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Abstract 

A modern multisensor integrated navigation system applied in most of civilian applications 

typically consists of GNSS (Global Navigation Satellite System) receivers, IMUs (Inertial 

Measurement Unit), and/or other sensors, e.g., odometers and cameras. With the increasing 

availabilities of low-cost sensors, more research and development activities aim to build a cost-

effective system without sacrificing navigational performance. Three principal contributions of 

this dissertation are as follows:  

i) A multisensor kinematic positioning and navigation system built on Linux Operating System 

(OS) with Real Time Application Interface (RTAI), York University Multisensor Integrated 

System (YUMIS), was designed and realized to integrate GNSS receivers, IMUs, and 

cameras. YUMIS sets a good example of a low-cost yet high-performance multisensor 

inertial navigation system and lays the ground work in a practical and economic way for the 

personnel training in following academic researches. 

ii) A generic multisensor integration strategy (GMIS) was proposed, which features a) the core 

system model is developed upon the kinematics of a rigid body; b) all sensor measurements 

are taken as raw measurement in Kalman filter without differentiation. The essential 

competitive advantages of GMIS over the conventional error-state based strategies are: 1) 

the influences of the IMU measurement noises on the final navigation solutions are 

effectively mitigated because of the increased measurement redundancy upon the angular 

rate and acceleration of a rigid body; 2) The state and measurement vectors in the estimator 

with GMIS can be easily expanded to fuse multiple inertial sensors and all other types of 

measurements, e.g., delta positions; 3) one can directly perform error analysis upon both raw 
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sensor data (measurement noise analysis) and virtual zero-mean process noise measurements 

(process noise analysis) through the corresponding measurement residuals of the individual 

measurements and the process noise measurements. 

iii) The a posteriori variance component estimation (VCE) was innovatively accomplished as an 

advanced analytical tool in the extended Kalman Filter employed by the GMIS, which makes 

possible the error analysis of the raw IMU measurements for the very first time, together with 

the individual independent components in the process noise vector.  
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1. Introduction 

1.1 Background and motivation 

“Navigation is the science of getting ships, aircraft, or spacecraft from place to place; 

especially: the method of determining position, course, and distance traveled.” [Merriam-Webster, 

online]. The modern navigation starts from the system integrating various electronic sensing 

devices [Ismaeel, 2003] to determine position, course, and distance traveled. Among all 

navigation systems, the inertial navigation system (INS) is the most prevalent modern navigation 

system because of its accuracy, long mean time between failure (MTBF), and self-reliance [Bekir, 

2007].  

A modern aided inertial integrated navigation system is nothing but a digital computer 

attached with an inertial measurement unit (IMU) and all other aiding sensors. The central 

computer is responsible for computing the “continuous” navigation solution including position, 

velocity and attitude of the vehicle based on the outputs from the inertial sensor while the aiding 

sensors provide information to estimate and/or suppress the errors in navigation solution. Because 

of four decades of continuous efforts in the semiconductor and computer industry, the device 

miniaturization and the ever-growing computation power have revolutionarily transformed the 

size and the weight of an IMU unit. Accordingly, the high-speed yet affordable microprocessors 

make it possible the old-fashion bulky gimbaled INS system to be replaced by the lightweight 

strapdown INS system (SINS) [Lawrence, 1998]. Secondly, the advances in sensor technology, 

e.g., fiber optic gyroscope (FOG) and micro-electro-mechanical systems (MEMS) technologies, 

have further brought out the opportunities for the low-cost SINS in many small-sized applications 
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such as personal navigation, car-navigation, unmanned aerial vehicles (UAVs) and so on [Hasan, 

2009].  

Although the high-end INS system could maintain stable and satisfactory performance 

within a rather long period, the remarkable expenses prohibited its application on those small-

size civilian systems [Gao, 2007]. Therefore, in the early development stages of inertial 

navigation technology, the rapidly growing errors in a low-cost navigation system cannot be well 

controlled merely using the time-intermittent zero velocity updates (ZUPTs) and/or the static 

position fixes (PFIXs). It is after the full deployment of the Global Navigation Satellite System 

(GNSS) that the low-cost INS system becomes thriving because that the all-weather 24/7 GNSS 

system is able to provide the reliable position, velocity and the heading solution with a reasonable 

degree of accuracy [Bekir, 2007] so that the quickly growing errors in an INS system is effectively 

suppressed. In other words, the fusion of the complementary GNSS and inertial navigation 

technologies enables a continuous, high-bandwidth, complete navigation solution with long- and 

short-term high accuracy [Groves, 2008; Antonio, 2010].  

Nowadays, as the major beneficiary of the GNSS/INS technology, the modern kinematic 

Mobile Mapping System (MMS) is able to work in a fast, cost-effective and accurate manner to 

geo-reference 3D geospatial objects, such as natural landmarks, roads, targets, images or point 

clouds even without the use of Ground Control Points (GCPs) which usually consume great 

amount of time and efforts. Consequently, MMS for the applications in remote 

sensing/photogrammetry, gravimetry, laser scanning with airborne, land and marine vehicles have 

become an emerging trend in mapping applications [El-Sheimy, 2007]. In MMS, the positioning 

and navigation performance relies on the core navigation and positioning engine [Skaloud, 2002; 

Lopez, 2003; Yudan Yi, 2007], which fuses all sensor data in order to achieve the optimal 
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estimates of positions, velocities and attitudes for a rigid body of interest. Therefore, the 

researches about multisensor (e.g., GNSS receivers, IMUs, etc.) integrated navigation receive lots 

of interests in mobile mapping community [Bossler et al., 1991; Schwarz, et al, 1993; Grejner-

Brzezinska, 1997; Tao, 2000; Yudan Yi, 2007; Jaakkola, A., 2010; Wu, D. J. et al., 2013; 

Karasaka, L., 2013; Munguía, R. et al, 2016; Nilsson, et al, 2016 and etc.]. The research activities 

in the integrated navigation mainly focus on:  

• Improvements of a priori stochastic error models of inertial sensors, 

• Improvements of INS system initialization and alignment algorithms, 

• Improvements of INS mechanization algorithms, 

• Applications of the advanced non-linear filtering technique, 

• Improvements of GNSS-aided inertial navigation integration strategies. 

From author’s point of view, the GNSS and inertial navigation integration strategy receives 

the least interest among all above listed topics, as Farrell [1995] pointed out that the most probable 

reason for this fact is that the conventional method is widely accepted and hence may inhibit 

further progress when working with low performance MEMS inertial sensors. Originated from 

the optimal error control and estimation theory, the conventional integration strategy is focused 

on the calibration/suppress the errors of the primary INS incurred from the initial misalignment, 

position errors, as well as systematic and random errors of the primary inertial sensor. First, in 

the conventional implementation, our a priori knowledge about the rigid body’s kinematics is 

often overlooked or not properly utilized. Second, the support for multiple IMU units in the 

traditional integration strategy becomes a complicate issue because that the error regulation aided 

INS requires one instance of the algorithm for each IMU. Therefore, the author is motivated to 

make a significant changeover in the multisensor integration strategy because one may not be 
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able to reach an innovative and cost-effective breakthrough if one keeps staying in the traditional 

rut [Wagner and Wieneke, 2003]. Besides the innovation of the multisensor integration strategy, 

the further accuracy improvements of the navigation solution give rise to the subsequent objective 

in this dissertation: tuning the stochastic models in the estimation filter for inertial sensors and 

other participating sensors.  

In addition to the exploration of those theoretical algorithms, the author also needs to address 

the challenge of developing a high-performance yet economically feasible (low-cost) multisensor 

positioning and navigation system, which leads to the first objective introduced in Section 1.2.  

1.2 Objectives of the dissertation 

With the conventional integration mechanism [Jekeli, 2001; Rogers, 2003; Titterton, 2004; 

Bekir, 2007], the performance of an INS system subject to the quality of the IMU sensor rapidly 

deteriorates when the system lacks of sufficient and accurate aiding data, e.g., in GNSS degraded 

or denied environments. This dissertation primarily aims at innovating a generic multisensor 

integration strategy (GMIS) with the full usage of a priori knowledge of a rigid body’s kinematics 

for a moving vehicle (or plateform) so that the rapidly deteriorated navigation performance can 

significantly be improved in comparison with the conventional integration strategies. The 

objectives of this dissertation are to: 

1) Design and develop a hard real-time multisensor integrated system (YUMIS) which can 

collect and time-tag data from GNSS receivers, IMU unit, and 1394 [1394 Trade 

Association, 2010] cameras. YUMIS sets a good example of a low-cost yet high-

performance multisensor inertial navigation system for the purpose of the follow-up 
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research upon navigation algorithms and lays the ground work in a practical and economic 

way for the personnel training in following academic researches 

2) Derive and develop a GMIS-based Kalman filter to estimate navigational parameters with 

the full usage of a priori knowledge of a rigid body’s kinematics.  

3) Tune and evaluate the stochastic models of random errors for all participating sensors 

within the estimation filter by means of the variance component estimation (VCE) 

technique in Kalman filter. 

1.3 Structure of the dissertation 

This dissertation is structured as follows.  

Following the introduction in this chapter, Chapter 2 briefs the preliminary knowledge of 

multisensor integrated inertial navigation and further provides the literature review. 

Chapter 3 describes the design and development of an in-house low-cost multisensor system, 

York University Multisensor Integrated System (YUMIS), based on Linux with Real Time 

Application Interface (Linux/RTAI).  

Chapter 4 presents the generic multisensor integration strategy (GMIS), the proposed 

extended Kalman filter (GMIKF) and the post-processed navigation solutions that demonstrate 

the success of the novel integration strategy. Besides, the comparisons of the filter structure and 

the performance boundaries are also given to show the advantages of GMIS.  

Chapter 5 details the a posteriori variance component estimation algorithm as an advanced 

analytical tool for the purpose of the random error analysis. The stochastic models of random 

errors attached with inertial sensors and process noises in GMIKF are shown to be successfully 

re-established through the real datasets.  
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Chapter 6 presents the experimental results of a real dataset associated with specific 

discussions and analysis. 

Chapter 7 concludes the entire work of this dissertation. Recommendations for future work 

and certain remarks are also summarized at the end.  
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2. Preliminaries and related literature 

In this chapter, the preliminaries and the principles of strapdown inertial navigation are 

provided as the knowledge base of the follow-up chapters in this dissertation. Moreover, the 

literatures review is conducted to present the theoretical advances and the state-of-art in the 

modern strapdown inertial navigation. In addition, the historical works related to the problems 

tackled in this dissertation (integration strategy and random error analysis) are also summarized. 

Without further notice, the inertial navigation in this dissertation will be always referred to the 

strapdown inertial navigation in consideration of the scope of this dissertation. 

2.1 Coordinate frame 

2.1.1 Cartesian frame 

The most common three-dimension Cartesian coordinate frame in navigation is a reference 

frame consisting of three mutually orthogonal base vectors (axes). The 3D-Cartesian coordinate 

frame can be defined as a right-handed system or a left-handed system. The Figure 2.1 depicts 

the differences between two frames. Because the right-handed system is dominant in modern 

navigation, all coordinate systems introduced in this dissertation are right-handed without further 

notice. In consideration of the nature of space recognized by human being, the position and 

velocity of a rigid body are usually represented by a 3 × 1 column vector. 
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Figure 2-1 The left-handed and right-handed Cartesian coordinate systems 

2.1.2 Coordinate frames 

The most widely used coordinate frames in modern inertial navigation near the surface of 

the Earth are:  

• Inertial reference frame (i)  

Inertial frame is an eternal stationary Cartesian coordinate frame which is either stationary 

in space or moving at constant velocity (i.e. no acceleration). The frame used in inertial 

navigation is the Earth-centered inertial (ECI) frame [Grewal et al. 2007; Noureldin et al, 

2013]. In inertial navigation, measurements from inertial sensors are physical quantities 

with respect to inertial frame. 

• Earth Center Earth Fixed (ECEF) frame (e) 

Earth fixed reference frame has fixed orientation with respect to the rotating Earth. For 

example, most of the paper map with the legend of North and East directions for personal 

navigation are actually Earth fixed reference frames.  

ECEF (e) is an Earth fixed reference frame with its origin being the center of the Earth. 

The X-axis is located in the equatorial plane and points toward the mean Greenwich 

Meridian. The Z-axis is pointing towards the north (along the spin axis of the Earth) being 
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perpendicular to the X-Y plane. The Y-axis is 90 degrees east of the mean Greenwich 

Meridian to complete the 3D Cartesian system [Wang, 2003; Gao 2007]. 

• Local geodetic frame (or local geographic frame) (g)  

Local geodetic frame is a topocentric frame with three axes pointing to the local east, north 

and zenith. Since the height is preferred to be positive when the point is above the Earth 

surface, East-North-Up (ENU) Cartesian system is more adopted than North-East-Down 

(NED) system in Geodesy. On the other hand, NED frame is more preferred in navigation 

because the vehicle’s heading azimuth is the same as the yaw angle around DOWN axis 

when NED frame is used. The local geodetic frame is also known as the local level frame 

or local navigation frame [Noureldin et al, 2013]. 

• Navigation frame (n) 

Inertial navigation mechanization [Schmidt et al, 1973; Heller, 1975] is conducted in 

navigation frame. In practical implementation, the n frame can be realized as a variant of 

the local ENU frame. For example, the n frame can deviate from the local ENU frame by 

certain time-variant amount of rotation around its Z axis. Three popular navigation frames 

in navigation calculation are due North, free azimuth and wander angle and they are 

distinguished from each other through the amount of the rotation angle.  
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Figure 2-2 ECEF frame and Local Geodetic ENU frame 

• Vehicle’s body frame (v) 

The vehicle’s body frame is the coordinate frame rigidly fixed to the vehicle’s body. 

Similar to ENU and NED local geodetic frames, two popular frames are Forward-Right-

Down and Right-Forward-Up. Accordingly, if a leveled vehicle is moving toward due 

north, the Right-Forward-Up frame will coincide with ENU local geodetic frame. 

• Sensor’s body frame (b) 

The sensor’s body frame is the 3D Cartesian coordinate frame referred by the sensor 

measurements. The misalignment angles between frame b and frame v are usually named 

as the sensor mounting (boresight) angles. In this thesis, frame b coincides with frame v 

for the purpose of simplicity. 

2.2 Rotation matrix 

2.2.1 Overview 
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The coordinates of a vector of interest are resulted from the projection of the vector onto the 

base axes of the coordinate system. A single physical vector could take different coordinates in 

different coordinate systems and the transformation matrix is the tool used to transform the 

coordinates of a vector from one frame to another [Rogers, 2003]. Let av  be a vector in frame a 

and bv be its counterpart in frame b, the transformation from av  to bv  is achieved through the 

transformation matrix b
aC  as follows:  

ab
a

b vCv =                                                                                  (2.2.1) 

In a three dimensional Cartesian coordinate system, the transformation matrix b
aC (from a to b) 

would be always of the size of 3 × 3. Therefore, the transformation matrix b
aC in this dissertation 

shall always be a nonsingular square matrix of the size of 3 × 3 without further notice. The 

transformation matrix incurred from the frame rotation becomes a rotation matrix which must be 

an orthonormal matrix. 

Assume that b
aC (stands for )t(b

aC ) be the rotation matrix from frame a to frame b at time 

t, the time derivative of b
aC  implicates the dynamics of frame b with respect to frame a. Among 

the various mathematical decompositions of )t(b
aC , the most popular four approaches are: DCM, 

Euler angles, Rotation vector and Quaternion [Shuster, 1993; Bekir, 2007]. 

2.2.2 Direction cosine matrix 

A direction cosine matrix (DCM) is one particular interpretation of a rotation matrix. Any 

rotation matrix can be casted as a DCM by interpreting the matrix columns as inner products and 

hence direction cosines between the unit orthogonal axes of the two coordinate frames. Namely, 

a DCM consists of nine elements resulted from the dot product of the unit base vectors in two 
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coordinate systems. It is proved to be a transformation matrix [Bekir, 2007] and has its differential 

equation as follows [Titterton, 2004]: 

a
ba

b
a

b
a

~ωCC =                                                                 (2.2.2) 

wherein the vector a
baω  denotes the instantaneous angular velocity of frame a with respect to 

frame b projected on frame a and the tilde notation denotes skew symmetric matrix of the vector. 

2.2.3 Euler angles  

According to Euler’s theory, three Euler-angles can also describe the orientation of a rigid 

body in three dimensional space [Euler, 1776], using which the transformation matrix between 

the vehicle’s body frame and the local geodetic frame can be achieved through the product of 

three sequential simple rotations each of which is around one instantaneous principle axis 

[Slabaugh, 1999]. Correspondingly, three associated scalar angles are called Euler angles, which 

could be defined in different ways. One of the most widely used sequential three rotations from 

frame n (ENU) to frame b, called Tait-Bryan or Cardan angles [Rogers, 2003; Ardakani & 

Bridges, 2010; etc.] is defined as the yaw angle around z (Up) axis (ψ ), the pitch angle around x 

(East) axis ( p ) and the roll angle around y (North) axis (φ ). Accordingly, the DCM matrix 

resulted from above three rotations is as follows: 
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wherein are  

p
,
γ

,
ψ  three Euler angles (pitch, roll, heading),  

cx , sx  the cosine and sine functions of a scalar variable x ,  

Then,  
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                          (2.2.4) 

The calculation of the attitude vector θ can be realized from the DCM matrix n
bC as follows: 

       θ
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                                                      (2.2.5) 

The differential equation of Euler angle with respect to the angular velocity components in ENU 

frame is given as [Magnus, 1971; Bekir, 2007]: 
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wherein are 

tgx  the tangent function of a scalar variable x ,  
sec x  the secant function of a scalar variable x . 

2.2.4 Rotation vector 
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A rotation vector (3×1) mathematically defines a rotation through a unit vector representing 

rotation axis and a scalar representing the angular rotation about this axis [Shuster, 1993]. Given 

u  is a unit vector and φ  is the scalar, the rotation vector is defined by u Φ φ= . The 

corresponding differential equation for rotation vector is given by [Bortz, 1971; Shuster, 1993; 

Bekir, 2007]: 

                           (2.2.7) 

2.2.5 Quaternion 

The four-element quaternion is an alternative to the three-element rotation vector [Kuipers, 

1999; Kong, 2000]. It is defined by one scalar component 0q and one vector q  of 3 components. 

The quaternion Θ  can be equivalently presented by scalar angle φ  about the unit vector u  as 

follows: 
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In a modern digital computer with certain round-off errors, the attitude update through the 

quaternion technique is numerically more accurate because it performs the computation using 

half magnitude of the angular rate in comparison with the rotation vector method or DCM matrix. 

However, this dissertation still uses Euler angle approach because of its instinctiveness. The 

differential equation of the quaternion is [Zhe, 1985; Vathsal, 1991; Kong, 2000; Bekir, 2007]: 
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2.3 Particle kinematics 

2.3.1 Law of motion for a particle 

Newton’s three laws of motion stated [Isaac Newton, 1687] 

i. Every body continues in its state of rest, or of uniform motion in a straight line, 

unless compelled to change that state by forces acting upon it. 

ii. The time rate of change of linear momentum of a body is proportional to the 

force acting upon it and occurs in the direction in which the force acts. 

iii. To every action there is an equal and opposite reaction; that is, the mutual forces 

of two bodies acting upon each other are equal in magnitude and opposite in 

direction. 

The first two of Newton’s laws, as applied to a particle, can be summarized by the law of 

motion: 

am=F                                                                       (2.3.1) 

wherein F is the total force applied to the particle of mass inclusive of both direct contact and 

field forces such as gravity or electromagnetic forces, m  is the mass of the particle, and a  is the 

acceleration of the particle that must be measured relative to an inertial or Newtonian frame of 

reference. 

Newton’s law of motion for a particle reveals the relationship between the external force 

and the acceleration of the particle. Therefore, it is Newton’s law of motion makes possible 

navigation through measures of specific force. 

2.3.2 Kinematics 
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2.3.2.1 Position, velocity and acceleration 

Mathematically, the location of the point P at time t in Figure 2-3 is described by vector 

)(tP


which depicts the time function of the position vector between a point P and the origin O.  

In general, one has 

kjir


)()()()](),(),([)( tztytxtztytxtP T ++===                                (2.3.2) 

wherein  

               )(tx   is the  projection of  position vector )(tP


on axis x  

               )(ty   is the  projection of  position vector )(tP


on axis y  

               )(tz   is the  projection of  position vector )(tP


on axis z  

 

Figure 2-3 Position vector in a 3D Cartesian coordinate system 

The velocity vector of point P projected into the same static coordinate frame Oxyz is defined 

as the derivative of the point function with respect to time, is given as  
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Ttztytx
dt

tPdtV )](),(),([)()( ′′′===



v                                                   (2.3.3) 

wherein  

               )(tx′   is the  first order derivative of )(tx  w.r.t. time t 

               )(ty′ is the  first order derivative of )(ty  w.r.t. time t 

               )(tz′  is the  first order derivative of )(tz  w.r.t. time t 

Similarly, the acceleration vector is defined as the first order derivative of velocity vector 

in the same static coordinate frame Oxyz with respect to time: 

dt
tVdtA )()(




==a                                                                                 (2.3.4) 

2.3.2.2 Velocity in a moving frame 

In Equation (2.3.3), three base axes of the reference frame Oxyz are assumed to be static. 

However, when these three axes ( i

, j


, k


) are also rotating with respect to an inertial reference 

frame, the velocity vector relative to the inertial reference frame becomes: 

kjikjirv ′+′+′+′+′+′==


)()()()()()(
dt
d tztytxtztytx                      (2.3.5) 

Alternatively, the right hand side of Equation (2.3.5) can be broken down into two parts: the 

velocity vector kjivs


)t(z)t(y)t(x ′+′+′= as if the coordinate frame Oxyz is stationary and 

i
r rωkjiv ×=′+′+′=


)t(z)t(y)t(x  representing the velocity of the coordinate frame Oxyz 

relative to an inertial reference frame [Bekir, 2007]. Thus, Equation (2.3.5) can be rewritten into 

  i
s rωvrv ×+==

dt
d

                                                                           (2.3.6) 
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2.3.2.3 Fundamental navigation equations 

Based on (2.3.6), the velocity of a particle with respect to the rotating Earth expressed in the 

inertial frame (i) is 

ii
ie

i
iv

ii
ie

ii
i
ev rωvrωrrv ×−=×−==

ie dt
d

dt
d

                                              (2.3.7) 

where i
ieω  is the constant angular velocity of the rotating Earth in frame i , ir  is the position 

vector and i
ivv is the velocity vector of the particle with respect to an inertial frame i. Accordingly, 

the first order time derivative of i
evv  in frame i is 

iii dt
d

dt
d

dt
d i

i
ie

i
iv

i
ev rωvv

×−=                                                                                 (2.3.8) 

The further expansion of the last term on the right hand side of (2.3.8) yields 
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                              (2.3.9) 

On the other hand, the term on the left hand side of (2.3.8) is expanded as follow: 

i
ev

i
in

n
evi

ev
i
in

n
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n

n
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n
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                     (2.3.10) 

Then, by combining (2.3.9) and (2.3.10), one obtains 

      
ii dt

d(
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And furthermore, 
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ii dt
d)(
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ev ==××+×++ 2
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                                     (2.3.12)  

Finally, after all vectors in (2.3.12) are transformed into the navigation frame (n), the velocity 

n
evv  is related to the IMU measurements b

iva  in body frame as follows: 

b
iv

n
b

i
nn

ev
n
ie

n
in

n
ev aCrgvωωv

==+×++
ndt

d)(
dt

d
2

2

                                                   (2.3.13) 

2.4 Principle of strapdown inertial navigation 

This section briefs the realization of the traditional strapdown inertial navigation algorithms 

(inertial navigation mechanization) for free inertial navigation calculation. For the sake of 

simplicity, the sensor body frame (b) is assumed to be aligned with the vehicle frame (v) in the 

following discussion.  

The inertial navigation mechanization is the mechanism that is made of a set of equations to 

propagate the navigation parameters in a specific coordinate frame through the high rate IMU 

outputs: specific forces and angular rates. It can be executed at the same or slower rates than the 

rate of the original IMU outputs. The navigation parameters of interest are normally position, 

velocity and attitude of a moving vehicle. Three choices of the navigation coordinate frames with 

which the INS mechanization proceeds are: the Earth Centered inertial Frame (ECI or i frame), 

the Earth centered Earth Fixed frame (ECEF or e frame) or the local level navigation frame (n) 

during the navigation mission. Despite of their physical and computational differences, the net 

results are the same for the given set of frames and the navigation equations [Jekeli, 2001]. Here, 
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only the INS mechanization in the local level navigation frame is overviewed because the 

navigation parameters defined in the local level navigation frame are more intuitive and preferred 

for the navigation mission near the Earth. Therefore, the INS mechanizations in ECI (i) frame and 

ECEF (e) frame are omitted here. Refer to [Jekeli, 2001; Bekir, 2007; Grove, 2013] for 

corresponding details. 

Three variants of inertial navigation mechanizations in the local level frame are: the north 

seeking (slaved) mechanization, the free azimuth mechanization and the wander azimuth 

mechanization. The main difference among them is how the z axis of the local level navigation 

frame changes along the changing position and time during the mission. Specifically, the north 

seeking (slaved) mechanization always tracks the local geodetic (geographic) frame, and the free 

azimuth mechanization maintains the z axis of the navigation frame fixed relative to the inertial 

space, while the wander azimuth mechanization torques the navigation frame around the z axis to 

follow the Earth’s rotation rate. For the ease of the understanding and the simplicity of the 

algorithm development, the north seeking INS mechanization is briefed below and the overview 

of the free azimuth and wander azimuth mechanization can be found in [Kelly, 1994; Maybeck, 

1973; Grove, 2013; etc.].  

Based on Section 2.2 and 2.3, the continuous strapdown mechanization equations using the 

north seeking method are given as [Titterton, 2004]: 

]×= b
nb

n
b

n
b [ωCC                                                                                                      

nnn
ie

n
en

bn
b

n gvωωf Cv −×+−= )( 2                                                                      (2.4.1)  

                  nn vr =                                                                                                                           

where are:   
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In the strapdown inertial navigation, the above strapdown mechanization is executed in the 

discrete form through: attitude update, velocity update, and position update. 

2.4.1 Attitude computation 

Mathematically, the analytical solution of the instantaneous vehicle attitude should be 

achieved through solving the attitude differential equations given the initial orientation of the 

vehicle and the assumption of “continuous” error free angular rates of the vehicle based on 

gyroscopes’ outputs. However, in reality, attitude update has to be conducted in the form of 

difference equation because the real sensor outputs are discrete in time and the navigation 

algorithm is executed in a digital computer.  

Taking the example of DCM method, the determination of the vehicle attitude is to seek the 

solution of the transformation matrix )k(n
bC  at epoch k which implies the orientation of the rigid 

nr  the position vector in the local navigation (ENU) frame, 

nv
 

the velocity vector in the local navigation frame, 

bf
  

the specific force with respect to the vehicle body frame, 

ng

 

the gravity vector in the local navigation frame,  

n
enω

 

the crate rate vector in the local navigation frame, 

n
ieω

 

the Earth rotation rate in the local navigation frame, 

b
nbω

 

the turn rate of body frame with respect to the local navigation frame, 

n
bC

 

transformation matrix from body frame to navigation frame, and 

× the cross product operator. 
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page body. Under the assumption that an error-free gyroscope is employed, the DCM matrix at 

epoch k+1 can be obtained as follows [Savage, 1998; Rogers, 2003; Titterton, 2004; Bekir, 2007]: 

)k(b
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n
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dtn
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+ RCRCC
b
ib

n
ni ΩΩ

                              (2.4.2) 

wherein )k(a
)k(a
1+R is the intermediate transformation matrix of frame a from epoch k to epoch k+1.   

In summary, discrete attitude update can be realized through two steps: a) intermediate 

transformation matrices update on )k(n
k(n 1)−R and )k(b

k(b 1)−R ; b) final DCM matrix update on )k(n
bC

using (2.4.2).  

2.4.2 Velocity computation 

The velocity update is to compute the instantaneous velocity at epoch k +1 and starts from 

the integration of the acceleration vector. In the first place, the integrated delta velocity nυ  

(incremental velocity from epoch k to epoch k+1) is defined as: 

                                                      dtk

k

t

t

nn ∫
+

=
1 fυ                                                              (2.4.3) 

where nf  is the instantaneous specific force vector in navigation frame ( bn
b

n ff C= ). After the 

omission of the higher order terms, the solution of the incremental velocity nυ  from epoch k to 

epoch k+1 consists of three terms resulted from: i) the term resulted from direct accumulation of 

specific force vector in body frame, ii) the rotation correction due to the changing body frame, 

and iii) the dynamic correction (e.g., sculling motion) [Titterton, 2004]. 
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Chawherein bf  is the specific force vector in body frame, bω  is the angular rate vector in body 

frame, the delta velocity 1+kν  = ∫
+1k

k

t

t

bdtf , and  the delta angle 1+kα  = dtk

k

t

t

b∫
+1ω . 

At last, the instantaneous velocity n
k 1+v at epoch k+1 can be simply updated using the 

incremental velocity nυ as follows [Savage, 1998; Rogers, 2003; Titterton, 2004; Grove, 2008]: 

nn
k

n
k υvv +=+1                                                                         (2.4.5) 

2.4.3 Position computation  

There are various realizations of the position computation depending on the system 

performance requirement as well as the availability of the aiding position sensor [Savage, 1998; 

Jekeli, 2001; Titterton; 2004; Bekir, 2007]. In a low-cost land vehicle navigation system, using 

the NED local navigation frame defined at the point vector 1-kr  at epoch k-1, the position vector 

T
DEN ]r,r,r[=kr  at epoch k can simply be propagated using trapezoid integration method 

[Titterton, 2004]: 

 
2

vvrr rr n
1-k

n
k1-k1-kk

t)( ∆
++=+= δ                                                       (2.4.6) 

In consideration of the computation of the transport rate [ ]Tn
en sincos φλφφλ  −−=ω of 

the local navigation frame (n) about the Earth frame (e), an easier method for position 

computation is to use the polar coordinates (latitudeλ , longitudeφ , altitude h) with respect to 

the Earth frame through integrating the corresponding rate vector as follows: 

  )R/(v mn h+=φ                                                                                 

   φλ cos/)R/(v pe h+=                                                                       
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dv−=h                                                                                   (2.4.7) 

wherein Rm is the meridian radius of curvature, Rp is the prime radius of curvature in the plane 

normal to the meridian [Bekir, 2007] and vn, ve, vd are velocity scalars in three axes of the NED 

local navigation frame. 

2.4.4 IMU measurement models 

Without taking into account the installation errors of an inertial sensor, the single component 

of the rate-output IMU measurement vector for either angular rates or specific forces can be 

modelled as a function of the true signal (angular rate or specific force) in the body frame [G. 

Egziabher, 2004] as follow: 

)t(b)t(bbs)s1(sm ω10t ++++= f                                                     (2.4.8) 

In (2.4.8), ms is the sensor measurement and ts  is the truth of ms . In addition, the measurement is 

also corrupted by: a random constant 0b , a time varying bias drift )t(b1 and the white noise )t(bω . 

For most of the inertial sensors, )t(b1 is usually modeled as a first order zero-mean Gauss-Markov 

process [Nassar 2003] whose mathematical form is usually granted after [Gelb, 1974; G. 

Egziabher, 2004; El-Diasty et al, 2008; Petkov, 2010]: 

1bω)t(b
τ

)t(b +−= 11
1                                                                   (2.4.9) 

where the variable τ  is the time constant (correlation time) and 
1bω is the white noise. 
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2.4.4.1 Accelerometer measurement model 

The measurement from an accelerometer in a rate-output IMU is called the specific force. 

Based on (2.3.12) and (2.4.8), the measurement model for the specific force vector b
imu-ibf  can be 

constructed as: 

( )( ) aa
nb

n
n
nb

n
en

n
ie

b
n

b
nba

b
imuib )()( ∇++−×+++=− bgCvωωCaSI 2f                   (2.4.10) 

wherein is        

2.4.4.2 Gyroscope measurement model 

The measurement of a gyro in a rate-output IMU is called the angular rate. Similarly, the 

measurement model for the angular rate vector b
ibω can be constructed as: 

( ) ωωω bωωCωSIω ∇+++++=− )()( n
en

n
ie

b
n

b
nb

b
imuib                                (2.4.11) 

wherein is 

n
ieω

 
the Earth’s rotation rate vector in the local navigation frame, 

n
enω

 
the craft rate vector in the local navigation frame, 

n
nba

 
the acceleration vector of vehicle with respect to the local navigation frame, 

n
nbv

 
the velocity vector of vehicle with respect to the local navigation frame  

ab  the bias vector including start off biases and bias residuals for accelerometers, 

aS  the 3×3 scalar and misalignment error matrix for accelerometers, 

b
nC  the transformation matrix from navigation frame to body frame, and 

a∇

 

the white noise vector for accelerometer measurement vector. 
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2.5 Principle of GNSS positioning 

Due to the sensor errors, initial misaligned attitude and position errors, the inertial navigation 

solution computed in Section 2.4 suffers from rapidly growing systematic errors. In the early 

development stages of inertial navigation technology, most of the inertial navigation systems 

merely have available the time-intermittent zero velocity updates (ZUPTs) and the static position 

fixes (PFIXs) for the calibration of the rapidly growing errors in navigation solution. It is after 

the full deployment of the Global Navigation Satellite System (GNSS) that the low-cost inertial 

navigation system becomes thriving because the all-weather GNSS system is able to provide the 

reliable position, velocity and the heading solution with a reasonable degree of accuracy [Bekir, 

2007] in a constant rate so that these quickly growing errors can be effectively suppressed down 

to centimeter level.  

This section briefs the principle of absolute positioning using GNSS technology. GNSS is 

the collective term for those navigation systems that provide the user with a three-dimensional 

positioning solution by passive ranging using radio signals transmitted by orbiting satellites 

[Groves, 2008]. There are four popular systems available: the Global Positioning System (GPS) 

n
ieω  the Earth’s rotation rate vector in the local navigation frame, 

n
enω  the craft rate vector in the local navigation frame, 

n
nbω  the angular rate vector of vehicle with respect to the local navigation frame, 

ωb  the bias vector including start off biases and bias residuals for gyroscopes, 

ωS  the 3×3 scalar and misalignment error matrix for  gyroscopes , 

b
nC  the transformation matrix from navigation frame to body frame, and 

ω∇  the Gaussian white noise vector for gyroscope measurement vector. 
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by United State, Global Navigation Satellite System (GLONASS) by Russia, Galileo by European 

Union, and Beidou by China. Because the fundamental principle of GPS system applies to all 

other GNSS, the positioning techniques based on GPS system are overviewed in this section. 

2.5.1 Trilateration  

 

Figure 2-4 Trilateration in GNSS 

Trilateration uses distance measurements from at least three fixed points to determine the 

geospatial coordinates of an unknown position [Murphy et al, 1995; Navidi et al, 1999]. On the 

ground of the idea of trilateration principle, GNSS technology makes possible the automated real-

time positioning through acquiring and tracking radio signals from multiple satellites with their 

known orbits (Figure 2-4) to determinate the user position using a GNSS receiver. 

Assume that satellite i has its known coordinates (Xi, Yi, Zi) and a GNSS receiver generates 

a range (distance) measurement ri  to it, the unknown position (x, y, z) of the receiver relates to 

the measurement and satellite’s coordinates as follows 
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 )n...i()()()(r iiii 1=−+−+−=       222 zyx ZYX                               (2.5.1) 

Provided that more than four range measurements are acquired at the same time, a Least-

Squares solution of position (x, y, z) can be reached together with the receiver clock error. 

2.5.2 GNSS measurements 

In this dissertation, the author describes and uses only the GPS measurements from the 

GNSS receiver because that: 1) Most of the author’s available receivers track only GPS satellites; 

2) GLONASS observables processing has its unique issues such as ephemeris decoding, satellite 

position calculation we didn’t get involved; 3) the LAMBDA method fixing the integer 

ambiguities for the purpose of the cm-level positioning accuracy works only with GPS carrier 

phases. 

There are normally three types of the GPS measurements available from a GPS receiver: L1 

C/A pseudo-ranges, L1 carrier phases and L2 carrier phases. In addition, Doppler (range rate) 

measurements can also be made available. Once the GPS modernization project is completed, one 

can expect more measurements such as L2 C/A pseudo-range, L5 C/A pseudo-ranges and L5 

carrier phases. In a GPS receiver, a carrier phase measurement in either of L1, L2 and L5 band 

carries the range information as well as an integer number (ambiguity) in cycles of the associated 

wave length. On the other hand, the Doppler observables measure the rates of instantaneous 

carrier phase measurements [Kaplan et al, 2006]. The three measurement equations corresponding 

to a GPS satellite are [Han, 1999; Gao, 2007] 

rMtropiono dddT-dtcdr εερ           ( ++++++= )                          (2.5.2) 

[ ] φεε
λ

φ           ( ++++−++= NdddT-dtcdr Mtropiono )1               (2.5.3) 
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Mtropiono dddT-dtcdr )1                     (2.5.4) 

wherein ρ is the pseudo-range measurement in meter, φ is the carrier phase measurement in 

cycles, φ is Doppler measurement (range rate), r is the geometrical distance between a 

satellite and a receiver, λ  is the wave length associated with the carrier phases, od  is the effect 

of the ephemeris errors(orbit error), dt and dT are the satellite and receiver clock errors, iond  is 

the ionospheric delay error, tropd is the tropospheric delay error, Mε is the multipath error, rε ,

φε and φε  are the respective measurement noises, and N is the ambiguity parameter. 

2.5.3 GNSS positioning 

With only pseudo-range measurements, a single receiver can accomplish absolute 

positioning at the accuracy of meters. On the other hand, relative positioning can provide a 

baseline solution between two receivers (stations) at the much higher accuracy because of 

significant reduction of systematic errors, especially the ionospheric and tropospheric delays, in 

the differenced observables between receivers (stations). Specifically, with the double differenced 

(DD) carrier phase measurements for a short baseline (< 10km), the relative positioning can reach 

an accuracy of a few centimeters if the integer ambiguities are fixed correctly. Accordingly, three 

DD measurement equations can be derived base on (2.5.2), (2.5.3) and (2.5.4) as follows: 

jkjk

AB
jk
AB  rr ∆∇+∆∇=∆∇ ερ                                                                 (2.5.5) 

jkjk
AB

jk

AB
jk
AB  φελφ ∆∇+∆∇+∆∇=∆∇ Nr                                              (2.5.6) 

jkjk

AB
jk
AB φεφ 

∆∇+∆∇=∆∇ r                                                                (2.5.7) 
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where ∆∇  is the double differencing operator between the receivers A and  B with respect to the 

satellites j and k. 

2.5.4 GNSS attitude determination 

Given a baseline between two GNSS antennas, the azimuth of the baseline can be derived 

and the accuracy of which is closely related to the length and the accuracy of the baseline. 

Consequently, in most of the land-based low-cost inertial navigation systems, dual GNSS 

antennas with a fixed short baseline tied on a moving vehicle become a standard configuration to 

provide the aiding heading measurement. Occasionally, the heading (azimuth) of a moving 

vehicle is solved through velocity heading vector.  

2.6 Inertial navigation 

As mentioned in Section 1.1, most of the research activities related to inertial navigation 

technology can be classified into following sub-areas:  

• Improvements of stochastic error models for inertial sensors 

• Improvements of inertial navigation system initializations and alignments 

• Improvements of inertial navigation mechanization algorithms 

• Application of the advanced filtering techniques  

• Improvements of multisensory-aided integration strategy  

This section reviews above topics except the INS mechanization covered in Section 2.4. The 

major emphasis of this review focuses on the multisensor integration strategy in an inertial 

navigation system because it leads to the achieved research contribution presented in Chapter 4.  
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2.6.1 Error modeling of inertial sensors 

In general, IMU outputs are contaminated by the deterministic error (D) and the stochastic 

error (S). The deterministic error (D) can be caused by scale factor error and misalignment error 

[Woodman, 2007], non-linearity error involving scale factor [Flenniken, 2005; Amitava, 2008], 

spinning-mass [Groves, 2008], and other environmental sensitivity effects, for instance, G-

sensitivity effects in gyro [Weinberg, 2011], temperature related effects [Mohammed El-Diasty, 

2009] and so on. Normally, these deterministic errors are compensated with the a priori 

coefficients determined in laboratory environment by certain regression techniques [Skog, 2006; 

Mohammed El-Diasty, 2008; Hayal, 2010; Unsal, et al, 2012].  

On the other hand, the stochastic error (S) associated with an inertial sensor is generally 

modelled as the sum of the turn-on biases, the stationary time correlated drifts, and the random 

errors. Firstly, the turn-on biases are commonly modelled as random constants [Shin, 2001; 

Titterton, 2004; Syed, 2007; Artese, 2008; Fong, et al, 2008; Bancroft, 2010]. The corresponding 

estimation process is also termed as the calibration. Secondly, the time correlated random drifts 

are usually modelled on the basis of the repeated laboratory tests and then estimated through a 

filter [Allan, 1966; Nassar, 2004; Yudan Yi, 2007]. Thirdly, the random errors are normally 

characterized as the normal distributed noises incurred from sampling or quantizing a continuous 

signal with a finite word length conversion [Yudan Yi, 2007]. Depending on its hardware design 

and material selection, the measurements of an inertial sensor could demonstrate various 

combinations of errors. In order to ensure the success of a navigation mission, the first and 

paramount task is always the IMU error modeling process which includes: error identification 

and error modeling.  
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Multiple techniques have been developed to determinate the stochastic model and the 

associated coefficient parameters for IMU drifting errors, for example, autocorrelation method 

[Brown and Hwang, 1992], autoregressive (AR) process [Nassar, 2004], power spectral density 

(PSD) [Yudan Yi, 2007], Allan variance [Allan, 1966], wavelet de-noising [Kang, 2010]. The 

model parameters by autocorrelation sequence method are rarely accurate due to the limited 

length of the experimental data [Nassar, 2004]. The AR method can accurately model the medley 

of all time-correlated errors if the short-term white noise is removed, i.e., wavelet de-noising 

method. However, based on AR’s results, the independent stochastic errors cannot be 

distinguished from each other. Allan variance and PSD are the two most commonly used 

approaches to distinguish and model the independent stationary error sources. In frequency 

domain, they are theoretically related to each other [Stein, 1985; Zhang et al, 2008; Lansdorp, et 

al, 2012] and their results match well [Yudan Yi, 2007; Quinchia, et al, 2013]. Practically, Allan 

variance method is more preferred than PSD due to its simplicity and efficiency [Hou, 2005; 

Flenniken, 2005; Aggarwal, 2008; Claudia C, 2008; De Agostino, 2009].  

2.6.2 System initialization and alignment in inertial navigation 

The initial position, velocity and orientation must be provided to an inertial navigation 

system in order to carry out the navigation mission. The corresponding process is traditionally 

referred as the initialization and alignment [Yudan Yi, 2007]. As mention in Section 2.6.1, the 

IMU errors to be estimated shall be also initialized during the initialization period, which is known 

as calibration [Bar-Itzhack, 1988]. Therefore, the goal of the initialization, alignment and 

calibration is nothing but determining the initial values of the relevant states in the employed filter 

before an inertial navigation system is ready to proceed with the positioning and navigation 
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mission. The calibration process can be accomplished either separately or in parallel with the 

alignment after the initialization of position and velocity. The popular external aiding data for 

INS initialization could come from GNSS positioning results (the absolute position, velocity and 

heading), or other pre-surveyed stationary points or attitude.  

A stationary inertial navigation system can align itself by exploiting the direction of gravity 

and the direction of the Earth’s spin axis, referred to as self-alignment [Yudan Yi, 2007]. The 

traditional method of the self-alignment is completed in two phases: analytic coarse (leveling) 

alignment [Kenneth, 1971; Schimelevich, 1996; Bekir, 2007; Silson, 2011, etc.] and gyro-

compassing fine alignment [Cannon Jr, 1961; Kouba, 1962; Kong, 2000; Jekeli, 2001; Bekir, 

2007; Sitaraa, 2012; Ma, et al, 2013; Sun, et al, 2013; etc.]. However, it is noteworthy that the 

low cost INS with the lower resolution of angular velocity than the Earth’s rotation rate cannot 

perform self-alignment unless the extra data are provided.  

Both the output feedback control method in classical error theory and the state feedback 

control method in modern control theory can accomplish the alignment task for an inertial 

navigation system [Wan, 1998]. In modern control theory, the state components are estimated 

using a state-based filter which can be categorized into state observer for a deterministic system 

and Kalman filter for a stochastic system. By iteratively applying the pre-established gain 

constants upon the system innovation in a deterministic system, the attitude estimates will 

gradually converge to a stable solution with the bounded errors. The convergence is guaranteed 

through analysis of system response in frequency domain. On the other hand, Kalman Filter gives 

an iterative linear minimum variance estimates of the states of interest if the system is treated as 

a stochastic system in which significant random errors and bias drifting in the measurements are 
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considered. For more discussion about feedback control method applied in INS alignment, refer 

to [Cannon Jr, 1961; Kouba, 1962; Wan, 1998; Kong, 1999; Jekeli, 2001; Bekir, 2003].  

2.6.3 Filtering technique   

2.6.3.1 Filter model 

Filtering is a process of estimating the value or probability density distribution of an 

unknown or a group of unknowns in a stochastic system given a series of noisy data. The generic 

model for a stochastic system is described by a system model 

                              ),(f nnnn wx x =                                                                               (2.6.1) 

and a measurement model 

                              ),(h nnnn vx z =                                                                               (2.6.2) 

where  

2.6.3.2 Extended Kalman filter 

      This dissertation applies the extended Kalman filter (EKF) to estimate the state vector nx . The 

main features of an EKF are: 

nx  is the state vector at epoch n, 

nw  is the dynamic (process) noise vector, 

nz  is the measurement vector at epoch n 

nv  is the measurement noise vector  

nf  is the system model, 

nh  is the measurement model. 
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i) Predicting the state vector 1kx +ˆ  at epoch k+1 using the original non-linear system model 

with the latest estimated state vector kx̂  at epoch k; 

ii) Predicting the measurement vector needed in system innovation using the original non-

linear measurement model with the latest predicted state vector 1/kkx +ˆ in (i). 

The variance and covariance propagation is based on the total differential equations after the 

linearization about a latest best approximation of the true states. The proper model for process 

noises should take into account those ignored higher order terms in system model. Or else, the 

estimated states and their associated covariance matrix may diverge. Given a non linear system 

described in (2.6.1) and (2.6.2), the estimation of the states in the discrete form of the extended 

Kalman filter can be summarized as follows [Simon, 2006]: 

a) State and covariance prediction (the time update) 

)x(xx k |kkkk|k 111 ˆfˆˆ −−
−

− ==                                                                      (2.6.4) 

kk1k | 1kk1k  k QFPFP += −−−
T

|                                                                    (2.6.5)                                     

b) State and covariance update (the measurement update) 

)(h~
kkkk
−−= xzy                                                                                    (2.6.6) 

k
T
k1k|kkk RHPHS  += −                                                                             (2.6.7) 

1
 S H PK −
−= k

T
k1k|kk                                                                                   (2.6.8) 

kk1k|kk|k
~ˆˆ yKxx   −= −                                                                            (2.6.9) 

1k|kkkk|k ( −−=   )PHKIP                                                                       (2.6.10) 
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H are the respective Jacobian matrices for system model and 

measurement model. 

2.6.4 Sensor integration strategy 

This section reviews the sensor integration strategies. To certain extent, the development of 

the integration strategy is interchangeable with the determination of the variables to be solved 

(state selection) and corresponding modeling work (the construction of the system and 

measurement equations). Based on author’s literature survey, two approaches to differentiate the 

integration strategies in inertial navigation are to distinguish the selection of the states and the 

mechanism to couple the aiding non-inertial sensors. 

2.6.4.1 Categorization by state selection  

Because the choice of the states (variables of interest) leads to the system model as well as 

the mechanism performing error control in an inertial navigation system, many reference papers 

define the sensor integration strategy according to the selection of the states. Because Kalman 

filter is the standard filtering method in most of the researches and industrial products, the sensor 

integration strategies can also be named after the types of state vector in Kalman filter, for 

example, indirect (error-state-based) Kalman filter and direct (total-state-based) Kalman filter 

[Maybeck, 1979; Wendel, 2001; Giroux, 2005]. As the matter of the fact, given one chosen 

integration strategy, various nonlinear filtering candidates (e.g., EKF, UKF, Particle filter, etc.) 

are available. Nevertheless, this dissertation chooses to use the EKF instead of other nonlinear 
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filtering algorithms because the focus of the author’s research is not laid on the filtering 

techniques.  

Indirect Kalman Filter 

The indirect Kalman filter approach is to estimate the error state vector x∆  instead of the 

whole state vector 0x . Given the original system model (.)f  in (2.6.1), the system differential 

equations of the error state vector x∆ can be obtained through the perturbation analysis of (.)f  

after ignoring the higher order term (H.O.T.). For example, assume the error state vector x∆  

applies to the whole state vector 0x  and the disturbance vector w∆ applies to the process noise 

vector 0w , the differential equations of the estimated state vector x̂ ( x̂ = 0x + x∆ ) can be 

approximated using the first order of Taylor expansion: 

wwLxFwxwwxxxx δ+∆+∆+=∆+∆+=∆+ )t,,()t,,( 00000 ff                 (2.6.11) 

where: 0x  is the whole state vector; 0w is the process noise vector; t is the time; F is 

the Jacobian matrix with respect to x∆ ; L is the Jacobian matrix with respect 

to w∆ ; w δ  is the ignored higher order terms. 

Because )t,,(f 000 wxx = , then 

               wwLxFx δ+∆+∆=∆                                                                         (2.6.12) 

Restructure wwL δ+∆  to one vector w ~ , the dynamics equation for error state vector x∆  at 

epoch k+1 can be discretized as follows: 

kkkkkkkkk
~wxFwwLxFx +∆=+∆+∆=∆ + δ1                                        (2.6.13) 
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Similarly, the measurement vector z as the function of the whole state vector 0x  is approximated 

around its nominal value )t,ˆ(h x : 

v vxHx vxxz ++∆−=+∆−= δ)t,ˆ(h)ˆ(h                                                 (2.6.14) 

where v  is the measurement noise vector; H  is the Jacobian matrix with respect to x∆ and 

 vδ  accounts for the ignored higher order terms (H.O.T.). The re-arrangement of (2.6.14) at 

epoch k gives  

kkkkkkkk
~vxHvvxHz +∆=−−∆=∆ δ                                                       (2.6.15) 

where the error measurement vector zxz −=∆ )t,ˆ(h  and v~  is the measurement noise vector. 

In summary, the linearized system and measurement equations for error state vector x∆  at epoch 

k are given as:  

kkkkkkkkk wxFwwLxFx ~
1 +∆=+∆+∆=∆ + δ                                          (2.6.16) 

kkkkkkkk vxHvvxH    z ~+∆=+−∆=∆ δ                                                (2.6.17) 

 

Figure 2-5 Open-loop error feedward in INS [Noureldin, et al, 2013] 
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Add  

Figure 2-6 Close-loop error feedback in INS [Noureldin, et al, 2013] 

At epoch k, the error state vector kx∆  resulted from the indirect Kalman filter can be fed 

forward/back to the inertial navigation system in either type of two non-mutually exclusive 

schemes: open-loop and closed-loop [Noureldin, et al, 2013]. In the open-loop scheme (Figure 2-

5), the inertial navigation solution supports integrity monitoring and continuing service in the 

event of a problem with the Kalman filter [Groves, 2008]. While in the close-loop scheme (Figure 

2-6), the error states are fed back (to calibrate the erroneous IMU measurements and internal 

variables in mechanization) to inertial navigation component on every iteration of the 

mechanization so that the errors with the inertial navigation will not grow without bound.  

Direct Kalman Filter 

      The main difference between the indirect Kalman filter and the direct Kalman filter in 

multisensor integrated inertial navigation are the choice of the system model and the associated 

measurement model. More specifically, the aiding sensors in indirect Kalman filter aims to 

calibrate the error states in the primary system (e.g., navigation solution errors resulted from INS 
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mechanization). On the other hand, all sensors equally participate in direct Kalman filter to 

estimate the navigation solution states.  

The generic system and measurement models in the form of the direct Kalman filter can be 

given as follows: 

    nnnn )(f wx x += −1                                                                         (2.6.18) 

                    nnnn )(h vx z +=                                                                           (2.6.19) 

where  

As its name implies, the direct Kalman filter takes the variables of interest as the states in 

the filter. In opposite to the indirect Kalman filter formulation, all sensor data including IMU 

outputs may be processed as the raw measurements in the direct Kalman filter [Maybeck, 1979]. 

This configuration is proposed for the low-cost sensors with large inertial sensor errors so that the 

INS errors remain small and the linearity assumption is upheld [Noureldin, et al, 2013]. The 

inherent disadvantage of this filter algorithm is the increased computational cost from the more 

frequent and time consuming Kalman gain calculation (involving matrix inversion) [Maybeck, 

1979; Wendel, 2001]. Obviously, this conclusion is somehow outdated in consideration of the 

much more computation power in a modern CPU than those in early days.  

nx

 

= the state vector at epoch n, 

nw

 

= the dynamic (process) noise vector, 

nz  = the measurement vector at epoch n 

nv  = the measurement noise vector  

nf  = the nonlinear system model, 

nh  = the nonlinear measurement model. 
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More characteristics of the direct Kalman filter are revealed in chapter 4 since the new 

integration strategy is implemented by direct Kalman filter. A summary of the indirect EKF and 

the direct EKF is listed in Table 2-1 [Maybeck, 1979]. 

Table 2-1  Comparison between indirect and direct Kalman filter 

 Advantages Disadvantages 

Indirect EKF - Less computation with lower 
measurement update rate 

 
- Well behaved linear dynamics 

equation for the error state given 
the accurate INS mechanization 
solution 

- Complex filter structure 
 
 

- Not easy to detect measurement 
blunders 

Direct EKF - Better performance during 
GNSS gap 
 

- Easier for blunder detection 

- Heavy computation load 
 
 

- Less system robustness and 
reliability 

2.6.4.2 Categorization by aiding data 

In consideration of the growing systematic errors in an inertial navigation system, one or 

more independent measurements derived from external sources are necessary to calibrate the 

inertial navigation engine so as to yield a system with the greater precision than either of the 

components operating in isolation [Titterton, 2004]. Typical aiding data are the measurements 

from radar, GNSS satellite system, laser ranging sensor, speed sensor (e.g., distance measurement 

indicator (DMI)), altimeters and etc. Depending on the mechanism to integrate all participant 

sensors, the integration architecture may be broken down into five classes: snapshot fusion (least 

square) integration, cascade integration, centralized integration, federal integration, and hybrid 

integration [Grove, 2008]. Conventionally, in a navigation system involving both IMU and GNSS 
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receivers, the corresponding integration architectures are also jargoned as uncoupled, loosely 

coupled, tightly coupled and deeply coupled [Titterton, 2004]. 

Accordingly, in GNSS aided INS (GNSS/INS), the uncoupled system matches the snapshot 

integration architecture, the loosely coupled system corresponds to the cascade architecture and 

the tightly coupled system corresponds to the centralized architecture. Different from the other 

three strategies, the deeply coupled approach is usually implemented in an IMU-augmented 

GNSS receiver to improve GNSS signal track capability, especially in GNSS hostile environment 

(e.g., during short GNSS data gaps). 

Snapshot integration 

Snapshot fusion algorithm (Figure 2-7) delivers the final navigation solution fx̂ using the 

navigation solutions from m independent navigation processors ( 1x̂ , 2x̂ mx̂ ). The typical fusion 

algorithm is an optimal estimator e.g., weighted least square, and an extreme case of which will 

be a simple switcher choosing one of candidate solutions as the final solution. Conventionally, 

the GNSS/INS system using snapshot strategy is also named the uncoupled system due to the 

independence among individual navigation processors. Due to the scope of this dissertation, no 

more discussion about the snapshot integration will be proceeded. 
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Figure 2-7 Snapshot fusion integration [Grove, 2008] 

Cascade integration 

If the snapshot fusion algorithm is replaced by an iterative time-domain estimator (e.g., 

Kalman filter), the system is termed as cascade system. Like in snapshot system, the aiding data 

is in the form of the navigation solution (e.g., position, velocity, and etc.) resulted from the 

independent navigation processors. Depending on the form of states, the cascade integrated 

architecture can be used in direct (total state) filter or indirect (error state) filter. The error 

measurement (difference between aiding navigation solution and reference navigation solution) 

in indirect Kalman filter shall be derived according to the 2.6.15. In direct Kalman filter, the 

navigation solutions from individual navigation processors will equally take part in the filter as 

stochastically independent measurements. 

Centralized integration 
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If the aiding data (navigation solutions) in a cascade system is replaced by the raw sensor 

data, e.g. the GNSS pseudoranges and range rates, the system is termed as a centralized system 

because the whole system is built upon a central estimator by combining all sorts of raw sensor 

measurements. Due to the disappearance of the independent sub-navigators and the closer 

relationship between sensors and system, this integration architecture is conventionally named 

the tightly-coupled system, especially in the case of the GNSS/INS system. Similar to the cascade 

system, the centralized integrated architecture can be also used in direct (total state) filter or 

indirect (error state) filter.  

Federal and hybrid integration 

Unlike the cascade and centralized system with only one core Kalman filter, the federated 

filter provides a more robust and reliable structure integrating a few navigation sub-systems each 

of which is attached with a local (Kalman) filter. A master filter is responsible for the fusion of 

the results from local filters. The implementation of each local Kalman filters may be cascaded 

or centralized. Obviously, the failure of one local Kalman filter shall not collapse the whole 

federal system because each local Kalman filter is isolated from the other systems. In other words, 

the enhanced robustness of the federated system benefits from the separated processes of the 

individual subsystems. It is conceivable that the advantages of the federal integration architecture 

are at the cost of physical size and computation power [Carlson, N. A., 1990]. 

Compared to the federated system dealing with sub-navigation systems, a hybrid system 

defines a more flexible and compact architecture integrating subsystems and sensors. Figure 2-8 

depicts a typical hybrid INS system [Grove, 2008] with centralized GNSS, cascaded Loran (long 

range navigation), and federated-cascaded TRN (Terrain-referenced navigation). Because the 
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federal and hybrid integration is beyond the scope of this dissertation, this overview will not be 

further extended. 

 

Figure 2-8 Hybrid navigation system [Grove, 2008] 

2.6.4.3 Error-state based inertial navigation 

Originated from the error control theory, the indirect Kalman filter is the most popular sensor 

integration strategy for an inertial navigation system, which aims to estimate the error states using 

the aiding information (e.g., positions and/or velocities from GNSS receivers, fixed positions, 

zero velocities, velocities from Doppler radar devices, etc.) so as to assure that the observable 

error states are well-controlled not to grow infinitively. 

In principle, the error states must consist of: i) the navigational error states (position, velocity, 

and attitude) and ii) sensors’ systematic error states. Various forms of system model [BAR-Itzhack, 

1988; Pham, 1992; Scherzinger, 1994; Dmitriyev, et al, 1997; Kong, 1999] were developed to 

describe the transition of navigational error states in the time domain. The choice of the system 

model should rest with applications and depend on the adaptive habituation by users. 



46 
 
 

Although different by the definitions and the associated differential equations, the psi-angle 

based INS error model and the phi-angle based model are proved to be identical [Bar-Itzhack, 

1981]. Without loss of the generality, the more intuitive phi-angle inertial navigation error model 

and its associated measurement models for GNSS measurements are here summarized in order to 

overview the application of the indirect Kalman filter in the inertial navigation.   

INS error model  

Take as example the reduced 15-state INS indirect Kalman filter, 9 error states (3 position 

components, 3 velocity components and 3 attitude components) and 6 inertial sensor error states 

(errors in a 3-axis gyroscope and a 3-axis accelerometer) make up an error state vector x∆

( [ ]  ω vr x T b
ib

b
ib

nn ∇=∆ δφδδ ). In the inertial navigation calculation, the IMU outputs, 

therefore, are simply modelled as the sum of the true signals and the error signals as follows: 

b
ib∇+=−

b
ib

b
imuib ff  , and 

b
ib

b
ib

b
imuib ω ωω δ+=−  

Under the assumption of the limited magnitudes of all error states, the differential equations 

of the error states built upon the INS mechanization equations are given as follows [Titterton, 

2004; Bekir, 2007]: 

                      nn v r δδ =                                                                                                        (2.6.14) 
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                     0 ωb
ib =δ                                                                                                         (2.6.17) 
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                       0  b
ib =∇                                                                                                         (2.6.18) 

where is: 

Aiding GNSS error measurements 

Two measurement coupling approaches in GNSS-aided inertial navigation are termed the 

loosely and tightly coupled architecture. Their major distinction is the aiding measurements. The 

GNSS navigation solutions are used in the loosely-coupled integration while the raw GNSS 

measurements are used in the tightly coupled integration.  

Loosely coupled integration 

nrδ  the 3×1 position error vector in the local navigation (ENU) frame, 

nvδ  the 3×1 velocity  error vector in the local navigation frame, 

ngδ  the 3×1 gravity  error vector in the local navigation frame,  

n
enω δ  the 3×1 crate rate error vector in the local navigation frame, 

n
ieω δ  the 3×1 Earth rotation rate error vector in the local navigation frame, 

b
ibω δ  the 3×1 gyroscope drift error vector, 

n
bC  the 3×3 true transformation matrix from body frame to navigation frame, 

φ  the 3×1 attitude error vector  so that n
b

n
b C  -[IC )](ˆ ×= φ   and 

 n
b

n
b C  [-C )]( ×= φδ  

bf  the 3×1 true specific force in body frame, and 

b
ib∇  the 3×1accelerometer drift error vector. 
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Figure 2-9 Loosely-coupled GNSS/INS integration [Scherzinger, 2000] 

In a loosely-coupled GNSS/INS integrated system (Figure 2-9), an independent GNSS 

navigation processor is parallelly executed for the GNSS measurements to feed the position and 

velocity solution to the error-states based EKF filter in which the error measurements are 

constructed as follows: 

           j
r

n
GPS

n
INS  x Hrr ε+∆=− Position                                                                      (2.6.19) 

j
v

n
GPS

n
INS  x Hvv ε+∆=− Velocity                                                                    (2.6.20) 

where 

          [ ]33333333 0000 ×××××= 33IHPosition  , and 

          [ ]33333333 0000 ×××××= 33IHVelocity .  

Tightly coupled integration 
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Figure 2-10 Tightly-coupled GNSS/INS integration [Scherzinger, 2000] 

The tightly-coupled integration (Figure 2-10) is a natural extension of the loosely-coupled 

integration to overcome the main drawback of the loosely-coupled system: the GNSS navigation 

processor cannot provide position and velocity solutions when the number of the GNSS satellites 

in view is less than four. By directly coupling the raw GNSS observables, the error measurements 

are still available even with only one GNSS satellite in view.  

2.6.4.4 Total-state based inertial navigation 

Depending on the state selection, two kinds of total-state direct Kalman filter are full-state 

filter and compact-state filter. In the full-state direct Kalman filter, the state vector includes 

position, velocity and attitude and all other states of interest while the measurements are IMU 

outputs and other external source signals [Maybeck, 1979]. Thus, the INS mechanization will be 

directly used as the non-linear system model for the core navigation states in the full-state direct 

Kalman filter. 
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However, the total-state direct Kalman filter was hardly discussed in literatures until the 

compact total-state direct Kalman filter was proposed by Wagner et al [1997] because that the 

computer in the early days cannot afford to the huge computation cost spent on the processing of 

the inertial sensor data in the measurement updates of the Kalman filter. As a computation-

efficient alternative, the compact total-state direct Kalman filter takes fewer variables as states 

while treating the inertial sensor measurements as known input vector u [Wendel, 2001].  

   Nowadays, the great advances in computation power and the trends of the usage of low-cost 

inertial sensors prompt researchers to rethink or even overturn the stereotypes about the 

application of the direct Kalman filter in the low-cost INS system. Most importantly, the nonlinear 

system model in the total-state Kalman filter provides the flexibility to refine the system model 

[Phuong, 2009; Edwan, 2012] and even modify the navigation mechanization equations so as to 

achieve the statistically superior navigation solution. Inspired by this thought, this dissertation 

proposes a novel generic integration strategy (Chapter 4) applied to a multisensor integrated 

kinematic positioning and navigation system, in which the rigorous 3D kinematic trajectory 

model is deployed as the core of the system model. 

Full total-state inertial navigation 

Similar to the simplified 15-state INS indirect Kalman filter, the state vector in a typical 21-

state direct inertial navigation Kalman filter can be defined as follow [Wendel, 2001]: 

[ ]  ωωθvrx Tb
ib

b
ib

b
ib

b
ib

nn
f ∇= δf  

wherein is 

nr  the 3 × 1 position vector in the local navigation frame, 

nv

 

the 3 × 1 velocity vector in the local navigation frame, 
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For a full total-state-based INS, the simplest choice of the system model is the continuous 

strapdown mechanization driven by the IMU outputs as given in (2.4.1). Namely, the differential 

equations for position, velocity and attitude can directly follow the inertial navigation 

mechanization equations. In addition, the error vectors b
ibωδ  and b

ib∇ as well as the angular rate 

vector b
ibω  and the specific force vector b

ibf are all modeled as random constants. As a result, by 

taking into account the process noise vector fw (modeling errors for b
ibω and b

ibf ), given the 

continouse state model being ) w(x  x fff ,f= , the linearized model through Taylor expansion 

used for covariance propagation in the full total-state-based EKF can be formulated as: 

ff1)-(kf(k)  wGx F x +=                                                               (2.6.21) 

where 
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          [ ]  θvrx Tnn
1 = , [ ]  ωx Tb

ib
b
ib2 f= , [ ]  ωx Tb

ib
b
ib3 ∇= δ  

θ  the 3 × 1 attitude vector (e.g., Euler angle), 

b
ibω

 

the 3 × 1 true angular rate of body frame with respect to the inertial frame, 

b
ibf

 

the 3 × 1 true specific force with respect to the vehicle body frame, 

b
ibωδ

 

the 3 × 1 systematic error in turn angular rate of body frame, and 

b
ib∇

 

 

the 3 × 1 systematic error in true specific force, 
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,  and F11 and F12 are corresponding Jacobian matrices 

for the nonlinear model ) w(x ff ,f . 

Let the IMU’s angular rate and specific force vectors be b
imuib−ω  and b

imuib−f , their 

corresponding measurement equations are: 

                        f
b

ib
b

imuib εb
ib +∇+=− ff                                                         (2.6.22) 

                        ωεωωω ++=−
b
ib

b
ib

b
imuib δ                                                        (2.6.23) 

where fε and ωε are the random noises in gyro and accelerometer triads, respectively. 

Furthermore, taking as example a cascaded (loosely coupled) GNSS/INS system using full total-

state filter, the measurement equations for GNSS position and velocity are 

           rPOSGNSS
n
GNSS ε x Hr += −                                                (2.6.24) 

vVELGNSS
n
GNSS ε x Hv += −                                                  (2.6.25) 

where rε and vε are the random noises in position and velocity, and the coefficient matrices are

[ ]33333333333333POSGNSS 00    0000IH ×××××××− =  and [ ]33333333333333VELGNSS 00    000I0 H ×××××××− = . 

Compact total-state inertial navigation 

A pioneering compact integration mechanism  was proposed and has shown pleasing 

solution quality by directly estimating the optimal navigation parameters instead of the error states 

[Wagner et al, 1997; Wagner& Wieneke 2003], in which the inertial navigation mechanization 

was assimilated into the equivalent system equations in the extended Kalman filter. Following 
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Wagner’s work, Edwan [2012] also developed a new loosely coupled DCM based GPS-aided 

inertial integration using the compact total-states, in which the state vector was composed of nine 

DCM elements, the gyroscope triad bias vector, the accelerometer triad bias vector, and the 

position and velocity vector expressed in the local navigation frame. Benefiting from the constant 

input vector u, the DCM states are linearly propagated along with the covariance and the filter 

produces satisfied performance in the low-cost inertial navigation system. 

By taking as an example a 15-state compact total-state INS system, the system model of the 

individual states in the compact total-state INS takes exactly the same form as their counterparts 

in the full total-state INS except that: 1) the angular rate vector b
ibω  and the specific force vector 

b
ibf  are removed from the state vector; 2) the inertial sensor measurements for the angular rate 

vector b
imuib−ω  and the specific force vector b

imuib−f  joined the system model as the input vector u. 

Similar to (2.6.21), the generic model for covariance propagation in the compact total state EKF 

was achieved through transforming the term ff x F in the full total-state INS into uGx F ccc + , 

which was defined as follows:  

ccc1)-(kc(k) wGu Gx F x ++=                                                 (2.6.28) 

where: 
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11F , 12F are the same matrices as the ones in full total-state INS, process 

noise vector imu-ωw and imu-aw  are the random errors in inertial sensor. 

Regarding to the aiding position and velocity, their measurement equations are exactly the same 

as those in the full total-state INS because the states in both systems are the navigation parameters. 

2.7 Random error analysis in KF 

In this section, the random error analysis in Kalman Filter is detailed to inspire the work in 

Chapter 5. The solution optimality of a Kalman filter relies on the appropriate stochastic models 

which are numerically represented by two variance-covariance (VC) matrices Q associated with 

the process noise and R associated with the measurement vector. Estimation (tuning) of these two 

matrices has been actively pursued by plenty of researchers since the advent of Kalman filter. 

Despite of the variations in numerous application-specific algorithms, the tuning of the Kalman 

filter can be simply classified into two categories: VC matrix estimation (VCME) and variance 

component estimation (VCE) based on the a priori matrices. Mehra [1970, 1972] published his 

pioneering work about the direct estimation of matrices Q and R using the system innovations in 

steady-state KF. Four relevant estimation methods summarized in his work are: Bayesian, 

maximum likelihood, correlation and covariance matching. Mehra’s work is still of directive 

significance to many recent researches [Dunik, et al, 2008; Bavdekar, et al, 2011; Bulut, 2011; 

Matisko, et al, 2013]. However, his method targeting on the linear control system can not be 

directly applied to a non-linear time-variant system. Similar to the Mehra’s work, an Auto-

covariance Least Square (ALS) was developed [Odelson, 2006] as a one-step estimation 

technique to directly solve for the unknown elements in Q and R. Nevertheless, the strict 
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assumptions on stability and observability of the system model make it not applicable to the 

inertial navigation system. 

Alternatively, variance-factor based estimation strategy is more attractive because of its 

computation effectiveness and reliable accuracy when the skeleton (a priori) matrices for Q and 

R are known. This type of the VCE methods applied in Kalman filter (VCE-KF) was originated 

from the variance and covariance estimation in Least Squares after Helmert [1907]. Along with 

the continuous theoretical developments in [Forstner, 1979; Grafarend, et al, 1980; Koch, 1986; 

Ou, 1989; Xu, et al, 2006, 2007; Amiri-Simkooei, 2007; Teunissen, et al, 2008], VCE in Least 

Squares has been extensively used in many researches and engineering applications [Wang, 1997; 

Sieg and Hirsch, 2000; Wang, 2000; Wang and Rizos, 2002; Tiberius, 2003; Rietdorf, 2004; 

Tesmer, 2004; Zhou, et al, 2006; Hermann Bahr, et al, 2007; Gopaul, et al, 2010; Xiao, et al, 

2014]. 

Compared to the rigorous variance and covariance estimators in Least Squares after 

Helmert’s method, the iterative variance component estimator is more practical because it is 

computation-efficient and the stochastic independence among the measurements from different 

sensors holds true in most of the applications including the multisensor integrated navigation 

system. 

2.7.1 Variance component estimation in Least Squares after Helmert 

This section overviews the VCE method after Helmert in Least Squares. Let the 

measurement equation system be represented by 

)(ˆ (0)xFx Bl +=∆+ δ                                                                    (2.7.1) 

where are 
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     l     the measurement vector, 

    ∆      the measurement noise vector, 

     B     the design matrix, 

     F     the nonlinear observation equations, 

    )0(x    the approximate of the  parameter vector x, 

x̂δ     the correction vector for )0(x . 

Assume that the measurement vector l consists of m statistically independent measurement 

types (or measurements), (2.7.1) can be partitioned into 
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where are 

     li    ni × 1 sub-vector of the i-th type of the measurements 

    i∆    the noise vector of  li 

    iB    the design matrix associated with li 

The weight matrix P of measurement vector l can be divided into m blocks of diagonal sub-

matrices Pi 

)( 1 midiag PPPP =                                                      (2.7.3) 

with its corresponding covariance matrix 

 
)(

)(
12

0
12

0
1

1
2
01

1
−−−=

=

mmii

mi

diag
diag

PPP    
DDDD

σσσ 


                                        (2.7.4) 



57 
 
 

where )...,,1(2
0 mi   σ is the i-th variance component (variance factor) of the unit weight to be 

estimated for the i-th group of the measurements (li). The Least-Squares solution for the 

unknowns ( x̂ ) and its covariance matrix )xD( ˆ is 

                   ( ) PlB PBB xxxx T1T(0)(0) −
+=+= ˆˆ δ                                                           (2.7.5) 

                    ( ) 1T  PBB  ) x D( −
= 2

0ˆˆ σ                                                                                       (2.7.6) 

Furthermore, the corrected measurement vector is )(ˆˆ )(0xFx  Bl += δ  and the measurement 

residual vector ( )[ ] l I-PB PBB  B l -lv T1T −
== ˆ , and each independent component of which 

follows the normal distribution ),(N~
ii vD 0v  under the assumption of ),0(~

i
Ni ∆∆ D . 

Accordingly, the expectation of the sum of the weighted squared residuals for the i-th group 

observable (Li) is [Cui, et al, 2001]: 
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                                        (2.7.5) 

where ni  is the number of the measurements in the i-th group, m is the number of the unknowns, 

PBBN T= , and ii
T
ii BPBN =  (i = 1, 2, …, m). 

By reformulating 2.7.5, the unknown variance factor vector is related to the coefficient 

matrix S and the observable vector W as follows: 

11 ×××
=

mmmm
ˆ W      S  2σ                                                                            (2.7.6) 

where 
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, 

with [ ] T2 2
m0

2
02

2
011m

ˆˆˆˆ σσσσ =
×

and  [ ]Tkk
T
k22

T
211

T
1 vPvvPvvPvW =

×1m
. 

If the matrix S in 2.7.6 is invertible, the solution for  ) ..., ,1(2
0 miσ  can be achieved as follows  

1mmm1m̂ ×××
= W  S      -12σ                                                                                (2.7.7) 

In consideration of the computation cost due to the large scale of the matrix S in general, the 

solution in (2.7.7) is often simplified. Among various candidate algorithms, one iterative solution 

of ) ..., ,1(2
0 miσ can be solved as 

))(trn()( iiii
T
i NNvPv 1−−= 2

0iE σ                                                           (2.7.8) 

by assuming that 

 2
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2
0m

2
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2
01 σσσσ ====                                                                      (2.7.9) 

Theoretically, above solution of )m...,,   (12
0iσ  shall gradually converge to the true value after a 

few iterations, i.e., the solved )m...,,   (12
0iσ  tends to satisfy (2.7.9). With the definition of 

redundancy contribution term )(trnr iii NN 1−−= , the practical estimation of ) ..., ,1(2
0 miσ becomes 

[Förstner, 1979] 

iii
T
ii r/ˆ vPv=2

0σ                                                                                       (2.7.10) 

where the ri represents the total redundancy contribution of the measurement vector li , which 

reflects the extent of the influence of raw observable li on the parameter estimates. The bigger the 























+−

+−
+−

=
×

2
m

2
2

2
1

mm

)(tr)(tr2n

)(tr)(tr)(tr)(tr2n
)(tr)(tr)(tr)(tr)(tr)(tr2n

m
1-

m
1-

m
1-

2
1-

2
1-

2
1-

m
1-

1
1-

2
1-

1
1-

1
1-

1
1-

NNNN

NNNNNNNN
NNNNNNNNNNNN

  S  





59 
 
 

ri is, the less li affects the parameter estimation. With a group of independent measurements, the 

redundant index of each measurement always satisfies 0< ri <1. When ri = 1, the measurement li 

is completely redundant. In other words, the measurement li becomes a high leverage 

measurement when the associated scalar ir  tends to zero. 

2.7.2 Variance component estiamtion in Kalman Filter after Helmert 

A practical VCE algorithm for Kalman filter was proposed based on following two 

discoveries [Wang, 1997]: 

 Under the assumption that all noises are normal distributed, Kalman filter is constructed 

epoch wise by applying the least squares principle, which utilizes all of the random 

information as three groups of statistically independent measurements: the predicted 

state vector as a group of pseudo-measurements, the zero mean process noise vector also 

as a group of pseudo-measurements, and the raw measurement vector, whose residual or 

correction vectors can directly be calculated as the projection of the system innovation 

vector.  

 The redundancy distribution associated with the above mentioned three groups of 

measurements, and the redundant index for each of the individual independent 

measurements can be calculated epoch wise after the reliability theory transplanted from 

Least Squares into Kalman filter.  

Given the redundancy contribution indexes and residuals for the individual variance 

components, the simplified VCE algorithm has accordingly been developed [Förstner, 1979; 

Wang, 1997; Wang, et al, 2009; etc.]. Let the linear or linearized system described by KF at time 

kt  be 
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kkkkk wΛxΦx += −1    (System model)                                             (2.7.11) 

kkkk εxHz +=        (Measurement model)                                     (2.7.12) 

where is 

     kx     the nx×1 state vector, 

     kw    the nw×1 process noise vector following ),(N~ wk Q0w  

     kΛ     the coefficient matrix of kw , 

     kz     the nz×1 measurement vector, 

     kε     the measurement noise vector following ),(N~ kk R0ε  

     kΦ    the state transition matrix, 

     kH    the design matrix, and 

kw  and kε  are assumed uncorrelated with each other. 

By considering three independent groups of the measurements and pseudo-measurements 

at an arbitrary epoch k [Wang, 1997]: 

(1) the raw measurement vector kz zl =  with its variance kz
RDl = , 

(2) the pseudo-measurement vector kw wl = with its variance kw
QDl = , 

(3) the third pseudo-measurement vector 1k/kx xl −= 1kk xΦ −=  with its variance 

=
xl D  T

kxk ΦDΦ
1k−

, where 
1−kxD is the variance matrix of 1−kx , 

one alternative measurement equation system can be constructed for Kalman filter at epoch k as 

follows: 
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                                               (2.7.13) 

to which the Least Squares Principle can be applied to derive the identical solution for Kalman 

filter [Wang, 1997; Caspary and Wang, 1998]. One of the significant contributions made by this 

alternate derivation of KF was about to handle the process noise vector separately, which has 

made possible the simultaneous estimation of the variance components associated with the 

process noise vector kw  and the measurement noise vector kε .  

Wang [1997] proved that the measurement residual vectors for three independent 

measurement groups at epoch k as in 2.7.13 can be computed as the projections of the same 

innovation vector as follows: 

)ˆ)(( kkk 1k/k−−−= xHzKHIvz                                                        (2.7.14) 

)x̂( k/kkkˆ
T
kk k/k 1

1

1 −
− −=

−
HzKDΛQv xw                                                  (2.7.15) 

)ˆ( kkˆ
T
kˆk k/k 1k/k

1

11k −
− −=

−−
xHzKDΦDΦv xxx                                          (2.7.16) 

where K is the Kalman gain matrix at epoch k , the covariance matrix of the predicted state 1k/k−x̂  

is 
1k/k−xD ˆ

T
kkk

T
kˆk k

ΛQΛΦDΦ x +=
−1

 . Consequently, three residual vectors ( zv , wv  and xv ) for three 

measurement vectors ( zl , wl and xl ) are actually correlated with each other through the same 

innovation vector ( 1k/k−−= xHzd ˆkk ). In addition, the corresponding redundancy indices for each 

measurement group are [Wang 1997]: 

)(tr kKHIr
zl −=                                                                                        (2.7.17) 
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)(tr K
T
k

T
kˆk k

HDHΦDΦr dxlx

1

1

−
−

=                                                               (2.7.19) 

where the total system redundancy r = rlz + rlw + rlx, and the covariance matrix of the innovation 

vector is denoted by dD T
kx̂kk k/k

HDHR
1−

+= . Accordingly, for an arbitrary epoch k, the variance 

factors of the three measurement groups defined in (2.7.13) can be estimated as follows: 

),,j(/)k( jj
T
jj j

xwz   rvDv L == −12
0σ                                                         (2.7.20) 

As for a global variance component estimate over a specific or the whole time duration, a simple 

accumulation can obtain a reliable estimate due to the cross-epoch-orthogonal properties of the 

measurement residuals [Wang, 1997]. For example, the global variance component up to the 

current epoch k can be computed as: 

),,j()k...|k( k
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12
0σ                                          (2.7.21) 

Commonly, the components in the process noise vector kw  and the measurement noise vector 

kε are modeled as uncorrelated, i.e., kQ  and kR  are both diagonal. As a result, the redundant 

index of each independent component in either kw  or kε  is given by 

)(                         K(H- zl zz

z

z
ni)1.0r iik

i  .. 1==                                (2.7.22) 

)(       ΛHDHΛQ wdl ww

w

w
m .. 11 == − j)(r jjkk

T
k

T
kk

j                                 (2.7.23) 

Accordingly, the individual variance components for kw  and kε  can be estimated in analogy to 

(2.7.20) and (2.7.21). 
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Intuitively inspired by VCE techniques in Kalman filter, the author of this dissertation 

attempted to analyze the random errors of the sensors measurements during a navigation mission. 

However, in the traditional indirect (error-state based) Kalman filter, above VCE technique is not 

suitable for the tuning of an individual sensor’s stochastic model because the random errors from 

aiding sensors and inertial sensors are always blended in the error measurements. This issue is 

naturally avoided by taking advantage of the novel integration strategy [Qian et al, 2013, 2015; 

Wang et al, 2014, 2015]. Chapter 5 details the application of VCE technique in GMIKF in order 

to tune stochastic models of the process and measurement noise vectors toward their truth. 
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3.  York University Multisensor Integrated Kinematic Positioning 

and Navigation System  

This chapter is mainly based on the published work: 

Kun, Qian; Jianguo Wang; Nilesh Gopaul and Baoxin Hu (2012): Low Cost Multisensor 

Kinematic Positioning and Navigation System with Linux/RTAI, Journal of Sensor and 

Actuator Networks, 2012, 1, 166-182, DOI10.3390/jsan1030166, 

www.mdpi.com/journal/jsan/. 

Facing the challenge of developing a high-performance yet economically feasible (low-cost) 

multisensor positioning and navigation system, the author designed and implemented York 

University Multisensor Integrated System (YUMIS) based on Linux operating system with RTAI 

interface so that the raw sensor data can be collected and modified for the follow-up research 

upon navigation algorithms.  

First, the author modified the interrupt handlers in Linux kernel space for parallel port and 

RS232 serial port as a RTAI process. Benefitting from RTAI IPC and global RTAI buffer, the 

data collector modules in the form of LXRT programs are also developed in user space for 

NovAtel OEM GNSS receivers and IMU receivers.  In addition, the Coriander software package 

(https://damien.douxchamps.net/ieee1394/coriander/) is modified so that the raw image data can 

be collected from dual 1394 cameras made by PointGrey. In the follow-up chapters, this 

dissertation only discusses the post-processing scenario instead of the real-time one because the 

innovative integration strategy and the associated variance component estimation on inertial 

sensors are our research goals. 

https://damien.douxchamps.net/ieee1394/coriander/


65 
 
 

3.1 Hardware components 

YUMIS consists of a central computer (controller) and multiple sensors, e.g., OEM GNSS 

receivers, IMU, and cameras. In addition to these devices tied with the moving vehicle, another 

GNSS receiver is usually setup as the static base station close to the working area in order to 

achieve centimeter positioning accuracy using the double differencing (DD) GNSS technique 

through DD carrier phase measurements with fixed integer ambiguities. 

Figure 3-1 and Figure 3-2 show the conceptual hardware configuration of YUMIS system 

during a van test. As the prototype of the YUMIS system, one IMU unit, one primary GNSS 

receiver, and two cameras are placed on the roof of the vehicle. In order to obtain the aiding 

azimuth information, a second GNSS receiver is tied (together with the primary GNSS receiver) 

to a metal bar aligned with the vehicle longitudinal direction. The central computer connects to 

all sensors through their dedicated cables, e.g., RS232 serial cables, FireWire 1394 cables and 

Ethernet cables. 

 

Figure 3-1 YUMIS system in a van test 
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Figure 3-2 GPS and IMU, and Controller in YUMIS system  

3.2 Real time OS kernel 

Despite its popularity, the development of a real-time multisensor kinematic positioning and 

navigation system discourages many researchers and developers due to its complicated hardware 

environment setup and time consuming device driver development in real-time operating system. 

These issues can be addressed in a fast and economical manner through using Linux with Real 

Time Application Interface (Linux/RTAI).   

Michael [1997] first designed and developed RTLinux as the hard real-time feature for the 

Linux operating system in 1996. His work was acquired by Wind River in 2007 and converted 

into the commercial Wind River Linux. Another main hard real-time Linux variant, RTAI, was 

independently developed by DIAPM (Dipartimento di Ingegneria Aerospaziale - Politecnico di 

Milano) in 2000 [Mourot, 2011]. Since then, there have been many successful RTAI applications 

implemented on the numerical control machines in the manufacturing industry [Shackleford et al, 

2001; Morat et al, 2007; Leto et al, 2008; Li et al, 2010]. The application of Linux/RTAI in 

YUMIS is because it not only demonstrates superior performance but also is well maintained by 

the RTAI community. 
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3.2.1 OS Scheduler  

In principle, the performance of the scheduler in operation system determines the response 

time for tasks. Like all other hard real-time operating systems, RTAI scheduler runs with the pre-

emptive strategy which is different from the non-pre-emptive task scheduler in a normal Linux 

system. Figure 3-3 shows the parallel co-existence of a RTAI micro scheduler and a normal Linux 

scheduler. By modifying the hardware interrupt dispatcher, RTAI scheduler seizes the higher 

priority than the Linux scheduler does while handling the peripherals’ interrupts (hard external 

interrupt, timer, signal, message, etc.) 

 

Figure 3-3 RTAI architecture (Mourot, 2011)  

Three striking characteristics of RTAI need to be pointed out. First, the RTAI micro kernel 

guarantees that the higher execution priorities are assigned to the hard real-time RTAI tasks than 

those to the normal Linux tasks by intercepting and redistributing all interrupts and signals. Thus, 

all real-time tasks created under RTAI context always have the superior execution priorities when 

competing with the normal Linux tasks. Second, RTAI avoids uncontrolled hard disk I/O time in 

the real-time module, which can become disastrous while doing virtual memory swapping 
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[Michael, 1997; Aeolean Inc., 2002]. Third, RTAI provides the flexible real-time inter-process 

communication (IPC) methods, e.g., pipes and message boxes, to allow the applications in user-

space to communicate with the real-time modules.  

In order to verify its hard real-time performance, RTAI comes with the test suites (a set of 

user space applications) which evaluate several critical real-time kernel indices such as the timer 

latency, the task switching time, number of overruns and so on. In different hardware platforms, 

these indices might vary. One sample results of RTAI timer latency test using the Jetway mini 

control board is shown in Figure 3-4, in which the column “ovl max” represents the worst latency 

measurement during the test. Usually, a system with excellent timing accuracy has the value of 

“ovl max” being less than 15-20 µs. More performance comparisons among various real-time 

operating systems can be referred to [Barbalace, 2008]. 

 

Figure 3-4 Real-time kernel performance test result 

3.2.2 Task management 

A task is a process or thread in an operating system (OS). In general, multiple tasks co-exist 

in a multitasking OS with their own dedicated resources (register, stack, etc.). Due to the limited 

computing resources, the OS scheduler needs to control (switches) all tasks’ working statuses by 

## RTAI latency calibration tool ## 
# period = 100000 (ns)  
# avrgtime = 1 (s) 
# do not use the FPU 
# start the timer 
# timer_mode is oneshot 
 
RTAI Testsuite - KERNEL latency (all data in nanoseconds) 
RTH|    lat min|    ovl min|    lat avg|     lat max|    ovl max|   overruns 
RTD|      -1148|      -1148|            -713|       7395|        7395|          0 
RTD|      -1065|      -1148|            -703|       4598|        7395|          0 
RTD|        -930|      -1148|            -741|       7350|        7395|          0 
RTD|      -1028|      -1148|            -722|     10582|      10582|          0 
RTD|      -1043|      -1148|            -702|       8557|      10582|          0 
RTD|      -1088|      -1148|            -730|       6795|      10582|          0 
RTD|      -1148|      -1148|            -754|       8340|      10582|          0 
RTD|      -1178|      -1178|            -755|       6600|      10582|          0 
RTD|      -1088|      -1178|            -780|       5003|      10582|          0 
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allocating or confiscating resources such as CPU, memory, file, etc. An active task can be in three 

statuses: running, ready, or blocked [Kamal, 2008].  

As pointed out in Section 3.2.1, the tasks in a Linux/RTAI system can be divided into RTAI 

tasks and normal Linux tasks. By default, a RTAI task is registered as a soft real-time task 

[Michael, 1997; Jones, 2012]. A soft real-time RTAI task is indeed a normal Linux task which is 

able to communicate with other RTAI hard/soft real-time threads/modules. In order to achieve 

the superior execution priorities with the quicker responses in a Linux/RTAI system, the hard 

real-time RTAI tasks need to distinguish themselves from the soft real-time RTAI tasks through 

the task registration. Because that the RTAI scheduler will not hand over the CPU to the normal 

Linux’s scheduler until all corresponding RTAI tasks finish their work or block themselves, the 

RTAI tasks’ superior priorities are guaranteed. In addition, the transparency of the existence of 

hard real-time RTAI tasks to all other Linux programs maximizes the system’s utilization so that 

hard real-time tasks can work together with other normal programs in one machine. This dual-

OS-scheduler architecture not only allows our system to take the full advantages of all existing 

Linux features but also ensures the proper balance of the CPU power between the Linux programs 

and the real-time RTAI tasks. 

3.2.3 LXRT service/module 

Most of the non-pre-emptive multitask OSs including Linux separate the running program 

into system (kernel) space module and user space module. Usually, a program starts from being 

user space task and when necessary, enters into the kernel space by invoking the system API. 

Then, it returns back to the user space once the system API is returned. It is noteworthy that the 

module in kernel space can crash the system simply because of one careless hardware I/O 



70 
 
 

instruction. Therefore, for the sake of the robustness and security of the system, the user space 

part in Linux is prohibited from directly accessing to the hardware registers so that the system 

hardware registers are protected from any unauthorized vandalism. 

Similarly, the real-time program is separated into two components: the bottom half and the 

top half. The top half is coded as a real-time kernel module in the kernel space to quickly respond 

to the incoming data/signals/interrupts. It then pushes the incoming data/signals/interrupts to the 

bottom half which could be a data processing module in user space running time consuming 

algorithm. The top half has to acquire and forward the data within a limited amount of time, 

otherwise the accumulated incoming data can cause delayed outputs or crash the system in the 

worst case. It is always the developer’s responsibility to ensure the real-time task meets the time 

constraint.  

In the case of Linux/RTAI, the most time-constrained task shall be coded as hard real-time 

RTAI task in order to achieve the quickest response and hence the best performance. It is well-

known that debugging a fragile kernel (real-time) module is a painful job because of the frequent 

system crashes and the anti-intuitive and unfriendly debug tools. As a main advantage of LXRT, 

a real-time LXRT module can be realized under a user space LXRT environment and also use all 

the application programming interface (API) available in the user space [Perter, 2004; RTAI API 

documentation, 2013]. In addition, one can enjoy the luxury of a user space graphic debugger to 

debug the hard real-time module without worrying about the system crashes. Moreover, it is very 

convenient to convert a Linux application into a RTAI/LXRT application through only a few lines 

of the source codes. 

In theory, a LXRT hard real-time module consumes a few more microseconds than a 

traditional hard real-time module does. However, because the influences of the microsecond time 
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latency on the navigation solution is insignificant for the land vehicle kinematic positioning and 

navigation system [Ding, 2008], a LXRT module running in user space can be a full substitute 

for the traditional kernel module in terms of functionality and performance.   

3.3 System software architecture 
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Figure 3-5 YUMIS software architecture 

The software system in YUMIS (Figure 3-5) is built upon four major software components: 

data collectors, time-tagging module using GNSS time, the data buffers, and data processors.  

3.3.1 Data collector 

The responsibility of a data collector is to grab the raw data from various sensors and transfer 

them into a data buffer the navigator algorithm can access. As in Section 3.2.3, the data collector 

in YUMIS is a combination of a device driver (in kernel space) and a LXRT thread (in user space). 

For example, in the case of the sensor connecting to YUMIS using a RS232 serial ports, the 
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RS232 device driver in kernel space (the bottom half) first intercepts the sensor data and push 

them into RTAI global buffers. Then the data collector in another LXRT thread access the raw 

sensor data through RTAI APIs and relay them into another data buffer visited by the navigator 

later on (Figure 3-6). In order to capture the data with the minimum time delay, the device driver 

supporting RS232 serial port communication in YUMIS is developed as a hard real-time RTAI 

task in kernel space, which interfaces RTAI Global buffers and hardware registers of RS232 serial 

ports.  

RS232

Serial device 
drivers 

(RTAI tasks)

RS232

Linux
Device Drivers 
(Usb, ethernet, 

etc…)
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Figure 3-6 Data collector in real time mode 
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In contrast to the data collector in real time mode, the data collector in the post-processing 

mode (Figure 3-7) is developed as a file reader which sequentially reads the sensor measurements 

from the binary data file and stores them into buffers without concerning the timing latency.  

User Space

 Data 
Collector

…..

Buffer 1

Navigator / KF

Buffer N

…..

 

Figure 3-7 Data collector in post-processing mode 

3.3.2 Data buffer 

Corresponding to each sensor in YUMIS, one dedicated data collecting thread is created and 

is allocated with a sensor data buffer in use space. The data collector and the navigator shall 

exchange the sensor data through the data buffers instead of direct thread-to-thread 

communication. Advantages of this data exchange mechanism are: unlimited reading threads, 

clear structure, and code efficiency. 

In order to avoid any data corruption caused by simultaneous I/O operations on the same 

data block, each data buffer manages its own mutual exclusive data access (MUTEX) in the 

multithread environment so that a thread can get the exclusive access permission to read or write 

the data block (Figure 3-8). It is noted that the configurable size of the buffer (number of blocks) 

is fixed after it is created so that the time consuming dynamic memory allocation and problematic 
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memory release operations are prevented. In this mechanism, the system gains the highest data 

I/O speed without concerning about notorious memory leak.  

Synchronization

Data production Threads

Data Consumption Threads

…...…..0 N

 

Figure 3-8  Protected data buffer 

3.3.3 Time synchronization 

3.3.3.1 Standard GNSS time import 

The goal of the time synchronization in YUMIS is to tag the acquired sensor data with certain 

time stamp with respect to the one time reference frame. In nature, we may use the local computer 

time reference frame as the default frame for all sensors. However, the clock oscillators in most 

of the desktop computers suffer from drifts so that their long term instabilities cannot satisfy the 

requirement of high-accuracy timing system (e.g. micro-second level). Moreover, the final 

navigation solution tagged in the local computer time frame is usually not desirable. Consequently, 

a stable external clock source with both high resolution and long term stability is crucial to 

minimize the magnitude of the internal clock’s drift and instability in YUMIS. 

Nowadays, GPS time has become a standard time frame for a multisensor integrated 

navigation systems because the PPS (pulse per second) pulse train can be easily retrieved from a 

GPS OEM unit at the accuracy of a few tens of nanoseconds, for example, 50 ns accuracy from 
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NovAtel GPS OEM unit. Physically, the 1 Hz timing signal in YUMIS is nothing but a square 

wave (pulse) with 1ms width (Figure 3-9).  

 
 

Figure 3-9 PPS pulse in TTL level (NovAtel OEM4 Manual) 

The absolute GPS time when the PPS signal voltage drops suddenly (left edge of the PPS 

wave) is usually dispatched in the form of a special PPS message by the GNSS receiver through 

a RS232 serial port (Figure 3-10). Once the local computer time corresponding to the PPS signal 

is known, the GPS time for those data acquired from all other sensors can be computed as follows: 

 PPSPPSlocalsensor TttT +−=                                               (3.3.1) 

where sensorT  is the sensor data time stamp in the GPS time frame, localt  is  the local computer 

time stamp in the sensor data packet, PPSt is the local computer time stamp for 1 Hz PPS pulse, 

and PPST is the time stamp in the GPS time frame corresponding to the 1 Hz PPS.  
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Figure 3-10 PPS signal and message diagram 

In YUMIS, the PPS hardware signal from the GNSS receiver is hardwired into pin #10 of 

the parallel port in order to trigger the interrupt IRQ7, whose processing handler (a RTAI task) 

intercepts the pulse and retrieves the corresponding local computer time using the Linux system 

API function “clock_gettime( )” and assigns it into the time synchronization variable “PPS_struct” 

(Figure 3-5). The GPS time corresponding to the PPS signal is then captured through the RS232 

serial port later (e.g., about 20ms with NovAtel OEM GPS receivers). Herein lays the connection 

between the GPS time and the computer time.  

As the most accurate representation of the PPS signal in the local computer time frame, the 

hardware pulse suffers a lag of a few tens of microseconds due to the interrupt response delay (10 

~ 30 us). However, its influences on the navigation solution are surely ignorable in the YUMIS 

as a low dynamic system equipped on a land vehicle. 

3.3.3.2 Sensor data time-stamp 

For each sensor data packet, a time stamp needs to be assigned for the exact time instant 

when measurements are taken. In YUMIS, because the observables from GNSS receivers are 

##   ##   

 1 ms   

RS232 PPS  
Message 

1 Hz PPS  
Pulse train  

1 second   

  
15 ~ 20 ms 

PPS Message 
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already time-tagged by the standard GNSS time, only the time synchronization solution for the 

Crossbow MEMS IMU units is discussed here. All other sensors such as cameras and LiDAR 

sensors shall apply the same method to tag their data (images or ranges).  

Two types of measurements are supported with the Crossbow MEMS IMU sensors: the 

continuous analog signal and the digital data packet. In both situations, the time delay caused by 

data acquisition and data transmission has to be taken into account. According to the Crossbow 

DMU (Dynamic Measurement Unit) manuals [Crossbow 440 Manual, Crossbow DMI user’s 

manual], the Crossbow DMU working in digital data packet mode will experience three stages in 

term of one data packet (Figure 3-11): sampling (T1), processing (T2) and transferring (T3). On 

the contrary, the sensor data is presented immediately on the analog output pins after the 

processing step (T2) is over when a Crossbow DMU is working in the continuous analog signal 

mode. According to  Table 3-1 [Li, 2004], the analog output has a time delay of 2.3 ms with the 

400Hz output rate while the scaled digital packet has a time delay of 6.4 ms when the working 

frequency is 156Hz. In YUMIS, the IMU data are captured through a dedicated RS232 real time 

serial port module. As a result, the timing delay caused by the software can be assumed an 

ignorable constant compared to the values in Table 3-1. 

 

Figure 3-11 Time sequence of the IMU data traffic 
 

Table 3-1  IMU300 Series, IMU400 Series and VG300CB Timing 
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Operating Mode T1 T2 T3 Total time Max Rate 

Voltage 0.8 ms 0.5 ms 4.7 ms 6.0 ms 166 Hz 

Scaled 0.8 ms 0.9 ms 4.7 ms 6.4 ms 156 Hz 

VG(VGX only) 0.8 ms 1.5 ms 5.2 ms 7.5 ms 133 Hz 

Analog Output 0.8 ms 1.5 ms - 2.3 ms 400 Hz 
 

According to the analysis of the timing error tolerance in [Ding, 2008], the manufacturer’s 

calibration results for the time error can be directly applied if the jerk of a moving vehicle is ten 

times smaller than the absolute magnitude of the system innovation because the estimation error 

in the final navigation solution caused by the timing error could become ignorable. Thus, the time 

offset of the IMU data can be assumed to be a virtually constant in YUMIS as the dynamics of 

the land vehicle is relatively smooth (low dynamic) under normal conditions. That is to say, the 

known timing offset in Table 3-1 will be directly applied to the time stamps of the raw IMU 

measurements (assigned when the digital data packets are acquired). 

3.3.4 Navigation processor 

Essentially, the navigator is nothing but a computer program running a group of numerical 

algorithms to estimate the navigational parameter of our interests. In YUMIS, if the real-time 

navigation solution is requested, the navigator shall be implemented as a RTAI thread with high 

execution priority. In the follow-up chapters, this dissertation only discusses the post-processing 

scenario instead of the real-time one because the innovative integration strategy and the associated 

variance component estimation on inertial sensors are our research goals. 
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3.4 Image sensor integration 

Besides GNSS and IMU sensor, two optical image sensors with IEEE firewire 1394 interface  

are actually integrated in YUMIS system (Figure 3-1) for the future researches work (e.g. visual 

SLAM or visual odometry). However, because the usage of the image data is beyond the scope 

of this dissertation, the image sensor data collection is briefed in this section without elaboration.  

 

Figure 3-12 Coriander Linux GUI 

YUMIS system succeeds in integrating the image sensor through converting the third party 

open source software – Coriander (http://damien.douxchamps.net/ieee1394/coriander/) into a 

Linux/RTAI process. Coriander is a full featured Linux GUI program (Figure 3-12) interfacing 

digital cameras (image sensors). The optical images collected by one image sensor in YUMIS are 

always sequentially stored in a binary file. 

http://damien.douxchamps.net/ieee1394/coriander/
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The computer timestamp (ta-PC) for each image is first acquired through certain Linux system 

APIs. Based on the global variable “PPS_struct” (time synchronization) which is periodically 

updated by the IRQ7 interrupt handler triggered by GNSS receiver’s PPS signal pulse, YUMIS 

system can achieve the standard GPS time ta-GPS corresponding to ta-PC. In addition, the time 

latency ( |t| = tt-GPS - ta-GPS = tt-PC - ta-PC ) between the moment when the image data is available 

(ta-GPS) and the exact moment when the image is being taken (tt-GPS) can be obtained by reading 

the hardware register of the image sensor [Point Grey, 2011]. Finally, the GPS time for the image 

is computed as: 

tt-GPS = ta-GPS + |t|                                                                 (3.4.1) 

3.5 Summary 

This chapter introduces the architecture of the YUMIS system from the perspective of both 

hardware and software. As the pre-requisite component of the multisensory system, real-time 

kernel (Linux/RTAI) is successfully applied in YUMIS system. Besides, a generic system 

architecture is also proposed for a multisensory positioning and navigation system allowing for 

the whole life cycle of the sensor data, e.g., data collection, data processing and time 

synchronization. YUMIS presents a low-cost alternative to the expensive commercial system, 

which can acquire real geospatial data from multiple sensors such as the IMU units, the OEM 

GNSS sensors and cameras. YUMIS demonstrates not only excellent hard real-time performance 

but also offers the convenience in the real-time software development for multisensor integration. 

Moreover, YUMIS lays the foundation for the follow-up training of highly qualified Geomatics 

Engineers at the EOL laboratory at York University.  
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4. Generic integration strategy for multisensor integrated 

kinematic positioning and navigation  

This chapter describes a generic multisensor integration strategy for multisensor integrated 

kinematic positioning and navigation using GNSS receivers and IMUs [Qian et al, 2013, 2015; 

Wang et al, 2014, 2015] and is mainly based on the published work: 

Qian, Kun; Wang, Jianguo and Hu, Baoxin (2015): Novel integration strategy for GNSS-

aided inertial integrated navigation, Geomatica, 2015, 2, Vol. 69, pp. 217-230. 

 
Wang, Jianguo; Kun Qian and Baoxin Hu (2015): An Unconventional Full Tightly-Coupled 

Multi-Sensor Integration for Kinematic Positioning and Navigation, Chapter 65, in J. Sun 

et al. (eds), China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III, 

Volume 342 of the series Lecture Notes in Electrical Engineering, pp. 753-765, Springer-

Verlag Berlin Heidelberg 2015. 

The core of a multisensor integrated navigation system is the fusion of the measurement data 

from the IMU and other heterogeneous aiding sensors such as GNSS receivers etc. In multisensor-

aided inertial integrated kinematic positioning and navigation, there are four different integration 

architectures: uncoupled, loosely-coupled, tightly-coupled and deeply-coupled [Greenspan, 1996; 

Schmidt, 2010; etc.] as summarized in Section 2.6.4.2. Under each integration architecture, there 

are so-called direct and indirect methods to realize the estimator, e.g., Kalman filter [Yi and Wang, 

1987; Greenspan, 1996; Qi and Moore, 2002; Giroux et al, 2005; Munguía, 2014; etc.]. The 

former uses the whole-value states (navigation parameters) while the latter estimates the error 

states.  
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As a traditional and dominant integration strategy in the engineering practice, the indirect 

integration mechanism consists of two parallel components [Jekeli, 2001; Rogers, 2003; Titterton, 

2004; Bekir, 2007; Grove, 2008]: inertial navigation mechanization and the associated optimal 

estimation of the error states rooted in the linearized error models for the navigation parameters 

and the IMU’s systematic errors. Because the inertial navigation mechanization between two 

adjacent aiding measurements is driven by the IMU measurements, the performance of the 

conventional integration strategy is closely related to the a priori error characteristics of the IMU. 

In the system using a low-cost IMU, the error models around the mechanization solution may 

suffer from the intolerable drift of IMU systematic errors, especially, during outages of aiding 

measurements, for instance, GNSS outages in poor GNSS environment. Some researchers have 

suggested to apply the complementary parametric constraints, e.g., assuming zero velocity along 

the vertical axis [Shin et al, 2001; Ma et al, 2003; Godha, 2006; G. Dissanayake et al, 2001; Wang 

and Gao, 2010]. However, these virtual measurements are not rigorously modelled and even cause 

serious position drifting if these constraints are breached. 

What else can one do to suppress the influences of the random errors on the navigation 

solution, especially, in the case of the system using a low-cost IMU? A number of researches 

attempted to construct a standalone system model using the knowledge of the kinematics of a 

rigid body. Wang [1997] employed a 2D kinematic model as the system model for kinematic 

positioning and integrated navigation in the Kalman filter. Furthermore, Wang and Sternberg 

[2000] tentatively utilized the 3D kinematic model after the uniform circular motion as the system 

model in the Kalman filter with the six whole-value states and the nine measurements for the 

GNSS-aided IMU integrated navigation. 
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Along the same path, a generic multisensor integration strategy is proposed [Qian et al, 2013; 

Wang et al, 2014], by which the rigorous trajectories and smooth rotation dynamics can be 

naturally regulated over the IMU data interval or a specific limited time interval. The adjective 

“generic” comes from the fact that IMU sensor will not be differentiated from all other sensors 

and take part in estimation filter as raw measurements. Consequently, the influences of the time-

variant errors of an inertial sensor on navigation solution are mitigated or suppressed by the 

rigorous kinematic trajectory model.  

Because it is realized through the extended Kalman filter, the novel integration strategy is 

referred as Generic Multisensor Integration Kalman Filter (GMIKF) in this dissertation without 

further notice. In this chapter, the description of the system model of the proposed GMIKF is 

followed by the introduction of its state vector and measurement model. Then, the characteristics 

of the GMIKF is discussed along with the analysis of its performance boundary. At the end, a 

sample dataset is taken to demonstrate the proposed generic multisensor integration strategy. 

4.1 Generic multisensor integration Kalman Filter 

4.1.1 The system model 

4.1.1.1 Trajectory model after kinematics 

The mathematic representation of position, velocity and acceleration of a mechanic system 

involves two coordinate systems which are moved relatively to each other (Figure 4-1). One 

system is called the space-fixed navigation system Sn(o-xyz) while the other is referred to as the 

moving body system Sb(ob-xbybzb). In the context of the strapdown inertial navigation, the 

navigation parameters of interests are the position vector ( n
nbr ) referred to the local navigation 
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frame n and three Euler angles (pitch p , roll γ   and headingψ  ) describing the attitude of the 

IMU body frame b with respect to the local navigation frame n.  

 

Figure 4-1 Coordinate systems (body frame and navigation frame) 

By definition, the first derivative of the position vector n
nbr   is the velocity vector  n

nbv  

projected in the navigation frame, which relates to its counterpart velocity vector b
nbv  projected 

in the IMU body frame through a DCM n
bC from b to n:  

b
nb

n
b

n
nb

n
nb vCvr ==                                                      (4.1.1) 

According to the rule of the vector dynamics [Bekir, 2007], the differential equation of n
nbv  

is further developed as: 

[ ] [ ] T
CvωCvCvCv b

nbz
b
nby

b
nbx

n
b

b
nb

b
nb

n
b

b
nb

n
b

b
nb

n
b

n
nb vvv  +×=+=                      (4.1.2) 

Similarly, the differential equation of the acceleration vector n
nba  is further developed as 

follow: 

[ ] T
CvωCaCaCa b

nbz
b
nby

b
nbx

n
b

b
nb

b
nb

n
b

b
nb

n
b

b
nb

n
b

n
nb aaa][  +×=+=                  (4.1.3) 
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Additionally, by the definition of the velocity, acceleration and jerk in kinematics, one has 

    b
nb

n
b

n
nb

n
nb aCav ==                                                                        (4.1.4) 

b
nb

n
b

n
nb

n
nb jC  j  a ==                                                                        (4.1.5) 

wherein  b
nbv , b

nba  , b
nbj  , b

nbω  are the velocity, acceleration, jerk and angular velocity vector in 

the IMU body frame b, respectively, and the n
bC is the direction cosine matrix (DCM) from the 

body frame b to the navigation frame n. 

Based on (4.1.2) – (4.1.5), the derivatives of the velocity vector b
nbv  and the acceleration 

vector b
nba in body frame are given as [Qian et al, 2013]: 
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wherein are 

b
nbxj

,
b
nbyj

 ,
b
nbzj  the body jerk scalar components, 

b
nbxω

, 
b
nbyω

, 
b
nbzω  the body rotation scalar components, 

b
nbxv

, 
b
nbyv

, 
b
nbzv  the body velocity scalar components, and 

b
nbxa

, 
b
nbya

, 
b
nbza  the body acceleration scalar components. 

In summary, three equations (4.1.1), (4.1.6) and (4.1.7) describe the 3D trajectory of a rigid 

body using the velocity, acceleration, jerk and angular rate vector. Particularly, the acceleration 
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equation (4.1.7) is missing in the traditional INS mechanization, which is one of the key points 

of the GMIKF: accuracy improvement through the acceleration prediction based on a rigorous 

trajectory model. 

4.1.1.2 Attitude model 

There are four approaches for attitude representation: DCM, Euler angles, rotation vector 

and quaternion. The vehicle attitude (state components) in this dissertation is realized by three 

Euler angles in the local ENU (east-north-up) navigation frame as pitch, roll and heading. In 

strapdown inertial navigation, the differential equation of the three Euler angles is as follows 

[Magnus, 1971; Bekir, 2007; etc.]: 
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wherein are 

p
,
γ

,
ψ  three Euler angles (pitch, roll, heading),  

cx , sx  the cosine and sine functions of a scalar variable x ,  

tgx  the tangent function of a scalar variable x ,  

sec x the secant function of a scalar variable x , and 
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4.1.1.3 Angular velocity (rate) model 

Similar to the differential equation of the acceleration vector in 4.1.7, a realistic system 

model for angular rates in the GMIKF is also developed to enhance the system performance. 

Because YUMIS is equipped with a land vehicle, the land vehicle’s dynamics is of our interests. 

According to the vehicle dynamics, the land vehicle’s angular acceleration vector (α ) is actually 

related to the torque ( τ ) and its moment of inertial ( I ) as follows: 

I
τωα ==                                                                       (4.1.9) 

Obviously, the computation of these quantities requires the vehicle’s physical properties 

such as dimension, mass distribution and etc. In the case of the spacecraft with known physical 

properties (e.g., mass, size, and so on), the angular rate vector can be alternatively modeled via 

the inertial tensor and angular momentum [Bar-Itzhack, 2004].  

On the other hand, in navigation, given unknown physical models of the land vehicle, the 

angular rate is often modelled as a Gauss-Markov process [Singer, 1970; Brown and Hwang, 

1997; Li & Jilkov, 2000]. Furthermore, under the normal driving condition with a smooth steering, 

the three components in the body-frame angular rate vector [ ]Tb
nbz

b
nby

b
nbx

b
nb ωωω=ω  of a land 

vehicle over a short time interval can be modeled as three independent random processes 

disturbed by random noises, of which b
nbxω  and b

nbyω  are two scalar zero-mean random processes 

and b
nbzω is a non-zero mean random process. Usually, the first order Gauss-Markov process is 

adequate to carve the dynamics of a zero-mean random variable through exploring the correlation 

between two random variables at two consecutive epochs. For example, the zero-mean Singer 
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motion model [Singer, 1970] expresses the dynamic variation of two quasi-zero angular rate 

components b
nbxω and b

nbyω of the land vehicle as follows:  

)t(wx
b
nbxx

b
nbx +−= ωβω                                                   (4.1.10) 

)t(wy
b
nbyy

b
nby +−= ωβω                                                   (4.1.11) 

Meanwhile, the “current” model as the modified Singer model [Zhou et al, 1984; Li and Jilkov, 

2000] is adapted to describe the dynamics of the angular rate b
nbzω  around its non-zero mean b

nbzω . 

)t(wz
b

nbzz
b
nbzz

b
nbz ++−= ωβωβω                                      (4.1.12) 

Actually, in practice, a constant (t)b
nbω could also be a reasonable assumption, when: 1) the 

sensor sampling rate is high enough so that the better approximation (more complicated model) 

may not yield a significantly better accuracy, 2) the error levels of sensors are of the same order 

as the skipped higher order terms in the constancy model [Bekir, 2007]. In consideration of its 

simplicity and feasibility on the low-cost MEMS IMU based land vehicle inertial navigation, 

(t)b
nbω in GMIKF is modeled as a constant vector contaminated by certain process noises during 

a short time period over which the state vector prediction proceeds. 

4.1.2 Formulation of the generic multisensor integration Kalman filter 

4.1.2.1 The state vector  

The state vector of an estimator in navigation usually consists of the core navigation states, 

inertial sensor states and the supplementary states. For example, in the traditional inertial 

navigation system, the core navigation states are the navigational errors of the inertial 

mechanization results (position errors, velocity errors and attitude errors), and the inertial sensor 

states are the inertial sensor’s non-white (systematic) errors, e.g., turn-on biases, bias drifts. While 
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the inertial sensor states in GMIKF still remain the same, the core navigation states in GMIKF 

are redefined to be the vehicle’s positions, velocities, accelerations, attitudes, and angular rates. 

Moreover, in both cases, some supplementary states are needed to complete the 

measurement equations to model the aiding sensor parameters, e.g., GNSS receiver’s clock drift, 

the ambiguity integer numbers for the GNSS carrier phase observables, lever arm vectors of the 

sensors, and etc.  

In consideration of the integrity of the system model targeting a low-cost inertial navigation 

system, the 21 state variables (15 core navigation states and 6 inertial sensor states) are selected 

as follows: 

[ ] T
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3)(1× ωb  
the 1×3 gyroscope bias vector including start off biases 

and bias residuals,  and 

3)(1×ab  the 1×3 accelerometer bias vector including start off 

biases and bias residuals. 

It is worth mentioning that, the choice of the state vector for estimation filter with GMIS 

integration strategy varies according to the navigation frame, the navigational parameters of 

interests, and the balance between the accuracy and the algorithm complexity. Although the 

gimbal lock at 90⁰ pitch might removes the ability to use the roll angle, the Euler angle is still 

selected in this dissertation to represent the attitude is because of 1) its intuitional simplicity; 2) 

the fact that our land vehicle using YUMIS used in our study never runs into the situation with 

pitch close to  90⁰.  

4.1.2.2 Discretization of system model 

In order to apply the extended Kalman filter, a system model in discrete time is needed for 

the purpose of the propagation of the states and associated covariance matrix across two discrete 

time instances. For narrative convenience, the continuous system models of 21 states defined in 

(4.1.13) are rephrased as follows:  

b
nb
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0ω =b
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0 b =ω
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0b =a
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For demonstration purpose, the angular rate vector b
nbω , gyro bias vector ωb and 

accelerometer bias vector ab  are all modeled to be random walks associated with certain process 

noises in YUMIS implementation. However, their models are subject to the changes of the vehicle 

dynamics, the IMU sampling rate, the IMU type, and so on.  

i. Position equation 

The computation of the position vector )k(n
nb 1+r at epoch k +1 can be realized as follows: 

∫
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+=+=+
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1
k

k
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n
nb dt)k()k()k()k( RvCrrrr δ                         (4.1.21) 

The rotation matrix R can be approximated using the equivalent rotation vector σ [Titterton, 

2004]: 
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where εω  εασ +=+= ∫
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dtω  α and ε  is the non-commutativity rate vector 

due to the non-measurable motion, which (coning error) equals [Bortz, 1971]: 
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where the scalarσ  is the norm of the rotation vector σ . 

Substituting for R using its numerical approximation, the delta position vector n
nbrδ becomes: 
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If the second- and higher-order terms are omitted, it gives: 
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The attitude drift due to the ignored high order terms in (4.1.22) is termed as the attitude loss 

of the first order attitude approximation, which can be evaluated as [Titterton, 2004]: 

( )σσσδ sincos1st  -
dt
1

=                                                                               

when the rigid body is experiencing a single x-axis rotation symbolized by [ ]Tσ 00σ= and 

dt is the update period. For the application of low-cost IMU in land vehicle navigation where 

the maximum angular rate is ~ 40 ⁰/sec and the IMU update rate is 100 Hz, the influence on the 

position update caused by 1stδ  is surely ignorable within 1 second (a typical data rate for the 

measurements based on the GNSS position and heading solution).  

In addition, if the travelled distance along the trajectory is denoted by ∫
+

=∆
1k

k

b
nb dt vr , after 

integrated the cross product term in 4.1.25, one can obtain that 
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In inertial navigation, the attitude drift αδ due to ε in (4.1.22) is usually evaluated through a 

typical coning motion when the body is oscillating at frequency f about the x and y axes with the 

angular amplitudes being xθ and yθ . For such a coning motion, the attitude drift αδ in z-

component is 







t2

tsin21sint
δπ
δπφδπ

f
ff - yxθθ [Titterton, 2004], in which φ is the phase 

difference and t δ is the time, e.g. 0.01 second when the position update frequency is 100 Hz. 

After drop ε and ε  in equation (4.1.26) due to their ignorable influences on the position, the 

delta position vector n
nbrδ turns out to be 
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Now, after ignoring higher order terms, )k(n
nb 1+r is approximated by: 
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wherein are  
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javr  where b
nbj being the jerk vector in the body frame. 

If GMIS is implemented through an EKF, the propagation of the covariance matrix of the 

position vector )k(n
nb 1+r , as another necessary computation, relies on the linearization of (4.1.28). 

When computing the covariance matrix of )k(n
nb 1+r , an extra intermediate matrix is needed since 

the attitude is currently modelled by the Euler angle vector [ ]Tθ ψγp= instead of the 

attitude error [ ]Tzyφ b
nb

b
nb

b
nbx φφφ= (in the ENU frame). Theoretically, the Euler angle vector 

θ is related to the attitude error φ  in the ENU frame as follows: 

tk ∆+=+ kk ωωω 
1
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For instance, given bn
b

n ˆˆ vCv = , the first order derivative of nv̂  with respect to time t is then 

computed as follows: 

[ ]

[ ]
dt
dˆ

dt
dˆ

ˆ
dt

dˆˆˆ
dt

dˆ
dt
ˆd

n
b

n
b

n
b

n
b

bn
b

b
n
b

n

θ TvvC       

φvvCvCφ-vCv

×+=

×+=×=
                         (4.1.30) 

Consequently, the covariance matrix of nv̂ is then expanded as follows: 

( ) ( )( ) [ ] ( ) [ ]TTT
vTθ TvCvCv ××+= nnn

b
bn

b
n ˆcovˆˆˆcovˆˆcov               (4.1.31) 

ii. Velocity equation 

The approximation for the velocity vector in body frame at epoch k+1 is simply performed 

using the Taylor expansion as follows: 

2

1 2
tt

b
)k(nbb

)k(nb
b

)k(nb)k(
b
nb ∆+∆+=+

v
vvv


                                                 (4.1.32) 

Given that    vω-a  v b
nb

b
nb

b
nb

b
nb ×= , the second order derivative of the body frame velocity vector 

is achieved by 
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Then, the approximation of the velocity vector at epoch k+1 around the components of the state 

vector at epoch k is given by: 
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(4.1.34) 

iii. Acceleration equation 

Similarly, the acceleration vector is approximated by 

2
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b
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b
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a
aaa
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                                           (4.1.35) 

wherein  

              a ω-j  a b
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Then, the acceleration vector in the discrete form at epoch k+1 is 
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iv. Attitude equation 

According to (2.2.6), the approximation of the Euler angles can be achieved through the first 

order Taylor series expansion as follows: 
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v. Angular rate equation 

According to the discussion in Section 4.1.1, under the assumption of the constant angular 

rate, the angular rate vector at epoch k+1 is: 
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vi. IMU error equation 

In GMIKF, the error vectors for gyroscope ( ωb ) and accelerometer ( ab ) are also taken as 

random constants under the assumption of the high measurement noise level in a low cost inertial 

sensor [Kubrak, 2007; Edwan, 2012]. Nevertheless, the random constant model for inertial 

sensor’s systematic errors can be extended to a first order zero-mean Gauss-Markov process 

presented in (2.4.9) if necessary. 

4.1.3 The measurement model 

4.1.3.1 IMU measurement model 

Without loss of the generality, three orthogonal gyroscopes in an IMU measure the angular 

rate vector i
ibω while three accelerometers measure the specific force vector i

ibf . An important 

assumption about inertial sensors is that their measurements are mainly contaminated by the 

following error sources: constant start-off biases, drifting bias residuals, linear scale factors, 

misalignments of sensor axes and Gaussian white noises. Targeting on the low-cost MEMS 
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Crossbow 440CA IMU unit used in YUMIS, the associated measurement models for three 

gyroscopes and three accelerometers are rephrased as follows based on (2.4.11) and (2.4.12): 

             ( ) ωωω ∇+++++=− bωωωSIω )(C)( n
en

n
ie

b
n

b
nb

b
imuib                              (4.1.39)   

( )( ) aa
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n
n
nb

n
en

n
ie

b
n

b
nba

b
imuib C)(C)( ∇++−×+++=− bgvωωaSI 2f        (4.1.40) 

wherein I is the identity matrix. 

4.1.3.2 GNSS measurement model 

i. Loosely coupled (cascade) integration 

In a loosely-coupled (cascade) integration system, the aiding measurements are usually the 

direct outputs from other standalone navigation systems, e.g., the position, velocity, the GNSS 

heading and etc. The corresponding GNSS measurement equations are: 

GNSS-P
bn

b(k)k
GNSS
k wLCrr ++=                                                      (4.1.41) 

GNSS-v
bb

nb(k)
n
b(k)

b
nb(k)

n
b(k)

GNSS
k wL ][ωCvCv +×+=                     (4.1.42) 

GNSS-Hk
GNSS
k wψψ +=                                                                   (4.1.43) 

wherein are 

bL  the lever arm vector in body frame, 

n
bC ,  n

nbω  the DCM matrix and angular rate states, 

r ,   b
nb v  ,  ψ  the position, velocity and heading states, 

GNSSr ,  
GNSSv  , GNSSψ  

the GNSS position, GNSS velocity and heading measurements, and 

GNSS-xw  
the associated noise vectors of the  GNSS measurements 

 (x=p, v,  h). 
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ii. Tightly coupled (centralized) integration 

Because the states in GMIKF are the navigation parameters, the measurement equations in 

tightly-coupled system take the same format as in the GNSS standalone navigation. For example, 

with the GPS system, the generic observation equations for the pseudorange j
iρ and the carrier 

phases j
iϕ (only L1 phases is considered for demonstration purpose) from receiver i to satellite j 

are: 

j
iρ

j
ioni

j
tropi

j
i εdd)tδtδ(c +++−+= −−

j
i

j
irρ                                   (4.1.44) 

j
i

j
i

j
ioni

j
tropi

j
i

j
i Nλdd)δtδt(c

ϕ
εφ ++−+−+= −− 1

j
ir                            (4.1.45) 

wherein i=A, B (one as a base station and the other one as a rover) , j=1, 2, …, n, j
ir is the 

geometric range from receiver i to satellite j, c is the speed of light, j
i t,t δδ are the receiver and 

satellite clock errors, respectively, j
ioni

j
tropi d,d −− are the tropospheric and ionospheric delays, j

iN,λ1

are the L1 band’s wave length and the ambiguity parameter, and j
iρ

ε , j
iϕ

ε are the random noises 

with zero means. As usual, the single differencing performs between two GNSS receivers with 

respect to the same satellite and further the double differencing is introduced to two single 

differenced measurements between two satellites. Specifically, with the double-differenced 

pseudo-ranges at L1 band, the generic observation equation becomes: 

)t()t(d)t(d)t()t( jkjk
TropAB

jk
IonoAB

jk
AB

jk
AB ABρερ ∆∇−− +∆∇+∆∇+∆∇=∆∇ r             (4.1.46) 

where ∆∇  is the double differencing operator between stations A and  B with respect to satellites 

j and k, )t(jk
ABr∆∇ is the double differenced range, )t(d jk

IonoAB−∆∇ is the double differenced 
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ionospheric error, )t(d jk
TropAB−∆∇ is the double differenced tropospheric error and )t(jk

ABρε ∆∇ is the 

random error. 

With the short baseline (between rover and the GPS base station), e.g., < 10km, the double 

differenced tropospheric and ionospheric delays become small enough to be ignored so that 

(4.1.46) can be simplified to 

)t()t()t( jkjk
AB

jk
AB ABρερ ∆∇+∆∇=∆∇  r                                                    (4.1.47) 

with )]t()t([)]t()t([ j
A

j
B

k
A

k
B

jk
AB ρρρρρ −−−=∆∇ . Correspondingly, with the carrier phase 

observables at L1 band, the double differenced observation equation is modelled to be 

)t(N)t()t( jkjk
AB

jk
AB

jk
AB ABϕελϕ ∆∇+∆∇+∆∇=∆∇ 1r                                 (4.1.48) 

Furthermore, the measurement equation for the double-differenced Doppler observable shall be 

)t()t()t( jkjk
AB

jk
AB ABϕεϕ  ∆∇+∆∇=∆∇ r                                                    (4.1.49) 

In particular, the state vector in GMIKF must be extended to include the float ambiguity 

parameters ( jk
ABN∆∇ ) before they are fixed as constant integer numbers. 

4.2 Analysis and characteristics of GMIKF 

4.2.1 Characteristics and advantages 

The Figure 4-2 shows three paramount distinctions in GMIKF (right side) in comparison 

with the conventional counterpart (left side):  

a) The embedment of the prediction of the kinematic states, i.e., position, the velocity, 

acceleration, attitude and angular rate vector in the navigation Kalman filter as the system 

model. Thus, the core of the system model after kinematics can effectively restrain the 
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potential drifts due to the inertial sensor systematic errors, especially with the low-cost 

IMUs. 

b) The direct participation of the IMU measurements in Kalman filter’s measurement updates. 

Consequently, the superior performance (solution accuracy) arises from the improvement 

of the overall system measurement redundancy upon the angular rates and accelerations. In 

addition, it opens up the possibility to realize the variance component estimation (VCE) for 

the individual inertial sensors. 

c) No need to distinguish between the core sensor and aiding sensors so that all the individual 

measurements can be processed directly through their measurement updates in Kalman filter. 

As a result, this structure makes possible of the simultaneous estimation of variance 

components in the process noise vectors and measurement noise vectors for all sensors 

participating in GMIKF because the random errors in IMU measurements are statistically 

separated from the other error sources. 

 

Figure 4-2 Comparison between the traditional GNSS-aided IMU integration 

mechanism and the proposed novel GMIKF [Qian et al, 2013] 
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In principle, under the assumption that all noises are normal distributed, Kalman filter is 

equivalent to a sequential least square with a time-variant state vector and the process noises 

[Anderson et al, 1979; Dan Simon, 2006]. In other words, the system model is actually a group 

of virtual measurements for the state vector which reveals the connections between the state 

vectors from time to time. It is because of these extra virtual measurements that the measurement 

redundancies in the proposed GMIKF for b
nbω  and b

nba  are obviously improved than that in the 

traditional error state-based Kalman filter, in which the acceleration vectors, angular rate vectors 

and the associated IMU systematic errors between two adjacent aiding epochs are only treated as 

the input (driving force) of the mechanization. As a result, the accuracy of the angular rate vector

b
nbω  and the acceleration vector b

nba  in GMIKF will be surely improved for the low accuracy 

IMUs. It can also be seen that the dynamics constraints introduced by Dissanayake [2001] is 

equivalent to (4.1.6) with the zero noise vector. Furthermore, by assuming that 0=b
nbzv  and/or 

0=b
nbxv , the predicted velocity components shall be reduced into the same quasi-zero virtual 

measurements as in [Shin and El-Sheimy, 2001; Ma et al, 2003; Godha, 2006].   

As mentioned before, the traditional error-state based algorithm propagates the position 

solution n
nbr based on the acceleration vector b

iba and the angular rate vector b
ibω resulted from 

removing biases from the raw IMU measurements. Therefore, the performance of the navigation 

mechanization (free inertial solution) in the traditional algorithm is directly driven by the accuracy 

of the IMU outputs. Accordingly, the larger the random errors in an inertial sensor are, the larger 

the errors in the free inertial navigation solution are. In an extreme case, the significantly large 

random errors in low-cost IMU measurements could even substantially influence the nominal 

trajectory model, and lead to the distortion of the assumed INS error model which can be greatly 

mitigated in the GMIKF. 



102 
 
 

Furthermore, the a priori error model defined for a static low-cost MEMS inertial sensor 

needs to be checked and/or modified in the dynamic working environment because the vibration 

on a low cost MEMS IMU might cause significant changes of its noise level compared to those 

in the static case [De Pasquale, 2010]. In the GMIKF, the system model (prediction) for b
nbω  and 

b
nba  does provide a rigorous reference for checking on the IMU performance without 

complicating the filtering structure. 

In summary, the significant advantages of the generic multisensor integration strategy lie in 

1) the performance improvement due to the rigorous trajectory model of a rigid body; 2) the 

improvement of the overall system redundancy upon the angular rate and acceleration of a rigid 

body; 3) the influence of the IMU measurement noises on the final navigation solutions is 

effectively mitigated as the result of the participation of the direct IMU measurement update in 

Kalman Filter; and 4) The potential introduction of the error analysis of individual sensors 

(Chapter 5) due to the structure of the novel GMIKF. 

4.2.2 Performance boundary analysis 

It is well known that the assessment of the performance of the discrete-time nonlinear filter 

is difficult due to the lack of optimal estimator and the true states. In practice, the alternative 

suboptimal filters (e.g., EKF, particle filter) are developed to deliver the sub-optimal state 

estimates which approximate the true states. Theoretical performance evaluation of suboptimal 

filters is usually accomplished through deriving a lower bound on the error covariance as an 

indicator of the achievable performance. A commonly used lower bound on the error covariance 

of a suboptimal filter is the Cramer-Rao lower bound (CRLB) established for the error 
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performance evaluation of suboptimal nonlinear estimators and the assessment of nonlinear 

approximation [Lei et al, 2011].  

In this section, two CRLBs for both the traditional error-state based INS EKF (ErrINSEKF) 

and GMIKF upon the same simulated deterministic trajectory are developed. Subsequently, the 

superior theoretical performance of GMIKF to the ErrINSEKF are revealed through the 

comparison of their nominal CRLB bounds. The CRLBs for various types (grades) of IMUs are 

also calculated in order to show the gradually diminished performance discrepancy between the 

GMIKF and the ErrINSEKF when the random errors in IMU measurements become smaller. 

4.2.2.1 Cramer Rao bound for EKF 

Let x̂ be an unbiased estimate of the unknown vector x based on the measurement vector

z , and let  z)(x,zx,p be the joining probability density of the pair z)(x, , the Cramer Rao 

lower bound (CRLB) for the covariance of x̂ is expressed by P*, therefore,  

( ) ( )( )[ ] -1* JPx-xx-xxcov( =≥= TˆˆE)ˆ                                     (4.2.1) 

where the element of the Fisher matrix ( J ) is  
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The CRLB establishes the lower limits on how much “information” a set of measurements 

carries about an unknown parameter vector [Derpanis, 2006]. In many instances, obtaining P* for 

a nonlinear filter is difficult [Taylor, 1978]. However, in the case of the extended Kalman filter, 

Taylor [1978] pointed out that its covariance propagation equations linearized about the true 

unknown trajectory provide the Cramer-Rao lower bound to the estimation error covariance 

matrix in EKF. For the multisensor integrated inertial navigation system, the approximated CRLB 
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of the estimated non-linear states using EKF is exactly analogous to the EKF covariance matrix 

when one replaces the state estimates with its real values [Benzerrouk, 2012]. In other words, the 

performance of navigation and positioning algorithm can be evaluated using a deterministic 

(simulated) trajectory [Bessell, 2003] upon which the CRLB bound ( ) 1*
kP − for the state vector kx̂

at epoch k can be written in a recursive form as follows: 

( ) ( ) k
-1
k

T
k

1
k

T
-1k

*
-1k-1k

1*
k HRHQFPFP ++=

−−
                                      (4.2.3) 

wherein kP , kF , kQ , kH and kR can be referred to the matrices defined in (2.6.4)- (2.6.10) 

in Section 2.6.3.  As a result, CRLBs analysis in the case of EKF is the same as the covariance 

analysis predicated on the stochastic models being correct. 

4.2.2.2 A simulated example 

Figure 4-3 shows a simulated trajectory used in CRLB computation. It consists of several 

segments with various types of maneuvering motions: constant velocity, constant acceleration, 

circular turn and non-zero roll constant velocity. Because the land vehicle system is of our most 

research interest, the 3D trajectory with the constant height is used in the following CRLB 

comparison. 
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Figure 4-3  The simulated trajectory for GMIKF’s CRLB evaluation 

It is assumed that the due north oriented stationary vehicle is perfect levelled before it is 

accelerated at the start point [0, 0, 0]T at the time 0 (sec). Throughout the entire trajectory, four 

constantly-accelerated motions, four uniform linear motions with the constant-velocity and four 

uniform circular motions are simulated. The corresponding velocity and acceleration profiles in 

the local navigation ENU frame, and the angular rate profile in the body frame are given in Figure 

4-4. 
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Figure 4-4  The velocity, acceleration and angular rate profiles 

In this example, the comparison of the CRLB bounds between the 15-state ErrINSEKF, 

derived from (2.6.11) – (2.6.17) and the 21-state GMIKF, derived from (4.1.14)- (4.1.20) are 

proceeded upon the static motion and the accelerated motion, both of which span 180 seconds in 

time. 

In CRLB computation, ky  in (4.2.5) represents the error vector in the instantaneous raw 

inertial observables (the angular rates or the specific forces) modeled as the sum of a random error 

vector wn
kx and a random constant bias vector b

kx , while all other errors (e.g. installation 

misalignment, temperature and etc.) are ignored.  
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In addition, the error vector wn
kx is taken as the process noise vector in the traditional 

ErrINSEKF while it is treated as measurement noise vector in the GMIKF. wn
kx is further 

modeled as the linear combination of two independent white noise vectors wnRW
kx and wnSB

kx  which 

are translated from random walk noise and bias stability, respectively.  

As a result, the inertial sensor error vector ky is mathematically modeled as follows: 

 b
-1k

b
k xx =                                                                                        (4.2.4) 
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In order to conduct the comprehensive comparison of the CRLB bounds between 

ErrINSEKF and GMIKF, several IMU units from the full range of the IMU grade in the civil 

applications: navigation, tactic, industrial and consumer are considered. Table 4-1 lists the 

specifications of used IMUs in the CRLB computation. 

Table 4-1  Specifications of the used IMUs  

Grade Name Random Walk 
(RW) 

Random Walk  
White noise (RWN) 

Bias (BS) Non-
Linearity 

Resolution 

Navigation HG9900 0.002   0/√ℎ - 0.003 0/h - - 
- 0.005 mg/√HZ  0.025 mg - - 

Tactical HG1700 0.088   0/√ℎ - 1.0    0/h - - 
0.2       m/s/√ℎ - 1.0    mg - - 

Tactical VG800 0.1       0/√ℎ - 3.0     0/h 0.1% FS < 0.025 °/s 
0.5       m/s/√ℎ - 1.0     mg 0.1% FS < 0.5 mg 

Industrial SMDIMU 2.0        0/√ℎ - 20       0/h 0.1% FS  
0.08     m/s/√ℎ - 0.075  mg 0.4% FS  

Industrial VN-100 
- 0.035 0/s√HZ(256 Hz) 10      0/h 0.1% FS < 0.02 °/s 
- 0.14 mg/√HZ(260 Hz) 0.04   mg 0.5% FS < 0.5 mg 

Industrial IMU440 4.5       0/√ℎ - 10      0/h 0.5% FS < 0.02 °/s 
1.0       m/s/√ℎ - 1.0     mg 1% FS < 0.5 mg 

Consumer BP3010 12.02     0/√ℎ - 96.9    0/h  - - 
0.47     m/s/√ℎ - 0.450  mg - - 
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Consumer iPhone 4 144     0/√ℎ - 75.0    0/s  - - 
8.0     m/s/√ℎ - 20.0   mg - - 

In addition, three necessary matrices for Kalman filter’s CRLB computation: the covariance 

matrix Q of the process noise vector, the covariance matrix R of the measurement noise vector 

and the covariance matrix P0 of initial state vector are initialized as the diagonal matrices with 

their standard deviations (1σ) shown in Table 4-2, 4-3 and 4-4.  

Table 4-2  Standard deviations of the initial states for ErrINSEKF and GMIEKF  

ErrINSEKF 1 σ GMIKF 1 σ 

Position  (m) nrnbδ  10, 10, 10 Position (m) nrnb  10, 10, 10 

Velocity (m/s) nvnbδ  0.001, 0.001, 0.001 Velocity (m/s) bvnb  0.001, 0.001, 0.001 

- - - Acceleration (m/s2) banb  10e-7, 10e-7, 10e-7 

Misalignment  (⁰)  φ  0.1, 0.1, 0.1 Euler angle (⁰) θ  0.1, 0.1, 0.1 

- - - Angular rate (⁰/s) bωnb  10e-7, 10e-7, 10e-7 

Gyroscope bias  b
ibω δ  

T
tBS δ

ω  Gyroscope bias  ωb  
T

tBS δ
ω  

Accelerometer bias  b
ib∇  

T
tBSa

δ
 Accelerometer bias ab  

T
tBSa

δ  

Note: ωBS and aBS are the respective 1σ bias stabilities (Allan Variance) for gyroscopes 

and accelerometers listed in the “Bias” column in Table 4-1, tδ  is the IMU’s data 

rate (e.g. 0.01 s for 100 Hz), and T is the correlation time when bias stability 

computed. 

 

Table 4-3 Standard deviations of process noises used in ErrINSEKF and 

GMIEKF 
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ErrINSEKF 1 σ GMIKF 1 σ 

Gyroscope noise
wn
ωx  (⁰/s) 

22

ωω BSRW σσ +  
Jerk bjnb  

(m/s3) 

72, 72, 72 (moving) 

0, 0, 0（Static） 

Accelerometer noise 
wn
ax  (m/s2) 

22

aa BSRW σσ +  
Angular acceleration 

bωnb  (⁰/s2) 

50, 50, 50 (moving) 

0, 0, 0（Static） 

Note: t/RWRW δωω
=σ and t/RWaRWa

δ=σ where tδ is IMU data rate (e.g. 

0.01 s for 100 Hz data); ωRW and aRW are the standard deviations of the 

white noise listed in the “Random Walk” column in Table 4-1, by which the 

random walk effects for gyroscopes and accelerometers are triggered. In 

addition, 
T

tBSBS
δ

ωω
=σ and 

T
tBSaBSa

δ
=σ where ωBS and aBS are the 

same as in Table 4-2. 

Table 4-4 Measurement standard deviations in loosely-coupled ErrINSEKF and GMIEKF 

ErrINSEKF 1 σ GMIKF 1 σ 

- - Gyroscope noise wn
ωx  (⁰/s) 22

ωω BSRW σσ +  

- - Accelerometer noise wn
ax (m/s2) 22

aa BSRW σσ +  

External Position (m) 1.0, 1.0, 1.0 External Position (m) 1.0, 1.0, 1.0 

External Heading (⁰) 0.1 External Heading (⁰) 0.1 

Note: The definition for the four IMU measurement noises
ωRWσ , 

aRWσ ,
ωBSσ and 

aBSσ

are the same as in Table 4-3.  
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CRLBs in free inertial mode 

In the conventional error-state-based inertial integrated navigation (ErrINS), the inertial only 

mode is conventionally termed as either the free inertial navigation calculation, or dead-

reckoning. On the other hand, the free inertial mode of GMIEKF means that only IMU 

measurements are applied through measurement updates in the navigation Kalman filter. Figure 

4-5 and Figure 4-6 show the time series of the square-rooted CRLB of the 3D position and 

attitudes with HG9900 (high end) and BP3010 (low cost) where ErrINS refers to the ErrINSEKF 

in free inertial mode and GMIINS refers to the GMIEKF in free inertial mode. 

 

Figure 4-5  Sqrt(CRLB) of position and attitudes using HG9900 
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During the 180 second period of stationary motion (left side in both figures), the position 

performance (CRLB) of GMIEKF is well constrained through the prediction of the trajectory. 

Meanwhile, the position CRLBs of the ErrINSEKF show slight growth which clearly follows the 

IMU’s specification data. In kinematic situation, the performance of the GMIEKF algorithm is 

also superior to the traditional Error state based algorithm for both IMUs.  

 

Figure 4-6  Sqrt(CRLB) of position and attitudes using BP3010 
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Figure 4-3 and depicted in Figure 4-7.  Unsurprisingly, the solution performance of GMIEKF for 

all IMUs are unanimously superior to the solution performance of ErrINSEKF. 

 

Figure 4-7 CRLB of the position states at the end of trajectory spanning 180 s in time 

CRLBs in loosely-coupled integration mode 

Similarly, the CRLBs from ErrINSEKF and GMIEKF in loosely-coupled architecture are 

further compared with the integration of GPS measurements. Table 4-4 shows the accuracies of 

the external GNSS measurements in its third and fourth rows. It can be seen that the position and 

heading performance from ErrINSEKF and GMIEKF are getting closer together incurred from 
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Figure 4-8 CRLBs of position and attitudes in loosely-coupled system using IMU440 

 
Figure 4-9 CRLBs of the position states in loosely-coupled integration architecture using 

different IMUs  
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In order to demonstrate the success of the application of GMIKF upon the multisensor 

inertial navigation, a short land-based road test was conducted on April 1, 2012 using our in-

house YUMIS system, which consisted of one Crossbow IMU440CA (MEMS) IMU and two 

NovAtel OEM4 GPS receivers (rovers). The lever arm parameters of two GPS receivers were 

measured beforehand at the accuracy of 0.5cm. The raw IMU data were collected at 100 Hz and 

the measurements (C/A code, carrier phase, Doppler) from two GPS receivers were acquired at 

4Hz. Besides, one GPS base station near the start point was set up at the 1Hz data rate throughout 

the whole road test for the sake of relative positioning solution. Given that the number of GPS 

satellites in view was equal to 6 or greater, the high accuracy (~ 2cm) relative baseline solutions 

between the primary GPS receiver and the base receiver were achieved, and so were the baseline 

solutions for the vehicle’s heading between two GPS rovers mounted on the vehicle’s roof. 

Provided that the fixed baseline between two rovers is about 2 meters long, the overall 1σ 

accuracy of the derived DGPS heading can reach about ±0.5o. The IMU specification and GPS 

hardware configuration are summarized in Table 4-5 and Table 4-6, respectively. The top view 

(2D) of the land vehicle’s trajectory and the associated velocity profile are given in Figure 4-10. 

Figure 4-11 and Figure 4-12 show the GPS satellite availability during the road test.  

Table 4-5  IMU 440CA specifications 

Angular Rate (100Hz) 
Bias Stability [0/hour] <10.0 

Angle Random Walk [0/sqrt(hour)] < 4.5 

Acceleration (100Hz) 
Bias Stability[mg] <1.0 

Velocity Random Walk [m/s/sqrt(hour)] <1.0 

Table 4-6  GPS hardware configuration 

No. Receiver Type Data Rate Data Type  
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1 NovAtel OEM4 4 Hz C/A, L1, L2, D1 Rover 
2 NovAtel OEM4 4 Hz C/A, L1 Heading 
3 NovAtel OEM4 1 Hz C/A, L1, L2, D1 Base 

 

Figure 4-10 The top view of the trajectory and the speed profile 

  

Figure 4-11 The sky plot of the available GPS satellites during the road test 
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Figure 4-12 The GPS satellite availability during road test in time 

4.3.2 The static alignment and initialization  

In the beginning of the GMIEKF, the pitch and roll angles are initialized through static 

alignment for more than 5 minutes, during which the velocity, acceleration and angular rate 

vectors were all true zeroes. For each pair of IMU measurements (angular rates and specific 

forces), the pitch and roll angles were solved by using equation (4.3.1) [Bekir, 2007; Jekeli 2001]. 

The mean values of the pitch and roll angles from the static alignment were used as their initial 

values. Besides, the position and heading states in GMIEKF were initialized via the GPS position 

and GPS heading solution. 

[ ][ ] 1−××××××= aωaωaa gΩgΩggC nnnnnnn
b

ˆ                                      (4.3.1) 

wherein 

n
bĈ

 

is the initial DCM matrix 
ng  is the local gravity vector, 
nΩ  is the Earth rotation angular rate vector, 
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a  is the accelerometer output, and 

ω  

  

is the gyroscope output. 

4.3.3 The loosely-coupled integration results 

This sub-section presents the integrated navigation solution from the proposed GMIKF using 

loosely-coupled integration strategy. At the very beginning of the data processing, the static 

alignment module using (4.3.1) was executed until the GPS position and the DGPS heading 

solution became ready for the initialization of the complete state vector and its covariance matrix. 

The GMIKF was then carried on with the update rate of 100 Hz IMU measurements and 4 Hz 

GPS position, velocity measurements in addition to the GPS heading measurements. There are 

two GPS RTK solution (cm-level) measurement outages around 100 sec and 480 sec, in which 

the GPS position accuracy was degraded to meter-level. 

 
Figure 4-13  1σ (standard deviation) position accuracy in loosely-coupled GMIEKF 
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Figure 4-14  System innovations and residuals of GPS position measurements in loosely-

coupled GMIEKF 

As shown in Figure 4-13, the overall 1σ positional accuracies in east, north and up directions 
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Figure 4-15 1σ (standard deviation) velocity accuracy in loosely-coupled GMIEKF 

          

Figure 4-16 System innovations and residuals of GPS velocity measurements in loosely-coupled 

GMIEKF 
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Figure 4-17 Attitude Solution with its 3σ Envelops (the first three plots) and attitude accuracy 

(the bottom plot) in loosely-coupled GMIEKF 

Figure 4-17 shows the attitude (roll, pitch and heading) solution with the estimate in blue and its 

±3σ bounds in red. For the better visual effect, the 1σ attitude accuracies were also plotted. 

Figure 4-18 shows the time series of the system innovations and measurement residuals of the 

DGPS heading measurements. Once more, the innovations and residuals verify the computed 

standard deviation for pitch, roll and heading to be around ±0.5 o, ±0.5 o, and ±0.1 o respectively. 
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Figure 4-18 System innovations and residuals of DGPS heading measurements in loosely-

coupled GMIEKF 

 
Figure 4-19 Gyroscope biases with their 3σ Envelops in loosely-coupled GMIEKF 
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Figure 4-20 Accelerometer biases with their 3σ Envelops in loosely-coupled GMIEKF 
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Figure 4-21   Measurement innovations and residuals for three gyroscopes in loosely-coupled 

GMIEKF 

As one essential innovative feature of the GMIEKF, the IMU measurements directly 
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accuracies are ±0.5 m/s2 (1σ standard deviation) for three accelerometers and ±0.5o/s for three 
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Figure 4-22  Accelerometer innovations and residuals in loosely-coupled GMIEKF 

4.3.4 The tightly-coupled integration results 

 

Figure 4-23 1σ (standard deviation) position accuracy in tightly-coupled GMIEKF 
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L1/L2 GPS carrier phase measurements. More details about ambiguity fix are explained in 

Section 6.1. Most of the plots were omitted except the 1σ accuracy for the position and velocity 

solutions because of the similarities between the results from the loosely-coupled GMIEKF and 

the ones from the tightly-coupled GMIEKF. 

 

Figure 4-24 1σ (standard deviation) velocity accuracy in tightly-coupled GMIEKF 

The advantages of the tightly-coupled GMIEKF were noticed at the two moments when the 

cm-level GPS RTK solutions could not be reached in the loosely-coupled GMIEKF. As can be 

seen in Figure 4-23 and Figure 4-24, the accuracy deteriorations of both position and velocity 
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GMIEKF.  
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Figure 4-25 Innovations and residuals of DD L1 carrier phase measurements in tightly-coupled 

GMIEKF 

4.3.5 Performance during GPS outages 

In order to assess the performance of the free-inertial positioning and navigation solutions 

after the proposed GMIKF, eight 20-second long GPS outages were simulated based on segments 

of the reference dataset shown above. During the simulated outage periods, only the IMU raw 

outputs were used as the measurements. In the beginning of the simulated GPS outages, the 

navigation parameters for both of the free-inertial solutions were initialized to the same reference 

inertial integrated navigation solutions. 
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Figure 4-26 Position drifts during eight GNSS 20 seconds outages  

For comparison purpose, the free inertial position solutions from the novel GMIEKF and the 

conventional inertial mechanization (or dead reckoning) are presented together in Figure 4-26. In 

addition, the largest position drifts for both methods during all eight outages in east, north and up 

directions are listed in Table 4-7 , in which the bottom row shows that the root mean square (RMS) 

of the eight (8) position drifts from the conventional dead reckoning (DR) and GMIKF are 

[±18.32m ±17.76m ±2.61m] and [±2.15m ±3.12m ±0.52m], respectively. As in Figure 4-26, the 

positions in the GMIEKF were undoubtedly drifted much slower than the ones in the free inertial 

navigation solution based on the conventional mechanization. 

Table 4-7  Statistics with eight simulated GPS outages 

 Conventional DR(m) GMIKF (m) Remark 
East North Up East North Up Motion 

1 3.44 12.52 0.20 0.99 5.33 0.52 Straight line 
2 15.27 25.25 0.33 1.60 1.09 0.29 Static  
3 17.64 23.56 0.74 1.46 1.76 0.56 Turning 
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4 14.49 23.18 2.54 2.54 1.19 0.15 Turning 
5 38.96 17.98 3.25 0.49 5.04 0.67 Straight line 
6 11.87 5.47 4.26 0.12 3.22 0.73 Straight line 
7 7.86 14.26 2.29 0.11 1.54 0.65 Static 
8 14.05 8.96 3.67 4.95 2.41 0.35 Turning 

RMS 18.32 17.76 2.61 2.15 3.12 0.52 Turning 

4.3.6 Remarks 

The computation cost for the GMIEKF is noticeably higher than the conventional integration 

strategy due to the high rate IMU measurement updates. Firstly, the prolonged computation time 

can be greatly shortened by the high performance matrix libraries making the best use of the 

computation power of CPUs or GPUs, e.g., Eigen, Intel® Math Kernel Library (MKL) and etc. 

In addition, the reasonable data compression algorithms, e.g., the pre-filter developed by Joglekar, 

et al [1975], can be employed to effectively reduce the computation cost without significant loss 

of the performance. Due to the scope of this dissertation, how to improve the computation speed 

without sacrificing solution accuracy will not be further discussed. 

4.4 Summary 

This chapter proposed a novel generic multisensor integration strategy for the integrated 

inertial kinematic positioning and navigation system in which the 3D kinematic trajectory model 

has been developed as the core of the system model in the proposed GMIEKF. The GMIEKF 

enables equal utilization of measurements from all sensors, inclusive of the IMU measurement 

data, through measurement update. The solution performance of GMIEKF has been analyzed 

through the comparison against the traditional algorithm (Error-state-based) upon both the 

simulated and real data. Unanimous superior performance is concluded in both situations 
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(simulation and real-time). The results showed that the proposed integration strategy can improve 

the accuracy and the robustness of the navigation solutions, especially with the low-cost IMU in 

poor GNSS environment and/or GNSS-denied environment. 

It is worthwhile to mention the following facts: 

1) The generic multisensory integration strategy for kinematic positioning and navigation 

does not distinguish the core sensor, usually an IMU, and the aiding sensors so that any 

positioning and/or orientation sensor can be directly integrated; 

2) The introduction of the core of the system model on the ground of kinematics does 

significantly enhance the solution performance, especially during the GNSS outages, or 

in the case of a low-cost IMU; 

3) The GMIEKF brings the opportunities for the direct error analysis upon the raw sensor 

(e.g., IMU and GNSS receiver) measurements in a multisensor system, for example, 

studying of the system redundancy distribution at the sensor level after [Wang, 1997], 

measurement outlier detection, the a posteriori variance component estimation of the 

measurement noises and the process noises. Specifically, as part of my PhD research, one 

achieved advancement is the work in Chapter 5: the a posteriori variance component 

estimation of the individual independent measurements and the individual independent 

components in the process noise vector using their residuals. 

  



130 
 
 

5. Variance component estimation upon generic multisensor 

integration Kalman filter 

This chapter is based on the published work: 

Qian, Kun; Jianguo Wang and Baoxin Hu (2016): A posteriori estimation of stochastic 

model for multi-sensor integrated inertial kinematic positioning and navigation on basis 

of variance component estimation, Journal of Global Positioning Systems, 2016, vol. 14, 12 

pages, SpringerOpen, DOI 10.1186/s41445-016-0005-5, ISSN: 1446-3164. 

In this chapter, a generic method of tuning the stochastic models of the random errors in 

sensor measurements and the process noises in inertial navigation is proposed, especially to 

estimate the posteriori variance components for the IMU measurements directly in the extended 

Kalman filter for the first time. 

Tuning the a priori stochastic models of the process and measurement noise vectors in 

Kalman Filer (KF) has always been a challenge. Especially in the multisensor integrated 

kinematic positioning and navigation demanding a cm-level accuracy, it becomes paramount 

because the solution accuracy quantified by the variance and covariance matrix of the state vector 

is expected to be statistically correct. As a preferable technique to address this challenge, the 

variance component estimation (VCE) applied to the Kalman Filter’s process and measurement 

noise covariance matrix (Q and R) has been proved in various applications and in different ways. 

However, with the conventional error states-based GNSS aided inertial navigation (GNSS/INS) 

Kalman filter, it is difficult to tune the stochastic model for the measurements at sensor level due 

to the amalgamation of the inertial sensor measurements with the aiding sensors during the 
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construction of the error measurements. In other words, tuning the stochastic model of 

measurements is premised on the statistical independence of random errors among participant 

sensors.  

However, the issue of the statistical dependences between the aiding sensor and inertial 

sensor measurements is cleared out by taking the innovative multisensor integration strategy 

described in Chapter 4, which deploys the vehicle’s generic kinematic model and directly utilizes 

the raw outputs of all sensors (e.g., IMU, GPS receivers) through measurement updates in Kalman 

filter. As a result, the statistical independence of random errors among individual sensors 

naturally encourages the adoption of the VCE technique to estimate the variance components 

associated with the process and measurement noise vectors based on their residuals in GMIKF. 

In this chapter, the variance component estimation targeting on GMIKF is detailed. Section 

5.1 first re-formulates the GMIKF in order to prepare for the development of the VCE method. 

Then, the VCE process is described in Section 5.2. At last, Section 5.3 presents the numerical 

results together with the relevant performance analysis regarding one dataset. 

5.1 Reformulation of generic multisensor integration Kalman filter  

This section details the discretized system model and measurement model of a 27 state 

GMIKF in tightly-coupled integration architecture in order to facilitate the narratives in Sections 

5.2 and 5.3. 

5.1.1 System model  

According to the continuous differential equations in Section 4.1.1, the discretized system 

model for 27 states in a tightly-coupled GMIKF is restated as follows: 
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The definitions of the variables in (5.1.1) can be referred to Section 4.1.2. Since the system 

model is a non-linear function of the state vector kx , (5.1.1) is linearized for the purpose of the 

error (or variance and covariance) propagation as follows: 
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The explanation of the symbols in (5.1.2) can also be referred to Section 4.1.2 and the 

counterparts in (5.1.1). 

5.1.2 Measurement model  

5.1.2.1 IMU measurement model 

The general IMU measurement equations participating the measurement update in GMIKF 

are restated as follows:  
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The definitions of variables in 5.1.3 can be referred to those in Section 2.4.4. In addition, the 

Jacobians matrix H for the measurement vector IMUz in (5.1.3) is given by: 
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where [ ]Tzyφ b
nb

b
nb

b
nbx φφφ= is the instantaneous attitude error vector, the operator∧ represents 

the nominal value of the unknown variables, and T as defined in (5.1.2) is the transformation 

matrix between the vector φ and the Euler angle error vector θ δ .  As a result, the first order 

partial derivative of b
imu-ibf with respect to Euler angle vector θ is given as follows: 
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In practice, the random errors in the measurements from three gyros and three accelerometers 

can be considered statistically independent after ignoring the small timing error and the tiny 

installation error compared to the other error sources. Correspondingly, the covariance matrix for 

these six independent measurements will be a 6×6 diagonal matrix. Taking into account the 

variance components, the covariance matrix for IMU sensor (3 gyroscopes and 3 accelerometers) 

can be modeled as follows: 
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R , 2
a y

R and 2
a z

R are six a priori variance elements for six sensors in 

one IMU and [ ]Tzaccyaccxacczgyrozgyroxgyro
222222

−−−−−−= σσσσσσIMUs is the IMU’s variance 

component vector of the unit weight. 

5.1.2.2 GPS measurement model 

By taking the tightly-coupled GMIKF, three types of GPS measurements, the double-

differenced pseudo-ranges and carrier phases (L1 and L2), and range rates (Doppler velocity) are 

used: 
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where )]t()t([)]t()t([ j
A

j
B

k
A

k
B

jk
AB LLLLL −−−=∆∇ is the double-differenced (DD) 

operation on the observables L  between two stations A and B with respect to satellite j and k. 

The measurement noises of the DD pseudo-ranges, carrier phases and range rates are denoted 

by )t(jk
ABρε ∆∇ , )t(jk

ABϕε ∆∇ and )t(jk
ABρε ∆∇ . 

Measurement noise model for the GPS measurements has been studied for years [Collins et 

al, 1999; Wieser et al, 2005; Luo et al, 2009; Gopaul et al, 2010; Wang et al, 2009, 2010; Takasu, 

2013; Tay et al, 2014; etc.]. The common assumption about the measurement noises is that their 
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measurement variances change along with the satellite elevation angles. In this dissertation, the 

variance of a single GPS observable is modelled as the function of the elevation angle j
Aβ  of the 

line of sight from station A to satellite j and the a priori receiver noise 2
90σ at the local zenith 

[Takasu, 2013]: 

jA,j
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j,A )sin(
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22
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
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+=                                                  (5.1.8) 

Accordingly, the covariance matrix of n double-differenced GPS observables of each type 

in the case of short baseline (< 10 km) shall be [Gopaul et al, 2010]: 
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where A and B are the reference station and the rover station, respectively, the satellite j is taken 

as the reference satellite, 2
j,Aσ and 2

j,Bσ  are the measurement variances corresponding to the 

reference satellite j while 2
k,Aσ  and 2

k,Bσ  (k = 1, …, n; k ≠ j) are the measurement variances 

corresponding to the individually locked satellites.  

After factoring out the scalar 2
90σ at the local zenith, one can reformulate the matrix ∇∆R  in 

(5.1.9): 
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Accordingly, the covariance matrix of the observation vector ZGPS in (5.1.7) can be given as 
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                                 (5.1.11) 

where ρ∇ΔM , φ∇∆M ,and ρ∇∆M are three matrices resulted from (5.1.10) for each type of GPS 

observables, and [ ]Ta/c
222
ρφ σσσ =GPSs is variance components in vector form corresponding 

to the scalar receiver noises at the local zenith for each type of GPS observations as in (5.1.8).  

5.1.2.3 Heading measurement model 

In a multisensor integrated kinematic positioning and navigation system using low-cost 

IMUs, the heading measurement is necessary in order to suppress the fast heading drift. In the 

GMIKF implemented in this research, the vehicle’s heading measurement is made available 

through the short baseline solution between two GPS rovers mounted on the vehicle’s roof. The 

cm-level accuracy relative baseline solution is achieved through N (N >= 5) DD L1 phase 

measurements with their fixed integer ambiguities 

hh εψ +=Z                                                                  (5.1.12) 

where hZ is the DGPS heading measurement, ψ is the heading state, and ( )00 ψψσε R,N~h
2   with 

0
ψR being the a priori variance and 2

ψσ being the variance component of the heading 

measurements.  

5.1.3 Summary 

Given the general GMIKF equations at epoch k: 

))( kkk f Λ(wxx += −1    (System model)                                                 (5.1.13) 
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kkk εxhz += )(          (Measurement model)                                      (5.1.14) 

the linearized (extended) GMIKF is derived: 

kkkkkk )ˆ( wΛxΦxx ++= −− 11 δf                                                           (5.1.15) 

kkkk/kk )ˆ( εxHxhz ++= − δ1                                                                 (5.1.16) 

where 
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Hk ,  and the Jacobian matrices kΛ and kΦ can be referred to 5.1.2. 

In summary, the GMIKF at an arbitrary epoch k can be translated into a form of Lease 

Squares estimator as follows: 
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where the unknown parameter vector is [ ] Tˆˆ wxk , T][ n
nb aωaωb

nb
ssbbωj118w llllll0l


== × , and 

the respective stochastic models of wv , zv , and xv are 

),(~ 661)6 ×× Q0vw( N , ),(~ R0vz N , and ),(~ 1/
T
kkx ΦPΦ0v −kkN . 

5.2 Variance component estimation for GMIKF 

5.2.1 Variance compoment vector  
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According to the formulation of the system model in Section 5.1, the initial values of the 

variance components of the process and measurement noises in GMIKF would be 
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As an attractive alternative to the noisier raw Doppler measurements in GPS navigation, the 

carrier-phase-derived Doppler measurements with more stable quality are often adopted for the 

velocity estimation [Serrano et al, 2004]. Accordingly, if the DD Doppler measurement ABρ∆∇

is replaced by the time differenced L1 carrier phase from a rover GPS receiver, the estimation of 

the variance component corresponding to 2
ρσ   in (5.1.1) should be omitted so that the variance 

component vector zθ  is reduced to: 

[ ] T

z σσθ 2
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)(gyro

2
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2
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2
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2
)c/a L2L1 31311111111(1 ××××××=′ ψφφ σσσσ                    (5.2.3) 

In addition, the selection of the variance components is also involved in the redundancy 

contribution of the measurements and the noise components in the process noise vector. In Least 

Squares, each redundant index ri as in (2.7.20) reflects the degree of the influence of a raw 

observable on the unknown parameters. The bigger ri is, the less a measurement affects the 

parameter estimation. With a group of independent measurements, the redundant index of each 

measurement always satisfies 0< ri <1. The measurement is said to be completely redundant (no 

influence on parameter estimation) if ri = 1. On the contrary, it becomes a high leverage 

measurement when the associated scalar ir  tends to zero, which may be due to: a) very high 

accuracy of the measurement, or b) the strong geometrical or physical relation between the 
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measurement and to-be-estimated parameters, i.e., there exists no any other redundant 

measurements. 

It has been found that there may exist small redundant indices that may result in the 

divergence of the variance component estimates [Wang et al, 2009, 2010; Gopaul et al, 2010]. 

For example, given the variance of unit weight 2
0σ  which satisfies 2

0
2
0

2
02

2
01

2
0 im σσσσσ =====   

in (2.7.9), the accuracy of the estimated variance components 
1×m̂

2σ  (as a vector) in (2.7.7) is 1-S42 0σ

[Wang, 2007]. After zeroing the non-diagnal elements in matrix S, the accuracy of the i-th 

variance component in (2.7.8) can be approximated by 142 −
ir0σ . That is, if the redundant index of 

a measurement (should not be expected) or any component in the process noise vector is relatively 

too small, one may exclude it from the VCE process by fixing it to a reasonable value or taking 

the previously estimated variance as its variance in order to avoid any potential divergences 

[Wang et al, 2009]. 

According to the LS formulation of the GMIKF in (5.1.17), the measurement vector wl  for 

the process noises actually consists of four independent zero vectors (
aωaω ssbb l lll and,,  ) 

taking into account the IMU bias drifts and the scale factor drifts. Their redundancy contribution 

indices are closely related to the kinematics, the system configuration and the sensor quality and 

usually relatively small (< 0.001). Table 5-1 lists a set of typical values of redundancy indices of 

bias drifts and the scale factor drifts corresponding to the data set used in Chapter 4, in which the 

Crossbow 440CA IMU was used. 

Table 5-1  Typical redundancy contribution indices for high leverage process noise components 

Bias drift x
bω

l  y
bω

l  z
bω

l  x
ba

l  y
ba

l  z
ba

l  

Ri 2.9×10-9 2.9×10-9 2.9×10-9 1.4×10-6 1.4×10-6 1.4×10-6 
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Scale factor x
sω

l  y
sω

l  z
sω

l  x
sa

l  y
sa

l  z
sa

l  

Ri 9.4×10-9

 
6.1×10-9

 
5.7×10-7

 
1.2×10-7

 
1.9×10-7

 
3.0×10-4

 

It is found out that these four types of process noise components consistently show small 

redundancy indices in despite of the changed kinematics in various datasets. Consequently, they 

are omitted in the following VCE process and the vector wθ′  to be estimated in the tightly-coupled 

GMIKF is reduced into be a 6×1 vector as follows: 
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=′
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                                                            (5.2.4) 

5.2.2 Iterative VCE process  

Because the simplified Helmert method in Least Squares runs under an assumption that all 

being-estimated variance components of unit weight are assumed to be equal as in Eq. (2.7.9), the 

variance component estimates will always be biased unless that assumption holds true. Here arises 

the necessity of an iterative estimation process. In pratice, the estimated variance components 

shall converge to the unbiased values after a number of iterations. Likewise, the VCE for GMIKF 

is also performed in an iterative manner. It is also worth mentioning that the rough initial variance 

values for the VCE process should always be avoided in consideration of the estimation 

divergence. 

The proposed iterative VCE process (Figure 5-1) starts from two initial diagonal variance 

matrices Q(0) and R(0), which are respectively associated with the process and measurement noise 

vectors. However, these two matrices (Q(i) and R(i) ) in the beginning of the other subsequent i-th 

iterations shall be adjusted according to the results from previous iteration.  
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As the second step, given the measurement residual vectors 
ij

v for j-th group of 

measurements at epoch i computed by (2.7.14)- (2.7.16), the epoch-wise results of 
ij

r (redundant 

contribution indices) and 
iji j

T
j vDv L

1− (the weighted sum of measurement and process noise 

residuals squared for each component) are obtained and recorded throughout the whole iteration 

process. Then for each epoch, the accumulated (global) variance component estimates of each 

independent component in zv  and wv  up to epoch k can be computed as: 
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where 
jLD is the covariance matrix of the j-th group of measurements.  

Start i-th Iteration

Compute r(i) and v(i)

VCE for Q(i+1) and 
R(i+1)
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Figure 5-1 Flow chart of VCE in GMIKF [Qian et al, 2016] 
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5.2.3 Statistic tests and error distribution evaluation 

Statistic test against any outlier using system innovations or measurement residuals is a 

prerequisite for an appropriate VCE process in Kalman Filter because the potential undetected 

outliers might distort the distribution of these statistics and mislead the estimates of the variance 

components. By conducting the statistic test in Kalman filter, one can identify the possible outliers 

under the assumption that the system and measurement models are correct [Wang, 2008]. StÖhr 

[1986] studied the test statistics in Kalman filter through system innovations after the normal 

distribution and 2χ - distribution. In addition, the test statistics after t - distribution and F- 

distribution based on system innovations can be found in [Salzmann, 1993]. Wang [1997, 2008] 

further extended the test statistics to the measurement residual vector and the process noise 

residual vector, and systematically constructed the global, regional and local test statistics in 

Kalman filter. 

In order to assure the statistical correctness of state solution and variance component 

estimates, multiple statistics tests are performed for both GMIKF and subsequent VCE work 

shown in Figure 5-1. The statistics test process may consists of two parts: the outlier test using 

the system innovations in GMIKF and the distribution test using the measurement residuals in 

VCE estimation. 

5.2.3.1 Outlier detection  

According to Wang [1997, 2008], the outlier test in GMIKF at epoch k can be organized as 

follows: 

Test 1: The local 2χ -test for each type of the measurements using the system 

innovation vector with the GNSS observables in the i-th group which share the 
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same stochastic characteristics (e.g., C/A code, carrier phase, Doppler velocity) 

at epoch k. With id(k) being the system innovation vector of the i-th group 

GPS observables. The Null hypothesis is 0d  : i0 =(k)H and the alternative is 

0d  : iA ≠(k)H . The test statistics runs 

))k(r(~(k)(k) d
T

(k)i iii
22
αχχ dDdd

1−=  

           where α is the specified significant level for Type I Errors, r is the degrees of 

freedom, and dD is the variance matrix of i)k(d . 

Test 2: Each GPS observable in the i-th group can also be tested after the normal 

distribution for potential outlier. The test statistics for normal test runs 

)0,1(N~/(k)dz
ijd(k)ijij ασ=  

          where the significant level is α , and ij)k(d is the j-th system innovation in i-th 

group. 

Test 3: Similarly, the local z -tests can also be performed for each single observable 

of the non-GNSS measurements, e.g., IMU observables, heading observables. 

5.2.3.2 Residual stationary test  

The goal of the distribution test against the measurement residual vector is to check if the 

residuals are a wide-sense stationary random process because variance homogeneity is the 

premise of the variance component estimation. According to Wang [1997, 2008], a regional F-

test to examine the variance homogeneity between two groups of epochs, e.g., epochs (1 k-s) 

and epochs (k-s+1 k) is given by 

)r,r(~ˆ/ˆ
gggggg

212121

22
/ ∑∑= ασσ FF  
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where ( ) ( )
iii gg

T
g r/vPvˆ ∑∑=2σ (i=1, 2), ),( 21 ffFα  is the critical value of the Fisher distribution 

at the specified significant levelα with the 1st  degree of freedom  f1  being the numerator and the 

2nd  degree of freedom f2 being the denominator under the assumption of the estimated value of  

Fg1/g2 1≥ . Otherwise, one can simply swap the numerator and the denominator.  

5.3 Numerical Experiment  

To prove the success of the proposed VCE algorithm in GMIKF, the results of the variance 

component estimation targeting on the tightly-coupled GMIKF are presented in this section with 

the same dataset as in Section 4.3, where the reduced variance component vectors to be estimated 

are wθ′ and zθ′  as discussed in Section 5.2.1. 
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In the beginning of the variance tuning process in Kalman filter, the initial values of the 

being estimated variance components are usually set with a group of conservative values to 

guarantee that the Kalman filter can accommodate all sorts of measurements. The initial standard 

deviations corresponding to the noise factors in the process noise vector in GMIKF are assigned 

as the maximum jerks [Punzo, 2011] and angular accelerations of a land vehicle driven on the flat 

road with asphalt pavement (Table 5-2), while the measurement noises of the IMU and GPS 

receiver are empirical values derived from our experiments and observations (Table 5-3). 

Table 5-2  Initial standard deviations of process noises in tightly-coupled GMIKF 

Jerk (m/s3) Angular acceleration ⁰/s2 
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x
n
nbjσ  y

n
nbjσ  z

n
nbjσ  x

n
nbωσ   y

n
nbωσ   z

n
nbωσ   

72 72 72 300 300 300 

Table 5-3 Initial standard deviations of measurement noises in tightly-coupled GMIKF 

x
gyroσ  y

gyroσ  z
gyroσ  x

accσ  y
accσ  z

accσ  a/cσ  
1L

σφ  
2L

σφ  ψσ  

0.5 ⁰/s 0.5 ⁰/s 0.5 ⁰/s 0.5m/s2 0.5m/s2 0.5m/s2 0.5m 0.02m 0.02m 0.25⁰ 

During the iterative VCE process, in consideration of those high leverage measurements due 

to either the high accuracy or the strong geometry effect, the variance component estimates after 

the i-th round iteration will be cherry-picked as the initial values for the (i+1)-th iteration, where 

the sifting rule is simply to disregard those variance estimates with small redundancy contribution 

indices (r). That is to say, given a small r (< 0.1) for the j-th group of measurements, the 

corresponding variance component estimate 2
jσ  in the previous i-th round will not be used in the 

next (i+1)-th iteration. For example, if the redundancy contribution index of the angular rate 

measurements from the X axial gyroscope is less than 0.1 in the 1st iteration, the standard deviation 

will remain to be 0.5⁰/s in the next 2nd iteration.  

5.3.1 Process noise variance components 

Figure 5-2 and Figure 5-3 show the iterative estimated variances corresponding to the 

process noise vectors: the jerk vector ( b
nbj ) and the angular acceleration vector ( b

nbω ) in the body 

frame. As can be seen, their estimates converge at the 4th iteration. 
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Figure 5-2 Iterative VCE results for the three jerk components 

 

Figure 5-3 Iterative VCE results for the angular accelerations 

Particularly, it should be noted that the variance estimates for the jerk vector ( b
nbj ) and the 

angular acceleration vector ( b
nbω ) achieved from this specific dataset may not be universal to 

represent the generic land vehicle’s dynamics because the vehicle was driven on a fairly flat 

terrain along the course with straight lines and three sharp turns. 

5.3.2 Variance components of IMU measurements 

This section presents the estimated variance components for the IMU measurements. In 

addition, the numerical comparison with the manufacturer specification and laboratory results 

from Allan variance method is also shown in the end. 
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5.3.2.1 The estimated variance components 

Figure 5-4 and Figure 5-5 show the estimated standard deviations (1σ) of IMU measurement 

noises. The final estimated standard deviations (1σ) are:  0.18 ⁰/s, 0.25⁰/s, and 0.06⁰/s for three 

gyroscopes, and 0.15 m/s3, 0.1 m/s3 and 0.09 m/s3 for accelerometers as in Table 5-5 and Table 

5-6. 

 

Figure 5-4 Iterative VCE results for gyro measurements 

 

Figure 5-5 Iterative VCE results for the accelerometer measurements 

In Figure 5-4, it can be seen that the estimation of the variance components in the 1st iteration 

are skipped for three high leverage gyroscope measurements incurred from the relative large 
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initial angular acceleration process noise (300 ⁰/s2). Similarly, the variance component for the Y 

axis accelerometer is fixed after the 2nd iteration as well (Figure 5-5). 

5.3.2.2 Manufacturer Specification 

Table 5-4 IMU440CA technical specification from the manufacturer 

 
Random Walk 

 (σrw) 
Bias Stability 

(σBS) 
Quantization 

Noise Std. (σq) 
Equivalent Noise 

Std.   

Gyroscope 4.5 (⁰/√hour) 10(⁰/hour) 0.02(⁰/ sec) 0.7503 (⁰/s) 

Accelerometer 1.0 (m/s/√hour) 1.0 (mg) 0.5 (mg) 0.16 (m/s2) 

The technical specification for IMU440CA from the manufacturer is collected as shown in 

Table 5-4 which identified the standard deviation (1σ) of three major zero-mean error sources in 

IMU measurements: random walk, bias instability and quantization noises. Because GMIKF 

consolidates above three independent noises as one white noise component, the standard deviation 

(1σ) of the equivalent white noise is computed as: 

2
q

2
bs

2
rw   σσ σσ ++=  

where t/  rw - allanrw δσσ =  is modeled as a white noise, 
T

t 
bs - allanbs

δσσ =  is modeled as a random 

walk sequence, t δ  = 0.01 (s) is the sampling period of the IMU device, and T is the correlation 

time at which the bias stability measurement was made (~100 seconds for IMU440CA). 

5.3.2.3 Laboratory Allan variance results 

The Allan variance (AVAR) proposed by D.W.Allan [1966] is originally for studying the 

frequency stability of precision oscillators. AVAR is a method of describing the root mean square 
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(RMS) of a random process as a function of average time. Because of the close similarities, 

AVAR has been adapted to random-drift characterization of inertial sensors. 

This section presents the Allan variance results for the noises in IMU measurements based 

on a laboratory static dataset lasting 18 hours collected in Dec, 2012 for the same IMU used in 

the road test. 

 

Figure 5-6 IMU440CA Allance Variance results (Gyros) 

Table 5-5 IMU440CA Gyroscope measurement noise from Allan Variance 

 X-right Y-forward Z-up  

Random Walk (⁰/√hour) 0.196 0.263 0.227 

Bias Stability (⁰/hour) 2.88 2.21 1.14 

Quantization Noise Std.(⁰/ sec) 0.0003 0.00025 0.00027 

Equivalent White Noise Std. (⁰/ sec) 0.0435 0.0438 0.0378 
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Figure 5-7 IMU440CA Allance Variance results (Acceleromters) 

Table 5-6 IMU440CA Accelerometer measurement noise from Allan Variance 

                         X-right Y-forward Z-up  

Velocity Random Walk (m/s/√hour) 0.1025 0.0660 0.0600 

Bias Stability (m/s2) 0.0036 0.0023 0.0020 

Equivalent White Noise Std.(m/s2) 0.017 0.011 0.010 

5.3.2.4 Comparison 

Table 5-7 and 5-8 compare the standard deviations (1 σ) of the IMU measurements resulted 

from three independent methods. In consideration of the extremely violent dynamics IMU might 

experience, the specifications from manufacturer are understandably more conservative (larger) 

than those from laboratory Allan variance tests which are often too optimistic for the real 

kinematic applications because an Allan variance is assembled at a single temperature whereas 

the manufacturer's specification applies to an operational temperature range. 
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In practice, vehicle’s vibration is known to produce unwanted output for MEMS devices 

[Yoon, 2009], and therefore, is detrimental to the accuracy of the MEMS IMU’s measurements 

and INS system [Wendel, 2001; De Pasquale, 2010; Vasispacher et al, 2015]. In both tables, the 

distinctions between the results from the Allan variance method and the VCE for kinematic 

dataset show the negative impacts of vibration on the performance of the IMU’s measurements. 

In table 5-7, Z axial gyroscope is much more resistant against the vibration than X and Y 

axial gyroscopes because the noises modelled by VCE algorithm actually contain both the 

vibration and the measurement noises and the vehicle’s vibration in vertical direction is known 

to be more severe than those in longitudinal and lateral directions [Stein, 2011; Chonhenchob, 

2012]. 

Table 5-7 Evaluation of IMU Gyroscope measurement noises 

Gyroscope  1 σ (⁰/ sec) X-right Y-forward Z-up  

Manufacturer Specification=√( σ2rw+ σ2BS)  0.7503 0.7503 0.7503 

Allan Variance =√( σ2rw+ σ2BS+ σ2q) 0.0435 0.0438 0.0378 
VCE results 0.18 0.25 0.06 

Table 5-8 Evaluation of IMU Acclerometer measurement noises 

Acclerometer 1 σ (m/s2) X-right Y-forward Z-up  

Manufacturer Specification=√( σ2rw+ σ2BS) 0.16 0.16 0.16 
Allan Variance=√( σ2rw+ σ2BS+ σ2q) 0.017 0.011 0.010 

VCE results 0.15 0.1  0.09 

In Table 5-8, the noise components resulted from Laboratory Allan variance method is 

superior to the VCE results upon the kinematic dataset because the vibration is the target input 

that the accelerometers are designed to measure [Yoon, 2009]. 
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In a Least Squares system described in Section 2.7.1, the residual vector v shall statistically 

follow the normal distribution ),(N~
ii vD 0v . Hence, the histogram of the standardized residuals 

shall be able to verify the stochastic model of the observables. Similarly, given a pair of true Q 

and R, the histogram of the standardized measurement residuals in Kalman filter should also agree 

with a standardized normal distributed curve. Conversely, the best choice among a number of 

pairs of Q and R can be reasonably affirmed by the best graphic agreement between the histogram 

of the standardized measurement residuals and the standardized normal distribution curve. 

Section 5.3.5 carries out the histogram comparison for three pairs of covariance matrices (Q 

and R) named as “before VCE”, “Allan” and “after VCE”, which correspond to three rows in 

Table 5-7 and Table 5-8. Nevertheless, the RIMU in the group “before VCE” is actually assigned 

with the RIMU used at 1st iteration of the VCE process instead of the values from Manufacturer’s 

specification. The best pair of Q and R is then concluded through the visual comparison of the 

match between histogram and the standardized normal distribution curve. 

Yet again, as mentioned in Section 5.3.1, the results from this dataset definitely do not 

possess universal meaning to describe the performance changes of the MEMS IMU caused by the 

variation of the vehicle’s vibration which might become our future research topic. 

5.3.3 Variance components of GPS measurements 

In order to avoid the unstable quality of the raw Doppler velocity measurements, the time 

differenced L1 carrier phases were substituted for the double differenced Doppler measurements 

in GMIKF. Accordingly, the variance of the Doppler velocity measurements in GMIKF is directly 

related to L1 carrier phase measurement’s variance. As a result, the variance component 

estimation of the Doppler velocity measurements 
2

11 )( ×ρσ   is skipped for this specific dataset. 
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Figure 5-8 and Figure 5-9 give the iterative variance estimates for the double differenced GPS 

measurement including carrier phase and C/A code measurement in L1 band.  

 

Figure 5-8 Iterative VCE results for the DD GPS L1 carrier phase measurements 

 
Figure 5-9 Iterative VCE results for the DD GPS C/A code measurements 

5.3.4 Variance component of DGPS heading measurements 

Because the DGPS heading measurements were derived from the relative baseline solutions 

using double differenced L1 carrier phase observables between two GPS rovers rigidly tied on 

the vehicle roof, the variance of the DGPS heading measurements ( hZ  in 5.1.12) should have 

been directly derived from the stochastic model of those raw L1 carrier phase observables. 

However, in the GMIKF, the variance of the DGPS heading is quantified by a constant numerical 

value because of its stable accuracy assured by the fact that the DGPS heading measurement is 

only made available to GMIKF when at least 5 DD L1 carrier phase measurements reached the 
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fixed ambiguities. Correspondingly, a single scalar factor is appropriate to represent the variance 

component of the DGPS heading measurement in GMIKF. 

 
Figure 5-10 Iterative VCE results for heading measurement noise 

5.3.5 Histograms of measurement residuals 

Statistically, the residual vector v shall follow the normal distribution ),(N~
ii vD 0v . In other 

words, the histogram of the standardized residuals can reveal the correctness of the measurement 

model and the a priori stochastic model of the measurements if the number of the residual samples 

is large enough. Therefore, in this section, the goal to identify the best pair of covariance matrices 

(Q and R) among three candidate pairs named as “before VCE”, “Allan” and “after VCE” is 

fulfilled through comparison of the residual histograms.  

However, because the over-optimistic RIMU of a MEMS IMU derived from the Allan 

variance method leads to a diverge solution due to many normal IMU measurements being 

rejected in GMIKF, the histograms of the standardized measurement residuals resulted from two 

groups (“Before VCE” and “After VCE”) are only compared in the following plots. 
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Figure 5-11 Histograms of standardized residuals for Z gyro and Y accelerometer 

The positive changes on standardized measurement residuals brought by VCE work can be 

noticed in Figure 5-11: the histograms from the group “After VCE” conform to the normal 

distribution much better than those from the group “Before VCE”. Essentially, the abnormal 

residual histogram for group “Before VCE” stems from the unrealistically large values of RIMU 

compared to the amplitudes of measurement residuals. 

In Figure 5-12, regarding four DD GPS carrier phase measurements (L1 band), the 

standardized measurement residual histograms from group “After VCE” also fit the standardized 

normal distribution curves much better than that from group “Before VCE”, which tells that the 

estimated GPS carrier phase measurement variances are more accurate (realistic) than the a priori 

(Before VCE) counterparts. 
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Figure 5-12 Standardized residual histograms for GPS DD L1 phase measurements 

In summary, the VCE for GMIKF achieves a better stochastic model for both IMU and GPS 

carrier phase measurements. With a second dataset, a full set of histogram comparison for all 

involving measurements including virtual zero process noise measurements is presented in 

Chapter 6 to show the positive effects of VCE work on tuning of variances of jerk and angular 

acceleration 

5.4 Summary 

This section proposed and realized a practical VCE algorithm for multisensor integrated 

kinematic positioning and navigation. First, the sensor data were processed by using the extended 

Kalman filter with the GMI strategy (GMIKF) as shown in Chapter 4. Then, the random errors in 

individual measurements could be statistically separated from the other error sources. This has 

made possible the simultaneous estimation of the variance components in the process noise vector 

and measurement noise vector for all sensors participating in GMIEKF. Second, the simplified 
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VCE method accumulating the redundancy contribution of individual independent measurements 

or measurement groups was formulated for the individual components in the process noise vector 

(e.g., the jerks and the angular accelerations) and the measurement vector (e.g., the IMU and the 

double-differenced GPS measurements). The success of the VCE algorithm is proved through the 

more normal-distributed histograms of the standardized measurement residuals. 
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6. Data post processing software, road tests and results 

This chapter overviews the post-processing software package developed in C/C++ for the 

purpose of the post-processing of YUMIS’ data including GNSS and IMU data. A complete set 

of the solution including position, velocity, attitude and other IMU error states resulted from a 

selected test is presented to show the success of the software package. At last, the results for the 

iterative VCE tuning of process and measurement noise component in GMIKF are also detailed. 

6.1 Overview of data post-processing software 

The data post-processing software developed in this research (GMI post processor) is 

programmed in C/C++ under Microsoft Visual Studio IDE environment. In order to boost 

computation speed, the executable program is linked to two external high performance matrix 

libraries: Eigen matrix library and Intel® Math Kernel Library (MKL). Six major modules in the 

suite are: data importer, GPS only processors, initialization module, static alignment module, 

GMI Kalman filter and VCE processor.  
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GPS Time 
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IMU data buffer

Heading unit 
data buffer

Base station 
data buffer
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 DD observation 
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Figure 6-1 Data importer module 



162 
 
 

 In the GMI post processor, the data importer (Figure 6-1) sequentially reads all sensor data 

from the binary files to the data buffers in memory up to certain processing time (t). Importer’s 

reading pace is controlled by an internal scheduler which advances the processing time (t) when 

all sensor data up to time (t) have been consumed and processed. In parallel with GMI Kalman 

filter, GPS only processor module (Figure 6-2) runs five Least Squares based submodules to 

provide the rover SPP solution ( a/cr ), the DGPS heading solution (ψ ), the DD C/A baseline 

solution ( a/cr∇∆ ), the DD Widelane phase (DD-WL) baseline solution ( WLr∇∆ ), the fixed 

ambiguities for DD-WL measurements ( WLN∇∆ ), the DD L1 phase (DD-L1) baseline solution 

( 1Lr∇∆ ) and the fixed ambiguity for DD-L1 measurements ( 1LN∇∆ ).  

1Lρ∇∆                    LS Processor
,1Lr ∇∆ 1LN ∇∆

                    LS Processora/cρ∇∆
a/cr ∇∆

,W Lr ∇∆
W LN ∇∆

                    LS ProcessorWLρ∇∆

                  Rover SPP 
                  LS Processora/cρ

c/ar 

                  Heading 
                  LS Processor1LH R−∇∆ ρ

ψ 

 

Figure 6-2  GPS only processor module 

Among five modules, the WL LS processor uses DD-WL ( WLρ∇∆ ) measurements and 

derives the baseline solution WLr∇∆ and the associated integer ambiguity WLN∇∆ with the help of 

the sub-meter accuracy DD C/A baseline solution a/cr∇∆ . Similarly, the L1 LS processor uses 
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the DD-L1 ( 1Lρ∇∆ ) measurements and solves a more accurate baseline solution 1Lr∇∆ and the 

associated integer ambiguity 1LN∇∆ . 

In the beginning of GMI processor (Figure 6-3), the initialization module and the static 

alignment module (Section 4.3.2) prepare the initial state vector of GMIKF including position, 

velocity and attitude. Once the GMIKF state vector is successfully initialized, these two modules 

are bypassed in the rest of data process. 
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No
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Figure 6-3  Flowchart of GMI processor 



164 
 
 

Beside the state preidction(1st step) and the measurement update (3rd step), two extra steps 

in the GMIKF (Figure 6-4) are necessary for the cm-level position accuracy with GPS carrier 

phase measurements, which are “cycle slip detection and repair” (2nd step) and “integer ambiguity 

determination” (4th step).  

Cycle slip detection and repair 
for GPS L1 and L2 phase 

measurement

IMU, GPS, Heading 
Measurement update

Fix L1, L2 phase 
measurement ambiguities

Compute measurement 
residuals

State prediction

Compute measurement 
redundant indices

Save X,P, v, r to Binary File
 

Figure 6-4 Flowchar of GMIKF module 

The “cycle slip detection and repair” authenticates the continuity of integer ambiguities 

through multiple techniques using the raw Doppler measurements [Chang, 2008], the DD 

geometry free dual fequency observation combination [Bisnath, 2000], the delta position based 

on the time differenced L1 carrier phase measurement [Liu, 2009], the delta position based on the 
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predicted position state and the cycle slip status bit output from the GPS OEM receiver [NovAtel 

OEM4 Manual]. The “integer ambiguity determination” fixes the dual frequency carrier phase 

ambiguities using LAMBDA method [Teunissen, 1995] with the help of the fixed ambiguities 

( WLN∇∆ and 1LN∇∆ ) from GPS only processors. 

6.2 The selected test dataset and its results 

Among tens of datasets collected using the YUMIS system introduced in Chapter 3, we take 

one of them to elaborate the whole process of the GMI post processor. The selected data set (2015-

11-22) was collected on Nov 22, 2015, which involved one Crossbow IMU440CA (MEMS) IMU 

and two GNSS rover receivers mounted on the vehicle roof.  

6.2.1 Trajectory and system configuration 

 

Figure 6-5 Top view of the trajectory  
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The vehicle’s trajectory is around one residential area close to York University’s Keele 

campus, which is highlighted in solid yellow line (Figure 6-5). Because of the speed limitation, 

the vehicle’s max speed is around 10 m/s (30 km/h) as seen in Figure 6-6. 

 

Figure 6-6 Speed profile of the vehicle 

In terms of hardware setting, the system configuration with the 2015-11-22 data set was the 

same as the one presented in Section 4.3 except the GNSS receivers. The raw IMU data were 

collected at 100 Hz data rate while the primary rove receiver was replaced with the NovATel 

OEM6 GNSS receiver through the Ethernet port. The lever arm parameters of the GNSS receivers 

with respect to the IMU unit were manually measured at the accuracy of 0.5cm. Simultaneously, 

one another GNSS base station near the start point (<10 km) was set up with the 5 Hz data rate 

throughout the whole road test. Table 6-1 summarizes the GNSS receivers’ hardware 

configuration. 

Table 6-1  GNSS receivers’ hardware configuration 

No. Receiver Type Raw Rate Data Rate in KF Data Type  
1 NovAtel OEM6 100 Hz 5 Hz C/A, L1, L2, D1 Rover 
2 NovAtel OEM4 5 Hz 5 Hz C/A, L1 Heading 
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3 NovAtel OEM4 5 Hz 5 Hz C/A, L1, L2, D1 Base 

6.2.2 GPS Satellite availability 

With the third party GNSS post processer tool (RTKLib), the sky plot of all available GPS 

satellites during the mission is plotted (Figure 6-7). In addition, Figure 6-8 shows the GPS satellite 

availability with the 5 degree cut-off elevation angle. 

 

Figure 6-7 GPS Satellite sky plot during mission 

  

 

Figure 6-8 Number of GPS Satellites in YUMIS’s view 
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Although maximum seven different GPS satellites were observed, only four of them 

(SVPRN 13, 15, 20, 21) were persistently available (Figure 6-10) because the half of skyview 

was frequently blocked by the houses. The incurred sharp change of geometry DOPs is depicted 

in Figure 6-9.  

 

Figure 6-9 GDOP of GPS Satellites in YUMIS’s view 

           

 

Figure 6-10 GPS Satellites (carrier phase) visibility in YUMIS’s view 

6.2.3 Solution of 27 state GMIKF  
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The diagonal covariance matrices of GMI Kalman filter for the process noise vectors and 

the measurement vector were initially constructed according to the values in Table 6-2. 

Table 6-2 Initial standard deviations of process noises and measurement noises  

n
nbjσ -x 72 (m/s3) n

nbωσ  -x 300 (⁰/s2) 

n
nbjσ -y 72(m/s3) n

nbωσ  -y 300 (⁰/s2) 

n
nbjσ -z 72(m/s3) n

nbωσ  -z 300 (⁰/s2) 

GNSS C/A 0.5 (m) GNSS L1 phase 0.02 (m) 

GNSS Doppler 0.1 (m/s) GNSS L2 phase 0.02 (m) 

Gyroscope- x 0.75 (⁰/s) Accelerometer –x  0.16 (m/s3) 

Gyroscope- y 0.75 (⁰/s) Accelerometer –y  0.16 (m/s3) 

Gyroscope- z 0.75 (⁰/s) Accelerometer –z  0.16 (m/s3) 

DGPS heading 0.5 (⁰)   

6.2.3.1 Position, velocity and acceleration 

Figure 6-11 and Figure 6-12 present the 1σ accuracy of position, velocity solution. The 

position accuracy in up component was the worst while the accuracies in east and north 

components stably maintained at a few cm level during the most of the road test (Figure 6-11). 

The velocity accuracy in Figure 6-12 shows the similar pattern as in Figure 6-11 where the 

accuracy in up component is the worst compared to the other two components.   
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Figure 6-11 Position solution 1σ accuracy  

 
Figure 6-12 Velocity solution 1σ accuracy in ENU frame 

Figure 6-13 shows the body acceleration solution with ±3σ boundaries. The fluctuations of 

the accelerations in right and forward axes are obviously stronger than the up axis because of the 

land vehicle’s dynamics resides in horizontal direction. 
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Figure 6-13 Acceleration solution in body frame 

In order to verify the solution of GMIKF, one reference positioning solution is computed 

using the third party GNSS navigation software (RTKLIB) which also reaches the cm level 

positioning accuracy with the same dataset. Two positioning solutions are compared in ECEF 

frame and their differences are plotted in Figure 6-14 along with the RTKLIB solution’s standard 

deviation (1σ). Through Figure 6-14, the GMIKF’s success is proved since the differences are 

well within the 1σ boundaries of the RTKLIB solution. 
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Figure 6-14  Position solution difference against RTKLIB reference solution  

6.2.3.2 Attitude and angular rates 

Figure 6-15 shows the solutions of  the pitch and roll angles with their 3σ accuracy bounds. 

The accuracies of the pitch and roll angles are well maintained within 0.5 degree except during 

three static periods, in which the growing accuracy bounds are seen because: a)  the weak 

obervabilities of pitch and roll angles during static motions;  and  b) no special handling in 

GMIKF to adapt the stationary status (e.g. apply the smaller variances of process noises, or 

enforce any zero velocity update etc.). 
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Figure 6-15  Pitch and roll solution and their 3σ accuracy bounds 

 
Figure 6-16  Heading solution (top) and its 1σ accuracy (bottom) 
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Figure 6-16 presents the heading solution (top) along with its 1σ standard deviation (bottom). 

Due to the contribution of the external DGPS heading measurements, the heading solution 

maintained throughout the whole road test at good accuracy except at a few epochs when DGPS 

heading measurements were not available.  

Furthermore, the angular rate solutions is shown in Figure 6-17. The angular rates on both 

the right and the forward axes show the stable estimates close to zero. In contrast, because of the 

sharp turnings of the land vehicle, the Up axis presented much stronger signals than the other two 

axes. 

 

Figure 6-17 Angular rate solution in body frame 

6.2.3.3 IMU biases solution 

Figure 6-18 and Figure 6-19 present the estimated biases for three gyroscopes and three 

accelerometers, respectively. In both figures, the estimated biases are stabilized. According to the 
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±0.75 ⁰/s while the ones associated with the accelerometers shall be within ±0.15 mg, which 

are well satisfied with the bias estimates in GMIKF. 

 
Figure 6-18  Gyroscope biases in three axes with their 3σ bounds 

 
Figure 6-19  Accelerometer biases in three axes with their 3σ bounds 
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6.2.3.4 IMU scale factors solution 

Figure 6-20 and Figure 6-21 present the results of six scale factor drifts regarding three 

gyroscopes and three accelerometers. Their stable estimates in both figures demonstrates the good 

quality of the IMU440CA and the success of the GMIKF. When the vehicle is stationary, these 

drifts nearly stay the same. But their standard deviations are increased because the observabilities 

of scale factor drifts are closely related to the vehicle’s motion.  

 
Figure 6-20  Scale factor drifts in three gyroscope axes  
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Figure 6-21  Scale factor drifts in three accelerometer axes 

6.2.3.5 Measurement residuals in GMIKF 

Although the popular analysis of the system innovation series in Kalman filter can validate 

the success of the Kalman filter, the measurement residuals and the residuals associated with the 

process noise components were used in this section because the author wants to separately check 

the correctness of system model, measurement model and stochastic models of the process and 

measurement noises in Kalman filter since one failure in any of three models will cause misshaped 

residuals.  

In this section, the innovations and residuals corresponding to the virtual zero process noise 

measurements and the raw measurements from sensor are plotted to verify the success of the 

GMIKF. The residuals for two types of process noise measurements (jerk and angular 

accelerations) are plotted in Figure 6-22 and Figure 6-23. As well, the innovation and residuals 

for raw sensor measurements are shown in Figure 24 – Figure 30 including seven types of 
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measurements: C/A code, L1 phase, L2 phase, Doppler (L1 band), gyroscope’s angular rates, 

accelerometer’s specific force and DPGS heading.  

Residuals of process noise components as the zero mean virtual measurements 

The formulas to calculate the residuals associated with each of the components in the process 

noise vector can be found in Section 2.7.2 and Section 5.1.1 after Wang [1997], to which the 

traditional error analysis in the integrated navigation would not access. 

 
Figure 6-22 Residuals of the virtual zero jerk process noises 

Figure 6-22 and Figure 6-33 show the residuals of the virtual zero process noise 

measurements. Although the actual physical jerks and angular acclerations are not normal 

distributed random errors, they are treated so in the GMIKF. Hence, a set of numbers is also 

needed to describe their stochastic properties. In both figures, the initial conservative variances 

for jerk and angular acceleration process noises succeed in their job because the amplitudes of 

corresponding residuals are consistently smaller than the initial values, which also hints that there 

is still room for the further tuning of variance of these noise components. 
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Figure 6-23 Residuals of the virtual zero angular acceleration process noises 

Residuals of DD GPS measurements  

All raw GPS sensors took part in the GMIKF in the form of the double differenced 

measurements between the base station and the GPS rover receiver with respect to the reference 

GPS satellite which is SVPRN 15 in this section. Regarding each type of GPS measurements, the 

system innovations and residuals of six non-reference GPS satellites (SVPRN 13, 18, 20, 21, 24 

and 29) are depicted in Figure 6-24 – Figure 6-27. The close match between innovations and 

residuals imply the fact that the predicted states well fit the measurement model. 
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Figure 6-24  System innovations and residuals of GPS satellite C/A code measurements  

 
Figure 6-25  System innovations and residuals of GPS satellite Doppler measurements 
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Figure 6-26  System innovations and residuals of GPS L1 band carrier phase measurements 

 
Figure 6-27  System innovations and residuals of GPS L2 band carrier phase measurements 
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Residuals of IMU measurements 

 
Figure 6-28  System innovations and residuals of gyroscope measurements   

 
Figure 6-29  System innovations and residuals of accelerometer measurements 
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their prediction, which is directly caused by the high level of process noises and the relatively 

small measurement noises. On the other hand, the three plots in Figure 6-29 show a much close 

pair of innovations and residuals compared to the ones in Figure 6-28, which implies that the 

predicted accelerations nicely fit the measured counterparts in all three axes. 

Residuals of DGPS heading measurements 

 
Figure 6-30  DGPS heading measurements innovations and residuals in GMIKF 

Similar to the IMU accelerometer measurements, the Figure 6-30 shows that DGPS heading 

measurements are definitely absorbed into GMIKF for the heading estimation because the 

amplitudes of the residuals are consistently smaller than that of the innovations. 
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order to handle the intermittent measurement losses and associated rapidly growing errors. Based 

on the experiences gained from this section, the key aspects of tuning the stochastic model tuning 

in Kalman filter are summarized as follows:  

1) Identify the measurement blunders in Kalman Filter and use them to monitor the fitness of 

the Kalman filter. 

2) Adjust (increase) the variances when the numbers of blunders are significantly increased. 

3) Examine the changes of the state solution resulted from the new variance components in 

order to avoid solution divergence. 

4) Avoid over-tuning the components with non-consistent stochastic property, for example, 

the jerks as the process noise components in determination of the land vehicle’s trajectory. 

5) Do not tune the noise components with small redundant indices. 

Because the goal of the VCE process is to achieve the best balance between the accuracy 

and the robustness for GMIKF, the finalized VCE results for all noise components in GMIKF are 

relatively conservative compared to the ones directly derived from the VCE algorithm outputs.  

6.2.4.1 Iterative VCE tuning results 

This section first shows the changes of process and measurement noise configurations in 

GMIKF between the initial settings and the final results (Table 6-3). Then the VCE results of the 

first and final iteration are tabulated in Table 6-4 - Table 6-7 while the intermediate results are 

plotted in the figures for the better vision effects. 
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Table 6-3 Standard deviations of process and measurement noises in GMIKF (1σ) 

 First Final  First Final 

Jerkx 72 (m/s3) 40 (m/s3) xω (angular acceleration) 300(⁰/s2) 30 (⁰/s2) 

Jerky 72(m/s3) 40 (m/s3) yω (angular acceleration) 300(⁰/s2) 30 (⁰/s2) 

Jerkz 72(m/s3) 62 (m/s3) zω (angular acceleration) 300(⁰/s2) 30 (⁰/s2) 

DD GPS C/A 0.5 (m) 0.15 (m) DD GPS L1 phase 0.02 (m) 0.003 (m) 

DD GPS Doppler 0.1 (m/s) 0.02 (m/s) DD GPS L2 phase 0.02 (m) 0.003 (m) 

Gyroscope- x 0.75 (⁰/s) 0.15 (⁰/s) Accelerometer –x  0.16 (m/s3) 0.1 (m/s3) 

Gyroscope- y 0.75 (⁰/s) 0.12 (⁰/s) Accelerometer –y  0.16 (m/s3) 0.1 (m/s3) 

Gyroscope- z 0.75 (⁰/s) 0.11 (⁰/s) Accelerometer –z  0.16 (m/s3) 0.1 (m/s3) 

DGPS heading 0.25 (⁰) 0.12 (⁰)    

Table 6-4 The VCE tuning results for the process noises in GMIKF (first iteration) 

 Jx Jy Jz xω  yω  
zω  

iσ (initial s.t.d.) 72 72 72 300 300 300 

Ri (redundant index) 0.9 0.9 0.9 0.89 0.89 0.9 
2
0 iσ̂ (variance components) 0.049 0.034 0.19 0.01 0.004 0.002 

=iσ~ ×iσ i0σ̂ (next variances) 15.94 13.28 31.28 30 18.97 13.42 

Table 6-5 The VCE tuning results for the measurement noises in GMIKF (first iteration) 

 
x
ωσ  z

ωσ  y
ωσ  x

aσ  y
aσ  z

aσ  caσ  
1Lσ  2Lσ  1Dσ  hdσ  

iσ  0.75 0.75 0.75 0.16 0.16 0.16 0.5 0.02 0.02 0.1 0.5 

Ri 0.05 0.05 0.05 0.037 0.04 0.04 0.7 0.8 0.8 0.7 0.9 
2
0 iσ̂  - - - - - - 0.36 0.028 0.033 0.038 0.12 

Blunder 
number 0 0 0 0 0 0 102 2 2 12 6 

iσ~  0.75 0.75 0.75 0.16 0.16 0.16 0.16 0.003 0.004 0.019 0.17 

Table 6-6 The VCE tuning results for the process noises in GMIKF (final iteration) 

 Jx Jy Jz xω  yω  
zω  

iσ  40 40 62 30 30 30 
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Ri  0.9 0.9 0.9 0.7 0.8 0.83 
2
0 iσ̂  0.12 0.3 0.25 0.27 0.15 0.06 

iσ
~  13.86 21.91 31 15.59 11.62 7.348 

Table 6-7 The VCE tuning results for the measurement noises in GMIKF  (final iteration) 

 
x
ωσ  z

ωσ  y
ωσ  x

aσ  y
aσ  z

aσ  caσ  
1Lσ  2Lσ  1Dσ  hdσ  

iσ  0.15 0.12 0.11 0.1 0.1 0.1 0.16 0.003 0.003 0.02 0.12 

Ri 0.15 0.15 0.09 0.05 0.05 0.02 0.7 0.8 0.8 0.9 0.934 
2
0 iσ̂  0.39 0.23 - - - - 0.8 0.72 1.12 1.2 0.92 

Blunder 
number 300 118 0 69 38 120 36 42 42 20 16 

iσ~  0.095 0.058 0.11 0.1 0.1 0.1 0.15 0.003 0.003 0.022 0.12 

According to Section 5.2, the theoretic optimal unbiased estimates for the variances in a 

Kalman filter are obtained until all of the estimated variance components of unit weight are close 

to 1.0. However, in order to tolerate the vast changes of the dynamics, the variance components 

of the process noise components in GMIKF hardly approach this optimal criterion. In other words, 

the strict (small) variances of the process noises will harm the filter’s fault-tolerant ability. In 

summary, the equality condition has to be compromised to certain extent so that the algorithm’s 

robustness and performance can be well balanced. Therefore, in Table 6-7, although the variance 

components of the GPS related measurements are approaching 1.0, the incurred blunders are also 

greatly increased compared to those in Table 6-5. 
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Figure 6-31 Iterative VCE results for jerk and angular acceleration noises 

 

 
Figure 6-32 Iterative VCE results for gyroscope and accelerometer measurements 

 
Figure 6-33 Iterative VCE results for DGPS heading measurements 
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Figure 6-34 Iterative VCE results for DGPS heading measurements 

As listed in Table 6-6 and Table 6-7, the iterative VCE process for GMIKF ends with a set 

of variances balancing the solution performance and the system’s robustness. The large variations 

of the variance estimates in above four figures (Figure 6-31 - Figure 6-34) reflect the conflicts 

between the enhanced solution standard deviation and the weakened system error tolerance 

capabilities.  

As mentioned in Chapter 5, the final VCE results obtained from one dataset can not represent 

the universal properties of those noise components. For the future application of the variances of 

the noise components in Table 6-7 in various datasets, it is recommended that the set of 

configurations should be moderately applied because the system robustness is of paramount 

importance. 

6.2.4.2 Histograms comparisons 

After the corresponding residuals are computed through (2.7.13 – 2.7.16), this section 

demonstrates the changes of the residual histograms for the virtual process noise measurements 

(jerk and angular acceleration) and all raw measurements used in GMIKF including DD GPS 

measurements and DGPS heading measurements.  
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Figure 6-35 Jerk residual histograms (first vs. final iteration) 

                

Figure 6-36 Angular acceleration residual histograms (first vs. final iteration) 

Figure 6-35 and Figure 6-36 present the histograms of the standardized residuals of six 

virtual zero process noise measurements based on 336,572 residual samples. According to 2.7.15, 

the residuals were computed along with other raw measurement residuals. Considering that both 

jerk and angular acceleration are the properties of the moving vehicle’s dynamics, the variance 

component estimation pauses while the vehicle is stationary. Although the estimated variances of 

the jerk and the angular accelerations are much moderate ( 1≠2
0 iσ̂ ), the residual histograms still 

visually match the standardized normal distribution curve much better than their slim column 

counterparts resulted from the initial variance configurations before the VCE process was 

introduced. 
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Figure 6-37 GNSS L1 residual histograms (first vs. final iteration) 

           

Figure 6-38 GNSS L2 residual histograms (first vs. final iteration) 

          
Figure 6-39 GNSS D1 residual histograms (first vs. final iteration) 
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In the above figures, all histograms (except the GPS measurements for SVPRN 29) resulted 

from the final iteration unanimously fit the normal distribution PDF curves better than the ones 

from the initial iteration. The over optimistic measurement residuals for SVPRN 29 are mainly 

caused by two facts: 1) the number of measurement samples is relatively small due to its short 

time availability according to Figure 6-10; and 2) almost all measurements with SVPRN 29 were 

sampled while the vehicle was in stationary. As a result, the optimistic measruement residuals 

collected in the very beginning of the trajectory distort the residual histograms. 

Histograms of IMU measurement residuals 

      
Figure 6-40 IMU gyroscope residual histograms (first vs. final iteration) 

      

Figure 6-41 IMU accelerometer residual histograms (first vs. final iteration) 
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achieve 0.05 m/s2 for the accelerometers (Figure 6-32), they are not applicable to GMIKF because 

the vibrations of the vehicle bring too much noises into the accelerometers. Also, the vibrations 

might trigger extra noises in IMU440’s gyroscopes’ measurements because the MEMS-based 

IMU are sensitive to the vibrations. On the other hand, the VCE results show that the IMU440CA 

does not exert its maximum power when the conservative specifications from manufacturer are 

applied. 

Histograms of DGPS heading measurement residuals 

                 

Figure 6-42 DGPS heading residual histograms (first vs. final iteration) 
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targeting on YUMIS system (land vehicle environment) regarding their stochastical properties of 

the process and measurement noises. 
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7. Conclusion and future work 

7.1 Conclusions 

A breakthrough in multisensor integration for kinematic positioning and navigation has been 

demanded with the development of the modern sensor and computer technologies. Hence, three 

principal research objectives were set in Section 1.2, which are 1) Design, develop and validate a 

hard real-time multisensor system; 2) Derive and develop a GMIS-based Kalman filter to estimate 

navigational parameters with the full usage of a priori knowledge of a rigid body’s kinematics; 

3) Tune and evaluate the stochastic models of all random error sources by means of the variance 

component estimation (VCE) technique for all participating sensors, specifically including 

inertial sensors. Accordingly, the essential outcomes achieved in this research are summarized 

below. 

As the first contribution documented in Chapter 3, York University Multisensor Integrated 

System (YUMIS), a kinematic positioning and navigation system built upon Linux with Real 

Time Application Interface (Linux/RTAI), was successfully developed to provide the hardware 

platform for acquiring real geospatial data from multiple positioning and orientation sensors, such 

as the low-cost IMU units, OEM GNSS sensors, image sensors and etc. YUMIS exemplifies a 

low-cost yet high performance hardware platform stereotype for multisensor integration and real-

time software development.  

1) As the pre-requisite component in YUMIS system, the Linux/RTAI is successfully 

applied in YUMIS system which meets the stringent requirements upon the high 

performance real-time multitask management and the flexibilities of system expansion. 
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2) The generic software architecture proposed in YUMIS provides an easy solution for the 

multisensor integration, e.g., data collection, data time-tagging, data store and retrieval.  

3) YUMIS based on Linux/RTAI offers the convenience of real-time software development 

for multisensor integrated inertial positioning and navigation by using the LXRT 

technique which allows the smooth conversion of a normal Linux application to a 

RTAI/LXRT application at the cost of a few lines of source code. 

4) YUMIS lays the foundation for the follow-up systematic training of highly qualified 

personnel devoted to the data processing in multisensor integration relying on the 

expensive commercial products, who are usually discouraged by the complicated 

hardware environment setup and time consuming device driver development. 

Secondly, as the most paramount contribution of this research, a novel generic multisensor 

integration (GMI) strategy for a multisensor integrated kinematic positioning and navigation 

system is proposed, in which a generic 3D kinematic trajectory model is developed as the system 

model and the strong dependence on the a priori error characteristics of inertial sensors in the 

conventional integration mechanism is cleared. With the conventional integration strategy, a 

GNSS (Global Navigation Satellite Systems) aided inertial positioning and navigation system 

(GNSS/INS) equipped with a low-cost IMU suffers from its low and unstable performance. The 

competitive advantages with the GMI strategy over the existing implementations are exhibited as 

follows: 

1) GMI strategy maintains the kinematics of a moving platform in the core system model 

over an appropriate time interval so that the solution drifts due to IMU errors can be 

efficiently mitigated in the GNSS degraded or denied environments. In addition, the core 

system model can be helpful to reject the GNSS pseudo-range measurements with large 
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multipath errors and/or the GNSS carrier phase measurements with wrong fixed 

ambiguities. 

2) GMI strategy directly integrates the individual sensors into the KF without distinguishing 

the core IMU from other aiding sensors. Hence, the direct IMU measurement updates in 

KF are made possible, which is essential for the utilization of low-cost IMUs in the high-

quality direct-georeferencing technology (DGT). In addition, the superior performance 

(solution accuracy) arises from the improvement of the overall system measurement 

redundancy upon the angular rates and accelerations. 

3) GMI strategy delivers a compact and efficient system (software) structure directly 

dealing with the navigational parameters, which streamlines the integration of all kinds 

of measurements, e.g., delta position, multiple IMUs. 

4) With GMI strategy, a thorough error analysis is enabled at the sensor level because no 

more blended error measurements involving IMU measurements are required, which is 

paramount in a survey grade DGT system.  

5) With GMI strategy, the possibility of the simultaneous estimation of variance 

components in the process and measurement noise vectors allows the investigation of 

the multisensor interoperability in terms of the sensor data accuracy. 

As the third principal contribution, the improvement (tuning) of the a priori stochastic 

models of the process and measurement noise vectors in Kalman Filer (KF) for a multisensor 

inertial navigation system as documented in Chapter 5 has been comprehensively studied in this 

research. It is known that tuning the stochastic model of random measurement errors is premised 

on the statistical independence of random errors among participant sensors, however, which does 
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not hold true in the traditional integration mechanism due to the amalgamation of the observables 

from inertial sensor and other aiding sensors. The highlights of my research on this part are: 

1) The issue of the statistical independence among sensors in a multisensor integrated 

inertial positioning and navigation system is cleared out by the usage of the GMI 

strategy. 

2) Based on the equity theory on Kalman filter and Least Squares [Wang, 1997] and the 

rigorous VCE in Least Squares after Helmert [1907], for the very first time, the posteriori 

variance component estimation in a multisensor integrated navigation system succeeds 

in simultaneous estimation of all independent individual raw measurements (e.g., IMU 

and GNSS measurements) and all independent individual components in the process 

noise vector (e.g., jerks and angular accelerations in GMIKF). 

3) Through the timely accumulation of the epoch wise measurement redundancy indices 

and measurement residuals, the simplified VCE in Kalman filter after the rigorous 

Helmert method enables a thorough error analysis at the sensor level under both the real-

time and the post-processing environment. 
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7.2 Future works 

In terms of the further researches on the GMI strategy in the multisensor integrated inertial 

positioning and navigation, the suggestions are: 

1) In the current research, only one IMU unit is applied in consideration of the simplicity 

and focus of the research on core issues in GMIS.  However, the GMIS allows for the 

integration of the multiple IMU units without major changes to the integration strategy. 

Therefore, the natural expansion of the GMIS is to replace single IMU unit with the 

multiple units to achieve better balance between performance and cost. 

2) Automatically calibrate low-cost IMU unit using the generic multisensor integration 

strategy in the realistic working environment or on well-designed test sites to discuss the 

inertial sensor performance changes. 

3) Investigate the performance of GMIKF with reduced state components to relieve the 

heavy computation load, e.g., gyroscope's measurements. 

4) Substitute the Euler angle with quaternion technique to achieve better linearity in system 

model to enhance the EKF’s performance. 

5) Apply pre-filter technique [Joglekar, et al, 1975] to reduce the computation cost while 

maintaining the performance. 

6) Apply delta position measurements for the low-cost positioning and navigation system, 

which can be derived from the LiDAR point clouds, the time differenced GNSS carrier 

phase measurements, and etc. 

7) Combine the advanced non-linear filters (e.g. unscented KF) with the GPU computing 
technique to improve both the solution accuracy and the computation speed.  
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