1,695 research outputs found

    Performance Analysis of Constrained Loosely Coupled GPS/INS Integration Solutions

    Get PDF
    The paper investigates approaches for loosely coupled GPS/INS integration. Error performance is calculated using a reference trajectory. A performance improvement can be obtained by exploiting additional map information (for example, a road boundary). A constrained solution has been developed and its performance compared with an unconstrained one. The case of GPS outages is also investigated showing how a Kalman filter that operates on the last received GPS position and velocity measurements provides a performance benefit. Results are obtained by means of simulation studies and real dat

    Benets of tight coupled architectures for the integration of GNSS receiver and Vanet transceiver

    Get PDF
    Vehicular adhoc networks (VANETs) are one emerging type of networks that will enable a broad range of applications such as public safety, traffic management, traveler information support and entertain ment. Whether wireless access may be asynchronous or synchronous (respectively as in the upcoming IEEE 8021.11p standard or in some alternative emerging solutions), a synchronization among nodes is required. Moreover, the information on position is needed to let vehicular services work and to correctly forward the messages. As a result, timing and positioning are a strong prerequisite of VANETs. Also the diffusion of enhanced GNSS Navigators paves the way to the integration between GNSS receivers and VANET transceiv ers. This position paper presents an analysis on potential benefits coming from a tightcoupling between the two: the dissertation is meant to show to what extent Intelligent Transportation System (ITS) services could benefit from the proposed architectur

    sUAS Swarm Navigation using Inertial, Range Radios and Partial GNSS

    Get PDF
    Small Unmanned Aerial Systems (sUAS) operations are increasing in demand and complexity. Using multiple cooperative sUAS (i.e. a swarm) can be beneficial and is sometimes necessary to perform certain tasks (e.g., precision agriculture, mapping, surveillance) either independent or collaboratively. However, controlling the flight of multiple sUAS autonomously and in real-time in a challenging environment in terms of obstacles and navigation requires highly accurate absolute and relative position and velocity information for all platforms in the swarm. This information is also necessary to effectively and efficiently resolve possible collision encounters between the sUAS. In our swarm, each platform is equipped with a Global Navigation Satellite System (GNSS) sensor, an inertial measurement unit (IMU), a baro-altimeter and a relative range sensor (range radio). When GNSS is available, its measurements are tightly integrated with IMU, baro-altimeter and range-radio measurements to obtain the platform’s absolute and relative position. When GNSS is not available due to external factors (e.g., obstructions, interference), the position and velocity estimators switch to an integrated solution based on IMU, baro and relative range meas-urements. This solution enables the system to maintain an accurate relative position estimate, and reduce the drift in the swarm’s absolute position estimate as is typical of an IMU-based system. Multiple multi-copter data collection platforms have been developed and equipped with GNSS, inertial sensors and range radios, which were developed at Ohio University. This paper outlines the underlying methodology, the platform hardware components (three multi-copters and one ground station) and analyzes and discusses the performance using both simulation and sUAS flight test data

    Theoretical framework for In-Car Navigation based on Integrated GPS/IMU Technologies

    Get PDF
    In this report the problem of vehicular navigation based on the integration of the global positioning system and an inertial navigation system is tackled. After analysing some fundamental technical issues about reference systems, vehicle modelling and sensors, a novel solution, combining extended Kalman filtering with particle filltering, is developed. This solution allows to embed highly non-linear constraints originating from digital maps in the position estimation process and is expected to be implementable on commercial hardware platforms equipped with low cost inertial sensorsJRC.G.6-Digital Citizen Securit

    Multi-Antenna Vision-and-Inertial-Aided CDGNSS for Micro Aerial Vehicle Pose Estimation

    Get PDF
    A system is presented for multi-antenna carrier phase differential GNSS (CDGNSS)-based pose (position and orientation) estimation aided by monocular visual measurements and a smartphone-grade inertial sensor. The system is designed for micro aerial vehicles, but can be applied generally for low-cost, lightweight, high-accuracy, geo-referenced pose estimation. Visual and inertial measurements enable robust operation despite GNSS degradation by constraining uncertainty in the dynamics propagation, which improves fixed-integer CDGNSS availability and reliability in areas with limited sky visibility. No prior work has demonstrated an increased CDGNSS integer fixing rate when incorporating visual measurements with smartphone-grade inertial sensing. A central pose estimation filter receives measurements from separate CDGNSS position and attitude estimators, visual feature measurements based on the ROVIO measurement model, and inertial measurements. The filter's pose estimates are fed back as a prior for CDGNSS integer fixing. A performance analysis under both simulated and real-world GNSS degradation shows that visual measurements greatly increase the availability and accuracy of low-cost inertial-aided CDGNSS pose estimation.Aerospace Engineering and Engineering Mechanic

    GA-SVR and pseudo-position-aided GPS/INS integration during GPS outage

    Get PDF
    The performance of Global Positioning System and Inertial Navigation System (GPS/INS) integrated navigation is reduced when GPS is blocked. This paper proposes an algorithm to overcome the condition where GPS is unavailable. Together with a parameter-optimised Genetic Algorithm (GA), a Support Vector Regression (SVR) algorithm is used to construct the mapping function between the specific force, angular rate increments of INS measurements and the increments of the GPS position. During GPS outages, the real-time pseudo-GPS position is predicted with the mapping function, and the corresponding covariance matrix is estimated by an improved adaptive filtering algorithm. A GPS/INS integration scheme is demonstrated where the vehicle travels along a straight line and around a curve, with respect to both low-speed-stable and high-speed-unstable navigation platforms. The results show that the proposed algorithm provides a better performance when GPS is unavailable

    Review and classification of vision-based localisation techniques in unknown environments

    Get PDF
    International audienceThis study presents a review of the state-of-the-art and a novel classification of current vision-based localisation techniques in unknown environments. Indeed, because of progresses made in computer vision, it is now possible to consider vision-based systems as promising navigation means that can complement traditional navigation sensors like global navigation satellite systems (GNSSs) and inertial navigation systems. This study aims to review techniques employing a camera as a localisation sensor, provide a classification of techniques and introduce schemes that exploit the use of video information within a multi-sensor system. In fact, a general model is needed to better compare existing techniques in order to decide which approach is appropriate and which are the innovation axes. In addition, existing classifications only consider techniques based on vision as a standalone tool and do not consider video as a sensor among others. The focus is addressed to scenarios where no a priori knowledge of the environment is provided. In fact, these scenarios are the most challenging since the system has to cope with objects as they appear in the scene without any prior information about their expected position

    Generic Multisensor Integration Strategy and Innovative Error Analysis for Integrated Navigation

    Get PDF
    A modern multisensor integrated navigation system applied in most of civilian applications typically consists of GNSS (Global Navigation Satellite System) receivers, IMUs (Inertial Measurement Unit), and/or other sensors, e.g., odometers and cameras. With the increasing availabilities of low-cost sensors, more research and development activities aim to build a cost-effective system without sacrificing navigational performance. Three principal contributions of this dissertation are as follows: i) A multisensor kinematic positioning and navigation system built on Linux Operating System (OS) with Real Time Application Interface (RTAI), York University Multisensor Integrated System (YUMIS), was designed and realized to integrate GNSS receivers, IMUs, and cameras. YUMIS sets a good example of a low-cost yet high-performance multisensor inertial navigation system and lays the ground work in a practical and economic way for the personnel training in following academic researches. ii) A generic multisensor integration strategy (GMIS) was proposed, which features a) the core system model is developed upon the kinematics of a rigid body; b) all sensor measurements are taken as raw measurement in Kalman filter without differentiation. The essential competitive advantages of GMIS over the conventional error-state based strategies are: 1) the influences of the IMU measurement noises on the final navigation solutions are effectively mitigated because of the increased measurement redundancy upon the angular rate and acceleration of a rigid body; 2) The state and measurement vectors in the estimator with GMIS can be easily expanded to fuse multiple inertial sensors and all other types of measurements, e.g., delta positions; 3) one can directly perform error analysis upon both raw sensor data (measurement noise analysis) and virtual zero-mean process noise measurements (process noise analysis) through the corresponding measurement residuals of the individual measurements and the process noise measurements. iii) The a posteriori variance component estimation (VCE) was innovatively accomplished as an advanced analytical tool in the extended Kalman Filter employed by the GMIS, which makes possible the error analysis of the raw IMU measurements for the very first time, together with the individual independent components in the process noise vector

    Characterization and Flight Test of a Multi-Antenna Gnss, Multi-Sensor Attitude Determination Algorithm

    Get PDF
    A multi-antenna Global Navigation Satellite System (GNSS), multi-sensor attitude estimation algorithm is outlined, and its sensitivity to various error sources is assessed. The attitude estimation algorithm first estimates attitude using multiple GNSS antennas, and then fuses a host of other attitude estimation sensors including tri-axial magnetometers, Sun sensors, and inertial sensors. This work is motivated by the attitude determination needs of the Antarctic Impulse Transient Antenna (ANITA) experiment, a high-altitude balloon-suspended science platform. In order to assess performance trade-offs of various algorithm configurations, the attitude estimation performance of various approaches is tested using a simulation that is based on recorded ANITA III flight data. For GNSS errors, attention is focused on multipath, receiver measurement noise, and carrier-phase breaks. For the remaining attitude sensors, different grades of sensor are assessed. Through a Monte-Carlo simulation, it is shown that, under typical conditions, sub-0.1 degree attitude accuracy is available when using multiple antenna GNSS data only, but that this accuracy can degrade to degree-level in some environments warranting the inclusion of additional attitude sensors to maintain the desired level of accuracy. This algorithm was validated in a flight test. A WVU Phastball unmanned aerial vehicle was outfitted with GNSS receivers, an IMU, a magnetometer, and a Sun sensor to collect flight data. To determine the wing flex during flight, and correct the body-centric antenna coordinates, a computer vision algorithm was developed to use aircraft-mounted camera data to track markers along the wing surface and estimate the wing deflection
    • …
    corecore