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Abstract
Recursion schemes, such as the well-known map, can be used as

loci of potential parallelism, where, e.g., map is replaced with an

equivalent parallel implementation. �is paper formalises a novel

technique, using program slicing, that automatically and statically

identi�es computations in recursive functions that can be li�ed out

of the function and potentially performed in parallel. We de�ne

a new program slicing algorithm, built a prototype implementa-

tion, and demonstrated its use on 12 Haskell examples, including

benchmarks from the NoFib suite and functions from the standard

Haskell Prelude. In all cases, we obtain the expected results in terms

of �nding potential parallelism. Moreover, we have tested our pro-

totype against synthetic benchmarks, demonstrating our prototype

has quadratic time complexity. For the NoFib benchmark examples

we demonstrate that relative parallel speedups can be obtained (up

to 32.93× the sequential performance on 56 hyperthreaded cores).
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1 Introduction
Traditional parallelisation techniques commonly consist of low-

level primitives and libraries. �ey require the programmer to

manually introduce and manage complex constructs, e.g. threads,

communication, and synchronisation. �is results in a tedious, dif-

�cult, and o�en error-prone process [22]. Structured parallelisation

techniques, such as algorithmic skeletons, instead present instances

of high-level composable pa�erns to the programmer [11]. �ey

allow the parallel structure of a program to be expressed as an in-

stance of a pa�ern, while abstracting over low-level primitives and

libraries. Despite the simpli�ed interface, introducing skeletons

can still be a non-trivial task, particularly with large legacy appli-

cations [3]. �is o�en requires signi�cant knowledge of the code

base, language, and parallelism itself [6]. One common problem

arises when control or data dependencies inhibit, or obstruct, the

introduction of parallelism. �is paper introduces a new technique

to minimise such obstructive dependencies using program shaping,

so enabling the automatic introduction of algorithmic skeletons.

Recursion schemes describe how data structures can be traversed

or constructed [31]. In functional languages, recursion schemes

are o�en implemented as higher-order functions such as map or

foldr. Moreover, since algorithmic skeletons can be seen as paral-

lel implementations of higher-order functions, it is possible to use
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recursion schemes as loci of potential parallelism [7]. For example,

a call to a standard map can be replaced with a call to an equivalent

parallel implementation, provided that all mapped computations

are independent [35]. Unfortunately, there is no guarantee that

higher-order functions will be used in all possible instances by the

programmer, or that the best higher-order function will be used. It

follows that if these higher-order functions can be otherwise discov-

ered automatically, then more options for introducing parallelism

become available to the programmer.

In [4], we presented a high-level description of how program

slicing might be used to discover map operations in recursive func-

tions, and demonstrated that those map operations can be used as

loci of potential parallelism to produce relative speedups. In this pa-

per, we give a more formal presentation of the approach presented

in [4], placing greater emphasis on our classi�cation technique,

and apply that technique to a wider range of examples. Moreover,

we de�ne a novel program slicing [34] algorithm to inspect how

the values of variables change between recursive calls. As a basis

for our analysis, we de�ne a strict, uncurried, and higher-order

expression language. We have implemented our approach in Er-

lang, and demonstrated its use on 12 examples, including ones

derived from the NoFib benchmark suite [32] and functions from

the Haskell Prelude. Our prototype correctly discovers all possible

mappable operations in our examples. Experimental results on

some synthetic benchmarks suggest that our prototype has qua-

dratic time behaviour. Moreover, we show that relative speedups

are possible through the (semi-)automatic introduction of parallel

map operations. We achieve a maximum of 32.93× speedup on a

56-core hyperthreaded experimental testbed machine.

2 Illustrative Example
We illustrate our approach using an example from the the NoFib
suite, sumeuler, that calculates Euler’s totient function for a list of

integers and sums the results.

1 sumeuler :: [Int] -> Int

2 sumeuler xs0@[] = 0

3 sumeuler xs0@(x:xs) = euler x + (sumeuler xs)

Here, we have unfolded (in the transformational sense) the de�ni-

tion given in the NoFib suite for demonstration purposes. Since this

de�nition of sumeuler is explicitly recursive, parallelising the func-

tion de�nition requires the programmer to know how sumeuler
traverses its arguments. �is includes understanding how the com-

putations performed on the (elements of the) input list a�ect: i) how

the input is traversed; and ii) the result of sumeuler itself. To take

advantage of recursion schemes as loci of potential parallelism, the

above de�nition of sumeuler can be rewri�en as an instance of a

composition of a foldr and a map,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/162928615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Submi�ed to FHPC, 2017, Oxford, UK Adam D. Barwell and Kevin Hammond

1 8 16 24 32 40 48 56

0

5

10

15

20

25

30

Cores

S
p
ee
d
u
p

n=1000 n=5000 n=10000

n=15000 n=20000 n=25000

n=30000 n=35000 n=40000

n=45000 n=50000

Figure 1. sumeuler, speedups on corryvreckan using reported

mutator (MUT) time, dashed line shows extent of physical cores.

1 sumeuler :: [Int] -> Int

2 sumeuler xs0 = foldr (+) 0 (map euler xs0)

�is simpli�es the introduction of parallelism. Multiple paral-

lelisations of, e.g., map are possible. We can use, for example,

parList from the Haskell Strategies library [37], parMap from the

Par Monad [30], or GPUs via the Accelerate library [10]. �e paral-

lel map skeleton can be used to safely plug-replace any standard use

of map provided that all the mapped computations are independent.
In the case of sumeuler, for example, we might use the standard

Haskell Strategies library,

1 sumeuler :: [Int] -> Int

2 sumeuler xs0 = foldr (+) 0 (map euler xs0)

3 `using` parList rdeepseq

where the parallel map skeleton, parList, is parameterised with

rdeepseq, a nested strategy that forces each element of the result

to be fully evaluated. By cleanly separating the functional de�-

nition of the program from its evaluation strategy, it is easy to

introduce alternative parallelisations, while still ensuring that the

parallel version is functionally equivalent to the original de�nition.

For example, the parallelisation can be further tuned to improve

speedups, perhaps by chunking xs0 [7], and by taking advantage

of the associativity of (+) to sum the individual chunks before

returning the sum of all the chunks.

1 sumeuler :: [[Int]] -> Int

2 sumeuler xs0 = sum (map (sum . map euler) xs0)

3 `using` parList rdeepseq

4 where sum = foldr (+) 0

Fig. 1 shows the raw speedups that we obtain for this program

for the interval [1,n] for varying sizes of n on our 56-core hyper-

threaded experimental machine, corryvreckan. We obtain a maxi-

mum speedup of 30.50 for n = 50000 on 48 hyperthreaded parallel

cores.

In order to take advantage of skeletons, recursion schemes must

be used explicitly. When recursion schemes are implicit, e.g. as in

sumeuler, they must �rst be discovered either manually or auto-

matically. To automatically discover the computations that may

be performed as part of a map, we inspect the application expres-

sions that are not recursive calls, herea�er termed operations, in

the de�nition of sumeuler. Whether an operation may be li�ed

into a map depends on two things: i) how the arguments to the

recursive function di�er between the stages of the recursion; and

ii) the structure of the arguments in the operation. We determine

how the values of arguments change between recursive calls using

program slicing. �is is a technique that is used to extract all the

program statements that, depending on the algorithm used, may
in�uence, or may be in�uenced by, a given statement from the same

program, called the slicing criterion [34]. A slice is o�en calculated

by inspecting the control and data dependencies of a program. Slic-

ing the explicitly recursive de�nition of sumeuler, taking x as the

criterion, produces:

1 sumeuler xs0(x:_) = euler x + undefined

Both the empty-list clause and the recursive call, (sumeuler xs),

are removed because they are not in�uenced by the value of x.

Slicing might therefore be thought of as a narrowing of focus on

only those parts of the program or expression that are of interest,

and with all the irrelevant parts stripped away [4]. For the purposes

of our approach, we can further narrow the slice to highlight how

the values of the arguments change between recursive calls. Our

slice only needs to be a set of variables, where inclusion in the

set indicates use, and an annotated inclusion in the set indicates

update. For example, the slice of sumeuler, with criterion xs0,

{x, xs}, indicates that both x and xs are used; in (euler x) and

(sumeuler xs) respectively. �e slice also indicates that xs0 itself

is not considered to be updated. We consider a variable to be updated,

when its value is signi�cantly changed. For a list, we do not consider

recursively traversing a list in this way a signi�cant change. We

formalise this intuition in Defns. 4.1 and 4.3.

Given such a slice, we now need to decide whether that argument

can be used within a map, where each use is independent of all

other uses. If the argument is used and not updated, e.g. as with

xs0 in sumeuler, then it can also occur safely in a map operation.

Conversely, if the argument is updated but not used, e.g. x in,

1 f x ys0[] = 42

2 f x ys0(y:ys) = f y ys

then it can similarly be updated independently of each input. In

either of these cases, we consider the argument to be clean. How-

ever, when an argument is both used and updated, then it indicates

that the usage and update of the variable is not independent of the

other stages of the recursion. Any operation in which an argument

that is both used and updated cannot be safely li�ed into a map. We

therefore consider such an argument to be tainted. In sumeuler, xs0

is the only argument, and it is used but not updated. It is therefore

classi�ed as clean, along with its case-de�ned variables, x and xs.

2



In Search of a Map Submi�ed to FHPC, 2017, Oxford, UK

bool1

Γ ` true : bool
bool2

Γ ` false : bool
int

Γ ` Z : int
var

Γ ∪ {x : τ } ` x : τ
list1

Γ ` nilτ : list τ

list2

Γ ` e1 : τ Γ ` e2 : list τ

Γ ` consτ e1 e2 : list τ
case

Γ ` xs : list τ1 Γ ` y : τ1 Γ ` ys : list τ1 Γ ` e1 : τ2

Γ ∪ {y : τ1,ys : list τ1} ` e2 : τ2

Γ ` case xs of nilτ1
→ e1, consτ1

(y, ys) → e2 : τ2

app

Γ ` e0 : ®τ → τm Γ ` ®e : ®τ
Γ ` e0 ®e : τm

fun

Γ ∪ {®x : ®τ } ` e : τm

Γ ` λ ®x → e : ®τ → τm
fix

Γ ` e : (((τ2, . . . ,τn ) → τm ),τ2, . . . ,τn ) → τm

Γ ` �x e : (τ2, . . . ,τn ) → τm

Figure 2. Typing judgements for E, determining simple types in T .

Having determined whether each argument in our recursive

function is clean or tainted, we can then determine for each op-

eration in the same recursive function whether that operation is

independent of successive recursive calls. Such an operation is

classi�ed as unobstructive when none of its arguments use a tainted

variable or include a recursive call. For example, sumeuler has two

operations:

1. (euler x); and

2. ((euler x) + (sumeuler xs)).

Since x is classi�ed as clean, (euler x) is classi�ed to be unobstruc-
tive. Conversely, since the second argument to (+) in the second

operation is a recursive call, the addition operation is classi�ed as

obstructive. We can therefore li� (euler x) into a map operation,

perhaps by refactoring the original source:

1 sumeuler :: [Int] -> Int

2 sumeuler xs0 = sumeuler' (map euler xs0)

3

4 sumeuler' ys0[] = 0

5 sumeuler' ys0(y:ys) = y + ys

Here sumeuler' is functionally equivalent to sum, so our �nal form

is:

1 sumeuler :: [Int] -> Int

2 sumeuler xs0 = sum (map euler xs0)

�is can then be easily parallelised by using a parallel map skeleton,

as seen above.

3 Preliminaries and Assumptions
We illustrate our approach over the simple expression language, E.

e ∈ E ::= true

| false

| Z
| var
| nilτ
| consτ e e
| case var of nilτ → e, consτ var var→ e
| e ®e
| λ ®var → e
| �x e

E is a simple, strict, functional language. Its terms form a com-

mon subset of functional languages: boolean constants, true and

false; integer constants, z ∈ Z; variables, var ; list constructors, nilτ
and consτ e e; case discrimination on lists, case var of nilτ →
e, consτ var var → e; function application, e ®e ; lambda expres-

sions, λ ®var → e; and �xpoints, �x e . Constructors are restricted

here to cons-lists for simplicity and clarity of presentation, but the

def sumeuler = �x λ (f ,xs0) →
case xs0 of

nilπ → 0,

consπ (x , xs) → plus (euler (x), f (xs))

Figure 3. De�nition of sumeuler in E.

approach is extensible to other types, given a de�nition of vari-
able update (Def. 4.1) for that type. Similarly, the approach can

be extended to arbitrary types, given that a de�nition of variable

update can be derived for arbitrary constructors. Vector notation,

e.g. ®e , refers to a non-empty tuple: ®e ≡ (e1, . . . , en ),n ≥ 1. Tuples

are purely meta-syntactic, and are used for clarity of notation. In

order to simplify our presentation, list constructors and case dis-

criminators are annotated with the (monomorphic) type of the list

elements, τ . �e corresponding type language, T , is shown below.

τ ∈ T ::= bool
| int
| list τ
| ®τ → τ

�e typing judgements in Fig. 2 then determine the well-formedness
of expressions in E with regard to their monomorphic types in T .

A statement, s ∈ S , is an assignment.

s ∈ S ::= def var = λ ®var → e
| def var = �x e

Statements appear only at the top level of a program. A variable

may be bound either to a function application or to a �xpoint

expression. �ese bindings are then in scope for the duration of

the program. A program p ∈ P is a series of statements.

p ∈ P ::= s
| s ; p

P can be thought of as an intermediate representation to which,

e.g., Haskell or Erlang are compiled, similar to Core Haskell. For

example, the Haskell de�nition of sumeuler,

1 sumeuler [] = 0

2 sumeuler (x:xs) = euler x + (sumeuler xs)

can be translated into the term in P given in Fig. 3. In this paper,

we will use Haskell syntax for our examples in order to improve

readability. All our examples can be translated into P following a

similar principle to the above example. Our approach will inspect

only the code provided and does not presume to predict possible

compiler optimisations, e.g. fusions or worker-wrapper transfor-

mations. As an intermediate representation, these techniques can

be applied a�er, or prior to, the application of our approach.
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Where pa�ern matching is used, we will use as-pa�erns to indi-

cate the implicit list variables; e.g.

1 sumeuler xs0@[] = 0

2 sumeuler xs0@(x:xs) = euler x + (sumeuler xs)

For clarity, all the variables in our examples will be consistent

across function clauses. All variables are assumed to be unique

under α-conversion, at both the statement and expression levels.

Type environments, Γ, are de�ned to be a set of bindings of variables

to types:

Γ ∈ {var : T }
As usual, all values in the domain of Γ are assumed to be unique,

and Γ(x) denotes the type τ of a variable x in Γ, such that ∃τ ∈
T , (x : τ ) ∈ Γ. For a given program p, the program environment, Γp ,

contains all the variables in p.

De�nition 3.1 (Program Environment, Γp ). Given some program

p and the set of variables X ⊆ var that occur (either free or bound)

inp, we de�ne an environment Γp to be a set such that ∀x ∈ X ,∃τ ∈
T ,x : τ ∈ Γp
�e above sumeuler de�nition, for example, has the Γp :

Γp = {xs0 : list int, x : int, xs : list int,

f : (list int) → int, euler : (int) → int, . . . }
We omit the variables and types of euler for clarity. For the rest of

this paper, we will assume that for all given variables x ∈ Γp .

It is useful to de�ne the notion of subexpressions in E, since

subexpressions are a key element in both slicing and classi�cation

de�nitions.

De�nition 3.2 (Subexpression). Given two expressions e, e ′, say

that e ′ is a subexpression of e (denoted e ′ � e) when

e ′ = e

e ′ � e

e ′ � e1 ∨ e ′ � e2

e ′ � consτ e1 e2

e ′ � e1 ∨ e ′ � e2

e ′ � case x of nilτ → e1, consτ x
′ x ′′ → e2

∃i ∈ [0,n], e ′ � ei

e ′ � e0 ®e
e ′ � e

e ′ � λ ®x → e

e ′ � e

e ′ � �x e

Subexpressions form a partial order relation.

We will refer to any application that is a subexpression of a �xpoint

and that is not a recursive call as an operation. For example, the

�xpoint expression in Fig. 3, has two operations: plus and euler.
�e application subexpression, f (xs) is not an operation because

it is a recursive call.

Functions are introduced using a λ-expression. �ey are always

pure, are uncurried, and are never partially applied. �ey may,

however, be higher-order. Any recursive (function) de�nitions are

always introduced using an explicit �xpoint expression, e.g.:

�x (λ (f ,xs) → f (xs)).
�e form of recursion is not otherwise restricted; general recursive

forms are allowed, for example.

Lists are de�ned to be an ordered collection of elements, where

those elements are accessed via case-expressions. As shown by

the typing rules of Fig. 3, case discrimination is restricted to lists

of some type τ . We assume the existence of a built-in functions

(e.g. if, eq, plus) for discrimination and operations on integers and

booleans. Case-expressions can be extended to other types, given

an additional check on the type of the discriminated variable in the

relevant de�nitions. We limit case-expressions here to simplify our

presentation. In the non-nil branch of a case-expression, new vari-

ables are bound respectively to the �rst element in the list (i.e. the

head) and to the remainder of the list (i.e. the tail). A corresponding

Reachability Relation is de�ned for each case-expression.

De�nition 3.3 (Reachability Relation). Given a program p, a pro-

gram environment, Γp , and a case-expression in p, e = case xs0 of

nilτ → e1, consτ xs xs → e2, we say that x /p xs0 and xs /p xs0.

�e transitive closure of the reachability relation is de�ned such

that z /+p xs0 when ∃y, z /+p y ∧ y /p xs0. �e re�exive-transitive

closure of the reachability relation is de�ned such that y /∗p xs0

when ∃y, y /+p x ∨ y = xs0.

For example, x /p xs0, xs /p xs0, and xs0 /
∗
p xs0 all hold for the case

expression in sumeuler. �e Reachability Relation will be used to

calculate the program slice for a given expression and variable. It is

also useful to know when a cons-expression reconstructs xs0 (e.g.

(x:xs) in sumeuler), so that xs0 can be included in the slice. �e

syntactic equivalence relation for lists is used to detect such list

reconstructions.

De�nition 3.4 (Syntactic Equivalence for Lists). Given some pro-

gram p; argument x of type list τ , and a cons-expression e =
consτ e

′ e ′′, we say that e is syntactically equivalent to x , denoted

e ≡ x , when ∃y,∃ys, e ′ = y ∧ e ′′ ≡ ys ∧ y /p x ∧ ys /p x .

For example, where xs0 is case-split in sumeuler into x and xs, xs0

is syntactically equivalent to a cons-expression with x as the �rst

argument and xs as the second argument; i.e. xs0 ≡ consτ x xs.

4 Determining Obstructiveness
Each operation is inspected to determine whether that operation

is obstructive. An obstructive operation is an operation that has

either: i) any arguments whose subexpressions contain a recursive

call; or ii) any arguments that are both used in the body of the

�xpoint expression and whose value is changed signi�cantly in any

recursive call. All other operations are classi�ed as unobstructive.
So, for example, (euler x) in sumeuler is classi�ed as unobstruc-
tive because euler is a unary function that takes only the head of

the list. Conversely, the in�x addition operation in sumeuler is

classi�ed as obstructive because it takes the result of a recursive

call as an argument. Obstructiveness is de�ned formally in Def. 4.6.

�e nature of signi�cance is de�ned below.

4.1 Variable Usage and Update
From the intuitive de�nition of obstructiveness above, all variables

in Γp for some �xpoint expression, e = �x λ (f ,x1, . . . ,xn ) → e ′,
must be �rst inspected to classify operations in e as (un)obstructive.

Each variable x ∈ Γp is classi�ed as used, updated, or both, in e .

Although all the variables in P are immutable, and each function

application binds new values to each of its arguments, the value

of some variable x is considered to be (potentially) changed in e

when x is the ith argument to f and there exists some recursive call

to f in e ′ or any of its subexpressions. �at is, the di�erences in

the value of a speci�c argument between successive recursive calls

are considered to be changes to the corresponding bound variables.

We extend this notion with the concept of signi�cantly changed.

Intuitively, a change in value is considered signi�cant when for
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some recursive call, f (e1, . . . , en ), the ith argument, ei , is not: i) a

variable that is reachable from x ; ii) syntactically equivalent to

x ; nor iii) a cons-expression that prepends an expression to x (or

its syntactic equivalent) that contains no subexpression that is a

variable reachable from x . Variables whose value is signi�cantly

changed in this way are classi�ed as updated.

De�nition 4.1 (Variable Update). Given a program p, a program

environment Γp , a �xpoint expression e = �x (λ (f ,x1, . . . ,xn ) →
e ′) in p, and an argument x , where x is the ith argument to f , x is

considered to be updated in e (denoted x̄ ∼x e) when there exists

a recursive call, f (e1, . . . , en ) � e ′ such that ¬(ei /∗p x) ∧ (ei .
x) ∧ (ei , consτ ek el ∧ el ≡ x ∧ @y � ek , y /

∗
p x)

Usage is a simpler concept: a variable is considered used when it

occurs as a subexpression of a �xpoint expression. �ere is one

exception to this: when a subexpression is the ith argument to a

recursive call. We �rst de�ne the notion of variable-usage escape-
ment. �is is to avoid the used classi�cation of x , and ultimately

the membership of x in the slice, when ei is a x itself or when

prepending to x . For example, it avoids the erroneous classi�cation

of x in:

1 f a x = if a < 5

2 then f (a+1) x

3 else f (a-1) a

Here, in Line 3, x is correctly classi�ed as being updated. In Line

2, x is not updated, but also should not be considered to be used,

since x is necessary as an argument to the recursive call in order to

retain the value of x.

De�nition 4.2 (Variable-Usage Escapement). For some �xpoint

expression e = �x (λ (f ,x1, . . . ,xn ) → e ′), ∀f (e1, . . . , en ) � e ′,
and for some i ∈ [1,n], given x , the ith argument to f , we substitute

the special symbol ε for ei whenever ei = x or ei ≡ x . When

ei = consτ ek el ∧ el ≡ x ∧ @y � ek , y /
∗
p x holds, we substitute ε

for el . Variable-usage escapement of e with respect to x is denoted

e \ε x .

In the above de�nition of f, for example, the x in Line 2 would be

substituted for ε .

1 f a x = if a < 5

2 then f (a+1) ε

3 else f (a-1) a

We can now de�ne variable usage.

De�nition 4.3 (Variable Usage). Given some �xpoint expression

e = �x (λ (f ,x1, . . . ,xn ) → e ′), and a variable x where x is the ith

argument to f , a variable y is considered to be used in e (denoted

y ∼x e) when y /∗p x and y exists as a subexpression to the variable-

usage escaped e; i.e. y � (e \ε x).

To illustrate this, consider the following functions.

1 f a xs0@[] = a

2 f a xs0@(x:xs) = f x xs

3

4 g xs0@(x:xs) ys0@(y:ys) = g (x:xs) (x:ys)

5 g xs0 ys0 = xs0

6

7

8 h xs0@(x:xs) ys0@(y:ys) = h (y:(x:xs)) (y:(y:ys))

9 h xs0 ys0 = xs0

For f, the value of a is updated since ¬(x /∗p a). However, the

list argument is not updated since xs is reachable from xs0; i.e.

xs /∗p xs0. All variables, excluding xs0, in the program environment

of f are considered to be used: a is used in Line 1; x in the �rst

argument of the recursive call; and xs in the second argument of the

recursive call. For g, xs0 is not updated since (x:xs) is syntactically

equivalent to xs0; i.e. consτ x xs ≡ xs0. However, ys0 is updated
since (x:ys) is not syntactically equivalent to ys0. All variables

apart from y and xs are considered to be used in g: xs0 is used

both in Line 5 and as the semantically equivalent �rst argument

to the recursive call; x and ys are used in the second argument of

the recursive call. Finally, for h, xs0 is not updated, since y (which

is not reachable from xs0) is prepended to xs0. However, ys0 is

updated since y is prepended to ys0 and y is reachable from ys0. y,

xs0, and ys0 are all considered to be used in h: xs0 in Line 9 and

the cons in the �rst argument of the recursive call; ys0 in the cons
in the second argument of the recursive call; y in the cons of both

arguments of the recursive call.

4.2 Slicing Algorithm
Intuitively, a slice Σe |x of an expression e with criterion x is a set

of variables that indicates whether a variable y is used in e and

whether x is updated in e , denoted by the annotation x̄ . A slice can

be used to categorise variables, and ultimately to determine the

obstructiveness of operations.

De�nition 4.4 (Slice). Given some program p, the program envi-

ronment Γp , a �xpoint expression e = �x λ (f ,x1, . . . ,xn ) → e ′,
and a variable x , where x is the ith argument to f , we say that the

slice of e with criterion x , denoted Σe |x , is the set of variables such

that ∀y ∈ Σe |x , (y ∼x e) ∨ (y = x̄ ∧ x̄ ∼x e).

To illustrate the slicing relation, recall the de�nition of sumeuler,

1 sumeuler xs0@[] = 0

2 sumeuler xs0@(x:xs) = euler x + (sumeuler xs)

Considering each variable in sumeuler: both x ∈ Σsumeuler |xs0
and

xs ∈ Σsumeuler |xs0
hold since both x and xs are reachable from xs0

(i.e. x /∗p xs0 and xs /∗p xs0) and both x and xs are used in Line 2;

conversely, neither xs0 ∈ Σsumeuler |x nor ¯xs0 ∈ Σsumeuler |xs0
hold,

since xs0 is not considered used, and xs0 is not considered updated,

in sumeuler. For the de�nition of sum:

1 sum x ys0@[] = x

2 sum x ys0@(y:ys) = sum (x+y) ys

x ∈ Σsum |x holds since x is used in both Lines 1 and 2. x̄ ∈ Σsum |x

also holds since x is updated in the recursive call in Line 2 by

the (x+y) operation. As with sumeuler, both y ∈ Σsum |ys0
and

ys ∈ Σsum |ys0
hold since both y and ys are considered to be used in

Line 2. Conversely, neither ys0 ∈ Σsum |ys0 nor ¯ys0 hold since ys0 is

not considered to be used or updated in sum. �e slices of sumeuler
and sum can be presented:

Σsumeuler |xs0 = {x, xs}
Σsum |x = {x, x̄}
Σsum |ys0 = {y, ys}

5
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bool1

Γp , f ,x , i ` true : ∅
bool2

Γp , f ,x , i ` false : ∅
int

Γp , f ,x , i ` Z : ∅
var1

y /∗p x

Γp , f ,x , i ` y : {y}
var2

¬(y /∗p x)
Γp , f ,x , i ` y : ∅

lst1

Γp , f ,x , i ` nil : ∅
lst2

consτ y ys ≡ x

Γp , f ,x , i ` consτ y ys : {x}
lst3

Γp , f ,x , i ` e1 : Σ1 Γp , f ,x , i ` e2 : Σ2 consτ e1 e2 . x

Γp , f ,x , i ` consτ e1 e2 : Σ1 ∪ Σ2

case

Γp , f ,x , i ` e1 : Σ1 Γp , f ,x , i ` e2 : Σ2

Γp , f ,x , i ` case ys of nilτ → e1, consτ z zs → e2 : Σ1 ∪ Σ2

rec-app

∀j ∈ [1, i) ∪ (i,n], Γp , f ,x , i ` ej : Σj
(((ei = x ∨ ei ≡ x) → Σi = ∅) ∨ ((ei /+p x) → Σi = {ei }) ∨

((∃ek ,∃el , ei = consτ ek el ∧ (@v, (v � ek ∧v /∗p x)) ∧ el ≡ x) → Σi = ∅) ∨
(¬(ei /∗p x ∨ (∃ek ,∃el , ei = consτ ek el ∧ (@v, (v � ek ∧v /∗p x)) ∧ el ≡ x) ∨ ei ≡ x) ∧ Γp , f ,x , i ` ei : Σ→ Σi = {x̄} ∪ Σ))

Γp , f ,x , i ` f (e1, . . . , en ) :

⋃
j ∈[1,n] Σj

app

∀j ∈ [0,n], Γp , f ,x , i ` ej : Σj e0 , f

Γp , f ,x , i ` e0 (e1, . . . , en ) :

⋃n
j=0

Σj
fun

Γp , f ,x , i ` e : Σ

Γp , f ,x , i ` λ (y) → e : Σ
fix

Γp , f ,x , i ` e : Σ

Γp , f ,x , i ` �x e : Σ

Figure 4. Inference rules to calculate the slice Σe |x for an expression e with criterion x .

�e slice Σe |x is calculated using the inference rules from Fig. 4.

For clarity of notation, we will write Σe |x as Σ since neither e nor x

can be changed within a slicing operation; showing that Σ = Σe |x

remains future work. Judgements are in the form:

Γp , f ,x , i ` e : Σ

where Γp is the environment for some program p; f is the name

of the �xpoint function being sliced; x is the slicing criterion that

is declared as the ith argument of f ; e is the expression in p that

is being sliced; and Σ is the resulting slice. For literal expressions

and variables that are not reachable from x , e produces an empty

slice, represented by the rules bool1, bool2, int, var2, and lst1.

A variable that is reachable from x , as a usage of x , produces the

slice containing that variable (var1). Cons-expressions that are

syntactically equivalent to x produce the slice containing x itself

(lst2). All other expressions that are not recursive calls produce

the union of the slices of their subexpressions, as stated in the rules

lst3, case, app, fun, and fix. Finally, rec-app determines whether

x is updated in a recursive call, producing the appropriate slice.

rec-app has two main premises that: i) slice all subexpressions that

are passed to f , aside from the ith argument; and ii) determines

whether x is updated. �e second premise is a disjunction of four

implications: i) when ei is x itself, or is syntactically equivalent to

x ; ii) when ei is a variable that is de�ned via case-discrimination

on x ; iii) when x is prepended by some expression ek that does not

contain a subexpression that is a variable reachable from x ; and

otherwise iv) when x is considered updated. In the �rst case, the

slice, Σi , for the ith argument to f , ei , is the empty set since the

argument preserves the value of x for the next recursive call. In

the second case, Σi is the singleton set containing ei itself since the

value of x is changed, and a case-derived variable is used, but x is

not considered to be updated. In the third case, Σi is the slice of the

subexpression that is prepended to x . Finally, in the fourth case, Σi
is the slice of ei and x is considered to be updated.

We conjecture that the slicing algorithm in Fig. 4 is sound with

respect to the slicing de�nition, Def. 4.4, such that our algorithm

produces a slice whose members are only those variables that are

considered to be used or updated in e with respect to x . Similarly,

we conjecture that slices are unique for each e and x . We defer the

proofs of soundness and uniqueness to future work.

4.3 Classifying Variables
Variables can be classi�ed as: global, clean, or tainted. Global vari-

ables are those that are in scope in e , but which are declared and

bound outside of e . �ey may be used, but cannot be updated
during the evaluation of e; they are therefore treated as literals.

Variables that are classi�ed as either clean or tainted are ones that

are either de�ned in the �xpoint function (i.e. x1, . . . ,xn ), or in case-

subexpressions of e ′, where whenever ∀v,w ∈ Γp such that v /+p w ,

it follows that v has the same classi�cation as w .

De�nition 4.5 (Variable Taint). Given a program p, program envi-

ronment Γp , a �xpoint expression e = �x (λ (f ,x1, . . . ,xn ) → e ′)
in p, a variable x , and a slice Σe |x of e with criterion x , then x is

classi�ed as tainted when x̄ ∈ Σe |x ∧ x ∈ Σe |x . �e variable is

classi�ed as clean, otherwise.

4.4 Classifying Operations
Once all the arguments of e are classi�ed as global, clean, or tainted,

we can proceed to classify those non-recursive application subex-

pressions of e , i.e. the operations in e . �ose operations that take

one or more variables that are classi�ed as tainted are themselves

classi�ed as obstructive. All other operations are classi�ed as unob-
structive.

De�nition 4.6 (Operation Obstructiveness). Given some program

p, some program environment Γp , and some �xpoint expression

e = �x (λ (f ,x1, . . . ,xn ) → e ′) in p, an operation д (e1, . . . , em ) �
e ′, when д , f , is classi�ed as obstructive when ∃i ∈ [1,m] such

that f (®ef ) � ei ∨ ∃y, y � ei where y is classi�ed as tainted. �e

operation is classi�ed as unobstructive otherwise.

5 Examples
In this section we demonstrate our approach on 12 examples, in-

cluding sumeuler, matrix multiplication, n-queens, and the Smith-
Waterman algorithm. We give parallel speedup results for sumeuler,
matrix multiplication, and n-queens. Our source code is available

6
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Example RFs Ops RCs Args

Unobstructive Ops Obstructive Ops Time σ
Actual Found Actual Found (µs) (µs)

Data.List 18 22 20 31 5 5 17 17 6797.22 409.14

elem 1 2 1 2 1 1 1 1 176.28 26.51

list-ackermann 1 0 3 2 0 0 0 0 196.46 20.65

gcd 1 3 1 2 0 0 3 3 178.46 48.93

hanoi 1 5 1 1 0 0 5 5 156.16 39.50

k-means 4 15 5 14 4 4 11 11 646.30 60.90

quicksort 3 6 5 5 2 2 4 4 350.94 17.98

swaterman 2 10 2 10 0 0 10 10 420.92 18.44

sumeuler 14 47 14 25 16 16 31 31 2171.36 63.95

matmult 8 23 7 16 6 6 17 17 1195.62 63.23

queens 2 11 2 6 2 2 9 9 487.04 24.48

sudoku 5 9 5 8 3 3 6 6 519.66 38.68

Figure 5. Examples run through prototype implementation. Times are an average of 50 runs.

at h�ps://adb23.host.cs.st-andrews.ac.uk/fhpc17-parallel.zip. Our

results show that our approach can discover map operations that

lead to real performance improvements. Speedups are an average

of �ve runs on corryvreckan, a 2.6GHz Intel Xeon E5-2690 v4 ma-

chine with 28 physical cores and 256GB of RAM. �is machine

allows turbo boost up to 3.6GHz, and supports automatic dynamic

frequency scaling between 1.2–3.6GHz. Speedups use reported

mutator time, i.e. the amount of time spent solely on executing

the program. �is gives an indication of real parallel performance.

Where we use corryvreckan for parallel speedup results, we use a

separate, standard desktop machine, neptune, to test our prototype

implementation. neptune is a 2.7GHz Intel Core i5 machine with

8GB of RAM, running Mac OS X 10.11.6 and Erlang 19.2.3. �e par-

allel speedup results, including speedup graphs in Figs. 1, 7, and 8

are reiterated from [4], where we expand upon the results reported

here. sumeuler, queens, and matmult have all been compiled using

GHC 7.6.3 on Scienti�c Linux version 3.10.0. We compiled the exam-

ples using the �ags: -feager-blackholing, -threaded, -rtsopts,

and -O. We found these gave the best general parallel performance.

We have implemented our inference system in Fig. 4 in Erlang,

providing a parser for our expression language and a classi�er for

operations. For a given program p, we �rst produce the environ-

ment. �en for each �x expression e = �x λ (f , ®x) → e ′ in p, we

slice e with respect to each argument x ∈ ®x . Each x is classi�ed as

either clean or tainted. �is is then used to classify each operation

in e either obstructive or unobstructive. Our implementation can be

found at h�p://adb23.host.cs.st-andrews.ac.uk/fhpc17-artefact.zip.

�e NoFib benchmarks have all been translated from Haskell;

if-expressions have been translated as application expressions,

and so count as operations. Our other examples, including the

18 functions from the Haskell Prelude Data.List library, may

not all bene�t from parallelisation, but serve as a demonstration

of our approach. �e 18 examples chosen from Data.List are:

and, or, append, foldl, foldr, init, intersperse, last, length,

map, maximum, replicate, reverse, scan, heads, subsequences,

tails and transpose. �ese are a representative subset of the

functions in the library; the remaining functions are similar to

these. All our (translated) example code can be found at h�ps:
//adb23.host.cs.st-andrews.ac.uk/fhpc17-examples.zip.
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Figure 6. Prototype execution times for a program with varying

sizes of input. Our implementation is quadratic.

We give an overview of our results in Fig. 5, where gcd refers

to the greatest common denominator function, hanoi refers to

the Towers of Hanoi puzzle, and swaterman refers to the Smith-

Waterman algorithm. �e list-ackermann example is a reimple-

mentation of the standard Ackermann function that traverses lists.

1 list-ackermann as0@[] bs0 = (1:bs0)

2 list-ackermann as0@(a:as) bs0@[] =

3 list-ackermann as [1]

4 list-ackermann as0@(a:as) bs0@(b:bs) =

5 list-ackermann as (list-ackermann a bs)

Our results show that all operations are correctly classi�ed. For

each example, we give: the number of recursive functions that

it contains (RFs), the total number of operations (Ops), the total

number of recursive calls (RCs), the total number of arguments to

all recursive functions (Args), the expected number of obstructive

and unobstructive operations (Actual), those that are found by our

prototype (Found), the average execution time for our prototype of

50 runs on neptune for that example (Time), and standard deviation

(σ ) of those times.
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As a synthetic benchmark, we have also applied our prototype

to programs with varying input sizes, measured in the number of

operations, by duplicating the translated SumEuler modulem times.

As the translated SumEuler has 9 operations, the total number of

operations is n = m × 9. Fig. 6 shows the average time taken of

�ve runs, in seconds, by our prototype on neptune. Our classi�er

takes a minimum of 0.35s for n = 900, with a standard deviation

of 0.03s , and a maximum of 35.02s for n = 9000, with a standard

deviation of 0.58s . Our prototype implementation runs in quadratic

time with respect to n. �e total time taken to classify each of our

examples on neptune are all low, as shown in Fig. 5. �e longest our

prototype takes to classify one of the examples in Fig. 5 is 6.80ms .

5.1 Sumeuler
Recall that sumeuler applies Euler’s totient function to a list of

integers and sums the result.

1 sumeuler xs0@[] = 0

2 sumeuler xs0@(x:xs) = euler x + (sumeuler xs)

We �rst slice sumeuler for its only argument, xs0, Σsumeuler |xs0
=

{x,xs}. As before, xs0 is classi�ed as clean since both case-split

variables of xs0 (x and xs) are used in the body of sumeuler, and

xs0 itself is not updated. Two operations exist as subexpressions

to sumeuler: (euler x) and the application of (+) in Line 2.

(euler x) takes a single clean argument, i.e. x, and is classi�ed

as unobstructive. Conversely, (+) takes two arguments, where

the second argument comprises a recursive call, and is classi�ed

as obstructive. (euler x) can be li�ed into a map operation, and

sumeuler is rewri�en to introduce chunking and parallelism using

the Strategies library. We are also able to take advantage of the

associativity of (+), summing each chunk before summing the

result of all chunks.

In [4] we executed sumeuler for n = 1, 000 and between 5, 000

and 50, 000 at intervals of 5, 000, with a chunk size of 500. Fig. 1

gives the speedups for sumeuler using mutator time. We achieve

maximum speedups of 30.50 for n = 50000 on 48 virtual cores.

Sequentially, when n = 50000 sumeuler has an average runtime

of 154.33s (σ = 0.25s). We achieve good speedups in all cases.

Moreover, sumeuler demonstrates good scalability as n increases.

Fig. 1 shows that for varying n, speedups reach a limit, likely due

to lack of work.

Our translation of the NoFib example code comprises 14 re-

cursive functions over three Haskell modules. Within those 14

recursive functions, there are a total of 47 operations, 16 of which

are classi�ed unobstructive and 31 of which are classi�ed as ob-
structive. As with all the NoFib benchmarks, the high number of

recursive functions are representative of the original duplication in

the underlying Haskell modules.

5.2 Matrix Multiplication
�e NoFib benchmark uses the following implementation of matrix

multiplication.

1 matmult m1 m2 = multMatricesTr m1 (transpose m2))

2

3 multMatricesTr [] m2 = []

4 multMatricesTr (r:rs) m2 =

5 f m2 r : multMatricesTr rs m2

6
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Figure 7. matmult, speedups on corryvreckan using reported mu-

tator (MUT) time, dashed line shows extent of physical cores.

7 f cs0@[] row = []

8 f cs0@(c:cs) row = prodEscalar2 row c : f cs row

Here, transpose transposes a matrix and prodEscalar2 calculates

the dot product of two lists. Since matmult is not a �x expression,

we slice for all the arguments to multMatricesTr.

ΣmultMatricesTr |r s0 = {r, rs} ΣmultMatricesTr |m2 = {mt}
As with our other examples, both of the arguments are used but not

updated and are therefore classi�ed as clean. �e sole operation,

(f m2 r), is classi�ed as unobstructive. Slicing for all arguments

of f,

Σf |cs0 = {c, cs} Σf |row = {row}
we can see the same pa�ern: all the arguments are classi�ed clean,

and the sole operation, (prodEscalar2 row c), is classi�ed as un-
obstructive. Both multMatricesTr, and f can be rewri�en as map
operations. Parallelism can be introduced in matmult by applying

a custom strategy to the call to multMatricesTr that chunks ma-

trices into blocks, rather than along rows or columns. In [4] we

executed matmult for n between 1000 and 5000 at intervals of 500,

with the chunk size set to 20. Fig. 7 gives speedups for matmult
using mutator time, achieving maximum a speedup of 32.93 for

n = 2500 on 52 hyper-threaded cores. Sequentially, when n = 2500

matmult takes an average of 226.58s , with a standard deviation of

7.49s . matmult scales well for both n and number of cores. On hy-

perthreaded cores we observe some erratic behaviour with curious

superlinear speedups. �is is possibly due to caching e�ects.

Interestingly, the de�nition of f might be unfolded (in the trans-

formational sense) in multMatricesTr; e.g.

1 multMatricesTr xs0@[] r m2 =

2 []

3 multMatricesTr xs0@(x:xs) rr@[] m2 =

4 multMatricesTr m2 x m2 : multMatricesTr xs [] m2

8
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5 multMatricesTr xs0@(x:xs) rr m2 =

6 prodEscalar2 rr x : multMatricesTr xs rr m2

Here, multMatricesTr is now a �x-expression, case-spli�ing on

its �rst argument, xs0. Slicing for its arguments, gives

ΣmultMatricesTr |xs0 = {x, xs, ¯xs0}
ΣmultMatricesTr |r r = {rr, r̄r}
ΣmultMatricesTr |m2 = {m2}

While xs0 is considered to be updated, due to m2 being passed as

the �rst argument in the recursive call in line Line 4, both xs0

and m2 are considered to be clean. Conversely, rr is considered

to be tainted. (prodEscalar2 rr x), now the sole operation, is

therefore classi�ed obstructive, meaning no map operations can be

introduced.

�is is a correct result since multMatricesTr traverses two lists,

where both the lists are passed as the �rst argument. �e standard

de�nition of map, for example, does not allow this behaviour, and

any a�empt at introducing a map operation would result in a func-

tion that is not functionally equivalent to multMatricesTr. �is

limitation arises again in queens with fused mutually recursive

functions. A map is only discoverable when the inspected function

recurses over one or more data structures and where at least one

argument is structurally smaller for each recursive call.

Our translation of the NoFib benchmark code comprises 8 recur-

sive functions over 2 Haskell modules. Within those 8 recursive

functions there are 23 operations, of which 6 are classi�ed as unob-
structive and 17 are classi�ed as obstructive.

5.3 N-�eens
We use the following implementation of the queens problem,

1 queens nq = gen 0 []

2

3 gen nq n b

4 | n >= nq = [b]

5 | otherwise = genloop nq n (gennext [b])

6

7 genloop nq n bs0@[] = []

8 genloop nq n bs0@(b:bs) =

9 gen nq (n+1) b ++ genloop nq n bs

where nq is the number of queens and gennext calculates the posi-

tion of a queen on a board. We slice for all arguments of genloop.

Σqueens |nq = {nq} Σqueens |n = {n} Σqueens |bs0 = {b, bs}
All three arguments, nq, n, and bs0, are classi�ed as clean since

both nq and n are used but not updated; and both b and bs are

used but bs0 is neither used nor updated. genloop has three subex-

pressions: i) (n+1) in the call to gen; ii) (gen nq (n+1) b) in the

�rst argument to (++); and iii) the top-level (++). Both (n+1) and

(gen nq (n+1) b) are classi�ed as unobstructive since only clean
variables occur the expressions passed to (+) and gen respectively.

We additionally note that (gen nq (n+1) b) contains the unob-
structive operation (n+1) as a subexpression. Hypothetically, if

(n+1) had been classi�ed as obstructive, then (gen nq (n+1) b)
must also be classi�ed as obstructive. While no tainted variables

occur in the arguments to the append operation, its second argu-

ment is a recursive call, which results in an obstructive classi�ca-

tion. Although it is possible to li� either unobstructive operations
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Figure 8. queens, speedups on corryvreckan using reported muta-

tor (MUT) time, dashed line shows extent of physical cores.

into a map operation, we choose to li� the operation which does

not occur as a subexpression of any unobstructive operation, i.e.

(gen nq (n+1) b), to maximise the amount of work done in par-

allel.

1 genloop nq n bs0 =

2 genloop' nq n (map (gen nq (n+1)) bs0)

3

4 genloop' cs0@[] = []

5 genloop' cs0@(c:cs) = c ++ genloop' cs

Similar to f and multMatricesTr in matmult, we observe that gen
and genloop could be merged into a single de�nition.

1 gen 0 b xs0@[] = [b]

2 gen n b xs0@[] = []

3 gen n b xs0@(x:xs) =

4 (gen (n-1) x (gennext [x])) ++ (gen n b xs)

�is de�nition eliminates the mutual recursion of gen and genloop,

where xs0 traverses two di�erent lists and n acts as an additional

bound on the recursion. As before, our technique will (correctly)

classify all operations as obstructive. In this example, it is the recur-

sive call in the �rst argument to (++) that introduces an update to

all variables.

Our translation of the queens NoFib implementation comprises

two recursive functions with 11 operations, and 2 recursive calls.

Despite the number of operations in queens, there are only two

unobstructive operations in the translation. �e majority of opera-

tions are found in the de�nition of safe.

1 safe x d ys0@[] = True

2 safe x d ys0@(q:l) =

3 x /= q && x /= q+d && x /= q-d && safe x (d+1) l

9
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Slicing safe for all arguments,

Σsafe |x = {x} Σsafe |d = {d, d̄} Σsafe |ys0 = {q, l}

we classify x and ys0 as clean and d as tainted. Here, the tainted
classi�cation of d results in obstructive classi�cations of all but one

in�x inequality operations. Hypothetically, if d had been classi�ed

as clean, we observe that how the in�x (&&) operations are compiled

can a�ect the classi�cations of operations in safe. Parsing (&&)
as either le�- or right-associative can produce di�erent numbers

of obstructive operations. Here, parsing (&&) as le�-associative

minimises the number of obstructive operations; i.e. when,

1 (x /= q && x /= q+d) && (x /= q-d && safe x (d+1) l)

only the topmost (&&) and its second argument are classi�ed as ob-
structive. Conversely, parsing (&&) as right-associative maximises
the number of obstructive operations; i.e. when,

1 x /= q && (x /= q+d && (x /= q-d && safe x (d+1) l))

all (&&) operations are classi�ed as obstructive.
�e queens example is parallelised by applying a strategy from

the Strategies library to the map. To ensure that parallelism is

worthwhile, the speci�c strategy used (parallel or sequential) is

passed in as an argument. A threshold argument is then added to

gen to control the depth to which the map operation is performed

in parallel. We executed queens for n ranging from 11 to 16, with a

threshold depth of 2. Fig. 8 show speedups for queens in terms of

mutator time. We achieve maximum speedups of 22.65 for n = 16

on 48 hyperthreaded cores. Sequentially, when n = 16, queens
takes an average of 717.66s (σ = 0.25s). When n = 11, speedups

plateau before the physical cores are exhausted, likely due to a lack

of work as in sumeuler. When 14 ≤ n ≤ 16, queens scales well

until 28 cores; when hyperthreading is enabled, we see some further

improvement in speedup, albeit at reduced rate when compared

with physical cores. For n = 13 and n = 14, we see intermediate

scalability continue between 28 and 40 hyperthreaded cores. �is

may be due to the lack of chunking of bs0, resulting in ine�cient

use of cores up to 28 cores, with hyperthreading enabling saturation

of the hardware. For n = 13 and n = 14, we observe a similar e�ect

to n = 11 but at a higher level due to increased availability of work.

5.4 Smith-Waterman
�e Smith-Waterman algorithm compares the similarity of two

strings. �e algorithm was originally designed for the comparison

of nucleotides [36]. It has two stages: populating a matrix, and

backtracking over the matrix to �nd the shortest ‘distance’ between

the two strings. �e code below concerns part of the matrix pop-

ulation stage. It traverses the matrix m, updating each cell with

the result of h, where h (implementation omi�ed) calculates the

maximum similarity score between the two strings a and b for the

current row r and column c and updates the cell with that score.

1 tcs r c a b m =

2 if c > (length m)

3 then m

4 else tcs r (c+1) a b (h r c a b m)

5

6 trs r c a b m = if r > (length m)

7 then m

8 else trs (r+1) c a b (tcs r c a b m)

9

10 traverse m a b = trs 1 1 a b m

As before, we calculate a slice for each argument to each function,

classifying those arguments using the slice.

tcs:

Σtcs |r = {r} (clean)
Σtcs |c = {c, c̄} (tainted)
Σtcs |a = {a} (clean)
Σtcs |b = {b} (clean)
Σtcs |m = {m, m̄} (tainted)

trs:

Σtrs |r = {r, r̄} (tainted)
Σtrs |c = {c} (clean)
Σtrs |a = {a} (clean)
Σtrs |b = {b} (clean)
Σtrs |m = {m, m̄} (tainted)

Using these classi�cations, we can classify the operations within

the recursive functions.

tcs: As both c and m are classi�ed tainted, all operations in tcs
(i.e. length, and the less-than and addition operators) are

classi�ed to be obstructive.
trs: Analogous to tcs, and as both r and m are classi�ed tainted,

all operations in trs are classi�ed to be obstructive.
No refactoring can be applied to the Smith-Waterman implemen-

tation. However, the Smith-Waterman algorithm is an example of

wavefront parallelism whereby cells of the matrix are divided into

groups which can be calculated in parallel. As our classi�cation

looks only for independence across an entire data structure, at

present this goes undetected, but is part of future work.

6 Related Work
Program slicing was �rst introduced by Mark Weiser in 1981 [38]

for imperative, procedureless programs. Slicing has since seen

numerous extensions and adaptations for a range of �elds, e.g.

testing and debugging [34]. Elsewhere, intra-function slicing has

also been used to introduce pa�erns for concurrency in Erlang

code [27]. We ourselves have used slicing to transform the data-

types of Erlang functions in a slice, in order to take advantage of

properties, e.g. to reduce copying overheads when sending between

processes [2]. Similar to our own approach, Ahn and Han [1], use

program slicing to categorise function parameters for detecting loci

of parallelism. �eir approach is limited to �rst-order languages,

whereas our approach is also suitable for higher-order languages.

It is designed to only inspect recursive functions that can be trans-

formed into a form where each constructor has exactly one clause,

and where functions have only a single argument. In contrast, our

approach inspects functions in any form to maximise the number

of components that are available for parallelisation. Even if the

introduced maps are eventually deemed not worth parallelising, the

more components available for inspection, the more con�gurations

of parallelism that can be considered. Moreover, map operations,

and recursion schemes in general, can encapsulate properties, e.g.

independence of operation or type of output, that can be used for

other purposes; e.g. termination checking. A�ne types [33] and

single-threadedness [20] both have their foundations in linear logic,

wherein objects must be used exactly once. A�ne types weaken

this constraint by allowing objects to be used at most once. �ere
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is some super�cial similarity with our technique, such that if an

input can be used at most once within a recursive function then

it follows that all operations that use that input can be performed

independently of successive recursive calls. Single-threadedness

shares a similar goal, but places greater emphasis on exposing mu-

tation to state without sacri�cing referential transparency. Again,

this is super�cially similar to our approach in the exposition of

how an input changes between two points. However both of these

approaches require a speci�c language or system to function. In

contrast, our approach is fully generic. We additionally note that

our system allows a weaker sense of usage (in that an input can be

used more than once) whilst still enabling us to reason about the

independence of operations.

Structured parallelism approaches, such as those used here, have

been shown to be an e�ective means to introduce and manipulate

parallelism [9, 15, 16, 25, 29]. Pa�ern discovery for parallelism

has primarily focussed on approaches for imperative programs by

analysing dependencies and machine learning techniques [1, 6, 14,

21]. �e polyhedral model, in particular, uses control and data de-

pendencies to reorder statements in code. One limitation of the poly-

hedral model is that it requires the AST to be translated into a spe-

ci�c linear-algebraic form, and not all statements can be translated

to this form [5]. Alternative automatic approaches derive parallel

implementations from small programs or speci�cations, commonly

exploiting the Bird Meertens formalism [13, 17, 19, 24, 26]. �ese

approaches use algorithmic structures, e.g. list homomorphisms [18]

and hylomorphisms [9], which are amenable to divide-and-conquer
skeletons. �ese approaches require operations to be translated

into speci�c types which can be easily parallelised [13, 26]. Similar

to our own approach, Hu, Takeichi, and Iwasaki’s Di�usion [24]

uses program transformation techniques to rewrite explicitly recur-

sive functions into compositions of recursion schemes. Instead of

using slicing to determine operations that can be li�ed into scheme

�xpoint functions, Hu et al. use the the Bird Meertens formalisms

to systematically reason about the behaviour of the function. �is

approach has been shown to extend to types other than lists, and

schemes other than maps. While our approach can in principle

be extended to other schemes, the slicing approach requires that

the schemes are encoded in terms of variable usage and update.

�e di�usion approach is however, reliant on external normali-

sation processes that must be proven sound, and which can be a

limiting factor. Another limiting factor can be found in the applica-

bility of the language to which di�usion is applied: since it relies

upon the Bird Meertens formalism, it may be di�cult to extend

the approach, including the necessary normalisation processes, to

languages such as C++. Our approach may prove simpler to extend

to such languages, providing that state is explicit and variable usage

and update are de�ned. One exception to the program calculation

approaches is Cook’s approach, which uses higher-order uni�cation
to discover and introduce common sequential pa�erns [12]. �is

approach is, however, limited in that it uses a proof assistant as an

intermediate representation, and further requires that functions

have a structure that mirrors the structure of the pa�ern to be

discovered. More generally, program calculation and uni�cation

approaches are limited by the information that they are able to infer

from code. Program shaping approaches [3] that include pa�ern

discovery techniques can potentially �nd more pa�erns by refactor-

ing code prior to pa�ern discovery. Developed from early work on

a fold/unfold transformation system by Burstall and Darlington [8],

refactoring techniques change the structure of a program while pre-

serving functional equivalence [7]. Refactoring tools automate this

transformation process and exist for many languages [7, 28] and

IDEs [23]. Recent work on refactoring for parallelism has demon-

strated that a refactoring approach can aid in the introduction of

skeletons, but also that refactorings can enable the introduction of

parallelism [2, 3, 6, 7]. While these approaches can take advantage

of programmer knowledge, e.g. associativity of operations, they

also require the programmer to know when and where to apply

the refactorings. �e approach presented here places no restriction

or requirement on the structure of recursive functions, and can

be included as part of a program shaping work�ow to guide the

application of refactorings. Moreover, our approach also allows the

programmer to apply transformations that would be unreachable

in fully automatic approaches, such as those described above.

7 Conclusions and Future Work
In this paper, we have investigated the use of program slicing to

discover mappable, and by extension potentially parallelisable, com-

putations in recursive functions. We have de�ned a novel program

slicing algorithm that inspects how the value of a variable is used

and changes across recursive calls. We have provided formal de�-

nitions for all our concepts. We have implemented our approach

in Erlang, producing a parser and prototype classi�er. We have

applied our prototype to 12 examples, including benchmarks from

the NoFib suite and functions from the Haskell Prelude. Our proto-

type successfully discovers all the maps in our examples. We have

also applied our prototype to synthetic benchmarks, showing that

our prototype has quadratic time complexity. We have provided

speedup results for three of our examples: sumeuler, matrix multi-
plication, and n-queens. We achieve speedups of up to 32.93 on our

56-core hyperthreaded experimental machine, so demonstrating

e�ectiveness of using map operations as loci of potential parallelism.

For future work, we intend to address the main limitations of

our approach, including discovering map operations in functions

that traverse multiple data structures of di�erent types. Relatedly,

we also intend to expand our technique to inspect how inputs

can be divided into sub-groups of inputs that can be performed in

parallel, as in, e.g., wavefront parallelism. We intend to expand

our property checking to other parallel structures, e.g. divide-and-

conquer and feedback pa�erns [9]. Relatedly, as our technique

requires any new pa�ern to be encoded in terms of how values

of variables change between recursive calls, we intend to consider

how this translation might be simpli�ed. Similarly, we intend to

develop the means to translate from full languages, such as Haskell

or Erlang, to our expression language. Finally, since our technique

is, in principle, language-independent, we also intend to adapt and

apply our technique to imperative languages; such as C++ or Java.
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