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émanant des établissements d’enseignement et de
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ABSTRACT 

This paper presents a review of the state of the art and a novel classification of current vision-based localization 

techniques in unknown environments. Indeed, due to progresses made in computer vision, it is now possible to consider 

vision-based systems as promising navigation means that can complement traditional navigation sensors like Global 

Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS) [1]. This paper aims to review techniques 

employing a camera as a localization sensor, provide a classification of techniques and introduce schemes that exploit the 

use of video information within a multi-sensor system. In fact, a general model is needed to better compare existing 

techniques in order to decide which approach is appropriate and which are the innovation axes. In addition, existing 

classifications only consider techniques based on vision as a standalone tool and do not consider video as a sensor among 

others. The focus is addressed to scenarios where no a priori knowledge of the environment is provided. In fact, these 

scenarios are the most challenging since the system has to cope with objects as they appear in the scene without any prior 

information about their expected position. 

1 Introduction 

Localization can be defined as the process of estimating an object pose (position and attitude) relative to a reference 

frame, based on sensor inputs. The localization system performance is evaluated based on its accuracy defined as the 

degree of conformance of an estimated or measured information at a given time to a defined reference value which is 

ideally the true value [2]. 

Common localization architectures usually rely on GNSS whose accuracy is between 1 and 3 metres in optimal 

conditions. Centimetre-level positioning accuracy could be reached with GNSS-RTK (Real time Kinematic) by 

processing GNSS carrier-phase measurements [3]. Nonetheless, GNSS localization may be inaccurate or not feasible in 
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some conditions such as in urban canyons or indoor environments. In urban canyons, the presence of buildings hindering 

the reception of GNSS signals could degrade dramatically the performance because of poor constellation geometry or 

presence of multipath and fading [4]. Furthermore, localization is not feasible when less than four satellites are available.  

The integration of GNSS with inertial sensors has been the principal solution to improve localization in difficult 

environments, as the use of inertial sensor measurements allows gapping GNSS outages. However, in fusing inertial 

measurements, the accuracy degradation in time due to INS drifts has to be accounted for. These drifts depend on the INS 

quality. The choice of INS is based on the trade-off between performance and cost (drifts of less than 1.8 km in a day, or 

equivalently less than 1.25 metres in one minute, costs around 1 million euros [5], whereas low-cost MEMS (Micro-

Electro-Mechanical System) INS could drift several hundred metres in one minute [6]).  

Therefore, other sensors have been considered to find a compromise between accuracy and cost, even in challenging 

environments [7]. Recently, it has been proven that vision could be a promising navigation sensor that provides accurate 

localization [8]. Indeed, cameras have the advantage of providing an extensive amount of information while having low 

weight, limited power consumption, small size and reasonable cost [9]. In [8], the assessment of a stereo pair of cameras 

performance in realistic ground-vehicle scenarios over a few hundred metres shows a few metres accuracy in positioning 

and sub-degree accuracy in heading angle recovery. Undergoing studies are investigating ways video could be used in 

localization and its contribution in positioning accuracy improvement. 

This paper aims to review and classify recent contributions to the vision-based localization field, focusing on both indoor 

and outdoor unknown environments (no a priori information provided) since it represents the most challenging use-case 

in which vision techniques are used. A comparison of vision-based techniques in terms of inputs, outputs and 

performance is addressed in order to help deciding, given a specific application, the most appropriate approach as well as 

ways to innovate. 

Section 2 introduces fundamentals of vision-based localization. Section 3 describes existing classification criteria of 

vision-based localization techniques and proposes a new classification. The proposed classification is based on whether 

vision is used as a standalone sensor or as an element of an integrated scheme, in order to highlight the advantages and 

drawbacks of each solution. The standalone vision-based localization techniques are described in Section 4. Section 5 

describes existing ways of fusing vision with other sensors and the main fusion results. 

2  Fundamentals of Vision-based Localization 

Before describing the localization process, it is essential to introduce the principal reference frames. 
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2.1 Frames definition 

Table1 summarizes the different frames characteristics. 

 

Table 1 : Frames definition 

The different frames are illustrated in Figure 1. 

 

Figure 1 : Frames definition 
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2.2 Pinhole Camera Model 

To estimate the 3D camera motion from 2D images, vision techniques are usually based on the Pinhole Camera Model 

described in Figure 1.c. 

The relationship between the coordinates of a physical 3D point   [     ]  expressed in the world frame and its 

projection in the image plane   [   ]  is given by: 

  ̃    ̃ (1) 

Where   is a scale factor,   ̃  [     ]  and  ̃  [       ]  are the homogeneous coordinates of   and  , and   is a     projection matrix defined up to a scale factor. The homogeneous coordinates are used in order to express the 

projection as a linear transformation.  The projection matrix depends both on camera intrinsic and extrinsic parameters. 

Intrinsic parameters do not depend on the camera location but rather on the internal camera parameters such as the focal 

length  , the number of pixels per distance unit in u and v directions    and   , the skew factor    which equals zero if 

and only if the u and v directions are perfectly orthogonal, and the image frame coordinates of the intersection between 

the optical axis and the image plane called the principal point         . These parameters define the Calibration 

Matrix   of the camera expressing the transformation between the camera frame and the image frame, given by: 

  (               ) (2) 

The camera calibration process is based on the estimation of  , and is generally performed offline. Conversely, the 

camera extrinsic parameters depend on the camera location in the world frame and correspond to the Euclidean 

relationship between this frame and the camera frame. This relationship is defined by a     rotation matrix   and a     translation vector   expressed in the world frame. This means that given the coordinates    and    of a 3D point   in the camera and world coordinates frames respectively, then: 

         (3) 

Since       , then: 

               (4) 
 

Therefore, the projection matrix of a world point in the image plane is given by: 

       |           (5) 

where  |   is the matrix concatenation operator.  
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3 Existing and new classifications of vision-based localization techniques  

Progresses made in vision-based localization for mobile robots up to 2008 were widely surveyed by [10] and [11]. In 

[10], an analysis of primary vision-based localization techniques for mobile robots up to the late 1990’s is proposed, and 

vision-based techniques are classified into two main categories: Indoor Localization and Outdoor Localization. Indoor 

Localization is in turn subdivided into Map-based Localization and Mapless Localization. Map-based Localization 

consists in providing the device with a sequence of landmarks (also called features or interest points) forming a map and 

expected to be found during localization. This process is performed in four steps: acquiring camera images, detecting 

landmarks in current images, matching observed landmarks with those contained in the database according to some 

specific measurement criteria and finally calculating the pose as a function of the observed landmarks and their location 

in the database. On the other hand, Mapless Localization includes all systems in which Localization is achieved without 

any prior description of the environment. The localization process is performed based on elements observed in the 

environment and does not require the creation of a map. Since Indoor Mapless localization and Outdoor localization 

techniques were not mature enough in the late 1990’s, these techniques were further detailed in [11] where a different 

classification is proposed. Instead of grouping localization strategies into Indoor and Outdoor categories, this survey 

discriminates between Map-based and Mapless techniques, since some localization techniques could be adapted in both 

Indoor and Outdoor environments. Map-based Localization techniques are subdivided into Metric Map-using, Map-

building, and Topological Map-based Localization Systems. 

Metric Map-using Localization Systems are unable to map the environment and need to be equipped with it before 

navigation starts. Map-building localization systems explore the environment and automatically build its map either 

offline before navigation starts or in real time. The latter Map-building systems are based on the revolutionary technique 

that builds a map while localizing the device in an unknown environment which is called Simultaneous Localization and 

Mapping (SLAM) [12] [13] [14] [15] [16] [17].  

Topological Map-based Localization Systems [18][19] [20] represent the environment graphically. A topological graph 

consists of Nodes and Links. Figure 2 presents an example of a topological representation of an environment described in 

[19]. 
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Figure 2 : Apartment environment graph [19] 

In [18], an omnidirectional camera is used to create a topological map of the environment during a training phase. Nodes 

are images of characteristic places and links are sequences of various consecutive images between two nodes. During 

navigation, the position is determined by matching the online image with previously recorded images.  

Mapless Localization is also subdivided into two sub-categories according to [11], which are Optical Flow (OF) and 

Feature Tracking (FT) techniques, described in Section 4.1. 

A different vision-based localization techniques classification is proposed in [21]. It distinguishes between Global (also 

called Absolute) localization and Local (also called Incremental or Relative) localization techniques. In global techniques 

a vehicle can be localized without any prior knowledge about its position. Global standalone vision-based localization 

techniques can only be done if an image database is provided. The device pose is estimated by comparing the current 

image with a previously generated image database [21] [22]. However, with local techniques it is assumed that the initial 

device location is approximately known. The current location is calculated incrementally based on the motion estimation 

deduced from comparing the current image to previously captured images. 

Vision-based techniques are also classified in [23] according to the vision sensor configuration. Most systems are based 

on a single (monocular) camera [12] [16] [17] [24] [25] [26] or two cameras. In this case, the cameras are generally 

mounted so that their fields of view overlap and form a stereo or binocular camera [15] [27] [28] [29]. With a monocular 

camera, motion parameters are provided up to a scale factor. The scale factor is the result of the camera 3D-2D 

transformation. Indeed, a 2D point in the image plane is the projection of an infinite number of 3D world points, as 

illustrated in Figure 3.a. Consequently, given a 2D image point, it is not possible to identify the corresponding world 

point using a single camera. To overcome the scale factor problem, binocular cameras are used. This allows finding the 

3D coordinates of the world point using the triangulation technique illustrated in Figure 3.b, based on the knowledge of 

the baseline between the two cameras. However, the disadvantage of stereo cameras compared to monocular cameras is 

mainly due to the additional software and hardware cost. In addition, in large-scale environments, the images captured by 

the camera might contain objects placed too far. Processing these images does not allow recovering the depth values 
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unless the stereo camera baseline is of few metres [30]. This is generally not feasible in the case of small platforms such 

as mini Unmanned Aerial Vehicles. 

 

Figure 3 : single and stereo camera 3D – 2D transformation 

Trinocular (three cameras) configurations also exist but are mainly used in underwater vehicle localization given the 

difficulties encountered in underwater environments [31]. Moreover, omnidirectional cameras can be used to improve 

localization performance [18] [24], since omnidirectional vision can overcome the drawbacks of a limited field of view 

and the short-term feature tracking of traditional cameras by using lenses, mirrors or combinations of cameras to view 

large surrounding areas. Furthermore, these cameras improve localization accuracy by reducing the perceptual aliasing, 

increasing robustness to occlusions and decreasing sensitivity to noise w.r.t. traditional cameras [32]. Optical scanning 

systems using optical laser measurements are also used in localization as detailed in [33]. These systems have the 

advantage of operating in poor illumination. 

Localization techniques depend also on the type of vehicle to localize. Indeed, estimating an Aerial Vehicle pose [34], 

which usually has a six Degrees of Freedom (DoF) motion (three for rotation and three for translation), is quite different 

from localizing a Ground Vehicle for which assumptions can be made to reduce the number of DoF, hence simplifying 

the localization process and increasing the accuracy. For example, in [24] the Ackermann Steering principle describes 

ground vehicle motion by two DoF, namely the rotation angle and the radius of curvature instead of six.  

Vision-based localization techniques depend also on the way the camera is mounted on the vehicle to localize.  For 

ground vehicles, there are four possible installations: a forward-looking camera [25], a downward-facing camera [26], a 

down-tilted camera [35] [30] and an upward-looking camera. The forward-looking camera provides a high number of 

landmarks thus allowing good motion estimation accuracy, if landmarks are close to the camera. However, in large-scale 

environments, the depth information is badly recovered. Additionally, in poor illumination, this method is not feasible. 

These problems are overcome using a downward facing camera looking at the ground texture and a light source next to 

the camera. However, downward-facing camera performance is degraded in high dynamics and may not provide a 

sufficient number of landmarks. The tilted camera provides a larger field of view than the downward-facing camera and 
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captures the ground texture, but captures the vehicle shadow which looks stationary and provides erroneous information 

about the vehicle motion. Upward-looking cameras are mainly used in indoor environments and exploit the 

characteristics of this environment such as corners, lamps and door features to localize the robot as explained in [17]. 

All previous classifications deal with vision as a standalone localization tool. However, previous classifications did not 

address an important category of localization techniques using visual information. Indeed, the use of visual information 

within a multi-sensor system is increasingly studied. This sensor integration benefits from the advantages of the different 

sensors used in the integration scheme and compensates their weakness as described in [36] [37] [38] [39] [40]. This is 

why, in this paper, our classification is based on the use of the vision sensor as the only localization sensor or as an 

element of a multi-sensor system as explained in Figure 4. This classification aims to understand the principle of vision-

based localization, by comparing the techniques in terms of inputs, outputs, performance, limitations of using only vision 

for localization and the possible solutions found in the literature to overcome these limitations, namely sensor fusion. 

 

Figure 4 : Proposed classification of vision-based localization techniques 

4 Vision as a standalone localization tool in unknown environments 

As described above in [11], the main techniques used to localize a device in unknown environments are techniques with 

no prior information about the environments. This is why, position estimation in such environments using only a camera 

are based on the Dead-Reckoning principle. The dead-reckoning position solution is defined in [5] as the sum of a series 

of relative position measurements between consecutive images. Dead-reckoning measures the pose change by comparing 
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two successive images taken from two different places as the device moves, and adds this change to the previous pose to 

obtain the current pose. This principle is called ‘Visual Odometry’ (VO) in the computer vision community and is 

defined as the process of incrementally estimating a device pose by examining the changes that motion induces on 

images taken by its on-board cameras. Pose estimation is performed w.r.t. the world frame and requires the knowledge of 

the initial pose. We deduce, given this principle and the previous classification criteria, that vision-only position 

estimation is a local localization technique according to [21]. It is based on either SLAM techniques, which aim to 

estimate the camera pose jointly with reconstructing the 3D scene by estimating the location of the observed features, or 

Mapless techniques, which only estimate incrementally the camera pose, namely OF and FT techniques, according to 

[11].  

However, although OF and FT techniques aim to estimate the change in position and attitude between images, they can 

also include a reconstruction of the 3D scene. Therefore, these techniques may be used as part of the SLAM process and 

cannot always be considered Mapless techniques. Consequently, rather than distinguishing Map-based and Mapless 

Techniques, our classification distinguishes between VO that aims to estimate only the camera pose according to the 

displacement measured from a sequence of camera images without reconstructing the 3D scene, and SLAM that accounts 

for the correlations existing between camera pose and 3D points observed by the camera and estimates a map of the 

environment jointly with the camera pose inside this map. 

To process VO or Visual SLAM, some assumptions have to be made. First of all, the environment must be sufficiently 

illuminated. Then, it is important to have static objects dominant over moving objects in the image sequence, because the 

pose estimation is based on the changes occurring in the images when the device moves, which are computed starting 

from the recognized static objects. Finally, the overlap between consecutive frames must be sufficient to gather enough 

information about the displacement. 

4.1 Visual Odometry 

VO generally relies on 3 main steps: establishing matches between two frames, removing outliers and estimating the 

motion between the two frames. 

- Establishing matches 

Matching two frames may be performed either by OF or by FT. FT is considered by [41] as a sparse OF where the 

considered pixels are selected wisely. According to [41], FT is preferable to OF since the pixel selection provides more 

robustness against noise. 
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Optical Flow 

OF is the apparent motion of features in a sequence of images. When the device moves, static features appear to be 

moving with respect to the device. The OF between two consecutive frames is represented by a set of vectors, one for 

each pixel, where their norm depends on the motion speed and their directions represent the movement of the 

corresponding pixel in consecutive images. In the monocular case, the norm of these vectors is estimated up to a scale 

factor. To estimate OF at all pixels, the ‘Intensity Constancy’ assumption, which states that the intensity of a small image 

region remains constant with time, is used. This assumption is formulated by: 

                      (6) 

where        is the     point intensity at time epoch   and       is the displacement in the image plane of this 

point between   and    . Many approaches have been proposed in the literature to solve the equation and find the 

displacement       [42]. This vector is then converted from the image plane to the camera frame and afterwards to the 

world frame. One method to derive odometry using OF was presented in [35]. This method uses a single camera mounted 

on top of a robot and tilted downwards to film the ground. The images taken by this camera are sub-divided into three 

regions: ground, horizon, and sky. The OF vectors calculated from the ground region estimate robot translational motion, 

those calculated from the sky region estimate the rotation and those near the horizon are discarded. 

Feature Tracking 

The first step in FT is to detect salient zones (corners, edges, etc.) in the current image called Features. Feature detectors 

must be sufficiently robust to a perspective change following the camera motion, in order to detect the same points in all 

images. The most widely used detectors are the Harris corner detection algorithm [43] and the Shi and Thomasi corner 

detection algorithm [44].  

Once detected, these features have to be characterized in a unique way. This second step in FT is performed through 

feature description. A feature descriptor includes all feature characteristics. A very large number of feature descriptors 

have been developed. The most widely used algorithms are Scale Invariant Feature Transform (SIFT) [45] and Speeded 

Up Robust Feature (SURF) [46]. An evaluation of feature detectors and descriptors is performed in [47].  

Besides corner points, lines are also used as features especially in indoor environments where geometrical structures 

having parallel or perpendicular edges like walls, doors and windows are widely found. Line detection can be performed 

using different techniques such as Hough transform, Iteratively-Reweighted-Least Squares-based line detection, Edge 

Linking Method or Line Fitting Using Connected Components described and compared in [48]. A method of attitude 
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estimation is described in [48], where the attitude is deduced from the change in the configuration of projected lines in 

the camera image when the camera moves. 

The final step of FT is Feature Matching which can be performed in two ways: either by extracting features from both 

previous and current images independently, then performing matching, or by extracting features from the previous image, 

predicting the regions where the features could be found in the current image and then performing matching. The former 

approach is more suitable for large-scale environments while the latter approach is generally used in small-scale 

environments. The goal of this step is to match the features that correspond to the same physical feature existing in the 

camera field of view in both previous and current image. This phase consists of computing a matching score that 

indicates the likelihood that two features correspond to the same physical feature. The features that have the highest 

scores are matched. The matching process can also be performed considering the computation of the distance between the 

descriptors of the features. In this case, the features having the smallest distances are matched. 

- Outlier Removal 

The second step of VO is a process applied to exclude wrong matches usually called outliers. These wrong matches can 

cause significant error in estimating camera motion and removing them is necessary to obtain accurate motion estimation. 

To exclude wrong matches, the algorithm usually used is RANdom SAmple Consensus (RANSAC) [49], based on the 

epipolar geometry constraint described in Figure 5.  Epipolar geometry defines the geometrical constraints between two 

different views of the same 3D point. Denoting   and     the image points corresponding to the same 3D point   viewed 

from different locations, then  ,    ,    and camera centres lie all in the same plane [50]. Based on this principle, all 

corresponding image points satisfy the coplanarity equation:  

        (7) 

Where   is called the Fundamental Matrix.   expresses the camera motion from   to    and the internal camera 

calibration. Each pair of points    and    adds a constraint on the fundamental matrix estimation. The normalized 8-point 

algorithm described in [50] is used to estimate   using RANSAC algorithm for robustness against outliers. This means 

that to estimate  , at least 8 pairs of points must be correctly matched. If the camera is calibrated, i.e. the calibration 

matrix   is known, then the coplanarity equation is given by: 

 ̂    ̂    (8) 

Where  ̂        ,   ̂        and   is called the Essential Matrix. E is the specialization of the fundamental matrix 

to the case of known calibration parameters. At least 5 pairs of points must be correctly matched to estimate E, using the 

5-point algorithm addressed in [51]. 
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Figure 5 : Epipolar constraints [50] 

- Motion estimation  

The camera motion between the current image and the previous image is estimated based on the matches established in 

the previous steps. The trajectory of the camera is recovered by concatenation of all these single movements. In the case 

of unknown intrinsic parameters, only the fundamental matrix is estimated. The camera displacement is recovered up to a 

projective transformation, and it is not possible to recover the distance ratios and the angles.  That is why, in most of VO 

applications, the camera is assumed to be calibrated, i.e. the calibration matrix K is known. In this case, the essential 

matrix is computed using equation 8. It has been shown in [50] that the essential matrix can be decomposed into a 

rotation and a translation vector such as: 

  [ ]    (9) 

Where [ ]  is the skew-symmetric matrix of   and   is the translation vector up to a scale factor [37]. 

A complete explanation of VO is detailed in [52] and [53]. 

4.2 Simultaneous Localization And Mapping (SLAM) 

The Simultaneous Localization And Mapping (SLAM) is a process by which a mobile device builds the map of an 

environment and uses this map at the same time to deduce its location in it. In SLAM, both the device trajectory and the 

location of all landmarks are estimated online without requiring any a priori location knowledge. The first SLAM 

approaches used different sensors such as Laser Scanner [54], Radar [13], Sonar [55], odometric data provided by Wheel 

Speed Sensors, or multi-sensor data fusion [36]. With the recent developments in vision-based techniques, cameras have 

been used as sensors making vision-based SLAM more and more attractive. Pioneering work on real-time visual SLAM 

has been carried out first by [12]. Contrary to VO which aims to estimate only the camera pose based on the 

displacement measured between two successive frames, vision-based SLAM accounts for the correlations that exist 
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between the camera pose and the 3D position of the observed features and is therefore more accurate than VO but 

requires a higher computational complexity. Visual SLAM uses the same techniques as VO, but differs in its aim to 

localize and build a map (determine the 3D feature positions) simultaneously, instead of only localizing. This improves 

dramatically the pose estimation accuracy since it takes into account the correlation between the observed features and 

the camera pose, but at the cost of an additional computational burden. Consequently, the choice between visual SLAM 

and VO depends on the trade-off between accuracy and simplicity in implementation.  

In [14], vision-based SLAM techniques are classified into two categories: a stereovision approach, in which 3D point 

positions are fully observed from a single position, and a bearing-only approach that exploits monocular sequences. 

Visual SLAM techniques are also subdivided according to [56] into keyframe-based SLAM and filtering-based SLAM. 

- Keyframe-based visual SLAM 

If no a priori knowledge of the scene is provided, estimation of the camera pose is completely correlated with estimating 

the 3D locations of the observed feature known as 3D scene reconstruction. This is referred to as the Structure From 

Motion (SFM) problem. The principle of Keyframe-based SLAM is to compute the camera pose given the position of the 

already reconstructed 3D map points, to reconstruct new 3D points if necessary and to refine jointly the 3D reconstructed 

points and the camera pose for some selected keyframes from the sequence. This approach is based on Bundle 

Adjustment (BA) [57] which is a nonlinear least squares refinement that aims to minimize the reprojection error defined 

as the sum of squared residuals between the points detected in the images and the reprojections obtained from the 

calculated model, thus improving the positioning accuracy. For a state of the art of BA algorithms please refer to [58]. 

In this case, instead of establishing matches between features detected in successive images called (2D/2D 

correspondence), visual SLAM establishes matches between detected features in the current image and already 

reconstructed features. This process described in [52] is called ‘3D/2D correspondence’. The motion estimation is not 

deduced from the decomposition of the essential matrix such as in VO, but rather from solving the Perspective-Three-

Point Problem. The definition and the solutions of this problem are detailed in [59]. 

- Filtering-based visual SLAM 

This approach is based on the construction of a probabilistic 3D feature map, describing the current pose estimation of 

the camera and the reconstructed 3D features that define the map, in the world frame. In addition, this approach provides 

the estimate uncertainties. The map is initialized in the beginning of the process and is updated, as the device moves, by 

Bayesian Filters such as Kalman Filter (KF), Extended Kalman Filter (EKF) or Particle Filter (PF). The probabilistic map 

is mathematically described through a state vector and a covariance matrix. The state vector comprises the concatenation 
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of the estimations of the camera pose and the 3D features. The probability density function of the map parameters is 

usually approximated by a multiple variable Gaussian distribution.  

- Optimal approach for Visual SLAM 

Ii is difficult to compare the keyframe-based SLAM and the filtering based SLAM and to conclude which approach is 

better. In fact, each approach has its advantages and drawbacks, depending on the intended application. Filtering-based 

visual SLAM has the advantage of handling easily measurement covariances, but is less accurate than keyframe SLAM 

in large-scale environments [60]. An analysis of the performance of keyframe-based and filtering-based approaches is 

performed in [56]. It revealed that the keyframe-based approach with BA is more efficient than the filtering-based 

approach in terms of accuracy and computational cost.  

4.3 Limits of standalone visual localization techniques 

It should be noted that vision-based localisation techniques suffer from the accumulated error resulting from the use of 

the dead-reckoning principle. Compared to SLAM, VO suffers from a higher drift rate because VO techniques are based 

only on the dead-reckoning principle, whereas SLAM techniques combine dead-reckoning and BA which improves the 

accuracy of the localization process, but at the cost of an increased computational burden for the optimization process.  

In addition, it is important to point out that the knowledge of the geo-referenced position of the camera is impossible if its 

initial position and attitude are not known in a global frame such as the ECEF frame. Therefore, the use of a global 

means such as GNSS becomes necessary in this case.  

Finally, when choosing a camera configuration, it should also be taken into account that the use of a single camera 

induces a scale drift within time. Indeed, it is difficult to propagate the scale factor throughout the process, since with a 

single camera, this scale is not observable during the localization process. Consequently, the scale factor is directly the 

subject of the accumulated errors and drifts within time, especially when many features disappear abruptly between two 

successive images (e.g. in sharp turns). For these reasons, the integration of vision-based systems with other sensors is 

necessary to improve the localization performances. 

5 Multi sensor localization 

The objective of sensor fusion is to improve the performance obtained by each sensor taken individually by combining 

their information. We generally consider three different ways to combine sensor measurements to estimate the navigation 

solution, which vary depending on the information exchanged by the sensors and the integration engine: loose-coupling, 

tight-coupling, deep-coupling. With loose-coupling, each sensor provides a positioning solution. The hybridized solution 
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is the combination of different solutions provided by each sensor individually. With tight and deep coupling, fusion of 

sensor information takes place before positioning solution estimation. Tight architectures combine the sensors 

information to provide a unique solution, while in deep architectures, the sensors work as a unique system and fusion is 

performed inside one of the sensors processes. To our knowledge, deep-coupling with vision aid has not yet been 

addressed. 

The most widely used filter for sensor fusion is the EKF. PF is also used to fuse visual information with other sensors. 

Visual SLAM fusion with inertial measurements using the PF has been addressed in [61] [62] [63]. In [63], a comparison 

between the EKF and the PF shows that EKF provides a higher precision. The fusion of visual information with other 

sensors could also be done within a BA framework. The following sections detail examples of visual information fusion 

with other sensors (Focus is on EKF and BA framework fusion). 

5.1 INS and Camera Fusion 

The fusion of INS and visual information, also called ‘Vision-aided Inertial Navigation’ aims to combine INS and vision 

advantages, while balancing the system drawbacks. Inertial sensors have a large measurement uncertainty when in slow 

motion and lower relative uncertainty at high velocities, while cameras can track features very accurately at low 

velocities and less accurately with increasing velocity. Furthermore, in the absence of GNSS information, the INS 

solution drifts over time that may be reduced by the vision sensor [38]. 

Starting with early work such as [64], there is now growing interest in fusing inertial and visual sensor. As explained in 

Section 4, INS/camera fusion may follow either the SLAM principle (estimation of the current camera position and 

attitude, and the 3D position of the observed landmarks jointly) or the VO principle (estimation of only the camera 

position and attitude). 

In [65] and [66], a monocular SLAM is used and a loosely-coupled approach that fuses inertial and visual data is 

implemented. The SLAM algorithm is based on a keyframe approach as described in [67]. It outputs camera poses and 

3D position of the observed landmarks up to a scale factor. These approaches estimate the scale factor by fusing the 

visual and inertial measurements through an EKF by putting the scale as an additional variable in the state vector. 

In [40], a tightly-coupled INS/binocular camera fusion is used for aircraft position, velocity and attitude estimation. This 

approach is based on the use of measurements obtained by the knowledge of the 3D position of tracked features. In fact, 

once features are identified in the current image, the system predicts where these features should appear in the next image 

based on the inertial measurements, to constrain the search space within the next image during the matching process, as 
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described in Figure 6. The state vector is given by the INS and consists of the device position, velocity and orientation 

w.r.t. the world frame. 

 

Figure 6: Feature projection [40] 

  

Once feature matches are determined, the errors between the predicted feature location and the actual feature location are 

used to correct errors in the state vector. This is achieved in [40] using an EKF described in Figure 7. In this filter, the 

locations of stationary objects are tracked and used to estimate and update the errors in the inertial navigation system. 

The inertial navigation system is, in turn, used to support the FT loop. 

 

Figure 7 : Image-aided inertial navigation filter block diagram [40] 

 

The comparison between the vision-aided INS and the standalone INS performances, carried out in [40], shows that over 

10 minutes, the use of vision measurements improves the errors by many orders of magnitude. 

A different tightly-coupled approach for vision-aided inertial navigation is proposed in [68]. To estimate the position, 

velocity and attitude of a ground vehicle, an error state EKF-based estimation algorithm for real-time navigation is used. 
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The filter state vector describes the evolving Inertial Measurement Unit (IMU) state augmented with the current estimate 

of the camera pose when an image is taken, based on the IMU pose. The measurement model expresses the geometric 

constraints that arise when a static feature is observed from multiple camera poses. The observed features are tracked 

between previous camera poses, and used to update the vehicle state. This measurement model does not require including 

3D feature positions in the state vector of the EKF thus reducing the computational complexity for real-time application. 

Experimental results show a good performance of the system since the error is of 0.31% of the travelled distance. 

In [69], a photogrammetric approach is addressed for land vehicle pose estimation. INS/stereo vision fusion is only used 

during GPS outages to reduce INS drifts. When GPS signals are available, pose estimation is performed through the 

classical GPS/INS integration and stereo vision is only used to determine 3D locations of the features in the image 

sequence exploiting the vehicle pose obtained by the GPS/INS system. When the GPS is no longer available, the pose 

parameters are computed using INS and extracted features only. In this case, 3D coordinates of the feature points are 

calculated for the last stereo frame captured before GPS outage. Upon the next image acquisition, features corresponding 

to previously triangulated features are identified and the vehicle location is updated using their position and the inverse 

3D coordinate computation. This procedure is repeated until the GPS signals become available again. Simulations carried 

out show that in one minute GPS outage, errors from pure INS solution grow up to 70 meters, while errors after 

integrating INS data and image information are below 1.9 meters. 

5.2 GNSS and Camera Fusion 

As for any GPS/INS fusion scheme, the goal of integrating GPS and visual information is to compensate for their 

limitations and to benefit from their complementarities. In fact, a standalone GNSS navigation solution is generally not 

feasible in challenging environments such as urban canyons, where nevertheless a set of one or two GNSS signals may 

be still available, whereas visual information can work efficiently in these environments if a lighting source is available. 

On the other hand, visual information suffers from the drift due to the dead-reckoning principle, as well as a scale factor 

in the monocular case, while GNSS systems have in turn bounded errors. 

In [39], a loosely-coupled GPS/VO integration scheme is presented following the classic loosely GPS/INS integration as 

described in Figure 8. It assumes that if a monocular camera is used, then the scale factor can be recovered. The KF 

estimates the errors of the navigation solution provided by the camera, using the difference between GPS and camera 

solutions as the measurement to the KF.  The errors estimated by the KF are used to correct the camera solution.  
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Figure 8: GPS/VO Error State Filter [39] 

 

The tightly-coupled approach is addressed by [70] to estimate a 6 DoF pose in environments where a GNSS-only 

solution is not feasible. A method for combining limited GPS carrier phase measurements with features extracted from 

images of a monocular video camera is proposed. The GPS carrier phase measurements are used to overcome the scale 

factor problem due to the use of a monocular camera. The estimation procedure aims to compute the device pose changes 

between two images, and ranges to the observed features. The fusion is performed in two equations defining the 

relationship between the device range to features and its pose change and one equation expressing the relationship 

between the carrier phase and position changes. In [70], these equations are resolved using the Least Mean Square 

Estimate. The experimental results carried out in [70] show that the GPS position change estimation from carrier phase 

measurements, if at least 4 satellites are available and under open sky, is accurate at a millimetre level, whereas when 3 

GPS carrier phase measurements are available, the GPS-video integration achieves a positioning accuracy of a centimetre 

to sub-decimetre level and provides a heading accuracy in a range of 1 to 3 degrees. 

The fusion of GNSS and monocular SLAM within a BA framework is addressed in [71], through a BA with inequality 

constraint (IBA). The reprojection error is computed based on both the camera and GPS poses. The fusion is performed 

only if it does not degrade too much the reprojection error, i.e. if the degradation of the reprojection error does not exceed 

a threshold slightly greater than the minimum reprojection error. Results show that IBA is robust for in-plane 

localization. Its performance is similar to that of the GPS. However it is not appropriate for a 6 DoF localization, since it 

may increase drifts on the device’s altitude and orientation. 

5.3 GNSS, Camera and INS Fusion 

The GNSS, camera and INS fusion is widely used in environments where GNSS signals are not always available, such as 

urban canyons. 

In [37], the integration of a Strapdown IMU, a GNSS and a camera is performed in order to estimate the position, 

velocity and attitude of a ground vehicle. The vision system based on a monocular camera estimates the vehicle rotation 
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and translation up to a scale factor, using VO techniques. This scale factor is resolved using the GNSS data. At least, two 

satellites in view are required. Between camera/GNSS data update, the vehicle motion is estimated by strapdown IMU 

mechanization. Once new camera/GNSS measurement data arrive, all derived navigation information is transformed in 

order to enable the EKF engine for accurate navigation solution and IMU sensor calibration. The system is described in 

Figure 9. The simulations carried out show that the positioning accuracy using this system is significantly improved in 

GPS outages. 

 

Figure 9: The EKF-based architecture [37] 

 

In [34], a tightly-coupled and feed-forward EKF is proposed to estimate the position, velocity and attitude of an aircraft. 

The filter combines inertial, visual and GPS measurements if GPS is available and combines inertial and visual 

measurements during GPS outages. The EKF estimates the errors in the navigation state produced by the INS using 

visual and GPS measurements.  Unlike classical approaches where vision provides variables of interest (position, 

attitude, etc.), this approach uses vision as an aiding source providing raw data from the images as measurements to the 

navigation algorithm. The visual raw measurements describe the pointing vector from the aircraft to a target of unknown 

location. The errors estimated by the EKF are removed from the INS state to provide the final estimated position, 

velocity and attitude. The integration architecture is described in Figure 10.  
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Figure 10 : Overall Integration Architecture [34] 

 

It is shown in [34]  that using this configuration, the navigation position error is improved by 70% over the free inertial 

solution for a 400 second GPS outage.  

A different solution to integrate video, INS and GPS is proposed in [72] . The INS and video are tightly-coupled. The 

filter state vector describes the evolving IMU state and the measurement model is based on the reprojection error of the 

observed features on the camera’s image plane. Since the vision-aided inertial navigation algorithm performs only dead 

reckoning, a global position is calculated by a GPS.. The experimental results show that the localization mean error of the 

system computed over 10 minutes does not exceed 1meter, outperforming the standalone GPS performance.    

5.4 Odometer and Camera Fusion 

In [73], an odometer aids the monocular visual SLAM within a BA framework. The idea is to change BA by substituting 

the estimated 3D camera position    (the orientation is kept unchanged) by a corrected one  ̃ , each time a new keyframe 

is acquired. The correction provided by equation 10 is performed by the odometer which estimates the scale factor.  

 ̃                  ‖       ‖  
(10) 

 

where ‖ ‖  is the Euclidean norm, and      is the distance travelled between     and  , estimated by the odometer. 

Simulations carried out in [73] show that this system provides an improvement of about 10 orders of magnitude in the 

positioning accuracy, and a significant improvement in the attitude accuracy. 

In [60], a multi-sensor architecture within a BA framework is performed. Here, a second sensor modifies the monocular 

SLAM algorithm in order to reduce the drift of the system. It predicts the system pose, and this prediction is used to 

make a constraint on the system displacement, improving the BA refinement process by minimizing a weighted sum of 
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the two sensors terms instead of only minimizing the camera terms. This proposition is validated with two types of 

sensors, an odometer embedded in a vehicle and a gyroscope integrated in an IMU and carried by a pedestrian. Results 

show an improvement, for both sensors, of the localization accuracy using the multi-sensor architecture, compared to the 

classical BA based only on visual information.  

5.5 INS, Odometer and Camera Fusion 

In the case of ground vehicles, the use of odometer data has been identified as one of the most attractive sensors. An 

INS/odometer/omnidirectional camera integration scheme is proposed in [74]. The proposed visual system extracts and 

tracks Vanishing Points (Vanishing Points refer to the intersection of the projection of world parallel lines in the image) 

in omnidirectional images to estimate the vehicle rotation and thus improves the performance of INS/odometer system, in 

the case of GPS outages, by limiting its drift. The integration is performed by an error-based KF. The state vector 

comprises the position, velocity and attitude errors, the gyro drifts, the accelerometer biases and the camera errors. The 

KF compares the INS output with data acquired from camera and odometer. Therefore two types of measurements are 

utilized for the measurement update of the KF during GPS outages: the attitude derived from the camera and the speed 

derived from the odometer. A comparison between the INS/odometer and the proposed vision-aided INS/odometer 

systems is carried out in [74] during 100s GPS outage, showing that the vision-aided system provides about 30.7% 

(1.63m to 1.13m), 31.6% (0.99m to 0.67m) and 30.2% (3.19m to 2.23m) improvement in the average, deviation and 

maximum of the horizontal position error, respectively. 

5.6 Summary of Performance Comparison 

Table 2 summarizes the performance of the different fusion architectures and techniques surveyed in the previous 

sections. Since the experimental conditions and the metrics evaluating the proposed architectures are different in each 

reference, Table 2 describes, for each technique, the experimental conditions and the corresponding metrics.  

Technique 
Environment and 

assumptions 
bias (m) 

Standard 
deviation 

(m) 

Other metrics 
Ref. 

metric Value 

DG-16 RTK-
GPS - Real data   CEP50* 0.4 m [75] 

GPS 

- Land Vehicle (50 km/h) 

- 3 km trajectory in urban 
environment 

– Real data 

2.68 1.38 
 

 

[76] 

[77] 

Monocular 
constrained BA 

SLAM 
12.82 8.828   

GPS + 
monocular BA 

SLAM 
2.44 2.02 
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GPS carrier 
phase 

- Land Vehicle 

- Open sky  

- Real data 

  
Delta 

position 
error 

millimetre
-level 

[70] 

GPS carrier 
phase + video 

- Land Vehicle (3.6 km/h) 

- Use of only 3 satellites 

- Open sky  

- Real data 

  
Delta 

position 
error 

E 1.55 cm 

N 5.81 cm 

U 7.87 cm 

GPS + « Dead 
Reckoning »: 

EKF 

- Land Vehicle 

- Simulated data 

 

20.71 
  

 

[78] 

GPS + « Dead 
Reckoning » : PF 

3.56 
  

 

GPS+INS - Simulated data   Qualitative 
KF better 
than PF 

[79] 

GPS + INS 
MEMS EKF 

(loose) 

- Land vehicle 

- 50mn trajectory in dense 
urban, semi urban, dense trees 
and clear sky environment 

- Less than 4 satellites 
available during 43% of the 
time 

- Real data 

E -5.30 50.22 

  

[80] 

N 1.20 19.93 

U 2.47 -22.82 

GPS + INS 
MEMS EKF 

(tight) 

E -0.02 1.75 

  N 0.24 1.85 

U 2.03 -13.92 

INS+ visual 
SLAM 

- Real data   Qualitative 
KF better 
than PF 

[63] 

tactical-grade 
INS 

- Aircraft (180 km/h 
groundspeed) 

- 1200 s trajectory 

- Terrain model uncertainty of 
5 metres 

- Simulated data 

  

Horizontal 
root-sum-
squared 

error 

~104 

[40] 
tactical-grade 
INS + video 

measurements + 
terrain model 

  

Horizontal 
root-sum-
squared 

error 

<100 

Monocular BA 
SLAM 

- Land vehicle (50km/h) 

- Urban environment 

- A 4km sequence in urban 
environment 

- Real data 

348.89 271.22   

[73] 
Odometer + 

monocular BA 
SLAM 

33.69 23.14   

Medium-grade 
INS + odometer 

- Land vehicle 

- 100 s trajectory 

- Non-holonomic constraints 

- Real data 

h
o
r
i
z
o
n
t
a
l 

1.63 0.99   

[74] 
Medium-grade 
INS + odometer 

+ 
omnidirectional 

vision 

1.13 0.67   

*CEP50: Circular Error Probable with a probability of 0.5 

Table 2 : Performance comparison 
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6 CONCLUSION 

Visual navigation has become one of the most promising navigation means given its capability of providing extensive 

usable information to improve the accuracy of the navigation solution in unknown environments. The objective of this 

study is to describe and compare recent vision techniques for localization and provide guidelines for the integration of 

visual information with other navigation measurements such as GNSS or INS. By integrating all sensor information, it is 

in fact possible to exploit all available information and overcome each sensor difficulties such as signal propagation 

errors and outages for GNSS, drifts and expensive cost for INS, and drifts and scale factor for monocular vision. As 

evidenced, all the studies carried on sensor integration show that with visual information, localization accuracy is 

improved. In the future, activities should focus on improving sensor fusion architectures to get higher localization 

performance and reduce the computational burden for real-time localization. 
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