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Abstract 

Distributed generators (DGs) are a reliable solution to supply economic and reliable electricity to customers. It 

is the last stage in delivery of electric power which can be defined as an electric power source connected directly 

to the distribution network or on the customer site. It is necessary to allocate DGs optimally (size, placement 

and the type) to obtain commercial, technical, environmental and regulatory advantages of power systems. In 

this context, a comprehensive literature review of uncertainty modeling methods used for modelling uncertain 

parameters related to renewable DGs as well as methodologies used for the planning and operation of DGs 

integration into distribution network. 

The authors strongly recommend this review to researchers, scientists and engineers who are working in this 

field of research work. 
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1. Introduction 

Provision of electric energy for consumers is mostly based on having centralized generation which involves use 

of conventional generators. Then, the generated electricity is transmitted via a transmission line to substations 

where the voltage is step down before the electricity is distributed for energy consumption. However, the 

centralized generation is characterized by the following challenges including transmission and distribution 

losses, high cost of fossil fuels, and greenhouse effect (greenhouse effect is a process whereby some of the 

sunlight energy to the earth is been trap by the atmosphere). Therefore, the distributed generators (DGs) have 

been adopted to overcome these challenges. Dispersed generation, district generation, decentralized generation, 

embedded generation, local generation, and on site generation, are all terms that refer to DG.  

In order to help understand the DG concept, there are different definitions of DG in the existing literature [1-8], 

which are defined from the perspective of location and/or capacity. 

With respect to location, DG can be defined as electric power generation source connected directly to 

distribution network or on the customer side (very close to the demand) [1, 2]. Also, it means small generating 

units installed in strategic places of the power network close to load centres [3-5]. In perspective of capacity, 
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DG is a large number of small size power (500 kW and 1 MW) generating unit which are distributed within the 

distribution network [6]. While, others defined DG as the strategic placement of small power generating units 

(rating from 5 kW to 25 MW) at or near customer loads [2]. In perspective of location and capacity, DG is a 

small unit of power (usually with rating from less than 1 kW to many tens of MW) that is not a part of a large 

central power network and is located close to the load [7]. Small generation units of 30 MW or less located at or 

near consumer centres are also referred to with the same term [8] 

In general, DG is defined as an electric power source connected directly to the distribution network or on the 

customer site of the network [1]. From the perspective of size, Ackerman et al. [1] have classified DG into four 

sizes as follows: micro distributed generation (1 W to 5 kW), small distributed generation (5 kW to 5 MW), 

medium distributed generation (5 MW to 50 MW) and large distributed generation (50 MW to 300 MW). 

Currently, DGs installation in power systems are rapidly increasing due to its ability to maximize the usage of 

renewable energy such as wind, solar, hydro, geothermal, biomass and ocean energy etc. [1, 9-15]. According to 

Borges et al, DGs can be used in an isolated way to supply the consumer's local demand or in an integrated way 

to supply power to the remaining of the system [3]. Optimum priority during planning should be given to 

location, size, and types of DG in order to maximize the benefits of DGs [11]. Optimal allocation of DGs 

reduces system losses and leads to improvement in the voltage profile, enhances system reliability, load ability, 

voltage stability, voltage security, and power quality. 

DG is considered as an alternative solution to supply power for new costumers especially in the competitive 

electricity market  [5] for the following reasons : a) Quick response time and minimal risk to investment since it 

is built in modules ; b) Small-size modules that can track load variation more closely; c) The government 

approval for utilities and land availability can be discarded due to small physical size that can be installed at 

load centers; d) The successive improvement of DG technologies. 

In the following literature, most of the studies have been carried out to investigate optimal methodologies in 

order to minimize the power losses and cost of DGs. For example, the authors in [16-19] have focused on 

reviewing the optimization methods used in DGs planning considering objectives, decision variables, and DG 

type applied constraints. While, in [20, 21] the authors have reviewed uncertainty modeling approaches for DGs 

planning to show both the weakness and  robustness of these methods.  

It is clearly shown from the above description that all the published review work was restricted to consider the 

DGs planning. According to the author's knowledge, there is no study that covers the uncertainty and 

optimization methods concurrently, which is most important for any researcher in DGs planning. With the above 

backdrop, the novelty of this work relates to review the optimization method used in DGs placement problem in 

addition to uncertainties methods. 

This paper is organized in the following manner. Section 2 represents the details of DG include the technologies 

and types, applications and benefits. Section 3 illustrates the challenges to increased penetration of DG. Section 

4 discusses DG planning models including objectives, constraints, uncertainties modeling methods, reliability 

indices under uncertainties, market and economic operation aspects of renewable DGs under uncertainty and 

mathematical algorithms. Finally, a conclusion is presented in section 5. 

  

 

 



 

 

2. Distributed generation (DG) 

2.1 Technologies and types 

DGs technology can be classified into three types including renewable technology (green or sustainable), non-

renewable technology (traditional) and storage technology [22-26]. Renewable technology comprises wind, 

solar (photovoltaic (PV) and thermal), bio-mass, geo-thermal, tidal and hydro-power (small and micro). Non-

renewable technology comprises micro-turbine, gas turbine, reciprocating engines and combustion turbine. 

Storage technology comprises batteries, supercapacitor, flywheels, compressed air energy storage (CAES) and 

pumped storage. Each technology has its own benefits and properties [12-27]. Furthermore, the deployment of 

these technologies has started to take place in the electricity market, thereby providing an alternative means of 

meeting the customer load demand. Figure 1 depicts the classification of DGs technologies. 
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Figure 1: Distributed Generation Technologies 

 

2.2   Applications 

The types of DGs technologies that can be used in various applications according to the load requirements, 

includes [28, 29]: 

 As stand-by sources for supplying the desired power for sensitive loads (e.g. hospitals) during grid 

outages. 

 Standalone sources in isolated areas – rural and remote areas. 

 As supply for peak loads at peak periods in order to reduce the power cost. 

 To combine heat and power (CHP), also known as Cogeneration, by injecting power into the network.  

 To supply part of load and support the grid by improving voltage profile, power quality and reducing 

the power losses. 



 

 

 Grid connection to sell electric power.  

 

2.3 Benefits   

Several benefits can be attained by connecting DGs to distribution systems. These benefits are categorized into 

technical, economic and environmental benefit. Table 1, gives a description of these benefits according to their 

category [22, 28-33].  

 

Table 1.   DG benefits 

Technical point of view Economical point of view Environmental point of view 

 Integration of DG at strategic 

locations leads to reduced system 
losses. 

 Integration of DG provides 
enhanced voltage support thereby 

improving voltage profile. 

 Improved power quality.  

 Enhancement in system reliability 

and security. 

 Power supply autonomy of rural or 

isolated areas. 

 Increase overall electric power 

energy efficiency. 
 

 Deferred investments for upgrade 

of facilities. 

 Lowering operation and 

maintenance cost.  System 
productivity is enhanced due to 

diversification of resources.  

 It results to an indirect monetary 
benefit by reduce healthcare costs 

due to improved environment.  

 Reduced fuel costs due to increased 

overall efficiency. 

  Reduced reserve requirements and 
associated costs.  

 Lower operating costs due to peak 
shaving.  

 Reduction of investment risks. 

 Reduced output emissions of pollutants. 

 Reduce global warming  

 Encourages use of renewable energy 

 

 

 

3. Challenges  

Today’s DGs installations are facing multiple challenges that can be classified into four types; commercial, 

technical, environmental and regulatory. Overcoming of these challenges will lead to maximize the utilization of 

DGs[14, 17]. These challenges are better explained in Figure 2. 
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Figure 2: DG challenges 

 

 

 

3.1 Commercial Challenges 



 

 

The number of DGs can be increased by implementing active management approaches in distribution networks. 

New commercial arrangements need to be used in order to support the development of active distribution 

networks and extract the benefits associated with connecting increased amount of DGs. Generally, three 

approaches are possible [34]:  

1- To recover the cost of implementation the active management directly through price controls 

mechanisms (increase the amount of recoverable capital and operate expenditure associated with active 

management). Recovery of cost could be achieved by increasing the charges of network usage.      

2- To establish an incentive scheme that would reward the companies for connecting DGs, as has been  

recently developed in the United Kingdom [35]. These schemes could be funded from increasing the 

charges imposed on generators and/or customers such as a green levy. 

3- To create a market mechanism and a commercial environment to develop active networks. 

 

3.2 Technical Challenges 

3.2.1 Power Quality 

Power quality commonly takes into account two important aspects: harmonic distortion of the network voltage 

and transient voltage variations. DGs could decrease or increase the quality of the power factor, current and 

voltage received by other users of the distribution network which depends on the particular circumstances. 

Power quality improvement might be obtained by increasing the effect of network fault level. This is done  

through adding DG to the network [34]. 

 

3.2.2 Voltage Rise Effect 

Voltage rise effect can occur when connecting DGs in the network. This is the main factor that limits the 

amount of extra DG capacity that can be connected to rural distribution networks. Optimal power flow under 

equality and inequality constraints could be used to control instability of power supply, and active and reactive 

power variations that are caused by the voltage rise effect [36, 37]. 

 

3.2.3 Protection 

The connection of DGs to the distribution systems depends on some aspects that need to be identified [34]. 

These aspects are: 

 Protection of the generation equipment from internal faults. 

 Protection of the faulted distribution network from fault currents supplied by the DGs. 

 Anti-islanding or loss-of-mains protection (islanded operation of DG will be possible in future as 

penetration of DG increases) 

 

3.2.4 Stability 

The design of distribution network and transmission network are considering the factor of stability under the 

impact of different circumstances. As a result, the issue of stability was not recommended to discuss. While, it is 

worthy to account the stability in case of dealing with DGs, which is hardly subjected to change for bigger 

network security.  There are two areas that need to be considered to assess the renewable DG schemes: transient 

(first swing stability) as well as long term dynamic stability and voltage collapse [34]. 



 

 

  

3.3 Environmental 

Increase DG usage is not always beneficial for the environment [38]. This is depending on the market share of 

the different DGs technologies. For example, DGs technologies which consume fossil fuels like fuel cells, micro 

turbines have more impact on the environment than renewable energy technology like hydroelectric, wind 

turbines and solar cells. However, even technologies such as Wind turbine are claimed to be environmentally 

damaging. As such it is critical to consider each technology carefully. 

 

3.4 Regulatory 

It seems that the developing of appropriate policies is so important to support the integration of DGs into 

distribution networks due to the absence of clear governmental regulations [39]. 

 

4. DG Planning Models 

Optimal planning of distribution networks is a process to help supplying the power to loads of feeders in the 

presence of DGs in order to achieve maximum potential benefits of DGs with minimum costs. Optimal DG 

planning depends on two factors, technical constraints and the optimization of economic targets. Technical 

constraints refer to equipment capacity, voltage drop, radial structure of the network, reliability indices. The 

optimization of economic targets includes minimization of investment and operating costs, minimization of 

energy imported from transmission, minimization of energy loss, and reliability costs [40].  

 

4.1 Objectives of DG integration 

The objective functions that are mainly used in  DG integration are as follows [11]. 

 Maximization of renewable DG penetration. 

 Maximization of system reliability. 

 Maximization of Distributed Generation Capacity. 

 Maximization of social welfare and voltage profits. 

 Reduction in system losses and improvement in voltage profile. 

 Minimization of investment, operational cost and total payments toward compensating for system 

losses. 

 Minimization of line loss. 

 

4.2 Constraints of DG Planning 

There are two types of constraints, equality constraints and inequality constraints.  

1. Equality constraints consist of active and reactive power balance at each bus of the system. 

2. Inequality constraints consist of voltage profile limits, line thermal limit, phase angle limit, 

traditional active and reactive power generation limits, substation transformer capacity limit, DG 

active and reactive power generation limits, number of DG limit, short circuit level limit, Intertie’s 

delivery power limit, power factor limit, tap position limit, total line loss limit, short circuit ratio 

limit and voltage step limits [11, 41]. 

 



 

 

4.3 Modeling of Uncertainties in the Planning of Renewable DGs               

4.3.1 Uncertain parameters  

Uncertain parameters can be classified into two different groups as follows [42]:  

a. Technical parameters: includes demand values, generation values, forced outage of lines and generators 

or metering devices. 

b. Economic parameters: includes uncertainty in the fuel supply, cost of production, market prices, 

business taxes, labor and raw materials, economic growth, unemployment rates, gross domestic product 

and inflation rates.  

The abovementioned uncertain parameters are shown in Fig. 3. 
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Figure 3: Uncertain parameters 

 

 

4.3.2 Uncertainty Modelling Methods 

There are several uncertainty handling approaches developed for dealing with the abovementioned uncertain 

parameters as illustrated in Fig. 4. This figure derives from ref. [20, 21] and gives a summary of the appropriate 

PDP (Power Distribution Problem) approaches to model uncertainty parameters. These approaches include 

robust optimization, interval analysis, probabilistic approach, possibilistic method, hybrid possibilistic - 

probabilistic approaches and information gap decision theory (IGDT) [20, 21]. The fundamental aim of these 

approaches is to measure the influence of uncertain input parameters on the output parameters in distribution 

networks. The details of these methods are described as follows: 

a. Robust optimization (RO): Robust optimization approach was proposed by Soyster in 1973 [43]. In this 

method, the uncertainty groups are used to describe the uncertainty related to input parameters. The 

advantage of applying this technique is to obtain decisions that remain optimal for the worst-case 

investigation of the uncertain parameter within a specific group. In [44], the authors have proposed 

adaptive RO approach for multi-period economic dispatch under high level of wind resources 

penetration. Also this approach has been proposed in [45] to carry out an endogenous stress test for the 

spot prices as a function of the buy-and-sell portfolio of contracts and green energy generation 

scenarios. RO is adopted for scheduling of multi-micro grid systems considering uncertainties in 

variable renewable sources, forecasted load values and market prices [46]. The authors in [47] have 

established a RO with adjustable uncertainty budget (RO-AUB) model for coordinating reliability and 



 

 

economy of a large-scale hybrid wind/photovoltaic/hydro/thermal power system during uncertainty 

period in order to reduce the limitation while taking full advantage of clean energy and improving 

reliability of the system. RO method has been proposed in [48] to manage uncertainties related to 

electricity prices and battery demand. Also this method has been used in [49] to simulate the 

uncertainties associated with the load demand and the output power of the renewable DGs. In [50], RO 

is used to model the uncertainties associated with the electricity prices. 

b. Interval analysis (IA): In 1966, Moore introduced interval analysis technique [51] assuming that the 

uncertain parameters are obtained values from a recognized interval. It is somewhat similar to the 

probabilistic modelling with a uniform PDF (probability density function). This technique finds the 

bounds of output variables. In [52] the probabilistic distribution-based interval arithmetic approach has 

been proposed to evaluate the effects of the uncertainties related to load demand. An approach based 

on the interval analysis has been proposed to solve the directional overcurrent relays coordination 

problem considering uncertainty in the network topology [53]. In [54], interval analysis techniques has 

been used to quantify the impact of uncertain data and to maximize the possibility of reliability 

improvement and/or loss reduction. The author in [55] have proposed interval analysis method  for 

power flow solution  of balanced radial distribution system.  

c. Probabilistic approaches: One of the earliest work in probabilistic approach was carried out by 

Dantzing in 1955 [56]. This technique assumed that the PDF of input parameters variables are known. 

Probabilistic approaches can be classified into two groups: numerical and analytical approaches. 

1. Numerical approaches 

Monte Carlo Simulation (MCS) is one of the most common and accurate stochastic approach. This 

approach has been used in [57] to systematically sample from random processes (i.e. uncertainty in the 

load demands, the available capacity of conventional generation resources and the time-varying, 

intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random 

processes) and emulate the side-by-side power system and transmission-constrained day-ahead market 

operations. In [58], MCS with the traditional Newton–Raphson method have been used to ensure the 

coverage of all the possible operating scenarios of the system based on the operating system boundaries 

and the accuracy of the solution. In [59],the problem of renewable DGs penetration in medium voltage 

distribution networks has been modelled with MCS which takes into account for the intrinsic variability 

of electric power consumption. In [60], MCS has been used to deal with the uncertainties related to 

load values, generated power of wind turbines and electricity market price. Also in [61], the uncertainty 

associated with load growth has been modelled by MCS, which delivers an estimate of the network 

response to a set of possible future load scenarios. The uncertainties related to intermittent generation 

of PVs and load demands are modelled by MCS in [62]. The authors in [63] have used combined MCS 

technique and optimal power flow to maximize the social welfare considering different combinations of 

wind speed and load demands over a year. In [64], MCS has been proposed to handle uncertainties 

including the stochastic output power of a plug-in electric vehicle (PEV), wind speed, solar irradiance, 

volatile fuel prices used by a fueled DG, and future uncertain load growth in the optimal siting and 

sizing of DGs. There are three types of MCS approach used for probabilistic uncertainty analysis: 



 

 

Sequential Monte Carlo Simulation, Pseudo-Sequential Monte Carlo Simulation and Non Sequential 

Monte Carlo Simulation. 

 

1.1 Sequential Monte Carlo Simulation (SMCS):  

Sequential Monte Carlo methods, also known as particle methods, are a class of sequential simulation-

based algorithms which provide a convenient and attractive approach to compute the posterior 

distribution [65]. In [66] SMCS has been applied to  assess distribution system reliability. The authors 

in [67] have used SMCS in order to preserve the characteristics of the time series of the variable energy 

sources and the variable load. A Sequential Monte Carlo method enhanced by a temporal wind storm 

sampling strategy was introduced in [68] to evaluate the impacts of wind storms on power distribution. 

In [69], a pattern search-based optimization method was proposed in conjunction with a SMCS to 

optimally find the size of the hybrid system components and satisfy the reliability requirements. The 

authors in [70] have developed the SMCS in order to evaluate adequacy of power systems with wind 

farms.   

 

1.2 Pseudo-Sequential MCS:  

Leite da Silva in 1994 proposed, for the first time, Pseudo-Sequential Monte Carlo simulation which is 

based on the non-sequential sampling of system states and on the chronological simulation of only the 

sub-sequences associated with failed states [71]. In [72], a method based on the pseudo-sequential 

MCS technique has been proposed to evaluate the impact of high photovoltaic (PV) power penetration 

on customers’ nodal reliability and system energy and reserve deployment. The authors in [73] have 

developed a new tool for the reliability assessment of the future smart distribution network (SDN) 

based on a Pseudo-Sequential MCS. In [74], pseudo-chronological simulation was introduced to 

evaluate loss of load indices, with particular emphasis on loss of load cost assessment, for composite 

generation and transmission systems considering time varying loads for different areas or buses. 

 

1.3 Non-Sequential MCS:  

This method known as the state sampling approach. An efficient method for composite system well-

being evaluation based on non-sequential MCS is presented in [75].Also in [76], non-Sequential MCS 

is presented to evaluate  reliability indices of composite system. In [77], a novel approach based on 

non-sequential MCS and pattern recognition techniques was proposed to evaluate well-being indices 

for a composite generation. The authors in [78], have developed an original non-sequential Monte 

Carlo simulation tool in order to calculate the optimal dispatch of classical generation in order to 

minimize polluting gases emissions in presence of wind power. Also, in [79] a calculation method of 

wind farms’ capacity credit based on Non-Sequential MCS is presented. 

 

2.  Analytical methods: 

The basic idea of the analytical approach is to do arithmetic with probability density function (PDF) of 

stochastic inputs variables. The analytical methods can be classified into two groups: based on 

linearization and basedon PDF approximation. 



 

 

2.1 Based on linearization: the first group of analytical methods are based on linearization such as 

 Convolution method:  

 Convolution method has been used in [80] to deduce the density functions of the unknown quantities 

but the main problem associated with this method is that the technique demands a large amount of 

storage and computation time in large systems. The authors in [81] have noted this problem and tried to 

solve it by applying the discrete frequency domain convolution method to reduce the computational 

burden. 

 Cumulants method: 

 Cumulants method was introduced to prevent the convolution operation that appears in the calculation 

of the PDF of a linear combination of several random variables. In [82] the cumulant method for the 

probabilistic optimal power flow problem was introduced and the results using the cumulant method 

had a substantial reduction in computational expense while maintaining a high level of accuracy 

compared with the results from MCS. Cumulant based stochastic reactive power planning method in 

distribution systems with integration of wind generators has been  proposed in [83].  

 

 Taylor series expansion:  

Taylor series expansion usually is used to approximate a function. This expansion gives quantitative 

estimates on the error in this approximation. in [84] Taylor series expansion is proposed for power 

system state estimation and reliability assessment. In [85] Taylor series expansion of the Markov chain 

stationary distribution is introduced in order to propagate parametric uncertainty to reliability and 

performability indices in Markov reliability and reward models. 

 First Order Second moment method (FOSMM):  

FOSMM is a probabilistic method to determine the stochastic moments of a function with random input 

variables which allows the estimation of uncertainty in the output variable without knowing the shapes of 

PDFs of input variables in detail. This method has been applied in [86] in order to deal with the 

uncertainties that effects in the computation of transfer capability, transmission reliability margin (TRM). 

In [87], a new probabilistic load flow method based on the FOSMM has been proposed to solve the 

probabilistic load flow problems. The aim of this method is to obtain the mean and standard deviation of 

load flow solution distributions considering various uncertainties in system operation. The authors in [88] 

have presented a formulation of probabilistic optimal power flow problem using the FOSM method to 

model the uncertainties and correlations of the system load. 

2.2  Based on PDF approximation: the second group of analytical methods are based on the PDF 

approximation such as: 

 

 Point estimate method (PEM): 

The point estimation method concentrates on the statistical data provided by the first few central 

moments of uncertain input. In [89] probabilistic power flow method based on the PEM was introduced 

to handle various sources of uncertainties including output of the wind power generators  and load 

demands. In [90], PEM was used to model the uncertainties related to wind power outputs and volatile 

electricity prices in a competitive electricity market. In [91] PEM has been used for energy management 



 

 

in order to minimize the cost and increase the efficiency. In [92] two-point estimate method was 

proposed to model the uncertainties associated with volatile electricity price, load demand and wind 

speed. In [93] a new probabilistic framework based on 2m Point Estimate Method (2m PEM) has been 

proposed  to consider the uncertainties in the optimal energy management of the Micro Grids including 

different renewable power sources. 

 Unscented Transformation (UT): 

The UT is a powerful method in assessing stochastic problems with/without correlated uncertain 

variables. In [94] a new method for power system’s probabilistic load flow (PLF) evaluation using the 

UT method has been presented. In [95] UT was used to study the  impact of transformer correlations in 

state estimation. In [96] UT was provided to calculate the mean and covariance of nonlinear functions of 

random variables (which represent power system measurements as nonlinear functions of the power 

system state). 

  

c. Possibilistic approach:  In 1965, Zadeh introduced the concept of fuzzy arithmetic [97] where the input 

parameters are described by using the membership functions. In [98], a fuzzy evaluation tool was 

proposed for analysing the effect of renewable DGs  on  active power losses and the ability of 

distribution network in load supply at presence of uncertainties. In [99] a new method according to 

fuzzy extension principle has been proposed to  represent and propagate the possibilistic uncertainties 

associated with wind power in power system. In [100] a new possibilistic fuzzy model was presented 

for multi-objective optimal planning of distribution systems which finds  multi objective solutions 

corresponding to the simultaneous optimization of the fuzzy economic cost, level of fuzzy reliability, 

and exposure (optimization of robustness) of  the network. In framework of  possibilistic harmonic load 

flow, the authors in [101] proposed  an improved approach which overcomes possibilitiy of interaction 

between input parameters.  

 

d. Hybrid possibilistic–probabilistic approaches: In this technique, random and possibilistic parameters 

are presented to handle the uncertain parameters [102, 103]. A brief explanation of these approaches is 

described as follows:  

 Fuzzy and Monte Carlo: The authors in [103] have used Fuzzy and Monte Carlo Simulation as a 

hybrid possibilistic–probabilistic evaluation tool for analysing the effect of uncertain power 

production of renewable DGs on active power losses of distribution networks.  

 Fuzzy – scenario based approach: The authors in [104] have presented a hybrid possibilistic–

probabilistic tool to assess the impact of DG units on technical performance of distribution 

network with taken into account  the uncertainty of electric loads, DG operation/investments .  

 

e. Information gap decision theory (IGDT): In 1980, Yakov Ben-Haim proposed IGDT [105]. This 

technique does not use PDF and membership function (MF) for input parameters. However, it 

measures the differences between parameters and their estimation. The authors in [106] have applied 

IGDT in order to handle the uncertainties associated with the uncertainties related to wind speed. In 

[49], IGDT has been used to model the uncertainty in the load and output of the renewable DGs. In 



 

 

[107], IGDT has been proposed  for distribution network operator (DNO) when it is faced with 

different  uncertainties in load demands and renewable DGs . In [108], IGDT has been proposed  to 

address the uncertainty related to renewable DGs. 
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Figure 4: Uncertainty modeling approaches 

 

A summary of uncertainty approaches used in DGs is presented in Table 2, while Table 3 depicts the 

advantages and disadvantages of uncertainty modeling approaches.  

 

Table 2. Summary of uncertainty modeling 

Uncertainty modeling approaches References 
Robust optimization  [44-49] 

Interval analysis [52-55] 

Probabilistic approach Sequential MCS [66-70] 

Pseudo-Sequential MCS [72-74] 

Non-Sequential MCS [75-79] 

Convolution method [80, 81] 

Cumulants [82, 83] 

Taylor series expansion [84, 85] 

First Order Second moment [86-88] 

Point estimate method  [89-91] 

Unscented Transformation (UT) [94-96] 

Possibilistic [98, 99, 109] 

Hybrid probabilistic and possibilistic Fuzzy and Monte Carlo [103] 

Fuzzy–scenario based approach  

 
[104] 

Information gap decision theory (IGDT) 

 
[49, 106, 107] 

 

 

 



 

 

Table 3. Summary of Evaluation of Uncertainty modeling approaches 

Uncertainty modeling approaches Advantages Disadvantages References 

Robust optimization It is useful when only an 
interval exists 

It is difficult to employ in 
nonlinear problems 

[43-49] 

Interval analysis It is useful when just an 

interval exists 

Cannot put the connection 

among intervals 
[51-55] 

Probabilistic 
(Numerical) 

Sequential MCS 
 

This method does represent 

chronological aspects in 
order that it is the most 

flexible strategy for assessing 

distribution system reliability 

Sequential MCS requires a 
more substantial computational 

effort than the other 

approaches, and may be 
infeasible for some 

applications 

[65-70, 110] 

Pseudo-Sequential MCS 
It is easy to implement 

and faster than the 
conventional SMCS 

The number of simulations 
needed increases as the 

degrees of freedom of the 

solution area increases 

[71-74] 

Non-Sequential MCS 
Non-Sequential MCS has 

high computational efficiency 

cannot simulate the 
chronological aspects of 

system operation 

[75-79, 111] 

Probabilistic 
(Analytical) 

Based on 
linearization 

Convolution 
method 

This method has greater 
accuracy while providing a 

breakthrough in 

computational speed 

Requires a large amount of 
storage and time especially 

when there are many functions 

involved due to large systems. 

[80, 81] 

Cumulants The loss of accuracy 
associated with truncation of 

the order of the cumulants 
used  

The technique demands a large 
amount of storage and 

computation time in large 
systems 

[82, 83] 

Taylor series 

expansion 

It allows for incredibly 

accurate (depending on the 

number of terms) estimates of 
common functions 

Some calculations become 
tedious or the series doesn't 

converge quickly. 

[84, 85] 

First Order 

Second 
moment 

Allows the estimation of 

uncertainty in the output 
variable without knowing the 

shapes of PDFs of input 

variables in detail 

Complicated [86-88] 

Based on PDF 
approximation 

Point estimate 
method [PEM] 

It is a non-iterative, 

computationally efficient 
technique. 

 simple and easy to 

implement.– There is no 
convergence problem 

It only gives the mean and 
standard deviation of the 

uncertain output, no 

information about the shape of 
the PDF of the output is 

provided, gives more reliable 

answers for non-skewed PDFs,  
The accuracy would be low 

when the number of random 

variables is large 

[89-91] 

Unscented 

Transformation 

(UT) 

efficiency, the accuracy 

would not decrease when the 

number of random variables 
is large, applicable to 

problems with correlation 

among multiple uncertain 
input parameters and it is 

easy to implement 

Its running time depends on 

number of uncertain variables 
and it is only applicable in 

problems which the input 

variables are described using 
their PDF 

[94-96] 

Possibilistic 
 

It can convert linguistic 
information to numerical 

values 

Complicated [97, 109] 

Hybrid 

probabilistic 
and 

possibilistic 

 

Fuzzy and Monte Carlo   It is time consuming [103] 

Fuzzy–scenario based approach  
 

high computational efficiency Its accuracy is low [104] 

Information gap decision theory (IGDT) 

 

It is useful for  decision    in 

severe uncertainties 
Too complicated [49, 105-107] 

 

 

4.3.3 Reliability indices under uncertainty 

Power system reliability is one of the most important issues in the power system planning and operation.  It can 

be divided into two parts, adequacy and security. Chowdhury et al in  [112] have presented  a reliability model 



 

 

for determining the DG equivalence to a distribution facility for using in distribution system planning studies in 

the new competitive environment. This model has been extended based on the Distribution Reliability 

(DISREL) program in order to include: System Average Interruption Frequency Index (SAIFI), System Average 

Interruption Duration Index (SAIDI), Customer Average Interruption Frequency Index (CAIFI), Average 

Service Availability Index (ASAI), Average Service Unavailability Index (ASUI), EUE (in kWh per year) , and 

expected outage cost in dollars ($). In [113-118] several reliability indices and their corresponding costs are 

calculated in order to quantitatively measure system reliability and its economic impact. In [119] SAIFI and 

SAIDI have been calculated as a part of  solving the multistage planning problem of a distribution network. In 

[120], SAIFI, SAIDI, ASAI are calculated in order to quantitatively measure system reliability and its economic 

impact. Reference [121] has addressed the incorporation of uncertainty and reliability indices (SAIFI, SAIDI, 

ASAI, Expected energy not supplied (EENS)) in the joint expansion planning of distribution network assets and 

renewable DGs. The authors in [122] have applied a genetic algorithm based on a probabilistic load flow and 

used different scenarios to model the uncertainty in load demand and wind power generation. Also, reliability 

was assessed in two stages, namely fault location and fault repair. In [123] the uncertainty associated with the 

output  wind power generation , load types and load variability have been modeled as a multi-state variable by a 

probability density function. Genetic algorithm was used in order to allow assessing reliability by the calculation 

of nodal interruption costs based on Monte Carlo simulation. In [124], SAIFI, SAIDI and CAIDI  to evaluate the 

reliability of distribution networks in the presence of wind power are calculated by using the Monte Carlo 

simulation method. The authors in [125], have evaluated the reliability performance of distribution systems 

considering uncertainties in both generation and load demands. Reference [126] has presented analytical 

approach for the reliability modeling of large wind farms. In [127], the fuzzy numbers approach for reliability 

calculation of electrical energy indices was proposed. In [128], Monte-Carlo simulation approach to 

distribution/transmission reliability evaluation assuming loads defined by fuzzy numbers has been introduced.  

In [129], a fuzzy operation technique for load duration curve modeling in order to  evaluate reliability indices of 

composite power systems based on probability and fuzzy set methods has been presented. In [130], a 

possibilistic approach using fuzzy set has been introduced to calculate the possibilistic reliability indices (loss-

of-load expectation) according to the degree of uncertainty. In [131], a genetic algorithm guided by fuzzy 

numbers to evaluate the distribution system EENS index has been introduced. In [132], according to the 

randomness of output power of renewable DGs and the time series characteristic of load, a reliability evaluation 

model based on sequential Monte Carlo simulation for distribution system has been proposed. In [133] a 

reliability model has been presented to study the impacts of demand response programs on short-term reliability 

assessment of wind integrated distribution systems. 

 

4.3.4 Market and economic operation aspects of renewable DGs under uncertainty  

Planning and operation of  power system has become much more complicated with integration of  renewable 

energy resources and has brought great challenges to its economy and regulation [134]. The uncertainties related 

to future load growth, output power of renewable DGs, demand response and prices are some of the challenges. 

These challenges created new field for developing new methodologies for the system operation in the presence 

of controllable loads. The primary objective of proactive customers is to reduce their electricity payments to 

increase savings, hence they tend to rely on price-based schemes for managing local generation and load 



 

 

resources. In [135], an interior point method has been used to solve the optimal power flow problem with a 

multi-objective optimization problem for maximizing both social benefit and the distance to maximum loading 

conditions. In [136], load and price uncertainties within a distribution electricity market environment have been 

discussed. In [137] uncertainty in future load estimation as well as renewable DG power production have been 

introduced by probabilistic approaches. In [138] the uncertainties related to load demand and renewable 

generation have been modelled by using fuzzy-based method. Demand side management is a set of techniques, 

and strategies that carry out by the grid operators in order to influence and modify the users’ energy 

consumptions [139]. The authors in [140] proposed a combined MCS and optimal power flow to maximize the 

social welfare with integrating demand response scheme considering different combinations of wind generation 

and load demand over a year. A stochastic modeling for electric capacity expansion planning under uncertainty 

in demand has been presented in [141]. In [142] Monte Carlo simulation methods has been used for modeling 

the uncertainties associated with load demand and renewable sources power production. In[143],  the genetic 

algorithm and the market-based optimal power flow has been proposed to jointly maximize the net present value  

related to the investment made by WTs’ developers and the social welfare within a distribution market 

environment. In [144] a market-based optimal power flow has been used for optimally allocating wind turbines 

in order to maximise social welfare considering different combinations of load demand and wind generation. 

Stochastic programming approach Proposed in [145]  for reactive power scheduling of a micro-grid considering 

the uncertainty of wind power. The authors in [146] have used Monte Carlo simulation  method and market-

based optimal power flow to maximize the social welfare with integration of  demand side management scheme 

considering different combinations of wind generation and load demand over a year. In [147], in order to model 

the random nature of load demand and wind forecast errors, a scenario-based stochastic programming 

framework has been presented. In [148] Monte Carlo simulation method has been used to determine a 

probabilistic hourly/seasonal model for wind and solar based DGs, and the system demand. To solve the 

problem of uncertainties of renewable DG output and load, multi-scenario technique has been adopted in [149]. 

In [150] price uncertainty has been modeled through robust optimization technique using duality properties and 

exact linear equivalences. In [151] Price uncertainty has been modeled by a simple linear programming 

algorithm which can be easily integrated in the energy management system of a household or a small business. 

The authors in [152] have proposed a probabilistic method for active distribution networks planning with 

integration of demand response. Optimal demand response and energy storage system  scheduling for 

distribution losses payments minimization under electricity price uncertainty has been presented in [50]. In 

[153], a method for evaluating investments in decentralized renewable distribution network considering price 

volatility has been presented. In [154], a Monte Carlo simulation-based approach has been proposed for 

distribution network planning to capture the uncertainties related to  the price volatility of renewable DG.  

 

4.4 Mathematical Algorithm and Solution Techniques for DG planning (DGP) 

Due to the increasing penetration of DGs in distribution network, the location and sizing of DGs in distribution 

network planning is becoming increasingly important. Various optimization methods employed in DGP to solve 

different DG problems (optimal location and/or sizing). Briefly, these methods can be divided into three main 

sets:  



 

 

1. Conventional methods are also called classical or non-heuristic methods. It includes linear 

programming (LP), non-linear programming (NLP), mixed integer non-linear programming (MINLP), 

dynamic programming (DP), optimal power flow-based Approach (OPFA), direct approach (DA), 

ordinal optimization (OO), analytical approach (AA) and continuous power flow(CPF). 

2. Intelligent search-based methods are also called heuristic methods. It includes simulated annealing 

(SA), evolutionary algorithms (EAs), tabu search (TS), particle swarm optimization (PSO) ant colony 

system algorithm (ACSA), artificial bee colony (ABC), artificial immune system (AIS), bacterial 

foraging optimization algorithm (BFOA), bat algorithm (BA), imperialist competitive algorithm 

(ICA), cuckoo search algorithm (CSA), intelligent water Drop (IWP) algorithm and fuzzy set theory 

(FST). 

3. The prospective methods include firefly algorithm (FA), shuffled frog leaping algorithm (SFLA), and 

big bang-big (BB-BC) algorithm. 

 

4.4.1 Conventional methods (Non-Heuristic) 

A) Linear programming (LP) 

Linear programming (LP) is defined as a mathematical technique used for optimization of linear objective 

functions and linear constraints [155]. In [156, 157] LP was employed to solve optimal DG placement (ODGP) 

problem to achieve maximum DG penetration. Also Abou El-Ela et al. [158] used LP to investigate of varying 

ratings and locations of DG for losses minimizing in order to maximize DG benefits.   

 

B) Nonlinear programming (NLP) 

The nonlinear programming (NLP) refers to fact that the computation in this method is based on the derivatives.  

Solving a nonlinear programming problem could be done by first choosing a search direction in an iterative 

procedure which is specified by the first partial derivatives of the equation (the reduced gradient). This  method 

is referred to as first-order method and includes the generalized reduced gradient method [159]. The second 

order methods such as  successive quadratic programming [160] and Newton Raphson method [161] require the 

counting of the second order partial derivatives of the power-flow equations and other constraints. Rau and Yih-

Heui [162] have employed a second order algorithm to compute the capacity of DGs in selected nodes to obtain  

optimum quantities and  maximized  benefits of  DGs. In [163], the Newton Raphson method was introduced to 

find optimal size and optimal placement of DGs in order to obtain the optimization of both cost and loss. Also 

the study focused on optimization of weighting factors which balance the cost and the loss factors.  

 

C) Mixed-integer nonlinear programming (MINLP) 

MINLP was used to solve DGP problem with integer variables with values (0 or 1) to represent if a new DG 

should be installed [164]. The proposed model in [165] integrated comprehensive optimization model and 

planner’s experience to achieve optimal sizing and location of DGs. This model is formulated as MINLP in 

General Algebraic Modeling System (GAMS) using binary decision variables with an objective function for 

minimizing the total system cost. In [166] the optimal planning problem is formulated as MINLP, with an 

objective function for minimizing the energy losses and for optimally allocating with wind DGs in the 

distribution network. Atwa et al. [167] have used different types of renewable DGs such as wind and solar in 



 

 

order to minimize the annual power losses considering network constraints. In [168], the authors have employed 

a MINLP method to find the optimal size and site for the different types of DGs by considering the electricity 

market price volatility. Also, MINLP was used to determine the optimal placement and number of DGs in 

hybrid electricity market [169]. The optimal problem for location and sizing of DG is formulated by using 

MINLP, with an objective of  improving the voltage stability margin considering the probabilistic nature of the 

renewable energy resources and the load [170]. In [171], multi-period OPF used in order to improve the hosting 

capacity of distribution systems by applying both static and dynamic reconfiguration considering active network 

management (ANM) schemes. In [172], MINLP is proposed to solve DGP planning problem in order to 

minimize the total operational cost.  

 

D) Dynamic programming (DP) 

Dynamic programming (DP) algorithm is an approach that guaranties optimal solution of multi-stage decision 

problems [173, 174]. Celli et al. [173] have used DP  for planning active distribution network with DGs in order 

to reduce the capital expenditures (CAPEX) and operational expenditures (OPEX). In addition, real-world 

examples are provided to illustrate the effectiveness of DP for active distribution networks. In [174] DP is used 

to solve multi-period planning problem with such as minimization of investment and interruption costs and 

losses. In [175], DP is proposed to determine the optimal feeder routes and branch conductor sizes with 

simultaneous optimization of cost and reliability. Khalesi et al. [176] have used DP to solve multi-objective 

optimization problem in order to determine the optimal site of DGs in the distribution network to minimize 

power losses and improve both the voltage profile and reliability. 

E) Optimal Power Flow-based Approach (OPFA) 

OPFA has been developed to increase the capacity of DG and identify available headroom on the system within 

the imposed thermal and voltage constraints [177]. Dent et al. [36] have used OPF based method considering 

security constraints to optimally accommodate DGs in the network. In [178], an OPF used to find the optimal 

capacity and placement of DGs in order to minimize the operational cost.  Also in this work, Locational 

Marginal Price (LMP) is determined as the Lagrangian Multiplier of the power balance equation in OPF. The 

authors in [179] have proposed OPF to minimize the energy cost taking into account the goodness factor of each 

DG on the distribution system. The aim of [180, 181] is to find optimal location and size of new DGs 

considering the fault level constraints (FLCs) in the OPF problem. The authors in [182, 183] have proposed a 

multi-period AC OPF to evaluate the optimal size of new DGs which are able to be connected to a distribution 

network when active network management (ANM) control strategies are in operation. In [184] an OPF is used 

to analyze the feasibility of DG integration strategies taking into account the uncertainty of DG’s output power 

in the study of different integration concepts, including network losses, voltage profile and line capacity. 

 

 

F) Direct approach (DA) 

Direct approach (DA) is introduced in [185] to reduce the inherent difficulties toward the solution and provides 

optimum solution at the same time in order to solve the ODGP problem. In [186] DA is applied for optimal 

planning by focusing on  the minimum cost and higher power reliability in radial distribution systems. In [187] 



 

 

DA was proposed to find the optimal size of fixed and switched capacitors in order to minimize the power losses 

and maximize the savings in a radial distribution system.  

 

G) Ordinal Optimization (OO) 

Ordinal optimization (OO) approach presented in [188] to find optimal site and size of DGs with discrete and 

continuous variables in order to minimize the losses and maximize the capacity of DGs. In [189], OO approach 

is applied to find the best solution for planning of distribution network with integration of electric vehicles 

(EVs). Zou et al. in [190] have proposed OO to obtain the optimal solution for ODGP considering the 

uncertainties related to renewable DGs and capability curve of them to improve the voltage profile, voltage 

stability and reduce the active power losses. 

 

H) Analytical Approaches (AA) 

Wang et al. [191] have applied analytical approaches to determine the optimal location of DGs in radial 

distribution systems in order to minimize the power losses. AA are not iterative algorithms in order that there is 

no convergence problems involved, therefore, the results could be obtained very quickly. In [192, 193] both the 

optimal sizing and siting of DGs are determined by an analytical method to minimize the total power losses. In 

[194] an analytical method proposed to obtain the optimal combination of different DG types in a distribution 

system such as size, location and operating point in order to minimize the losses. This method applies in two test 

systems with different configurations by establishing a comparison with the exact optimal solution obtained 

from the exhaustive optimal power flow (OPF) algorithm. In [15, 195, 196], analytical expressions are proposed 

to find an optimal size and power factor of DGs to minimize the power losses in a primary distribution network.  

 

I) Continuation Power Flow (CPF) 

Continuation power flow (CPF) method was presented in [197] to determine the optimal placement of DGs in a 

distribution network in order to improve the voltage profile, reduce the power losses, increase the power transfer 

capacity and maximize the loading and voltage stability. Hemdan and Kurrat have used CPF to analyze the 

systems to optimally allocate DGs in distribution systems in order to meet increasing demand, obtaining more 

benefits from DGs, decreasing the losses and improving the voltage profile [198]. 

Summary of literature review for GDP using conventional techniques can be shown in Table 4.  



 

 

Table 4. Summary of literature review for GDP using conventional techniques 

Conventional methods References Objective function Contribution Uncertain parameter  Mathematical modeling of 

Uncertainty 

linear programming (LP) 

 

Keane & O'Malley 

(2005) [156] 

Maximum capacity The optimal DG placement is solved using LP and take 

advantage of the interdependence of the buses with respect 

to the system constraints. 

 Not modelled  

Keane & Malley (2007) 

[157] 

Maximize profit LP is used to find the optimal model that maximizes the 

quantity of energy that may be reaped from a given area by 

taking into account its available energy resources. 

 Not modelled  

 Abou El-Ela et al.   
(2010) [158]  

Improve voltage and reduce 
line loss 

LP is used for (1) demonstrating the influence of DG sitting 
and sizing to maximize the benefit of DG and (2) 

confirming the optimization results obtained by genetic 

algorithm (GA). 

 Not modelled  

Nonlinear programming 

(NLP) 

Rau  & Wan  (1994) 

[162] 

Minimize real power loss Second order algorithm was proposed to compute the 

amount of resources in selected nodes. 

 Not modelled  

Ghosh et al. (2010) 

[163] 

Minimize both cost and power 

loss 
 

Newton Raphson method was used to find the optimal 

sitting and sizing in DG by focusing on optimization of 
weighting factor, which balances the cost and the loss 

factors. 

 Not modelled  

 

Mixed-integer nonlinear 

programming (MINLP) 

El-Khattam et al. (2005) 

[165] 

Minimize investment and 

operating costs 

Optimal DG model is implemented as an economical 

alternative option in integrated model for solving the DGP 

problem. 

 Load demand growth Scenario-based approach 

Atwa, et al. (2010) [167] Minimizing the energy losses MINLP proposed a probabilistic-based planning technique 

for determining optimal site with different types of DG. 

Load demand and renewable 

DG 

Scenario-based approach 

Kumar & GAO (2010) 

[169] 

Minimization of total fuel cost 

and minimization line losses 

in the network 

Hybrid electricity market of optimal Location and number 

of DG is presented by MINLP approach. 

 Not modelled  

Porkar et al. (2011) 

[168] 

Minimize cost and maximize 

total system benefit 

Optimal site, size, and different types of DG considering 

electricity market price fluctuation introduce by using 

MINLP method. 

 Not modelled  

Atwa, & El-Saadany 
(2011) [166] 

Minimize annual energy loss A probabilistic-based planning technique for optimum 
capacity and location of wind DG in distribution systems is 

formulated as an MINLP. 

Combined generation –load 
model 

Scenario-based approach 

Al Abri et al. (2013) 
[170] 

Improve the voltage stability 
margin 

Optimal sitting and sizing of DGs is formulated by using 
MINLP method. 

 load and renewable DG 
generation 

Scenario-based approach 

Franco et al.  

(2014)[172] 

Minimize operation and 

investigation cost 

MINLP is proposed to solve long term expansion planning 

and offers low computation time. 

 Not modelled  

Capitanescu et al. (2015) 

[171] 

Increase the hosting capacity 

of DG 
 

ODGP problem is formulated as a MILP of multi-period 

optimal power flow to consider thermal and voltage 
constraints by centralized ANM schemes. 

 Not modelled  

Dynamic programming 

(DP) 

Celli et al. (2007) [173] minimizes the capital and 

operational expenditures 

(CAPEX&OPEX) 

DP is used to introduce optimal multiyear development plan 

of active distribution networks. 
 Not modeled  

Popović, et al. (2010) 

[174] 

Minimize cost of  investment  

loss and reliability  

DP is used to improve the quality of multi-period solutions 

in DG. 

 Not modeled  

Khalesi et al. (2011) Minimize loss and enhance DP is used to solve multi-objective function of optimal  Not modeled  



 

 

[176] reliability improvement and 

voltage profile. 

locations in DG network by taking into account the time-

varying loads. 

Ganguly et al. (2013) 
[175] 

 Minimization of investment 
and operational costs and 

maximization of reliability 

DP has been applied to solve distribution system expansion 
planning problem, considering two variables decision feeder 

routes and branch conductor sizes. 

 Not modelled  

Optimal Power Flow-
based Approach (OPFA) 

Vovos, & Bialek (2005) 
[180] 

Maximize profit OPF is developed to convert FLCs to simple nonlinear 
inequality constraints. 

 Not modeled 

Vovos, et al. (2005) 

[181] 

Maximize profit OPFA find optimal capacity by taking into account fault 

level constraints imposed by protection equipment such as 

switchgear. 

 Not modelled  

Harrison & Wallace 

(2005) [177] 

Maximize DG capacity. OPFA has proposed to maximize the capacity of DG and 

identifies available headroom on the system. 

 Not modelled  

Gautam, & 

Mithulananthan  (2007) 
[178] 

Maximization social welfare 

and profit  

OPF techniques is used to find the optimal capacity and 

placement of DGs  

 Not modeled 

Algarni and 

Bhattacharya (2009) 
[179] 

Minimize energy costs OPF method is used to minimize the distribution energy 

costs in Disco power system tacking into account goodness 
factor of DGs.  

 Not modelled 

Dent et al. (2010) [36] Maximize DG capacity OPF based method is used to determine the capacity of 

system to accommodate DGs. The results show voltage step 

limit can be more restrictive of DG capacity than a voltage 

level limit. 

 Not modelled  

Ochoa et al. (2010) 

[182] 

Maximize DG capacity Multi–period AC optimal power flow is proposed to find 

the optimal size of DGs when ANM control strategies are in 
operation. 

 Not modeled 

Ochoa& Harrison  

(2011) [183] 

Minimizes energy losses Multi-period AC -OPF is used to determine the optimal site 

of renewable DGs. 

Load demand and renewable 

DGs 

Scenario-based approach 

 Karatepe et al.  (2015) 
[184] 

Minimize losses and improve 
voltage profile 

OPFA including the output power uncertainties in DGs is 
proposed to investigate the comparison between single-and 

multiple-DG concepts. 

output power of renewable 
DGs 

Scenario-based approach 

Direct approach (DA) Samui et al. (2012) 
[185] 

Minimize the total annual cost DA is used to solve ODGP problem depending on tracking 
and calculating the cost for radial paths. 

 Not modelled 

Samui et al. (2012) 

[186] 

Minimization planning cost. DA is higher effective in optimal feeder routing considering 

role of reliability and planning cost of radial distribution 

system. 

 Not modeled 

Raju et al. (2012) [187] Improve the voltage profile 

and maximize the net saving 

DA is used to find the optimal location and size for 

capacitors in a radial power distribution system.  

 Not modeled 

Ordinal optimization 

(OO) 

Jabr, R. A., & Pal, B. C. 

(2009) [188] 

minimize losses and maximize 

capacity of DG 

Specific approaches have been chosen for the application of 

OO for the optimal placement and sizing of DGs. 

 Not modelled 

Zou, K et al. (2012) 

[190] 

Reduce power losses  ODGP model considering the uncertainties and DG reactive 

capability has been developed by using OO. 

 Not modeled 

Lin et al. (2014)[189] Minimize cost OO is applied for planning of   distribution network 

problems with electric vehicle (EV) charging stations. 

 Not modelled  

Analytical approaches 

(AA) 

Wang & Nehrir  (2004 ) 

[191] 

Minimize power losses of the 

system 

Analytical methods are determined for optimal placement in 

DG in radial network system. 

 Not modelled  

Gozel et al. (2005) [193] Minimize total power losses 

and feeder losses  

The optimal size and placement of DG in a radial feeder are 

determined by analytical method. 

 Not modelled  



 

 

Acharya & 

Mithulananthan (2006) 
[196] 

Minimize total losses AA is used to calculate the optimal size and placement of a 

single DG. 

 Not modelled  

 Gözel and Hocaoglu 

2009 [15] 

Minimize power losses Employ loss sensitivity factor and based on the equivalent 

current injection to solve ODGP in radial system. 

 Not modelled  

Hung et al. (2010) [195] Minimize losses  AA is used to find the optimal size of DGs that have the 
capability to deliver both real and reactive power. 

 Not modelled  

Elsaiah  et al. (2014) 

[192] 

Reduce total  losses An analytical method is introduced to solve the optimal 

location and size problem of DGs. 

 Not modelled  

Mahmoud et al. (2015) 

[194] 

Loss minimization Analytical method is employed to obtain the optimal 

combination of different DG types.  

 Not modelled  

Continuation power flow 

(CPF) 

Hedayati et al. (2008) 

[197] 

Improve voltage profile and  

reduce power losses 

placement of DG is based on the analysis of power flow 

continuation and determination of most sensitive buses to 

voltage collapse 

 Not modelled  

Hemdan, N. G., & 

Kurrat, M. (2011) [198] 

Maximize load ability and 

voltage limit 

CPF is proposed to solve ODGP problem.   Not modelled  

 

 

 

 

 



 

 

4.4.2 Intelligent Searches (Heuristic Methods) 

The heuristic methods based on intelligent searches have been implemented in the DG problem to treat with 

local minimum problems and uncertainties.  

 

A) Simulated Annealing (SA) 

In 1983, SA was introduced by Kirkpatrick et al. [199] as a process to simulate the optimization problem as an 

annealing process in order to find global optimal solutions. This approach has the ability of escaping local 

minima by incorporating a probability function in accepting or rejecting new solutions. Authors in [200] have 

used SA as an optimization tool to determine the optimum location and size of DG in order to minimize multi-

objective function including the active power losses, emission and contingency. Also in [201] SA is employed 

to find optimal location and sizing of DGs to minimize the total losses and improve voltage profile in large 

radial distribution system. Nahman et al. [202] have applied SA to find optimal solution for the planning of 

radial distribution network in order to minimize the total cost.  

 

B) Evolutionary Algorithms (EAs)  

The flexibility of evolutionary algorithms (EAs) leads to widely employ these algorithms for solving power 

system operation and planning problems. These algorithms are a population based optimization process and 

converge to the global optimum solution with probability of one by a finite number of evolutionary steps 

performed on a finite group of reasonable solutions [203, 204]. EAs are type of artificial intelligence methods 

for optimization based on natural selection, such as mutation, recombination, crossover, reproduction and 

selection operators on the population of individuals to perform the search. Also it is a subset of evolutionary 

computation, which includes Evolutionary Programming (EP), Evolutionary Strategy (ES) and Genetic 

Algorithm (GA). EP, ES and GA share many similarities [203, 205]. The authors in [10, 206] have used GA to 

focus on the optimal placement and size of DGs with objective function to maximize the benefits related to DG 

and minimize the power losses. GA and an improved Hereford ranch Algorithm HRA (variant of GA) are 

implemented in [207] to determine the optimal sizing of DGs. In [208], GA and HRA are used to find optimal 

location and size of DGs in a distribution network. In [209], GA is utilized to find optimal re-closer positions 

when DGs are deployed in a securely optimal manner. Also in [210], GA is used to solve ODGP problem with 

different load models in order to minimize the power losses. In [138],  DG allocation strategy for radial 

distribution networks under uncertainties related to load and generation using adaptive GA has been introduced 

and the uncertainties of load and generation are modeled using fuzzy-based approach. El-Ela et al. [158] have 

proposed GA to determine the optimal location and capacity of DG with multi-system constraints to achieve a 

single or multi-objectives.  

In [211], GA based method is employed to find optimal types, locations and sizes of DGs taking into account 

the benefits and costs of DG. Furthermore, Borges et al. [3] have proposed GA technique to find optimal 

placement and size of DGs to maximize the benefit/cost ratio of DG. In [212-214] the authors have combined 

GA and OPF to find the best sites and capacities available for connecting a large number of DGs in the network. 

Also, the combination of these methods is being as an efficient solution to minimize the overall cost. GA and ant 

colony optimization (ACO) together with imperialist competitive algorithm (ICA) are proposed to solve the 

feeder reconfiguration problem in DGs and focus on positive effectiveness of DGs in loss reduction and voltage 



 

 

profile improvement [215]. In [216] a multi-objective programming method based on the non-dominated sorting 

genetic algorithm (NSGA) is introduced to find maximum sets of distributed wind power generation in order to 

minimize the power losses and short-circuit levels. In [217] NSGA-II and the market-based optimal power flow 

has been proposed to minimize the total energy losses and maximize the net present value associated with the 

wind power investment over a planning horizon. Ahmadi et al [218] have used the NSGA-II algorithm for 

optimal site and size of DGs in the network in order to minimize the total cost and line losses and improve 

voltage profile. Carrano et al. [61] have used NSGA-II with four local search strategies to solve the power 

distribution network design problem taking into account three relevant aspects: monetary cost, reliability and 

ability to deal with different scenarios of load growth. Also uncertainties related to load demands are modelled 

by a Monte Carlo simulation (MCS) in order to produce an estimate of the network response into the set of 

possible future load. Wang & Gao in [219] have used a non-revisiting genetic algorithm (NRGA), GA and 

binary space partitioning (BSP) to reduce power losses. 

 

C) Tabu Search (TS)    

In 1986, Glover and Hansen have developed the first TS algorithm to solve the optimization issues [204]. This 

approach is an effective solution to achieve optimization within a reasonably short time. Golshan et al. [220] 

have applied TS method to determine the optimal locations and sizes of DGs in a distribution network along 

with tap positions of voltage regulators (VRs) and network configuration. The objective function of this method 

is to minimize the cost of power losses. Also Nara et al. [221] have implemented TS method to find how much 

distribution loss can be reduced if DGs are optimally allocated at the demand side of the system. Maciel and 

Padilha-Feltrin have proposed a multi-objective Tabu Search (MOTS) method to find the Pareto optimal set. 

This study shows the comparison between MOTS and NSGA-II and confirmed that the MOTS method has a 

less advantage than the NSGA-II especially in more complex analysis where time requirements become critical 

[222]. 

 

D) Particle Swarm Optimization (PSO) 

In 1995, Eberhart & Kennedy have proposed Particle Swarm Optimization (PSO) for the first time [223]. The 

original objective of their research inspired by social behavior bird flocking or fish schooling. Different variants 

of the PSO algorithm were applied to different areas of electric systems problems, but the most standard one is 

the global version of PSO (Gbest) model [224, 225]. Krueasuk & Ongsakul have used PSO method to determine 

optimal sizes and locations of multi-DGs [226]. The main goal of this study is to minimize the total power 

losses in the network. Beromi et al. [227] have suggested a PSO method to solve optimal DG size to improve 

voltage profile, minimize losses and reduce total harmonic distortion (THD) in addition to dealing with both the 

costs and site. Also [228] PSO approach is presented for optimal operation management of distribution networks 

with DGs. The authors in [229] have combined PSO and market-based OPF to choose the optimal size and 

number of wind turbines (WTs) in order to maximize net present value (NPV) within a distribution market 

environment. In addition, Raj et al. [230] and Wong et al. [12] have employed PSO to identify the optimum 

generation capacity and location of DG and provide maximum power quality. In [231], Multi-Objective Particle 

Swarm Optimization (MOPSO) is used to determine optimal size of the DG considering multi objective criteria 

to simultaneously minimize the power losses and improve voltage profile. In [232], PSO has been used for short 



 

 

term planning of DGs to minimize the total operational cost, power losses and voltage stability index. In [233, 

234], multi-objective PSO method is proposed to find optimal size and location of DGs considering load 

uncertainty in distribution networks. Decimal coded quantum particle swarm optimization (DQPSO) in [235] is 

used to solve the feeder reconfiguration problem with different model of DGs in order to minimize the active 

power losses. The authors in [89], proposed a new method based on adaptive particle swarm optimization 

(APSO) for investigating the multi-objective  stochastic distribution feeder reconfiguration problem. Also in this 

paper, various sources of uncertainties including output of the wind power generators and load demands are 

handled through an effective probabilistic power flow method based on point estimation method (PEM) scheme. 

 

E) Ant Colony System Algorithm (ACSA). 

In 1990s, Dorigo et al. [236]  introduced Ant Colony Optimization (ACO) as a new technique for solving 

combinatorial optimization problems. It is inspired from ants’ movement to find food. ACO is derived from ant 

system (AS) algorithm which has the best performance in engineering applications [237-240]. In [241], ACO is 

used as to determine optimal location and size of DGs to minimize investment and operational costs of the 

system considering DGs as constant power sources. Authors in [242] have used ant colony system algorithm 

(ACSA)  to seek out the optimal re-closer and DG placement for radial distribution network by using the 

composite reliability index as the objective function in the optimization procedure. Kaur et al. [243] have used 

ACSA to solve capacitor allocation problem in radial distribution systems to minimize the total cost of losses. In 

[244], multi-objective reconfiguration problem which considers the active power losses minimization and the 

energy not supplied index which is solved by a modified ACO. 

 

F) Artificial Bee Colony (ABC) 

ABC algorithm was introduced by Dervis Karaboga in 2005 [245]. This method inspired by intelligent behavior 

of honey bees’ swarm to find the nectar [245]. ABC approach is applied in [246] to solve distribution network 

expansion planning to obtain the optimum value of reinforcements and to find a suitable commitment schedule 

for the installation of new DGs. In [247], the authors have used ABC algorithm for DG planning problem in 

order to reduce the power losses and to improve the voltage profile in the radial distribution systems. Also, in 

[248], optimal DG location and size problem has been solved by ABC algorithm in order to minimize the power 

losses and enhance the voltage stability level. ABC have been used in [249] to find the optimal location and size 

of DGs with two control parameters (colony size and maximum iteration number) to be tuned. 

 

G) Artificial Immune System (AIS) 

Artificial immune algorithm (AIS) is used in [250] to generate a set of nearly-optimal solutions under load-

evolution conditions (including the load for each node, and a unique expected mean energy tax). The authors in 

[251] have used AIS to solve DG placement problem in order to minimize the power losses taking into account 

the bus voltage and line current limits. In [252], AIS is used to solve the DG planning problem considering 

uncertainty in the load demands in distribution networks. 

 

 

 



 

 

H) Bacterial Foraging Optimization Algorithm (BFOA 

In 2002, Passino invented Bacterial Foraging Optimization algorithm (BFOA). This algorithm tried to model the 

single and set behavior of E. Coli bacteria (kind of bacteria that live in intestines in order to find a simple path 

for faster convergence [253]. In [254], BFOA is used to solve the optimal radial feeder routing in the 

distribution systems planning problem. Devi and Geethanjali, [255] have modified the performance of the BFO 

algorithm (MBFO) in order to find the optimal placement and sizing of DGs in a distribution system to reduce 

the total power losses and to improve the voltage profile of the distribution system. The result showed that 

MBFOA is more efficient in finding the minimum cost in less computational time than BFOA. . In [256], BFOA 

was applied to find the optimal size of capacitor banks in order to  minimize the power losses by taking into 

account loss sensitivity factor (LSF) and voltage stability index (VSI). BFOA is presented to find the optimal 

size and location of multiple DGs in order to minimize the network losses, operational costs and improve the 

voltage stability of a radial distribution system [257]. 

 

I) Bat Algorithm (BA) 

Bat Algorithm (BA) was presented by Yang in 2010 as a base on the echolocation behavior of bats [258]. 

Yammani et al. [259] have used BA to find the optimal location and sizing of DGs to minimize the network 

losses and improve the voltage profile. In [30], BA is used to determine optimal location of capacitors in radial 

distribution system in order to minimize the power losses and maximize the revenue. In [260], BA was used to 

obtain the optimal placement, size and the number of DGs in radial distribution network. In [261], BA and loss 

sensitivity factor (LSF) are respectively used  to find the optimal size of the capacitor banks and find the optimal 

site of the capacitor. 

 

J) Imperialist Competitive Algorithm (ICA) 

ICA is a new approach inspired by imperialists competition and the first using was in 2007 by Atashpaz and 

Lucas [262]. In [263] ICA is used to find the optimal placement and size of DGs to minimize the network power 

losses. Moradi et.al [264] have used ICA to find optimal sitting and sizing of DGs and capacitor banks in a 

distribution network. The objective is to reduce the power losses, increase voltage stability index and improve 

the system voltage profile. In [265], the optimization problem of DGs  at any load level is solved by using ICA 

in order to reduce the power losses and enhance the voltage stability. 

 

K) Cuckoo Search Algorithm (CSA) 

CSA is a new approach developed by Yang and Deb in 2009 to solve the optimization problems [266]. This 

algorithm is inspired from the obligate brood parasitism behavior of certain species of cuckoos by laying their 

eggs in the nests of other birds of other species. Nguyen et al. [267] have proposed CSA to find the optimum 

placement and size of DGs to minimize the power losses and voltage stability deviation index. Also, in [268], 

CSA is used for optimal DG placement to reduce the power losses and improve voltage profile of the 

distribution power system. In [269], COA is used to reduce the power losses and improve the voltage profile for 

two types of DGs: biomass and solar-thermal. The authors in [270] have applied CSA to obtain optimal location 

and size of DGs in distribution network to minimize the active power losses and improve the voltage profile by 

maintaining the fault level and line load within an acceptable limit. 



 

 

 

 L) Intelligent Water Drop (IWP) Algorithm 

Intelligent water drop (IWD) was firstly proposed as a new approach to find the global optimum solutions by 

Shah-Hosseini in 2007. This algorithm inspired from the river procedure to find an optimal path to flow from 

source to destination [271]. In [272], IWP algorithm is used to find the optimal sizing of DGs in radial 

distribution networks in order to minimize the losses and to improve the voltage profile. In [273] (IWD) is 

proposed to find the optimal size and site of DGs in micro grids  to minimize network power losses, improve 

voltage regulation and increase the voltage stability.  

 

 

M) Fuzzy Set Theory (FST) 

Fuzzy set theory (FST) was introduced in 1965 by Zadeh [97] as formal tools to deal with data that have non-

statistical uncertainties. A fuzzy variable is modeled by a membership function which operates over the range of 

real numbers zero or one. Momoh et al. [274] have confirmed that FST is widely used in power system 

planning. In [275] fuzzy-GA is used to solve optimal DG placement problem by transforming the objective 

function and constraint into multi-objective function with fuzzy set. In  [276], FST is used for the modeling of 

the load and electricity price uncertainties in the system and solved by NSGA-II in order to minimize the 

operational cost, technical and economic risks. The authors in [277] have applied two-stage algorithm to solve 

ODGP problem with voltage and line loading constraints in order to minimize the system losses. In the first 

stage, fuzzy approach is used to optimal DG locations while in the second stage, PSO is used to find the size of 

the DGs. Also In [278], Fuzzy Logic is used to find the optimal capacitor locations and BA is applied to 

determine size of optimal capacitors in order to reduce the power losses.  

Table 5 presents a summary of literature review for optimal DGs placement problem using intelligent 

techniques. 

 

4.4.3 The Prospective Methods  

The main perspective revealed methods are presented as follows:  

 

A) Firefly Algorithm (FA):  

This algorithm was first introduced in 2009 by Yang [279] for solving nonlinear multidimensional optimization 

problems. FA is inspired from the natural behavior of the fireflies; a firefly of the maximum brightness has the 

largest ability to attract other fireflies regardless to their sex. References [280, 281] have used FA to find the 

optimal site and size of multiple DGs on a balanced radial feeder for power loss minimization. Othman et al. 

[282] have modified the traditional FA in order to be able to deal with the practically constrained optimization 

problems. This new algorithm has many advantages such as, simple concepts, easy implementation and higher 

stability mechanism compare with traditional FA [282]. 

 

 

 

 



 

 

B) Shuffled Frog Leaping Algorithm (SFLA):  

This method is formed by mimetic evolution of a group of frogs when searching for an area, where the 

maximum amount of food available [283]. Optimal site and size of DGs considering system loss minimization 

and voltage profile improvement as objective functions solved by SFLA [283].  

 

C) Big Bang-Big Crunch (BB-BC) Algorithm:  

This algorithm was first introduced in 2006 by Erol and Eksin [284] as a new optimization method. This 

algorithm relies on one of the theories of the evolution of the universe which is named the Big Bang and Big 

Crunch (BB-BC) Theory. In [285], BB-BC algorithm is used to solve distribution network reconfiguration and 

optimal power allocation of DGs in order to minimize the  total active power losses, maximize the voltage 

stability index, minimize the total cost, and minimize the total emission produce by DGs and the grid.  

 



 

 

Table 5. Summary of literature review for OGDP problem using intelligent techniques 

Intelligent searches   
 

References Objective function Contribution Uncertainty issue Mathematical 
modeling Uncertainty 

Simulated Annealing (SA) 

 

Nahman, J. M., & Peric, D. M. (2008) 

[202] 

Minimize investment cost and loss 

cost 

Optimal planning problem of radial distribution is 

solved by apply SA combination with a steepest 

descent approach. 

 Not modeled  

Sutthibun & Bhasaputra (2010) [200] Minimize power loss and emission  Multi-objective optimal DG placement problem is 

solved by SA. 

 Not modeled  

Injeti, S. K., & Kumar, N. P. (2013) 

[201] 

Minimize the network power losses 

and improve the voltage stability. 

SA is proposed to evaluate the optimal siting and 

sizing of DGs with unspecified power factor 

distribution network. 

 Not modeled 

Evolutionary Algorithms 

(EAs)  
 

HRA Kim et al.  (1998) [207] Minimize power losses Conventional GA and HRA are introduced for 

solving  optimal sizing problem in DGs. 

 Not modeled 

Gandomkar et al. (2005) [208] Minimizes the power losses Simple GA and HRA are applied to introduce optimal 
site and size Of DGs. 

 Not modeled 

GA Silvestri et al. (1999)[206] Maximization of the benefit related 

to DG 

Optimal sitting and sizing problem of DG solved by a 

GA. 

 Not modeled 

Teng, et al. (2002)[211] Maximize benefit /cost ratio of DG  
 

GA proposed to find best balance between the costs 
and benefits of DG placement with optimal types, 

locations and sizes in distribution feeders. 

 Not modeled 

Ganguly, S. and D. Samajpati (2015) 

[138] 

minimizing the network power loss 

and maximum node voltage 

deviation 

GA used to present a DG allocation strategy for radial 

distribution networks under uncertainties of load and 

generation.  

Load, DG fuzzy-based approach 

Popović et al. (2005)[209] Improve voltage profile and reduce 

losses  

GA is designed to find optimal re-closer positions 

when DGs are connected in a securely optimal 
manner. 

 Not modeled 

Borges & Falcao (2006)[3] Minimize the power loss and 

maximize benefit / cost ratio 

 Used GA to introduce and solve optimal DGP 

problem model with reliability. 

 Not modeled 

Harrison et al. (2007) [213] Maximize DG capacity, Combined GA and OPF to solve ODGP problem.  Not modeled 

Harrison et al. (2008) [212] Maximize profit Hybrid method employing GA and OPF to apply 

optimal placement and size a predefined number of 

DGs. 

 Not modeled 

Singh  & Verma  (2009) [210] Minimize real power loss ODGP model with different load models solved by 

GA. 

 Not modeled 

El-Ela et al.  (2010) [158] Improve the voltage profile, 

increase the spinning reserve, and 
reduce the losses. 

GA used to propose the optimal location and size of 

DG with multi-system constraints to achieve a single 
or multi-objectives. 

 Not modeled 

Talaat & Al-Ammar (2011) [10] Minimum losses of the distribution 

system 

Optimal penetration level, and optimal locations and 

sizes of DGs have been investigated using three GA. 

 Not modeled 

Falaghi et al. (2011) [214] Minimize cost GA and OPF approaches are employed as the solution 
tool to solve ODGP problem. 

 Not modeled 

Mirhoseini, et al. (2014) [215] Minimize real power losses and  

improve voltage profile 

GA and ACO together with ICA are proposed to 

solve the feeder reconfiguration problem in DGs. 

 Not modeled 

 (NSGA) Ochoa et al. (2008) [216] Minimize power losses and short-
circuit levels. 

NSGA is applied in order to find configurations that 
maximize the integration of distributed wind power 

generation. 

 Demand and 
generation 

Scenario-based 
approach 

Ahmadi et al. (2008) [218] Minimize total cost, minimize line NSGA-II algorithm used to find optimal location and  Not modeled 



 

 

losses and improve voltage profile size of DGs. 

Siano, P. and G. Mokryani (2015) 

[217]  

maximize the net present value 

associated with the WT investment 
over a planning horizon 

NSGA and the market-based OPF  have proposed to 

find the optimal numbers and sizes of WTs. 

Load demand and 

renewable generation  

Scenario-based 

approach 

Carrano et al. (2014) [61] Minimize cost ODGP problem solved by (NSGA-II) with taking 

account monetary cost, reliability and load growth 
uncertainties. 

Load demand Scenario-based 

approach 

(NRGA) Wang & Gao (2013) [219] Reduce losses NRGA, GA and BSP are used to solve distribution 

network optimization problem for loss reduction. 

 No modelling 

Tabu Search (TS) 

 

Nara et al. (2001) [221] Reduce distribution power loss ODGP are solved by TS method for the case of 

uniformly distributed loads with unity power factor. 

 Not modeled 

Golshan & Arefifar (2006)[220]  Minimize cost of power and losses 

and reactive power capacity. 

DGP problem is solved by using TS method, the 

amount of DGs and reactive power sources RPSs are 

counted in selected buses. 

 Not modeled 

Maciel& Padilha-Feltrin, (2009) [222] Optimal solutions set Apply a Multi-objective TS to find the Pareto optimal 

solutions set, it is a better performance comparing to 

the NSGA-II method. 

 Not modeled 

Particle Swarm Optimization (PSO) Krueasuk & Ongsakul, (2006)[226] Minimize the total real power losses ODGP of multi-DGs determine by PSO.  Not modeled 

Niknam (2006) [228] Summation of electrical energy 

generated by DGs and substation 

bus 

The optimal operation problem solved by PSO and 

presents a better performance in comparison with 

GA. 

 Not modeled 

Beromi et al. (2008) [227] Improve voltage profile, reduce 
loss and  reduce THD  

ODGP considering load flow and harmonic 
calculations for decision-making is applied by PSO. 

 Not modeled 

Raj et al. (2008) [230] Reduces line losses, improve 

voltage profile and improves power 
quality 

Find optimal value of the DG capacity by using PSO 

method. 
 

 Not modeled 

Wong et al. (2010) [12] Reduces total power losses PSO and Newton-Raphson load flow method are 

proposed to determine the optimal location and size 
of the DG. 

 Not modeled 

Jain et al.  (2011) [231] Minimizing power loss and  

improve voltage profile  

Multi Objective PSO method proposed to determine 

the optimal size of the DG.  
 Not modeled 

Siano, P., & Mokryani, G. (2013) 
[229] 

Minimizing energy costs and 
power losses 

PSO and market-based OPF are used to choose the 
optimal size and number of WTs in the system with 

considering security constraints and inter-temporal 

effects. 

 Not modeled 

Aghaei et al. (2014) [232] Reduce overall cost ,power losses 
and voltage stability index 

PSO used to solve short time planning problem of 
DG. 

 Not modeled 

Zeinalzadeh et al.  (2015) [234] Minimize the cost Multi objective PSO method is used to find optimal 

location and capacity of DGs and shunt capacitor 
banks with considering load uncertainty in the 

system. 

Load demand  Fuzzy-based 

approach  

Jamian et al.  (2015) [233] Minimize the cost ODGP problem is solved by using rank evolutionary 

PSO method. 

 Not modeled 

Guan et al.  (2015) [235] Minimizing real power loss  DQPSO used to  solve the feeder reconfiguration 

problem with different model of DGs. 

Renewable DG Monte-Carlo 

simulation 

Malekpour, et al. (2013) [89] Reduces total power losses and 

 Minimize cost of power 

A new method based on adaptive particle swarm 

optimization (APSO) is offered for investigating the 

Renewable  DG Point estimation 

method (PEM) –based 



 

 

multi-objective stochastic distribution feeder 

reconfiguration (SDFR) problem. 

approach 

 

Ant Colony Optimization (ACO). 
 

Teng & Liu  (2003) [239] Minimize the cost ACO is used to solve the optimum switch relocation 
problem. 

 Not modeled 

Gómez et al. (2004) [238] Minimize the investment and 

operation costs 

ACO is proposed to solve planning problem of 

distribution systems. 

 Not modeled 

Vlachogiannis et al. (2005) [240] Minimize real power losses ACO approach is applied to the solution of the 
constrained load flow (CLF) problem as a 

combinatorial optimization problem. 

 Not modeled 

Falaghi & Haghifam (2007) [241] Minimizing the DG operation and 

investment cost 

ACO used as the optimization tool to solve optimal 

location and size problems in DG. 

 Not modeled 

Wang, L., & Singh, C. (2008) [242] Minimizing a composite reliability 

index and minimizing the customer 

interruption costs 

ACO is proposed to seek out the optimal re-closer 

and DG placement. 

 Not modeled 

Kaur, D., & Sharma, J. (2013) [243] Minimize the total cost  Multi-period optimization problem solved by ACO.  Not modeled 

Mirhoseini et al. (2015) [244] Minimizes both real power losses 

and energy not supplied index 

Multi-objective reconfiguration problem consider the 

real power losses and the energy not supplied index 

was discussion together by a modified ACO. 

 Not modeled 

Artificial Bee Colony (ABC) 

 

Padma Lalitha et al.  (2010) [247] Maximum loss reduction ABC algorithm and Fuzzy are used to find the 

optimal DG locations and sizes in the system. 

 Not modeled 

Abu-Mouti et al. (2011) [249] Minimize the total real power loss ABC used find the optimal site, size and power factor 

of DGs. 

 Not modeled 

El-Zonkoly (2013) [246] Minimizing cost ABC is applied to solve dynamic expansion planning 

problem of DGs through discuss unit commitment 

(UC) mathematical model and a multistage expansion 
planning strategy. 

 Not modeled 

N. Mohandas et al. (2015) [248] Improve voltage profile  Optimal DG location and size problems have been 

solved by ABC algorithm. 

 Not modeled 

Artificial Immune System (AIS) 
 

Carrano et al. (2007) [250] Minimizing cost Immune algorithm (IA) used to generate a set of 
nearly-optimal under a set of load-evolution 

conditions.  

Load demand Monte-Carlo 
simulation 

Aghaebrahimi et al. (2009) [251] Minimize power losses  AIS is used to solve DG placement problem in power 
network. 

 Not modeled 

Souza et al. (2011) [252] Minimize total costs AIS used to solve the DGP problem by taking 

account the effect of uncertainty in electric 

distribution networks. 

Load demand Monte Carlo 

simulation 

Bacterial Foraging   

 

Singh et al. (2012) [254] Minimizing cost Bacterial foraging introduce to provide a rapidly 

solutions with a best probability in order to obtain a 

global optimal solution of the distribution planning 
problem. 

 Not modeled 

Devi, S., & Geethanjali, M. (2014) 

[255] 

Reduce the total loss and improve 

the voltage profile 

MBFO is proposed to improve the convergence 

characteristics of BFO algorithm to solve optimal 

problems of radial distribution systems. 

 Not modeled 

Kowsalya, M. (2014) [257] Minimize network power losses BFOA is proposed to solve the various optimization 

problems at different load levels. 

 Not modeled 

Devabalaji et al. (2015) [256] Minimize power losses BFOA was used to fine optimal size of capacitor 

bank with taking account both LSF and VSI. 

 Not modeled 



 

 

Bat Algorithm Yammani et al. (2013) [259] Minimize system loss and improve 

voltage profile  

BA used to find the   optimal location and sizing of 

the DGs. 

Load demand Scenario-based 

approach 

Injeti et al.  (2015) [30] Loss minimization Optimal Location problem of capacitors in radial 
DGs is solved by BA and Cuckoo Search (CS).  

 Not modeled 

Candelo-Becerra et al. (2015) [260] Minimizing power losses BA was used to obtain optimal solution of DGs 

problem in radial distribution network. 

Renewable DG Scenario-based 

approach 

Devabalaji et al.  (2015) [261]. Reduce the total power loss BAT Algorithm used to find optimal size of the 
capacitor banks and LSF used to pre- find the optimal 

site of the capacitor placement. 

 Not modeled 

Imperialist Competitive Algorithm 

(ICA) 

Mahari et al. (2012) [263] Minimizing the total system active 

power losses 

ICA used to find optimal location and size of DGs.  Not modeled 

Moradi et al.  (2014) [264]. Reduce power loss , increase 

voltage stability index and 

improving system voltage profile 

ICA employed to solve the ODGP problem of DG 

and capacitor banks in the distribution network.  

 Not modeled 

Poornazaryan et al. (2016) [265]. Reduce power losses and enhance 

voltage stability. 

Optimal location and size of DG unit are obtained by 

proposed ICA with considering load variations. 

Load demand Scenario-based 

approach 

Cuckoo Search Algorithm 

(CSA) 

Fard et al. (2012) [269]. Reduce the losses and improve the 

voltage profile 

CSA introduce to solve ODGP problem for different 

types of DG in the network. 

Load demand Monte Carlo method 

Moravej et al. (2013) [268]. Minimize real power losses and 

improve voltage profile 

Optimal location and size problem is solved by 

employing CSA. 

 Not modeled 

Buaklee et al. (2013) [270]. Loss reduction and improve voltage 

profile 

CSA is proposed to find optimal site and size of DGs 

by considering the fault level constraints. 

 Not modeled 

Nguyen et al. (2016) [267] Minimize total power loss and 

enhance voltage stability. 

CSA employ to solve optimal location and size 

problems in DGs network. 

 Not modeled 

Intelligent Water Drop (IWP) Algorithm Prabha  et al. (2015) [272]. Minimize the losses IWD used to find optimal sizing and the loss 

sensitivity factor (LSF) for the installation of DGs in 
the radial distribution network. 

 Not modeled 

Moradi et al. (2016) [273] Minimize network power losses, 

improve voltage regulation and 
increase the voltage stability. 

IWD method with GA is proposed to find size and 

site of DG in micro grids. 

 Not modeled 

Fuzzy Set Theory (FST) Kim et al. (2002) [275]  Reduce power loss costs Fuzzy-GA method used to solve the ODGP problem 

by transforming the objective function and constraints 
it to multi-objective function with fuzzy sets  

 Not modeled 

Haghifam et al. (2008) [276] Minimization of total cost , 

technical and economic risk  

Load and electricity price uncertainties in the system 

are modelled using fuzzy numbers and solve by non-
dominant sorting genetic algorithm (NSGA-II). 

Load demand Fuzzy numbers 

Lalitha et al. (2010) [277]  Reduce power losses and improve 
the voltage profile 

Fuzzy and PSO algorithm including voltage and line 
loading constraints proposed to find the optimal DG 

locations and sizes. 

 Not modeled 

Reddy, V. U., & Manoj, A. (2012) 
[278] 

Reduce power losses BA used to determine the size of optimal capacitors 
in DGs. 

 Not modeled 

 



 

 

The above table shows that the trend of using the intelligent methods has been gradually increased to find the 

optimum solution in DGs placement problem. In addition, the scientists have recently applied two or three 

methods as a combination to obtain a new strategies in order to solve the optimization of DGP problem 

efficiently, such as [12, 207, 208, 212-215, 219, 247, 273, 275-277].  

  

 

Tables 6 and 7 show the summary of the conventional and intelligent methods characteristics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 6. Advantages and disadvantages of conventional methods 

Conventional methods 
 

References Advantages Disadvantages 

Linear programming (LP) 

 

[156-158] Easy to implement, and it accommodates large variety of 

power system operating constraints 

Used just when the objective function is linear.   

Nonlinear programming (NLP)  [162, 163] Simple and Efficient.  Long time to run. 

Mixed-integer nonlinear programming 

(MINLP) 

[165-172, 286] It is fast, robust, efficient and deal with very large scale 

DGP problems. 

It may insert errors due to the linearization of the 

nonlinear characteristics of DGP. 

Dynamic programming (DP) [173-176, 286] Efficient and easy. Not suitable for large-scale DGP problems 

Optimal Power Flow-based Approach 

(OPFA) 

[36, 177-184] Easy, simple and efficiency in computational time The results may not be optimal when the problem is 

highly complex and Hard to understand and implement 

Direct approach [185-187] Robust, very efficient and suitable for large-scale 
distribution systems 

Not deals with the radial network structure. 

Ordinal optimization (OO) [188-190] It is deal with non-deterministic polynomial (NP) 

complete problems such as DG planning with discrete and 
continuous variables. 

Need long time. 

Analytical approaches (AA) [15, 191-196]  Simple, easy implementation and efficiency in 

computational time. 

Only obtains approximate solution. 

Continuation power flow (CPP) [197, 198] Faster, Very efficient, robust, qualified to treat different 
level penetration of DG.  

May not find the optimal solution. 

 

 

Table 7. Summary of Evaluation Intelligent Methods 

Intelligent methods References   Advantages Disadvantages 

Simulated Annealing (SA) [200-202] Ease of implementation, get best solutions and robust. It requires excessive computation time. 

Evolutionary Algorithms (EAs) 

 

[206-208] Simple, speedy processing time , efficient and accurate 

results, very useful for complex  problems 

Used a larger population size, repeated fitness function 

evaluation for large and complex problems may be time 

consuming.  

Tabu Search (TS) 
 

[220, 221] It is an efficient to achieve near -optimal solution within a 
reasonably short duration. 

Need considerable parameters to be define 

Particle Swarm Optimization (PSO) [12, 226-232, 

287, 288] 
 

It is easy to implement Insensitive to scaling of design 

variables, Simple implementation, easily parallelized for 
concurrent processing, derivative free, Very few 

algorithm parameters, and very efficient global search 

algorithm.  

Need to solid mathematical background. 

Ant Colony System Algorithm (ACSA). [238-244] Easy to understand and code Rapid discovery of good 
solutions 

Theoretical analysis is difficult 

Artificial bee colony (ABC) 

 

[245-249, 289, 

290] 

Very simple, robust, efficient algorithm, fast-converging, 

capable of handling complex optimization problems and it 
does not require external parameters.  

The performance of this method may be influenced 

depending on the constraint handling method used 

Artificial immune system (AIS) 

 

[250-252] Effective, can find and maintain set of suboptimal 

solutions simultaneously with the existing better solution.  

Complex system 

Bacterial foraging [254-257] Efficiency to find result in less computational time It requires the tuning of great number of parameters. 

Biologically inspired algorithm (Bat 

Algorithm) 

[30, 259-261, 

278] 

Efficient and Accurate. The convergence rate is very much influenced by 

adjustment parameters. 



 

 

Imperialist Competitive Algorithm 

(ICA) 

[263-265]. effective, fast, and capable of handling complex nonlinear 

mix-integer optimization problems in DGs. 

harder to code  

fewer literature example 

Cuckoo Search Algorithm 
(CSA) 

[266, 268-270] It is more generic and robust, efficient, easy to code, less 
parameters setting. 

Slow convergence. 

Intelligent Water Drop (IWP) Algorithm 

 

[271, 272] fast, efficient, easy to implement  and need less iteration 

to find good results  

fewer literature example 

Fuzzy Set Theory (FST) [275-277] Easy to  comprehend, and suitable to model uncertainties 
to find better solution 

fewer literature example 

 

 

 

  



 

 

5. Conclusion 

 Distributed generators (DGs) are reliable solution to provide power which accommodate the load increase and 

relieve network overload in addition to offer technical and economic benefit. 

This paper reviews a number of studies which already been carried out to develop an efficient and robust 

optimization algorithms to solve DGs placement problem (size, site and the type). The sequence of this study 

has considered a comprehensive review of uncertainty modeling in power system and application of these 

methods in DGs planning and operation problems. Also, the conventional, intelligent and perspective 

approaches used for the DGs problem are specifically reviewed. Then, the comparison between these methods 

has been shown to locate the advantage and disadvantage.  

This work is specialized by incorporating the reviewing of the methods which recently used as solution of DGs 

placement problem and characterized as simple concepts, easy implementation and higher stability mechanism. 

The recent review depicts that the intelligent methods are mostly used to obtain an optimum solution of DGs 

placement problem. Also shows the new ways of combining more than one method to gain the proposed 

optimum solution.  
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