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ABSTRACT 
Small Unmanned Aerial Systems (sUAS) operations are increasing in demand and complexity. 
Using multiple cooperative sUAS (i.e. a swarm) can be beneficial and is sometimes necessary to 
perform certain tasks (e.g., precision agriculture, mapping, surveillance) either independent or 
collaboratively. However, controlling the flight of multiple sUAS autonomously and in real-time in 
a challenging environment in terms of obstacles and navigation requires highly accurate absolute 
and relative position and velocity information for all platforms in the swarm. This information is 
also necessary to effectively and efficiently resolve possible collision encounters between the 
sUAS. In our swarm, each platform is equipped with a Global Navigation Satellite System (GNSS) 
sensor, an inertial measurement unit (IMU), a baro-altimeter and a relative range sensor (range 
radio). When GNSS is available, its measurements are tightly integrated with IMU, baro-altimeter 
and range-radio measurements to obtain the platform’s absolute and relative position. When 
GNSS is not available due to external factors (e.g., obstructions, interference), the position and 
velocity estimators switch to an integrated solution based on IMU, baro and relative range meas-
urements. This solution enables the system to maintain an accurate relative position estimate, and 
reduce the drift in the swarm’s absolute position estimate as is typical of an IMU-based system.  

Multiple multi-copter data collection platforms have been developed and equipped with GNSS, 
inertial sensors and range radios, which were developed at Ohio University. This paper outlines 
the underlying methodology, the platform hardware components (three multi-copters and one 
ground station) and analyzes and discusses the performance using both simulation and sUAS 
flight test data. 
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1 INTRODUCTION 
As modern small unmanned aircraft systems (sUAS) grow more mature and the sUAS hardware 
comes down in price, sUAS are being applied to more and more problems.  For example, an sUAS 
can be used as a highly mobile camera or a sensor set, capable of performing remote mapping or 
other sensing missions.  With just a sensor payload, sUAS have been studied and tested for 3D 
mapping [1], forest inventory support [2], surveillance [3], and many more applications.  These 
applications all require a high degree of accuracy for the absolute position of the aircraft to relate 
the sensor information to one or more points on Earth. 

Though most studies are currently being performed on single sUAS, many applications may ben-
efit in some way from multiple, cooperative sUAS.  In the context of this paper, this network of two 
or more cooperative sUAS is referred to as an sUAS swarm. 3D mapping methods, like the mo-
nocular camera methods discussed in [1], could benefit from having multiple sUAS in the same 
area, finishing the mapping job quicker and more thoroughly.  With monocular camera mapping, 
it is important to have as many angles as possible of the same object, while still being able to 
relate the images to a common reference frame.  This is typically accomplished by a single sUAS 
moving around the object, but this task could also be performed cooperatively with multiple sUAS. 
The forest inventory method discussed in [2] could also benefit from utilizing a swarm of sUAS, 
for similar reasons.  In addition to getting the job done faster, it may also be possible for a swarm 
of cooperative sUAS to aid each other in navigation of a GNSS-denied under-the-canopy environ-
ment.  If the sUAS were using a Simultaneous Localization and Mapping (SLAM) method such as 
implemented in [4], they would also be able to exchange landmark information, allowing loop clo-
sure and better map building across the swarm. 

The authors of [3] discuss a cooperative surveillance system, in which multiple sUAS observe and 
track multiple targets, showing that surveillance can benefit from sUAS cooperation.  This coop-
eration ensures that the sUAS are not just blindly tracking a single target; the sUAS can make 
intelligent decisions so that members don’t track the same target, members can refuel during op-
timal windows, and the surveyed area is properly covered, while the information gained by the 
swarm is maximized. 

To make these multi-platform applications possible, many researchers have begun to address the 
navigation challenges of sUAS swarms. During formation flight, sUAS swarm navigation can be 
broken down into two distinct problems: absolute (global) positioning of the individual members, 
and the position of the members of the swarm relative to the other members.  The latter relative 
navigation solution can be defined by separation vectors between each of the members. 
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Figure 1. Swarm geometry of four sUAS as a function of time. 

In the example shown in Figure 1, each individual member must calculate its absolute position 
vector 𝒓𝒓𝒊𝒊𝒏𝒏 while also assuring that the separation vectors 𝒔𝒔𝑖𝑖𝑖𝑖𝒏𝒏  between it and every other member 
are as accurate as possible.  Here ‘n’ refers to the navigation frame in which all absolute coordi-
nates and vectors are expressed (e.g. lat-lon-height, Earth Centered Earth Fixed or East North 
Up). Note that this coordinate frame must be the same for all sUAS. In many scenarios these 
separation vectors may even be more important than the global positions of the members, to avoid 
collisions or perform complex cooperative tasks. 

Relative GNSS-based navigation methods, such as the one presented in previous work by the 
authors [5] work well for this task, given that all members have GNSS capability.  Because many 
errors are the same for receivers in close proximity, the separation vectors can be easily calculated 
and remain accurate at the decimeter level. However, in the event of an GNSS outage or a com-
promised or malfunctioning receiver, the ability to calculate accurate separation vectors signifi-
cantly degrades. This is a big problem for operation of cooperative swarms in GNSS-denied or 
semi-denied environments:  urban canyon environments for bridge or construction inspection, un-
der-the-canopy operation during environmental monitoring or inventory tasks, city traffic surveil-
lance, etc.  If a swarm seeks to function in such environments, members must be able to perform 
relative navigation when some or all members are GNSS-denied. 

UAS mounted ultra-wideband (UWB) range radios are a perfect fit to aid in the relative navigation 
task as these sensors provide the ranges (i.e. 𝜌𝜌𝑖𝑖𝑖𝑖 =  ‖𝒔𝒔𝑖𝑖𝑖𝑖‖) between two sUAS in the swarm. 
Although they do not provide the actual separation vector, multi-lateration among the sensed 
ranges can be used to estimate the relative separation vectors in a local frame rigidly attached to 
the swarm. When combined with sensors that offer an absolute positioning or orientation capability 
(i.e., with respect to a global navigation reference frame), these relative separation vectors can be 
translated and rotated to a global frame. The implications of the Inertial Navigation System (INS) 
and UWB sensor fusion approach have been discussed in [7] where it is shown that INS/UWB 
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integrated is reasonably accurate in practice.  The methodology behind the results in that paper – 
an extended Kalman filter – is computationally efficient, and therefore perfect for sUAS with limited 
computational resources.  The author went on to apply this method to an indoor positioning system 
with great success [8]. 

Note that within this paper a centralized approach is discussed that assumes that the range meas-
urements, baro-altimeter measurements and inertial measurements of each sUAS is transmitted 
to a central location (e.g., one or all of the sUAS or a ground station) and then used for absolute 
and relative navigation. 

2 MULTI-LATERATION AMBIGUITIES 
The integration method proposed in the next section exploits the fact that the range radios provide 
range constraints between the various members of the sUAS swarm. It is important to realize that 
these constraints fix the relative position of the sUAS within the swarm but do not constraint the 
swarm’s orientation and location in 3D space as is illustrated in Figure 2.  

 
Figure 2. Absolute orientation and position under range constraints (2D example). 

When one member of the swarm, has an absolute position capability, the swarm is anchored to 
this location with associated position uncertainty, but can still rotate freely about this point in 3D.  
When two of the members (1 and 2) have knowledge of their global position estimate, but member 
3 does not, the ambiguity is reduced to 1-degree of freedom as shown in Figure 3. 

 

Figure 3. Ambiguity example with two sUAS tight to a global position (2D example). 



5 
 
 

With known ranges ρ12, ρ13, and ρ23, member 3’s position is ambiguous: it could either be in at 
position 3 or position 3’ in 2D. In three dimensions (3D) the location of sUAS 3 could be on a circle. 
In 3D the ambiguity could again be reduced to two points when the altitude is known from a baro-
altimeter, for example, as illustrated in Figure 4. 

 
Figure 4. Observability check implementation. 

3 INTEGRATION APPROACH 
3.1 Primary Mechanization 
Multiple filter mechanizations exist that could potentially integrate range measurements and baro-
altimeter measurements with inertial and partial GNSS measurements to obtain absolute and rel-
ative navigation solutions for the members of a swarm of sUAS either centralized and decentral-
ized.  In this paper we use a centralized complementary extended Kalman filter (CEKF). However, 
alternate filters such as particle filters (PF) or graph-based methods could be used. These meth-
ods will be the focus of a later paper. The basic equations for the CEKF used here are provided 
in Equations (1) through (7) and can be found in many textbooks such as [9]. 

System:  dynamics model  
 𝐱𝐱(𝑡𝑡𝑘𝑘) = 𝐠𝐠[𝐱𝐱(𝑡𝑡𝑘𝑘−1)] + 𝐰𝐰(𝑡𝑡𝑘𝑘) (1) 

 
System: measurement model  

 𝐳𝐳(𝑡𝑡𝑘𝑘) = 𝐡𝐡[𝐱𝐱(𝑡𝑡𝑘𝑘)] + 𝐯𝐯(𝑡𝑡𝑘𝑘) (2) 
 

Kalman filter: update step  

 𝐱𝐱�(𝑡𝑡𝑘𝑘) = 𝐱𝐱�−(𝑡𝑡𝑘𝑘) + 𝐊𝐊𝑘𝑘[𝐳𝐳𝑘𝑘(𝑡𝑡𝑘𝑘) − 𝐡𝐡[𝐱𝐱�−(𝑡𝑡𝑘𝑘)]] (3) 
 

𝐊𝐊(𝑡𝑡𝑘𝑘) =
𝐏𝐏−(𝑡𝑡𝑘𝑘)𝐇𝐇𝑇𝑇

[𝐇𝐇(𝑡𝑡𝑘𝑘)𝐏𝐏−(𝑡𝑡𝑘𝑘)𝐇𝐇𝑇𝑇(𝑡𝑡𝑘𝑘) + 𝐑𝐑] (4) 
 𝐏𝐏(𝑡𝑡𝑘𝑘) = [𝐈𝐈 − 𝐊𝐊(𝑡𝑡𝑘𝑘)𝐇𝐇(𝑡𝑡𝑘𝑘)]𝐏𝐏−(𝑡𝑡𝑘𝑘) (5) 

 
Kalman filter: prediction step  

 
𝐱𝐱�−(𝑡𝑡𝑘𝑘) = 𝐱𝐱�(𝑡𝑡𝑘𝑘) + � 𝐠𝐠(𝐱𝐱�, 𝑡𝑡)𝑑𝑑𝑑𝑑

𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘−1
 (6) 
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 𝐏𝐏−(𝑡𝑡𝑘𝑘) = 𝚽𝚽(𝑡𝑡𝑘𝑘−1)𝐏𝐏(𝑡𝑡𝑘𝑘−1)𝚽𝚽𝑇𝑇(𝑡𝑡𝑘𝑘−1 ) 

+� 𝚽𝚽(𝑡𝑡𝑘𝑘−1|𝑡𝑡)𝐐𝐐(𝑡𝑡𝑘𝑘−1)𝚽𝚽𝑇𝑇(𝑡𝑡𝑘𝑘−1|𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘−1
 (7) 

Where superscript ‘-‘ indicates that the quantity is a prediction. The 15-dimensional error state for 
UAS ‘i’ is given by: 

 𝐱𝐱𝑖𝑖 = [𝛿𝛿𝐫𝐫𝑖𝑖 𝛿𝛿𝐯𝐯𝑖𝑖 𝛿𝛿𝛙𝛙𝒊𝒊 𝛿𝛿𝐚𝐚𝑖𝑖𝑏𝑏 𝛿𝛿𝛚𝛚𝑖𝑖
𝑏𝑏 ]𝑇𝑇 (8) 

 
where δri is the 3D position error of the inertial on sUAS i, δvi is the 3D velocity error, δψi is the 
attitude error, 𝛿𝛿𝒂𝒂𝑖𝑖𝑏𝑏 bis the 3D accelerometer bias, and 𝛿𝛿𝛿𝛿𝑖𝑖

𝑏𝑏 is the 3D gyro bias. The state transition 
matrix is the short-term IMU error state transition matrix such as the ones defined found in [10] 
and [11]. This will allow the inertial solution to run freely between filter updates.  After each update 
step, the inertial solution will be corrected by the error estimates. For all ‘N’ INS systems in the 
swarm, the state vector is updated to a new 15N×1 state vector which includes the errors of all 
INSs: 

 𝐱𝐱 = [𝐱𝐱1 𝐱𝐱2 ⋯ 𝐱𝐱𝑁𝑁] (9) 

The range between any two sUAS can be computed using their respective INS position estimates, 
and expressed in terms of the true relative position and an additional error term that combines the 
INS errors from ‘i’ and ‘k’, or: 

 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �𝐫𝐫�𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐫𝐫�𝑘𝑘,𝑖𝑖𝑖𝑖𝑖𝑖� (10) 

 = �𝐫𝐫𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛿𝛿𝐫𝐫𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐫𝐫𝑗𝑗,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝛿𝛿𝐫𝐫𝑘𝑘,𝑖𝑖𝑖𝑖𝑖𝑖� (11) 
 = �Δ𝐫𝐫𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝛿𝛿𝐫𝐫𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖� = �𝐬𝐬𝑖𝑖𝑖𝑖 − 𝛿𝛿𝐫𝐫𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖� (12) 

where ri,true is the true position of UAS i, 𝛿𝛿𝒓𝒓𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖 is the position error of the INS of UAS i, 𝛿𝛿𝐫𝐫𝑘𝑘,𝑖𝑖𝑖𝑖𝑖𝑖 is 
the position error of the INS of UAS k. Equation (12) can be linearized with respect to the involved 
sUAS INS position estimates. 

 
𝜌𝜌�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≈  𝜌𝜌𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +

𝐬𝐬𝑖𝑖𝑖𝑖𝑇𝑇

𝜌𝜌𝑖𝑖𝑖𝑖
𝛿𝛿𝐫𝐫𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖 

= 𝜌𝜌𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐮𝐮𝑖𝑖𝑖𝑖 
𝑇𝑇 𝛿𝛿𝐫𝐫𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖�������
𝛿𝛿𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 (13) 

The measurement vector is derived from available on range radio measurements, baro-
altimeter measurements and inertial position estimates: 

 𝐳𝐳 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑧𝑧12
  𝑧𝑧13 
⋮
𝑧𝑧𝑖𝑖𝑖𝑖
⋮

𝑧𝑧(𝑁𝑁−1)𝑁𝑁
   𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,1  

⋮
𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (14) 
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The row elements of Equation (15) are given by the various available range differences in the 
swarm: 

 
𝑧𝑧𝑖𝑖𝑖𝑖 = 𝜌𝜌�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜌𝜌�𝑖𝑖𝑘𝑘𝑟𝑟𝑟𝑟  

= 𝜌𝜌𝑖𝑖𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛿𝛿𝜌𝜌𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜌𝜌𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑣𝑣𝑟𝑟𝑟𝑟  
= 𝛿𝛿𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑟𝑟𝑟𝑟 

(15) 

 
where 𝛿𝛿𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the error due to the contributions of two INSs involved, and 𝑣𝑣𝑟𝑟𝑟𝑟is the range noise 
error of the range radio. Equation (15) can be expressed in the inertial position error terms as 
follows: 

 𝑧𝑧𝑖𝑖𝑖𝑖 = 𝛿𝛿𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑟𝑟𝑟𝑟 ≈ −𝐮𝐮𝑖𝑖𝑖𝑖𝑇𝑇 𝛿𝛿𝐫𝐫𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑟𝑟𝑟𝑟  (16) 
 
The baro-altimeter measurement is much simpler, as it is already linear: 
 

 

𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑗𝑗 = ℎ𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖 − ℎ𝑗𝑗𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
= (ℎ𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛿𝛿𝑟𝑟𝑗𝑗𝑧𝑧,𝑖𝑖𝑖𝑖𝑖𝑖

) − (ℎ𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
= 𝛿𝛿𝑟𝑟𝑗𝑗𝑧𝑧,𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
(17) 

 
where 𝛿𝛿𝑟𝑟𝑗𝑗𝑧𝑧,𝑖𝑖𝑖𝑖𝑖𝑖

 is the z-component of the position vector computed by the INS. The results of equa-

tions (16) and (17) can be used to setup the 𝐇𝐇-matrix. 
 
3.2 Observability 
In addition to the sensor information used in the above model, support was added for feeding in a 
specific member’s GNSS-derived position, as well as magnetometer readings. This extra sensor 
information modifies the measurement and observation matrices in a manner similar to the addition 
of baro-altimeter readings in Equation (17).  This allows the testing of a 6-member swarm where 
arbitrarily chosen members have GNSS position estimates available and others have not.  This 
loosely-coupled approach for the GNSS readings was chosen to simplify the filter states and pro-
cessing time, though a tightly-coupled approach is certainly possible and will be addressed in future 
work. 

Additionally, an observability analysis was added by analyzing the rank of the observability matrix 
(shown below) is calculated [12]: 

 𝓞𝓞 =

⎣
⎢
⎢
⎢
⎡

𝑯𝑯
𝑯𝑯𝑯𝑯
𝑯𝑯𝜱𝜱2

⋮
𝑯𝑯𝜱𝜱𝑘𝑘−1⎦

⎥
⎥
⎥
⎤
 (18) 

 
where k is the number of states in the system. The filter is said to be fully observable if the rank of 
𝓞𝓞 is greater than 15n, the number of states in the filter.  From the system model, the yaw component 
of the angle error state is colinear with gravity, and therefore never fully observable.  With this in 
mind, if the rank of 𝓞𝓞 is at least 14n, the error states should be observable.  However, due to the 
heavy processing time related to building and evaluating the rank of 𝓞𝓞, this observability check only 
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occurs at initialization and if the sensor configuration has changed (i.e. a member enters or leaves 
a GNSS-denied area).   

4 TEST SETUP AND METRICS 
4.1 Test Setup and Trajectories 
To evaluate the proposed method using real sUAS platforms, a data collection was performed 
using three manually-flown custom-built platforms shown in Figure 5.  All three platforms are 
based on 3DR X8 frames, controlled by a PixHawk PX4 flight controller running a distribution of 
Arducopter.  Furthermore, each platform is equipped with an Odroid XU4 for onboard processing 
and data collection, as well as a point-to-multipoint data radio for platform-to-platform and plat-
form-to-ground station communication. Sensor data is collected and logged via the Robotic Oper-
ating System (ROS) [10][14]. A laptop ground station controls when data logging is started and 
stopped via a custom-built Graphical User Interface (GUI).  

 
Figure 5. Formation flight at test field at Ohio University. 

The platforms were equipped with multiple inertial units of varying costs and qualities, as well as 
different GNSS receivers: Platform A with a Sensonar STIM300 and a Novatel OEM-615; Plat-
form B with a VectorNav VN-100 and Xsens Mti-1 inertial and a Novatel OEM-615 GNSS receiver, 
and Platform C with an Xsens Mti-1 and a U-blox M8T. 

During two flights, sensor data was collected and time-tagged.  The two flight-data set times were 
adjusted and then overlaid in post-processing to generate a single data set equivalent to a six-
member flight.  The 6 overlaid flight trajectories are shown in Figure 6. 
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Figure 6. Overlaid flight trajectories. 

Range radio measurements were simulated from the GNSS position solutions and noise was 
added based on the ranging performance of the range radios developed by Ohio University and 
presented earlier in [5] and [6] and shown in Figure 7.  

The performance of this particular radio up to 10m is illustrated in Figure 8. 

  

Figure 7. Radio system mounted on X8 octocopter 
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Next, the GNSS data was removed and the proposed filter applied on the remaining data. 

4.2 Evaluation Metrics 
To analyze the effects of the proposed filter, both the absolute and relative position errors have 
been evaluated.  The absolute position error is quantified by the root-mean-square-error (RMSE) 
between the estimated and true member positions for each dimension.  Assessing the relative 
navigation performance is more complex due to the ambiguities introduced by multi-lateration as 
discussed in Section 2. To derive this Cartesian position error, a rotation and translation is found 
that maps the navigation solution as closely as possible to the true trajectory.  This is solved by a 
least-squares estimator called Horn’s method [13].  The navigation solution is then transformed 
by the found rotation and translation and position errors are determined for each member. Addi-
tionally, the measurement innovations (the individual range errors) as well as the filter-estimated 
trajectories have been considered in the following sections. 

5 RESULTS 
5.1 Initial-only Solution 
The inertial-only solution is shown in  Figure 9. It is clear that the inertial-only solution is unfit for 
use; as expected accumulated drift grows to a 7km+ in just 4 minutes.  The members of the swarm 
drift in entirely different directions, even though they are flying in a loose formation.  As a result, 
one can observed a poor relative navigation solution. 

  

Figure 8. Performance of the RR as a function of distance up to 10m. 
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5.2 No GNSS-Enabled Members 
The first test did only consider range radio, inertial and barometric altimeter measurements.  The 
results are shown in Figure 10. The plots show a swarm drifting together at a lower drift. Further-
more, a significant performance improvement is achieved in the relative navigation solution. The 
individual range errors – the errors in the calculated ranges between the filtered and true trajecto-
ries – also stay low.  This makes sense, as these errors equate to the inputs to the Kalman filter, 
which attempts to correct them via error estimates. 
 

Figure 9. Inertial-only navigation solution. 

Figure 10. Formation flight at test field at Ohio University. 
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5.3 One GNSS-Enabled Member 
Next, one member of the sUAS swarm is assumed to be resilient to the GNSS interference or other 
denial-of-service and has, therefore, a valid GNSS solution in addition to the basic sensor configu-
ration (i.e. INS and barometric altimeters).  This causes the swarm to be anchored to an absolute 
position, as the single GNSS solution will constraint the rest of the members. The results of this 
configuration are shown in Figure 11. With a single GNSS-aided member in the swarm (Octocopter 
2), every member’s solution becomes more accurate, both in an absolute and relative sense.  The 
swarm is globally tied down by the GNSS-aided member and will rotate around it as the members’ 
INSs drift while keeping relative positions intact.  It is worth noting that while the relative position 
error significantly improves, the individual range errors do not change. 

 

5.4 Two GNSS-Enabled Members 
Next, a second member was equipped with a resilient GNSS receiver. Operating with two points of 
constraint as well as having the z-axis constraint by the baro-altimeters, the individual solutions 
improve dramatically as can be observed in Figure 12. When the filter settles after about 30 sec-
onds, the solution with two GNSS-aided members (Octocopters 2 and 6) becomes even more ac-
curate than with one GNSS-enabled member – the absolute error drops to near-zero from a ±20m 
fluctuation in the one-GNSS-enabled configuration.  At this point, all three dimensions are tied down 
– x and y from the two GNSS-aided members, and z from the baro-altimeter.  One can observed 

Figure 11. Filtered results with one GNSS-enabled member. 



13 
 
 

that this solution occasionally goes into error, but then quickly returns.  This can most likely be 
attributed to short periods of increased range error. 
 

5.5 Three GNSS-Enabled Members 
Finally, a third GNSS-enabled member was added (so, 50% of the swarm has GNSS, and 50% 
hasn’t).  With three points of constraint, the solution should improve, but diminishing returns are 
expected as the solution becomes is over-constrained.  The results of this test are shown in Figure 
13. As expected, adding the third GNSS-aided member (now 2, 5, and 6) creates yet a better 
solution.  Most ambiguities are now solved, and more certainty is being established in the filter.  
The relative position error is consistently low and any errors in a member’s position get corrected 
almost immediately. Even the individual range errors show signs of improvement. 

 
 

 

 

 

 

Figure 12. Filtered results with two GNSS-enabled members. 



14 
 
 

 

5.6 Filter Results when Flying through an Outage Zone 
In addition to evaluating the absolute and relative performance in the presence of zero or more 
GNS-enabled members, tests were performed to assess how well the swarm can navigate through 
a local GNSS-denied area.  Figure 14 shows an example of the sUAS flight trajectories with an 
overlaid outage zone, where GNSS is not available 
 

 

 

 

 

 

 

 

 

 

 

Figure 13. Filtered results with three GNSS-enabled members 

Figure 14. GNSS outage zone. 
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Using just a loosely-coupled GNSS-Inertial filter, the results are poor when the swarm moves 
through the outage zone, as the absolute position is just coasting on the individual INS solutions. 

 

Using the proposed method instead, the absolute position drift during the outage is reduced as 
illustrated in Figure 16. 

As expected, the filtered solution performs better than the GNSS/INS position solution. There is 
still a significant amount of error, but the swarm is constrained to drift together (i.e., a low relative 
position error) and there is less discontinuity when the members exit the outage zone.  During the 
outage, the peak individual error is around 2m for the filtered solution, while the GNSS/INS 
reaches over 150m. 

The next test assumes that one member of the swarm has technology that allows it to operate in 
the GNSS-denied zone.  In a real-world scenario, this could represent one member having an 

Figure 15. GNSS-Inertial solution. 

Figure 16. Filtered solution through GNSS outage zone. 
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advanced anti-jam/anti-spoof GNSS receiver, or a visual odometry system with an absolute posi-
tion capability.  The results are shown in Figure 17. 

With one member equipped with more advanced technology, the entire swarm benefits when 
moving through the outage zone with less drift.  Unfortunately, the swarm is not completely con-
straint in the absolute coordinate frame: it is still free to slowly rotate about the resilient member. 
This causes small discontinuities, though they are much smaller than those observed in Figure 
16. 

Adding one more resilient member should create a near-perfect navigation over the small outage 
zone as shown in Figure 18. 

 
  

Figure 17. GNSS outage with one resilient member. 

Figure 18. GNSS outage with two resilient members. 
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5.7 Flying Through Outage with Ground Speed Sensor 
If all members of the swarm loose GNSS capability during the outage section, it should be possible 
to navigate (though not as well) based off types of sensors.  In the following example, a number 
of members are simulated as equipped with a ground velocity sensor (e.g., 2D optical flow) during 
the outage zone.  This ground velocity sensor is simulated with a random walking bias, starting in 
the range of ±0.2m/s, and gaussian noise with a standard deviation of 0.1m/s.  The ground speed 
sensor can then be combined with an estimate of the sUAS attitude to obtain a velocity estimate, 
which is then fed into the filter.  The outage zone is the same corner outage as in Figure 14. 

From Figure 19 it can be seen that the swarm (with one member equipped with a ground-velocity 
sensor) does not navigate as well as with a single GNSS-enabled member, but, for being com-
pletely GNSS-denied, the swarm functions well – it does not drift too far, and the relative position 
error remains low.  This shows the filter’s capability to utilize and distribute different types of sensor 
measurements.  When adding any additional velocity sensor, further improves the results as 
shown in Figure 20. 

Figure 19. Corner outage zone with one ground-speed enabled member. 

Figure 20. Corner outage zone with two ground-speed enabled members. 
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6 SUMMARY, CONCLUSIONS AND FUTURE WORK 
This paper presents a method that performs a centralized integration of inertial, UWB and baro-
metric altimeter measurements, to enable relative and absolute navigation during GNSS outages. 
The method successfully constrained the inertial navigation solution with the new range radio 
measurements during these outages.  During times when GNSS was available to one or more 
members, the filter was also capable of using these members to tie down the swarm to the navi-
gation frame, effectively increasing the accuracy of every member of the swarm.  This filter per-
formed well in short GNSS outages, even with no GNSS-resilient members.  This is useful in an 
urban canyon or other GNSS-denied environments, when performing a cooperative sUAS task. 
With only small modifications, the filter can be adapted to accept other types of sensor readings 
such as absolute position (GNSS) or ground velocity sensors.   
 
Future work is needed to expand, analyze, and optimize this system.  Many sensors exist that can 
provide navigation aid to an individual member, and therefore the entire swarm.  Furthermore, 
decentralized version of the method should be addressed and versions that only use partial infor-
mation to reduce the burden on the communication network. Also, a flight using many (6+) sUAS 
is planned, with actual range radio sensors and the proposed filter running in real-time. 
 

ACKNOWLEDGEMENT 
All flight tests used to evaluate the results here were funded by the Ohio University Russ Legacy 
Development Fund. The authors also want to thank Russell Gilabert and Adam Schultz for their 
help during the flight tests. 

REFERENCES 
[1] J. S. Álvares, D. B. Costa and R. R. Melo. Exploratory study of using unmanned aerial system 
imagery for construction site 3D mapping. 

[2] S. Puliti, H. O. Ørka, T. Gobakken and E. Næsset, "Inventory of Small Forest Areas Using an Un-
manned Aerial System," Remote Sens, vol. 7, no. 8, pp. 9632-9654, 2015. 

[3] J. Capitan, L. Merino and A. Ollero, "Decentralized Cooperation of Multiple UAS for Multi-target," in 
International Conference on Unmanned Aircraft Systems, Orlando, FL, USA, 2014. 

[4] A. Schultz, R. Gilabert, B. Akshay, M. Uijt de Haag and Z. Zhu, "A navigation and mapping method 
for UAS during under-the-canopy forest operations," in Proceedings of the IEEE/ION Position, Location and 
Navigation Symposium, Savannah, GA, USA, 2016. 

[5] J. E. Huff and M. Uijt de Haag, "Assured relative and absolute navigation of a swarm of small UAS," 
in Proceedings of the IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), St. Petersburg, FL, 
USA, 2017. 

[6] J. Huff, Absolute and Relative Navigation of an sUAS Swarm Using Integrated GNSS, Inertial and 
Range Radios, M.S.E.E. Thesis, Ohio University, 2018. 

[7] J. Hol, Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-Wideband and GPS, 
Linkoping: Linkoping University, 2011. 



19 
 
 

[8] M. Kok, J. D. Hol and T. B. Schon, Indoor positioning using ultrawideband and inertial measure-
ments, 2015. 

[9] A. Gelb, Applied Optimal Estimation, MIT Press, 1974. 

[10] J. L. Farrell, GNSS Aided Navigation & Tracking – Inertially Augmented or Autonomous, America 
Literary Press, 2007. 

[11] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech 
House, 2008. 

[12] B. Southall, B. F. Buxton and J. A. Marchant, Controllability and Observability: Tools for Kalman 
Filter Design, Wrest Park, Silsoe, Bedfordshire: Silsoe Research Insitute. 

[13] B. K. Horn, H. M. Hilden and S. Negahdaripour, Closed-Form Solution of Absolute Orientation. 

[14] "http://www.ros.org/," [Online]. [Accessed July 2018]. 


	Abstract
	Keywords
	1 Introduction
	2 MULTI-LATERATION AMBIGUITIES
	3 INTEGRATION APPROACH
	3.1 Primary Mechanization
	3.2 Observability

	4 Test Setup and Metrics
	4.1 Test Setup and Trajectories
	4.2 Evaluation Metrics

	5 Results
	5.1 Initial-only Solution
	5.2 No GNSS-Enabled Members
	5.3 One GNSS-Enabled Member
	5.4 Two GNSS-Enabled Members
	5.5 Three GNSS-Enabled Members
	5.6 Filter Results when Flying through an Outage Zone
	5.7 Flying Through Outage with Ground Speed Sensor

	6 SUMMARY, CONCLUSIONS AND FUTURE WORK
	Acknowledgement
	REFERENCES

