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Abstract— This paper presents a new method of learning visual
docking skills for non-holonomic vehicles by direct interaction
with the environment. The method is based on a reinforcement
algorithm, which speeds up Q-learning by applying memory-
based sweeping and enforcing the “adjoining property”, a fil-
tering mechanism to only allow transitions between states that
satisfy a fixed distance. The method overcomes some limitations
of reinforcement learning techniques when they are employed
in applications with continuous non-linear systems, such as car-
like vehicles. In particular, a good approximation to the optimal
behaviour is obtained by a small look-up table. The algorithm
is tested within an image-based visual servoing framework on a
docking task. The training time was less than 1 hour on the real
vehicle. In experiments, we show the satisfactory performance of
the algorithm.

I. I NTRODUCTION

Intelligent vehicles should exhibit an autonomous be-
haviour, learning from experience through interaction with
the environment. Furthermore, they should learn on-line and
update their internal dynamic models to maximize their short-
term capabilities under changing conditions (e.g. terrain con-
ditions, battery level, etc.). Most of the autonomous vehicles
we can find in industry today follow a strict itinerary with
a very limited interaction with the environment. In fact, the
environment has been thoroughly adapted to the vehicles,
evidencing the lack of intelligence in current systems.

In this paper, we present a generic approach for learning
navigation of non-holonomic vehicles by visual interaction
with the environment. The approach requires no calibration
or geometric models, in contrast to conventional analytical
solutions. Furthermore, the learned behaviour is robust to
perturbations and noise.

The new algorithm is tested on a docking task for a non-
holonomic autonomous vehicle, in which the car has to move
towards a landmark located in the environment, docking just
in front the landmark at a particular position and orientation
(Fig. 7). In order to perceive the environment only an image
sensor is used in this work, so we assume that there are no
obstacles between the landmark and the vehicle, which can be
easily detectable and avoidable employing range sensors (i.e.
the laser mounted at the front of the vehicle).

The proposed algorithm speeds up the conventionalQ-
learning technique by applying memory-based sweeping [1]
and reducing the number of allowed state transitions by en-
forcing the “adjoining property” [2], [3], a technique from the
field of optimal control. This technique exploits the fact that
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Fig. 1. The autonomous vehicle employed for the experiments.

in robotic applications, continuous sensory variables (interval
numbers) are quantized into discrete states, where the natural
ordering of states is preserved (ordinal numbers). While stan-
dardQ-learning assumes unordered states (nominal numbers),
the adjoining property assumes that the states are ordered and
allows only transitions between neighbouring states.

Visual servoing is traditionally decomposed into position-
based VS, which operates in the 3D Cartesian reference
frame, and image-based VS, which operates in the 2D image
plane [4], [5], [6]. An image-based visual servoing method is
used, where the control law is computed directly from visual
features, without explicit pose estimation.

In our approach, a separate tracking behaviour is used to
control the vehicle’s pan camera, in order to keep the object in
the centre of the image at all times while the vehicle is moving.
A minimal number of state variables are extracted from the
image (concerning the apparent slope of the object edge) and
the position of the camera (concerning the pan angle). These
state variables are then used in the input to the motor controller
of the autonomous vehicle.

In previous work [7], we tested our approach for learning
forward motion on an Activmedia Peoplebot robot in a docking
scenario. Here we extend this approach to a non-holonomic
car-like vehicle, generalizing the learning with different con-
trollers for forward and backward motion.

The rest of this paper is organized as follows. After a
brief review of related work, Section II describes the vehicle
platform. In section III we present some basic concepts of
reinforcement learning. Section IV provides a brief introduc-
tion to the applied Cell Mapping techniques. Implementational
aspects are addressed in section V and tested in Sections VI
and VII through simulation and experimentation on a real
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vehicle. Conclusions and suggestions for future work appear
in section VIII.

A. Related Work

In principle, a robot could learn any task from scratch
by reinforcement learning (RL) given enough time [8]. In
practice, however, this time is too high for most complex tasks,
and the designer must find some method to incorporate prior
knowledge into the learning process.

Smart and Kaelbling addressed the practical issues of get-
ting Q-learning to work on a real mobile robot [9]. The
tasks investigated were wall following and obstacle avoidance.
Learning was carried out in two phases: first, with the control
policy being provided by a pre-programmed controller or a
human with a joystick, and second, using the learned policy
of the robot while RL continues (“fine tuning”). The tasks
were also simplified by controlling only a single variable, the
rotational velocity of the robot, while the translational velocity
was controlled by a hand-coded algorithm.

Gaskett et al. [6] introduced a RL-based approach for
training a mobile robot to wander (obstacle avoidance) and
pursue a target using real-time vision. This was implemented
in a subsumption architecture, such that target pursuit takes
over from wandering when a valid target is detected. They
used Advantage Learning to improve the optimal behaviour of
Q-learning and a neural network to map the states to actions.
Target pursuit was realised by visual servoing. This is simpler
than our robot docking task because it requires servoing to a
position but not to a particular orientation.

Weber et al. [5] used a neural network based approach to
solve the docking problem on a holonomic robot by reinforce-
ment learning. The learning was done in simulation, limiting
the generality of the approach to tasks and environments that
can be simulated accurately. In addition, in this work the
pan-tilt mechanism was not exploited, which means that their
visual controller is only valid when the robot is near to the
object (40–50 cm). Our controller is valid for much longer
distances of 4–5 m, only limited by the camera resolution.

In our previous work [7], we tested our approach for
learning forward motion on an Activmedia Peoplebot robot
in a docking scenario. In experiments we compared the new
reinforcement learning algorithm withQ-learning, and also
with a scheme using the linear controller as a bias to accelerate
reinforcement learning. By analysis of the controllability and
docking time, we found that the biased learning system
improved on the performance of the linear controller, while
requiring much less training than unbiased learning (less than
1 hour on the real vehicle).

II. VEHICLE MODEL

The reinforcement learning controllers were implemented
on the nonholonomic vehicle shown in Fig. 1. The vehicle is
equipped with an array of infrared sensors, laser and a pan-
tilt camera (see Fig. 7). The vehicle is autonomous, using a
microcontroller MPC555 to process all sensors and the RL
controllers. In this work, only the vision sensor was used

to estimate the state variables. We used a low resolution
CMOS sensor (CMUcam2+) mounted on a turret. The range
of the pan and tilt angles are±100 degrees and±25 degrees,
respectively.

In order to simulate the car-like motion we will employ
a simple model, although this model will not be used by
the algorithm to find the optimal system behaviour. The state
space formulation [10] of the vehicle model we will use is the
following:

ẋ = vT cos θ cos ς, (1)

ẏ = vT sin θ cos ς, (2)

θ̇ = vT sin ς. (3)

where vT is the translational velocity andς is the steering
angle of the vehicle.

The distance between the reference point(x, y) and the
middle point of the driving wheels is0.32 m. The orientation
of the car is denoted byθ. The two controls of a car are
the velocityvT of the driving wheels and the steering angle
ς. It is important to note that the state equations are only
used in the simulations to describe the robot trajectories. In
the experiments, the model is built on-line by recording the
transitions between states and the immediate rewards.

A. The state space variables

In many vision-based manipulation applications, informa-
tion has to be extracted from the image concerning the
position, orientation, size and shape of the object. In our
case, it is not necessary to calculate a 3D pose estimate, it
is sufficient to use a 2D pose estimate to correct the pan-tilt
angles in order to keep the mark in the centre of the image.
Instead of using the 2D position (relativex, y values in the
image) as state variables, we use the pan angle of the camera
and the orientation of the mark with respect to the vehicle.

Although the state space of the system is three-dimensional,
the visual docking behaviour can be specified in a two-
dimensional state space. In this case, the problem is simplified
by fixing the value of vT . Then, the task is reduced to
controlling the steering angle of the vehicle(ς) in a two-
dimensional state space(β, α), whereα is the pan angle of
the camera andβ is the relative orientation of the vehicle with
respect to the object. For the docking task, the goal state in this
relative coordinate system is the origin. In our reinforcement
learning experiments, we allow only three possible actions in
each state (-20, 0, 20 deg).

B. Estimating the state variables on the real vehicle

The state variables(β, α) can be estimated through the
variables(m, pan) respectively, which can be obtained from
the image sensor. The variablem corresponds to the slope
of the bottom edge of the mark in the image (see Fig. 2).
The pan angle is valid if the mark is kept in the centre of
the image. For reinforcement learning on the real robot,β
is estimated usingarctan(m), and α is estimated using the



Fig. 2. Left: raw image. Right: visualisation of the image processing (87×143
pixels). The yellow line with the red point determines the centre of the
landmark. The red line indicates the orientation of the landmark with respect
to the vehicle.

Fig. 3. Centred window of 87×30 pixels. The green points are used to
estimate the orientation of the landmark with respect to the vehicle.

pan angle. The continuous state variables are converted into
discrete states (cells) by uniform quantization (see section IV).

For the success of the docking behaviour, it is essential to
track the landmark at all times while the vehicle is moving.
For both the pan and tilt angles, Proportional-Derivative (PD)
controllers are employed in order to keep the mark in the
centre of the image [11]. The parameters of the controller
were adjusted to avoid overshoot if the object or the vehicle
changes its position suddenly.

The image processing employs two levels of image reso-
lution, which are shown in Figs. 2 and 3. When the docking
task starts the vehicle searches for the landmark, scanning the
environment by turning the turret. In this stage, it acquires
full images with the standard resolution (87×143 pixels).
After image equalization, Fig. 2 shows the landmark detection
by matching the image with a pattern (cyan lines) and then
extracting the median (yellow line). The landmark orientation
is obtained applying a line fitting algorithm (red line). When
the landmark is situated at the centre of the image, the image
resolution is reduced by selecting a window of 87×30 pixels,
as shown in Fig. 3. In this way, the frame rate is increased to

5 fps. In this case, the image processing detects the centre of
the bottom line and its slope (green point).

III. R EINFORCEMENTLEARNING

Reinforcement learning methods only require a scalar re-
ward (or punishment) to learn to map situations (states) to
actions [1]. As opposed to supervised learning, they do not
require a teacher to acquire the optimal behaviour, they only
need to interact with the environment learning from experi-
ence. The knowledge is saved in a look-up table that contains
an estimation of the accumulated reward to reach the goal
from each situation or state. The objective is to find the actions
(policy a = π(s)) that maximize the accumulated reward in
each state. Q-learning is one of the most popular reinforcement
learning methods, since with a simple formulation it can
address model-free optimization problems. The accumulated
reward for each state-action pairQ(s, a) is updated by the
one-step equation

∆Q(s, a) = α (r + γmaxa′Q(s′, a′)−Q(s, a)) (4)

whereQ is the expected value of performing actiona in states,
r is the reward,α is a learning rate which controls convergence
andγ is the discount factor. The discount factor makes rewards
earned earlier more valuable than those received later. If the
reward function is proper [12], the discount factor can be
omitted (γ = 1). The actiona with highestQ value at state
s is the best policy up to instantt, which approximates the
optimal behaviour whent→ 0:

a∗ = π∗(s) = arg maxa′Q(s, a′) (5)

In applications with real systems Q-learning can spend a
very long time making hundred of thousands of trials to
approximate the optimal behaviour. To speed up the learning it
is necessary to incorporate some planning. Prioritized sweep-
ing [13] and Dyna-Q include a search procedure to simulate
past real experiences in a specified order. In our simulations we
will combine Q-learning with the search mechanism proposed
in the new RL algorithm.

IV. A DJOINING CELL MAPPING

Q-learning was conceived for discrete state and action
spaces, where the state space is not necessarily metric. In
robotic applications the state space is continuous, so it is
mandatory to discretize the state space into cells. The inherent
discretization errors can produce a poor approximation to
the optimal behaviour in complex nonlinear systems such as
mobile robots. Cell Mapping techniques were conceived in
order to deal with the discretization problems in an efficient
way.

Cell-to-cell mapping methods are based on a discretization
of the state variables of the system, defining a partition of
the state space into cells [14]. A cell-to-cell mapping can be
derived from the dynamic evolution of the system. In [14] a
cell mapping application for the design of optimal controllers



Initialize Q(s, a) andModel(s, a)
x← current state
s← cell(x)
IF s = sink or goal
THEN reverse(x)
ELSE a← policy(s)

Execute actiona
Observe resultant statex′ and rewardr
IF Dk-adjoining(x, x′)
THEN Model(s, a)← x′, r

FOR all (s, a), repeat N times:
x̄′, r̄ ←Model(s, a)
s′ ← cell(x̄′)
UpdateQ table using Eqn. 4

UNTIL training terminated

Fig. 4. Reinforcement Learning Algorithm.

is proposed. This method (CSCM), based on the Simple
Cell Mapping (SCM) technique, carries out a discretization
of both state and control variables and uses a cost function
to specify the desired optimality criterion. In [2], [3] the
CACM algorithm for optimal control of highly nonlinear
systems is proposed. This method is based on the Adjoining
Cell Mapping (ACM) technique, whose central concept is the
creation of a cell mapping where only transitions between
adjoining cells are allowed [15].

The adjoining property states that the distanceDk between
the current cell and the previous cell is equal to some integer
valuek equal or greater than 1. For our RL controller, we will
define the adjoining property in terms of the continuous states
x andx′ as follows:

Dk(x,x′) = max
j
|
xj − x′

j

hj
| = k, (6)

wherexj indicates thej-th component of the statex andhj

is the cell size of thej-th dimension.
In Q-learning the transitions between states are evaluated

at fixed sample times, while with our RL controller the
transitions have to satisfy the adjoining distance condition
in order to be evaluated. By appropriate selection of this
distance with respect to the number of cells, it is possible
to minimize quantization effects and better approximate the
optimal behaviour of the system.

V. THE RL AGORITHM

The RL algorithm that implements the concepts described
above is presented in Fig. 4. The state is represented in the
algorithm by a real valued vectorx, which is converted to
the discrete states (integer index) by the functioncell(). In
our experiments, uniform discretization was used with 21 cells
per variable in simulation and 15 cells on the real vehicle (see
Table I for full details of the RL parameters). The function
Dk−adjoining() is used to determine whether the adjoining
property has been satisfied. The indexs is used to update

State variables: 2. x1: -80 ≤ β ≤ 80◦.
(21× 21 cells) x2: -100≤ α ≤ 100◦.
Objective state: (α, β) = (0◦, 0◦)
Control variables: 1. (u1: -20 ≤ ς ≤ 20◦.)
(3 actions)
Sampling time: Ts: 0.1 sec.
Reward: r = 100 if goal

r = -20 if sink
r = -n (Ts) otherwise

Adjoining distance: D-2

TABLE I

PARAMETERS FOR THERL ALGORITHM .

the Q-table, andx is used to update the functionmodel().
Since the controller uses noisy data from an image sensor, the
functionmodel() estimates the state of the system by filtering
before storing it. In our experiments an average filter was used.

For the docking behaviour the aim of the controller is to
move the vehicle from any initial position inside the region
of interest to the object position through a minimum-time
trajectory. A trial finishes when the vehicle moves outside
of the state space (sink cell) or when it enters in the goal.
Then, the functionreverse() moves the car backward, using
its vision system to keep the object in the centre of the image,
until some starting position inside the state space is reached.
The functionpolicy() selects an action for each transition of
the system. The RL controller selects the actions randomly
to explore most of the state space during training. Other
alternatives such as anε-greedy or softmax exploration policy
do not introduce significant benefits in this application, since
they reduce the exploration of peripheral states, thus delaying
the growth of the controllability region. In the update rule
(Eqn. 4), the learning rateα is variable, falling inversely with
the number of transitions and the discount factor is fixed to
γ = 1.

The docking task is symmetric in the state and action spaces,
i.e., the actions taken when the robot is to the right of the
object are symmetric with respect to the actions on the left
side. Each cell has amirror cell that satisfies this property.
For each transition, we exploit this symmetry by also updating
the model and theQ-factor for the mirror cell.

VI. D OCKING BEHAVIOUR

The docking behaviour has been implemented using the RL
algorithm described in the former section. Two improvements
have been introduced to the algorithm:

First, in order to speed up the learning time the function
policy() combines random actions with the action provided
by a simple linear controller that follows the equation:VR =
Kbβ + Kppan, where β and pan are the state variables
measured on the vehicle. The parameter values used in our
experiments wereKb = 0.3 andKp = 0.5.

Second, the vehicle should move forward and backward to
increase the region of controllability. For that reason, during



Fig. 5. State space (β,α) of the vehicle behaviour.Top: Forward motion.
Bottom: Backward motion

the training phase two RL controllers are built: one for forward
motion and the other for backward motion. Both controllers
are built using the same functionmodel(), so the learning
time remains the same. These controllers could later be used
by a three-dimensional (3D) RL controller including the state
variable distance. This 3D controller would learn to select
the optimal position where the 2D controllers (forward and
backward motion) are switched. In this way, the path planning
can be improved using a control architecture with two levels
of abstraction. Fig. 5 shows the state space of both con-
trollers. We can observe that the controllers approximate the
time-optimal behaviour: bang-bang control with the classical
switching curvein the centre. Finally, Fig. 6 shows some
trajectories of the proposed controller. We can see that the

Fig. 6. Some trajectories of the vehicle with initial orientationθ = π
2

.

vehicle is able to reach the goal using forward and backward
motion.

VII. ROBOTIC EXPERIMENTS

In this section we present the experiments carried out on
the real vehicle described in section II. The first step was
to train the vehicle in a square area of2.8 × 2.8 m2 with
landmarks at the four sides. Thus, the functionreverse() was
simply to move the vehicle backwards, since there is always
some landmark in the field of view. The training time to
acquire a good approximation to the time-optimal behaviour
for both forward and backward controllers was 60 minutes.
Fig. 7 shows the docking behaviour on the real vehicle. In
this trajectory, the car moves to the landmark turning to the
left, but the steering angle (only 20 degrees) is not enough
to reach the goal in a single trajectory. Thus, when the car
reaches the minimum distance threshold (measured by the
landmark size in pixels), the controller switches to backward
motion. The aim of this controller is to centre the vehicle
as it is going backwards. Finally, when the car goes beyond
a second distance threshold, the controller switches again to
forward motion reaching the goal. The use of both forward
and backward controllers increases the system controllability,
only limited by the pan angle. Furthermore, the visual docking
can be done from a long distance (4–5 meters, only limited
by the image resolution) since the controller does not have
any distance restriction for forward motion. The experimental
results show that the reinforcement learning controllers have
been implemented successfully on the autonomous vehicle.

VIII. C ONCLUSION

We presented a solution for vehicle docking using rein-
forcement learning in a visual servoing framework. A new RL



Fig. 7. Sequence of images showing the docking behaviour learned on the non-holonomic vehicle.

algorithm was presented that is better suited to real vehicles
that operate in continuous state spaces (by exploiting the
adjoining property and model-based sweeping). The approach
requires no calibration or geometric models, and the reactive
behaviour is robust to perturbations and noise. The closed
loop solution is based on a relative coordinate system: no
global reference frame is required, so the system is robust
to positioning errors, e.g., due to odometry drift.

In future research, we intend to extend the approach to more
complex tasks and robot vehicles with higher dimensional state
and action spaces.
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