,107,129],
service discovery is a central activity that needs to be carried out at every main step during the
generation of the composition. Yet, despite the strong dependency between both activities,
research and development in both areas has evolved for the most part independently.

On the one hand, service discovery has traditionally been approached as a one-of activity
to be sporadically carried out by humans when looking for services. As a consequence the
interface exposed by discovery engines assumes that requests are fully specified in terms of a
well-defined interface and categorisation. Moreover, response times of discovery engines are
orders of magnitude above what would be acceptable for a composition engine that should it
delegate the thousands discovery requests it needs to issue at composition time [49]. These
limitations hamper the development of fast composition systems where discovery and com-
position are two fundamental, interrelated activities.

On the other hand, partly due to the particularly demanding computational needs of com-
position algorithms, most composition engines reimplement locally their own discovery meth-
ods instead of integrating existing components providing state of the art discovery algorithms.
Additionally, this approach relies on the unnecessary and often unrealistic assumption that the
entire set of services should be locally available to the composition engine. This assumption
requires pre-importing all services locally which is only viable for those registries providing
entire public dumps of the service descriptions they hold. Furthermore, most composition
engines do not introduce optimisation techniques to improve the scalability by identifying
equivalent or dominant functionality that could appear when many differents service registries
are involved in the composition. This prevents the use of optimal search strategies since the
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complexity usually grows exponentially with the number of services.
In order to tackle the previous problems, a composition framework should consider the fol-

lowing characteristics: 1) provide convenient fine-grained discovery mechanisms that could
help to discover services able to consume or produce (a subset of) certain types of data as
usually required during composition; 2) improve the response time of service discovery to
process requests very fast; 3) support the integration of third party service registries as a
key activity in the composition phase; 4) incorporate optimizations to improve the scalability
of the overall composition process; and 5) find optimal service compositions by minimizing
different criteria such as the number of services or the length of the composition to avoid
complex, unmanageable solutions.

In this paper we present a graph-based framework focused on the semantic input-output
parameter matching of services’ interfaces that efficiently integrates the automatic service
composition and semantic service discovery. The provided framework takes into account all
the characteristics indicated in the above paragraph. Notably, the main contributions are:

1. A formal framework that presents a theoretical analysis of graph-based service compo-
sition in terms of its dependency with a service discovery and we provide a fine-grained
I/O discovery interface which reduces the performance overhead without having to as-
sume the local availability and in-memory preloading of service registries. The frame-
work also includes an optimal composition search algorithm to extract the best compo-
sition from the graph minimising the length and the number of services, and different
graph optimisations to improve the scalability of the system, which as far as we now
are not included in other frameworks.

2. A reference implementation of this formal framework based on the adaptation of two
independently developed components, namely ComposIT [99] and iServe [81], respec-
tively in charge of service composition and discovery.

3. A detailed performance analysis of the integrated system, highlighting both the unac-
ceptable performance achieved when using the typical out of the box discovery imple-
mentations, as well as the fact that top performance is achievable with the adequate
discovery granularity and corresponding indexing optimisations.

The proposed framework is data-flow centric, focused on the semantic I/O parameter
matching of services’ interfaces and leaving aside preconditions and effects. This is essen-
tially a pragmatic decision inline with the current tendency towards lightweight data-driven
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approaches. In fact, on the Web less than 5% of the semantic Web services include precondi-
tions and effects [82].

The rest of the paper is organized as follows. Sec. 4.3 discusses the state-of-the-art. Sec.
4.4 formalizes the web service composition problem and Sec. 4.5 framework that defines the
composition in terms of service discovery tasks. Sec. 4.6 describes our reference implemen-
tation. Sec. 4.7 explores the performance of the system for different scenarios and finally Sec.
4.8 gives some final remarks.

4.3 Related Work

Automatic composition of Web services is still an open problem that involves multiple re-
search areas [36]. Concretely, lots of efforts have been devoted to automate the discovery and
composition using different approaches and techniques [83]. However, most of the research
in both areas has been evolved independently of each other, despite the significant overlap
between these interrelated tasks. This has lead to a lack of integrated approaches in the field
that consider the performance and the scalability of the overall integrated system as well as
the impact of the discovery in terms of response time during the automatic composition task.

From the discovery side, most of the work has been focused on improving the retrieval
performance (i.e., precision-recall curve) without much concern about the response time re-
quirements and/or the interface requirements to provide an efficient fine-grained discovery
granularity for automatic composition. However, the response time of the discovery systems
is recently gaining significant interest. A recent service discovery competition [49] shows
some of the newest advances in the automatic discovery field. Most relevant examples are
OWLS-MX3 [52], iSem 1.1 [59] and XSSD [30]. The main conclusions that can be drawn
from this contest, from the perspective of service composition, are twofold: 1) research efforts
are focused on response time improvement via caching and indexing, yet still not sufficient
for fast, automatic composition of services and 2) the interface exposed by discovery engines
assumes that requests are fully specified in terms of a well-defined interface and categorisa-
tion, i.e., discovery systems expect a precise description of the service in terms of inputs and
outputs, and/or other characteristics such as preconditions and effects. However, these inter-
faces are not adequate for service composition, since one of the assumptions is that there is
usually no single service that fully matches a request and therefore several services need to
be combined instead. Indeed, during automatic composition, an exploratory search is usually
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required to guess which relevant services can be selected at each step. This requires to launch
many partial requests (fine-grained queries), rather than fully specified requests, in order to
locate relevant services that match some partial information available to the algorithm (e.g.,
services that consume some inputs and/or produce some outputs). Fine-grained requests are
simpler and can be solved faster than complex, fully specified requests. Thus they are more
suitable for automatic composition systems.

From the composition side, most approaches can be categorized into: 1) classical AI plan-
ning approaches [84], where the composition problem is translated into the planning domain
and solved using general planners, and 2) graph-based I/O driven approaches that build a
graph with the services and their input/output semantic relations (generally ommiting the pre-
conditions and effects), and apply graph search techniques to extract (usually optimal) service
compositions from the graph.

Relevant approaches of the first group are [43, 51, 110]. These approaches differ from
our work in the sense that they handle very expressive preconditions and effects to generate
composition plans but: 1) the concept of external service registries is missing, services are
assumed to be locally available; 2) average response time of these systems is usually high;
and 3) optimizations to reduce the number of services by identifying redundant functionality
are not considered.

On the other hand, graph-based I/O approaches are gaining much attention since the Web
Service Challenge [13]. Some notable works in this field are [3, 44, 68, 70, 89, 107, 129].
Concretely, [3, 70, 129] are the top-3 algorithms of the WSC’08. Although these approaches
show generally good performance and low response times, [129] and [3] do not find optimal
solutions and [70] fails to find solutions in large data sets. Additionally, none of these systems
consider neither the integration with service registries nor the use of service optimizations to
deal with potential scalability problems.

From the point of view of the integrated frameworks, a very interesting approach was
proposed by Kona et al. in [54]. In this paper, the authors present an efficient framework
for Web service composition that supports semantic Web service discovery. The composition
is generated by performing a forward chaining of operators to find a feasible composition.
The authors also evaluated the system with the datasets of the Web Service Challenge 2006
and presented a detailed experimentation. Their results demonstrate the capabilities and the
good performance of this system which, however, exhibits some limtations: 1) the notion
of an external service registry is missing, all the information required is preprocessed and
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loaded in the main memory, which is one of the main issues we set out to tackle with this
work since it is otherwise not possible to deal with large and/or distributed datasets; 2) the
framework does not contemplate service optimisations to remove redundant information and
3) the work does not perform an optimal search to minimise the cost or the number of services
of the composition as all possible compositions with the shortest length are captured in the
composition graph which should be further processed to extract the optimal composition.
Similarly, in [57], Lécué et al. develop an integrated framework for dynamic Web service
composition. The framework exploits the semantic input-output matchmaking to discover
relevant services and performs automatic composition using a graph-based approach, taking
into account functional and non-functional properties. However, graph optimisations are not
considered and the composition search is non-optimal, since the selection of the services is
merely greedy-based.

In [34], Da Silva et al. present a framework that effectively supports both automatic
semantic discovery and composition, among other relevant phases of the composition life-
cycle, such as service publication and service selection, taking into account non-functional
properties. One of the limitations of the discovery phase is that it does not support fine-
grained requests. On the other hand, the framework does not include neither optimisations to
reduce graph size nor an optimal search to extract the best composition from the graph.

In light of the above analysis, we propose a graph-based I/O framework that overcomes
all of the analyzed limitations. In this framework the discovery is defined in terms of a fine-
grained I/O interface which minimises the performance overhead between both composition
and discovery without having to assume the local availability and in-memory preloading of
service registries. The proposed framework also includes an optimal composition search al-
gorithm to extract the best composition from the graph minimising the length and the number
of services, and different graph optimisations to improve the scalability of the system.

4.4 Web Service Composition Problem

Service composition aims to help construct composite services that could fulfil a user request,
e.g., booking an entire holiday, when no known service can achieve such a request on its own.
A core activity for creating service compositions is, indeed, the discovery of relevant services.
In this context, relevant services are those that could be invoked and contribute to obtaining an
executable composition that would fulfil the needs set out by the client. We herein formalise
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the composition problem in close relationship with discovery as a means to better study and
approach the integration of discovery and composition engines. The formalisation of the
problem is data-flow centric, focussed on the semantic input-output parameter matching of
services’ interfaces.

4.4.1 Semantic Web Service Discovery

The semantic Web service discovery problem consists of locating appropriate services from
one or more service registries that are relevant to an input-output request.

Definition 1. A Semantic Web Service (SWS, hereafter “service”) can be defined as a tuple

w = {Inw,Outw} ∈W where Inw is a set of inputs required to invoke w, Outw is the set of

outputs returned by w after its execution, and W is the set of all services available in the

service registry. Each input and output is related to a semantic concept from an ontology O

(Inw,Outw ⊆ O).

Semantic inputs and outputs can be used to discover relevant services as well as to com-
pose the functionality of multiple services by matching their inputs and outputs together. In
order to measure the quality of the match, we need a matchmaking mechanism that exploits
the semantic I/O information of the services. The different matchmaking degrees that are
typically contemplated in the literature are [76]:

• Exact (≡): An output ow1 ∈ Outw1 of a service w1 matches an input iw2 ∈ Inw2 of a
service w2 with a degree of exact match if both concepts are equivalent.

• Plugin (v): An output ow1 ∈ Outw1 of a service w1 matches an input iw2 ∈ Inw2 of a
service w2 with a degree of plugin if ow1 is a sub-concept of iw2 (ow1 v iw2).

• Subsume (w): An output ow1 ∈Outw1 of a service w1 matches an input iw2 ∈ Inw2 of a
service w2 with a degree of subsume if ow1 is a super-concept of iw2 (ow1 w iw2).

• Fail (⊥): When none of the previous matches are found, then both concepts are incom-
patible and the match has a degree of fail (ow1 ⊥ iw2).

Note that, in order to discover relevant services to generate data-flow compatible service
compositions, the only two valid degrees of match are exact and plugin. On this basis, we
define the cmatch (compatible match) function that will be used to discover candidate services
during the composition phase:
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Definition 2. Given a,b∈O, a compatible match cmatch(a,b) holds if and only if a≡ b (exact

match) or av b (plug-in match).

Using the previous compatible match function between concepts, we can define the match-
making operator “⊗” that given two sets of concepts C1,C2 ⊆ O, it returns the concepts from
C2 matched by C1.

Definition 3. Given C1,C2 ⊆ O, we define “⊗ : O×O→ O” such that C1 ⊗C2 = {c2 ∈
C2|cmatch(c1,c2),c1 ∈C1}. Note that this operator is not commutative.

We can use the previous operator to define the concepts of full and partial matching be-
tween concepts.

Definition 4. Given C1,C2 ⊆ O, a full matching between C1 and C2 exists if C1⊗C2 = C2,

whereas a partial matching exists if C1⊗C2 ⊂C2.

Typically, a service w= {Inw,Outw} is relevant to a request r = {Inr,Outr}, where Inr ⊆O

are the provided inputs and Outr ⊆ O the expected outputs, if Inr ⊗ Inw = Inw and Outw⊗
Outr = Outr, that is, there is a full match between the provided inputs and the service inputs
and a full match between the service outputs and the expected outputs.

While this approach is reasonable for discovering the services that best match an entire
request (full match), for composition one needs to locate services that are relevant, that is,
that match some inputs / outputs (partial match). Thus, rather than approaching the discovery
problem based on a full input/output description, we split this problem into two finer-grained
discovery problems that are more relevant for service composition: input discovery and output
discovery.

Definition 5. Given a set of concepts C ⊆ O, the input discovery problem can be defined

as finding a set of relevant services W = {w1, ...,wn} where wi = {Inwi ,Outwi} such that

∀wi ∈W, C⊗ Inwi ⊆ Inwi , that is, services that can consume some (partial match) of the

inputs or are directly invokable (full match) with C.

Definition 6. Given a set of concepts C ⊆ O, the output discovery problem can be defined

as finding a set of relevant services W = {w1, ...,wn} where wi = {Inwi ,Outwi} such that

∀wi ∈W, Outwi ⊗C ⊆C, that is, services that produce some or all outputs.

Based on these definitions, we introduce the notion of input and output relevance:
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Definition 7. A service w = {Inw,Outw}, where Inw,Outw ⊆ O, is input-relevant for a set of

concepts C ⊆O if C⊗ Inw 6= /0, whereas the service w, is output-relevant for a set of concepts

C ⊆ O if Outw⊗C 6= /0.
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Figure 4.1: Overview of the proposed approach.

4.4.2 Semantic Web Service Composition

The semantic composition problem considered in this work is as follows: Given a request
r = {Inr,Outr}, where Inr is a set of available semantic input concepts and Outr a set of
requested semantic output concepts, we can define the problem of the automatic construction
of a SWS composition as that of finding a composite Web service wc = {Inwc ,Outwc ,P =

{S,≤}} such that Inr ⊗ Inwc = Inwc (the composite service is invokable with the available
inputs) and Outwc ⊗Outr = Outr (the composite service retrieves all the requested outputs).
This service consists of a partially ordered set P (a binary relation “≤” over a set of services
S ⊆W ). This partial ordered set of services is esentially a Directed Acyclic Graph (DAG)
which models the implicit execution order of the services driven by the input/output matches,
where nodes of the DAG are services and the arcs are valid semantic matches. This type of
composition has many advantages: On one hand, mapping inputs and outputs to semantic
concepts does allow to reason about data types to improve the matchmaking between service
parameters, which leads to more possible semantically valid compositions. On the other hand,
DAG representation formally captures the nature of a composition where services may be
executed in different orders, i.e., there are many different total (sequential) orderings of a
composition that lead to the same result. Moreover, since our approach is data-flow centric, a
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DAG representation is simpler than a general (possible cyclic) graph as cycles do not produce
new data types in the composition.

However there are also some drawbacks. First, a DAG representation could impose some
restrictions in the compositions that can be generated, i.e, due the absence of cycles, a service
could not explicitly be invoked twice. Second, compositions at different semantic levels rather
than just concept matchmaking would deffinitely improve the quality of the compositions by
capturing more possible cases. Furthermore, using input concepts and output concepts to
define a composition request is not user friendly. A better way to specify a request would be
to define it with keywords. This, nonetheless, could be achieved with a pre-processing step
using automatic semantic annotation tools to translate the request from keywords to semantic
concepts. Formally, we define a valid composition as follows:

Definition 8. Let r = {Inr,Outr} and let wc = {Inwc ,Outwc ,P = {S,≤}} be a composite

service for the request r, where P is a partial order over the set of services S ⊆W of the

composite service wc. We say wc is a valid composition for request r if and only if, for any

topological sort T = {w1,w2, ...,wN} of P, where w j = {Inw j ,Outw j} ∀ j∈ [1,N], the following

expression is satisfied:

(Inr⊗ Inw1 = Inw1)∧ ((Inr ∪Outw1)⊗ Inw2 = Inw2)

∧ . . .∧ ((Inr ∪Outw1 ∪ ...∪OutwN )⊗Outr = Outr).

This definition implies that every service of the composition must be invokable to obtain
an invokable service composition. We say that a service w = {Inw,Outw} is invokable with
a set of concepts C ⊆ O if each required input iw ∈ Inw is semantically matched by a set of
concepts C.

Definition 9. If C ⊆ O is the set of available input concepts, then a service w = {Inw,Outw}
is invokable with C if C⊗ Inw = Inw, i.e., there exists a full matching between the available

inputs and the service inputs.

Note that if a service w is invokable with a set of concepts C, then it is also input-relevant
for the same set of concepts since invokable implies input-relevant, but the inverse does not
hold (see Def. 7). That is, the set of invokable services is included in the set of the relevant
services.

The reader should note that we restrict the definition of a compatible match to exact and
plugin in order to generate semantically complete compositions. However, the framework also
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supports the use of other match degrees (e.g., subsume) by relaxing the “cmatch” operator,
which in practice means obtaining potentially more matched (but semantically weaker) con-
cepts and thus bigger composition graphs with more services and match relations that could
be semantically incomplete. This is supported not only in theory, but also by the reference
implementation presented in Sec. 4.6.

4.5 Composition Framework

On the basis of the formal definition of the problem, in this section we present a graph-based
framework for automatic semantic Web service composition. Fig. 4.1 shows the overview
of our approach with the different steps involved. The process is triggered by a composition
request that specifies the user requirements in terms of inputs and the expected outputs. This
information is used in the composition graph generation phase to build a graph with all the
relevant services and the semantic relations between their inputs and outputs. In order to find
the relevant services, the composition graph phase is interleaved with the discovery phase.
The discovery phase is responsible for retrieving the relevant services given the data available
at different stages during the composition graph generation phase. The relationships between
the inputs and outputs of services are computed in the matchmaking phase, where the semantic
matching degree between inputs and outputs is computed using a semantic reasoner. The
service composition graph is eventually generated on the basis of the relevant services and the
I/O matching information. This graph contains all possible service compositions that satisfy
the composition request, in addition to a few others that, although invokable, do not manage to
entirely fulfil the request. The service composition graph is then optimised applying different
techniques to group and reduce the number of services and relations. Next, an optimal search

is performed over the graph to find the optimal composition. This phase is interleaved with a
search optimisation phase that analyses and reduces the search space. Finally, the optimised
composition workflow is returned.

In this section, we analyse each phase and we provide generic strategies based on the
problem description presented in the previous section.

4.5.1 Semantic Matchmaking

A fundamental functionality that needs to be available for generating compositions and even
for discovering services, is the ability to analyse the compatibility between different seman-
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tic types. This functionality, which we refer to as semantic matchmaking, is in charge of
assessing the level of semantic compatibility between concepts, given an ontology (or set of
ontologies). To do so, semantic matchmaking relies on semantic reasoning (notably subsump-
tion reasoning) in order to be able to determine the relationships between the concepts (e.g.,
Plugin match). This mechanism can be used for example, to discover services that can con-
sume or produce a concrete input/output by finding semantically compatible types. Such a
mechanism is also particularly relevant for generating the service composition graph with all
the matches between services inputs and outputs.

The matchmaking system provides a match(C1,C2) function which represents the con-
crete implementation function of the ⊗ operator defined in Def. 3. The match function tries
to find a valid match between the source concepts of C1 and the target concepts of C2 call-
ing the cmatch(ci,c j) function (Def. 2) for each pair (ci,c j) of concepts where ci ∈ C1 and
c j ∈C2. The compatible match function is calculated using a semantic reasoner that returns
the semantic relation between two concepts. Then, it checks if the relation is considered a
compatible match (i.e., exact or plugin). Each time a compatible match is found between ci

and c j, c j is added to a set of matched concepts and removed from C2. The reader should note
that the goal here is not to find the best match for each element but rather to get all compatible
matches for each target element.

The best-case complexity (all C2 concepts matched by the first element from C1) is O(m),
whereas the worst-case complexity (no compatible matches at all) is O(m · n) where n =

|C1|,m = |C2|. This implies that, in the worst case, for two sets of elements, there will be at
most m×n calls to the cmatch function which is ultimately answered by the semantic reasoner.

4.5.2 Semantic Service Discovery

In order to generate service compositions, it is necessary to be able to discover appropriate
services based on their interface. The goal of a typical discovery system is to find atomic ser-
vices that match entirely a description representing the ideal service sought, i.e., all the inputs
and outputs are compatible. However, from the viewpoint of generating data-flow compatible
compositions, rather than looking for entire matches, we need to find suitable combinations
of services that combined would satisfy a request. In this scenario, the ability to find partially
matching services very fast is paramount in order to enable exploring efficiently the many
possible combinations of services that could lead to a suitable composition. Therefore, in a
nutshell, the type of service discovery that is required for supporting service composition is a
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more relaxed and finer-grain version of that typically provided by discovery engines whereby
partial matches can be obtained in a very fast manner. This can be achieved by defining a
simple fine-grained interface that supports the discovery of services using only partial infor-
mation (some/any available inputs, some/any expected outputs). Fig. 2 shows the pseudocode
of this simple interface to discover relevant services that can be used as a starting point to
obtain semantic input/output relevant services, as defined in Def. 7 in Sec. 4.4.

The discovery algorithm sequentially scans all services and calls the Match function of
the Matchmaker to determine if a service is relevant for an input (the service has at least
one input compatible with the inputs provided) or for an output (the service has at least one
output compatible with the outputs provided) depending on the Type selected. Therefore,
the complexity of this type of discovery is O(w) where w = |W | is the size of the service
repository. This implies at most |W | calls to Match in the worst-case scenario or O(w ·m ·n)
if we consider the complexity of the Match method assuming every service has at most m

outputs and n inputs.

Algorithm 2 Pseudocode to obtain input-relevant and output-relevant sets of services for a
particular set of concepts

1: function RELEVANTIO(C ⊆ O,W, type)
2: relevantServ := {}
3: for all wi = {Iwi ,Owi} ∈W do
4: if type = In then
5: if match(C, Iwi) then
6: relevantServ := relevantServ∪wi

7: else if type = Out then
8: if match(Owi ,C) then
9: relevantServ := relevantServ∪wi

10: return relevantServ

4.5.3 Service Composition Graph Generation

When the system receives a request, the Service Composition Graph Generator computes a
graph with all the semantic relations between the relevant services for the request. A request
is basically a set of input concepts, which represent the initial set of available inputs, and a
set of output concepts, which are the outputs that the composite service should return. The
service composition graph is basically a layered Directed Acyclic Graph (DAG), G = (V,E),
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where:

• V = W ∪C is the set of vertices of the graph, where W is the set of services and C the
set of concepts (inputs and outputs).

• E =CW ∪WC∪CC is the set of edges in the graph where:

– CW ⊆ {(c,w) | c,w ∈ V ∧ c ∈ C∧w ∈W} is the set of input edges, i.e., edges
connecting input concepts to their services.

– WC ⊆ {(w,c) | w,c ∈ V ∧w ∈W ∧ c ∈ C} is the set of output edges, i.e., edges
connecting services with their output concepts.

– CC⊆{(c,c′) | c,c′ ∈V ∧c,c′ ∈C∧cmatch(c,c′)} is the set of edges that represent
a semantic match between concepts.

This graph contains all the known services that could directly or indirectly be invoked
given the provided inputs. The graph is divided into N layers, whereby each layer i has all
those services whose inputs are matched by the outputs produced in previous layers and, there-
fore, are invokable at layer i. The graph is augmented with two layers, namely L0 and LN+1.
L0 contains the dummy service wO = {OR, /0} whereas LN+1 contains the dummy service
wI = { /0, IR}. The first one is a service that provides as outputs the inputs of the request (IR)
and the last one has the goal outputs (OR) as inputs. An example of a graph for IR={BookTitle,

BookAuthor, CreditCard, Email, Address} and OR={Price, Payment, BookingCode} is shown
in Fig. 4.2.

The first step of the composition graph construction is the calculation of the relevant ser-
vices. These services can be easily calculated forwards, layer by layer, using the discovery
mechanism previously presented. Fig. 3 shows an implementation of the forward composi-
tion graph generation algorithm for a request R. The algorithm selects all those services from
the set of all available services W that are input-relevant for the available concepts (availCon)
in each layer using the relevantIO function (L. 8). Then, for each input-relevant service, the
algorithm performs a match between the available concepts and the unmatched inputs of each
service. All the inputs that are matched are removed from the unmatched set of inputs for
the current service. If there are no unmatched inputs, then the service is invokable and thus
is eligible for the current layer. For example, the first eligible services for the request shown
in Fig. 4.2 are the services in the layer L1, which correspond with the services whose inputs
are fully matched by IR (the set of concepts in L0). The second eligible services are those
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Figure 4.2: Composition graph example.

services (placed in L2) whose inputs are fully matched by the outputs of the previous layers,
and so on. Note that instead of performing the invokability check by finding a full match
between C and the inputs of each service, we save those inputs of each service that have been
matched before, and hence we only perform the match between the new outputs generated
in the previous level (availCon) and the remaining unmatched inputs of each service (Uset ).
Hence, the unmatched inputs Uset of each service decreases monotonically with each level
(i.e., the unmatched inputs of each service always decrease when a new match is found, and
the effect is propagated at each layer). The complexity analysis for this algorithm (neglecting
the optimisation effect due to the propagation of the matched inputs for simplification pur-
poses) is O(l ·w ·m · n+ l · w

k ·m · n) which can be simplified to O(l ·m · n( (k+1)w
k ). The first

part corresponds with the complexity of the calls to the relevantIO function which is invoked
l times (one call per layer), whereas the second part corresponds with the complexity of the
for loop to check the invokability of each input-relevant service. We can expect that only a
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small subset of the repository W is relevant for the availCon generated in the previous layer.
Thus, each call to relevantIO function returns a small set of relevant services w/k where k

(k� 1) is a reduction factor that depends on the number of relevant services for a given set of
concepts. This k factor is different for each request and service registry. For example, if we
assume k = 100 for a given problem for a service registry of 1,000 services, then it means that
each invokation of relevantIO(availCon,W, In) will return only the 1% of the services of the
repository (w/k = 10). Consider the following example of a composition over a repository
with 1,000 services (w= 1,000), assuming that there are m= 5 new output concepts generated
and n = 5 unmatched concepts at each layer, the composition graph has 10 layers (l = 10) and
in each layer the relevantIO function returns on average w/k = 10 services (that is, k = 100).
The complexity in this example is 10 · 1000 · 5 · 5 for the first part plus 10 · 1000

100 · 5 · 5 for the
second part, which is ≈ 2.5 ·105 calls to the matchmaking system to compute all the required
matches at the concept level.

Algorithm 3 Algorithm for forward graph generation.
1: function FWDGRAPH(R = {IR,OR},W )
2: C := IR; i := 0; L0 := {wI}; L := L0
3: unmatchedIn := [ ]; availCon := IR
4: W ′ :=W ;
5: repeat
6: i := i+1
7: Li := /0; Wselected = /0
8: Wrelevant := relevantIO(availCon,W ′, In)
9: availCon := /0

10: for all wi = {Iwi ,Owi} ∈Wrelevant do
11: Uset := unmatchedIn[wi]
12: Mset := Match(availCon,Uset)
13: unmatchedIn[wi] :=Uset \Mset
14: if Mset = /0∧wi /∈ L then
15: Wselected =Wselected ∪wi
16: availCon := availCon∪Owi

17: Li := Li∪Wselected
18: W ′ :=W ′ \Wselected
19: C :=C∪availCon
20: until (Match(C,OR) = OR)∨Li = /0
21: L := L∪{wO}
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Index-Based Optimisations

Although these improvements can save search time, one of the bottlenecks of the graph gen-
eration is still the size of the repository w, which is usually some orders of magnitude bigger
than the other parameters involved in the complexity. One effective way to reduce the impact
of the size of the repository is precalculating and indexing the input-relevant set of services
for each concept of the ontology. The indexing of services can be done independently of
any composition request as it only depends on the information available, such as the services
themselves and the ontologies.

The construction of an inverted index function to recover input-relevant services or output-
relevant services can be done easily using the relevantIO function. The main idea behind the
inverted index is to build a key-value hash map where the keys are the concepts of the ontology
and the values are those services that are input-relevant (or output-relevant) for that concept.
This map allows to discovery relevant services in constant time during the graph generation.

We define a new function relevantIO′ which is the cached-version of the original func-
tion. Instead of computing the relevance by using directly the matchmaking system, it first
checks if the concept is cached in the inverted index. If the concept is in the index, then it is
immediately returned (constant time). If not, the call is delegated to the relevantIO function.
Assuming there is enough memory to keep the entire index, the index allows to provide rele-
vant services at O(1) for each concept during the forward graph generation. Thus, we reduce
the complexity associated to the parameter w. Concretely, since we can obtain at constant time
the input-relevant services for each concept, the complexity of relevantIO(availCon,W, In)

now depends only on the number of concepts in availCon (one access to the index per con-
cept). Having m = |availCon| (number of new concepts at each layer) the complexity using
indexes is O(l ·m+ l · w

k ·m ·n), simplified to O(l ·m(1+ w
k ·n)). The use of indexes to discover

relevant services during the forward graph generation has a high impact on the global perfor-
mance. Using the same example as before, with w = 1000, l = 10, m = 5, n = 5 and k = 100
we have 10 · 5(1+ 1000

100 · 5) = 2.55 · 103, 2 orders of magnitude lower than the non-indexed
version.

4.5.4 Graph-Based Optimisations

Once the graph is generated, the next step is to apply different optimisations to reduce the
graph size in order to improve the optimal composition search performance. This part of the
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composition is independent of the discovery phase. All the information required to search
for the optimal composition is in the graph, namely, the relevant services and the seman-
tic relations between their inputs and outputs, so there is no need to communicate with the
discovery/matchmaking systems. We distinguish at least two different techniques [96, 99]:
backward pruning and interface dominance.

Backward pruning

As explained earlier, the generation of the composition graph with the relevant services is done
forwards, layer by layer. During this forward expansion of the graph, we are not interested
in invoking services that have no explicit effects on the composition, that is, services that are
not contributing to the output goals. When the graph is completed and the goal outputs are
reached, a backward pruning is performed to remove all non-contributing services. A non-
contributing service is essentially a service that is not contained in the transitive closure set

of the output-relevant services. A service w′ = {Inw′ ,Outw′} is output-relevant for a service
w = {Inw,Outw} if Outw′ ⊗ Inw 6= /0 (def. 7). Thus, the set of all output-relevant services for
a service w can be defined as:

X(w) = {w′ ∈W | Outw′ ⊗ Inw 6= /0} (4.1)

Recursively, we can define the set of X2(w) = X(X(w)) as the set of output-relevant ser-
vices at the distance two. Extending this, the transitive closure of the output-relevant services

can be defined as:

X̂(w) = X(w)∪X2(w)∪X3(w)∪·· · (4.2)

Therefore, we can say that all those services of the graph that are not in the transitive clo-

sure of the output-relevant services X̂ are not contributing to the composition goals, directly
nor indirectly, and can therefore be removed from the graph.

An example of this can be seen in Fig. 4.2. Starting from the last layer, we compute
the transitive closure of the service wO, which is a dummy service that represents the goal
outputs. The output relevant services for wO at distance one are X(wO) = {w6,w7,w8,w9},
since Outw6⊗ InwO 6= /0 and the same for w7, w8 and w9. We calculate now the output-relevant
services at distance two, which is X(X(wO)) = X({w6,w7,w8,w9}). X({w6,w7,w8,w9}) can
be simply computed as the union of X(w6)∪X(w7)∪X(w8)∪X(w9) which is {w1,w2,w3}.
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Repeating this, we finally have X̂ = {w6,w7,w8,w9}∪{w1,w2,w3}∪{wI}, where wI is the
dummy service ommited in Fig. 4.2 that provides the input concepts of the request (concepts
in L0). Since w4,w5,w8 /∈ X̂ , these services (w4=MoviesDB Service, w5=GeoLoc WS, w8=Zip

Search) are not contributing to the goals and can be removed from the graph.

Interface Dominance

Another strategy to reduce the graph size is to analyse the equivalence and dominance of some
services over others in terms of the interface they offer. It is very frequent to find services
from different providers that offer similar services with overlapping interfaces. In scenarios
like this, it is easy to end up with large composition graphs that make very hard to find optimal
compositions in reasonable time. One way to attack this problem is to analyse the interface

dominance between services in order to find those that are equivalent or better than others in
terms of the interface they provide.

Definition 10. Given a concept in a composition graph G (c ∈ G), we denote Φ(c) as a

function that returns the set of output-relevant services for concept c:

Φ(c) = {w = {Inw,Outw} ∈ G | Outw⊗{c}= {c}} (4.3)

For instance, Φ(Payment) in Fig. 4.2 is {w8,w9} since Outw8 ⊗{Payment}= {Payment}
and Outw9⊗{Payment}= {Payment}, that is, concept Payment is matched by an output from
w8 (PaymentID) and for an output from w9 (PayNum).

Definition 11. A service wi = {Inwi ,Outwi} ∈G is input-equivalent (Inwi ≡ Inw j ) with respect

to a service w j = {Inw j ,Outw j} ∈ G in the composition graph G if:

⋃
ci∈Inwi

{Φ(ci)}=
⋃

c j∈Inw j

{Φ(c j)} (4.4)

That is, the set of sets defined by the union of Φ(c) for each input concept c of each service
must be equal. This definition formalises the idea of input equivalence of two services of the
composition graph regarding the relation between their inputs and the services that match
those inputs. That means that two services wi and w j of the graph are input equivalent if the
services that provide the inputs of both services are the same.
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Definition 12. A service wi = {Inwi ,Outwi} ∈G is input-dominant (Inwi � Inw j ) with respect

to a service w j = {Inw j ,Outw j} ∈ G in the composition graph G if:⋃
ci∈Inwi

{Φ(ci)} ⊂
⋃

c j∈Inw j

{Φ(c j)} (4.5)

Thus, informally, a service is input-dominant if it only needs a subset of the information
required by the dominated service to be invoked. For example, in Fig. 4.2, w7 is input-
dominant respect to w6, since {{w1,w2}} ⊂ {{w1,w2},{wI},{w3}}.

Definition 13. Given a concept in a composition graph G (c ∈ G), we denote Ψ(c) as the

function that returns a set of input concepts in G that are matched by c, that is, there exists an

arc from c to c′ in G.

Ψ(c) = {c′ | (c,c′) ∈ G} (4.6)

Definition 14. A service wi = {Inwi ,Outwi} ∈G is output-equivalent (Outwi ≡Outw j ) respect

to a service w j = {Inw j ,Outw j} ∈ G in the composition graph G if:⋃
ci∈Outwi

Ψ(ci) =
⋃

c j∈Outw j

Ψ(c j) (4.7)

That is, two services are output-equivalent if their outputs are matched to the same input
concepts in the graph, which means that their outputs can be consumed in the same way by
the same services in G.

Definition 15. A service wi = {Inwi ,Outwi} ∈ G is output-dominant (Outwi � Outw j ) respect

to a service w j = {Inw j ,Outw j} ∈ G if:⋃
ci∈Outwi

Ψ(ci)⊃
⋃

c j∈Outw j

Ψ(c j) (4.8)

Therefore, one service is output-dominant with respect to another service of the graph G

if their outputs match the same inputs of the same services in the composition graph but the
dominant service also provides additional outputs to the same or different services.

Definition 16. a service wi = {Inwi ,Outwi} is interface-equivalent to a service w j = {Inw j ,Outw j}
(wi ≡ w j) if Inwi ≡ Inw j and Outwi ≡ Outw j , that is, both are input-equivalent and output-

equivalent.
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Definition 17. A service wi interface-dominates a service w j (wi � w j) if the first domi-

nates the second in at least one aspect (input-dominant or output-dominant) and is at least

equivalent in the other aspect. Formally, wi � w j if (Inwi � Inw j ∧Outwi � Outw j)∨ (Inwi ≡
Inw j ∧Outwi � Outw j)∨ (Inwi � Inw j ∧Outwi ≡ Outw j).

This dominance definition can be generalised to include more features, such as precondi-
tions, effects, or non-functional properties like QoS:

Definition 18. A service with multiple properties wi = {P1
wi
,P2

wi
, . . . ,Pn

wi
} where P1

wi
are the

inputs, P2
wi

the outputs and the rest of parameters are different properties, dominates another

service w j (wi � w j) with parameters Pw j = {P1
w j
,P2

w j
, . . . ,Pn

w j
}, if ∀ k ∈ {1, ...,n} Pk

wi
� Pk

w j
∧

∃ k ∈ {1, ...,n},Pk
wi
� Pk

w j
.

The interface dominance optimisation allows to reduce the size of the composition graph
by substituting the original services of the graph by abstract interfaces that capture the func-
tionality of the dominant or equivalent services. By minimising the graph size we improve the
performance of the search algorithms since they only explore a reduced search space. Once
the search is performed and the optimal composition workflow is generated, a post-processing
step can be used to replace the abstract service interfaces with specific implementations us-
ing the original dominant / equivalent services or by combinations of dominated services that
satisfy the same functionality of the dominant service.

4.5.5 Optimal Composition Search

The previous optimisations are intended to reduce the composition graph but keeping the
same functionality. The next step is to perform a search over the graph to find the best com-
position among all the possible compositions that satisfy the input/output request. The search
can be designed to optimise different criteria, such as the number of services, the execution
path length or QoS properties. Typically, the search over the graph can be done forwards
or backwards. In the first case, the composition starts from the inputs of the request (first
layer), selecting invokable services until the goal outputs are obtained, whereas the second
case starts with the goal outputs (last layer), selecting relevant services for the outputs until a
composition that can be invoked with the initial inputs is found.

Formally, the composition search can be modelled as a state-transition system, where the
problem is divided into a set of states and transitions between states [39]. A state transition
system is defined as a 3-tuple Σ = (S,A,γ), where:
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• S = {s1,s2, . . .} is a finite set of states.

• A = {a1,a2, . . .} is a finite set of actions.

• γ : S×A→ S is a state-transition function.

Using the concept of the state-transition system, the state space search problem can be
defined as P = {Σ,s0,G}, where s0 ∈ S is the initial state and G⊆ S is a set of goal states.

The state-transition system Σ allows the search to navigate through the set of states ap-
plying different actions, where each action may be associated to a cost that we want to min-
imise. The state representation may vary depending on the strategy used. Typically, in the
case of the backward search, the state will contain the information of the unsatisfied concepts
at each state, starting with the goal outputs. The goal then is to find a succession of ac-
tions 〈a1,a2, . . . ,an〉 with the minimum cost that leads from the initial state, where unsatisfied
concepts = goal outputs, to the goal state, where unsatisfied concepts = /0, that is, there are
no unsatisfied concepts and the composition is invokable. The available transitions between
states are given by the applicable actions to each state, i.e., the output relevant services that
can be selected to resolve all the unsatisfied concepts.

Given a composition graph G = (V,E) as defined previously, where V =W ∪C is the set
of vertices which are the services and the concepts (inputs/outputs) of the graph, the state-
transition system Σ for the (backward) composition problem is defined as follows:

• S ⊆ 2C where C is the set of all concepts in the composition graph, i.e., a state is a set
of concepts of the graph, s = {c1, . . . ,cn}.

• A ⊆ 2W where W is the set of services in the composition graph, i.e., an action is a set
of services from the graph, a = {w1, . . . ,wn}.

• γ(a,s) = (s−
⋃
(Ψ(ci) | ci ∈ Out(a))∪ In(a)), i.e., the application of an action a =

{w1, . . . ,wn} to a state s = {c1, . . . ,cn} generates a new state where all concepts that are
matched by the outputs of the services of the actions are removed, and the inputs of the
services of the actions are added as the new unsatisfied concepts. Functions In(a) and
Out(a) return the union of the input concepts and the union of the output concepts of
the services in a respectively.

The initial state s0 of the backward composition problem P = (Σ,s0,G) is defined as s0 =

InwO , i.e., the input concepts of the output dummy service. For example, in Fig. 4.2, the initial
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state is s0 = {i18, i19}. On the other hand, there is just one goal state G = {sg = /0}, i.e., the
goal state is reached when there are no unsatisfied concepts in the composition.

The efficiency of the search can also be improved using search optimisations depending
on the search strategy followed. These optimisations can be applied to the available actions
for each state by pruning actions that lead to dead-ends, actions that are equivalent, or actions
that are dominated (cannot lead to a better solution).

4.6 Reference Implementation

We developed a reference implementation of the integrated graph-based composition frame-
work that is based on two main components: iServe [81], a service warehouse with advanced
discovery support which provides the service registry and takes care of the matchmaking and
service discovery activities, and ComposIT [99], which is in charge of the graph-based com-
position part.

Fig. 4.3 depicts the architecture of the system. In a nutshell the composition process is
carried out as follows. When a composition request is sent to the system through the Web UI,
ComposIT starts computing the composition graph with all the relevant services for the re-
quest. To this end, all the relevant services are discovered layer by layer using the fine-grained
I/O logic-based discovery support provided by the Semantic Discovery Engine of iServe. This
engine relies on the Service Manager and the KB Manager to retrieve the relevant services
using semantic reasoning capabilities. During the composition graph generation, ComposIT
also makes intensive use of the KB Manager in order to carry out concept level matching and
consequently figure out how the inputs and outputs of the services obtained can be connected.
Once the composition graph is generated, ComposIT applies the backward pruning and the
interface dominance optimisations to reduce the graph size. These optimisations are appli-
cable using only the information contained in the graph, and thus there is no need to interact
with the discovery component. Finally, an optimal search is performed over the graph using a
backward A* algorithm that extracts the optimal composition from the graph.

In the next sections we shall cover in more detail the inner workings of iServe and Com-
posIT respectively.
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Figure 4.3: ComposIT / iServe architecture
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4.6.1 iServe

iServe [81], see right hand-side of Fig. 4.3, is a service warehouse whose functionality in-
cludes the core service registry anchored on Linked Data principles, semantic reasoning sup-
port, advanced discovery functionality, and further analysis components able to assist in auto-
matically locating and generating semantic service descriptions out of Web resources. For the
purposes of this work we have essentially exploited the registry and discovery functionality.

The service discovery functionality builds on top of the Storage Access Layer, which is in
charge of managing the registry’s data that includes Service descriptions, related documents
and the corresponding Ontologies. This layer essentially provides a RDF/S and OWL storage
and reasoning support, document storage, as well as basic crawling facilities to automatically
obtain referenced Ontologies. RDF/S and OWL storage and reasoning support is delegated
to dedicated engines which are accessed by means of the SPARQL 1.1 standard. Therefore,
the reasoning capabilities depend largely on the actual configuration of the store. Concretely,
the discovery infrastructure contacts the Service Manager to list services given basic criteria
such as the input and output types provided, and the KB Manager to obtain concepts, prop-
erties, and their sub or super concepts. Depending on their implementation Service and KB
Managers combine internal indexes with SPARQL queries issued to the triple store by means
of Jena.

Services are imported to iServe using a range of transformation engines able to import
service descriptions in a variety of formalisms including SAWSDL, WSMO-Lite, OWL-S,
and MicroWSMO. These plugins generate descriptions expressed in terms of a simple RDF/S
model, Minimal Service Model (MSM) [81], which essentially captures the intersection of
existing service description formalisms. By means of these transformations iServe provides
an homogeneous description for services that were orginally annotated using heterogeneous
means.

Given that, as we saw in Section 4.5, the response time of the overall composition is highly
dependent on the performance of the service discovery and concept matchmaking tasks, we
extended iServe with various implementations of the Service and Knowledge Base Managers.
We tested different configurations to study their individual performance and the overall impact
on composition response times. In particular, we used the following configurations:

1. SPARQL D/M: pure SPARQL Discovery / Matchmaking where all interactions with the
Service and Knowledge Base managers are directly implemented as SPARQL queries.
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This is the typical approach of discovery engines and was the original implementation
of iServe.

2. Index. D/SPARQL+Cache M: I/O service discovery is based on an index. We addition-
ally used herein an intermediate cache at the level of the concept matcher in order to
avoid issuing recurrent SPARQL queries.

3. Full Indexed D/M: both service discovery and concept matchmaking relied on local
indexes pre-populated at load time (and updated with writes). In this configuration,
service discovery and concept matchmaking do not need to issue any SPARQL query
to the backed.

4.6.2 ComposIT

ComposIT [99], depicted in the left hand-side of Fig. 4.3, is the semantic Web service com-
position engine we rely on. It implements all the different graph-based composition phases
of the framework described in Sec. 4.5. The semantic service discovery and matchmaking
mechanisms, which originally were directly implemented internally, are delegated to iServe
by means of integration adapters implemented for the purposes of this work. ComposIT
nonetheless uses an internal cache and an index to efficiently recover the information of the
generated composition graph. It is worth to note that the architecture supports the deployment
of multiple, distributed iServe instances to provide different endpoints that can be used by
ComposIT in the composition phase by aggregating the results of the registries at the Com-
posIT API level. Indeed, since the services to contemplate at composition time are identified
by the remote registry and we just use them directly, composing this set of services out of
just one API call or several calls in parallel (one per registry) is a trivial change. The overall
response time analysis would still remain unchanged, and would have an upper-bound deter-
mined by the slowest registry. This also applies to other third-party discovery engines as long
as they support fine-grained I/O discovery queries as described in Sec. 4.5.2. The integration
of these third-party registries could be achieved by developing interface adapters (with capa-
bilities to retrieve input and output relevant services) which could be plugged in to the system,
keeping the generation of the composition graph isolated from the concrete registries used.

The generated composition graph can contain different compositions with the same or
different length (number of layers) and with different number of services depending on the
services that have been selected to generate the needed data. Among the different combina-
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tions that can be obtained, the goal of ComposIT is to find the shortest service composition
with the minimum number of services. For this purpose, ComposIT searches for the optimal
composition by carrying out a heuristic search based on the A* algorithm [40]. This search
was implemented using Hipster4j [95] to identify a minimal subset of the services from the
graph that satisfy the request (in terms of inputs and outputs). Note that multiple composi-
tions can be extracted from the composition graph since there may be different services that
generate outputs of the same concept.

4.7 Evaluation

In this section we present a quantitative evaluation of our approach. The purposes of the eval-
uation are: 1) measure the scalability of the approach with many services; 2) study the impact
of the discovery on the overall composition performance and 3) compare the performance
with different optimisations.

In order to perform a standard and comparable evaluation, we selected the Web Service
Challenge 2008 (WSC’08) service datasets. These datasets allow us to measure the scalability
with an increasingly large set of services (from 158 to 8,119 services). Services were imported
to iServe using an specific transformer plugin which translates each service description in the
WSC’08 XML format into MSM, and the XML concept taxonomy into an equivalent OWL
representation. iServe is responsible of identifying, loading and reasoning with the ontologies
used in the service descriptions. Data types of the input and outputs of service descriptions
are linked to their corresponding semantic concepts through the modelRe f erence property of
the MSM, which points to the concepts defined in the transformed OWL model.

Experiments were run under Ubuntu 10.04 64-bit on a PC with an Intel Core 2 Duo E6550
at 2.33GHz and 4 GB of RAM. OWLIM-Lite 5.3 with OWL Horst reasoning was chosen in
iServe as the RDF triple store for the semantic registries and deployed within Tomcat 7.

Table 4.1 shows the characteristics of each WSC’08 dataset. The number of services and
concepts in the ontology of each dataset are shown in columns #Serv. and #Con. respectively.
The quality of the solutions is based on the number of services and the length (i.e., number of
layers) of the composition. The optimal quality of solution for each dataset (according to the
WSC’08 competition) are shown in columns #Serv.Sol. and Length.

Experimentation was done using the configurations explained in Sec. 4.6 with one in-
stance of iServe in order to measure the effect of the Discovery/Matchmaking over the whole
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Table 4.1: Characteristics of the WSC’08 datasets.

Dataset #Serv. #Con. #Serv.Sol. Length

WSC’08 01 158 1,540 10 3
WSC’08 02 558 1,565 5 3
WSC’08 03 604 3,089 40 23
WSC’08 04 1,041 3,135 10 5
WSC’08 05 1,090 3,067 20 8
WSC’08 06 2,198 12,468 40 9
WSC’08 07 4,113 3,075 20 12
WSC’08 08 8,119 12,337 30 20

composition process. Results with each configuration are shown in Table 4.2. The second col-
umn shows the size (number of services) of the resulting composition graph for each dataset.
The next columns show the time taken to generate the composition graph (G. time) in seconds
and the number of SPARQL queries generated during that process. The last three columns
show the size of the graph after the graph-based optimisations, the time of the composition
search (graph optimisations + optimal A* backward search) and the number of services and
length of the optimal composition found. Note that the backward optimal search does not
depend on the configuration selected since it only uses the information in the composition
graph.

Figure 4.4: Graph generation time vs Search time for the Full Indexed Discovery/Matchmaking configuration.

The analysis of these results reveals that the discovery and matchmaking phases take most
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Table 4.2: Evaluation results with different Discovery/Matchmaking (D/M) configurations with the WSC’08
datasets

Discovery/Matchmaking (D/M) Composition

1) SPARQL D/M 2) Index. D/SPARQL+Cache M 3) Full Indexed D/M

Dataset G. size G. time (s) #SPARQL G. time (s) #SPARQL G. time (s) #SPARQL G. size (opt) Comp. time (s) Sol. (serv./length)

WSC’08-01 35 28.52 3256 5.67 624 0,18 0 13 (-37%) 0.08 10/5
WSC’08-02 35 63.30 7349 11.76 1830 0,38 0 13 (-37%) 0.07 5/3
WSC’08-03 105 262.80 36619 20.05 3184 0.69 0 40 (-38%) 0.21 40/23
WSC’08-04 44 136.20 13828 21.12 3481 0.60 0 25 (-57%) 0.12 10/5
WSC’08-05 97 333.60 41148 26.05 4417 0.74 0 52 (-54%) 0.18 20/8
WSC’08-06 189 1051.20 93682 48.21 8511 1.12 0 75 (-40%) 1.05 42/7
WSC’08-07 124 1183.20 120881 35.76 6376 1.33 0 70 (-56%) 0.23 20/12
WSC’08-08 121 1656.00 89518 78.00 15844 1.48 0 58 (-48%) 0.34 30/20

of the time of the composition, even using the optimal configuration (Full Indexed D/M)
to avoid the latency of the SPARQL queries. This is graphically represented in Fig. 4.4.
This figure shows the overall composition time for each dataset including the relative time
of the Full Indexed D/M (blue bar) and the Composition Search (red bar). The Full Indexed

D/M takes 77% of the total composition time on average. This percentage is even higher
(about 99%) if the discovery and matchmaking are not optimised using indexes and cache.
In other words, as anticipated by the complexity analysis presented earlier, discovery and
matchmaking are responsible for the majority of the computation that needs to be performed
to compose services. Optimising both phases is thus fundamental.

The comparison of the scalability of the three configurations with respect to the num-
ber of services is shown in Fig. 4.5. As can be seen, directly querying the backend (see
SPARQL D/M), which is the approach followed by most discovery engines, rapidly becomes
prohibitively slow taking 1,656 seconds (i.e., 27.6 min) in the largest dataset. Indeed, the
generation of the composition graph requires computing every semantic match between all
inputs and outputs as well as discovering relevant services at each layer. Doing so leads to
issuing thousands of SPARQL queries. This can be dramatically improved using a discovery
index and a local cache for the matchmaking system as can be seen in the second configura-
tion. In this case, almost every composition is calculated in less than a minute. The generated
SPARQL queries in this case are reduced by up to 91% (for the WSC’08-3 dataset) leading
to a significant performance improvement. Although such an improvement can be enough
to solve the smaller datasets in a few seconds, the latency of the SPARQL queries still re-
mains a bottleneck for bigger datasets like the WSC’08-08 dataset that still require evaluating
15,844 SPARQL queries for generating the composition graph in 78 seconds. Our tests show,
however, that the full indexed configuration allows solving the largest problems very fast by
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Figure 4.5: Composition time for different configurations.

avoiding the evaluation of SPARQL queries at composition time. This configuration entails the
derived need for service registries to additionally calculate and maintain the indexes. Doing
so, nonetheless, enables performing very efficient composition over remote 3rd party con-
trolled service registries akin to what can be obtained by the fastest composition engines in
the unrealistic scenarios where all services are available and pre-loaded in memory. Addition-
ally, indeed, using those indexes allows service registries to provide highly efficient discovery
for a controlled set of queries, while retaining the ability to offer fully flexible yet less efficient
discovery support.

We have also evaluated our framework with the WSC’09-10 datasets. Results show a
similar scalability behaviour with the number of services for each configuration. More-
over, our approach is able to solve all the datasets with optimal results, which are shown
at https://wiki.citius.usc.es/composit:wsc09.
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4.8 Conclusions

In this paper we have presented a theoretical analysis of service composition in terms of its
dependency with service discovery. Driven by this analysis we have defined a formal inte-
grated graph-based composition framework anchored on the integration of service discovery
and matchmaking within the composition process. We have devised a reference implementa-
tion of this framework on the basis of two pre-existing separate components, namely iServe
and ComposIT. This reference implementation has been used to empirically study the impact
of discovery and matchmaking on service composition, and we have provided three different
configurations with varying performance. Our empirical analysis shows that, indeed, typical
approaches followed by discovery engines cannot serve as a suitable basis to support effi-
cient service composition as they lead to prohibitive execution times. We have also shown,
though, that with the adequate interface granularity and indexing, discovery engines can sup-
port highly efficient composition akin to that obtained by the fastest composition engines
without having to assume to local availability and in-memory preloading of service registries.

This work proves the scalability and flexibility of our proposal and provides insights on
how integrated composition systems can be designed in order to achieve good performance
in real scenarios, where service registries and composition frameworks are likely to be dis-
tributed and controlled by diverse organisations.



CHAPTER 5

HYBRID OPTIMIZATION ALGORITHM FOR

LARGE-SCALE QOS-AWARE SERVICE

COMPOSITION

In chapter 4 we presented an integrated framework for discovery and composition of semantic
Web services. This framework provides the foundations for performing efficient automatic
I/O discovery and composition minimizing the total number of services. Here we present an
extension of this framework to support the optimization of both the size of the compositions
and the end-to-end QoS. To this end, we present an extension to the Service Model to include
support for QoS attributes and we define a formal QoS algebra for computing the end-to-end
QoS in composition graphs for any total-ordered QoS attribute. The inclusion of QoS features
requires also extensions in the computation of the Service Match Graph and new algorithms
to optimize both the number of services and the end-to-end QoS of the solutions. Concretely,
the previous version of the algorithm used to compute the Service Match Graph stops when
all the outputs of the request are matched by the ouputs of the selected services. Although
this condition is enough to find the smallest composition (in terms of number of services and
length of the composition), it is not enough to guarantee the optimal QoS since this graph does
not contain the whole set of relevant services. Thus, we extend this algorithm to compute the
whole set of service candidates. We also extend the optimizations presented in the previous
chapter to take into account QoS and we introduce a new step in the optimization pipeline to
prune suboptimal QoS services (i.e., services that cannot be part of the optimal solution). In
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order to extract the optimal composition from this new extended graph, minimizing both the
end-to-end QoS and the number of services, we develop a novel hybrid local-global search
algorithm that combines i) a fast local search to obtain a near-optimal number of services
while satisfying the optimal end-to-end QoS with ii) a global seach that can improve the
solution obtained with the local search strategy by performing an exhaustive combinatorial
search to select the composition with the minimum number of services for the optimal QoS.
A comprehensive validation with the datasets of the Web Service Challenge 2009 and with
random generated datasets is also provided.

All these contributions are encompassed in the following publication:

Pablo Rodrı́guez-Mier1, Manuel Mucientes1, and Manuel Lama1. Hybrid Optimization
Algorithm for Large-Scale QoS-Aware Service Composition. IEEE Transactions on Ser-

vices Computing, 2015. IEEE. ISSN: 1939-1374. DOI: 10.1109/TSC.2015.2480396.
URL: http://dx.doi.org/10.1109/TSC.2015.2480396.

5.1 Abstract

In this paper we present a hybrid approach for automatic composition of Web services that
generates semantic input-output based compositions with optimal end-to-end QoS, minimiz-
ing the number of services of the resulting composition. The proposed approach has four
main steps: 1) generation of the composition graph for a request; 2) computation of the opti-
mal composition that minimizes a single objective QoS function; 3) multi-step optimizations
to reduce the search space by identifying equivalent and dominated services; and 4) hybrid
local-global search to extract the optimal QoS with the minimum number of services. An
extensive validation with the datasets of the Web Service Challenge 2009-2010 and randomly
generated datasets shows that: 1) the combination of local and global optimization is a gen-
eral and powerful technique to extract optimal compositions in diverse scenarios; and 2) the
hybrid strategy performs better than the state-of-the-art, obtaining solutions with less services
and optimal QoS.

1Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela.

http://dx.doi.org/10.1109/TSC.2015.2480396
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5.2 Introduction

Web services are self-describing software applications that can be published, discovered and
invoked accross the Web using standard technologies [7]. The functionality of a Web service
is mainly determined by the functional properties that describe their behaviour in terms of
its inputs, outputs, and also possibly additional descriptions that the services may have, such
as preconditions and effects. These four characteristics, commonly abbreviated IOPEs, allow
the composition and aggregation of Web services into composite Web services that achieve
more complex functionalities and, therefore, solve complex user needs that cannot be satisfied
with atomic Web services. However, compositions should go beyond achieving a concrete
functionality and take into account other requirements such as Quality-of-Service (QoS) to
generate also compositions that fit the needs of different contexts. The QoS determines the
value of different quality properties of services such as response time (total time a service
takes to respond to a request) or throughput (number of invocations supported in a given
time interval), among others characteristics. These properties apply both to single services
and to composite services, where each individual service in the composition contributes to
the global QoS. For composite services this implies that having many different services with
similar or identical functionality, but different QoS, may lead to a large amount of possible
compositions that satisfy the same functionality with different QoS but also with a different
number of services.

However, the problem of generating automatic compositions that satisfy a given request
with an optimal QoS is a very complex task, specially in large-scale environments, where
many service providers offer services with similar functionality but with different QoS. This
has motivated researchers to explore efficient strategies to generate QoS-aware Web service
compositions from different perspectives [92,114]. But despite the large number of strategies
proposed so far, the problem of finding automatic compositions that minimize the number of
services while guaranteeing the optimal end-to-end QoS is rarely considered. Instead, most
of the work has focused on optimizing the global QoS of a composition or improving the
execution time of the composition engines. An analysis of the literature shows that only a
few works take into consideration the number of services of the resulting optimal QoS com-
positions. Some notable examples are [4, 28, 46, 130]. Although most of these composition
engines are quite efficient in terms of computation time, none of them are able to effectively
minimize the total number of services of the solution while keeping the optimal QoS.

The ability to provide not only optimal QoS but also an optimal number of services is
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specially important in large-scale scenarios, where the large number of services and the pos-
sible interactions among them may lead to a vast amount of possible solutions with different
number of services but also with the same optimal QoS for a given problem. Moreover, there
can be situations where certain QoS values are missing or cannot be measured. Although the
prediction of QoS can partially alleviate this problem [135], it is not always possible to have
historical data in order to build statistical models to accurately predict missing QoS. In this
context, optimizing not only the available QoS but also the number of services of the composi-
tion may indirectly improve other missing properties. This has important benefits for brokers,
customers and service providers. From the broker point of view, the generation of smaller
compositions is interesting to achieve manageable compositions that are easier to execute,
monitor, debug, deploy and scale. On the other hand, customers can also benefit from smaller
compositions, specially when there are multiple solutions with the same optimal end-to-end
QoS but different number of services. This is even more important when service providers do
not offer fine-grained QoS metrics, since decreasing the number of services involved in the
composition may indirectly improve other quality parameters such as communication over-
head, risk of failure, connection latency, etc. This is also interesting from the perspective of
service providers. For example, if the customer wants the cheapest composition, the solution
with fewer services from the same provider may also require less resources for the same task.

However, one of the main difficulties when looking for optimal solutions is that it usually
requires to explore the complete search space among all possible combinations of services,
which is a hard combinatorial problem. In fact, finding the optimal composition with the
minimum number of services is NP-Hard (see Appendix A). Thus, achieving a reasonable
trade-off between solution quality and execution time in large-scale environments is far from
trivial, and hardly achievable without adequate optimizations.

In this paper we focus on the automatic generation of semantic input-output compositions,
minimizing both a single QoS criterion and the total number of services subject to the optimal
QoS. The main contributions are:

• A multi-step optimization pipeline based on the analysis of non-relevant, equivalent and
dominated services in terms of interface functionality and QoS.

• A fast local search strategy that guarantees to obtain a near-optimal number of services
while satisfying the optimal end-to-end QoS for an input-output based composition
request.
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• An optimal combinatorial search that can improve the solution obtained with the local
search strategy by performing an exhaustive combinatorial search to select the compo-
sition with the minimum number of services for the optimal QoS.

We tested our proposal using the Web Service Challenge 2009-2010 datasets and, also, a
different randomly generated dataset with a variable number of services. The rest of the paper
is organized as follows: Sec. 5.5 introduces the composition problem, Sec. 5.6 describes
the proposed approach, Sec. 5.7 presents the results obtained, and Sec. 5.8 gives some final
remarks.

5.3 Related Work

Automatic composition of services is a fundamental and complex problem in the field of
Service Oriented Computing, which has been approached from many different perspectives
depending on what kinds of assumptions are made [36, 45, 92, 114]. AI Planning techniques
have been traditionally used in service composition to generate valid composition plans by
mapping services to actions in the planning domain [5,24,51,87,108,110]. These techniques
work under the assumption that services are complex operators that are well defined in terms
of IOPEs, so the problem can be translated to a planning problem and solved using classical
planning algorithms. Most of these approaches have been mainly focused on exploiting se-
mantic techniques [5,43,110] and developing heuristics [5,51,70] to improve the performance
of the planners. As a result, and partly given by the complexity of generating satisfiable plans
in the planning domain, these approaches do not generate neither optimal plans (minimizing
the number of actions) nor optimal QoS-aware compositions.

Other approaches have studied the QoS-aware composition problem from the perspec-
tive of Operation Research, providing interesting strategies for optimal selection of services
and optimizing the global QoS of the composition subject to multiple QoS constraints. A
common strategy is to reduce the composition problem to a combinatorial Knapsack-based
problem, which is generally solved using constraint satisfaction algorithms (such as Integer
Programming) [8, 16, 131, 133, 136] or Evolutionary Algorithms [21, 119]. Some relevant ap-
proaches are [8, 133]. In [133] the authors present AgFlow, a QoS middleware for service
composition. They analyze two different methods for QoS optimization, a local selection
and a global selection strategy. The second strategy is able to optimize the global end-to-end
QoS of the composition using a Integer Linear Programming method, which performs better
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than the suboptimal local selection strategy. Similarly, in [8] the authors propose a hybrid
QoS selection approach that combines a global optimization strategy with local selection for
large-scale QoS composition. The assumption made by all these approaches is that there is
only one composition workflow with a fixed set of abstract tasks, where each abstract task
can be implemented by a concrete service. Both the composition workflow and the service
candidates for each abstract task are assumed to be prefined beforehand, so these techniques
are not able to produce compositions with variable size.

A different category of techniques are graph-based approaches that 1) generate the entire
composition by selecting and combining relevant services and 2) optimize the global QoS
of the composition. These techniques usually combine variants or new ideas inspired by
different fields, such as AI Planning, Operations Research or Heuristic Search, in order to
resolve more efficiently the automatic QoS composition, usually for a single QoS criterion.
Some relevant approaches in this category are the top-3 winners of the Web Service Challenge
(WSC) 2009-2010 [4,46,130]. Concretely, the winners of the WSC challenge [46], presented
an approach that automatically discovers and composes services, optimizing the global QoS.
This approach also includes an optimization phase to reduce the number of services of the
solution. Although the proposed algorithm has in general good performance, as demonstrated
in the WSC, it cannot guarantee to obtain optimal solutions in terms of number of services.
The other participants of the WSC have also the same limitation.

A recent and interesting approach in this category has been recently presented by Jiang et
al. [47]. In this paper, the authors analyze the problem of generating top K query composi-
tions by relaxing the optimality of the QoS in order to introduce service variability. However,
the compositions are generated at the expense of worsening the optimal QoS, instead of look-
ing first for all possible composition alternatives with the minimum number of services that
guarantee the optimal QoS.

Another interesting graph-based approach has been presented in [28]. In this paper, the
authors propose a service removal strategy that detects services that are redundant in terms of
functionality and QoS. Results show that service removal techniques can be very effective to
reduce the number of services before extracting the final composition, as anticipated by other
similar approaches [14, 96, 120]. However, some important limitations of this work are: 1)
The QoS is not always optimal, since the graph generated for the composition is not complete
as it does not contain all the relations between services (it is acyclic) and 2) although the
redundancy removal is an effective technique that can be used also to prune the search space,
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this strategy itself cannot provide optimal results in terms of number of services, and it should
be combined with exhaustive search to improve the solutions obtained.

In summary, despite the large number of approaches for automatic QoS-aware service
composition there is a lack of efficient techniques that are not only able to optimize the global
end-to-end QoS, but also effectively minimize the number of services of the composition.
This paper aims to provide an efficient graph-based approach that uses a hybrid local-global
optimization algorithm in order to find optimal compositions both in terms of single QoS
criteria and in terms of minimum number of services.

5.4 Motivation

The aim of the automatic service composition problem, as considered in this paper, is to
automatically select the best combination of available QoS-aware services in a way that can
fulfil a user request that otherwise could not be solved by just invoking a single, existing
service. This request is specified in terms of the information that the user provides (inputs),
and the information it expects to obtain (outputs). The resulting composition should meet this
request with an optimal, single criterion end-to-end QoS and using as less services as possible.

A motivating example of the problem is shown in Fig. 5.1. The figure represents a
graph with all the relevant services for a request R where the inputs are {ont3:IPAddress,
ont2:MerchantCode} and the output is {xsd:boolean}. The goal of this example is to obtain
a composition to predict whether a business transaction is fraudulent or not. Each service
(associated to a response time QoS) is represented by squares. Inputs and outputs are repre-
sented by circles. The graph also contains edges connecting outputs and inputs. These edges
represent valid semantic matches whenever an output of a service can be passed as an input
of a different service. As can be seen, there are some inputs (ont1:Location,ont3:Payment)
that can be matched by more than one output, so there are many different ways to combine
services to achieve the same goal.

Although finding the proper combination of services in terms of their inputs/outputs is
essential to generate a solution, it is not enough to obtain good compositions, since there can
exist different combinations of services with different QoS. Moreover, many different com-
binations of services may produce compositions with a different number of services but the
same end-to-end QoS. For example, in Fig. 5.1 we can select WS E-Payment service or the
Secure Payment service to process the electronic payment. However, the second service has a
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Figure 5.1: Example of a Service Match Graph for a request with inputs ont3:IPAddress and ont2:MerchantCode
and an output xsd:boolean to predict whether a business transaction is fraudulent or not. The optimal
solution (Service Composition Graph), with an overall response time of 410 ms and 4 services
(excluding So and Si) is highlighted.
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higher response time. Using this leads to a sub-optimal end-to-end QoS of 420 ms. However,
there are other situations where the selection of different services leads to compositions with
different size but same end-to-end QoS. For example, both Free Geoloc Service or the Pre-

mium Geoloc Service can be selected to translate an IP to a Location. Although the second
one has a better average response time (40 ms), it requires an additional service to obtain
the ClientID for verification purposes. However, selecting the Premium Geoloc Service or
the Free Geoloc Service does not have an impact on the global QoS, since the ML Predictor

Service has to wait longer to obtain the Transaction parameter (200 ms), but it has an impact
on the total number of services of the solution.

The goal of this paper is to automatically generate, given a composition request, a graph
like the one represented in Fig. 5.1 as well as to extract the optimal end-to-end QoS compo-
sition with the minimum number of services from that graph.

5.5 Problem Formulation

We herein formalize the main concepts and assumptions regarding the composition model
used in our approach, which consists of a semantic, graph-centric representation of the service
composition. These concepts are captured in three main models: 1) a service model, which is
used to represent services and define how services can be connected or matched to generate
composite services; 2) a graph-based composition model, which is used to represent both
service interactions and compositions; and 3) a QoS computation model, which provides the
operators required to compute the global QoS in a graph-based composition.

5.5.1 Semantic Service Model

The automatic composition of services requires a mechanism to select appropiated services
based on their functional descriptions, as well as to automatic match the services together
by linking their inputs and outputs to generate executable data-flow compositions. To this
end, we introduce here the main concepts that we use in this paper to support the automatic
generation of compositions. This model is an extension of a previous model used in [100] to
include QoS properties.

Definition 19. A Composition Request R is defined as a tuple R = {IR,OR}, where IR is the

set of provided inputs, and OR the set of expected outputs. Each input and output is related to

a semantic concept from the set C of the concepts defined in an ontology Ont (Inw,Outw ⊆C).
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We say that a composition satisfies the request R if it can be invoked with the inputs in IR and

returns the outputs in OR.

Definition 20. A Semantic Web Service (hereafter “service”) can be defined as a tuple w =

{Inw,Outw,Qw} ∈W where Inw is a set of inputs required to invoke w, Outw is the set of out-

puts returned by w after its execution, Qw = {q1
w, . . . ,q

n
w} is the set of QoS values associated

to the service, and W is the set of all services available in the service registry.

Each input and output is related to a semantic concept from the set C of the concepts de-

fined in an ontology Ont (Inw,Outw ⊆ C). Each QoS value qi
w ∈ Qw has a concrete type

associated to a set of valid values Q. For example, the QoS values of a service w with

two different measures, an average response time of 20 ms and an average throughput of

1000 invocations/second, is represented as Qw = {20ms,1000 inv/s}, where 20ms ∈QRT and

1000 inv/s ∈ QT H .

Semantic inputs and outputs are used to compose the functionality of multiple services by
matching their inputs and outputs together. In order to measure the quality of the match, we
need a matchmaking mechanism that exploits the semantic I/O information of the services.
The different matchmaking degrees that are contemplated are exact, plugin, subsumes and
fail [76].

Definition 21. Given a,b ∈ C, degree(a,b) returns the degree of match between both con-

cepts (exact, plugin, subsume or fail), which is determined by the logical relationship of both

concepts within the Ontology.

Definition 22. Given a,b ∈C, match(a,b) holds if degree(a,b) 6= f ail.

In order to determine which concepts are matched by other concepts, we define a match-
making operator “⊗” that given two sets of concepts C1,C2 ⊆C, it returns the concepts from
C2 matched by C1.

Definition 23. Given C1,C2 ⊆ C, we define “⊗ : C×C → C” such that C1 ⊗C2 = {c2 ∈
C2|match(c1,c2),c1 ∈C1}.

We can use the previous operator to define the concepts of full and partial matching be-
tween concepts.

Definition 24. Given C1,C2 ⊆C, a full matching between C1 and C2 exists if C1⊗C2 = C2,

whereas a partial matching exists if C1⊗C2 ⊂C2.
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Definition 25. Given a set of concepts C′ ⊆ C, a service w = {Inw,Outw} is invokable if

C′⊗ Inw = Inw, i.e., there is a full match between the provided set of concepts C′ and Inw, so

the information required by w is fully satisfied.

This internal model used by the algorithm, which captures the core components required
to perform semantic matchmaking and composition of services, is agnostic to how semantic
services are represented. Thus, the algorithm is not bound to any concrete service description.
Concretely, different service descriptions can be handled by the algorithm through the use
of iServe importers for OWL-S, WSMO-lite, SAWSDL or MicroWSMO. For further details
see [81].

5.5.2 Graph-Based Composition Model

In a nutshell, a data-flow composition of services can be seen as a set of services connected
together through their inputs and output, using the semantic model defined before, in a way
that every service in the composition is invocable and the invocation of each service in the
composition can transform a set of inputs into a set of outputs. These concepts can be nat-
urally captured by graphs, where the vertices represent inputs, outputs and services, and the
edges represent semantic matches between inputs and outputs. Here we define the notion of
Service Match Graph and Service Composition Graph. The Service Match Graph is a graph
that captures all the existent dependencies (matches) between all the relevant services for a
composition request. The Service Composition Graph is a particular case of the Service Match

Graph that represents a composition contained in the Service Match Graph.
The Service Match Graph represents the space of all possible valid solutions for a compo-

sition request R, and it is defined as a directed graph GS = (V,E), where:

• V = WR ∪ I ∪O∪{So,Si} is the set of vertices of the graph, where WR ⊆W is the set
of relevant services, I is the set of inputs and O is the set of outputs. Si and So are two
special services, called Source and Sink defined as So = { /0, IR}, Si = {OR, /0}.

• E = IW ∪WO∪OI is the set of edges in the graph where:

– IW ⊆ {(iw,w) | iw ∈ I ∧w ∈W} is the set of input edges, i.e., edges connecting
input concepts to their services.

– WO⊆{(w,ow) |w∈W ∧ow ∈O} is the set of output edges, i.e., edges connecting
services with their output concepts.



126 Chapter 5. Hybrid Algorithm for QoS-Aware Service Composition

– OI⊆{(ow, iw′) | ow, iw′ ∈ (I∪O)∧match(ow, iw′)} is the set of edges that represent
a semantic match between an output of w and an input of w′.

There are also some restrictions in the edge set to ensure that each input/output belongs to
a single service:

• ∀i∈ I d+
GS
(i) = 1∧chGS(i) = {w},w∈W (each input has only one outgoing edge which

connects the input with its service)

• ∀o ∈O,d−GS
(o) = 1∧ parGS(o) = {w},w ∈W (each output has only one incoming edge

which connects the output with its service)

Function d+
GS
(v) returns the outdegree of a vertex v ∈ GS (number of children vertices con-

nected to v), whereas d−GS
(v) returns the indegree of a vertex v (number of parent vertices

connected to v). The functions chG(v) and parG(v) are the functions that returns the children
vertices of v and the parent vertices of v ∈ GS, respectively.

Fig. 5.1 shows an example of a Service Match Graph where each service is associated with
its average response time. As can be seen, this graph contains many different compositions
since there are inputs in the graph that can be matched by the outputs of different services.
For example, the parent nodes of the input ont1:Location of the service ML Service Predic-

tor (parG(ont1:Location)) in Fig. 5.1 are ont1:GeoLocation and ont1:Place, so the input is
matched by two outputs d−GS

(ont1:Location) = 2.

A Service Composition Graph, denoted as GC = (V,E), represents a solution for the com-
position request where each input is exactly matched by one output. Formally, it is a subgraph
of Service Match Graph (GC ⊆ GS) that satisfies the following conditions:

• ∀i ∈ I,d−GC
(i) = 1 (each input is strictly matched by one output)

• GC is a Directed Acyclic Graph (DAG)

These conditions are important in order to guarantee that a solution is valid, i.e, each input is
matched by an output of a service and each service is invocable (all inputs on the composition
are matched with no cyclic dependencies). This definition of service composition is language-
agnostic, so the resulting DAG is a representation of a solution for the composition problem
which can be translated to a concrete language, such as OWL-S or BPEL.
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5.5.3 QoS Computation Model

Before looking for optimal QoS service compositions, we need first to define a model to work
with QoS over compositions of services which allow us to determine the best QoS that can
be achieved for a given composition request on a service repository. When many services
are chained together in a composition, the QoS of each individual service contributes to the
global QoS of the composition. For example, suppose we want to measure the total response
time of a simple composition with two services chained in sequence. The total response time
is calculated as the sum of the response time of each service in the composition. However, if
the composition has two services in parallel, the total time of the composition is given by the
slowest services. Thus, the calculation of the QoS of a composition depends on the type of
the QoS and on the structure of the composition.

In order to define the common rules to operate with QoS values in composite services,
many approaches use a QoS computation model based on workflow patterns [22], which
is adequate to measure the QoS of control-flow based compositions. However, this paper
focuses on the automatic generation of optimal QoS-aware compositions driven by the data-
flow analysis of the service dependencies (input-output matches) that are represented as a
Service Match Graph.

In this section we explain the general graph-centric QoS computation model that we use,
based on the path algebra defined in [25]. This model is better suited to compute QoS values
in a Service Match Graph, which, for extension, is also applicable to the particular case of the
Service Composition Graph.

Definition 26. (Q,⊕,	,�) is a QoS algebraic structure to operate with a set of QoS values,

denoted as Q. This set is equipped with the following elements:

• ⊕ : Q×Q→ Q is a closed binary operation for aggregating QoS values

• 	 : Q×Q→ Q is a binary operation for subtracting QoS values

• � is a total order relation on Q

This algebraic structure has the following properties:

1. Q is closed under ⊕ (any aggregation of two QoS values always returns a QoS value)

2. The set Q contains an identity element e such that ∀a ∈ Q,a⊕ e = e⊕a = a
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3. The set Q contains a zero element φ such that ∀a ∈ Q,φ ⊕a = a⊕φ = φ

4. The operator ⊕ is associative

5. The operator ⊕ is monotone for � (preserves order). This implies that ∀a,b,c ∈Q,a�
b⇔ a⊕ c� b⊕ c

6. The operator 	 is the inverse of ⊕: a	b = c⇔ a = c⊕b

Table 5.1 shows an example of the concrete elements in this algebra. Note that, for the
sake of brevity, only the response time and throughput operators are represented in Table 5.1.
However, other QoS properties such as cost, availability, reputation, etc, can also be defined by
instantiating the corresponding operators. We denote QRT the set of QoS values for response
time (in milliseconds), QT H the set of QoS values for throughput (invocations/second). The
total order comparator � is required to be able to order and compare different QoS values.
Given two QoS values a,b ∈ Q, a � b means that a is equal or better than b, whereas b � a

means that a is equal or worse than b. The order depends on the concrete comparator defined
on Q. For example, QRT uses the comparator ≤ to order the response time, so a,b ∈ QRT ,
a � b⇔ a ≤ b. For example, given two response times 10ms,20ms ∈ QRT , 10ms ≺ 20ms

(10ms is better than 20ms) since 10ms < 20ms. However, QT H uses the comparator ≥, so
a,b ∈ QT H , a � b⇔ a ≥ b. For example, given two throughput values 10 inv/s,20 inv/s ∈
QT H , 20 inv/s≺ 10 inv/s (20 inv/s is better than 10 inv/s) since 20 inv/s > 10 inv/s. This order
relation also affects the behavior of the min and max functions. The min function always
selects the best QoS value, whereas the max function always selects the worst QoS value.

Table 5.1: QoS algebra elements for response time and throughput

QoS (Q) a⊕b a	b e φ Order (�)
QRT = R≥0∪{∞} a + b a - b 0 ∞ ≤
QT H = R≥0∪{∞} min(a, b) min(a,b) ∞ 0 ≥

Definition 27. FQ(w) : W → Q is a function that given a service w ∈W, it returns its corre-

sponding QoS value from Qw with type Q. This function can be seen as a function to measure

the QoS of a service.

For example, in Fig. 5.1, FQRT (Trans. Service) = 130ms.
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Definition 28. VQ(w) : W → Q is a function that given a service w, it returns its aggregated

QoS value. This is defined as:

VQ(w) =

 max
∀i∈Inw

(V in
Q (i))⊕FQ(w) if Inw 6= /0

FQ(w) if Inw = /0
(5.1)

Informally, this function calculates the aggregated QoS of a service by taking the worst
value of the QoS of its inputs plus the current QoS value of the service itself. Taking for ex-
ample the service Premium Geoloc Service from Fig. 5.1, VQRT (Premium Geoloc Service) is
computed as max(V in

QRT
(ont3:IP Address),V in

QRT
(ont4:ClientID))⊕40ms, which is max(0ms,20ms)⊕

40ms = 60ms (see Def. 30).

Definition 29. V out
Q (ow) : O→ Q is a function that given an output of a service w, ow ∈ O, it

returns its aggregated QoS value. The aggregated QoS of an output is equal to the aggregated

QoS of a service. Thus, it is defined as:

V out
Q (ow) =VQ(w) (5.2)

For example, the aggregated QoS of the output ont1:Place (V out
QRT

(ont1:Place)) is equal to
the aggregated QoS of its service Premium Geoloc Service (VQRT (Premium Geoloc Service)),
which is equal to 60ms.

Definition 30. V in
Q (iw) : I→Q is a function that given an input of a service w, iw ∈ I, it returns

its optimal aggregated QoS value. This function is defined as:

V in
Q (iw) =


φ if d−GS

(iw) = 0

V out
Q (ow′),ow′ ∈ parG(iw) if d−GS

(iw) = 1

min
∀ow′∈parG(iw)

(V out
Q (ow′)) if d−GS

(iw)> 1

(5.3)

Given an input iw ∈ Inw of a service w, this function returns the accumulated QoS for that
input. If the evaluated input is not matched by any output (d−GS

(iw) = 0), then the accumulated
QoS of the input is undefined. If the evaluated input is matched by just one output (d−GS

(iw) =

1), then its accumulated QoS value is equal to the accumulated QoS of that output. If the
evaluated input can be matched by more than one output (d−GS

(iw) > 1), i.e., there are many
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services that can match that input, then its accumulated QoS value is computed by selecting
the optimal (best) QoS.

For example, the optimal aggregated QoS of the input ont3:Payment from Transaction

Service (V in
QRT

(ont3:Payment)) is calculated as min(V out
QRT

(ont3:PaymentID),V out
QRT

(ont5:PayInfo))

= 70ms.

Definition 31. We define V G
Q (g) : G→ Q as a function that given a Service Match Graph

g = (V,E), it returns its optimal aggregated QoS value. This is defined as:

V G
Q (g) =VQ(Si),Si ∈V (5.4)

Basically, the optimal QoS of a Service Match Graph GS corresponds with the optimal
aggregated QoS of its service Si ∈ GS.

5.5.4 Composition Problem

Given a composition request R = {IR,OR}, a set of semantic services W , a semantic model
and a QoS algebra, the composition problem considered in this paper consists of generating
the Service Match Graph GS and selecting a composition graph GC ⊂ GS such that:

1. ∀G′C,V G
Q (GC)≤V G

Q (G′C), i.e., the composition graph has the best possible QoS

2. WR ⊆ V, |WR| is minimized (the composition graph contains the minimum number of
services)

5.6 Composition Algorithm

On the basis of the formal definition of the automatic QoS-aware composition problem, in this
section we present our hybrid approach strategy for automatic, large-scale composition of ser-
vices with optimal QoS, minimizing the services involved in the composition. The approach
works as follows: given a request, a directed graph with the relevant services for the request
is generated. Once the graph is built, an optimal label-correcting forward search is performed
in polynomial time in order to compute the global optimal QoS. This information is used later
in a multi-step pruning phase to remove sub-optimal services. Finally, a hybrid local/global
search is performed within a fixed time limit to extract the optimal solution from the graph.
The local search returns a near-optimal solution fast whereas the global search performs an
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incremental search to extract the composition with the minimum number of services in the re-
maining time. In this section we explain each step of the algorithm, namely: 1) generation of
the Service Match Graph; 2) calculation of the optimal end-to-end QoS; 3) multi-step graph
optimizations and 4) hybrid algorithm.

5.6.1 Generation of the Service Match Graph

Given a composition request, which specifies the inputs provided by the user as well as the
outputs it expects to obtain, and a set of available services, the first step consists of locating all
the relevant services that can be part of the final composition, as well as computing all possible
matches between their inputs and outputs, according to the semantic model presented in Sec.
5.5.1. The output of this step is a Service Match Graph that contains many possible valid
compositions for the request, as the one represented in Fig. 5.2. In a nutshell, the generation
of the graph is calculated by selecting all invocable services layer by layer, starting with So in
the first layer (the source service whose outputs are the inputs of the request) and terminating
with Si in the last layer (the sink service whose inputs are the outputs of the request) [99].

The pseudocode of the algorithm is shown in Fig. 4. The algorithm runs in polynomial
time, selecting Wselected ⊆W services at each step. At each layer, the algorithm finds a po-
tential set of relevant services whose inputs are matched by some outputs generated in the
previous layer using the ⊗ operator (L.6). Then, for each potential eligible service, the algo-
rithm checks whether the service is invokable or not (i.e., all its inputs are matched by outputs
of previous layers) by checking if all the unmatched inputs of the service are matches. All the
inputs that are matched are removed from the unmatched set of inputs for the current service
(L.11). If the service is invokable (has no unmatched inputs), it is selected and its outputs
are added to the set of the available concepts. In case the service still has some unmatched
inputs, these inputs are stored in a map to check it again in the next layer. For example, the
first eligible services for the request shown in Fig. 5.2 are the services in the layer L1, which
correspond with the services whose inputs are fully matched by IR (the set of output concepts
produced in L0). The second eligible services are those services (placed in L2) whose inputs
are fully matched by the outputs of the previous layers, and so on. The algorithm stops when
no more services are added to the set of selected services. Finally, COMPUTE-GRAPH com-
putes all possible matches between the outputs and the inputs of the selected services. The
output of this process is a complete Service Match Graph that can contain cycles, as the one
depicted in Fig. 5.2.
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Algorithm 4 Algorithm for generatig a Service Match Graph from a composition request R
and a set of services W .

1: function SERVICEMATCHGRAPH(R = {IR,OR},W )
2: C := IR; W ′ :=W ;WR := {So,Si}
3: unmatchedIn := [ ]; availCon := IR
4: repeat
5: Wselected = /0
6: Wrel := {w ∈W ′ | availCon⊗ Inw 6= /0}
7: Wrel :=Wrel \WR
8: for all wi = {Inwi ,Outwi} ∈Wrel do
9: Uset := unmatchedIn[wi]

10: Mset :=C⊗Uset
11: unmatchedIn[wi] :=Uset \Mset
12: if Mset = /0 then
13: Wselected =Wselected ∪wi
14: availCon := availCon∪Outwi

15: W ′ :=W ′ \Wselected
16: WR :=WR∪Wselected
17: C :=C∪availCon
18: availCon := /0
19: until Wselected = /0
20: return COMPUTE-GRAPH(WR)

5.6.2 Optimal end-to-end QoS

Once the Service Match Graph is computed for a composition request, the next step is to
calculate the best end-to-end QoS achievable in the Service Match Graph. The optimal end-
to-end QoS can be computed in polynomial time using a shortest path algorithm to calculate
the best aggregated QoS values for each input and output of the graph, i.e., the best QoS values
at which the outputs can be generated and the inputs are matched. In order to compute the
optimal QoS, we use a generalized Dijkstra-based label-setting algorithm computed forwards
from So to Si [97], based on the algebraic model of the QoS presented in Sec. 5.5. The
optimality of the algorithm is guaranteed as long as the function defined to aggregate the QoS
values (⊗) is monotonic, in order to satisfy the principle of optimality. A proof can be found
in [111].

Fig. 5 shows the pseudocode of the generalized Dijkstra-based label-setting algorithm.
The algorithm starts assigning infinite QoS cost to each input in the graph in the table qos.
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L0 L1 L2 L3 L4 L5

Figure 5.2: Graph example with the solution with optimal QoS and minimum number of services highlighted.

An infinite cost for an input means that the input is still not resolved. The first service to be
processed is So. Each time a service w is processed from the queue, the best accumulated
QoS cost of each input iw′ matched by the outputs of the service w is recalculated. If there is
an improvement (i.e., a match with a better QoS is discovered) the affected service is stored
in updated to recompute its new aggregated QoS. Finally, for each service w ∈ updated, we
recompute its aggregated QoS using the updated values of each affected input. If the QoS has
been improved, the service is added to the queue to expand it later.

5.6.3 Graph optimizations

Finding the composition with the minimum number of services is a very hard combinatorial
problem which, in most cases, has a very large search space, mainly determined by the size
of the Service Match Graph. In order to improve the scalability with the number of services,
we apply a set of admissible optimizations to reduce the search space. At each pass, the al-
gorithm analyzes different criteria to identify services that are redundant or can be substituted
by better ones, so the size of the graph decreases monotonically. The different passes that are
sequentially applied are: 1) elimination of services that do not contribute to the outputs of
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Algorithm 5 Dijkstra-based algorithm to compute the best QoS for each input and output in
the Service Match Graph GS.

1: function QOS-UPDATE(GS = {V,E})
2: /*qos is a table indexed by inputs (i)
3: associated to their aggregated QoS (q)*/
4: qos[i,q]← []
5: for all i ∈ I, I ⊂V do
6: qos[i]← φ

7: queue← So
8: while queue 6= /0 do
9: /* Queue sorted by aggregated QoS */

10: w← POP(queue)
11: updated = {}
12: for all ow ∈ Outw do
13: for all iw′ ∈ chG(ow) do
14: if VQ(w)≺ qos[iw′ ] then
15: qos[iw′ ]←VQ(w)
16: updated← updated∪w′

17: for all w ∈ updated do
18: if cost w has been improved then
19: queue←INSERT(w,queue)
20: return qos

the request; 2) pruning of services that lead to suboptimal QoS; 3) combination of interface
(inputs/outputs) and QoS equivalent services; and 4) replacement of interface and QoS dom-
inated services. These optimizations are an extension of the optimizations presented in [100]
to support QoS.

The first pass selects the set of reachable services in the Service Match Graph. Starting
from the inputs of Si, it selects all those services whose outputs match any inputs of Si. This
step is repeated with the new services until the empty set is selected. Those services that were
not selected do not contribute to the expected outputs of the composition and can be safely
removed from the graph.

The second pass prunes the services of the graph that are suboptimal in terms of QoS, i.e.,
they cannot be part of any optimal QoS composition. To do so, we compute the maximum
admissible QoS bound for each input in the graph. In a nutshell, the maximum bound of
the inputs of a service w can be calculated by selecting the maximum QoS bound among the
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bounds of all inputs matched by the outputs of the service w and subtracting the QoS of w.
This can be recursively defined as:

maxi
Q(iw) =


VQ(w)	FQ(w) if Outw = /0

max
∀ow,∀iw′∈chG(ow)

(maxi
Q(iw′))	FQ(w) if Outw 6= /0

The value of maxi
Q for each input in the graph can be easily calculated by propagating

the bounds from Si to So. For example, in Fig. 5.1, we start computing the maximum bound
of the inputs of Si (xsd:boolean). Since Si has no outputs, maxi

Q(xsd:boolean) is calculated
as VQ(Si)	FQ(Si) = 410 ms− 0 ms. Then, we select all the services whose outputs match
xsd:boolean. In this case there is just one service, ML Predictor Service. The bounds of
its inputs are now computed by subtracting out the FQ(ML Predictor Service) from the max-
imum bound of the inputs that this service matches. Since there is just one input matched
(xsd:boolean from Si) whose bound is 410 ms, we have maxi

Q(i) = 410ms−210ms = 200ms

for each input i of the service. In the next step, we have three services that match the
new calculated inputs (Free Geoloc Service, Premium Geoloc Service and Transaction Ser-

vice). The maximum bounds of the inputs of these services are 200ms− 180ms = 20ms,
200ms−40ms = 160ms and 200ms−130ms = 70ms respectively. Note that, since the maxi-
mum bound of Transaction Service is 70ms, the service Secure Payment is out of the bounds
(its output QoS is 80 ms), so it can be safely pruned.

The third and the forth pass analyze service equivalences and dominances in the Service

Match Graph. It is very frequent to find services from different providers that offer similar
services with overlapping interfaces (inputs/outputs). In scenarios like this, it is easy to end
up with large Service Match Graph that make very hard to find optimal compositions in rea-
sonable time. One way to reduce the complexity without losing information is to analyze
the interface equivalence and dominance between services in order to combine those that are
equivalent, or replace those that are dominated in terms of the interface they provide and the
QoS they offer. In a nutshell, we check three objectives to compare services: the amount of
information they need to be invoked (inputs), the amount of information they return (outputs),
and their QoS. If a set of services are equal in all objectives, they are equivalent and they
can be combined into an abstract service with several possible implementations. If a service
is equal in all objectives and at least better in one objective (it requires less information to
be invoked, produces more information or has a better QoS), then the service dominates the
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other service. A more detailed description of the interface and dominance optimizations is
described in [100].

Note that optimizations are applied right before all semantic matches are computed in the
Service Match Graph, since the optimizations are based on the analysis of the I/O matches
among services. For this reason, they cannot be applied during the calculation of the graph
(this would require to precompute in advance missing relations during the graph generation,
which does not provide any benefit as this is what the Service Match Graph generation al-
gorithm already does). On the other hand, optimizations are applied sequentially to save
computation time, since the number of services in the graph decreases monotonically in each
step. In order to take advantage of this, faster optimizations are applied first so that the slower
optimizations in the pipeline can work with a reduced set of services.

5.6.4 Hybrid algorithm

Each service in the composition graph may have different services that match each input, thus
there may exist multiple combinations of services that satisfy the composition request with
the same or different QoS. The goal of the hybrid search is to extract good solutions from the
composition graph, optimizing the total number of involved services in the composition and
guaranteeing the optimal QoS. Thus, for each input we select just one service of the graph
to match that input, until the best combination is found. The hybrid search performs a local
search to extract a good solution and in the remaining time, it tries to improve the solution by
running a global search.

Fig. 6 shows the pseudocode of the local search strategy. The algorithm starts with a
composition graph, the inputs of the service Si marked as unresolved (the expected outputs of
the request) and the service Si selected to be part of the solution. An unresolved input is an
input that can be matched by many different outputs but no decision has been made yet. Using
the list of the unresolved inputs to be matched, the method RANK-RESOLVERS returns a
list of services that match any of the unresolved inputs. Services are ranked according to the
number of unresolved inputs that match, so the service that matches more inputs is considered
first to be part of the solution. Then, for each input that the selected service can match, the
method CYCLE performs a forward search to check if resolving the selected input with that
service leads to a cycle. For example, in Fig. 5.2, if we select the service K to match the input
of I after having decided to resolve the input of K with the service I, we end up with an invalid
composition, so K is an invalid resolver for I and it must be discarded. Once all resolvable
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inputs are collected in resolved, the method RESOLVE creates a copy of the current graph
where the inputs in unresolved are matched only by the selected service, i.e., any other match
between any output from a different service to that input is removed from the graph. If the
selected service was not already selected, then all its inputs are then marked as unresolved and
a recursive call to LSBT is performed to select a new service to resolve the remaining inputs,
until a solution is found. If a dead end is reached (a solution that has no services to resolve the
remaining inputs without cycles) the algorithm backtracks to a previous state to try a different
service (L.7).

Algorithm 6 Local search algorithm to extract a composition from a graph.
1: function LOCAL-SEARCH(GS = {V,E})
2: return LSBT(GS, InSi, {Si})
3:
4: function LSBT(GS, unresolved, services)
5: if unresolved = /0 then return GS

6: servs← RANK-RESOLVERS(unresolved)
7: for each w ∈ servs do
8: resolved←{}
9: matched← Outw⊗unresolved

10: for each input ∈ matched do
11: if ¬CYCLE(GS,w, input) then
12: resolved← resolved∪ input
13: if resolved 6= /0 then
14: unresolved← unresolved \ resolved
15: if w /∈ services then
16: unresolved← unresolved ∪ Inw

17: G′S← RESOLVE(GS, w, resolved)
18: services← services∪w
19: result← LSBT(G′S, unresolved, services)
20: if result 6= fail then return result

return fail

An implementation of the CYCLE method is provided in 7. The algorithm performs a
look-ahead check in a breadth-first fashion to determine whether matching the selected input
i with an output of the service w leads to a cyclic dependency. This is done by traversing
only the resolved matches, i.e., inputs that are matched by just one output of a service, until
the selected service w is reached, proving the existence of a cycle. A more memory efficient
implementation of the cycle algorithm can be done using the Tarjan’s strongly connected
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components algorithm [115], stopping at the first strongly connected component detected.

Algorithm 7 Näive breadth-first-search algorithm to check whether using the service w to
resolve the input iw′ of a service w′ leads to a cycle.

1: function CYCLE(GS = {V,E},w, iw′ )
2: Wvisited ←{w′}
3: Wnew←{w′}
4: while Wnew 6= /0 do
5: Wreached ←{}
6: for all wn ∈Wnew do
7: for all own ∈ Outwn do
8: for all iw′n ∈ chGS(own) do
9: if d−GS

(iw′n) = 1∧w′n /∈Wvisited then
10: if w′n = w then return true
11: Wreached ←Wreached ∪w′n
12: Wnew←Wreached
13: Wvisited ←Wvisited ∪Wnew

14: return f alse

After the local search is used to find a good solution, the global search is performed in
the remaining time to obtain a better solution by exhaustively exploring the space of possible
solutions. In a nutshell, this algorithm works as follows: Given a Service Match Graph GS,
with some unresolved inputs, which initially are the inputs of the service Si, the algorithm
selects an input to be resolved and for each service candidate that can be used to resolve that
input, it generates a copy of the graph GS but with the input resolved (i.e., the selected service
is the only one that matches the unresolved input). The algorithm enqueues each new graph to
be expanded again, and repeats the process by extracting the graph with the minimum number
of services from the queue, until it eventually finds a graph with no unresolved inputs.

Fig. 8 shows the pseudocode of the global search algorithm. The algorithm starts com-
puting the optimal QoS of the graph with the method QoS-UPDATE. This method returns a
key-value table qos[i,q] where each key corresponds with an input i of the graph, and each
value q its optimal aggregated QoS q =V in

Q (i). Then, the inputs of the service Si of the graph
are added to Iun to mark them as unresolved (L.8). In order to minimize the number of possible
candidates for each unresolved input, we compute and propagate a range of valid QoS values,
called QoS bounds, and defined as an interval [min,max]. These bounds determine the range
of valid accumulated QoS values of the outputs that can be used to match each of the unre-
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solved inputs without exceeding the optimal end-to-end QoS of the final composition. The
min value is the optimal QoS for the input, i.e., there is no output in the graph that can match
the input with a lower QoS, whereas the max value is the maximum QoS value supported. If
this bound is exceeded, the total aggregated QoS of the composition worsens. For example,
in Fig. 5.1, the bounds of the input ont4:ClientID of the service Premium Geoloc Service are
[20ms,160ms]. If we exceed the min bound (20 ms), the output QoS of the service gets worse
(> 60ms), which also affects the optimal QoS of the input ont1:Location. However, as long as
the max bound is not exceeded (≤ 160ms), the optimal accumulated QoS of the ML Predictor

Service would not be affected.

The method COMPUTE-VQ is used to compute the value of the VQ function (Eq. 5.1) using
the best QoS values of inputs, stored in qos (qos[i] =V in

Q (i)). A tuple 〈GS, Iun,qos,Wsel〉, where
GS is the current graph, Iun are the unresolved inputs of GS, qos is the best aggregated QoS
values for each input in GS and Wsel is the set of the selected services, defines the components
of a partial solution. Each partial solution is stored in a priority queue, which is sorted by
the number of services Wsel . This allows an exploration of the search space in a breadth-
first fashion, so the solution with the minimum number of services is always expanded first.
At each iteration, a partial solution is extracted from the queue to be refined (L.12). If the
partial solution has no unresolved inputs, the solution is complete, and has the minimum
number of services. If the partial solution still has some unresolved inputs, it is refined by
selecting an unresolved input with the method SELECT. This method selects the input to
be resolved, using a minimum-remaining-values heuristic. This heuristic selects always the
input with less resolvers (services candidates) in order to minimize the branching factor. The
list of services that can match the selected input with a total aggregated QoS value within
the [min,max] bound is calculated with the method RESOLVERS. For each valid service, the
algorithm performs a look-ahead search to check whether using the current service to resolve
the selected input leads to an unavoidable cycle. If so, the service is prematurely discarded
to save computation time and space. If it does not lead to a cycle, then a copy of the graph
(G′S) with the selected input resolved is generated, and the input is also removed from the set
of unresolved inputs. Using the optimal aggregated QoS values for the inputs of the graph,
stored in qos, the algorithm computes the aggregated QoS value of the service w. If this
value is worse than the min bound (COMPUTE-VQ(w,qos′)� min), then the aggregated QoS
value of some inputs and outputs of the graph may be affected. Thus, a repropagation of the
QoS values for each input and output is computed again over the new graph G′S (L.22). For
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example, if the Business Service Info increments its response time to 40 ms, a repropagation
is required to recompute the accumulated QoS of all the services that may be affected. In this
case, the Premium Geoloc Service increments its accumulated QoS cost from 60 ms to 80 ms,
as well as the optimal QoS of the ont1:Location.

Finally, if the current service is not part of the current solution, its inputs are added to the
unresolved table, and a new bound for each input is computed. The min bound corresponds
with the optimal value, which is stored in qos′. In order to compute the max bound, we need
to subtract the QoS of the selected service (FQ(w)) from the max bound of the resolved input,
using the operator 	 (L.25). This new partial solution is inserted in the queue to be expanded
later on.

5.7 Evaluation

In order to evaluate the performance of the proposed approach, we conducted two different
experiments. In the first experiment, we evaluated the approach using the datasets of the
Web Service Challenge 2009-2010 [53]. The goal of this first experiment was to evaluate the
peformance and scalability of the proposed approach on large-scale service repositories. In
the second experiment, we tested the algorithm with five random datasets in order to better
analyze the differences of the performance between the local and the global search. All tests
were executed with a time limit of 5 min. Solutions produced by our algorithm are represented
as Service Composition Graphs (no BPEL was generated).

5.7.1 Web Service Challenge 2009-2010 datasets

The datasets of the Web Service Challenge 2009-2010 range from 572 to 15,211 services
with two different QoS properties: response time and throughput. Table 5.2 shows the results
obtained for each dataset and for each QoS property. The response time is the average time
(measured in milliseconds) that a service takes to respond to a request. The throughput, as
defined in the WSC, is the average ratio of invocations per second supported by a service.

Row #Graph services shows the number of services of the composition graph and #Graph

services (opt) the number of services after applying the graph optimizations. As can be seen,
the optimizations reduce, on average, by 64% the number of services in the initial composition
graph. This indicates that equivalence and dominance analysis of the QoS and the function-
ality of services is a powerful technique to reduce the search space in large scale problems.
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Algorithm 8 Global search algorithm to extract the optimal composition.
1: function GLOBAL-SEARCH(GS)
2: qos[i,q]← QoS-UPDATE(GS)
3: max←COMPUTE-VQ(Si,qos)
4: Wsel ←{Si}
5: /* Iun is a key-value table where the keys are
6: unresolved inputs and the values their QoS bounds */
7: for iSi ∈ InSi do
8: Iun[iSi]← [qos[iSi],max]
9: /* Queue sorted by |Wsel |*/

10: queue← INSERT(〈GS, Iun,qos,Wsel〉,queue)
11: while queue 6= /0 do
12: 〈GS, Iun,qos,Wsel〉 ← POP(queue)
13: if Iun = /0 then return GS

14: input← SELECT(Iun)
15: [min,max]← Iun[input]
16: for all w ∈ RESOLVERS(input, [min,max]) do
17: if ¬CYCLE(GS,w, input) then
18: G′S← RESOLVE(GS,w,{input})
19: I′un← REMOVE(i, Iun)
20: qos′← qos
21: if COMPUTE-VQ(w,qos′)� min then
22: qos′← QoS-UPDATE(G′S)

23: if w /∈Wsel then
24: W ′sel ←Wsel ∪w
25: max′← max	FQ(w)
26: for iw ∈ Inw do
27: min′← qos′[iw]
28: I′un[iw]← [min′,max′]
29: queue← INSERT(〈G′S, I′un,qos′,W ′sel〉,queue)

return fail
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Table 5.2: Validation with the WSC 2009-2010

D-01 D-02 D-03 D-04 D-05

#Services in the dataset 572 4,129 8,138 8,301 15,211

Validation with Response Time
Optimal Response Time (ms) 500 1,690 760 1,470 4,070
#Graph services 81 141 154 331 238
#Graph services (opt) 21 57 15 160 126

Local Search #Services 5 20 10 40 32
Time (s) 0.613 0.988 2.608 7.767 2.920

Global Search #Services 5 20 10 - 32
Time (s) 0.617 1.580 2.613 - 24.971

Validation with Throughput
Optimal Throughput (inv/s) 15,000 6,000 4,000 4,000 4,000

#Graph services 81 141 154 331 238
#Graph services (opt) 10 43 90 156 69

Local Search #Services 5 20 15 62 31
Time (s) 0.343 1.173 1.933 8.571 2.562

Global Search #Services 5 20 10 - 30
Time (s) 0.345 1.246 2.085 - 119.322

Rows Local search and Global search show the number of services of the solution obtained
with each respective method as well as the total amount of time spent in the search. The
global search found the best solution for each dataset and for each QoS property, except for
the dataset 04, where the composition with the minimum number of services could not be
found due to combinatorial explosion. However, in those cases, the local search strategy is
able to find an alternative solution very fast. Note also that, in many cases, the local search
obtains the best solution (comparing it with the global search) except for the throughput in
datasets 03 and 05.

We have compared our approach with the top-3 of the Web Service Challenge 2010 [122].
Table 5.3 shows this comparison following the same format and the same rules of the Web
Service Challenge. The format, rules and other details of the challenge are described in [122].
Third and forth columns show the response time and the throughput obtained for each dataset.
Note that, since all these algorithms minimize a single QoS, these values are computed by exe-
cuting the algorithm twice, one for each QoS. Unfortunately, the results provided by the WSC
organization in [122] show only the minimum number of services for both executions (fifth



5.7. Evaluation 143

Table 5.3: Comparison with the top 3 WSC 2010

R.Time Through. Min. Serv. Time (ms)

D-01

CAS [46] 500 15,000 5 78
RUG [4] 500 15,000 10 188
Tsinghua [130] 500 15,000 9 109
Our approach 500 15,000 5 956

D-02

CAS [46] 1,690 6,000 20 94
RUG [4] 1,690 6,000 40 234
Tsinghua [130] 1,690 6,000 36 140
Our approach 1,690 6,000 20 2,171

D-03

CAS [46] 760 4,000 10 78
RUG [4] 760 4,000 11 234
Tsinghua [130] 760 4,000 18 125
Our approach 760 4,000 10 4,693

D-04

CAS [46] 1,470 4,000 73 156
RUG [4] 1470 4,000 133 390
Tsinghua [130] 1,470 4,000 133 188
Our approach 1,470 4,000 40 16,338

D-05

CAS [46] 4,070 4,000 32 63
RUG [4] 4,070 4,000 4,772 907
Tsinghua [130] 4,070 4,000 4,772 531
Our approach 4,070 4,000 30 122,242

column). Thus, the number of services obtained for both the response time and throughput is
unknown, which makes it hard to compare with our results. Even so, using the same evalua-
tion criteria, our approach obtains the optimal QoS for the response time and the throughput,
and also improves the number of services in D-04 (40 vs 73) and D-05 (30 vs 32) with respect
to the solutions obtained by the winner of the challenge (the minimum number of services
obtained for each dataset is highlighted). The last column shows the total execution time of
each algorithm. The total time includes the time spent to obtain the solution for the response
time and for the throughput.

Our approach takes, in general, more time to obtain a solution. However, it should be
noted that we show the best results achieved by the hybrid approach, i.e., if the global search
improves the solution of the local search, we show that solution along with the time taken by
the global search. Anyway, the local search always provide a first good solution very fast. For
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example, as can be seen in Table 5.2, the optimal solution for D-05 has 30 services and has
been obtained in 119.322 s, but the local search obtained a solution with 31 services in 2.56 s,
still better than the solution with 32 services obtained by [46] (Table 5.3). Moreover, it should
also be noted that the problem of finding the optimal composition with minimum number of
services and optimal QoS is much harder than just optimizing the QoS objective function,
which is the problem solved by the participants of the WSC 2010. Although the problem
is intractable and requires exponential time, it can be optimally solved for many particular
instances in a reasonable amount of time using adequate optimizations even in large datasets
as shown in Tables 5.2 and 5.5. This is one of the main reasons why a combination of a local
and global search can achieve good results in a wide variety of situations, in contrast with
pure greedy strategies or with pure global optimization algorithms.

We also compare the results obtained with Chen et al. [28], who offer a detailed analysis
of their results. This comparison is shown in Table 5.4. Solutions are compared according
to their QoS and number of services. A solution is better if 1) its overall QoS is better or 2)
has the same QoS but less services. The results show that our algorithm always gets same or
better results. Concretely, it finds solutions with optimal QoS and less services in D-01, D-02,
D-04 and D-05 (response time), and D-03 (throughput). It also finds a solution with a better
QoS (4000 inv/s vs 2000 inv/s) in D-04 (throughput).

Table 5.4: Detailed comparison with [28]

D-01 D-02 D-03 D-04 D-05

Chen et al. R. Time 500 1,690 760 1,470 4,070
Services 8 21 10 42 33

Our approach R. Time 500 1,690 760 1,470 4,070
Services 5 20 10 40 32

Chen et al. Throughput 15,000 6,000 4,000 2,000 4,000
Services 5 20 21 40 30

Our approach Throughput 15,000 6,000 4,000 4,000 4,000
Services 5 20 10 62 30

5.7.2 Randomly generated datasets

Although the global search is able to obtain solutions with a lower number of services, a first
look at the results with the WSC dataset might suggest that the difference of both strategies is
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not very significant, as most of the obtained solutions have the same number of services. How-
ever, this may be due to a bias in the repository, since all the datasets of the WSC are generated
using the same random model. In order to better evaluate and characterize the performance of
the hybrid algorithm, we generated a new set of five random datasets that range from 1,000 to
9,000 services. These datasets are available at https://wiki.citius.usc.es/inv:
downloadable_results:ws-random-qos. Table 5.5 shows the solutions obtained.

Table 5.5: Validation with random datasets

R-01 R-02 R-03 R-04 R-05

#Services in the dataset 1,000 3,000 5,000 7,000 9,000

Validation with Response Time
Optimal Response Time (ms) 1,430 975 805 1,225 1,420
#Graph Services 54 168 285 383 499
#Graph Services (opt) 22 50 54 56 99

Local Search #Services 7 18 20 15 19
Time (s) 0.183 0.403 0.422 0.515 0.641

Global Search #Services 7 14 15 15 16
Time (s) 0.243 0.767 4.088 0.740 3.131

Validation with Throughput
Optimal Throughput (inv/s) 1,000 2,500 1,500 2,000 2,500

#Graph Services 54 168 285 383 499
#Graph Services (opt) 19 46 133 116 103

Local Search #Services 7 17 24 19 23
Time (s) 0.072 0.143 0.606 0.732 0.450

Global Search #Services 7 12 12 15 16
Time (s) 0.155 0.310 2.479 1.485 1.714

We found that in these datasets, the solutions obtained with the global search strategy
are, on average, ≈ 16% smaller than the ones obtained with the local search, whereas the
differences in seach time are less pronounced than in the previous experiment. These findings
suggest that the performance of each strategy highly depends on the underlying structure of
the service repository, which is mostly determined by the number of services and the existing
matching relations.

In order to test whether these differences are statistically significant or not, we conducted
a nonparametric test using the binomial sign test for two dependent samples with a total
of 20 datasets (5 WSC w/response time + 5 WSC w/throughput + 5 Random w/response

https://wiki.citius.usc.es/inv:downloadable_results:ws-random-qos
https://wiki.citius.usc.es/inv:downloadable_results:ws-random-qos
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time + 5 Random w/throughput). The null hypothesis was rejected with p-value≈ 0.01 [94],
meaning that both strategies (local and global search) find significantly different solutions.
Thus, a hybrid strategy can perform better in many different scenarios, since it achieves a
good tradeoff between quality and execution time.

This evaluation shows that, on one hand, the combination of local and global optimization
is a general and powerful technique to extract optimal compositions in diverse scenarios, as
it brings the best of both worlds. This is specially important when only a little or nothing is
known concerning the structure of the underlying repository of services. On the other hand,
the results obtained with the Web Service Challenge 2009-2010 show that the hybrid strategy
performs better than the state-of-the-art, obtaining solutions with less services and optimal
QoS.

5.8 Conclusions

In this paper we have presented a hybrid algorithm to automatically build semantic input-
output based compositions minimizing the total number of services while guaranteeing the
optimal QoS. The proposed approach combines a set of graph optimizations and a local-
global search to extract the optimal composition from the graph. Results obtained with the
Web Service Challenge 2009-2010 datasets show that the combination of graph optimizations
with a local-global search strategy performs better than the state-of-the-art, as it obtained
solutions with less services and optimal QoS. Moreover, the evaluation with a set of randomly
generated datasets shows that the hybrid strategy is well suited to perform compositions in
diverse scenarios, as it can achieve a good tradeoff between quality and execution time.

5.A Computational Complexity

The calculation of the optimal QoS can be computed in polynomial time for a given Service

Match Graph using classical shortest path algorithms such as Dijkstra or Bellman-Ford. But,
as stated in the introduction, there can exist multiple solutions with the same global QoS but
different number of services. Thus, in many scenarios, optimizing the QoS objective function
is not enough to provide the best possible answer. However, it turns out that optimizing the
number of services of a composition is an intractable problem. The next theorem proves that
the Service Minimization Problem (SMP) is a NP-Hard combinatorial optimization problem.
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Theorem. Finding the minimum number of services whose outputs match a given set of un-

resolved (unmatched) concepts is a NP-Hard combinatorial optimization problem.

Proof. We will show that the Service Minimization Problem (SMP) is NP-Hard by proving
that the optimization version of the Set Cover Problem (SCP), a well-known NP-Hard prob-
lem, is polynomial-time Karp reducible to SMP SCP ≤P SMP. The optimization version of
the SCP problem is defined as follows: given a set of elements U = {u1, . . . ,um} and a set S

of subsets of U , find the smallest set (cover) C ⊆ S of subsets of S whose union is U . The
decision version of this problem, stated as that of deciding whether exists a cover CSCP of
size k or less (|CSCP| ≤ k), is NP-Complete. We will also consider the simplest form of the
SMP that can be contained in a Service Match Graph, which is defined as follows: given a
service wU and a set of candidate services WS = {w1, . . . ,wn} such that Ow1 ⊗ IwU 6= /0 ∧·· ·∧
Own ⊗ IwU 6= /0, select the smallest subset of services from WS such that the union of the out-
puts of the services from WS, OWS , satisfies OWS ⊗ IwU = IwU , i.e., the outputs of the services
contained in WS match all the inputs of wU . As in the SCP, the decision version of this opti-
mization problem is defined as that of deciding whether exists a subset of candidate services
CSMP of size k or less (|CSMP| ≤ k) such that the union of the outputs of the services in CSMP

match all the inputs of wU .

In order to prove that the SMP optimization problem is NP-Hard, we need to demonstrate
that its corresponding decision problem is NP-Complete. We will therefore reduce the SCP
problem by means of a function ϕ that transforms any arbitrary instance of the SCP into an
instance of the SMP in polynomial time. We have to prove that 1) ϕ(U,S) is a SMP problem;
2) ϕ runs in polynomial time; and 3) there is a set covering of ϕ(U,S) of size k or less if and
only if there is a set covering of U in S of size k or less.

Given a pair (U,S), we define ϕ(U,S) = (wU ,WS) such that:

• wU = {IwU =U = {u1, . . . ,un}, /0}, where ui is the ith unresolved input of wU .

• ∀si = {ui1 , . . . ,uin} ∈ S, ∃wi ∈WS such that wi = { /0,Owi} and Owi ⊗ IwU = si

By this definition, the ϕ(U,S) maps each element u ∈U to an input of the service wU .
Each subset si ∈ S is also mapped to a service whose outputs match exactly the inputs of wU

that correspond with the elements of si. This mapping can be computed by adding a match
from an arbitrary output of each service wi ∈WS to each input ui ∈ si, which clearly runs in
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linear time in the size of U . Moreover, ϕ(U,S) is a Service Minimization Problem according
to its definition.

Now suppose there is a set covering |C| ≤ k,C ⊆ S of U . Thus, ∀u ∈U,∃ci ∈C such that
u ∈ c. From the services (wU ,WS) constructed from (U,S) by ϕ(U,S), there exists wi ∈WS

such that Owi⊗IwU = ci⊆ IwU , and so
⋃

i(Owi⊗IwU )= IwU =C, i.e., the outputs of the services
from the set WS of size k or less represent a cover of the Service Minimization Problem
ϕ(U,S).

5.B Algorithm Analysis and Discussion

The proposed approach consists of a hybrid algorithm that optimizes both the global QoS
and selects the composition with the minimum number of services that preserves the optimal
QoS. As demonstrated in Appendix 5.A, the problem of minimizing the number of services
is NP-Hard. Thus, under the P 6= NP assumption, there is no polynomial time algorithm that
can exactly solve this optimization problem. However, although it is in general intractable,
in practice many instances of the problem, as shown in the evaluation section, can be opti-
mally solved in reasonable time. In those situations, it may be preferable to provide optimal
solutions instead of just sub-optimal ones. Our approach takes advantage of a hybrid strategy
that combines a local search and a global search plus the use of preprocessing optimizations
and search optimizations (minimum-remaining-values heuristic, cycle detection, QoS bounds
propagation) in order to achieve a good trade-off between optimality of the solution and com-
putation time. Here we analyze the complexity of the proposed techniques.

5.B.1 Cycle detection

The cycle detection is implemented as a Look-Ahead strategy, that traverses all the resolved
matches, starting from the current service (the one selected to resolve a new unresolved input),
until no more services are reachable. This strategy seeks to discover whether the current
service is a valid candidate or not by checking if it can lead to a dependency cycle, so it can be
prematurely discarded. The cycle detection algorithm takes O(|V |+ |E|), since every service,
input, output and match between inputs and outputs have to be traversed in worst-case.
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5.B.2 QoS Update

The QoS update method calculates the optimal end-to-end QoS through the graph. This
method is also used to recalculate optimal QoS bounds whenever a local QoS bound is ex-
cedeed. This problem can be modeled as a shortest path problem with generalized costs for
QoS (as shown in Section 4.3) and solved using Dijkstra’s algorithm. The worst-case time
complexity of this algorithm is as follows: given a Service Match Graph GS = (V,E), where
WR ⊂ V is the set of services in the graph, there are at most |WR| calls to POP method to
extract the lowest scored service from the queue. Since the queue is implemented as a binary
heap, the POP and INSERT methods have a time of O(log(n)), where n is the size of the
queue. Thus, in the worst case, the running time is O(|WR| · log(|WR|)), plus the (at most) |E|
updates of neighbor services that are reinserted into the queue. Therefore, the overall time is
O((|E|+ |WR|) · log(WR)).

5.B.3 Local search

This method performs a heuristically guided local search to minimize the number of services
of the optimal end-to-end QoS composition. At each step, it selects the most promising can-
didate by selecting the one with fewer inputs that matches the largest number of unresolved
inputs. If the algorithm gets stuck at some point, i.e., it reaches a point where no service can be
selected without leading to a cyclic dependency, it backtracks to try the next most promising
candidate service. The algorithm calls RANK-RESOLVERS to rank the candidates according
to the number of unresolved inputs that each candidate can match and, in case of draw the
service with less inputs is preferred. The sorting of services takes O(n · log(n)) using merge
sort, where n is the number of services. Each time a service is selected, the method RESOLVE

creates an updated copy of the graph in O(|V |+ |E|).
Assumming non-cyclic dependencies in the Service Match Graph, in the worst case the

algorithm have to select all the services from the graph until no unresolved inputs are left.
Thus, in the first step t|WR| the algorithm ranks all the |WR| services in O(|WR| · log(|WR|)),
selects the first one and generates a new copy of the graph in O(|V |+ |E|). The running time
of this step is O(|WR| · log(|WR|)+O(|V |+ |E|) = O(|WR| · log(|WR|)). In the next step t|WR|−1,
the algorithm ranks |WR|−1 services, selects the best one, creates a copy of the graph and so
on. Therefore, the asymptotic upper bound of the running time of t|WR|+ t|WR|−1 + · · ·+ t1 is
O(|WR| · log(|WR|)).
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In the absence of the assumption of non-cyclic dependencies, the asymptotic upper bound
analysis shows that the time complexity grows exponentially with the depth of the search,
since in the worst-case the algorithm fails (backtracks) at each step until the last combination
of services is explored. However, in practice, this upper bound seems far from the average-
case. As shown in the evaluation (Section 6), the growth of the time with respect to the size of
the graph is closer to the best-case scenario, since an exponential number of backtracks due
to cylic dependencies is extremely rare. In any case, the algorithm can be easily adapted to
perform better in the worst-case scenario, for example by limiting the number of candidates
to the top-K best services for each unresolved input.

5.B.4 Global search

The aim of the global search algorithm is to perform an exhaustive search to find the minimum
combination of services that satisfy the composition request with optimal QoS. The algorithm
explores every possible valid combination of services in a breadth-first fashion by resolving
one input at a time. For each unresolved input with k > 1 candidates, new k different states
are created by calling the RESOLVE method and pushed to the queue for further expansion.
In order to calculate an asymptotic upper bound for the time complexity, we can compute the
number of combinations of services that the algorithm needs to extract from the queue in the
worst-case. To this end, we first count the maximum number of combinations (solutions) that
we can generate for a simple graph with fixed size and then we generalize the problem for a
graph of any size.

Left graph from Figure 5.3 shows an example of a Service Match Graph with 4 services
(excluding Si and So). As can be seen, Si requires two inputs, 1 and 2. On the other hand, the
outputs of A and B match the input 1 whereas the outputs of services C and D match the input
2. Therefore, in order to match both inputs, we can select services A and C, A and D, B and
C or B and D (2×2 combinations). By computing all possible combinations, we can reduce
the graph from the left, where Si has two inputs, to the graph from the right, where Si has just
one input.

In general, given a service w with |Iw|= k inputs and c1,c2, . . . ,ck set of candidate services
for each input, there are ∏i |ci| combinations of services, i.e., we can replace the k inputs
with k sets of candidate services by one input with ∏i |ci| candidates. Since each service
can have in turn some inputs with other candidates, we can recursively replace each service
with all the possible combinations of services that can be generated. This process leads to
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Figure 5.3: Reduction of the left graph into the right graph by computing all possible combinations of services

a flattening of the graph until there is just one level with all the possible combinations of
services (compositions) that can be generated for a given Service Match Graph. Thus, the
problem of counting the number of possible solutions in the worst-case can be reduced to the
following: given a Service Match Graph with |WR| services, what is the maximum of products
of partitions of WR? More formally, given a set S (|S| ≥ 1), choose n partitions c1,c2, . . . ,cn

such that ∑i |ci| = |S| and ∏i |ci| is maximized. For example, given 11 services, we can take
3 groups of 3 services and one with the remaining 2 services, so the product of the partition
is 33 ·2 = 54, which is the maximum. Finding an upper bound for this value will gives us an
upper bound for the maximum number of compositions that can be enumerated in the worst-
case, i.e., for the most complex Service Match Graph that can be generated with |WR| services.
It can be proved that, for any set of size n, the maximum can be obtained by partitioning the
set into groups of 2 and 3 elements, with no more than 2 groups of 2 elements. From this it
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follows that the maximum product is bounded by 3n/3, so we can conclude that O(3n/3) is a
tight asymptotic upper bound on the running time in the worst-case.

However, it should be noted that although the calculation of an optimal solution for the
problem in the worst-case requires exponential time with the size of the graph, in practice, the
number of services for a particular request is usually orders of magnitude lower that the num-
ber of available services in the dataset (see Table 2 and 4). In addition to this, the optimizations
introduced in Section 5.3 plus the global QoS bound propagation, the minimum-remaining-
values heuristic and cycle detection used in the global search are aimed to reduce further the
size of the explored search space by decreasing the number of analyzed services.



CHAPTER 6

CONCLUSIONS

The growing importance of Service Oriented Computing (SOC) within the domain of dis-
tributed computing has led to an important increase in the number of available Web services
both inside and outside of different organizations and companies worldwide. One major ad-
vantage of Web services is the possibility to combine them to create composite services on-
demand by means of automatic composition techniques. When a single web service cannot
meet complex business requirements, different services can be combined together to build
composite web services that fulfill a request. As the number of available services on the In-
ternet grows, the need to develop efficient and optimal algorithms that can deal with a large
number of services taking into account the QoS becomes a challenging task.

In this thesis we presented a set of techniques to generate optimal and fast automatic com-
positions of Web services based on the input-output matching of services’ interfaces. We
started with an exploratory research focusing on the use of control-centric techniques to gen-
erate expressive composition workflows by combining different control structures. For this
purpose, we developed a Genetic Programming algorithm that uses a context-free grammar
and a set of genetic operators and optimizations to generate valid composition workflows. Al-
though the results obtained with this technique demonstrate the effectiveness of this approach
to generate expressive solutions exploiting the different control structures defined in the for-
mal grammar, the complexity of the search space and the elevated computation time required
to generate good solutions makes this technique innapropiate for generating compositions on
the fly for some large instances of the problem, but appropiate as a powerful tool for offline
optimization of composition workflows. In order to cope with this limitation, we moved to-
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wards a data-centric approach based on the idea of building service dependency graphs (or
service match graphs) by analyzing the semantic information of the inputs and outputs of
services. Using the information of a particular composition request, we proposed a way to
construct an optimized graph with all the candidate services and their I/O matches as well as
different algorithms to extract optimal compositions from the graph. We also proposed and
studied the integration of the service discovery and service composition via a fine-grained I/O
used to discover relevant services during the generation of the graph. All these ideas have
been integrated into a graph-based framework for service composition, and its effectiveness
has been studied by means of an open-source reference implementation of the framework,
using different optimization mechanisms to minimize the overhead of the service discovery.

The main conclusions are summarized as follows:

1. In Chapter 2 a genetic programming algorithm for web services composition has been
presented. Given an input-output based composition request, the algorithm is able to
generate a complete optimized composition workflow from scratch, using different con-
trol structures defined in a context-free grammar, and optimizing the number of services
and the runpath of the solutions. A full validation has been done for eight different
composition problems coming from four different repositories with 158, 558, 1,000,
and 1,090 services. The results showed that the proposed approach can be used to ef-
fectively generate correct workflow-based compositions using a wide variety of control
constructions. The algorithm can be used to generate solutions on the fly for medium-
sized repositories, as it obtained correct solutions in less than a second. However, for
larger repositories, the amount of computation time required to generate correct solu-
tions becomes prohibitive to be used at runtime, making this technique better suited for
offline optimization of workflows.

2. In Chapter 3, we presented a graph-based algorithm for automatic composition based
on a heuristic search method to extract optimal solutions from a graph of services. We
introduced different optimization techniques to reduce the complexity of the graph and
to detect and prune redundant nodes during the search. The validation with the eight
repositories from Web Service Challenge 2008 showed that the algorithm is capable of
obtaining optimal solutions in all datasets, improving the results of the state-of-the-art.

3. In Chapter 4 we presented a theoretical analysis of service composition in terms of
its dependency with service discovery and we defined a formal integrated graph-based
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composition framework that incorporates the service discovery task as a central activity
in the composition process. We also devised a reference implementation of this frame-
work on the basis of two open-source components, namely iServe and ComposIT. The
reference implementation has been used to empirically study the impact of discovery
and matchmaking on service composition under different conditions. Our empirical
analysis shows that: 1) typical approaches followed by discovery engines cannot serve
as a suitable basis to support efficient service composition as they lead to prohibitive
execution times, and 2) with the adequate interface granularity and indexing, discovery
engines can support highly efficient composition akin to that obtained by the fastest
composition engines without having to assume to local availability and in-memory
preloading of service registries.

4. In Chapter 5 we presented an extension of the graph-based framework to incorporate
QoS optimization. The extension includes new graph optimizations that take into ac-
count the QoS of the services and a hybrid algorithm that combines a local search and
a global search to achieve a good tradeoff between computation time and optimality.
Results obtained with the Web Service Challenge 2009-2010 datasets showed that the
combination of graph optimizations with a local-global search strategy performed better
than the state-of-the-art, as it obtained solutions with less services and optimal end-to-
end QoS.

As a future work, there is a number of research directions that we think are worth to
explore to further improve the work presented in this dissertation:

• Improvement of the hybrid algorithm by reusing information of the local search into the

global search. The information gathered by the local search algorithm can be used to
collect useful information about the structure of the search space. This information can
be used to detect dead-ends or sub-optimal paths that can be pruned lately by the global
search algorithm.

• Support for complex end-to-end QoS constraints. Users may prefer solutions that are
good enough for their needs rather than just optimal solutions. These solutions can be
expressed by enforcing global constraints on the quality attributes of the composition.
For example, an user may be consider a good solution one that meets responseTime≤
100 AND throughput > 1500. Simple QoS constraints can be currently implemented
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adjusting the QoS bounds used by the hybrid algorithm. These bounds can be used to
prune those services (or combinations of services) that exceed a certain threshold. More
complex QoS constraints involving many simultaneous QoS attributes would require
the use of more advanced techniques typically used to solve Constraint Satisfaction
Problems (CSPs). However, since the proposed framework is graph-based, any kind of
graph-based CSP method can be naturally introduced to allow more advanced constraint
handling.

• Multiobjective optimization. One of the main problems in service composition is how
to generate optimal compositions when each service is associated with many different
QoS attributes. One strategy that can be adopted is to combine all the attributes into
a single objective function (or utility function) through a linear combination of the
weighted attributes. We have already demonstrated that this approach can be used to
extract good suboptimal solutions from the composition graph [97]. However, there are
some limitations in this approach. On one hand, the use of custom weights to modulate
the importance of each QoS attribute is hard to adjust by hand, since 1) weights are
too fine-grained for an user to model the importance of each attribute and 2) small
changes in the weights can drastically affect the overall quality of the solutions that the
algorithm can obtain. On the other hand, there is usually no single optimal solution but
many different non-dominated solutions that are better in some attributes but worse in
others. An interesting alternative is to integrate multiobjective optimization algorithms
to generate the full non-dominated Pareto set of solutions and let the user pick the one
that better fits his needs.

• Support of world-altering services with explicit preconditions and effects. The current
composition framework does not include preconditions and effects as it is focused on
information-providing services, i.e., it only uses the information of inputs and outputs
to create compositions. This limits the type of compositions that can be generated. For
example, a SellerService used to sell items and process electronic payments is a
type of a world-altering service that may require some preconditions related to the state
of the world for its invocation (a valid credit card with enough money) and also may
produce some effects that alter the current state of the world (the credit card is charged
and the number of available items changes). We plan to extend the current framework
to support also the composition of world-altering services with explicit preconditions
and effects.
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