3,019 research outputs found

    Inferring efficient operating rules in multireservoir water resource systems: A review

    Full text link
    [EN] Coordinated and efficient operation of water resource systems becomes essential to deal with growing demands and uncertain resources in water-stressed regions. System analysis models and tools help address the complexities of multireservoir systems when defining operating rules. This paper reviews the state of the art in developing operating rules for multireservoir water resource systems, focusing on efficient system operation. This review focuses on how optimal operating rules can be derived and represented. Advantages and drawbacks of each approach are discussed. Major approaches to derive optimal operating rules include direct optimization of reservoir operation, embedding conditional operating rules in simulation-optimization frameworks, and inferring rules from optimization results. Suggestions on which approach to use depend on context. Parametrization-simulation-optimization or rule inference using heuristics are promising approaches. Increased forecasting capabilities will further benefit the use of model predictive control algorithms to improve system operation. This article is categorized under: Engineering Water > Water, Health, and Sanitation Engineering Water > MethodsThe study has been partially funded by the ADAPTAMED project (RTI2018-101483-B-I00) from the Ministerio de Ciencia, Innovacion Universidades (MICINN) of Spain, and by the postdoctoral program (PAID-10-18) of the Universitat Politecnica de Valencia (UPV).Macian-Sorribes, H.; Pulido-Velazquez, M. (2019). Inferring efficient operating rules in multireservoir water resource systems: A review. Wiley Interdisciplinary Reviews Water. 7(1):1-24. https://doi.org/10.1002/wat2.1400S12471Aboutalebi, M., Bozorg Haddad, O., & Loáiciga, H. A. (2015). Optimal Monthly Reservoir Operation Rules for Hydropower Generation Derived with SVR-NSGAII. Journal of Water Resources Planning and Management, 141(11), 04015029. doi:10.1061/(asce)wr.1943-5452.0000553Ahmad, A., El-Shafie, A., Razali, S. F. M., & Mohamad, Z. S. (2014). Reservoir Optimization in Water Resources: a Review. Water Resources Management, 28(11), 3391-3405. doi:10.1007/s11269-014-0700-5Ahmadi, M., Bozorg Haddad, O., & Mariño, M. A. (2013). Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules. Water Resources Management, 28(1), 131-147. doi:10.1007/s11269-013-0476-zAndreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xAndreu, J., & Sahuquillo, A. (1987). Efficient Aquifer Simulation in Complex Systems. Journal of Water Resources Planning and Management, 113(1), 110-129. doi:10.1061/(asce)0733-9496(1987)113:1(110)Ashbolt, S. C., Maheepala, S., & Perera, B. J. C. (2016). Using Multiobjective Optimization to Find Optimal Operating Rules for Short-Term Planning of Water Grids. Journal of Water Resources Planning and Management, 142(10), 04016033. doi:10.1061/(asce)wr.1943-5452.0000675Ashbolt, S. C., & Perera, B. J. C. (2018). Multiobjective Optimization of Seasonal Operating Rules for Water Grids Using Streamflow Forecast Information. Journal of Water Resources Planning and Management, 144(4), 05018003. doi:10.1061/(asce)wr.1943-5452.0000902Azari, A., Hamzeh, S., & Naderi, S. (2018). Multi-Objective Optimization of the Reservoir System Operation by Using the Hedging Policy. Water Resources Management, 32(6), 2061-2078. doi:10.1007/s11269-018-1917-5Becker, L., & Yeh, W. W.-G. (1974). Optimization of real time operation of a multiple-reservoir system. Water Resources Research, 10(6), 1107-1112. doi:10.1029/wr010i006p01107Bellman, R. E., & Dreyfus, S. E. (1962). Applied Dynamic Programming. doi:10.1515/9781400874651Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust Optimization. doi:10.1515/9781400831050Bessler, F. T., Savic, D. A., & Walters, G. A. (2003). Water Reservoir Control with Data Mining. Journal of Water Resources Planning and Management, 129(1), 26-34. doi:10.1061/(asce)0733-9496(2003)129:1(26)Bhaskar, N. R., & Whitlatch, E. E. (1980). Derivation of monthly reservoir release policies. Water Resources Research, 16(6), 987-993. doi:10.1029/wr016i006p00987Bianucci, P., Sordo-Ward, Á., Moralo, J., & Garrote, L. (2015). Probabilistic-Multiobjective Comparison of User-Defined Operating Rules. Case Study: Hydropower Dam in Spain. Water, 7(12), 956-974. doi:10.3390/w7030956Biglarbeigi, P., Giuliani, M., & Castelletti, A. (2018). Partitioning the Impacts of Streamflow and Evaporation Uncertainty on the Operations of Multipurpose Reservoirs in Arid Regions. Journal of Water Resources Planning and Management, 144(7), 05018008. doi:10.1061/(asce)wr.1943-5452.0000945Bolouri-Yazdeli, Y., Bozorg Haddad, O., Fallah-Mehdipour, E., & Mariño, M. A. (2014). Evaluation of Real-Time Operation Rules in Reservoir Systems Operation. Water Resources Management, 28(3), 715-729. doi:10.1007/s11269-013-0510-1Borgomeo, E., Mortazavi-Naeini, M., Hall, J. W., O’Sullivan, M. J., & Watson, T. (2016). Trading-off tolerable risk with climate change adaptation costs in water supply systems. Water Resources Research, 52(2), 622-643. doi:10.1002/2015wr018164Bozorg-Haddad, O., Azarnivand, A., Hosseini-Moghari, S.-M., & Loáiciga, H. A. (2017). WASPAS Application and Evolutionary Algorithm Benchmarking in Optimal Reservoir Optimization Problems. Journal of Water Resources Planning and Management, 143(1), 04016070. doi:10.1061/(asce)wr.1943-5452.0000716Bozorg-Haddad, O., Karimirad, I., Seifollahi-Aghmiuni, S., & Loáiciga, H. A. (2015). Development and Application of the Bat Algorithm for Optimizing the Operation of Reservoir Systems. Journal of Water Resources Planning and Management, 141(8), 04014097. doi:10.1061/(asce)wr.1943-5452.0000498Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324Brown, C., Ghile, Y., Laverty, M., & Li, K. (2012). Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resources Research, 48(9). doi:10.1029/2011wr011212Brown, C. M., Lund, J. R., Cai, X., Reed, P. M., Zagona, E. A., Ostfeld, A., … Brekke, L. (2015). The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resources Research, 51(8), 6110-6124. doi:10.1002/2015wr017114Cai, X., McKinney, D. C., & Lasdon, L. S. (2001). Piece-by-Piece Approach to Solving Large Nonlinear Water Resources Management Models. Journal of Water Resources Planning and Management, 127(6), 363-368. doi:10.1061/(asce)0733-9496(2001)127:6(363)Cai, X., Vogel, R., & Ranjithan, R. (2013). Special Issue on the Role of Systems Analysis in Watershed Management. Journal of Water Resources Planning and Management, 139(5), 461-463. doi:10.1061/(asce)wr.1943-5452.0000341Cancelliere, A., Giuliano, G., Ancarani, A., & Rossi, G. (2002). Water Resources Management, 16(1), 71-88. doi:10.1023/a:1015563820136Caseri, A., Javelle, P., Ramos, M. H., & Leblois, E. (2015). Generating precipitation ensembles for flood alert and risk management. Journal of Flood Risk Management, 9(4), 402-415. doi:10.1111/jfr3.12203Castelletti, A., Galelli, S., Restelli, M., & Soncini-Sessa, R. (2010). Tree-based reinforcement learning for optimal water reservoir operation. Water Resources Research, 46(9). doi:10.1029/2009wr008898Castelletti, A., Pianosi, F., & Restelli, M. (2013). A multiobjective reinforcement learning approach to water resources systems operation: Pareto frontier approximation in a single run. Water Resources Research, 49(6), 3476-3486. doi:10.1002/wrcr.20295Castelletti, A., Pianosi, F., & Soncini-Sessa, R. (2008). Water reservoir control under economic, social and environmental constraints. Automatica, 44(6), 1595-1607. doi:10.1016/j.automatica.2008.03.003Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian networks in water resource modelling and management. Environmental Modelling & Software, 22(8), 1073-1074. doi:10.1016/j.envsoft.2006.06.001Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian Networks and participatory modelling in water resource management. Environmental Modelling & Software, 22(8), 1075-1088. doi:10.1016/j.envsoft.2006.06.003Celeste, A. B., & Billib, M. (2009). Evaluation of stochastic reservoir operation optimization models. Advances in Water Resources, 32(9), 1429-1443. doi:10.1016/j.advwatres.2009.06.008Celeste, A. B., Curi, W. F., & Curi, R. C. (2009). Implicit Stochastic Optimization for deriving reservoir operating rules in semiarid Brazil. Pesquisa Operacional, 29(1), 223-234. doi:10.1590/s0101-74382009000100011Chandramouli, V., & Raman, H. (2001). Multireservoir Modeling with Dynamic Programming and Neural Networks. Journal of Water Resources Planning and Management, 127(2), 89-98. doi:10.1061/(asce)0733-9496(2001)127:2(89)Chang, L.-C., & Chang, F.-J. (2001). Intelligent control for modelling of real-time reservoir operation. Hydrological Processes, 15(9), 1621-1634. doi:10.1002/hyp.226Chazarra, M., García-González, J., Pérez-Díaz, J. I., & Arteseros, M. (2016). Stochastic optimization model for the weekly scheduling of a hydropower system in day-ahead and secondary regulation reserve markets. Electric Power Systems Research, 130, 67-77. doi:10.1016/j.epsr.2015.08.014Chen, D., Leon, A. S., Fuentes, C., Gibson, N. L., & Qin, H. (2018). Incorporating Filters in Random Search Algorithms for the Hourly Operation of a Multireservoir System. Journal of Water Resources Planning and Management, 144(2), 04017088. doi:10.1061/(asce)wr.1943-5452.0000876Coerver, H. M., Rutten, M. M., & van de Giesen, N. C. (2018). Deduction of reservoir operating rules for application in global hydrological models. Hydrology and Earth System Sciences, 22(1), 831-851. doi:10.5194/hess-22-831-2018Côté, P., & Leconte, R. (2016). Comparison of Stochastic Optimization Algorithms for Hydropower Reservoir Operation with Ensemble Streamflow Prediction. Journal of Water Resources Planning and Management, 142(2), 04015046. doi:10.1061/(asce)wr.1943-5452.0000575Cui, L., & Kuczera, G. (2005). Optimizing water supply headworks operating rules under stochastic inputs: Assessment of genetic algorithm performance. Water Resources Research, 41(5). doi:10.1029/2004wr003517Culley, S., Noble, S., Yates, A., Timbs, M., Westra, S., Maier, H. R., … Castelletti, A. (2016). A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate. Water Resources Research, 52(9), 6751-6768. doi:10.1002/2015wr018253Cunha, M. C., & Antunes, A. (2012). Simulated annealing algorithms for water systems optimization. WIT Transactions on State of the Art in Science and Engineering, 57-73. doi:10.2495/978-1-84564-664-6/04Dariane, A. B., & Momtahen, S. (2009). Optimization of Multireservoir Systems Operation Using Modified Direct Search Genetic Algorithm. Journal of Water Resources Planning and Management, 135(3), 141-148. doi:10.1061/(asce)0733-9496(2009)135:3(141)Das, B., Singh, A., Panda, S. N., & Yasuda, H. (2015). Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy, 42, 527-537. doi:10.1016/j.landusepol.2014.09.012Davidsen, C., Liu, S., Mo, X., Rosbjerg, D., & Bauer-Gottwein, P. (2016). The cost of ending groundwater overdraft on the North China Plain. Hydrology and Earth System Sciences, 20(2), 771-785. doi:10.5194/hess-20-771-2016Ehteram, M., Karami, H., & Farzin, S. (2018). Reservoir Optimization for Energy Production Using a New Evolutionary Algorithm Based on Multi-Criteria Decision-Making Models. Water Resources Management, 32(7), 2539-2560. doi:10.1007/s11269-018-1945-1Eisel, L. M. (1972). Chance constrained reservoir model. Water Resources Research, 8(2), 339-347. doi:10.1029/wr008i002p00339European Commission(2007). Communication from the Commission to the European Parliament and the Council: Addressing the challenge of water scarcity and droughts in the European Union COM(2007) 414 final. Brussels Belgium.European Commission. (2012a). Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions: A Blueprint to Safeguard Europe's Water Resources COM(2012) 673 final. Brussels Belgium.European Commission. (2012b). Communication from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions: Report on the Review of the European Water Scarcity and Droughts Policy COM(2012) 672 final. Brussels Belgium.Fallah-Mehdipour, E., Bozorg Haddad, O., & Mariño, M. A. (2012). Real-Time Operation of Reservoir System by Genetic Programming. Water Resources Management, 26(14), 4091-4103. doi:10.1007/s11269-012-0132-zFazlali, A., & Shourian, M. (2017). A Demand Management Based Crop and Irrigation Planning Using the Simulation-Optimization Approach. Water Resources Management, 32(1), 67-81. doi:10.1007/s11269-017-1791-6Ficchì, A., Raso, L., Dorchies, D., Pianosi, F., Malaterre, P.-O., Van Overloop, P.-J., & Jay-Allemand, M. (2016). Optimal Operation of the Multireservoir System in the Seine River Basin Using Deterministic and Ensemble Forecasts. Journal of Water Resources Planning and Management, 142(1), 05015005. doi:10.1061/(asce)wr.1943-5452.0000571Fu, Q., Li, T., Cui, S., Liu, D., & Lu, X. (2017). Agricultural Multi-Water Source Allocation Model Based on Interval Two-Stage Stochastic Robust Programming under Uncertainty. Water Resources Management, 32(4), 1261-1274. doi:10.1007/s11269-017-1868-2Galelli, S., Goedbloed, A., Schwanenberg, D., & van Overloop, P.-J. (2014). Optimal Real-Time Operation of Multipurpose Urban Reservoirs: Case Study in Singapore. Journal of Water Resources Planning and Management, 140(4), 511-523. doi:10.1061/(asce)wr.1943-5452.0000342Giuliani, M., Castelletti, A., Pianosi, F., Mason, E., & Reed, P. M. (2016). Curses, Tradeoffs, and Scalable Management: Advancing Evolutionary Multiobjective Direct Policy Search to Improve Water Reservoir Operations. Journal of Water Resources Planning and Management, 142(2), 04015050. doi:10.1061/(asce)wr.1943-5452.0000570Giuliani, M., Herman, J. D., Castelletti, A., & Reed, P. (2014). Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management. Water Resources Research, 50(4), 3355-3377. doi:10.1002/2013wr014700Giuliani, M., Li, Y., Castelletti, A., & Gandolfi, C. (2016). A coupled human-natural systems analysis of irrigated agriculture under changing climate. Water Resources Research, 52(9), 6928-6947. doi:10.1002/2016wr019363Giuliani, M., Quinn, J. D., Herman, J. D., Castelletti, A., & Reed, P. M. (2018). Scalable Multiobjective Control for Large-Scale Water Resources Systems Under Uncertainty. IEEE Transactions on Control Systems Technology, 26(4), 1492-1499. doi:10.1109/tcst.2017.2705162Grüne, L., & Semmler, W. (2004). Using dynamic programming with adaptive grid scheme for optimal control problems in economics. Journal of Economic Dynamics and Control, 28(12), 2427-2456. doi:10.1016/j.jedc.2003.11.002Guariso, G., Rinaldi, S., & Soncini-Sessa, R. (1986). The Management of Lake Como: A Multiobjective Analysis. Water Resources Research, 22(2), 109-120. doi:10.1029/wr022i002p00109Gundelach, J., & ReVelle, C. (1975). Linear decision rule in reservoir management and design: 5. A general algorithm. Water Resources Research, 11(2), 204-207. doi:10.1029/wr011i002p00204Guo, X., Hu, T., Zeng, X., & Li, X. (2013). Extension of Parametric Rule with the Hedging Rule for Managing Multireservoir System during Droughts. Journal of Water Resources Planning and Management, 139(2), 139-148. doi:10.1061/(asce)wr.1943-5452.0000241Haddad, O. B., Afshar, A., & Mariño, M. A. (2006). Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization. Water Resources Management, 20(5), 661-680. doi:10.1007/s11269-005-9001-3Hadka, D., Herman, J., Reed, P., & Keller, K. (2015). An open source framework for many-objective robust decision making. Environmental Modelling & Software, 74, 114-129. doi:10.1016/j.envsoft.2015.07.014Haguma, D., & Leconte, R. (2018). Long-Term Planning of Water Systems in the Context of Climate Non-Stationarity with Deterministic and Stochastic Optimization. Water Resources Management, 32(5), 1725-1739. doi:10.1007/s11269-017-1900-6Haguma, D., Leconte, R., & Côté, P. (2018). Evaluating Transition Probabilities for a Stochastic Dynamic Programming Model Used in Water System Optimization. Journal of Water Resources Planning and Management, 144(2), 04017090. doi:10.1061/(asce)wr.1943-5452.0000883Houck, M. H. (1979). A Chance Constrained Optimization Model for reservoir design and operation. Water Resources Research, 15(5), 1011-1016. doi:10.1029/wr015i005p01011Ji, C., Zhou, T., & Huang, H. (2014). Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression. Water Resources Management, 28(9), 2435-2451. doi:10.1007/s11269-014-0610-6Karamouz, M., & Houck, M. H. (1982). Annual and monthly reservoir operating rules generated by deterministic optimization. Water Resources Research, 18(5), 1337-1344. doi:10.1029/wr018i005p01337Karamouz, M., & Houck, M. H. (1987). COMPARISON OF STOCHASTIC AND DETERMINISTIC DYNAMIC PROGRAMMING FOR RESERVOIR OPERATING RULE GENERATION. Journal of the American Water Resources Association, 23(1), 1-9. doi:10.1111/j.1752-1688.1987.tb00778.xKaramouz, M., & Vasiliadis, H. V. (1992). Bayesian stochastic optimization of reservoir operation using uncertain forecasts. Water Resources Research, 28(5), 1221-1232. doi:10.1029/92wr00103Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software, 42, 55-71. doi:10.1016/j.envsoft.2012.12.007Kelman, J., Stedinger, J. R., Cooper, L. A., Hsu, E., & Yuan, S.-Q. (1990). Sampling stochastic dynamic programming applied to reservoir operation. Water Resources Research, 26(3), 447-454. doi:10.1029/wr026i003p00447Keshtkar, A. R., Salajegheh, A., Sadoddin, A., & Allan, M. G. (2013). Application of Bayesian networks for sustainability assessment in catchment modeling and management (Case study: The Hablehrood river catchment). Ecological Modelling, 268, 48-54. doi:10.1016/j.ecolmodel.2013.08.003Kim, T., Heo, J.-H., Bae, D.-H., & Kim, J.-H. (2008). Single-reservoir operating rules for a year using multiobjective genetic algorithm. Journal of Hydroinformatics, 10(2), 163-179. doi:10.2166/hydro.2008.019Koutsoyiannis, D., & Economou, A. (2003). Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems. Water Resources Research, 39(6). doi:10.1029/2003wr002148Kumar, D. N., & Reddy, M. J. (2006). Ant Colony Optimization for Multi-Purpose Reservoir Operation. Water Resources Management, 20(6), 879-898. doi:10.1007/s11269-005-9012-0Nagesh Kumar, D., & Janga Reddy, M. (2007). Multipurpose Reservoir Operation Using Particle Swarm Optimization. Journal of Water Resources Planning and Management, 133(3), 192-201. doi:10.1061/(asce)0733-9496(2007)133:3(192)Kumar, K., & Kasthurirengan, S. (2018). Generalized Linear Two-Point Hedging Rule for Water Supply Reservoir Operation. Journal of Water Resources Planning and Management, 144(9), 04018051. doi:10.1061/(asce)wr.1943-5452.0000964Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2016). Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support under deep uncertainty. Environmental Modelling & Software, 86, 168-183. doi:10.1016/j.envsoft.2016.09.017Labadie, J. W. (2004). Optimal Operation of Multireservoir Systems: State-of-the-Art Review. Journal of Water Resources Planning and Management, 130(2), 93-111. doi:10.1061/(asce)0733-9496(2004)130:2(93)Labadie J. W. Baldo M. &Larson R.(2000).MODSIM: Decision support system for river basin management. Documentation and user manual.Lee, J.-H., & Labadie, J. W. (2007). Stochastic optimization of multireservoir systems via reinforcement learning. Water Resources Research, 43(11). doi:10.1029/2006wr005627Lei, X., Tan, Q., Wang, X., Wang, H., Wen, X., Wang, C., & Zhang, J. (2018). Stochastic optimal operation of reservoirs based on copula functions. Journal of Hydrology, 557, 265-275. doi:10.1016/j.jhydrol.2017.12.038Lerma, N., Paredes-Arquiola, J., Andreu, J., & Solera, A. (2013). Development of operating rules for a complex multi-reservoir system by coupling genetic algorithms and network optimization. Hydrological Sciences Journal, 58(4), 797-812. doi:10.1080/02626667.2013.779777Lerma, N., Paredes-Arquiola, J., Andreu, J., Solera, A., & Sechi, G. M. (2015). Assessment of evolutionary algorithms for optimal operating rules design in real Water Resource Systems. Environmental Modelling & Software, 69, 425-436. doi:10.1016/j.envsoft.2014.09.024Li, Y., Giuliani, M., & Castelletti, A. (2017). A coupled human–natural system to assess the operational value of weather and climate services for agriculture. Hydrology and Earth System Sciences, 21(9), 4693-4709. doi:10.5194/hess-21-4693-2017Lin, N. M., & Rutten, M. (2016). Optimal Operation of a Network of Multi-purpose Reservoir: A Review. Procedia Engineering, 154, 1376-1384. doi:10.1016/j.proeng.2016.07.504Liu, P., Cai, X., & Guo, S. (2011). Deriving multiple near-optimal solutions to deterministic reservoir operation problems. Water Resources Research, 47(8). doi:10.1029/2011wr010998Loucks, D. P. (1970). Some Comments on Linear Decision Rules and Chance Constraints. Water Resources Research, 6(2), 668-671. doi:10.1029/wr006i002p00668Loucks

    A contribution to support decision making in energy/water sypply chain optimisation

    Get PDF
    The seeking of process sustainability forces enterprises to change their operations. Additionally, the industrial globalization implies a very dynamic market that, among other issues, promotes the enterprises competition. Therefore, the efficient control and use of their Key Performance Indicators, including profitability, cost reduction, demand satisfaction and environmental impact associated to the development of new products, is a significant challenge. All the above indicators can be efficiently controlled through the Supply Chain Management. Thus, companies work towards the optimization of their individual operations under competitive environments taking advantage of the flexibility provided by the virtually inexistent world market restrictions. This is achieved by the coordination of the resource flows, across all the entities and echelons belonging to the system network. Nevertheless, such coordination is significantly complicated if considering the presence of uncertainty and even more if seeking for a win-win outcome. The purpose of this thesis is extending the current decision making strategies to expedite these tasks in industrial processes. Such a contribution is based on the development of efficient mathematical models that allows coordinating large amount of information synchronizing the production and distribution tasks in terms of economic, environmental and social criteria. This thesis starts presents an overview of the requirements of sustainable production processes, describing and analyzing the current methods and tools used and identifying the most relevant open issues. All the above is always within the framework of Process System Engineering literature. The second part of this thesis is focused in stressing the current Multi-Objective solution strategies. During this part, first explores how the profitability of the Supply Chain can be enhanced by considering simultaneously multiple objectives under demand uncertainties. Particularly, solution frameworks have been proposed in which different multi-criteria decision making strategies have been combined with stochastic approaches. Furthermore, additional performance indicators (including financial and operational ones) have been included in the same solution framework to evaluate its capabilities. This framework was also applied to decentralized supply chains problems in order to explore its capabilities to produce solution that improves the performances of each one of the SC entities simultaneously. Consequently, a new generalized mathematical formulation which integrates many performance indicators in the production process within a supply chain is efficiently solved. Afterwards, the third part of the thesis extends the proposed solution framework to address the uncertainty management. Particularly, the consideration of different types and sources of uncertainty (e.g. external and internal ones) where considered, through the implementation of preventive approaches. This part also explores the use of solution strategies that efficiently selects the number of scenarios that represent the uncertainty conditions. Finally, the importance and effect of each uncertainty source over the process performance is detailed analyzed through the use of surrogate models that promote the sensitivity analysis of those uncertainties. The third part of this thesis is focused on the integration of the above multi-objective and uncertainty approaches for the optimization of a sustainable Supply Chain. Besides the integration of different solution approaches, this part also considers the integration of hierarchical decision levels, by the exploitation of mathematical models that assess the consequences of considering simultaneously design and planning decisions under centralized and decentralized Supply Chains. Finally, the last part of this thesis provides the final conclusions and further work to be developed.La globalización industrial genera un ambiente dinámico en los mercados que, entre otras cosas, promueve la competencia entre corporaciones. Por lo tanto, el uso eficiente de las los indicadores de rendimiento, incluyendo rentabilidad, satisfacción de la demanda y en general el impacto ambiental, representa un area de oportunidad importante. El control de estos indicadores tiene un efecto positivo si se combinan con la gestión de cadena de suministro. Por lo tanto, las compañías buscan definir sus operaciones para permanecer activas dentro de un ambiente competitivo, tomando en cuenta las restricciones en el mercado mundial. Lo anterior puede ser logrado mediante la coordinación de los flujos de recursos a través de todas las entidades y escalones pertenecientes a la red del sistema. Sin embargo, dicha coordinación se complica significativamente si se quiere considerar la presencia de incertidumbre, y aún más, si se busca exclusivamente un ganar-ganar. El propósito de esta tesis es extender el alcance de las estrategias de toma de decisiones con el fin de facilitar estas tareas dentro de procesos industriales. Estas contribuciones se basan en el desarrollo de modelos matemáticos eficientes que permitan coordinar grandes cantidades de información sincronizando las tareas de producción y distribución en términos económicos, ambientales y sociales. Esta tesis inicia presentando una visión global de los requerimientos de un proceso de producción sostenible, describiendo y analizando los métodos y herramientas actuales así como identificando las áreas de oportunidad más relevantes dentro del marco de ingeniería de procesos La segunda parte se enfoca en enfatizar las capacidades de las estrategias de solución multi-objetivo, durante la cual, se explora el mejoramiento de la rentabilidad de la cadena de suministro considerando múltiples objetivos bajo incertidumbres en la demanda. Particularmente, diferentes marcos de solución han sido propuestos en los que varias estrategias de toma de decisión multi-criterio han sido combinadas con aproximaciones estocásticas. Por otra parte, indicadores de rendimiento (incluyendo financiero y operacional) han sido incluidos en el mismo marco de solución para evaluar sus capacidades. Este marco fue aplicado también a problemas de cadenas de suministro descentralizados con el fin de explorar sus capacidades de producir soluciones que mejoran simultáneamente el rendimiento para cada uno de las entidades dentro de la cadena de suministro. Consecuentemente, una nueva formulación que integra varios indicadores de rendimiento en los procesos de producción fue propuesta y validada. La tercera parte de la tesis extiende el marco de solución propuesto para abordar el manejo de incertidumbres. Particularmente, la consideración de diferentes tipos y fuentes de incertidumbre (p.ej. externos e internos) fueron considerados, mediante la implementación de aproximaciones preventivas. Esta parte también explora el uso de estrategias de solución que elige eficientemente el número de escenarios necesario que representan las condiciones inciertas. Finalmente, la importancia y efecto de cada una de las fuentes de incertidumbre sobre el rendimiento del proceso es analizado en detalle mediante el uso de meta modelos que promueven el análisis de sensibilidad de dichas incertidumbres. La tercera parte de esta tesis se enfoca en la integración de las metodologías de multi-objetivo e incertidumbre anteriormente expuestas para la optimización de cadenas de suministro sostenibles. Además de la integración de diferentes métodos. Esta parte también considera la integración de diferentes niveles jerárquicos de decisión, mediante el aprovechamiento de modelos matemáticos que evalúan lasconsecuencias de considerar simultáneamente las decisiones de diseño y planeación de una cadena de suministro centralizada y descentralizada. La parte final de la tesis detalla las conclusiones y el trabajo a futuro necesario sobre esta línea de investigaciónPostprint (published version

    Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: a review

    Get PDF
    YesDistributed generators (DGs) are a reliable solution to supply economic and reliable electricity to customers. It is the last stage in delivery of electric power which can be defined as an electric power source connected directly to the distribution network or on the customer site. It is necessary to allocate DGs optimally (size, placement and the type) to obtain commercial, technical, environmental and regulatory advantages of power systems. In this context, a comprehensive literature review of uncertainty modeling methods used for modeling uncertain parameters related to renewable DGs as well as methodologies used for the planning and operation of DGs integration into distribution network.This work was supported in part by the SITARA project funded by the British Council and the Department for Business, Innovation and Skills, UK and in part by the University of Bradford, UK under the CCIP grant 66052/000000

    State-of-the-Art Report on Systems Analysis Methods for Resolution of Conflicts in Water Resources Management

    Get PDF
    Water is an important factor in conflicts among stakeholders at the local, regional, and even international level. Water conflicts have taken many forms, but they almost always arise from the fact that the freshwater resources of the world are not partitioned to match the political borders, nor are they evenly distributed in space and time. Two or more countries share the watersheds of 261 major rivers and nearly half of the land area of the wo rld is in international river basins. Water has been used as a military and political goal. Water has been a weapon of war. Water systems have been targets during the war. A role of systems approach has been investigated in this report as an approach for resolution of conflicts over water. A review of systems approach provides some basic knowledge of tools and techniques as they apply to water management and conflict resolution. Report provides a classification and description of water conflicts by addressing issues of scale, integrated water management and the role of stakeholders. Four large-scale examples are selected to illustrate the application of systems approach to water conflicts: (a) hydropower development in Canada; (b) multipurpose use of Danube river in Europe; (c) international water conflict between USA and Canada; and (d) Aral See in Asia. Water conflict resolution process involves various sources of uncertainty. One section of the report provides some examples of systems tools that can be used to address objective and subjective uncertainties with special emphasis on the utility of the fuzzy set theory. Systems analysis is known to be driven by the development of computer technology. Last section of the report provides one view of the future and systems tools that will be used for water resources management. Role of the virtual databases, computer and communication networks is investigated in the context of water conflicts and their resolution.https://ir.lib.uwo.ca/wrrr/1005/thumbnail.jp

    Water Resources Decision Making Under Uncertainty

    Get PDF
    Uncertainty is in part about variability in relation to the physical characteristics of water resources systems. But uncertainty is also about ambiguity (Simonovic, 2009). Both variability and ambiguity are associated with a lack of clarity because of the behaviour of all system components, a lack of data, a lack of detail, a lack of structure to consider water resources management problems, working and framing assumptions being used to consider the problems, known and unknown sources of bias, and ignorance about how much effort it is worth expending to clarify the management situation. Climate change, addressed in this research project (CFCAS, 2008), is another important source of uncertainty that contributes to the variability in the input variables for water resources management. This report presents a set of examples that illustrate (a) probabilistic and (b) fuzzy set approaches for solving various water resources management problems. The main goal of this report is to demonstrate how information provided to water resources decision makers can be improved by using the tools that incorporate risk and uncertainty. The uncertainty associated with water resources decision making problems is quantified using probabilistic and fuzzy set approaches. A set of selected examples are presented to illustrate the application of probabilistic and fuzzy simulation, optimization, and multi-objective analysis to water resources design, planning and operations. Selected examples include dike design, sewer pipe design, optimal operations of a single purpose reservoir, and planning of a multi-purpose reservoir system. Demonstrated probabilistic and fuzzy tools can be easily adapted to many other water resources decision making problems.https://ir.lib.uwo.ca/wrrr/1035/thumbnail.jp

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem

    A Fuzzy-Interval Dynamic Optimization Model for Regional Water Resources Allocation under Uncertainty

    Get PDF
    In this study, a fuzzy-interval dynamic programming (FIDP) model is proposed for regional water management under uncertainty by combining fuzzy-interval linear programming (FILP) and dynamic programming (DP). This model can not only tackle uncertainties presented as intervals, but also consider the dynamic characteristics in the allocation process for water resources. Meanwhile, the overall satisfaction from users is considered in the objective function to solve the conflict caused by uneven distribution of resources. The FIDP model is then applied to the case study in terms of water resources allocation under uncertainty and dynamics for the City of Handan in Hebei Province, China. The obtained solutions can provide detailed allocation schemes and water shortage rates at different stages. The calculated comprehensive benefits of economy, water users’ satisfaction and pollutant discharge (i.e., COD) are [2264.72, 2989.33] × 108 yuan, [87.50, 96.50] % and [1.23, 1.65] × 108 kg respectively with a plausibility degree (i.e., λ±opt) ranging within [0.985, 0.993]. Moreover, the benefit from FIDP model under consideration of dynamic features is more specific and accurate than that of FILP model, whilst the water shortage rate from FIDP is [5.10, 9.10] % lower than that of FILP model.This research was supported by Nation Natural Science Foundation of China (61873084), and Natural Science Foundation of Hebei, in China (D2019402235)
    corecore