4,428 research outputs found

    Abundance of harbor porpoise (Phocoena phocoena) in three Alaskan regions, corrected for observer errors due to perception bias and species misidentification, and corrected for animals submerged from view

    Get PDF
    Estimating the abundance of cetaceans from aerial survey data requires careful attention to survey design and analysis. Once an aerial observer perceives a marine mammal or group of marine mammals, he or she has only a few seconds to identify and enumerate the individuals sighted, as well as to determine the distance to the sighting and record this information. In line-transect survey analyses, it is assumed that the observer has correctly identified and enumerated the group or individual. We describe methods used to test this assumption and how survey data should be adjusted to account for observer errors. Harbor porpoises (Phocoena phocoena) were censused during aerial surveys in the summer of 1997 in Southeast Alaska (9844 km survey effort), in the summer of 1998 in the Gulf of Alaska (10,127 km), and in the summer of 1999 in the Bering Sea (7849 km). Sightings of harbor porpoise during a beluga whale (Phocoena phocoena) survey in 1998 (1355 km) provided data on harbor porpoise abundance in Cook Inlet for the Gulf of Alaska stock. Sightings by primary observers at side windows were compared to an independent observer at a belly window to estimate the probability of misidentification, underestimation of group size, and the probability that porpoise on the surface at the trackline were missed (perception bias, g(0)). There were 129, 96, and 201 sightings of harbor porpoises in the three stock areas, respectively. Both g(0) and effective strip width (the realized width of the survey track) depended on survey year, and g(0) also depended on the visibility reported by observers. Harbor porpoise abundance in 1997–99 was estimated at 11,146 animals for the Southeast Alaska stock, 31,046 animals for the Gulf of Alaska stock, and 48,515 animals for the Bering Sea stock

    Diurnal variation in harbour porpoise detection – potential implications for management

    Get PDF
    Peer reviewedPublisher PD

    Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea

    Get PDF
    The rapid increase in development of offshore wind energy in European waters has raised concern for the possible environmental impacts of wind farms. We studied whether harbour porpoise occurrence has been affected by the presence of the Dutch offshore wind farm Egmond aan Zee. This was done by studying acoustic activity of porpoises in the wind farm and in two reference areas using stationary acoustic monitoring (with T-PODs) prior to construction (baseline: June 2003 to June 2004) and during normal operation of the wind farm (operation: April 2007 to April 2009). The results show a strong seasonal pattern, with more activity recorded during winter months. There was also an overall increase in acoustic activity from baseline to operation, in line with a general increase in porpoise abundance in Dutch waters over the last decade. The acoustic activity was significantly higher inside the wind farm than in the reference areas, indicating that the occurrence of porpoises in this area increased as well. The reasons of this apparent preference for the wind farm area are not clear. Two possible causes are discussed: an increased food availability inside the wind farm (reef effect) and/or the absence of vessels in an otherwise heavily trafficked part of the North Sea (sheltering effect

    Distribution and density of harbour popoises in Dutch North Sea waters

    Get PDF
    Aerial surveys were conducted to investigate harbour porpoise density and distribution in Dutch waters. Surveys were conducted following standard line transect distance sampling methodology on tracklines providing a representative coverage of the study area which ranged from the Dutch coast to about 120 km offshore thus covering about half of the Dutch EEZ. Within this overall study area two sub-areas were defined. One sub-area (from Texel to the German border) was covered in on 29 November 2008 and 3 April 2009. Density was 1.02 animals per km² during the November survey and 0.52 animals per km² during the April survey. An overall survey, covering both sub-areas, was conducted on 3 February, 18 March and 3 April 2009. The resulting density was 1.12 animals per km². This corresponds to an estimate of harbour porpoise abundance for this study area of 36 825 animals (95% C.I. 19 090 – 68 130; 0.33 C.V.). Distribution patterns of porpoises in the surveys waters were patchy and seemed variable between surveys. Applying this abundance estimate, a range of potential mortality limits were calculated for the Dutch harbour porpoises

    Reproductive Failure in UK Harbour Porpoises Phocoena phocoena : Legacy of Pollutant Exposure?

    Get PDF
    This research was supported by a Marie Curie International Outgoing Fellowship within the Seventh European Community Framework Programme (Project Cetacean-stressors, PIOF-GA-2010-276145 to PDJ and SM). Additional funding was provided through the Agreement on the Conservation of Small Cetaceans of the Baltic, North East Atlantic, Irish and North Seas (ASCOBANS) (Grants SSFA/2008 and SSFA / ASCOBANS / 2010 / 5 to SM). Analysis of Scottish reproductive and teeth samples was funded by the EC-funded BIOCET project (BIOaccumulation of persistent organic pollutants in small CETaceans in European waters: transport pathways and impact on reproduction, grant EVK3-2000-00027 to GJP), and Marine Scotland (GJP). Samples examined in this research were collected under the collaborative Cetacean Strandings Investigation Programme (http://ukstrandings.org/), which is funded by the Department for Environment, Food and Rural Affairs (Defra) and the UK’s Devolved Administrations in Scotland and Wales (http://sciencesearch.defra.gov.uk/Defaul​t.aspx?Menu=Menu&Module=More&Location=No​ne&Completed=0&ProjectID=15331) (grants to PDJ, RD). UK Defra also funded the chemical analysis under a service-level agreement with the Centre for Environment, Fisheries and Aquaculture Science (grants to RJL, JB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)

    Get PDF
    Funding: Det Frie Forskningsrad (MJ)Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth flexibility has been an important driver in the evolution of echolocation for prey tracking.Publisher PDFPeer reviewe

    Histological investigations on the thyroid glands of marine mammals (Phoca vitulina, Phocoena phocoena) and the possible implications of marine pollution

    Get PDF
    In 1988 and 1989, thousands of harbor seals (Phoca vitulina) died in the North Sea from phocine distemper infection. The morphology of thyroid glands from 40 harbor seals found dead on the North Sea coastlines of Schleswig-Holstein, Federal Republic of Germany, during an epizootic of phocine distemper, was compared with the morphology of thyroid glands from five healthy harbor seals collected in Iceland. Thyroid glands from seven harbor porpoises (Phocoena phocoena) found dead in 1990 on the North Sea coastlines also were evaluated. Colloid depletion and fibrosis were found in the thyroid glands of harbor seals which died during the epizootic, but not in animals from Iceland. Thyroid glands of the porpoises showed similar lesions, but to a lesser degree, than those observed in the North Sea seals
    corecore