15 research outputs found

    Farms, pipes, streams and reforestation : reasoning about structured parallel processes using types and hylomorphisms

    Get PDF
    The increasing importance of parallelism has motivated the creation of better abstractions for writing parallel software, including structured parallelism using nested algorithmic skeletons. Such approaches provide high-level abstractions that avoid common problems, such as race conditions, and often allow strong cost models to be defined. However, choosing a combination of algorithmic skeletons that yields good parallel speedups for a program on some specific parallel architecture remains a difficult task. In order to achieve this, it is necessary to simultaneously reason both about the costs of different parallel structures and about the semantic equivalences between them. This paper presents a new type-based mechanism that enables strong static reasoning about these properties. We exploit well-known properties of a very general recursion pattern, hylomorphisms, and give a denotational semantics for structured parallel processes in terms of these hylomorphisms. Using our approach, it is possible to determine formally whether it is possible to introduce a desired parallel structure into a program without altering its functional behaviour, and also to choose a version of that parallel structure that minimises some given cost model.Postprin

    Automatically deriving cost models for structured parallel processes using hylomorphisms

    Get PDF
    This work has been partially supported by the EU Horizon 2020 grant “RePhrase: Refactoring Parallel Heterogeneous Resource-Aware Applications - a Software Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), supported by COST (European Cooperation on Science and Technology), and by EPSRC grant EP/M027317/1 “C33: Scalable & Verified Shared Memory via Consistency-directed Cache Coherence”.Structured parallelism using nested algorithmic skeletons can greatly ease the task of writing parallel software, since common, but hard-to-debug, problems such as race conditions are eliminated by design. However, choosing the best combination of algorithmic skeletons to yield good parallel speedups for a specific program on a specific parallel architecture is still a difficult problem. This paper uses the unifying notion of hylomorphisms, a general recursion pattern, to make it possible to reason about both the functional correctness properties and the extra-functional timing properties of structured parallel programs. We have previously used hylomorphisms to provide a denotational semantics for skeletons, and proved that a given parallel structure for a program satisfies functional correctness. This paper expands on this theme, providing a simple operational semantics for algorithmic skeletons and a cost semantics that can be automatically derived from that operational semantics. We prove that both semantics are sound with respect to our previously defined denotational semantics. This means that we can now automatically and statically choose a provably optimal parallel structure for a given program with respect to a cost model for a (class of) parallel architecture. By deriving an automatic amortised analysis from our cost model, we can also accurately predict parallel runtimes and speedups.PostprintPeer reviewe

    Structured arrows : a type-based framework for structured parallelism

    Get PDF
    This thesis deals with the important problem of parallelising sequential code. Despite the importance of parallelism in modern computing, writing parallel software still relies on many low-level and often error-prone approaches. These low-level approaches can lead to serious execution problems such as deadlocks and race conditions. Due to the non-deterministic behaviour of most parallel programs, testing parallel software can be both tedious and time-consuming. A way of providing guarantees of correctness for parallel programs would therefore provide significant benefit. Moreover, even if we ignore the problem of correctness, achieving good speedups is not straightforward, since this generally involves rewriting a program to consider a (possibly large) number of alternative parallelisations. This thesis argues that new languages and frameworks are needed. These language and frameworks must not only support high-level parallel programming constructs, but must also provide predictable cost models for these parallel constructs. Moreover, they need to be built around solid, well-understood theories that ensure that: (a) changes to the source code will not change the functional behaviour of a program, and (b) the speedup obtained by doing the necessary changes is predictable. Algorithmic skeletons are parametric implementations of common patterns of parallelism that provide good abstractions for creating new high-level languages, and also support frameworks for parallel computing that satisfy the correctness and predictability requirements that we require. This thesis presents a new type-based framework, based on the connection between structured parallelism and structured patterns of recursion, that provides parallel structures as type abstractions that can be used to statically parallelise a program. Specifically, this thesis exploits hylomorphisms as a single, unifying construct to represent the functional behaviour of parallel programs, and to perform correct code rewritings between alternative parallel implementations, represented as algorithmic skeletons. This thesis also defines a mechanism for deriving cost models for parallel constructs from a queue-based operational semantics. In this way, we can provide strong static guarantees about the correctness of a parallel program, while simultaneously achieving predictable speedups.“This work was supported by the University of St Andrews (School of Computer Science); by the EU FP7 grant “ParaPhrase:Parallel Patterns Adaptive Heterogeneous Multicore Systems” (n. 288570); by the EU H2020 grant “RePhrase: Refactoring Parallel Heterogeneous Resource-Aware Applications - a Software Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), supported by COST (European Cooperation Science and Technology); and by EPSRC grant “Discovery: Pattern Discovery and Program Shaping for Manycore Systems” (EP/P020631/1)” -- Acknowledgement

    AutoPar: automating the parallelization of functional programs

    Get PDF
    As the pervasiveness of parallel architectures in computing increases, so does the need for efficiently implemented parallel software. However, the development of parallel software is inherently more difficult than that of sequential software and is fraught with many pitfalls, such as race conditions and locking issues, amongst others. Developers are typically more comfortable developing sequentially, yet as the limitations of single-core processor speeds are reached, they have no choice but to reach for parallel implementations to obtain the required performance increases. An obvious solution to the parallelisation problem is to allow developers to continue to develop sequentially and generate efficient parallel programs automatically from these sequential ones. There are many existing techniques which automate the parallelisation process, however these techniques place many constraints upon the programs they are applicable to. This thesis defines a fully automatic parallelisation technique which places no restriction on its input programs and is applicable to programs defined using any data-type. The technique consists of two components: the first allows a given program to be redefined in terms of well-partitioned data. The second then explicitly parallelises the resulting program using Glasgow parallel Haskell. The technique is applied to several Haskell programs, the results of which have then been benchmarked with respect to the performance of handparallelised versions of the original programs. The benchmarking process has recorded the execution time and parallel performance of each benchmark program. The evaluation of the benchmark results has allowed for the merit of the automated parallelisation technique to be shown

    In search of a map : using program slicing to discover potential parallelism in recursive functions

    Get PDF
    Funding: EU FP7 grant “Parallel Patterns for Adaptive Heterogeneous Multicore Systems” (ICT-288570), by the EU H2020 grant “RePhrase: Refactoring Parallel Het- erogeneous Resource-Aware Applications – a Software Engineering Approach” (ICT-644235), by COST Action IC1202 (“Timing Analysis on Code-Level”), by the EPSRC grant “Discovery: Pattern Discovery and Program Shaping for Manycore Systems” (EP/P020631/1), and by Scottish Enterprise grant PS7305CA44.Recursion schemes, such as the well-known map, can be used as loci of potential parallelism, where schemes are replaced with an equivalent parallel implementation. This paper formalises a novel technique, using program slicing, that automatically and statically identifies computations in recursive functions that can be lifted out of the function and then potentially performed in parallel. We define a new program slicing algorithm, build a prototype implementation, and demonstrate its use on 12 Haskell examples, including benchmarks from the NoFib suite and functions from the standard Haskell Prelude. In all cases, we obtain the expected results in terms of finding potential parallelism. Moreover, we have tested our prototype against synthetic benchmarks, and found that our prototype has quadratic time complexity. For the NoFib benchmark examples we demonstrate that relative parallel speedups can be obtained (up to 32.93x the sequential performance on 56 hyperthreaded cores).Postprin

    An investigation of nondeterminism in functional programming languages

    Get PDF
    This thesis investigates nondeterminism in functional programming languages. To establish a precise understanding of nondeterministic language properties, Sondergaard and Sestoft's analysis and definitions of functional language properties are adopted as are the characterizations of weak and strong nondeterminism. This groundwork is followed by a denotational semantic description of a nondeterministic language (suggested by Sondergaard and Sestoft). In this manner, a precise characterization of the effects of strong nondeterminism is developed. Methods used to hide nondeterminism to in order to overcome or sidestep the problem of strong nondeterminism in pure functional languages are defined. These different techniques ensure that functional languages remain pure but also include some of the advantages of nondeterminism. Lastly, this discussion of nondeterminism is applied to the area of functional parallel language implementation to indicate that the related problem and the possible solutions are not purely academic. This application gives rise to an interesting discussion on optimization of list parallelism. This technique relies on the ability to decide when a bag may be used instead of a list

    Pattern discovery for parallelism in functional languages

    Get PDF
    No longer the preserve of specialist hardware, parallel devices are now ubiquitous. Pattern-based approaches to parallelism, such as algorithmic skeletons, simplify traditional low-level approaches by presenting composable high-level patterns of parallelism to the programmer. This allows optimal parallel configurations to be derived automatically, and facilitates the use of different parallel architectures. Moreover, parallel patterns can be swap-replaced for sequential recursion schemes, thus simplifying their introduction. Unfortunately, there is no guarantee that recursion schemes are present in all functional programs. Automatic pattern discovery techniques can be used to discover recursion schemes. Current approaches are limited by both the range of analysable functions, and by the range of discoverable patterns. In this thesis, we present an approach based on program slicing techniques that facilitates the analysis of a wider range of explicitly recursive functions. We then present an approach using anti-unification that expands the range of discoverable patterns. In particular, this approach is user-extensible; i.e. patterns developed by the programmer can be discovered without significant effort. We present prototype implementations of both approaches, and evaluate them on a range of examples, including five parallel benchmarks and functions from the Haskell Prelude. We achieve maximum speedups of 32.93x on our 28-core hyperthreaded experimental machine for our parallel benchmarks, demonstrating that our approaches can discover patterns that produce good parallel speedups. Together, the approaches presented in this thesis enable the discovery of more loci of potential parallelism in pure functional programs than currently possible. This leads to more possibilities for parallelism, and so more possibilities to take advantage of the potential performance gains that heterogeneous parallel systems present

    Shape-based cost analysis of skeletal parallel programs

    Get PDF
    Institute for Computing Systems ArchitectureThis work presents an automatic cost-analysis system for an implicitly parallel skeletal programming language. Although deducing interesting dynamic characteristics of parallel programs (and in particular, run time) is well known to be an intractable problem in the general case, it can be alleviated by placing restrictions upon the programs which can be expressed. By combining two research threads, the “skeletal” and “shapely” paradigms which take this route, we produce a completely automated, computation and communication sensitive cost analysis system. This builds on earlier work in the area by quantifying communication as well as computation costs, with the former being derived for the Bulk Synchronous Parallel (BSP) model. We present details of our shapely skeletal language and its BSP implementation strategy together with an account of the analysis mechanism by which program behaviour information (such as shape and cost) is statically deduced. This information can be used at compile-time to optimise a BSP implementation and to analyse computation and communication costs. The analysis has been implemented in Haskell. We consider different algorithms expressed in our language for some example problems and illustrate each BSP implementation, contrasting the analysis of their efficiency by traditional, intuitive methods with that achieved by our cost calculator. The accuracy of cost predictions by our cost calculator against the run time of real parallel programs is tested experimentally. Previous shape-based cost analysis required all elements of a vector (our nestable bulk data structure) to have the same shape. We partially relax this strict requirement on data structure regularity by introducing new shape expressions in our analysis framework. We demonstrate that this allows us to achieve the first automated analysis of a complete derivation, the well known maximum segment sum algorithm of Skillicorn and Cai

    Toward optimised skeletons for heterogeneous parallel architecture with performance cost model

    Get PDF
    High performance architectures are increasingly heterogeneous with shared and distributed memory components, and accelerators like GPUs. Programming such architectures is complicated and performance portability is a major issue as the architectures evolve. This thesis explores the potential for algorithmic skeletons integrating a dynamically parametrised static cost model, to deliver portable performance for mostly regular data parallel programs on heterogeneous archi- tectures. The rst contribution of this thesis is to address the challenges of program- ming heterogeneous architectures by providing two skeleton-based programming libraries: i.e. HWSkel for heterogeneous multicore clusters and GPU-HWSkel that enables GPUs to be exploited as general purpose multi-processor devices. Both libraries provide heterogeneous data parallel algorithmic skeletons including hMap, hMapAll, hReduce, hMapReduce, and hMapReduceAll. The second contribution is the development of cost models for workload dis- tribution. First, we construct an architectural cost model (CM1) to optimise overall processing time for HWSkel heterogeneous skeletons on a heterogeneous system composed of networks of arbitrary numbers of nodes, each with an ar- bitrary number of cores sharing arbitrary amounts of memory. The cost model characterises the components of the architecture by the number of cores, clock speed, and crucially the size of the L2 cache. Second, we extend the HWSkel cost model (CM1) to account for GPU performance. The extended cost model (CM2) is used in the GPU-HWSkel library to automatically nd a good distribution for both a single heterogeneous multicore/GPU node, and clusters of heteroge- neous multicore/GPU nodes. Experiments are carried out on three heterogeneous multicore clusters, four heterogeneous multicore/GPU clusters, and three single heterogeneous multicore/GPU nodes. The results of experimental evaluations for four data parallel benchmarks, i.e. sumEuler, Image matching, Fibonacci, and Matrix Multiplication, show that our combined heterogeneous skeletons and cost models can make good use of resources in heterogeneous systems. Moreover using cores together with a GPU in the same host can deliver good performance either on a single node or on multiple node architectures

    Finding parallel functional pearls : automatic parallel recursion scheme detection in Haskell functions via anti-unification

    Get PDF
    This work has been partially supported by the EU H2020 grant “RePhrase: Refactoring Parallel Heterogeneous Resource-Aware Applications–a Software Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), supported by COST (European Cooperation in Science and Technology) , by EPSRC grant “Discovery: Pattern Discovery and Program Shaping for Manycore Systems” (EP/P020631/1), and by Scottish Enterprise PS7305CA44.This paper describes a new technique for identifying potentially parallelisable code structures in functional programs. Higher-order functions enable simple and easily understood abstractions that can be used to implement a variety of common recursion schemes, such as maps and folds over traversable data structures. Many of these recursion schemes have natural parallel implementations in the form of algorithmic skeletons. This paper presents a technique that detects instances of potentially parallelisable recursion schemes in Haskell 98 functions. Unusually, we exploit anti-unification to expose these recursion schemes from source-level definitions whose structures match a recursion scheme, but which are not necessarily written directly in terms of maps, folds, etc. This allows us to automatically introduce parallelism, without requiring the programmer to structure their code a priori in terms of specific higher-order functions. We have implemented our approach in the Haskell refactoring tool, HaRe, and demonstrated its use on a range of common benchmarking examples. Using our technique, we show that recursion schemes can be easily detected, that parallel implementations can be easily introduced, and that we can achieve real parallel speedups (up to 23 . 79 × the sequential performance on 28 physical cores, or 32 . 93 × the sequential performance with hyper-threading enabled).PostprintPeer reviewe
    corecore