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ABSTRACT 

Uncertainty is in part about variability in relation to the physical characteristics of water 

resources systems. But uncertainty is also about ambiguity (Simonovic, 2009). Both variability 

and ambiguity are associated with a lack of clarity because of the behaviour of all system 

components, a lack of data, a lack of detail, a lack of structure to consider water resources 

management problems, working and framing assumptions being used to consider the 

problems, known and unknown sources of bias, and ignorance about how much effort it is 

worth expending to clarify the management situation. Climate change, addressed in this 

research project (CFCAS, 2008), is another important source of uncertainty that contributes to 

the variability in the input variables for water resources management.  

 

This report presents a set of examples that illustrate (a) probabilistic and (b) fuzzy set 

approaches for solving various water resources management problems. The main goal of this 

report is to demonstrate how information provided to water resources decision makers can be 

improved by using the tools that incorporate risk and uncertainty.  The uncertainty associated 

with water resources decision making problems is quantified using probabilistic and fuzzy set 

approaches.  A set of selected examples are presented to illustrate the application of 

probabilistic and fuzzy simulation, optimization, and multi-objective analysis to water resources 

design, planning and operations. Selected examples include dike design, sewer pipe design, 

optimal operations of a single purpose reservoir, and planning of a multi-purpose reservoir 

system. Demonstrated probabilistic and fuzzy tools can be easily adapted to many other water 

resources decision making problems. 
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1. INTRODUCTION 

When dealing with water resources infrastructure design and management the decision 

process is subject to many uncertainties. It is then of great importance to provide decision 

makers with tools that incorporate risk and uncertainty in decisions. The goal of this report is to 

demonstrate how information provided to decision makers can be improved through the use of 

probabilistic and fuzzy approach to deal with risk and uncertainty in water resources 

management.  The inclusion of such information can lead to more informed decisions. 

1.1 THE DECISION MAKING PROCESS 

The water resources decision making is a complex process that involves management of risk 

that may arise from various sources of uncertainty. Furthermore, the decision making process is 

subject to participation of multiple or single decision makers from various disciplines and 

responsibilities resulting in conflicting goals and decision attitudes. The decision making process 

offers a framework for making decisions in systematic and rational ways (Simonović, 2009). 

The decision making process is an iterative process.  The decision making process used for the 

implementation in water resource systems management consists of 7 practical steps adopted 

from Jewell (1986). They consist of: 

1. Definition of the problem; 

2. Gathering data; 

3. Development of criteria for evaluating alternatives; 

4. Formulation of alternatives; 

5. Evaluation of alternatives; 

6. Choosing the best alternative; 

7. Final design/plan implementation. 

 

The decision making process sometimes has several stages simultaneously being considered, 

facilitating feedback and allowing a natural progression of the problem solving process. 



2 
 

The problem definition should be as general as possible in order to allow for largest scope of 

solutions or alternatives to be considered. A key part of the problem definition is identifying the 

systems or subsystems that the problem is a part of, known as the environment of the problem. 

The factors considered in analyzing the problem are limited by the environment. Furthermore, 

the problem over which there is a reasonable chance of maintaining control should be the 

problem defined. The problem definition may require careful investigation and iterations as 

more information as a result of the decision process becomes available.  

Gathering data for water resources systems management may be required in several stages of 

the decision making process. Some background data is required in order to be able to formulate 

a problem and the additional data gathering continue all the way to the final stage of the 

decision making process - the final design or plan implementation. When feedback is required, 

the data previously acquired can assist in redefining the problem.  

Development of criteria for evaluating alternatives is required to measure the degree of 

attainment of system objectives. The criteria developed facilitate the rational choice of an 

alternative (from a wide range of feasible alternatives) that will accomplish the established 

objectives. Economic criteria such as cost-benefit can be used in this process. In reality water 

problems are of complex nature typically with multiple objectives. In some cases the objectives 

can be formulated as constraints and the optimal solution can be obtained in accordance to 

remaining objectives. In most water resources problems, cost effectiveness is still considered as 

the primary criteria. 

The formulation of alternatives essentially involves the development of system model that will 

be used in decision-making, in conjunction with the criteria for evaluation of the outcomes. If 

possible these models should be mathematical in nature. Where mathematical quantification is 

not appropriate a more subjective models could be constructed. 

Evaluation of alternatives is done using various mathematical techniques. They include the 

simplex method for linear programming(LP) optimization models, the various methods for 

solving ordinary and partial differential equations or systems of differential equations, matrix 

algebra, various economic analyses and deterministic or stochastic computer simulation. 
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Subjective analysis techniques may be used for the subjective analysis of intangibles. The 

appropriate analysis procedures for a particular problem will generate a set of solutions for the 

alternatives which can be tested according to the established evaluation criteria. 

The choice of the best alternative from among those analyzed must be made in the context of 

the objectives and evaluation criteria previously established. It must take into account non-

quantifiable aspects of the problem such as aesthetics and political considerations. The chosen 

alternative will greatly influence the development of the final plan/design, and will determine 

in large part the implementation of the suggested solution. 

The final plan/design/operation strategy are technical steps which are conducted within the 

constraints and specifications developed in the earlier stages of the decision making process. 

The result is a report with clean and concise recommendations for the problem solution. 

Decision making process in water resources management is a very broad. Let us consider a 

problem of selecting an appropriate dike height in the design of a flood protection system.  It 

should be noted that this is just one decision that needs to be made by decision makers out of 

many needed to finalize a dike design. Where to build the dike? How high? What slope, width 

and material should be used? These are just examples of other questions that the decision 

making process will have to deal with.  

Going back to the problem definition of selecting an appropriate dike height, the decision 

maker must be able to identify the problem environment, factors that can be used to develop a 

set of decision making criteria. For example, the economic concerns may include benefits from 

reduced inundation; the environment implications may include negative effects such as 

downstream flooding; the soil condition (poor soil may result in decrease of the dike height). 

The alternatives are formulated based on the specific criteria like costs, benefits, settlement 

(soil condition), environmental impacts, etc. A series of either continuous or discrete 

alternatives is developed and evaluated.  The selection of an optimal solution is made from a 

set of feasible solutions that maximizes/minimizes a set of objective functions representing 

selected criteria.  For example as the dike height increases flood protection increases and so 

thus the potential benefit from flood damage reduction. However, as the dike height increases 
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the construction cost also increases. Similarly as the dike height increases, the more significant 

are the environmental impacts due to downstream flooding.  As can be seen, multiple criteria 

govern a problem solution, and they may be of conflicting nature. Various toolsets are used to 

aid the decision makers in the selection of the best alternative.  

1.2 UNCERTAINTY IN THE WATER RESOURCES DECISION MAKING PROCESS  

Uncertainty is in all stages of the decision making process. To understand the uncertainties 

requires understanding of the sources of uncertainty. Uncertainty in water resource 

management can be divided into two basic forms: uncertainty caused by inherent hydrologic 

variability and uncertainty caused by a fundamental lack of knowledge (Simonović, 2009). The 

first form is described as stochastic variability, and the second one as ambiguity. The variability 

is caused by the inherent fluctuations in the quantity of interest (hydrological variables). The 

three main sources of variability are temporal, spatial and individual heterogeneity.  Temporal 

variability occurs when values fluctuate over time. Spatial variability occurs when values are 

dependent on the location of an area. The third category encompasses all other sources of 

variability, not mentioned.  In water resource management variability is mainly associated with 

the spatial and temporal variation of hydrological variables (precipitation, river flow, water 

quality, etc.).   

The more elusive type of uncertainty is ambiguity. It occurs when the particular values that are 

of interest cannot be assessed with complete confidence because of a lack of understanding or 

limitations of knowledge.  Three sources of ambiguity are from model and structural 

uncertainty, parameter uncertainty and decision uncertainty.  Model and structural uncertainty 

arise due to an attempt to form a simplified expression of a real world process which as a result 

introduces uncertainty though oversimplification, approximation and failure to capture the true 

characteristics of the process under investigation. Parameter uncertainty involves the fine 

tuning of a model, and thus cannot cause the large variations as in model uncertainty. Common 

example of parameter uncertainty is random direct measurement error due to imprecise 

instruments and systematic error - error as a result of subjective judgment. 
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The final category of ambiguity is decision uncertainty which arises when there is controversy 

concerning how to compare and weigh social objectives. The first source of decision uncertainty 

is due to risk measurement (measure must be technically correct, measurable and meaningful). 

Second source of decision uncertainty deals with deciding the social cost of risk (transforming 

risk measures into comparable quantities). The difficulties in this process are clearly illustrated 

in the concept of developing a monetary equivalent for the value of life in flood control 

analysis. The quantification of social values is the third source of uncertainty. Once a risk 

measure and the cost of risk are generated, controversy still remains over what level of risk is 

acceptable. This level is dependent upon the attitude of society to risk. 

The decision making process is subject to uncertainty coming from both sources, ambiguity and 

variability. Table 1.1 illustrates an attempt to identify the sources of uncertainty associated with 

each stage of the decision making process. For clarity a graphical representation of Table 1.1 is 

presented in Figure 1.1. 

 

TABLE 1.1- UNCERTAINTY SOURCES IN WATER RESOURCES DECISION MAKING 

1. Definition of the problem; ambiguity, more precisely decision uncertainty as risk 

measure and cost of risk are fundamental in problem recognition;  the problem 

existence may be an area of controversy depending on decision maker’s attitude; 

accuracy and completeness of data.   

2. Gathering data; variability due to stochastic nature of physical variables (temporal, 

spatial, etc.); ambiguity due to direct measurements or imprecise instruments. 

3. Development of criteria for evaluating alternatives; ambiguity (or more precisely 

decision uncertainty); attitude of society and decision makers; risk perception; 

quantification of social values.  

4. Formulation of alternatives; model and structural uncertainty (ambiguity); accuracy 

and completeness of data.  

5. Evaluation of alternatives;  variability from stochastic nature of real world problem; 
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decision ambiguity from criteria development; model and structural uncertainty from 

the formulation of alternatives. 

 

6. Choosing the best alternative; parameter , model and structural ambiguity due to the 

fact that the accuracy of the toolset used for selecting the optimal  alternative is based 

on the best available technique;  decision uncertainty; risk perception; quantification of 

social values.    

7.  

Final design/plan implementation;  accuracy and completeness of data; model and 

structural ambiguity; decision uncertainty. 

 

Different stages of the decision making process may directly be subject to only one source of 

uncertainty. However, indirectly many additional sources of uncertainty are introduced due to 

the nature of the process allowing feedback relationships between various stages. . Thus each 

decision making process stage may be subject to multiple sources of uncertainty. Initial 

complexity of the decision making process is challenging enough for most decision makers. 

Combining all the sources of uncertainty makes the process even more difficult. All decisions 

have to be made based on partial information with uncertainty.  
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FIGURE 1.1- UNCERTAINTY SOURCES IN WATER RESOURCES DECISION MAKING 

Continuing with the dike design example (introduced in the previous section), to formulate an 

alternative a great deal of uncertainty has to be considered. The alternatives may results in dike 

heights corresponding to various flow return periods. In this way, the dike height is determined 

using past information while the design is for the future.  As the variables involved (such as 

flows and water levels) are subject to inherent stochastic variability and ambiguity, it can be 
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concluded that significant sources of uncertainties are present in the determination of a dike 

height.  These uncertainties are additionally transferred to other stages of the decision making 

process, resulting in the uncertain final decision that may prevent the future action.  

1.3 RISK 

Risk can be viewed as the quantification of uncertainties that may cause unwelcome effect 

from the water resources system performance.  Perhaps the most expressive definition of risk is 

the one that conveys its multidimensional character by framing risk as the set of answers to 

three questions: What can happen? How likely is it to happen? If it does happen, what are the 

consequences? (Simonovic, 2009 after Kaplan and Garrick, 1981). The answers to these 

questions emphasize the notion that risk is a prediction or expectation which involves a hazard 

(the source of danger), uncertainty of occurrence and outcomes (the chance of occurrence), 

adverse consequences (the possible outcomes), a timeframe for evaluation, and the 

perspectives of those affected about what is important to them. The answers to these 

questions also form the basis of conventional quantitative risk analysis methodologies.  

Here a general definition of risk based on the concept of load (L) and resistance(R) coming from 

structural engineering is presented.  Load is a variable reflecting the behavior of the system 

under certain external conditions of stress or loading. Resistance is a characteristic variable 

which describes the capacity of the system to overcome an external load (Ganoulis, 1994). 

When the load exceeds the resistance (L>R) there should be a failure or an incident. Safety or 

reliability state is obtained if the resistance exceeds or is equal to the load (R≥L). 

Continuing with the dike example introduced in section 1.1, the level of flood protection 

provided by a dike is not certain, it is subject to a risk of dike failure (overtopping, sliding, or 

breach).  The consequences of incident or failure would mean loss of property and human lives 

caused by flooding. In this case the flood level (water level) is representing a load and the dike 

height resistance. In this case risk is a result of hydrologic variability and ambiguity as discussed 

in the previous section.  Risk is one way for quantifying uncertainty. In the scope of decision 

making process, communication of risk of failure is important so that the informed decisions 

can be made.  There are two basic approaches to risk and uncertainty management:  (1) the 
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probabilistic approach, in which risk is defined as the probability of failure and, (2) the fuzzy set 

approach, in which characteristic measures are introduced to define risk. 

1.4 APPROACHES FOR DEALING WITH UNCERTAINTY 

The sources of uncertainty in water resources management are diverse and many. The 

following discussion provides the basic concepts of both, probabilistic and fuzzy, approaches.  

1.4.1 PROBABILISTIC APPROACH  

Probability theory has a long history of application in the field of water resources management. 

Hydrologic processes are random and thus the uncertainty as a result of variability may be 

appropriately quantified using the probabilistic approach. The basic mathematical concept of 

sets is fundamental in probability operations; sets are collections of elements, each with some 

specific characteristics. These sets are evaluated through use of Boolean algebra. In probability 

theory, the elements that comprise a set are outcomes of an experiment. The sample space of 

an experiment is the mutually exclusive listing of all possible outcomes of the experiment which 

is represented by the universal set Ω. In probability theory a subset of the sample space is the 

event. 

Associated with any event E of a sample space S is a probability, P(E), that may be obtained as 

the number of elements in the event E divided by the number of elements in the sample Space 

S (classical interpretation of probability – equally likely concept). Continuing from the general 

definition of risk, in the probabilistic framework, L (load) and R (resistance) are taken as random 

or stochastic variables. In probabilistic terms, the risk is defined as the chance of failure or the 

likelihood of failure:  

 
 (1.1) 

 

A prerequisite for using the probabilistic approach is the requirement of a prior knowledge of 

the probability density functions of both resistance and load, and their joint probability 

distribution function. In practice, data is usually lacking to provide such information and where 

available, approximations still need to be made to estimate appropriate distributions.  
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1.4.2 FUZZY SET APPROACH 

Fuzzy set theory was intentionally developed to try to capture judgmental belief, or the 

uncertainty that is caused by the lack of knowledge or ambiguity.  The concept of a fuzzy set 

can be described as a “class” (set) with a continuum of grades of membership (Zadeh, 1965).  

Each object within a fuzzy set is graded in the interval [0, 1]. For example, in the class of 

animals, rocks may be said to have 0 degree of membership in the set of animals that is they do 

not belong, while cats may have full membership and belong. These definitions are common to 

traditional ordinary sets, where the values are crisp either belonging or not with no partial 

degree of belonging (Zadeh, 1965).  Fuzzy sets extend the ordinary sets, consider in the set 

animals starfish have an ambiguous status and thus hold degree of membership in the interval 

[0, 1] that is partial membership. Therefore, starfish can be properly represented without the 

need to classify them as either belonging or not to the set (class). Fuzziness thus measures the 

degree to which an event occurs, not whether it occurs, a contrast to probability theory. 

In the application of fuzzy approach L and R are considered as fuzzy numbers. Then risk may be 

defined by means of appropriate fuzzy measures such as linguistic rules. 

 

1.4.3 COMPARISON OF APPROACHES 

The probabilistic and fuzzy approaches each have benefits and limitations when it comes to 

quantifying uncertainty in water resources management. The probabilistic approach for 

quantifying uncertainty addresses the uncertainty as a result of stochastic variability. However, 

the probabilistic approach has limitations in addressing the problem of uncertainty which goes 

along with human input, subjectivity, a lack of history and records. Furthermore, the results 

using the probabilistic approach may show potentially misleading levels of precision due to the 

full dependency on the underlying appropriateness of the selected probability distribution. 

Therefore, in areas where the probabilistic approach is limited, there is a need for an 

alternative approach. The fuzzy set approach can be used for the representation of perceived 

qualitative ambiguity sources of uncertainty that may not be measurable, giving results with 

some precision.  Neither fuzziness nor probability can successfully quantify all sources of 
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uncertainty in the water resources decision making process alone, thus, these concepts must be 

utilized together. 

 

1.5 ORGANIZATION OF THE REPORT  

Water resources management decision making process is subject to many challenges from risk 

and uncertainty.  In the past, imprecise safety factors were used to address uncertainty and 

risk.  There is a need for providing water resources decision makers with formal decision 

support tools that accurately incorporate risk and uncertainty.  The goal of this report is to 

demonstrate how information provided to decision makers can be improved through the use of 

probabilistic and fuzzy set approaches for quantifying risk and uncertainty in water resources 

management.  Probabilistic and fuzzy set approaches are used to expand on existing decision 

making procedures and toolsets to account for uncertainty and risk. Toolsets like simplex linear 

programming optimization, multi-objective analysis, and simulation of mathematical models 

can modified for use in the probabilistic and fuzzy domains. The methodologies for simulation, 

optimization, and multi-objective analysis under uncertainty are detailed in this report. In order 

to demonstrate how uncertainty and risk may be quantified using the probabilistic and fuzzy 

toolsets a set of generic problems is presented in the report. It should be noted that the tools 

detailed in the report may find wide application beyond the problems discussed here.   

Two water resources engineering cases, the design of a dike height and the sewer pipe sizing, 

demonstrate design under uncertainty.  The deterministic procedure is modified to 

demonstrate how variability and ambiguity uncertainties may be quantified using fuzzy and 

probability based simulation tools. 

Two cases relating to water resources planning and operations problems are presented too. 

The first one demonstrates the optimization of reservoir operations. The second one deals with 

the multipurpose reservoir planning.  These two cases demonstrate the use of fuzzy and 

probabilistic based optimization and multi-objective analysis techniques under uncertainty.   
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2. METHODOLOGY 

The following sections present methodological background of water resources management 

tools for quantifying uncertainty using the probabilistic and fuzzy approach. The presentation 

includes simulation, optimization, and multi-objective analysis tools under uncertainty. The 

tools are used later for solving the selected case study examples for illustrative purposes. The 

implementation of presented tools is certainly not limited to those presented in the report.  

2.1 PROBABILISTIC APPROACH 

The probabilistic approach is often used in water resources management to address various 

sources of uncertainty. The following discussion includes probabilistic simulation, optimization 

and multi-objective analysis. 

2.1.1 SIMULATION 

Simulation models describe how a system operates, and are used to predict what changes will 

result from a specific course of action. Alternatively, simulation models are called cause-and-

effect models. They describe the state of the system in response to various inputs, but give no 

direct measure what decision should be taken to improve the performance of the system. The 

probabilistic simulation modifies the existing deterministic simulation models through the use 

of probability density functions to represent the random variables.  

The probabilistic simulation has two forms: (a) the implicit probabilistic approach which uses 

simulation in order to generate random numbers based on underlying distributions, and (b) the 

explicit probabilistic approach which directly uses the probability equations and their analytical 

solutions. The latter method includes the following steps: 

 

Step 1. Approximation of a statistical distribution using the appropriate statistical parameters 

such as population mean and standard deviation.   
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Step 2. Determination of expected value using the probability density function:  

 

 

 

(2.1)  

 

The above probabilistic explicit steps can be applied also with the implicit approach where 

simulation is used instead of using distributions to directly solve for, for example expected 

value. The random numbers are generated based on underlying distribution, the mean of which 

represents the expected value. These generated random values may then be used as direct 

input into the deterministic model, yielding stochastic simulation.  

Consider that each random variable within the modified deterministic model is subject to some 

uncertainty and this uncertainty is fitted with an appropriate continuous probability distribution 

function that is randomly sampled to produce hundred or even thousands of scenarios or 

iterations. The distribution of the values calculated for the model outcome therefore reflects 

the probability of the values that could occur. This technique is known as the Monte Carlo 

Simulation (MCS). MCS creates an artificial model that will hopefully reproduce the distribution 

of input variables.  

The Monte Carlo sampling method starts with looking at a cumulative distribution function F(x), 

which gives the probability P that the variable X will be smaller than or equal to the distribution 

of an uncertain input variable x, i.e. 

 
 (2.2)  

 

where F(x) ranges from zero to one. The next step is looking at the inverse function G(F(x)) 

written as: 

 
 (2.3)  
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The inverse function is used in the generation of random samples from each distribution. Thus 

to generate a sample from an input probability distribution fitted to the uncertain variable, a 

random number (r) is generated between zero and one. This value is substituted into Eq. (2.3) 

where F(x) is equal to (r). The random number r is generated from the Uniform (0, 1) 

distribution to provide equal opportunity of an x value being generated in any percentile range. 

The Monte Carlo simulation process is automated with the use of a computer and a software 

package like MATLAB. The output of the simulations can be studied for the statistical properties 

and to answer what if questions of the decision maker.  

 

2.1.2 OPTIMIZATION 

An example of the probabilistic optimization approach known as the Chance Constrained 

Programming is presented here. It has been conceptualized by Charnes and Cooper (1959) and 

implemented by them and others to deal with linear programming optimization under 

uncertainty. The approach expands the linear programming optimization model by adding 

probabilistic constraints that allow for violation.   With the Chance Constrained Programming, 

when knowing or approximating the distribution of the random variable, we are able to 

evaluate the probability of the constraint violation. The reliability, α [0, 1] of not violating a 

constraint is specified by the decision maker, thus it allows for decision maker to directly 

control the level of risk he/she finds acceptable. 

The classical linear programming formulation, based on the simplex method is given as 

 

 

 

 

 

Subject to: 

 

 

 

 

 

(2.4) 
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where cj represents the objective function(x0) coefficients, xj is the decision variable, aij is the 

coefficient of the constraint,  bi is the right-hand side of the constraint, n is the total number of 

decision variables, and m is the total number of constraints. 

The transformation to stochastic optimization using the Chance Constrained approach is done 

through the introduction of an additional probabilistic constraint, shown below. 

 

 

(2.5) 

 

where  represents the random  variable with known historical data for approximating its 

probability distribution, r is the number of chance constraints , and αr is the decision maker 

specified reliability of not violating the constraint (0 to 1). 

The expression in Eq. (2.5) may also be presented in distribution function form as 

 

 

(2.6) 

 

A linear deterministic equivalent of Eq. (2.6) is obtained by inversion and rearrangement 

 

 

(2.7) 

 

where is the inverse of the distribution function evaluated at (1-αr).  The value of 

 is replaced by  such that the linear deterministic equivalent can then be 

rewritten as 
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(2.8) 

 

Once the probabilistic constraints are converted into linear deterministic equivalents, the 

optimization problem can be solved using classical linear programming optimization algorithm.  

 

2.1.3 MULTI-OBJECTIVE ANALYSIS  

Goicoechea et al. (1982) developed a stochastic multi-objective analysis method known as the 

Probabilistic Tradeoff Development (PROTRADE). This method is used to deal with problems 

involving the decision makers preferences and is capable of handling risk. The PROTRADE 

method consists of the formulation of surrogate and multiple attribute utility functions. The 

construction of these utility functions leads to their direct translation into the fitness function. 

The PROTRADE method is presented by the 12 step procedure below.  

Step 1. A vector of objective functions is defined using the expected values of the objective 

functions coefficients: 

 

 

  

 

(2.9)  

 

Step 2. Vectors U1 and M are defined, having the maximum and minimum values of the 

objective functions respectively: 
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(2.10)  

 

To find the maximum and minimum values it is necessary to perform optimization of each 

objective function separately, subject to the set of constraints . 

Step 3. An initial surrogate function is formulated: 

 

 

 

(2.11)  

Where 

 

 

 

(2.12)  

 

where  is the value of objective function i, i= 1,2,….,n;  is the minimum value 

obtained when objective i is subjected to the constraints; and is the maximum value 

obtained when objective i is subjected to the constraints. 

Step 4. An initial solution x1 is obtained by maximizing F(x), subject to constraints . 

This solution is used to generate a goal vector G1: 
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(2.13)  

Step 5. A multidimensional utility function is defined; in this case Giocoechea et al. (1982) 

proposed a multiplicative form (Keeney and Raiffa, 1976): 

 

 

 

(2.14)  

This function is used to reflect the DM’s goal utility assessment, where k and ki are constants 

which are determined by questions posed to the DM.  The procedure for determining the 

parameters of the above function is discussed in Keeney and Raiffa (1976) and Krzysztofowicz 

and Duckstein (1979). 

Step 6. A new surrogate objective function is defined: 

 

 

 

(2.15)  

where, 

 

 

 

(2.16)  

Step 7. An alternative solution is generated maximizing the surrogate solution S1 finding a 

solution called x2 used to generate G2 and U2: 
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(2.17)  

Step 8. A vector V1 that expresses the tradeoff between the goal value and its probability of 

achievement is generated: 

 

 

 

 

(2.18)  

where  is such that,  

 
 

 

(2.19)  

Step 9. The DM has to answer the following question: “Are all the Zi(x2) values satisfactory?”  If 

the answer is affirmative, the vector U2 is a solution, if not go to step 10. 

Step 10. The Zk(x) with the least satisfactory pair of (Gk(x2), 1-αk) is selected and the DM 

specifies a new probability for that pair. 

Step 11. The solution space is redefined creating a new x-space. 

Step 12. A new surrogate objective function is generated and a sequential search for a 

satisfactory solution is performed going back to step 7 as many times as necessary.
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2.2 FUZZY SET APPROACH 

The following presents a set of generalized tools for water resource management based on the 

use of fuzzy set theory. In addition, some of the techniques for generating fuzzy membership 

functions are explained.  

2.2.1 MEMBERSHIP FUNCTION CONCEPT   

A fuzzy set (class) is characterized by a membership (characteristic) function which associates 

each member of the fuzzy set with a real number in the interval [0, 1] (Zadeh, 1965;Ross, 2004). 

The membership function essentially embodies all fuzziness for a particular fuzzy set; its 

description is the essence of a fuzzy property or operation. There are numerous ways to assign 

membership values or functions to fuzzy variables; more ways than there are to assign 

probability density functions to random variables. In the following sections a sample of the 

available methods for assigning membership values or functions are summarized. For further 

details the reader is directed to the textbook by Ross (2004). 

2.2.1.1 INTUITION 

This method is derived simply from the capacity of humans to develop membership functions 

through their own innate intelligence and understanding (Ross, 2004). In order to utilize 

intuition, contextual and semantic knowledge about an issue is essential. Thus, the membership 

function development is dependent on the subjectivity of the individual or individuals consulted 

in its development. A single fuzzy variable may have more than one membership function, that 

is, there may be many partitions. An important characteristic for the purposes of use in fuzzy 

operations is that these partitions overlap.  

2.2.1.2 INFERENCE 

The inference method comes from our ability to perform deductive reasoning. When given a 

body of facts or knowledge we are able to deduce or infer a conclusion. The inference method 

can take many forms; consider an example of identifying a triangle when we possess a formal 

knowledge of geometry and geometric shapes, Ross (2004).  In identifying a triangle, let A, B 
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and C be the inner angles of a triangle in the order  and let U be the universe of 

triangles, such that, 

 
 (2.20)  

 

We can infer membership of different triangle types, because we possess knowledge of 

geometry. We can determine if a triangle is approximately isosceles by developing an algorithm 

for the membership meeting the constraints of Eq. (2.20) we have: 

 

 

(2.21)  

 

So, for example if A=B or B=C the membership value of isosceles triangle is =1 however if 

A=120°, B=60°, C=0° then =0. In the first case we thus have full membership or belonging of 

the fuzzy variable in the fuzzy set for an approximate isosceles triangle while the second case is 

a total contrast.  

2.2.1.3 RANK ORDERING 

The approach arises from assessing preferences by a single individual, a committee, a poll and 

other opinion methods that can be used to assign membership values to a fuzzy variable (Ross, 

2004). Preferences are determined by pairwise comparisons, and these determine the ordering 

of the membership. This method is similar to finding relative preferences through a 

questionnaire and developing membership functions as a result. 

2.2.1.4 NEURAL NETWORKS 

Neural network is a technique that seeks to build an intelligent program using models that try 

to recreate the working of neurons in the human brain. Neurons are believed to be responsible 

for humans ability to learn, thus the goal is to implement this to machine language to use for 

generating membership functions. Neural networks use in membership function generation is 

centered on a training process (learning as a result of available data for input) and an 

unsupervised clustering process (Ross, 2004).  After training, degree of membership function 
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for a given input value may be estimated through the network computation. That is, each input 

value has a certain estimated degree of belonging to a cluster which is equivalent to the degree 

of the membership function represented by the cluster. 

2.2.1.5 GENETIC ALGORITHMS 

Genetic algorithms use the concept of Darwin’s theory of evolution in searching for the best 

solution of a given set based on the principle of “survival of the fittest” (Ross, 2004). Among all 

possible solutions, a fraction of the good solutions is selected, and the others are eliminated. 

The selected solutions undergo a process of reproduction, crossover, and mutation to create a 

new generation of possible solution. The process continues until there is a convergence within a 

generation. The genetic algorithms can be used in the derivation of membership functions. The 

process starts by assuming some functional mapping for a system (membership functions and 

their shapes for fuzzy variable/s). The membership functions are then converted to a code 

familiar to the algorithm, bit strings (zeros and ones) which can then be connected together to 

make a longer chain of code for manipulation in the genetic algorithm (i.e. crossover, 

elimination, reproduction). An evaluation function is used to evaluate the fitness of each set of 

membership functions (parameters that define the functional mapping). Based on the fitness 

value, unsatisfactory strings are eliminated and reproduction of satisfactory strings proceeds 

for the next generation. This process of generating and evaluating strings is continued until the 

membership functions with the best fitness value are obtained.   

2.2.1.6 INDUCTIVE REASONING 

This approach utilizes the inductive reasoning to generate the membership functions by 

deriving a general consensus from the particular (Ross, 2004). Inductive reasoning assumes 

availability of no information other than a set of data (Russell & Kim, 1993). The approach is to 

partition a set of data into classes based on minimizing the entropy. The entropy, S, where only 

one outcome is true is the expected value of the information contained in the data set and is 

given by  
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(2.22)  

 

where the probability of the ith sample to be true is pi and N is the number of samples. The 

minus sign in front of the parameter k in Eq. (2.22) ensures that entropy will be a positive value 

greater than or equal to zero. Through iteratively partitioning, the segmented data calculation 

of an estimate for entropy is possible. The result is a solution of points in the region of data 

interval used to define the membership function. The choice of shape of membership functions 

is arbitrary as long as some overlap is present between membership functions, therefore simple 

shapes like triangles, which exhibit some degree of overlap is often sensible.  

 

2.2.2 FUZZY SIMULATION 

The fuzzy approach used for simulation is derived from utilizing the fuzzy inference method, 

based on the representation of human knowledge in  IF-THEN rule-based form, such that we 

are able to infer a conclusion or fact (consequent) given an initial known fact (premise, 

hypothesis, antecedent) (Ross, 2004). 

A typical form of the IF-THEN rule-based form also referred to as a deductive form is shown in 

the expression below: 

 
 (2.23)  

 

The fuzzy simulation (rule-based system) is the most useful in modeling complex systems that 

can be observed by humans. The linguistic variables are used as antecedents and consequents. 

These linguistic variables can be naturally represented by fuzzy sets and logical connectives of 

these sets. 

Mamdani's fuzzy inference method is the most commonly seen fuzzy simulation methodology, 

and is the methodology presented in this report (Ross, 2004). The method was originally 
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proposed as an attempt to control a steam engine and boiler combination by synthesizing a set 

of linguistic control rules obtained from experienced human operators. The Mamdani inference 

method is a graphical technique that follows five main steps: (1) development of fuzzy sets and 

linguistic rules, (2) fuzzification of inputs, (3) application of fuzzy operators, (4) aggregation of 

all outputs, and (5) defuzzification of aggregated output. 

Step 1. Development of fuzzy sets and linguistic rules 

To begin, the Mamdani form rules may be described by the collection of r linguistic IF-THEN 

expressions.  Equation (2.24) shows the expression for a fuzzy system with two non-interactive 

inputs x1 and x2 (antecedents) and a single output (consequent) y. The concept holds for any 

number of antecedents (inputs) and consequents (outputs). 

 
 

(2.24)  

 

where  and  are the fuzzy sets representing the kth antecedent pairs, and  is the fuzzy 

set representing the kth consequent. The membership functions for the fuzzy sets may be 

generated with one of the methods discussed in section 2.2.1. 

Step 2. Fuzzification of Inputs 

The inputs to the system x1 and x2 are scalar values. In order to proceed with the inference 

method the corresponding degree to which the inputs belong to the appropriate fuzzy sets via 

membership functions need to be found. Fuzzification of the input thus requires the 

membership function of the fuzzy linguistic set to be known and through function evaluation 

the corresponding degree of membership for the scalar input belonging to the universe of 

discourse is found. Figure 2.1 outlines the procedure in a graphical form. 
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FIGURE 2.1- FUZZIFICATION OF SCALAR INPUT FROM KNOWN MEMBERSHIP FUNCTION. 

It should be noted that inputs to any fuzzy system can be a membership function, such as for 

example gauge reading that has been fuzzified already.  Either way, the methodology is the 

same as one that employs fuzzy singletons (scalar values) as the input. 

Step 3. Application of fuzzy operators  

Once the inputs are fuzzified, the degree by which each condition of the antecedent is satisfied 

is known for each rule. If there are multiple antecedent conditions for each rule, as in the case 

of expression (2.24) then a fuzzy operator is used to obtain one number that represents the 

antecedent for that rule. This number is applied to the output function producing a single truth 

value for the rule. 

The logical operators commonly employed are described. 

The expression in (2.24) has conjunctive antecedents and in brackets for illustration shows 

disjunctive antecedents. 

For conjunctive antecedents, assuming a new fuzzy subset as 

 
 

(2.25)  
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expressed by means of membership function, shown in Figure 2.2 

 

 
(2.26)  

 

 or disjunctive antecedent a similar procedure follows. This time fuzzy set A s is defined as 

 
 

(2.27)  

 

expressed by means of membership function, shown in Figure 2.2 

 . (2.28)  

 

Given the above, the compound rule may be rewritten as 

 
 

(2.29)  

 

 

FIGURE 2.2- FUZZY OPERATOR USE FOR THE GENERALIZED EXPRESSION (2.24) OF A RULE 

 

Step 4. Aggregation of outputs 
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It is common for a rule-based system to involve more than one rule.  As such, in order to reach 

a decision or overall conclusion aggregation of individual consequents or outputs contributed 

by each rule is required, so that all the outputs are combined into a single fuzzy set, which may 

be defuzzified in the final step to obtain a scalar solution. 

The aggregation of outputs may be achieved in two ways (1) max-min truncation, (2) max-

product scaling. Only the first case will be discussed in this report. In the max-min case 

aggregation is achieved by the minimum or maximum membership function value from the 

antecedents (depending on the logical operator used in the rule) propagating through to the 

consequent and in doing so truncating the membership function for the consequent of each 

rule. This procedure is done for each rule. The truncated membership functions of each rule will 

need to be combined. This may be achieved through use of disjunctive rules, or conjunctive 

rules, using the same fuzzy operators as in step 3. 

If the system of rules needs to be jointly satisfied the truncated outputs should be aggregated 

as a conjunctive system - the rules are connected by “and” connectives. In the case where the 

objective is for at least one rule to be satisfied, the aggregation of outputs may be treated by 

the definition of disjunctive system - the rules are connected by “or” connectives.   igure 2.3 

illustrates the aggregation of outputs into a single fuzzy membership function. Each antecedent 

is treated as conjunctive and the aggregation of outputs of each rule is treated as a disjunctive 

system. 
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FIGURE 2.3- AGGREGATION OF RULE OUTPUTS INTO A SINGLE FUZZY MEMBERSHIP FUNCTION 

 

Step 5. Defuzzification of aggregated result 

The final objective of the rule-based system simulation is typically a single value obtained from 

the defuzzification of the aggregated fuzzy set of all outputs. Many defuzzification methods are 

available in the literature: max membership principle, centroid method, weighted average 

method, and numerous other methods. There is no one most suitable defuzzification method. 

Selection of the best method for defuzzification is context or problem-dependent. For the 

purpose of this report the centroid method will be used, because it is well established and 

physically appealing among all the defuzzification methods (Ross, 2004). The centroid method 

shown in Figure 2.4, may also be referred to as the center of gravity or center of an area. Its 

expression is given as, 
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(2.30)  

 

 

FIGURE 2.4- CENTROID METHOD FOR DEFUZZIFICATION 

 

2.2.3 FUZZY OPTIMIZATION 

The optimization tool selected for presentation in this report is the fuzzy linear programming 

approach. The fuzzy linear programming approach departs from the classical assumptions that 

all coefficients of the constraints need to be crisp numbers and that the objective function must 

be minimized or maximized (Zimmermann, 1996). Fuzzy optimization allows for certain 

aspirations to be targeted in the objective function and for constraints to be loose accounting 

for uncertainty or imprecision. In this way decision makers are no longer required to give exact 

crisp constraints, where uncertainty exists and are further able to target a range of accepted 

aspiration values for the objective function. 

The fuzzy version of the traditional linear programming optimization problem presented in Eq. 

(2.31) is: 

 
 

 

 

 

(2.31)  

 

µ 

y y
* 



30 
 

where the symbol “  denotes a relaxed or fuzzy version of the ordinary inequality “≤”.  The 

fuzzy inequalities represent the decision maker’s fuzzy goal and fuzzy constraints and mean that 

“the objective function cx should be essentially smaller than or equal to an aspiration level z0 of 

the decision maker” and “the constraints Ax should be essentially smaller than or equal to b,” 

respectively.  Furthermore, the fuzzy constraints and goal are viewed as equally important with 

respect to the fuzzy decision. 

Zimmermann (1978) expressed the problem in simplified form for the fully symmetric objective 

and constraints. 

 
 

 

 

 

(2.32)  

Where, 

 

 
(2.33)  

 

The following expression for the (monotonically decreasing) linear membership function 

illustrated in Figure 2.5 was proposed by Zimmerman for the ith fuzzy inequality (Bx)i  di. 

 

 

(2.34)  

 

where, each di and pi are the subjectively chosen constant values corresponding to the 

aspiration level and the violation tolerance of  the ith inequality, respectively.   If the constraints 

(including objective function) are well satisfied the ith membership function value should be 1. 

If the constraint is violated beyond the limit of tolerance, pi than the value will be 0 and 

between 0 and 1 will be linear.  
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FIGURE 2.5- LINEAR MEMBERSHIP FUNCTION 

The membership function of the fuzzy set “decision” of model in Eq. (2.32) including the linear 

membership functions is shown below. The problem of finding the maximum decision is to 

choose x* such that 

 
 

(2.35)  

 

In other words, the problem is to find the x*≥0 which maximizes the minimum membership 

function value. This value satisfies the fuzzy inequalities, (Bx)i  di with the degree of x* 

(Sakawa, 1993). 

Substituting the expression (2.34) for linear membership function into Eq. (2.35) yields 

 

 

(2.36) 

 

The fuzzy set for decision can be transformed to an equivalent conventional linear 

programming problem by introducing the auxiliary variable λ: 

 
 

 

(2.37)  
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It should be emphasized that the above formulation is for a minimization of the objective 

function and less than constraints, thus should be modified appropriately for other conditions. 

 

2.2.4 FUZZY MULTI-OBJECTIVE ANALYSIS 

The methodology detailed for optimization using fuzzy linear programming can be extended to 

multi-objective analysis (optimization) problems (Sakawa, 1993). The multi-objective linear 

programming problem with k linear objective functions may be stated: 

 

 
 

 

 

(2.38)  

 

where ci=(ci1,…,cin), i=1,…,k, x=(x1,…,xn)T, b=(b1,…,bm)T and A=[aij] is an m x n matrix. 

For each of the objective functions  of this problem, assume that the 

decision maker (DM) has a fuzzy goal such as “the objective function zi(x) should be 

substantially less than or equal to some value”. Then the corresponding linear membership 

function µi
L(zi(x)) is defined as 

 

 

 

(2.39)  
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where zi
0 or zi

1 denotes the value of the objective function zi(x) such that the degree of 

membership function is 0 or 1 respectively (Sakawa, 1993). Zimmermann (1978) suggested a 

way to determine the parameters zi
0 and zi

1 by solving the individual objective functions with 

respect to the non-fuzzy constraints for both maximum and minimum values of the objective, 

thus establishing a range of valid goal values.  To be more specific, assuming the existence of 

the optimal solution xio, 

 
 

 

 

(2.40)  

 
 

 

(2.41)  

where for the decreasing membership function shown in Eq. (2.39), the parameter zi
0 may be 

chosen as  and the parameter zi
1 chosen as . 

Figure 2.6 illustrates the possible shape of the decreasing linear membership function, for the 

minimizing objectives.  

 

FIGURE 2.6- DECREASING LINEAR MEMBERSHIP FUNCTION, FOR MINIMIZATION OBJECTIVE FUNCTION 

Using such linear membership functions µi
L(zi(x)), 1,…,k, with the original multi-objective linear 

programming problem the fuzzy set “decision” can be formulated as 
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(2.42)  

 

By introducing the auxiliary variable λ, the problem can be interpreted in the following 

conventional linear programming form 

 
 

 

 

 

(2.43)  

or substituting the membership function µi
L(zi(x)), 

 
 

 

 

 

(2.44)  

where Ti represents the absolute difference between zi
0 and zi

1 and the variable λ represents 

the maximum degree of overall satisfaction for all the fuzzy objectives and constraints.   

The constraint Ax≥ b can be converted into fuzzy form as shown in the discussion of fuzzy linear 

programming methodology (section 2.2.3). The presented formulation is for minimization of 

objectives and thus the linear membership function Eq. (2.39) needs to be slightly modified to 

represent the maximization objectives as shown in Fig. 2.7. 
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FIGURE 2.7- INCREASING LINEAR MEMBERSHIP FUNCTION, FOR MAXIMIZATION OBJECTIVE FUNCTION 
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3. IMPLEMENTATION OF WATER RESOURCE MANAGEMENT TOOLS UNDER 

UNCERTAINTY 

The following set of selected cases is chosen to demonstrate how uncertainty and risk may be 

quantified to aid the decision process using techniques discussed in the previous chapter.  The 

selected cases include dike height design, storm water sewer pipe design, single reservoir 

planning, and management problems. The cases will showcase the modification of traditional 

deterministic approaches in order to address various sources of uncertainty. 

3.1 DIKE HEIGHT DESIGN 

Dike is the oldest, most common and often most economical structural measure used for 

management of floods. Dike is a barrier usually erected at a location that provides the greatest 

net benefit and roughly parallel to a river or a coast. A dike is commonly made of earthen 

materials which can fail from overtopping (flood or wind induced) and seepage/piping. One of 

the main hazards involved with a diking system is that it provides a community with full 

protection up to a certain flood stage and none after, which leads communities to continue 

further development in the flood prone regions unaware of the risk.   

The height of a dike is the key variable in the decision of the level of protection from floods. The 

greater the dike height the greater the potential level of protection of the region behind the 

structure. Traditionally there is no one single method for dike height design. Various design 

principles exist for height determination and their choice depends on local preferences.  

Different methods are used to address the uncertainty in dike height design. Uncertainty arises 

due to errors in sampling, measurements, estimation, forecasting and modeling (Debo & Reese, 

2003). For dike design, the water level (stage) and discharge are of prime importance. 

Uncertainty in discharge is due to a short or nonexistent flood records, inaccurate rainfall-

runoff modeling and inaccuracy in known flood flow regulation (Debo & Reese, 2003). Stage 
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uncertainty comes from errors and unknowns associated with roughness, geometry, debris 

accumulation, sediment impacts and others factors (Debo & Reese, 2003). 

Self-learning dike height design strategy comes from Netherlands and it suggests that dike 

height adjustment be made immediately following the actual extreme flood event. The height 

of a dike is determined by applying a safety margin on top of the highest recorded water level 

(Kok & Hoekstra, 2008). Gui et al, 1998 showed a strategy of dike height design for the 

simultaneous occurrence of flood and wind caused waves. The height of waves is used for 

determining the freeboard. The FEMA certification guidelines in 2007 state that “the freeboard 

must be established at one foot above the height of the 1% wave or the maximum wave run-up 

(whichever is greater) associated with the 100-year still water surge elevation at the site” (Van 

Ledden et al, 2007).  These guidelines proved to be insufficient for the hydraulic design of dikes 

in the New Orleans area.  

The freeboard allowance strategy dike height design method is based on historical stream 

gauge data and preselected return period in order to determine a probabilistic flood stage 

level. An increase of freeboard of 0.3-1m depending on the location is usually provided. Various 

other design strategies are available in the literature but the main objective of the design 

remains to account for uncertainty in choosing the appropriate dike height level in order to 

provide with confidence the desired protection level.  

3.1.1 PROBLEM IDENTIFICATION 

The limitation of most currently available dike height design strategies is that they rely on 

limited past historical hydraulic conditions data to predict the future ones. This means that the 

current deterministic strategies have a great deal of uncertainty that they usually try to deal 

with by selecting a freeboard value.  

The implementation of a probabilistic approach instead of the deterministic strategies requires 

addition of a probability density function for each estimated parameter. Additionally simulation 

can be used to generate synthetic data series based on the predefined statistical distributions, 

which may be used for dike height design and lead to better understanding of the uncertainty 

in hydrologic processes associated with the dike height design. Through the implementation of 
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the fuzzy approach, uncertainty as a result of partial or missing data may be subjectively 

alleviated allowing for a solution to be reached.  

3.1.2 MATHEMATICAL FORMULATION 

The mathematical problem formulation for the selection of the appropriate design height of a 

dike is based on the traditional deterministic methodology (freeboard allowance strategy) 

expanded with the probabilistic simulation approach (both implicit, based on the Monte Carlo 

simulations, and explicit) and fuzzy simulation approach. 

3.1.2.1 DETERMINISTIC APPROACH 

The traditional deterministic procedure for dike design is as follows:  

Step 1 Data must be gathered to develop discharge-frequency and stage-discharge (also known 

as rating curve) curves for the dike design location. 

Step 2. Find the flood stage with decision maker specified annual exceedance probability.  

Step 3. Find the stage from the rating curve corresponding to the discharge found in step 2.  

Step 4. Add the freeboard to account for uncertainty; this in equation form is shown below  

 

 
 

 

(3.1)  

where Ht is the total dike height, H is the flood stage and Hf is the allowance of freeboard.  The 

units used must be kept consistent. 

3.1.2.2 PROBABILISTIC APPROACH 

The development of the probabilistic mathematical formulation is based on the methodology of 

probabilistic simulation discussed in section 2.1.1. In the probabilistic approach each point of 

the discharge-frequency and the stage-discharge curve is represented by a probability density 

function.  The probabilistic approach has two forms: (a) implicit probabilistic approach which 

uses simulation in order to generate random numbers based on the underlying distributions, 
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and (b) explicit probabilistic approach which directly uses the probability equations for solving 

analytically the dike height design problem. The latter method is presented below. 

 

Step 1. Find the flood stage with specified annual exceedance probability from a discharge-

probability function that for each point has a corresponding probability density function. For a 

single return period (exceedance probability) a discharge statistical distribution corresponding 

to the appropriate statistical parameters (such as population mean and standard deviation) is 

found.   

 

Step 2. The discharge probability density function is used to find the expected value of stage 

corresponding to the given return period, given by Eq. (2.1), where f(x) is the probability density 

function that best describes the hydraulic characteristics of the site. 

    

Step 3. The expected value of discharge is then used to find the probabilistic discharge from the 

discharge-frequency curve.  

Step 4. The expected value of flood stage is determined from the distribution of stage (Step 3) 

that corresponds to the selected exeedance probability.  

 Step 5. Finally the addition of freeboard is selected. 

The above probabilistic explicit steps can be applied also for the implicit case that utilizes the 

Monte Carlo Simulation approach (presented in section 2.1.1). 

3.1.2.3 FUZZY APPROACH  

The deterministic problem of dike height design can be transformed using a fuzzy set approach 

and solved using the fuzzy rule-based Mamdani inference method (presented in section 2.2.2). 

The fuzzy mathematical model formulation for the dike height design problem is based on the 

three simple linguistic rules for estimating the dike height as shown in Table 3.1.  Each of the 

rules comes with two disjunctive antecedents and a single consequent safety corresponding to 

the designed dike height. The inputs are based on the design flows and the rules return an 
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output of the appropriate dike safety, or rather height, for design depending on the frequency 

and stage of the flow used for input. The rules are used to represent some inherent knowledge 

possessed to infer appropriate dike height levels for design. As an example the first rule states 

that for flows that are frequent or for flows that are associated with shallow depths a low dike 

height safety level is required. That is, the rules separate the subjectively and ambiguously 

defined ranges of potential frequency of occurrence (frequent, infrequent, rare) and the water 

depth (shallow, average, deep) with respect to flow quantity in establishing required dike safety 

level (low, medium, high). 

TABLE 3.1- THREE SIMPLE RULES FOR SIMULATING DIKE HEIGHT FOR DESIGN. 

1. If (Flow is frequent) or (Flow* is shallow) then (Safety is low) 

2. If (Flow is infrequent) or (Flow* is average) then (Safety is medium) 

3. If (Flow is rare) or (Flow* is deep) then (Safety is high) 

 

3.1.3 NUMERICAL EXAMPLE 

The following demonstrates the deterministic procedure for dike height design and its 

modification for the implementation in the probabilistic and fuzzy domains. 

3.1.3.1 Problem  

Determine the height of a dike for 100 year return period flood protection with the discharge 

frequency curve in Table 3.2 and the stage discharge curve in Table 3.3. The freeboard value is 1 

m. In the design problem use: 

TABLE 3.2- THE DISCHARGE FREQUENCY DATA 

Tr (years) Exceedance probability Discharge(m
3
/s) 

500 0.002 898.8 

200 0.005 676.1 

100 0.010 538.5 

50 0.020 423.0 

20 0.050 298.8 
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10 0.100 222.5 

5 0.200 158.4 

 

TABLE 3.3- THE STAGE DISCHARGE DATA 

Discharge (m
3
/s) Stage (m) 

898.8 8.32 

676.1 7.57 

538.5 6.70 

423.0 5.80 

298.8 4.76 

222.5 4.00 

158.4 3.24 

 

a. Deterministic procedure  

b. Explicit probabilistic simulation approach with normal distribution and given population 

properties for 100 year return period in Table 3.4. 

i. Expected value for dike height 

ii. Percentile (The height of the dike which will account for the flood stage value at 

or below which 90 percent of units lie.) 

c. Implicit probabilistic simulation procedure with log-normal distribution and given 

population properties for 100 year return period in Table 3.4 and simulation program in 

MATLAB given in Appendix A. 

i. Expected value for dike height 

ii. Percentile (The height of the dike which will account for the flood stage value at 

or below which 90 percent of units lie.) 

 

TABLE 3.4- MONTE CARLO SIMULATION INPUT DATA FOR LOG-NORMAL AND NORMAL DISTRIBUTION 

 Mean Standard deviation 

100 year Discharge(m
3
/s) µ=538.5 σ =100 m

3
/s 

Stage(m) µ= -6E-06x
2
 + 0.0134x + σ =0.3  
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1.2903  (where x is discharge) 

 

d. Fuzzy simulation procedure with the rule-based approach. Assume that 580 m3/s design 

discharge is representative of a 100 year return period flow. Assume triangular 

membership functions for the linguistic variables. Use Table 3.2 and Table 3.3 as an aid 

for the membership function development.   

 

3.1.3.2 Solution using deterministic dike design procedure 

The deterministic design procedure follows the steps used in the description of the 

methodology. 

Step 1.  The values in Table 3.2 are graphed as discharge-frequency curve(Figure 3.1) and values 

in Table 3.3 are graphed as stage-discharge curve(Figure 3.2). 

Step 2. Following deterministic procedure, the coresponding discharge is first found for the 100 

year return period flood protection. Figure 3.1 shows how is the discharge found graphically to 

be 538.5 m3/s. 

 

FIGURE 3.1- DISCHARGE-FREQUENCY CURVE (DOTTED LINE SHOWING DISCHARGE CORRESPONDING TO 100 YEAR RETURN PERIOD) 

Step 3.  Using the rating curve in Figure 3.2 or using the equation for the curve and solving with 

respect  to the discharge of 538.5 m3/s,  a coresponding stage of 6.7 m is found.  
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FIGURE 3.2- RATING CURVE 

 

Step 4.  Using the equation (3.1) the total design dike height is found: 

 

The freeboard was given as 1 m and flood stage was solved earlier as 6.7 m thus: 

 
 

(3.2)  

 

Therefore it can be concluded that using the deterministic approach the appropriate total dike 

height for the 100 year flood is 7.7 m. 

 

3.1.3.3. Solution using explicit probabilistic procedure 

The probabilistic approach is applied to find the expected value of dike height as well as the 

90% percentile value. 

i) Expected dike height value 

Step 1. Given expression (3.3) here for expected value of a normal distribution and Table 3.4, 

we first find the expected discharge. 



44 
 

 

 

 

substitute z=(x-µ)/σ 

 

 

 

 

 

 

substituting for first integral dz 

 

 

 

 

 

(3.3) 

 

 

 

 

 

 

(3.4) 

 

 

(3.5) 

 

 

 

 

 

 

 

(3.6) 

 

 

(3.7) 

 

 

 

 

 

Expression (3.3) simplifies to μ as shown above, a property of a normal distribution. Thus for a 

100 year return period the expected value of discharge is:  
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 (3.8)  

 

Step 2.  Using the data in Table 3.4 and the expected value equation (3.7) we find the expected 

value of flood stage corresponding to the expected value of discharge (538.5 m3/s) is: 

 
 

(3.9)  

6.7 

Step 3. Using value from equation (3.9) and adding freeboard of 1 m the final value of the dike 

height is found. 

 
 

(3.10)  

The explicit probabilistic method yields 7.7 m as the solution for which the dike should be built 

the same as the solution from the deterministic method.  

ii) The 90% percentile value of dike height  

Step 1. The discharge is solved corresponding to the stated percentile and 100 year return 

period as shown in the equation:  

 

 

(3.11) 

 

The integral becomes difficult to solve due to the error functions. Alternatively the 

transformation equation can be solved for x using the normal deviate z corresponding to the 

stated percentile: 

  

 

 

(3.12) 
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Normal deviate z is equal to 1.28 which is read in reverse order from the standard cumulative 

normal distribution table corresponding to 90th percentile. In addition the discharge normal 

distribution population mean and standard deviation is given in Table 3.4, rearranging Eq. (3.12) 

and substituting givens we get: 

 

 
 

(3.13)  

 

 

The 90th percentile discharge (Q) is found to be 666.5 m3/s. 

Step 2. For the discharge of 666.5 m3/s the corresponding stage population mean and standard 

deviation are found in Table 3.4. 

The stage mean is found using the rating function given in Table 3.4 and substituting the 

discharge found in previous step  

 
 

(3.14)  

 The stage population standard deviation determined from Table 3.4 is 

 
 

(3.15)  

 

Thus again using the normal deviate Eq. (3.12) for 90th percentile (z is equal to 1.28), with 

values from Eq. (3.14; 3.15) and rearranging the flood stage is found to be: 

 
 

(3.16)  
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Step 3. The flood stage from Eq.(3.16) of 7.94 m is significantly different from the value 

determined using the deterministic approach, especially after adding the additional freeboard 

of 1 m using equation (3.1).  

 
 

(3.17)  

The design height for the dike is thus 8.94 m which is at 90 percent confidence for the 100 year 

return period. This is a much more conservative solution and may not be financially feasible. 

3.1.3.4 Solution using implicit probabilistic procedure 

Implicit probabilistic approach is used to find the expected and 90% percentile value of the dike 

height based on the provided data. 

i) Expected dike height value 

The implicit probabilistic simulation approach in a way will replicate the deterministic approach. 

Using the expected value of the log-normal distribution we first find the expected value of 

discharge for the 100 year return period and then the corresponding expected value of the 

stage. The equations below correspond to the expected value of the log-normal distribution. 

These equations are implemented with the Monte Carlo Simulation as discussed in section 

2.1.1.  

 

 

(3.18)  

 

 

 

(3.19)  

 

Where, 
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(3.20)  

 

 

 

(3.21)  

where, µ and  correspond to the normal distribution mean and standard deviation 

respectively. 

 

 

 

(3.22)  

Or 

 
 

(3.23)  

 

In this example 2000 trails of input combinations are evaluated through the use of random 

number generator in an automated process. In this example the MATLAB software package was 

used to evaluate the expected value. The program code used for this example is included in 

Appendix A. 

Step 1.  For a 100 year return period using discharge parameters for the log-normal distribution 

provided in Table 3.4 for inputs into the MATLAB MCS program the expected discharge is 

determined to be: 

 
 

(3.24)  

 

Figure 6.1 in Appendix A shows the output from the MATLAB MCS program. 

Step 2. Using the stage parameters for the log-normal distribution provided in Table 3.4 the 

corresponding expected stage is found.  The mean value of stage is first solved in Eq. (3.25) 

using the mean stage-discharge function provided in Table 3.4.  
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(3.25)  

 

where x is the expected discharge from Eq. (3.24). 

 
 

(3.26)  

 

The mean of stage found in Eq. (3.26) and standard deviation given in Table 3.4 is used as 

inputs into the MATLAB MCS program yielding an expected flood stage value of: 

 
 

(3.27)  

 

Figure 6.2 in Appendix A shows the output from the MATLAB MCS program. 

Step 3. Using the equation (3.1) with freeboard of 1 m and expected flood stage of 6.773 m the 

total height the dike is found: 

 
 

(3.28)  

 

The result of 7.773 m will vary from simulation to simulation as it is based on random 

generated values. 

ii) The 90% percentile value of dike height  

Step 1. Use the Monte Carlo simulation and find 90th percent quartile of the log-normal 

distribution. Given the input discharge values in Table 3.4, MCS yields a 90th percentile 

discharge of 667.3 m3/s. Figure 6.1 in Appendix A shows the MATLAB MCS program output. 

Step 2. Use the discharge value of 667.3 m3/s and substitute into the mean stage equation 

(3.21). The result is a mean value of stage of 7.56 m in addition to the standard deviation of 0.3 

m provided in Table 3.4. 
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The values of mean and standard deviation are used as input for the 90th percentile stage to be 

determined with MCS. Figure 6.2 in Appendix A shows the MATLAB MCS program output for 

90th percentile flood stage to be  

 
 (3.29) 

 

Step 3. The design dike height that flood level will be at or below 90 percent of the time given 

the addition of 1 m freeboard and using Eq. (3.1) is 

 
 

(3.30) 

The dike height of 8.96 meters is conservative and provides a high safety level that may not be 

economically feasible. 

3.1.3.5 Solution using fuzzy simulation procedure 

The deterministic problem of dike design is transformed into a fuzzy domain and solved using 

the fuzzy rule-based Mamdani inference method presented in section 3.1.2.3. 

Step 1. Development of fuzzy membership functions. We will start with partitioning the flow 

input space into three linguistic partitions within the interval of [0 m3/s, 1000 m3/s],”frequent”, 

“infrequent”, and “rare”. Similarly we will partition stage input space according to flow into 

three fuzzy membership functions described linguistically  within the interval of [0 m3/s, 1000 

m3/s] as  “shallow”, “average”, and “deep”. The output variable safety that describes the 

required safety level of dike is represented with a fuzzy set with three linguistic partitions of 

“low”, “medium” and “high” within the interval of [1m, 10m]. The fuzzy membership functions 

are assumed triangular for illustrative simplicity. The range for each partition and value which 

has the greatest membership in each fuzzy set (full membership is 1) governs the triangular 

membership function shape. These parameters were subjectively chosen by the authors. The 

fuzzy sets and their triangular membership functions are illustrated in Figs. 3.3, 3.4 and 3.5.  



51 
 

In Figure 3.3 the flow input space membership function shapes are selected based on the 

subjective belief that frequent flow is most appropriately represented by 280 m3/s, infrequent 

flow is most appropriately represented by 520 m3/s and rare flow is most appropriately 

represented by 1000 m3/s. Each of the partitions have an ambiguous range surrounding the 

value representing the full degree of membership in the fuzzy set. In the case of the rare flow 

event the ambiguous range is one sided unlike the other partitions due to the subjective 

assumption that there is nothing rarer (no ambiguity) in terms of occurrence then the flow 

event of 1000 m3/s. Similarly the parameters that govern the shapes of triangular membership 

functions in Fig. 3.4 and Fig. 3.5 are determined. 

 

FIGURE 3.3- TRIANGULAR FUZZY MEMBERSHIP FUNCTIONS FOR FLOW, FLOW[M3/S] 

 

FIGURE 3.4- TRIANGULAR FUZZY MEMBERSHIP FUNCTIONS FOR FLOW*, FLOW*[M3/S] 
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FIGURE 3.5- TRIANGULAR FUZZY MEMBERSHIP FUNCTIONS FOR SAFETY, SAFETY [M] 

Step 2. Input fuzzification. The design flow input of 580 m3/s is fuzzified in order for the fuzzy 

inference procedure to proceed. Using the appropriate membership functions, the scalar inputs 

are fuzzified and their results (results of rule 2 and 3 firing) are shown in Fig. 3.6. 

 

FIGURE 3.6- FUZZIFICATION OF THE DESIGN FLOW INPUT 

Step 3. Application of fuzzy operators. As the antecedents are disjunctive the max operator is 

used. The antecedents for each rule the are represented by a single membership value 
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(3.31) 

 

where µ1, µ2 and µ3 are fuzzy membership values corresponding to rule 1, 2 and 3 respectively. 

Step 4. Aggregation of outputs. The fuzzy membership functions corresponding to the output 

for each rule are truncated with respect to the membership values found in the previous step. 

These memberships are further aggregated using a disjunctive rule (max) system definition.  

The aggregation of outputs for dike height is illustrated in Figure 3.7. 

 

FIGURE 3.7- OUTLINE OF AGGREGATION PROCEDURE FOR DIKE HEIGHT DESIGN A) DISJUNCTIVE AGGREGATION OF RULES 

Step 5. Deffuzification of the aggregated output. Finally, the aggregated output is defuzzified 

using the centroid method given in Eq. (2.30). The deffuzified value location is shown in Fig.3.7 

as Y*.  

 
 

(3.32) 
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This is the final value of the height designed to account for the flood stage. Eq. (3.1) and 

freeboard of 1 m is used for additional safety yielding  

 
 (3.33) 

 

The dike height is 6.88 meters based on the fuzzy simulation approach. This value is smaller 

than the one obtained by the deterministic approach, indicating more risk prone design.  
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3.2 STORMWATER SEWER PIPE DESIGN 

Stormwater is conveyed by buried pipes that carry it to a point where it is discharged to a 

stream, lake or ocean (Akan & Houghtalen, 2003).  In reality the storm sewer system is not 

limited to just the sewer pipe but includes various structural components including inlets, 

manholes, junction chambers, transition structures, flow splitters and siphons(Akan & 

Houghtalen, 2003). A well designed, functional storm sewer system is an important part of any 

stormwater drainage system and is prerequisite for good storm water management. The right 

hydraulic design gives the proper diameter, slope and depth for a storm sewer line, so that it 

will drain storm water and not allow it to back up.  

The sewer pipe design problem addressed here includes the selection of appropriate pipe 

diameter to carry the design stormwater runoff.  The stormwater pipe size is determined by 

three main parameters; (1) the flow of water, (2) the grade the pipe will be placed at and (3) 

the pipes surface roughness. The pipe grade is dependent on the level of the pipe outlet to 

achieve drainage, the grade of the surface, avoiding obstacles and other pipes, and cover 

requirements. The pipe material affects the roughness. The pipe may be made from concrete, 

PVC, or of other material depending on what the decision maker feels is most appropriate 

application. The selection of these parameters for the design is dependent on the rainfall 

intensity of the design storm. The relationship of the parameters with pipe diameter is such 

that more flow, flatter grade and a rougher pipe internal surface all result in larger pipe size 

requirements.  

Sewer pipe design can be done according to different available methods. Two common 

methods available for pipe sizing are the Manning’s and Darcy-Weisbach / Colebrook-White 

equations.  In order to use such equations the design flow or peak discharge must be known. 

The peak discharge is traditionally found using the Rational Method. 

3.2.1 PROBLEM IDENTIFICATION 
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Pipe sizing design is dependent on natural variability of the amount of rainfall from the design 

storm that determines the flow that must be carried by the sewer pipe. The presence of natural 

variability in the data used for design is the main source of uncertainty. There is a need to 

quantify this uncertainty by modifying existing deterministic methods to show the risk of failure 

and in turn reliability of chosen design.   

 

3.2.2 MATHEMATICAL FORMULATION 

The mathematical formulation of the stormwater sewer pipe design problem starts with the 

common deterministic procedure, and then its transformation into a probabilistic or fuzzy 

domain such that uncertainty may be quantified. The transformation is done through the 

probabilistic and fuzzy simulation approaches detailed in sections 2.1.1 and 2.2.2, respectively.  

The modified approaches hope to model the inherent uncertainty with the hydrologic variables 

and bring more certainty to decision makers. The mathematical formulation will be followed up 

with a numerical example of the application of the deterministic, probabilistic ((a) implicit using 

Monte Carlo simulation and (b) explicit analytically solving with probability equations), and 

fuzzy approach. 

The deterministic approach uses region specified hydrologic data from Intensity Duration 

Frequency (IDF) curves. This differs from the probabilistic design approach that is based on 

assigning probability density functions to intensity corresponding to each duration and 

frequency (return period). Simulation is carried out using the Monte Carlo simulation method 

because solving the problem analytically becomes too complex.  Where data for IDF curves 

development is unavailable or only partially available, the fuzzy approach may be used to 

subjectively arrive at a potential solution with adequate precision. 

3.2.2.1  DETERMINISTIC APPROACH 

The deterministic approach of sizing a sewer pipe is summarized in the 4 step procedure below: 

Step 1. Find the time of concentration. The time of concentration is defined as the time 

required for storm water to flow from the hydrologically most remote point in the basin to the 



57 
 

pipe inlet structure. It is sometimes referred to as the hydraulic length. The peak discharge 

under a constant rate of effective rainfall will be reached if the effective rain duration is equal 

to the time of concentration. 

 
 

(3.34)  

        

where t0 (inlet time) is the time required for storm water to reach an inlet from the 

hydrologically most remote point, tf is the flow time in the pipes upstream of the design point 

and Tc  is the time of concentration. 

 

The flow time in the pipes upstream of the design point can be determined using: 

 

 

(3.35)  

 

where Lj is the length of the jth pipe, Vj is the average velocity in the jth pipe and N is the 

number of pipes upstream along the flow path considered. 

 

The inlet time is calculated by (a) use of Table 3.5 below; (b) by the well documented and 

widely used Soil Conservation Service Time of concentration method; or (c) one of other many 

available methods. These methods are beyond the scope of this report and can be followed up 

in the textbook by Akan & Houghtalen (2003). 

TABLE 3.5- INLET TIME COMMON VALUES (AKAN & HOUGHTALEN, 2003). 

Densely developed impervious surfaces 

directly connected to drainage system 

5 minutes 

Well-developed districts with relatively flat 

slopes 

10-15 minutes 

Flat residential areas with widely spaced 

street inlets 

20-30 minutes 
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Step 2. For the selected return period, the intensity of the design rainfall is obtained from the 

IDF curves, assuming the storm duration equals the time of concentration.  

Frequency analysis methods are used to develop the IDF curves. First, the annual maximum 

rainfall depths corresponding to various durations are extracted from the local historical rainfall 

data. Then a frequency analysis of annual maximum depths is performed for each duration. 

Frequency analysis of rainfall aims to determine the return periods associated with different 

magnitudes of the annual maximum rainfall depth (intensity) for a particular duration. A 

probability distribution is fit to the annual maximum series. Experience shows that most rainfall 

data fit well the Extreme Value Type I Gumbel distribution. In practice this distribution is often 

used for frequency analysis of rainfall data. 

Step 3. Once the IDF curves are developed and intensity is obtained the design discharge can be 

found by Rational Method:  

   

 

 

(3.36)  

 

where i is the  design rainfall intensity from IDF curve, M the number of subareas above the 

storm water pipe, A the drainage area of subarea j, C the runoff coefficient and Qp the design 

peak discharge. 

 

Step 4. Finally, once the design discharge is determined, Manning’s equation can be used to 

find the required pipe size. For circular pipes the formula is, 

 

 

(3.37)  
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where Dr is the minimum diameter of pipe (actual size is next standard pipe larger size 

available), Kn is the conversion (1.0 m1/3/s for Si units and 1.49 ft1/3/s for U.S. customary units), 

S0 is the bottom slope of sewer and n the manning roughness factor.  

 

The above formula is only valid under the assumption that the flow is full at the design 

discharge in the pipe.  In addition there is a minimum velocity requirement for the flow in the 

pipe of 0.6-0.9 m/s to prevent the deposition of suspended materials and a maximum velocity 

of 3-4.5 m/s to prevent scouring (Chin, 2006).  

3.2.2.2  PROBABILISTIC APPROACH 

The probabilistic approach follows much the same procedure as the deterministic approach 

with alteration in how the values of rainfall intensity are modified to represent uncertainty and 

risk. Modifications are done to step 3 and step 4 of deterministic method to be probability 

based. Furthermore, the probabilistic approach can be in implicit or explicit form. The implicit 

approach assumes an underlying distribution and based on that distribution generates random 

numbers. The explicit procedure follows direct use of probability distribution equations, when 

the distribution can be solved analytically. 

Consider the explicit procedure first. The rainfall intensity is subject to a source of uncertainty 

and this uncertainty is fitted with an appropriate continuous probability distribution with 

appropriate statistical parameters (population mean and standard deviation). It should be 

noted that the population mean and standard deviation in practice are not known and are 

usually replaced by sample mean and standard deviation that are based on finite number of 

historical observations. The probability distribution, once known, can be used to analytically 

solve for the expected value and percentiles (value at or below which the stated percentage of 

units lie) of the probabilistic variable which in this case would be the rainfall intensity. 

The intensity ( ) probabilistic variable would replace the deterministic intensity variable in Eq. 

(3.36) resulting in a probabilistic discharge value ( ).  
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(3.38)  

 

For expected discharge value E(Qp), given the expected intensity E(i), the above equation can be 

rewritten as: 

 

 

(3.39)  

   

Similarly equation (3.37) as a result of the probabilistic discharge variable ( ) would result in a 

probabilistic sizing of sewer pipe ( ).  

 

 

(3.40)  

 

For expected value of sewer pipe diameter,  given expected value for discharge, the 

above equation can be rewritten as: 

 

 

(3.41)  

   

The implicit procedure of using simulation relates closely to the explicit formulation. The 

implicit procedure accounts for uncertainty in intensity by fitting it with an appropriate 

continuous probability distribution function that is randomly sampled to produce hundred or 

even thousands of scenarios or iterations. The distribution of the values calculated for the 

model outcome therefore reflects the probability of the values that could occur. The 

aforementioned technique is known as Monte Carlo Simulation (MCS), and is discussed in 

section 2.1.1.  
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The output of the simulations can be studied for the statistical properties and to answer what if 

questions of the decision maker. These outputs would be substituted for intensity in the 

modified rational method equation (3.42). Where the random generated intensity is denoted 

by   which subsequently makes the discharge a random number , using the modified 

Manning equation (3.43), the diameter of pipe also becomes a random variable .  

 

 

(3.42)  

      

 

 

(3.43)  

 

3.2.2.3  FUZZY APPROACH  

The fuzzy approach used to simulate approximate pipe size follows the fuzzy inference rule-

based approach (presented in section 2.2.2). The mathematical model formulation for the 

stormwater sewer pipe design problem utilizing the fuzzy simulation approach will be based on 

five simple linguistic rules, listed in Table 3.6, each with a single antecedent of flow and a single 

consequent pipe size (diameter). These rules are subjective and ambiguous, developed using 

the knowledge of the complex form that is available. For example, the rules are developed with 

some knowledge of hydraulics or empirical evidence of increasing flow requiring incrementally 

larger pipe sizes. The rules in Table 3.6 are used to represent this knowledge by using linguistic 

variables to separate range of flows and pipe sizes. Obviously a deterministic model already 

exists that gives exact solutions in the form of the Manning equation for pipe size. However, 

assuming such a relationship was not made the rule-based approach would be best utilized to 

give some precision where none existed. 
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TABLE 3.6- FIVE SIMPLE RULES FOR DESCRIBING SIZING A PIPE. 

1. If (flow is zero) then (pipe size is zero) 

2. If (flow is small) then (pipe size is small) 

3. If (flow is medium) then (pipe size is medium) 

4. If (flow is large) then (pipe size is large) 

5. If (flow is extra large) then (pipe size is extra large) 

 

 

3.2.3 NUMERICAL EXAMPLE 

This problem demonstrates the existing deterministic procedure for sewer pipe design and its 

modification for the implementation in the probabilistic and the fuzzy domains. 

 

3.2.3.1 Problem description 

The design problem considers a basin with an area of 2 hectares and runoff coefficient of 0.6 

where a concrete (n=0.013) sewer pipe will be installed at a slope of 0.5%. The preliminary 

basin investigations determined the longest flow path time to the proposed pipe location to be 

15 minutes. Determine the appropriate pipe size for the data shown in Table 3.7.  

The design problem is to be addressed using: 

a. Deterministic approach(given the IDF curve in Figure 3.8) 

b. Explicit probabilistic approach 

i. Find the expected value of pipe size 

ii. Find the percentile (The size of pipe which will account for the intensity value at 

or below which 90 percent of units lie.) 

c. Implicit probabilistic simulation approach(MATLAB program for simulation given in 

Appendix B) 

i. Find the expected value of pipe size 

ii. Find the percentile (The sizing of pipe which will account for the intensity value 

at or below which 90 percent of units lie.) 

d. Fuzzy approach(using fuzzy simulation and rule-based inference) 
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The population distribution is assumed to be normal for the explicit probabilistic approach and 

log-normal for the implicit probabilistic approach. The properties of the distributions are 

assumed based on the sample mean and the standard deviation statistics shown in Table 3.7.  

For simplicity, assume full flow and omit scouring and deposition checks. For the fuzzy 

approach assume that the pipe size is a result of the simulation valid only for the basin under 

consideration; assuming no previous knowledge of a deterministic model for sizing or IDF 

curves. 

 

TABLE 3.7- STATISTICAL PROPERTIES FOR THE 5 YEAR DESIGN STORM 

 

Intensity 

Duration Mean Std. 

(Minutes) µ(mm/min) σ(mm/min) 

15 3 2 

30 2 2 

60 1 2 

120 0.5 2 

 

 

FIGURE 3.8- INTENSITY DURATION FREQUENCY (IDF) CURVE 
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3.2.3.2 Solution using deterministic pipe design approach  

Step 1. Determine the time of concentration. Time of concentration is given as 15 minutes and 

there is no upstream pipe to contribute to a longer flow time. Therefore using equation (3.34): 

 

 

 

 

(3.44) 

Step 2. Determine the peak flow rate, given that the runoff coefficient is 0.6 and drainage area 

is 20 000 m2. 

The intensity is found to be 3mm/min (as shown in Figure 3.9) based on the IDF curve in Figure 

3.8 and the known 15 minute time of concentration for the critical duration of storm.  

 

 

 

 

 

 

 

 

 

 

 

Finally using the rational method, equation (3.36) and substituting for the known variables the 

peak flow is determined.  

FIGURE 3.9- THE 5 YEAR DESIGN STORM IDF CURVE AND DETERMINATION OF INTENSITY FOR 15 

MINUTE STORM 
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(3.45) 

 

Step 3. The Manning equation (3.36) for sizing of the pipe provides the diameter of sewer pipe: 

  

 

 

 

 

(3.46) 

 

The diameter of the pipe for design is to be at minimum 678.7 mm, the next largest standard 

size available is 700 mm. 

 

3.2.3.3 Solution using explicit probabilistic approach  

i) Expected value 

The same example from the deterministic case is addressed using the probabilistic expected 

value method. 

Step 1. The distribution as stated in the problem is normal with the properties as assumed in 

Table 3.7. For the time of concentration of 15 minutes and the same critical storm duration, the 

modified rational method (Eq. 3.39) is used to determine the expected peak flow. The expected 

value E(i) is determined using expression (3.7), with the population mean and population 
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standard deviation corresponding to the assumed values for the given duration originating from 

Table 3.7, where  is the population mean, E(i) or  is 3mm/min corresponding to 15 minutes 

design storm duration. Substituting this value into the rational method equation (3.39) the 

expected flow peak value becomes: 

 

 

(3.47) 

 

Step 2. The sewer pipe is size is obtained using equation (3.41).  

 

 

(3.48) 

 

The result, as in the deterministic case calls for a pipe with the diameter of 700 mm. It is the 

next largest size of standard diameter pipe available able to receive the expected flow rate. 

 

ii) The 90% percentile value of pipe size 

Step 1. The distribution from the problem definition is assumed to be normal with the 

properties as shown in Table 3.7. 

For the time of concentration of 15 minutes that is assumed to be equal to the critical storm 

duration, the peak flow is determined using the modified rational method in equation (3.38). 

The probabilistic value for intensity i, correspond to the 90 percentile of the normal distribution 

function. Using equation (3.11), the integral becomes difficult to solve due to the error 

functions. Alternatively using the normal deviate z corresponding to the 90th percentile (z is 

1.28) and the transformation equation (Eq. 3.12) we can solve for "x" or i, given the assumed 

statistical parameters in Table 3.7. 
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 (3.49) 

 

 

The intensity value and other given variables from the problem definition are substituted in the 

modified rational method equation (3.38) in order to solve for the peak flow. 

 

 

(3.50) 

 

Step 2. Size of pipe is obtained using equation (3.40). 

 

 

(3.51) 

 

The pipe diameter is taken as the next largest available standard diameter increment which is 

900 mm. 

 

3.2.3.4 Solution using implicit probabilistic approach 

i) Expected value  

Step 1. The same example from the deterministic case is addressed using probabilistic 

simulation for the expected value. For the time of concentration of 15 minutes and the same 

critical storm duration, the modified rational method, equation (3.39) is used to determine the 

expected peak flow. The log-normal cumulative distribution equation, transformation and other 

properties are presented by equations (3.18) to (3.23). 

Monte Carlo Simulation (MCS) technique is used to solve this problem. MCS consists of 

artificially recreating a chance process by adding a probability density function around each 
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intensity mean parameter in Table 3.7 in order to describe the uncertainty properties of the 

statistics. 

For example, the point corresponding to the critical 15 minute storm duration has a built in log-

normal shaped probability density function. The log-normal probability density function with 

the mean of 3 mm/min and standard deviation of 2 mm/min is defined for the input.  

Then 2000 input combinations are selected and evaluated through a use of a random number 

generator in an automated process. In this example the MATLAB software is used to evaluate 

the expected value for the probabilistic approach. The program source code is available in 

Appendix B. Each run of the program results in a slightly different expected value of intensity 

due to the random nature of the process (example output Figure 6.3 Appendix B). Using MCS 

the 15 minute storm expected random intensity is found to be: 

 
 

(3.52)  

 

Substituting the value in Eq. (3.52) into Eq. (3.42), the modified rational method, the implicitly 

determined expected peak flow value becomes: 

  

 

 

 

 

(3.53)  

 

Step 2. The sewer pipe is determined using equation (3.43). The expected diameter of pipe is a 

random variable given that the discharge input from Eq. (3.53) is a random variable as well. 
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(3.54) 

 

 

The result, as in the deterministic case, is a pipe with the diameter of 700 mm. This is the next 

largest size of standard diameter pipe available in order to receive the expected flow rate. 

ii) The sizing of pipe which will account for the intensity value at or below 90 percent. 

Step 1. For the time of concentration of 15 minutes that is assumed to be equal to the critical 

storm duration, the peak flow is determined using the rational method previously formulated in 

equation (3.36) 

 

The probabilistic value for intensity corresponds to the 90th percentile of the log-normal 

distribution function. 

 

 

 

(3.55) 

 

Using the Monte Carlo Simulation technique as described in the previous section the intensity 

that will occur at or below 90 percent of the time can be determined. The same MATLAB 

program used to evaluate the expected random value of intensity is used to evaluate 90th 

percentile value of intensity; the source code is available in the Appendix B. 

The 90th percentile intensity as a result of MCS random number generation is found to be: 
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(3.56) 

 

The intensity value and other given variables from the problem definition are substituted in Eq. 

(3.42) in order to solve for the peak flow corresponding to the 90th percentile intensity. 

  

 

 

 

(3.57) 

Step 2. Finally the pipe is sized using equation (3.43). 

 

 

 

 

(3.58) 

 

The pipe diameter size is taken as the next highest standard diameter increment which is 900 

mm. 
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3.2.3.5 Solution using fuzzy simulation procedure 

The deterministic problem of pipe sizing is transformed into a fuzzy domain and solved using 

the fuzzy rule-based Mamdani inference method presented in section 3.2.2.3 of the report. 

 irst, the input space “flow” is partitioned into five simple partitions in the interval [0 m3/s, 1 

m3/s], and the output space “pipe size” is partitioned in the interval [-0.4888 m, 1 m] into five 

membership functions as shown in Fig.3.10 and 3.11 respectively. 

The input variable flow corresponds to a fuzzy set which has five linguistic partitions describing 

a discharge flow; with the partitions labeled in Fig. 3.10. The output variable pipe size 

corresponds to the pipe diameter and the fuzzy set partitions are labeled in Fig. 3.11. The 

triangular fuzzy set membership functions shape has been assumed for illustrative simplicity. 

The flow input space and the pipe size output space parameters are subjectively chosen. The 

height of the triangle is defined by the value which is subjectively assumed to hold the full 

membership in the given membership function and the base of the triangle is the range of 

ambiguous values holding some degree of membership in the fuzzy set. 

 

FIGURE 3.10- FIVE PARTITIONS FOR THE INPUT VARIABLE, FLOW (M3/S). 
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FIGURE 3.11- FIVE PARTITIONS FOR THE OUTPUT VARIABLE, PIPE SIZE [M]. 

In order to find the approximate solution for the pipe size output a few input points are 

selected and the Mamdani graphical inference method is employed. The centroid method is 

used for defuzzification. 

Let us choose eleven crisp singletons for inputs: 

 
 

(3.59)  

 

To illustrate the procedure, for flow input of 0.1m3/s, rules 1 and 2 are fired as shown in Fig. 

3.12. The resulting aggregated output after applying the union operator (disjunctive rules) is 

found and the fuzzy set is defuzzified using the centroid method yielding a result of 0.0847 m 

for pipe size as shown in Figure 3.12. 
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FIGURE 3.12- GRAPHICAL INFERENCE METHOD - MEMBERSHIP PROPAGATION AND DEFUZZIFICATION. 

The results for each input, once aggregated and defuzzified are summarized in Table 3.8 and 

compared to those values determined by using the deterministic model. The graphical 

comparison is available as well, in the plot shown in Figure 3.13. As we can see, the results 

using the fuzzy approach are very similar to the true solution. The precision may be increased 

by increasing the number of additional rules. 

TABLE 3.8- COMPARISON OF PIPE DIAMETER(FUZZY AND DETERMINISTIC MODELS) 

Discharge 
(m

3
/s) 

Pipe size(m) 
Deterministic 

Pipe size(m) 
Fuzzy 

0.0 0.000 0.000 

0.1 0.347 0.085 

0.2 0.450 0.233 

0.3 0.523 0.391 

0.4 0.583 0.425 

0.5 0.634 0.620 

0.6 0.679 0.654 

0.7 0.719 0.693 

0.8 0.756 0.751 

0.9 0.790 0.781 

1.0 0.822 0.823 
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FIGURE 3.13- COMPARISON OF PIPE DESIGN RESULTS: FUZZY APPROACH AND DETERMINISTIC APPROACH 
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3.3 SINGLE RESERVOIR OPERATION 

Reservoirs are used to store water; they take different structural forms depending on their 

design functions (recreation, flood protection, water supply, etc.). The reservoirs may be 

created in a river valley by the use of a dam, by excavation in the ground, or by conventional 

construction techniques such as concrete. 

Different design, planning, operation and management requirements lead to different 

formulations of models for optimization. Planning, design, operation and management of 

reservoirs require knowledge of various stream flow characteristics.  

Consider a reservoir operation problem concerned with finding the operation release schedule 

for stored water with the goal to minimize the damage as a result of reservoir water inundation 

to surrounding property. The problem is an operation one as the reservoir is already 

constructed and cannot be modified in order to avoid potential water damages to nearby 

property. The problem presented illustrates the importance of optimization towards finding the 

appropriate operator controlled releases.  

 

3.3.1 PROBLEM IDENTIFICATION 

Reservoir operation is challenging, in that the reservoir operator must make long term release 

schedules to accommodate incoming periods of floods and droughts so that the overall 

reservoir design goals are met.  Generally, for reservoir operation optimization, inflow data 

must be given and discharge or release is the decision variable.   The inflow data is from historic 

records, it is assumed to be an adequate representation for future inflows. This assumption 

may hold critical error and uncertainty (in the form of natural hydrologic variability) in making 

decisions concerning reservoir operation.  It is of importance then to deal with the reservoir 

operation problem under uncertainty. In addition the reservoir operation problem includes the 

inability of operators to formulate sharp (crisp) boundaries or constraints, due to uncertainty in 

knowledge. Crisp constraints are required for the implementation of traditional deterministic 

optimization models. Therefore, the goal of this optimization exercise is to take into account 

the hydrologic variability and allow formulation of constraints with some range of uncertainty.  
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3.3.2 MATHEMATICAL FORMULATION 

Reservoir problems by nature deal with random parameters due to the hydrological inflow 

input, thus it is at no surprise that the reservoir optimization problems are solved in the 

literature using both, deterministic and stochastic methods. Stochastic reservoir optimization 

may take two forms:  (a) implicit (deterministic models with the generated sequences of 

random variables); and (b) explicit (uncertainty incorporated directly in the objective function 

and/or constraints). The latter explicit method will be looked in detail through the chance 

constrained probabilistic method, an approach that has been extensively used in water 

resources (Simonović, 2002). In addition, the problem will be addressed using a fuzzy 

optimization approach when data is not available and constraints are not crisply formulated.  

3.3.2.1 DETERMINISTIC APPROACH 

A deterministic optimization model is formulated to optimize the reservoir operation by 

determining the optimal release from the reservoir in various time intervals, under the 

objective of minimizing flood damage due to excess storage of water in the reservoir.  The flood 

damage is a function of storage and therefore to minimize active storage in the reservoir is to 

minimize potential flood damage. In mathematical form, the objective of optimization can be 

stated as:   

 
 

(3.60)  

 

where S, is the active volume of water stored in the reservoir. 

The model is governed by the continuity equation: 

 
 

(3.61)  

 

where: St is the volume of water in the reservoir at time t, it is the inflow into reservoir in the 

time interval (t-1, t), and Rt is the amount of water discharged/released downstream in time 
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interval (t-1, t). The known values in the continuity equation are inflows; other known values 

are physical features of the reservoir, that is; maximum and minimum storage capacity, initial 

volume of stored water, and maximum release through the outlet structure. 

There are three constraints: 

1) A deterministic constraint on the reservoir release  

 

 
 (3.62)  

 

2) A deterministic constraint that prohibits the storage of water below a certain 

operational level Smin and in excess of the reservoir capacity, C.  

 

 
 

(3.63)  

 

3) The last deterministic constraint states that the storage at the end of the critical period 

must be at least as great as the unknown starting storage. This last constraint prevents 

“borrowing water” to artificially inflate the amount of water that can be delivered 

steadily throughout the course of the critical period (ReVelle, 1999). 

 

 
 

(3.64)  

 

The optimization problem described above can be solved, using classical linear programming 

algorithm based on the simplex method. 

 

 

 

 

 

 

 

(3.65)  
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where c represents column vector of the objective function coefficients, u is the column vector 

of the decision variables, A is the matrix of the coefficients in the constraints and b is the 

column vector of the right-hand sides of the constraints. 

Finally putting all terms together, the reservoir optimization linear programming problem is 

formulated: 

 
 

 

 

 

 

 

 

 

(3.66)  

 

The constraints are linear, the state equation is linear and the objective function is chosen in 

linear form. The optimal solution can be obtained using various software tools readily available.   

3.3.2.2 PROBABILISTIC APPROACH 

The same reservoir deterministic model already developed will be transformed here in the 

probabilistic form to deal with some uncertain inputs. The transformation to stochastic 

optimization as discussed in section 2.1.2 is done through the introduction of an additional 

probabilistic constraint, shown below. 

 
 

(3.67)  

 

where s t is the random equivalent of st, the storage at the end of period t, Sgoal is the known 

decision maker specified target storage level of the reservoir and ∝ is the decision maker 

specified reliability of not violating constraint (3.67). It takes values between (0 and 1). 
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The stochastic problem is reduced to a deterministic equivalent by the method of chance 

constraints. It is assumed that the random components are additive from one period to the 

next. Then the probability density function of their sum can be obtained by convolution 

regardless of whether or not they are independent (Simonović, 1979). 

The probabilistic constraint is transformed into a deterministic chance constraint by the 

following procedure. 

Step 1. Continuity equation (3.61) is substituted into probabilistic constraint equation (3.67) 

allowing constraint to be rewritten as: 

 
 

(3.68)  

 

where,   t is the random equivalent of it, the inflow during t. 

Step 2.  A deterministic equivalent of the equation (3.68) is found by inversion and 

rearrangement leading to: 

 
 

(3.69)  

 

where,  is the inverse value of the cumulative distribution function of the convoluted 

  t, evaluated at (1-∝) . Hence forth it will be replaced by . 

Step 3. The expression for two deterministic chance constraint time steps are given below, 

for t=1 

 
 

 

 

 

(3.70)  
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for t=2, 

 
 

 

 

 

 

 

 

 

 

 

(3.71)  

 

Equation (3.69) can thus be expressed in final simplified chance constraint deterministic form 

as: 

 

 

(3.72)  

 

Note that the summation of random variable inflows takes place here. For time interval, t=1 we 

have , t=2 we have , …, t=n we have . 

The random variable inflow has a known marginal PDF, f(it), as a result of fitting a distribution to 

available historical data. However the distributions of the sums have to be found. 
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This is accomplished though a step by step iterative convolution method from t=2 to t=n, 

expressed in general (recursive equation for convolution) form as (Simonović, 1979): 

 

 

 

 

(3.73)  

The magnitudes of min r and max r are found from min r= min I - max j = a-d, max r= max I - min 

j=b-c under the constraints  

 

The mathematical formulation presented in this report will be using the log-normal distribution 

for marginal inflow. Some distributions of the independently assumed random variable inflows 

can be easily summed based on the distribution regenerative properties. They, for example 

include the normal distribution and gamma distribution. For these cases the summation of two 

identical regenerative functions results in the same function with parameters solvable in closed 

form. Distributions not falling in this category, such as the log-normal distribution can be 

approximated based on equation (3.73). 

The log-normal distribution is not a regenerative function and as such cannot be solved in 

closed form and it is very difficult to solve numerically (Beaulieu, 2004). The convolution 

method must be employed. However, based on evidence, the sum of two independent log-

normal random variables can be approximated by another log-normal random variable 

(Beaulieu, 2004). Knowing the additive property of a log-normal distribution, Monte Carlo 

Simulation(MCS) technique may be used instead of the generalized convolution method. 

MCS technique uses the known log-normal marginal continuous probability distribution 

function and randomly samples them to produce hundred or even thousands of scenarios or 

iterations (Vose, 1996). Consider adding two marginal log-normal PDF for t=1 and t=2 using 

MCS. The simulated values from each marginal log-normal PDF are determined first using MCS, 

these values are added together (i1+i2=X2), and the expected value and standard deviation is 
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found of the new summed value, these parameters are than fitted back into the log-normal 

distribution function.  

The problem formulation becomes similar to linear formulation in the deterministic approach, 

Eq. (3.66) with the addition of the deterministic chance constraint, Eq. (3.72), and as such can 

be solved with the same linear programming approach as the deterministic model formulation. 

 

3.3.2.3 FUZZY APPROACH 

The reservoir operation optimization model formulation will be expanded to utilize the fuzzy 

linear optimization approach in doing so it will depart from the classical assumptions that all 

coefficients of the constraints need to be crisp numbers and that the objective function must be 

minimized or maximized (Zimmermann, 1996).  

Using the fuzzy optimization approach for linear programming discussed in section 3.4.1, and 

using the deterministic model given by Eq. (3.66) with modification for considering linear 

membership function for “greater than” constraints, the fuzzy formulation becomes: 

 
 

 

 

 

 

 

 

 

(3.74)  

Expanding by substituting for (Bx)I  

 
 (3.75)  
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3.3.3 NUMERICAL EXAMPLE 

The following demonstrates the deterministic procedure for a single reservoir operation 

optimization and its modification for the implementation in the probabilistic and fuzzy domains. 
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3.3.3.1 Problem 

The reservoir optimization case study is the Fanshawe reservoir on the North Thames River 

located in Ontario, Canada (just outside the City of London). An optimization problem is 

formulated for 12 month time period (t=12) as discussed in preceding section 3.3.2 and solved 

using data provided from the Upper Thames Conservation Authority (UTRCA). The pertaining 

data consists of physical constraints for the reservoir such as the maximum and the minimum 

storage capacity. Monthly inflow historical data was also provided covering a time period 

between 1953 and 2009.  

The goal here is to present an example with realistic numerical data pertaining to the current 

available optimization knowledge. The reservoir operation problem is to be solved using: 

a. Deterministic optimization approach  

b. Probabilistic optimization approach based on the chance constraint method  and 

c. Fuzzy optimization approach 

The preceding section of the report includes the mathematical models (objectives and 

constraints). The result includes a series of release rules for the 12 month operating period that 

reservoir operators can follow in order to meet the defined objective. 

The data is given below: 

Maximum reservoir capacity, C=0.22503 x108 m3 

Dead or Minimum reservoir storage, Smin=0.055x108 m3 

Sill of dam elevation operator goal storage, SGOAL=0.1235x108 m3 

Initial storage, S0=0.1482x108 m3 

Maximum possible release for non-flooding condition, Rmax=370 m3/s 

The release is transformed to consistent units with the rest of the variables by finding the 

maximum release allowable in each month, given in Table 3.9. 
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TABLE 3.9- MAXIMUM MONTHLY RELEASE FLOWS [108 M3] 

Month
, T= 

1 2 3 4 5 6 7 8 9 10 11 12 

Rmax 9.91008 8.95104 9.91008 9.5904 9.91008 9.5904 9.91008 9.91008 9.5904 9.91008 9.5904 9.91008 

 

The inflow parameters based on the available UTRCA provided data is given below. 

For illustrating the deterministic approach 2009 historical inflow data is used as input for 

optimization given in Table 3.10 below. 

TABLE 3.10- FANSHAWE RESERVOIR INFLOWS [108 M3] 

Month

, T= 

1 2 3 4 5 6 7 8 9 10 11 12 

Inflow 

2009  

0.34284 1.80472 1.21867 0.72058 0.54104 0.20062 0.12133 0.09508 0.07206 0.12294 0.10446 0.38033 

For illustrating the probabilistic approach statistical parameters are given in Table 3.11 below. 

TABLE 3.11- MONTHLY INFLOW STATISTICS [108 M3] 

Month
, T= 

1 2 3 4 5 6 7 8 9 10 11 12 

Mean,
µ 

0.5036 0.5685 1.2499 0.9164 0.3722 0.1708 0.1329 0.1120 0.1797 0.2615 0.4689 0.6218 

Std,σ 0.3968 0.5231 0.5572 0.5551 0.2954 0.1395 0.1706 0.1157 0.2636 0.3161 0.4033 0.4592 

 

In the fuzzy approach, consider that the decision makers wanted some leeway in the constraint 

to account for the knowledge uncertainty, which is unavailable with the crisp constraint 

requirements of the deterministic model. Furthermore, the decision makers assessed that the 

combined annual maximum acceptable storage to avoid costly damage due to inundation 

should not exceed 1.6 x 108 m3. Since the decision makers felt that they were forced into 

specifying the precise constraints in spite of the fact that they would rather have given some 

intervals due to the imprecision in the hydrologic data and other uncertainties, the fuzzy linear 

programming model was selected as satisfactory in order to account for these perceptions. The 
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lower bounds and the upper bounds of the tolerance interval, di and spread of tolerance, pi, 

were estimated as shown in Table 3.12 and 3.13 respectively. 

TABLE 3.12- ESTIMATED RESERVOIR LOWER BOUND PARAMETERS [108 M3] 

i di pi Comments 

0 1.1000 0.5000 Corresponding to objective function 

1 0.3428 0.0686 

Corresponding to inflow (equation of 

state), based on 2009 data of potential 

inaccuracy. Note: first entry represents 

first month and last the twelfth month. 

2 1.8047 0.3609 

3 1.2187 0.2437 

4 0.7206 0.1441 

5 0.5410 0.1082 

6 0.2006 0.0401 

7 0.1213 0.0243 

8 0.0951 0.0190 

9 0.0721 0.0144 

10 0.1229 0.0246 

11 0.1045 0.0209 

12 0.3803 0.0761 

13 0.2250 0.0001 

Maximum reservoir capacity, based on 

physical constraint. Note: first entry 

represents first month and last the 

twelfth month. 

14 0.2250 0.0001 

15 0.2250 0.0001 

16 0.2250 0.0001 

17 0.2250 0.0001 

18 0.2250 0.0001 

19 0.2250 0.0001 

20 0.2250 0.0001 

21 0.2250 0.0001 

22 0.2250 0.0001 

23 0.2250 0.0001 

24 0.2250 0.0001 

25 9.9101 0.0001 Corresponding to maximum possible 

release for non-flooding condition, 

based on physical constraint. Note: first 

entry represents first month and last 

26 8.9510 0.0001 

27 9.9101 0.0001 

28 9.5904 0.0001 
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29 9.9101 0.0001 the twelfth month. 

30 9.5904 0.0001 

31 9.9101 0.0001 

32 9.9101 0.0001 

33 9.5904 0.0001 

34 9.9101 0.0001 

35 9.5904 0.0001 

36 9.9101 0.0001 

 

TABLE 3.13-ESTIMATED RESERVOIR UPPER BOUND PARAMETERS [108 M3] 

i di pi Comments 

37 0.1235 0.0900 Corresponding to 

Dead or Minimum 

reservoir storage, 

physical constraint. 

Note: first entry 

represents first 

month and last the 

twelfth month. The 

value of 0.1482 

corresponds to the 

last month storage 

requirement of 

being less than 

initial month 

38 0.1235 0.0900 

39 0.1235 0.0900 

40 0.1235 0.0900 

41 0.1235 0.0900 

42 0.1235 0.0900 

43 0.1235 0.0900 

44 0.1235 0.0900 

45 0.1235 0.0900 

46 0.1235 0.0900 

47 0.1235 0.0900 

48 0.1482 0.0000 

49 0.2743 0.0686 Corresponding to 

inflow (equation of 

state), based on 

2009 data of 

potential 

inaccuracy. Note: 

first entry 

represents first 

month and last the 

50 1.4438 0.3609 

51 0.9749 0.2437 

52 0.5765 0.1441 

53 0.4328 0.1082 

54 0.1605 0.0401 

55 0.0971 0.0243 

56 0.0761 0.0190 

57 0.0576 0.0144 
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58 0.0984 0.0246 twelfth month. 

59 0.0836 0.0209 

60 0.3043 0.0761 

 

The above parameters make up the linear membership functions to be used for fuzzy linear 

programming. For the case of inflow (state equation) a triangular membership function is used. 

3.3.3.2 Solution using deterministic optimization approach  

The deterministic formulation for the Fanshawe reservoir operation optimization has been 

presented in section 3.3.2.1. It is repeated here for convenience: 

 

 

 

 

 

 

 

 

Substituting the given data from Table 3.10, the above problem with 12 balance equations and 

25 constraints becomes readily solvable. 

The linear programming optimization solution can be found using Microsoft Excel Solver, 

MATLAB or other software packages. The optimal solution is shown in Table 3.14. 

TABLE 3.14- THE FANSHAWE RESERVOIR OPTIMIZATION RESULTS- DETERMINISTIC APPRAOCH 
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Optimization Summary(10
8
 m

3
) 

Objective Function Z=    0.753 

Month, T Storage Release 

1. Jan 0.055 0.436035 

2. Feb 0.055 1.804723 

3. Mar 0.055 1.218672 

4. Apr 0.055 0.720576 

5. May 0.055 0.541037 

6. Jun 0.055 0.200621 

7. Jul 0.055 0.121332 

8. Aug 0.055 0.095083 

9. Sep 0.055 0.072058 

10. Oct 0.055 0.122939 

11. Nov 0.055 0.104458 

12. Dec 0.1482 0.287133 

 

 

3.3.3.3 Solution using probabilistic optimization approach  

The probabilistic form of the Fanshawe reservoir operation optimization has already been 

presented in section 3.3.2.2. It is repeated here for convenience. 
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deterministic chance constraint, 

 

Historical Inflow data was fitted with log-normal distribution, as the flows are always positive, 

and generally have standard deviations that increase as the mean increases. These 

characteristics are common to the log-normal distribution. 

The value for the reliability tolerance (α) is taken as 0.9. The corresponding cumulative 

distribution values for xt, the result of summation of random inflow variable are found. It is 

assumed that the random variables are additive from one period to the next. The probability 

density function of their sum can be obtained by convolution regardless if they are independent 

or not (Curry et al, 1973). 

Parameters given in Table 3.11 are used for fitting marginal log-normal inflow distribution. 

Summing the known marginal log-normal distributions approximately yield a log-normal 

distribution. That is to determine cumulative distribution xt, January, t=1 to December, t=12 a 

convolution process must be performed first following equation (3.73) such that distributions 

are convoluted through iterative process. The designation of the function has been simplified, 

and has the following interpretation: 

January = January 

February = January + February 

March = (January + February) + March 

April = (January + February + March) + April  

Etc. 
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The iterative convolution procedure is done through a discrete numerical approximation using 

equation (3.73) in a program developed in MATLAB (computer code is available in Appendix C). 

The solution for each time step using convolution is found and converted to an empirical 

distribution. The empirical distribution is confirmed to be approximately equal to a log-normal 

distribution. This is achieved by MCS of random variables generated from two distributions 

summing the random values and fitting them to a log-normal distribution. When compared 

graphically in Fig. 3.14 the Monte Carlo simulated log-normal distribution overlaps with the 

empirical distribution that had been convoluted. Therefore we may conclude that the 

distribution is indeed a Log-normal one with parameters as used in the simulated Monte Carlo 

distribution. Figure 3.15 shows the result of convoluted random variables for the Fanshawe 

reservoir inflows.  The corresponding cumulative distribution values for xt, obtained by the 

summation of log-normal inflow distributions with reliability tolerance of 0.9 are summarized in 

Table 3.15. The summation procedure of marginal inflow log-normal distributions to find xt is 

included in the MATLAB program developed. The source code for the program is available in 

Appendix C. 

 

TABLE 3.15- APPROXIMATE LOG-NORMAL CUMULATIVE DISTRIBUTION DETERMINISTIC EQUIVALENT INFLOW FOR Α =0.9 [108 

M3]

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

0.1623 0.4331 1.3695 2.0714 2.3786 2.5305 2.6579 2.7855 2.9234 3.1131 3.4732 4.0035  
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FIGURE 3.14(A-B)- THE FANSHAWE RESERVOIR, LONDON ONTARIO, CANADA, (A) CONVOLUTION OF INFLOWS IN JANUARY AND FEBRUARY, 

(B) CONVOLUTION OF INFLOWS (JANUARY+FEBRUARY) AND MARCH. 

 

 

Fig. 22A 

Fig. 22B 
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FIGURE 3.15- THE FANSHAWE RESERVOIR, LONDON, ONTARIO, CANADA – PROBABILITY DISTRIBUTION OF THE INFLOW 

Once the convolution process is complete and inflow convoluted values corresponding to the 

reliability index selected are found, as shown in Table 3.15, the problem may be solved using 

linear optimization as in the case of the deterministic formulation. The linear programming 

optimization for convenience has been conducted within the same MATLAB program developed 

for convolution and is available in Appendix C. The optimization toolbox is required for the 

program to successfully run. The optimal solution is shown in Table 3.16. 

TABLE 3.16- RESULT SUMMARY OF RELIABILITY OPTIMIZATION FOR Α=0.9 (LOG-NORMAL CUMULATIVE DISTRIBUTION) 

Optimization Summary(108 m3) 

Objective Function Z=    1.5067 

Month, T Storage Release 

1. Jan 0.1235 0.187 

2. Feb 0.1235 0.2708 

3. Mar 0.1235 0.9363 

4. Apr 0.1235 0.7019 

5. May 0.1235 0.3072 

6. Jun 0.1235 0.152 

7. Jul 0.1235 0.1274 
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8. Aug 0.1235 0.1276 

9. Sep 0.1235 0.1379 

10. Oct 0.1235 0.1897 

11. Nov 0.1235 0.3602 

12. Dec 0.1482 0.5055 

  

3.3.3.4 Solution using fuzzy optimization approach  

The fuzzy optimization model for this problem has been formulated in section 3.3.2.3 but for 

convenience is repeated here. 
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Substituting the values given in Tables 3.12 and 3.13 into the 61 constraints listed above and 

solving using a linear programming solver software package readily available yields λ equal to 

0.0626 with corresponding storage and release as summarized in Table 3.17. 

TABLE 3.17- FUZZY LINEAR PROGRAMMING RESULTS 
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3.4 MULTIPURPOSE RESERVOIR PLANNING 

In the area of water resources management much larger weight is being placed on replacing 

single-objective optimization with multi-objective analysis. Consider the planning of a 

multipurpose reservoir that may call for a number of different conflicting and non-

commensurable objectives. An example of conflicting objectives could be minimization of 

reservoir storage for flood protection and maximization of storage for irrigation water supply. 

Unlike dealing with single optimization problems, it is no longer clear on what the optimum 

solution is that will satisfy different objectives. A decision must be made by selecting a solution 

from a set of alternatives, as the single optimum solution does not exist in the case of multi-

objective analysis. The set of solutions being selected from are known as non-dominated 

solutions.  

Determining the non-dominated solutions involves asking decision makers about their 

preferences regarding different objectives. In addition, as the number of decision makers or 

stakeholders increases it becomes more challenging to arrive at preferences to be used for the 

selection of the best solution.    

3.4.1 PROBLEM IDENTIFICATION 

The physical parameters used for modeling the multipurpose reservoir may be subject to 

various uncertainties.  The uncertainty caused by variability in parameters must be quantified 

so that the levels of uncertainty can be communicated and decision makers can voice their 

preference through trade-off of uncertainty.  Some of the model parameters as inputs may only 

be known to a group of decision makers and stakeholders. The formulated model should allow 

for uncertainty to be quantified based on the subjective judgment of those decision makers 

familiar with the parameters desired. The decision makers involved with the multipurpose 

reservoir may also have preconceived loose aspirations for the objective functions.  
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3.4.2 MATHEMATICAL FORMULATION 

A mathematical model for planning multipurpose reservoir under uncertainty using 

probabilistic and the fuzzy multi-objective optimization methodology is presented below as 

discussed in sections 2.1.3 and 2.2.4, respectively. 

The following model has been adopted from Simonovic (2009) and modified to illustrate 

stochastic PROTRADE method and the fuzzy multi-objective optimization.   

A regional water agency is responsible for the operation of a multipurpose reservoir used for (a) 

municipal water supply, (b) groundwater recharge, and (c) the control of water quality in the 

river downstream from the dam. Allocating the water to the first two purposes is, 

unfortunately, in conflict with the third purpose. The agency would like to minimize the 

negative effect of the water quality in the river, and at the same time maximize the benefits 

from the municipal water supply and groundwater recharge. 

The problem formulation requires two decision variables: x1 - the number of units of water 

delivered for water supply; and x2 - the number of units of water delivered for groundwater 

recharge. 

 

3.4.2.1 PROBABILISTIC APPROACH 

For the stochastic multi-objective optimization, the objective functions and constraints are 

formulated as follows.  

Objective Functions - From the problem description we note that there are two objectives: 

minimization of the increase in river pollution, and maximization of benefits. Trade-offs 

between these two objectives are sought to assist the water agency in the decision-making 

process. 

The objective function for maximization of benefits can be written as:  

 
 

 

(3.76)  
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and the objective function for minimization of water pollution as: 

 
 

(3.77)  

 

where the objective function for pollution can be rewritten as: 

 
 

(3.78)  

 

to provide for maximization of both objectives, where ij is the ith objectives probabilistic 

coefficient for each decision variable j. 

 

Constraints - Feasible region constraints are defined by following five constraints. 

Technical constraints due to pump capacity: 

 
 

 

(3.79)  

labour capacity: 

 
 

(3.80)  

and water availability: 

 
 

(3.81)  

 

with all decision variables being non-negative: 

 
 

(3.82)  

 

where Aij is the ith constraints coefficient for each decision variable j and Bi is the right hand 

side deterministic value for constraint i. 
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The mathematical structure of the above problem shows that both objective functions and all 

constraints are linear functions of decision variables. Therefore, this mathematical model of the 

multi-purpose reservoir can be classified as linear multi-objective analysis problem. The 

problem is stochastic as the objective function has parameters that are not known with 

certainty but are random instead. 

 

3.4.2.2 FUZZY SET APPROACH 

Assume that now the decision makers wish to model the same multipurpose reservoir problem 

above but with a certain aspiration for the objectives. In order to satisfy the new requirements 

the fuzzy multi-objective optimization approach is used. From the model given by Eq. (2.44) the 

fuzzy multi-objective problem is converted to a conventional linear programming problem. 

For the fuzzy multi-objective optimization, the objective function and constraints are: 

 
 

 

 

 

 

 

 

 

 

 

 

 

(3.83)  
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3.4.3 NUMERICAL EXAMPLE 

The following demonstrates the application of stochastic (PROTRADE method) and fuzzy multi-

objective analysis for the formulations presented in section 3.4.2.  

3.4.3.1 Problem 

The reservoir planners (the regional water agency) wish to find the optimal solution that 

minimizes negative effects of water quality in the river while maximizing benefits from 

municipal water supply and groundwater recharge. The problem has already been 

mathematically formulated in section 3.4.2. The numerical example presented here illustrates 

how a multipurpose reservoir problem under uncertainty may be solved using: 

a. Probabilistic (stochastic) multi-objective analysis (PROTRADE method) and 

b. Fuzzy multi-objective analysis 

The available data for solving the stochastic multipurpose reservoir problem are in Table 3.18. 

In addition, the following assumptions are made: 

 One time period is involved; t= 0, 1. 

 Allocation is limited to two restrictions: (a) pump capacity is 8 hours per period and (b) 

labor capacity is 4 person-hours per period. 

 The total amount of water in the reservoir available for allocation is 72 units.  
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 The pollution in the river increases following a normal distribution.  Water coming from 

water supply increases pollution with mean and variance of 3 and 2 units per unit of 

water used for water supply, respectively. Likewise pollution as a result of groundwater 

recharge increases with a mean and variance of 2 and 1 units per unit of water used for 

groundwater recharge, respectively. 

 The contribution margin (selling price/unit less variable cost/unit) for municipal water 

supply and groundwater recharge is assumed to have a normal distribution. For 

municipal water supply the contribution margin for population mean and variance are 

given as 3 and 2 respectively. For groundwater recharge the contribution margins are 

having a population mean of 2 and variance of 1. 

TABLE 3.18- AVAILABLE DATA FOR AN ILLUSTRATIVE EXAMPLE 

 Water supply  Groundwater recharge 

Number of units of water 
delivered 

x1 x2 

Number of units of water 
required 

1 5 

Pump time required (hours) 0.50 0.25 

Labour time required (person-
hour) 

0.2 0.2 
 

 

3.4.3.2 Solution using probabilistic multi-objective analysis (PROTRADE method) 

The objective functions Eq. (3.76) and Eq. (3.78) are rewritten for convenience: 

The objective function for benefits: 

 

and the objective function for pollution is: 

 

where: 

 
 

(3.84)  
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 Substituting the available data in Table 3.18 into the constraints formulated by Eq. (3.79-3.82): 

Technical constraint due to pump capacity becomes: 

 
 

(3.85)  

 

labor capacity becomes: 

 
 

 

(3.86)  

water availability becomes: 

 
 

(3.87)  

 

and non-negativity of decision variables: 

 
 

(3.88)  

 

In the following section the best solution to the above problem is presented using the 

PROTRADE method (introduced in section 2.2.4) in collaboration with the regional water agency 
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decision maker in order to determine the compromised solution of the non-dominated pareto 

solutions set. 

Step 1. Definition of objective functions using the expected value  

 

 
 

(3.89) 

 

subject to constraints 

 

 

 

 

The feasible region in the decision space for the problem is given in Figure 3.16. 

 

FIGURE 3.16- THE FEASIBIE REGION 

Step 2. Range for the objective function 
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(3.90)  

  

 

 

(3.91)  

 

 

(3.92)  

 

Step 3. Formulation of an initial surrogate function: 

 

  

 

 

(3.93)  

  

 

 

(3.94)  

  

 

 

(3.95)  
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Step 4. An initial solution x1 is obtained maximizing F(x), subject to constraints . x1 

solution is (0, 14.4). This solution is used to generate a goal vector G1: 

  

 

 

(3.96)  

 

Step 5. A multidimensional utility function is defined in a multiplicative form following 

recommendation by Giocoechea et al. (1979): 

 

 

 

(3.97)  

 

This function is used to reflect the DM’s goal utility, where k and ki are constants determined by 

questions posed to the DM. 

The following parameters are assumed in this example:  

 
 

 

 

 

 

 

 

 

 

 

(3.98)  
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Step 6. A new surrogate objective function is defined: 

a) Compute u(G1) 

  

 

 

 

 

 

 

(3.99)  

b) Decide on the utility increment 0 ≤ ∆u(G) ≤ 1. 

Let ∆u(G) be equal to 0.1 

 

 
 

(3.100)  

 

c) Solve for the step size r, 

 

 

 

(3.101)  

 

Solving for r in the equation, 

 

 
 

(3.102)  

 

yields:  

 
 

(3.103)  
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Hence, 

  

 

 

(3.104)  

  

 

 

(3.105)  

and the new surrogate objective function becomes, 

 

 

 

(3.106)  

 

Step 7. An alternative solution is generated maximizing the surrogate solution S1 finding a 

solution x2 = (0, 14.4) used to generate G2 and U2: 

  

 

 

(3.107)  

 

Step 8. A vector V1 that expresses the tradeoff between the goal value and its probability of 

achievement is generated: 

 

 

(3.108)  

 

The probability of achieving level G1 is 0.500 or better. 

Step 9. Assume that after speaking with DM U2 is not to their satisfaction. 
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Step 10. The Zk(x) with the least satisfactory pair of (Gk(x2), 1-αk) is selected and the DM 

specifies a new probability for that pair. Assume that the DM is not satisfied with what is 

obtained in G2 for example (0.446, 0.500) and would like to specify that, 

  

 

 

(3.109)  

Step 11. The solution space is redefined creating a new x-space (decision space). 

 X ε D2 

 

 

 

 

 

 

 

and 

 

 

 

(3.110)  

 

where  

 
 

(3.111)  

 

Step 12. A new surrogate objective function is generated and a sequential search for a 

satisfactory solution is performed going back to step 7 as many times as necessary. 

 

 

(3.112)  
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Maximize S2 subject to constraints D2 

yields,  

 
 

(3.113)  

 

and 

 

 

(3.114)  

 

Now determine 1-αk for i = 1 (for U2) 

 

 

 

 

 

 

 

(3.115)  

where  

 
 

(3.116)  

 

that is  

 
 

(3.117)  

 

also determine 1-αk for i = 1 (for ‘best’ G1 can do from U1) 
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(3.118)  

where  

 
 

(3.119)  

 

that is  

 
 

(3.120)  

 

Therefore, the DM can achieve Z1 of 46 at probability 0.231 or better, or Z1 of 43.2 at 

probability of 0.287 or better and still maintain Z2 of -28.8 at probability 0.700 or better. 

Similarly for i=2 

 

 

(3.121)  

 

For z2 (e2) equal to -28.8 we already know the probability is 0.700 or better. 

For z2=e2=0 (from U1) 

 

 

 

 

(3.122)  

where  
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(3.123)  

that is  

 
 

(3.124)  

 

Thus DM can choose V2 to be, 

 

 

(3.125)  

 

In summary the DM’s preferences lead to the solution of 43.2 units of profit at probability of 

0.287 and 28.8 units of pollution at a probability of 0.700 or better. 

 

3.4.3.3 Solution using fuzzy multi-objective analysis 

The multipurpose reservoir planning problem is solved here using the fuzzy mathematical 

multi-objective optimization formulation given by (3.83). The decision makers wish more 

flexibility in the constraints and estimate the lower bound aspiration level for constraints as: 

 
 

(3.126)  

 

with the spread of tolerance of 

 
 

(3.127)  

 

 

Furthermore, the decision makers have a certain aspiration that they wish to achieve for the 

objectives based on the results of the independent deterministic maximization and 

minimization of each objective function given here. 
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(3.128)  

For the benefit objective the valid range is found to be: 

 
 

(3.129)  

 

For the pollution objective the valid range is found to be: 

 
 

(3.130)  

 

From the above valid ranges the decision makers agree on the objective goals and tolerance 

 
 

 

 

(3.131)  

In order to satisfy the new requirements the fuzzy multi-objective analysis approach is used, 

from the model given by (3.83) the fuzzy multi-objective problem is converted into a 

conventional linear programming problem. 

 
 

 

 

 

 

 

 

 

 

(3.132)  
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Solving the above formulation using a linear programming solver yields λ equal to 0.484 with 

corresponding municipal water supply x1 equal to 0.80645 units, and groundwater recharge x2 

equal to 13.871 units. The objective function value for benefits z1 is equal to 42.42 units and for 

pollution, z2 is equal to 30.16 units. 
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4. FINAL REMARKS 

Transforming deterministic problems into the fuzzy and probabilistic domains as seen in the 

selected examples, allow for decision makers to be more involved in the decision making 

process and in return more aware of the uncertainty and its consequences. As demonstrated, 

the probabilistic approach may deal with quantifying objective uncertainties while the fuzzy 

approach proves to be beneficial in dealing with subjective uncertainties. Therefore, utility of 

these two approaches is dependent on the available information in addition to the quality of 

the mathematical formulation.   

The fuzzy set and probabilistic approach can increase the quality of information beyond 

traditional approaches, as evident from the reservoir operation and multipurpose reservoir 

planning case. Problems with extreme uncertainties may be solved with some precision as 

demonstrated by the stormwater sewer pipe sizing and dike height design cases. The pipe size 

estimated by the fuzzy simulation was comparable to the “realistic” case - the state that we are 

only able to assess based on the retrospective knowledge of the already available deterministic 

models. The fuzzy approach is robust in its ability to deal with different sources of uncertainties 

as demonstrated by the cases considered here. However, its robustness to handle different 

sources of uncertainties is not sufficient to justify its use under all circumstances.  Caution must 

be taken, pending on the level of precision desired the stochastic approach may be the better 

alternative. But the probabilistic approach can be implemented only if uncertainties are 

quantifiable (objective) and sufficient historical data is available. 

It should be emphasized that the methodologies presented for simulation, optimization, and 

multi-objective analysis in this report are adoptable to many other decision making problems. 

The selected cases are proof of the wide range of possibilities in water resource decision 

making applications.  In conclusion, water resource decision making is subject to various 

sources of uncertainty. Uncertainty may compromise our ability to make appropriate decisions.  

This further emphasizes the importance of methods presented in this report.   
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6. APPENDICES 

6.1 APPENDIX  A: DIKE DESIGN  

MATLAB Monte Carlo simulation code for discharge  
%MATLAB Lognormal distribution Monte Carlo Intensity Simulation 

  

%number(n) of random number generated iterations 

n=2000; 

  

%format of Lognormal distribution is Lognormal(m,v) where 

%'mu' is equal to the discharge population mean and 'sigma' is equal to the 

discharge population 

%standard deviation  

mu = 538.5;  

sigma = 100; 

%Transformation of 'mu' and 'sigma' to lognormal location, 'm' and shape, 

%'s'parameters 

m = log((mu^2)/sqrt(sigma^2+mu^2)); 

s = sqrt(log(sigma^2/(mu^2)+1)); 

  

  

%X is the random variables generated using lognormal distribution 

X = lognrnd(m,s,n,1); 

  

%MX and STD are the expected value and standard deviation respectively 

MX = mean(X); 

STD = std(X); 

%Percentiles 

percentile=quantile(X,[.90]); 

  

  

%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%Summary of Results: comparing Population & Sample Distribution 

%%%%%%%%%%%%%%%%%%%%%%%% 

z = (0:0.02:1000); 

  

%lognormal pdf of population distribution 

y = lognpdf(z,m,s); 

  

subplot(2,1,1),plot(z,y), title ({'LogNormal Population pdf',;['mean:', 

num2str(mu),', Std:', num2str(sigma)]}),xlabel('x'); ylabel('p'); 

  

%lognormal sample distribution from Monte Carlo simulation 

subplot(2,1,2),hist(X,100),title ({'LogNormal Random Simulation',;['Expected 

value:', num2str(MX),' m^3/s, 90th Percentile:', num2str(percentile),' 

m^3/s']}); 

  

%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%END of Program 

 

%MATLAB Lognormal distribution Monte Carlo Intensity Simulation 

  

%number(n) of random number generated iterations 

n=2000; 

  

%format of Lognormal distribution is Lognormal(m,v) where 

%'mu' is equal to the stage population mean and 'sigma' is equal to the stage 

population 

%standard deviation  

mu = 6.763;  

sigma = 0.3 

  

%Transformation of 'mu' and 'sigma' to lognormal location, 'm' and shape, 

%'s'parameters 

m = log((mu^2)/sqrt(sigma^2+mu^2)); 

MATLAB CODE FOR MONTE CARLO SIMULATION OF STAGE 
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s = sqrt(log(sigma^2/(mu^2)+1)); 

  

  

%X is the random variables generated using lognormal distribution 

X = lognrnd(m,s,n,1); 

  

%MX and STD are the expected value and standard deviation respectively 

MX = mean(X); 

STD = std(X); 

%Percentiles 

percentile=quantile(X,[.90]); 

  

  

%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%Summary of Results: comparing Population & Sample Distribution 

%%%%%%%%%%%%%%%%%%%%%%%% 

z = (0:0.02:20); 

  

%lognormal pdf of population distribution 

y = lognpdf(z,m,s); 

  

subplot(2,1,1),plot(z,y), title ({'LogNormal Population pdf',;['mean:', 

num2str(mu),', Std:', num2str(sigma)]}),xlabel('x'); ylabel('p'); 

  

%lognormal sample distribution from Monte Carlo simulation 

subplot(2,1,2),hist(X,100),title ({'LogNormal Random Simulation',;['Expected 

value:', num2str(MX),' m, 90th Percentile:', num2str(percentile),' m']}); 

  

%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%END of Program 
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FIGURE 6.1- OUTPUT GRAPH OF MONTE CARLO DISCHARGE SIMULATION 

 

FIGURE 6.2- OUTPUT GRAPH OF MONTE CARLO STAGE SIMULATION 
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6.2 APPENDIX  B: STORMWATER SEWER PIPE DESIGN  

MATLAB program code for Monte Carlo simulation. 

%Matlab Lognormal distribution Monte Carlo Intensity Simulation 

  

%number(n) of random number generated iterations 

n=2000; 

  

%format of Lognormal distribution is Lognormal(m,v) where 

%'mu' is equal to the intensity population mean and 'sigma' is equal to the 

intensity population 

%standard deviation  

mu = 3;  

sigma = 2; 

%Transformation of 'mu' and 'sigma' to lognormal location, 'm' and shape, 

%'s'parameters 

m = log((mu^2)/sqrt(sigma^2+mu^2)); 

s = sqrt(log(sigma^2/(mu^2)+1)); 

  

  

%X is the random variables generated using lognormal distribution 

X = lognrnd(m,s,n,1); 

  

%MX and STD are the expected value and standard deviation respectively 

MX = mean(X); 

STD = std(X); 

%Percentiles 

percentile=quantile(X,[.90]); 

  

  

%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%Summary of Results: comparing Population & Sample Distribution 
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%%%%%%%%%%%%%%%%%%%%%%%% 

z = (0:0.02:20); 

  

%lognormal pdf of population distribution 

y = lognpdf(z,m,s); 

  

subplot(2,1,1),plot(z,y), title ({'LogNormal Population pdf',;['mean:', 

num2str(mu),', Std:', num2str(sigma)]}),xlabel('x'); ylabel('p'); 

  

%lognormal sample distribution from Monte Carlo simulation 

subplot(2,1,2),hist(X,100),title ({'LogNormal Random Simulation',;['Expected 

value:', num2str(MX),' mm/min, 90th Percentile:', num2str(percentile),' 

mm/min']}); 

  

%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%END of Program 

 

 

FIGURE 6.3- OUTPUT GRAPH OF MONTE CARLO INTENSITY SIMULATION 
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6.3 APPENDIX C: RESERVOIR OPTIMIZATION 

MATLAB program code for Fanshawe Reservoir optimization using chance constrained method. 

%Linear Programming Optimization of Fanshawe Reservoir using chance 

%constrained method 

%Inflow Chance constraint lognormal inverse 

alpha=0.9; %Input 

P=1-alpha; 

n=10000;%for Random number generator  

%Historical Statistical Parameters Inputs for lognormal distribution---------

---- 

%%%%%%%%%%%INPUTS%%%%%%% 

zm1=0.5036; 

zs1=0.3968; 

  

zm2=0.5685; 

zs2=0.5231; 

  

zm3=1.2499; 

zs3=0.5572; 

  

zm4=0.9164; 

zs4=0.5551; 

  

zm5=0.3722; 

zs5=0.2954; 

  

zm6=0.1708; 

zs6=0.1395; 

  

zm7=0.1329; 

zs7=0.1706; 

  

zm8=0.1120; 
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zs8=0.1157; 

  

zm9=0.1797; 

zs9=0.2636; 

  

zm10=0.2615; 

zs10=0.3161; 

  

zm11=0.4689; 

zs11=0.4033; 

  

zm12=0.6218; 

zs12=0.4592; 

%------------- 

mu1 = log((zm1^2)/sqrt((zs1^2)+zm1^2)) 

sigma1 = sqrt(log((zs1^2)/(zm1^2)+1)) 

  

mu2 = log((zm2^2)/sqrt((zs2^2)+zm2^2)) 

sigma2 = sqrt(log((zs2^2)/(zm2^2)+1)) 

  

mu3 = log((zm3^2)/sqrt((zs3^2)+zm3^2)) 

sigma3 = sqrt(log((zs3^2)/(zm3^2)+1)) 

  

mu4 = log((zm4^2)/sqrt((zs4^2)+zm4^2)) 

sigma4 = sqrt(log((zs4^2)/(zm4^2)+1)) 

  

mu5 = log((zm5^2)/sqrt((zs5^2)+zm5^2)) 

sigma5 = sqrt(log((zs5^2)/(zm5^2)+1)) 

  

mu6 = log((zm6^2)/sqrt((zs6^2)+zm6^2)) 

sigma6 = sqrt(log((zs6^2)/(zm6^2)+1)) 

  

mu7 = log((zm7^2)/sqrt((zs7^2)+zm7^2)) 

sigma7 = sqrt(log((zs7^2)/(zm7^2)+1)) 

  

mu8 = log((zm8^2)/sqrt((zs8^2)+zm8^2)) 



127 
 

sigma8 = sqrt(log((zs8^2)/(zm8^2)+1)) 

  

mu9 = log((zm9^2)/sqrt((zs9^2)+zm9^2)) 

sigma9 = sqrt(log((zs9^2)/(zm9^2)+1)) 

  

mu10 = log((zm10^2)/sqrt((zs10^2)+zm10^2)) 

sigma10 = sqrt(log((zs10^2)/(zm10^2)+1)) 

  

mu11 = log((zm11^2)/sqrt((zs11^2)+zm11^2)) 

sigma11 = sqrt(log((zs11^2)/(zm11^2)+1)) 

  

mu12 = log((zm12^2)/sqrt((zs12^2)+zm12^2)) 

sigma12 = sqrt(log((zs12^2)/(zm12^2)+1)) 

%%%%Convolution Process  

%---------------1------------------------- 

     

x = linspace(0,50,10000); 

dx = (x(end) - x(1))/(length(x) - 1); 

%Summation 

X1 = lognpdf(x,mu1,sigma1);   %Jan 

X2 = lognpdf(x,mu2,sigma2);%Feb 

fc1 = conv(X1,X2)* dx; 

x3 = (2*x(1)):dx:(2*x(end)); 

%convert to CDF 

y1=cumtrapz(fc1)/200; 

%Cdf for comparison 

C1 = logncdf(x,mu1,sigma1);   %logninv.... 

C2 = logncdf(x,mu2,sigma2); 

%%%%Random summation 

  

  

R1 = lognrnd(mu1,sigma1,n,1); 

R2 = lognrnd(mu2,sigma2,n,1); 

m1=mean(R1+R2); 

s1=std(R1+R2); 

v1=(s1)^2; 

mr1 = log((m1^2)/sqrt(v1+m1^2)); 
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sr1 = sqrt(log(v1/(m1^2)+1)); 

D1 = logncdf(x,mr1,sr1); 

%----------------------2------------------------  

  

%Summation 

X3 = lognpdf(x,mr1,sr1);   %Jan+Feb 

X4 = lognpdf(x,mu3,sigma3);%March 

fc2 = conv(X3,X4)* dx; 

  

%Convert to CDF 

y2=cumtrapz(fc2)/200; 

%Cdf for comparison 

C3 = logncdf(x,mr1,sr1);    

C4 = logncdf(x,mu3,sigma3); 

%%%%Random summation 

  

  

R3 = lognrnd(mr1,sr1,n,1); 

R4 = lognrnd(mu3,sigma3,n,1); 

m2=mean(R3+R4); 

s2=std(R3+R4); 

v2=(s2)^2; 

mr2 = log((m2^2)/sqrt(v2+m2^2)); 

sr2 = sqrt(log(v2/(m2^2)+1)); 

D2 = logncdf(x,mr2,sr2); 

  

%-------------------3------------------  

  

%Summation 

X5 = lognpdf(x,mr2,sr2);   %Jan+Feb+Mar 

X6 = lognpdf(x,mu4,sigma4);%Apr 

fc3 = conv(X5,X6)* dx; 

  

%Convert to CDF 

y3=cumtrapz(fc3)/200; 

%Cdf for comparison 

C5 = logncdf(x,mr2,sr2);    
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C6 = logncdf(x,mu4,sigma4); 

%%%%Random summation 

  

  

R5 = lognrnd(mr2,sr2,n,1); 

R6 = lognrnd(mu4,sigma4,n,1); 

m3=mean(R5+R6); 

s3=std(R5+R6); 

v3=(s3)^2; 

mr3 = log((m3^2)/sqrt(v3+m3^2)); 

sr3 = sqrt(log(v3/(m3^2)+1)); 

D3 = logncdf(x,mr3,sr3); 

%-------------------4------------------  

  

%Summation 

X7 = lognpdf(x,mr3,sr3);   %Jan+Feb+Mar+Apr 

X8 = lognpdf(x,mu5,sigma5);%May 

fc4 = conv(X7,X8)* dx; 

  

%Convert to CDF 

y4=cumtrapz(fc4)/200; 

%Cdf for comparison 

C7 = logncdf(x,mr3,sr3);    

C8 = logncdf(x,mu5,sigma5); 

%%%%Random summation 

  

  

R7 = lognrnd(mr3,sr3,n,1); 

R8 = lognrnd(mu5,sigma5,n,1); 

m4=mean(R7+R8); 

s4=std(R7+R8); 

v4=(s4)^2; 

mr4 = log((m4^2)/sqrt(v4+m4^2)); 

sr4 = sqrt(log(v4/(m4^2)+1)); 

D4 = logncdf(x,mr4,sr4); 

  

%-------------------5------------------  
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%Summation 

X9 = lognpdf(x,mr4,sr4);   %Jan+Feb+Mar+Apr+May 

X10 = lognpdf(x,mu6,sigma6);%Jun 

fc5 = conv(X9,X10)* dx; 

  

%Convert to CDF 

y5=cumtrapz(fc5)/200; 

%Cdf for comparison 

C9 = logncdf(x,mr4,sr4);    

C10 = logncdf(x,mu6,sigma6); 

%%%%Random summation 

  

  

R9 = lognrnd(mr4,sr4,n,1); 

R10 = lognrnd(mu6,sigma6,n,1); 

m5=mean(R9+R10); 

s5=std(R9+R10); 

v5=(s5)^2; 

mr5 = log((m5^2)/sqrt(v5+m5^2)); 

sr5 = sqrt(log(v5/(m5^2)+1)); 

D5 = logncdf(x,mr5,sr5); 

%-------------------6------------------  

  

%Summation 

X11 = lognpdf(x,mr5,sr5);   %Jan+Feb+Mar+Apr+May+Jun 

X12 = lognpdf(x,mu7,sigma7);%Jul 

fc6 = conv(X11,X12)* dx; 

  

%Convert to CDF 

y6=cumtrapz(fc6)/200; 

%Cdf for comparison 

C11 = logncdf(x,mr5,sr5);    

C12 = logncdf(x,mu7,sigma7); 

%%%%Random summation 
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R11 = lognrnd(mr5,sr5,n,1); 

R12 = lognrnd(mu7,sigma7,n,1); 

m6=mean(R11+R12); 

s6=std(R11+R12); 

v6=(s6)^2; 

mr6 = log((m6^2)/sqrt(v6+m6^2)); 

sr6 = sqrt(log(v6/(m6^2)+1)); 

D6 = logncdf(x,mr6,sr6); 

  

%-------------------7------------------  

  

%Summation 

X13 = lognpdf(x,mr6,sr6);   %Jan+Feb+Mar+Apr+May+Jun+Jul 

X14 = lognpdf(x,mu8,sigma8);%Aug 

fc7 = conv(X13,X14)* dx; 

  

%Convert to CDF 

y7=cumtrapz(fc7)/200; 

%Cdf for comparison 

C13 = logncdf(x,mr6,sr6);    

C14 = logncdf(x,mu8,sigma8); 

%%%%Random summation 

  

  

R13 = lognrnd(mr6,sr6,n,1); 

R14 = lognrnd(mu8,sigma8,n,1); 

m7=mean(R13+R14); 

s7=std(R13+R14); 

v7=(s7)^2; 

mr7 = log((m7^2)/sqrt(v7+m7^2)); 

sr7 = sqrt(log(v7/(m7^2)+1)); 

D7 = logncdf(x,mr7,sr7); 

%-------------------8------------------  

  

%Summation 

X15 = lognpdf(x,mr7,sr7);   %Jan+Feb+Mar+Apr+May+Jun+Jul+Aug 
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X16 = lognpdf(x,mu9,sigma9);%Sep 

fc8 = conv(X15,X16)* dx; 

  

%Convert to CDF 

y8=cumtrapz(fc8)/200; 

%Cdf for comparison 

C15 = logncdf(x,mr7,sr7);    

C16 = logncdf(x,mu9,sigma9); 

%%%%Random summation 

  

  

R15 = lognrnd(mr7,sr7,n,1); 

R16 = lognrnd(mu9,sigma9,n,1); 

m8=mean(R15+R16); 

s8=std(R15+R16); 

v8=(s8)^2; 

mr8 = log((m8^2)/sqrt(v8+m8^2)); 

sr8 = sqrt(log(v8/(m8^2)+1)); 

D8 = logncdf(x,mr8,sr8); 

  

%-------------------9------------------  

  

%Summation 

X17 = lognpdf(x,mr8,sr8);   %Jan+Feb+Mar+Apr+May+Jun+Jul+Aug+Sep 

X18 = lognpdf(x,mu10,sigma10);%Oct 

fc9 = conv(X17,X18)* dx; 

  

%Convert to CDF 

y9=cumtrapz(fc9)/200; 

%Cdf for comparison 

C17 = logncdf(x,mr8,sr8);    

C18 = logncdf(x,mu10,sigma10); 

%%%%Random summation 

  

  

R17 = lognrnd(mr8,sr8,n,1); 
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R18 = lognrnd(mu10,sigma10,n,1); 

m9=mean(R17+R18); 

s9=std(R17+R18); 

v9=(s9)^2; 

mr9 = log((m9^2)/sqrt(v9+m9^2)); 

sr9 = sqrt(log(v9/(m9^2)+1)); 

D9 = logncdf(x,mr9,sr9); 

  

%-------------------10------------------  

  

%Summation 

X19 = lognpdf(x,mr9,sr9);   %Jan+Feb+Mar+Apr+May+Jun+Jul+Aug+Sep+Oct 

X20 = lognpdf(x,mu11,sigma11);%Nov 

fc10 = conv(X19,X20)* dx; 

  

%Convert to CDF 

y10=cumtrapz(fc10)/200; 

%Cdf for comparison 

C19 = logncdf(x,mr9,sr9);    

C20 = logncdf(x,mu11,sigma11); 

%%%%Random summation 

  

  

R19 = lognrnd(mr9,sr9,n,1); 

R20 = lognrnd(mu11,sigma11,n,1); 

m10=mean(R19+R20); 

s10=std(R19+R20); 

v10=(s10)^2; 

mr10 = log((m10^2)/sqrt(v10+m10^2)); 

sr10 = sqrt(log(v10/(m10^2)+1)); 

D10 = logncdf(x,mr10,sr10); 

  

%-------------------11------------------  

  

%Summation 

X21 = lognpdf(x,mr10,sr10);   %Jan+Feb+Mar+Apr+May+Jun+Jul+Aug+Sep+Oct+Nov 

X22 = lognpdf(x,mu12,sigma12);%Dec 
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fc11 = conv(X21,X22)* dx; 

  

%Convert to CDF 

y11=cumtrapz(fc11)/200; 

%Cdf for comparison 

C21 = logncdf(x,mr10,sr10);    

C22 = logncdf(x,mu12,sigma12); 

%%%%Random summation 

  

R21 = lognrnd(mr10,sr10,n,1); 

R22 = lognrnd(mu12,sigma12,n,1); 

m11=mean(R21+R22); 

s11=std(R21+R22); 

v11=(s11)^2; 

mr11 = log((m11^2)/sqrt(v11+m11^2)); 

sr11 = sqrt(log(v11/(m11^2)+1)); 

D11 = logncdf(x,mr11,sr11); 

  

%%%%%---INVERSE LOGNORMAL CDF------------------------------------------------

---------------- 

in1 = logninv(P,mu1,sigma1) 

in2 = logninv(P,mr1,sr1) 

in3 = logninv(P,mr2,sr2) 

in4 = logninv(P,mr3,sr3) 

in5 = logninv(P,mr4,sr4) 

in6 = logninv(P,mr5,sr5) 

in7 = logninv(P,mr6,sr6) 

in8 = logninv(P,mr7,sr7) 

in9 = logninv(P,mr8,sr8) 

in10 = logninv(P,mr9,sr9) 

in11 = logninv(P,mr10,sr10) 

in12 = logninv(P,mr11,sr11) 

%__________________________________________________________________ 

%Linear Optimization 

%First, enter the coefficients 

  

%Objective Function 
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f = [1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0]; 

 %    1  2  3  4  5  6  7  8  9  0  1  2  3  4  5  6  7  8  9  0  1  2  3  4 

%Inflow Chance Constraint deterministic 

A =  [0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  0  0  0  0  0  0  0  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  0  0  0  0  0  0  0  0  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0  0  0  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  0  0  0  0  0  0  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  0  0  0  0  0  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  0  0  0  0  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  0  0  0  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  0  0  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  0  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  0   

      0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1 

]; 

b = [-(0.1235-in1-0.1482); -(0.1235-in2-0.1482); -(0.1235-in3-0.1482); -

(0.1235-in4-0.1482); -(0.1235-in5-0.1482); -(0.1235-in6-0.1482); -(0.1235-

in7-0.1482); -(0.1235-in8-0.1482); -(0.1235-in9-0.1482); -(0.1235-in10-

0.1482); -(0.1235-in11-0.1482); -(0.1235-in12-0.1482)]; 

Aeq= [1  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0   

      0  1  0  0  0  0  0  0  0  0  0  0  1  1  0  0  0  0  0  0  0  0  0  0   

      0  0  1  0  0  0  0  0  0  0  0  0  1  1  1  0  0  0  0  0  0  0  0  0   

      0  0  0  1  0  0  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0  0  0  0   

      0  0  0  0  1  0  0  0  0  0  0  0  1  1  1  1  1  0  0  0  0  0  0  0   

      0  0  0  0  0  1  0  0  0  0  0  0  1  1  1  1  1  1  0  0  0  0  0  0   

      0  0  0  0  0  0  1  0  0  0  0  0  1  1  1  1  1  1  1  0  0  0  0  0   

      0  0  0  0  0  0  0  1  0  0  0  0  1  1  1  1  1  1  1  1  0  0  0  0   

      0  0  0  0  0  0  0  0  1  0  0  0  1  1  1  1  1  1  1  1  1  0  0  0   

      0  0  0  0  0  0  0  0  0  1  0  0  1  1  1  1  1  1  1  1  1  1  0  0   

      0  0  0  0  0  0  0  0  0  0  1  0  1  1  1  1  1  1  1  1  1  1  1  0   

      0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1 

]; 

beq=[(0.1482+in1); 

(0.1482+in2);(0.1482+in3);(0.1482+in4);(0.1482+in5);(0.1482+in6);(0.1482+in7)

;(0.1482+in8);(0.1482+in9);(0.1482+in10);(0.1482+in11);(0.1482+in12)]; 
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%Lower Bound Constraints 

%lb = zeros(24,1); 

lb=[0.055; 0.055; 0.055; 0.055; 0.055; 0.055; 0.055; 0.055; 0.055; 0.055; 

0.055; 0.1482; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0]; 

  

%Upper Bound Constraints 

ub=[0.22503; 0.22503; 0.22503; 0.22503; 0.22503; 0.22503; 

0.22503;0.22503;0.22503; 0.22503;0.22503; 

0.22503;9.91008;8.95104;9.91008;9.5904;9.91008;9.5904;9.91008;9.91008;9.5904;

9.91008;9.5904;9.91008]; 

%ub=inf(24,1); 

  

%Next, call a linear programming routine. 

  

[x,fval,exitflag,output,lambda]= linprog(f,A,b,Aeq,beq,lb,ub) 

  

%%%---OUTPUT RESULTS SUMMARY----- 

RR=inf(24,1); 

  

fprintf('Objective Function Z= %8.3f  m^3\n', fval) 

fprintf('\n\n') 

fprintf('Optimization Summary (10^8 m^3)\n Storage\n\n') 

for i= 1:1:12 

    fprintf(num2str(i)) 

    fprintf('. Month Storage:%8.3f\n', x(i)) 

end 

  

fprintf('\n\n') 

fprintf('Optimization Summary (10^8 m^3)\n Release\n\n') 

for i= 13:1:24 

    if ((2*x(i)-RR(i-12))<0) 

    fprintf(num2str(i-12)) 

    fprintf('. Month Release:%8.3f  \n', (x(i))) 

    else 

     fprintf(num2str(i-12)) 

    fprintf('. Month Release:%8.3f  \n', RR(i-12))    

    end 
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end 
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