7,911 research outputs found

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-Bot®3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe

    Personalization framework for adaptive robotic feeding assistance

    Get PDF
    The final publication is available at link.springer.comThe deployment of robots at home must involve robots with pre-defined skills and the capability of personalizing their behavior by non-expert users. A framework to tackle this personalization is presented and applied to an automatic feeding task. The personalization involves the caregiver providing several examples of feeding using Learning-by- Demostration, and a ProMP formalism to compute an overall trajectory and the variance along the path. Experiments show the validity of the approach in generating different feeding motions to adapt to user’s preferences, automatically extracting the relevant task parameters. The importance of the nature of the demonstrations is also assessed, and two training strategies are compared. © Springer International Publishing AG 2016.Peer ReviewedPostprint (author's final draft

    A 3D Face Modelling Approach for Pose-Invariant Face Recognition in a Human-Robot Environment

    Full text link
    Face analysis techniques have become a crucial component of human-machine interaction in the fields of assistive and humanoid robotics. However, the variations in head-pose that arise naturally in these environments are still a great challenge. In this paper, we present a real-time capable 3D face modelling framework for 2D in-the-wild images that is applicable for robotics. The fitting of the 3D Morphable Model is based exclusively on automatically detected landmarks. After fitting, the face can be corrected in pose and transformed back to a frontal 2D representation that is more suitable for face recognition. We conduct face recognition experiments with non-frontal images from the MUCT database and uncontrolled, in the wild images from the PaSC database, the most challenging face recognition database to date, showing an improved performance. Finally, we present our SCITOS G5 robot system, which incorporates our framework as a means of image pre-processing for face analysis

    Adaptive Human-Aware Robot Navigation in Close Proximity to Humans

    Get PDF
    For robots to be able coexist with people in future everyday human environments, they must be able to act in a safe, natural and comfortable way. This work addresses the motion of a mobile robot in an environment, where humans potentially want to interact with it. The designed system consists of three main components: a Kalman filter-based algorithm that derives a person's state information (position, velocity and orientation) relative to the robot; another algorithm that uses a Case-Based Reasoning approach to estimate if a person wants to interact with the robot; and, finally, a navigation system that uses a potential field to derive motion that respects the person's social zones and perceived interest in interaction. The operation of the system is evaluated in a controlled scenario in an open hall environment. It is demonstrated that the robot is able to learn to estimate if a person wishes to interact, and that the system is capable of adapting to changing behaviours of the humans in the environment

    Learning visual docking for non-holonomic autonomous vehicles

    Get PDF
    This paper presents a new method of learning visual docking skills for non-holonomic vehicles by direct interaction with the environment. The method is based on a reinforcement algorithm, which speeds up Q-learning by applying memorybased sweeping and enforcing the “adjoining property”, a filtering mechanism to only allow transitions between states that satisfy a fixed distance. The method overcomes some limitations of reinforcement learning techniques when they are employed in applications with continuous non-linear systems, such as car-like vehicles. In particular, a good approximation to the optimal behaviour is obtained by a small look-up table. The algorithm is tested within an image-based visual servoing framework on a docking task. The training time was less than 1 hour on the real vehicle. In experiments, we show the satisfactory performance of the algorithm
    corecore