24 research outputs found

    Adaptive Transmission Power Level with Vehicle Speed Approximation of Density for VANET Congestion Control

    Get PDF
    Vehicles travelling and communicating with each other and infrastructure is the basis of the future of vehicular transportation. There are many possible applications of communication in a vehicular network. One of the more important applications is for safety. Safety messages exchanged between vehicles can possibly be life-saving. However, if such messages are not received in a timely or reliable manner, a safety application’s effectiveness could suffer. As such, network congestion control is a popular topic in vehicular networks. Various methods of controlling the message transmission rate and power have been explored to-date. In this thesis we propose an algorithm which manipulates the transmission power based on a density estimation derived from the vehicle’s driving speed, and compare it to methods observing only speed, only density, or other factors. Analysis of the results was done through simulation software. Results showed that the proposed algorithm reduced symptoms of channel congestion at least as effectively as the related density-based algorithm, and much better than using no congestion control algorithm at all. This thesis also adds “relevance” as a new measurement of performance by observing the proportion of packets received from certain distances at each vehicle

    Design and Analysis of An Improved AODV Protocol Based on Clustering Approach for Internet of Vehicles (AODV-CD)

    Get PDF
    The Internet of Vehicles (IoVs) has become a vital research area in order to enhance passenger and road safety, increasing traffic efficiency and enhanced reliable connectivity. In this regard, for monitoring and controlling the communication between IoVs, routing protocols are deployed. Frequent changes that occur in the topology often leads to major challenges in IoVs, such as dynamic topology changes, shortest routing paths and also scalability. One of the best solutions for such challenges is “clustering”. This study focuses on IoVs’ stability and to create an efficient routing protocol in dynamic environment. In this context, we proposed a novel algorithm called Cluster-based enhanced AODV for IoVs (AODV-CD) to achieve stable and efficient clustering for simplifying routing and ensuring quality of service (QoS). Our proposed protocol enhances the overall network throughput and delivery ratio, with less routing load and less delay compared to AODV. Thus, extensive simulations are carried out in SUMO and NS2 for evaluating the efficiency of the AODV-CD that is superior to the classic AODV and other recent modified AODV algorithms.

    Design and Analysis of An Improved AODV Protocol Based on Clustering Approach for Internet of Vehicles (AODV-CD)

    Get PDF
    The Internet of Vehicles (IoVs) has become a vital research area in order to enhance passenger and road safety, increasing traffic efficiency and enhanced reliable connectivity. In this regard, for monitoring and controlling the communication between IoVs, routing protocols are deployed. Frequent changes that occur in the topology often leads to major challenges in IoVs, such as dynamic topology changes, shortest routing paths and also scalability. One of the best solutions for such challenges is “clustering”. This study focuses on IoVs’ stability and to create an efficient routing protocol in dynamic environment. In this context, we proposed a novel algorithm called Cluster-based enhanced AODV for IoVs (AODV-CD) to achieve stable and efficient clustering for simplifying routing and ensuring quality of service (QoS). Our proposed protocol enhances the overall network throughput and delivery ratio, with less routing load and less delay compared to AODV. Thus, extensive simulations are carried out in SUMO and NS2 for evaluating the efficiency of the AODV-CD that is superior to the classic AODV and other recent modified AODV algorithms.

    An efficient broadcasting routing protocol WAODV in mobile ad hoc networks

    Get PDF
    Information broadcasting in wireless network is a necessary building block for cooperative operations. However, the broadcasting causes increases the routing overhead. This paper brings together an array of tools of our adaptive protocol for information broadcasting in MANETs. The proposed protocol in this paper named WAODV (WAIT-AODV). This new adaptive routing discovery protocol for MANETs, lets in nodes to pick out a fantastic motion: both to retransmit receiving request route request (RREQ) messages, to discard, or to wait earlier than making any decision, which dynamically confgures the routing discovery feature to decide a gorgeous motion through the usage of neighbors’ knowledge. Simulations have been conducted to show the effectiveness of the using of techniques adaptive protocol for information broadcasting RREQ packet when integrated into ad hoc on-demand distance vector (AODV) routing protocols for MANET (which is based on simple flooding)

    Data Communication in Internet of Things: Vision, Challenges and Future Direction

    Get PDF
    Ubiquitous technologies based heterogeneous networks has opened a new paradigm of technologies, which are enabled with various different objects called Internet of things (IoT). This field opens new door for innovative and advance patterns with considerable potential advantages in the shape of plethora of monitoring and infotainment applications around us. Data communication is one of the significant area of research in IoT due to its diverse network topologies, where diverse gadgets and devices have integrated and connected with each other. In order to communicate among devices and users, routing should be relible, secure and efficient. Due to diverse and hetrogenous netwok environment, the most of the existing routing solutions do not provide all quality of services requirement in the network. In this paper, we discuss the existing routing trend in IoT, vision and current challenges. This paper also elaborates the technologies and domains to drive this field for future perspectives. The paper concludes with discussion and main points for new researchers in terms of routing to understand about current situation in IoT

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    LS-AODV: A ROUTING PROTOCOL BASED ON LIGHTWEIGHT CRYPTOGRAPHIC TECHNIQUES FOR A FANET OF NANO DRONES

    Get PDF
    With the battlespace rapidly shifting to the cyber domain, it is vital to have secure, robust routing protocols for unmanned systems. Furthermore, the development of nano drones is gaining traction, providing new covert capabilities for operators at sea or on land. Deploying a flying ad hoc network (FANET) of nano drones on the battlefield comes with specific performance and security issues. This thesis provides a novel approach to address the performance and security concerns faced by FANET routing protocols, and, in our case, is specifically tailored to improve the Ad Hoc On-Demand Distance Vector (AODV) routing protocol. The proposed routing protocol, Lightweight Secure Ad Hoc On-Demand Distance Vector (LS-AODV), uses a lightweight stream cipher, Trivium, to encrypt routing control packets, providing confidentiality. The scheme also uses Chaskey-12-based message authentication codes (MACs) to guarantee the authenticity and integrity of control packets. We use a network simulator, NS-3, to compare LS-AODV against two benchmark routing protocols, AODV and the Optimized Link State Routing (OLSR) protocol, in order to gauge network performance and security benefits. The simulation results indicate that when the FANET is not under attack from black-hole nodes, LS-AODV generally outperforms OLSR but performs slightly worse than AODV. On the other hand, LS-AODV emerges as the protocol of choice when a FANET is subject to a black-hole attack.ONROutstanding ThesisLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Enhancing the VANET Network Layer

    Get PDF
    The aim of this thesis is to examine existing VANET network layer functionality and to propose enhancements to the VANET network layer to facilitate vehicular (V2X) communication. This thesis proposes three enhancements to the VANET network layer which address many of the issues with V2X communication, these enhancements are: a geographic overlay allowing vehicles to localize themselves; an IPv6 addressing strategy which embeds positional information within an IP address allowing for location based routing; and finally a novel position based routing protocol which has two primary advantages over existing protocols, firstly removing unnecessary overhead information and control communication, and secondly support for multiple types of V2X communication models. The simulation results show that the proposed enhancements are well suited in low and medium vehicular density environments. Based on the observed behaviors the author recommends further modification and study of position based routing protocols

    Implementasi Pemilihan Forwarding Node yang Dinamis pada Ad Hoc on Demand Distance Vector (AODV) Berdasarkan Threshold Jumlah Active Route Pada Routing Table pada VANETS

    Get PDF
    Vehicular Ad hoc Networks (VANETs) merupakan salah satu teknologi yang banyak dikembangkan di berbagai Negara. Fokus utama penelitian VANETs adalah routing protocol. Ada banyak routing protocol yang dapat diimplementasikan pada VANETs salah satunya adalah Ad-Hoc On Demand Distance Vector (AODV). AODV merupakan salah satu routing protocol yang termasuk dalam klasifikasi reactive routing protocol. Sebuah routing protocol yang hanya akan membuat rute ketika ada paket yang ingin dikirim. Pada Tugas Akhir ini akan dilakukan modifikasi pada proses forwarding node yang dinamis pada route discovery berdasarkan jumlah threshold pada active route pada routing table, yaitu dengan cara mengeliminasi jumlah forwarding node yang bertugas untuk mengirim ulang (re-broadcast) RREQ dengan batas Threshold active route pada routing table. Hal ini dilakukan agar dapat meningkatkan kinerja protokol AODV untuk mencari rute yang stabil dengan cara memodifikasi beberapa bagian dari mekanisme pengiriman paket RREQ. . Modifikasi yang dilakukan akan menghasilkan routing overhead dan forwarded route request yang lebih kecil daripada routing protocol AODV yang asli. Pada tugas akhir ini, performa pada routing protocol AODV yang telah dimodifikasi menghasilkan performa yang lebih bagus. Dibuktikan dengan skenario real yang menghasilkan peningkatan rata-rata packet delivery ratio sebesar 1.65%, rata-rata penurunan routing overhead sebesar 6.84%, rata-rata penurunan end to end delay sebesar 67.10%, dan juga rata-rata penurunan forwarded route request sebesar 70.74%. ================================================================================================ Vehicular Ad Hoc Network (VANET) is one technology that has been developed in various countries. The main focus of research VANET is a routing protocol efficiency. There are many routing protocol on VANETs, one of them is Ad-Hoc On Demand Distance Vector (AODV). AODV is classified to reactive routing protocol. A routing protocol that only make the route when there are pakets to be sent. In this final project, modification will be made in forwarding node process on AODV routing protocol based on the number of threshold on active route in routing table. By looking at the number of neighbor node and the number of routing table of each node, and then if the number of neighbor nodes and the number of routing table less than threshold, the node becomes a forwarding node and the node will rebroadcast the packet. This is done to improve the performance of the AODV routing protocol to find a stable route by modifying some parts of the RREQ packet delivery mechanism. The evaluation shows that the performance of the modified protocol has a better result than the original routing protocol AODV.. It is proven that in real scenario, there is an enhancement of average packet delivery ratio by 1.65%, reduction of average routing overhead by 6.84%, reduction of average end to end delay by 67.10% and reduction of average forwarded route request by 70.74
    corecore