
Shape-based Cost Analysis

of Skeletal Parallel Programs

Yasushi Hayashi

31I yE

NB

Doctor of Philosophy

Institute for Computing Systems Architecture

Division of Informatics

University of Edinburgh

2001

/,

3

Abstract

This work presents an automatic cost-analysis system for an implicitly parallel skeletal

programming language.

Although deducing interesting dynamic characteristics of parallel programs (and in

particular, run time) is well known to be an intractable problem in the general case, it

can be alleviated by placing restrictions upon the programs which can be expressed.

By combining two research threads, the "skeletal" and "shapely" paradigms which

take this route, we produce a completely automated, computation and communication

sensitive cost analysis system. This builds on earlier work in the area by quantifying

communication as well as computation costs, with the former being derived for the

Bulk Synchronous Parallel (BSP) model.

We present details of our shapely skeletal language and its BSP implementation strat-

egy together with an account of the analysis mechanism by which program behaviour

information (such as shape and cost) is statically deduced. This information can be

used at compile-time to optimise a BSP implementation and to analyse computation

and communication costs. The analysis has been implemented in Haskell. We con-

sider different algorithms expressed in our language for some example problems and

illustrate each BSP implementation, contrasting the analysis of their efficiency by tra-

ditional, intuitive methods with that achieved by our cost calculator. The accuracy of

cost predictions by our cost calculator against the run time of real parallel programs is

tested experimentally.

Previous shape-based cost analysis required all elements of a vector (our nestable bulk

data structure) to have the same shape. We partially relax this strict requirement on data

structure regularity by introducing new shape expressions in our analysis framework.

We demonstrate that this allows us to achieve the first automated analysis of a complete

derivation, the well known maximum segment sum algorithm of Skillicorn and Cai.

4

Acknowledgements

First and foremost I would like to thank my supervisor Murray Cole for all his constant

support, friendly encouragement, great patience, invaluable advice, and excellent guid-

ance. He was always prepared to listen to my ideas, and gave me valuable suggestions

and timely encouragement. I am particularly grateful for his careful reading of several

drafts and suggestions he made.

I would also like to thank the FISh team at the University of Technology, Sydney and

in particular Barry Jay and Paul Steckler both for their inspiring work in this area and

for providing me with the source code for the original PRAM cost calculator from

which my own system derives.

Many thanks to all friends I have made during my stay in Edinburgh.

Parallel machine facilities were provided by the Edinburgh Parallel Computing Centre.

This work was partially funded by the Overseas Research Studentship, awarded by the

British Council.

Finally, I would like to thank my parents for their encouragement and support over the

years.

11, IS

Declaration

I declare that this thesis was composed by myself and that the work contained therein

is my own, except where explicitly stated otherwise in the text. Part of this work was

published (or accepted for publication) in the following articles.

• Y. Hayashi and M. Cole. BSP-based Cost Analysis of Skeletal Programs. In G.

Michaelson and P. Trinder, editors, Trends in Functional Programming, pages

20-28, Intellect, 2000.

• Y. Hayashi and M. Cole. Static Performance Prediction of Skeletal Programs.

Journal of Parallel Algorithms and Applications, 2002, to appear.

• Y. Hayashi and M. Cole. Automated Cost Analysis of a Parallel Maximum Seg-

ment Sum Program Derivation. Parallel Processing Letters, 2002, to appear.

Table of Contents

1 Introduction 	 11

	

1.1 	Motivation11

1.2 Overview of the Analysis14

	

1.3 	Contributions of the Thesis16

	

1.4 	Structure of the Thesis17

2 Cost Models for Parallel Computation 	 19

	

2.1 	The PRAM Model19

2.2 Message Passing Model21

	

2.2.1 	The BSP Model23

	

2.2.2 	The LogP Model27

2.3 Cost Models for Skeleton-Oriented Programming28

2.3.1 Skeleton Approach 28

2.3.2 The Bird-Meertens Theory of Lists 32

2.3.3 Skillicorn's Cost Calculus for Parallelised BMF 34

2.3.4 Compile-time Cost Analysis for HOPP 39

2.3.5 VEC and Shape-based Cost Analysis 44

7

8 	 TABLE OFCONTENTS

2.3.6 Related Work with Skeletons 50

2.3.7 Profiling Approach and Recursion Analysis 54

2.4 	Chapter Conclusion 57

3 	VEC-BSP and its BSP Cost Analysis System 61

3.1 Overview and Terminology 61

3.2 VEC-BSP: A Shapely Skeletal Language 66

3.3 Msize: A Target Language 69

3.4 Implementation Strategy 69

3.5 Cost Analysis 74

3.5.1 	Cost Tuples and Application Tuples 74

3.5.2 	Cost Translations Framework 77

3.5.3 	Cost Modeling 80

3.5.4 	bspapp Operation 83

3.6 Details of Cost Translation Rules 85

3.7 Chapter Conclusion 90

4 Implementation Templates for Skeletons 	 93

4.1 	Introduction93

4.2 Implementation and Costing of the Parallel Combinators94

	

4.2.1 	map94

	

4.2.2 	fold 96

	

4.2.3 	scan100

4.2.4 	pair-map 103

TABLE OF CONTENTS

4.2.5 	cprod104

	

4.3 	Chapter Conclusion107

5 Implementation of Cost Analysis 	 109

5.1 Automating Cost Analysis109

5.2 Example of Cost Analysis by Hand110

5.3 System Structure112

5.4 CostTestBsp.hs: Definitions of Cost Tests113

5.5 CostDefsBsp.hs: Definitions of Cost Tuples115

5.6 CostTransBsp.hs: Definitions for Cost Translation119

5.7 Other Modules124

5.7.1 CostParaBsp.hs: Definitions for BSP parameters124

5.7.2 CostConstBsp.hs: Definitions for Constants125

5.7.3 	VecBspSugar.hs: Syntax Sugar125

	

5.8 	Chapter Conclusion126

6 Experiments: Comparing Different Algorithms 	 127

	

6.1 	Matrix Multiplication127

6.2 Maximum Segment Sum Problem133

6.2.1 	Three Different Algorithms133

6.2.2 VEC-BSP Programs of the mss Problem134

6.2.3 	Predicted Results138

6.2.4 	Complexity of Cost Analysis138

6.3 	Accuracy Tests140

10 	 TABLE OF CONTENTS

6.3.1 	Matrix Multiplication140

6.3.2 Maximum Segment Sum141

6.4 	Chapter Conclusion141

7 	Expansion: Costing Algorithm Derivation Steps 147

7.1 Introduction 147

7.2 Expanding Shape Analysis 148

7.3 New Cost Functions for Combinators 157

7.4 Costing Derivation Steps 163

7.4.1 	VEC-BSP Programs of Derivation Steps 164

7.4.2 	BSP Implementations of Derivation Steps 165

7.4.3 	Predicted Results of Derivation Steps 171

7.4.4 	Accuracy Test 172

7.5 Experiments with Different Number of Processors 172

7.6 Chapter Conclusion 176

8 Summary and Directions for Future Research 	 185

	

8.1 	Thesis Summary 185

	

8.2 	Contributions of Thesis189

	

8.3 	Limitations 190

8.4 Avenues for Future Research191

Bibliography 	 195

Chapter 1

Introduction

1.1 Motivation

One of the main reasons for the failure of parallelism to enter mainstream computing

is the lack of the portability and performance predictability enjoyed by sequential sys-

tems. In sequential programming, the measure of efficiency is based on instruction

counts and order analysis, and is often called the von Neumann cost model or RAM

model. A similar approach is widely used for theoretical analysis of parallel programs.

However, it is less useful than its sequential counterpart for the following reasons.

. Real parallel computing usually involves communication and contention costs

which can significantly depend on characteristics of parallel machines. Anal-

ysis ignores these and leads to unreliable predictability and poor performance

portability.

• Counting the number of instructions is a complicated task in the parallel setting

because it depends on the data allocation strategy as well as intermediate data

size.

• Conventional asymptotic cost analysis, which is based on instruction counts and

order analysis parameterised by input size and the number of processors, mod-

els behaviour when these parameters grow towards the infinite, but very often

11

12 	 Chapter 1. Introduction

the target architecture has a moderate and fixed number of processors and the

application will involve only a particular range of problem sizes.

In practice, parallel programmers largely rely upon a combination of common sense,

intuition and profiling to make the important algorithmic decisions which will affect

performance. One approach to alleviating this problem is to place restrictions upon the

programs which can be expressed. Two research threads which have taken this route

involve the "skeletal" and "shapely" paradigms. In the extreme, these can produce a

language for which static analysis becomes tractable.

The skeletal approach to the design of parallel programming systems [25, 29, 62, 671

proposes that the complexity of parallel programming be contained by restricting the

mechanisms through which parallelism can be introduced to a small number of ar-

chitecture independent control constructs, originally known as algorithmic skeletons.

Each skeleton specification captures the logical behaviour of a commonly occurring

pattern of parallel computation (such as "divide-and-conquer", "farm" or "scan"),

while pre-packaging and hiding the details of its implementation using the explicit

parallelism of lower level primitives provided by the target system. Since a parallel•

program is constructed from predefined skeletons, the cost of the program can also be

expressed in terms of its parallel control structure.

The shapely programming methodology [52, 53, 541 proposes that through careful

language design the shape (loosely speaking, the size and structure) of data at any point

during execution can be determined statically and automatically, even for programs in

which shape is varied dynamically. This is fundamental for static cost analysis because

it requires information about the sizes and shapes of the input data structure and, when

programs are compositions of parallel operations it is extremely difficult to capture the

behaviour of these intermediate results by hand. When we consider inter-processor

communication cost, this is again fundamental since predicting the size of messages is

also required.

Shape-based cost analysis for functional languages based on these restrictions was first

proposed by Jay et al. [55]. The analysis has the characteristics of being automatable

and giving absolute value prediction (rather than asymptotic). It used the tightly syn-

1. 1. Motivation 	 i

chronised, uniform access cost, shared memory PRAM model as its target architecture.

The PRAM is an abstract model which takes no account of the communication and con-

tention costs incurred on realistic parallel machines (whether explicitly programmed

or in support of a shared memory abstraction). The main motivation of this thesis is

to develop a cost analysis for their language which can account for communication as

well as computation, while keeping its characteristics of being automatable. To achieve

this we choose the Bulk Synchronous Parallel (BSP) computation [48, 79, 83] as our

implementation model (therefore, SPMD model) to introduce parallelism.

The BSP model proposes that decoupling communication and synchronisation is the

key to a simple and accurate cost model that can be used to analyse and guide design

of parallel algorithms. The purpose of the BSP cost model is to refine the standard

simple asymptotic cost analysis by

decoupling the asymptotic analysis of the problem size n, from the potentially

modest number of processors p;

costing communication as well as computation;

• introducing a small number of parameters that capture performance characteris-

tics of a machine, so that the comparative performance of an algorithm can be

analysed across machines.

It can be used both to choose an appropriate architecture among possible target com-

puters and to adapt an algorithm which is more efficient on the target architecture.

This thesis investigates the use of skeletal, shapely and BSP approaches to produce a

skeleton-oriented parallel programming language for which static performance anal-

ysis is completely automatable, communication sensitive, architecture characteristic

sensitive and absolute value predictable. Our source language is functional, since this

is the most convenient paradigm within which to express our constraints. Our anal-

ysis predicts the behaviour of these programs when compiled to a BSP target. Such

information can be used to choose one algorithm over another, or one data structure

over another when the program is constructed. The functional paradigm also has more

advantages:

14
	

Chapter 1. Introduction

. ease of program construction;

. ease of function/module reuse;

. ease of program transformation;

. scope for optimisation.

In particular, one of our aims is to use our cost analysis to predict the effect of per-

formance change in program transformation steps. The bulk of previous work has

focused on the fundamental question of the semantic soundness of each step, with re-

sponsibility for choosing steps and for judging their effect on performance left to the

programmer's intuition. Automatic cost modelling could provide the programmer with

immediate feedback on performance implications.

In common with other skeletal languages, our approach provides a structured concep-

tual framework for message passing programming. Structured languages and method-

ologies promote an approach in which the key algorithmic decisions are taken early

and at a high level, enhancing both portability and maintainability [4, 39]. Our lan-

guage and analysis could be used either as a real programming framework in its own

right, or as a testbed for algorithmic ideas which would subsequently be re-coded semi-

automatically into a more conventional form, for example following the BSP imple-

mentation templates of the skeletons.

1.2 Overview of the Analysis

Our language VEc-BSP is a simple shapely functional language which operates upon

nested vectors of data. It has a cost analysis system which produces predicted run-time

costs based on the BSP model from a source code. Shapeliness means that the form

and size of data structures can be deduced statically. Shape constraints (which are

analogous to type constraints) are used to ensure that all elements of a vector have the

same shape so that information about large structures can be captured and manipulated

concisely. (This restriction is partially relaxed in an expanded version of VEc-BSP

described in chapter 7). Parallelism is introduced by a small number of skeletons, that

1.2. Overview of the Analysis 	 15

is higher order functions each of which has a predefined parallel implementation tem-

plate. The program is written by means of the application of predefined operations

(which includes conventional sequential operations and skeletons) and lambda expres-

sions and conditionals. VEc-BSP excludes unbound iteration and recursion since our

goal is full automation.

In essence, our approach to cost analysis is a form of abstract interpretation. A source

program is translated to another program in the target language MsIzE which, when

run, will compute some implementation information such as shape and run-time cost.

MsIzE is essentially a variant of VEC-BSP in which types, terms and operators which

represent and manipulate real data have been removed, and with the addition of new

features which manipulate implementation information not present in VEc-BSP. The

core of the method is a translation function cost which accepts VEc-BSP terms and

returns MSIZE terms in the form of cost tuples, whose components capture some kinds

of evaluation information. For example,

. data size - a measure of the quantity of data which would have to be commu-

nicated to describe the term (in order to compute communication cost from the

transmitted data);

• data pattern - an indication of the data distribution strategy required by the term's

implementation. (in order that communication of the data between evaluation

phases can be optimised);

• cost - an evaluation cost function for the term, mapping from performance pa-

rameters to time (so that evaluation time for the term can be computed, given the

performance characteristics of the specific target);

• application pattern - an indication of application structure, that is whether se-

quential or parallel (in order to compute communication cost between the com-

ponent evaluation process and the application process, and to optimise the com-

munication of data between evaluation phases).

This information is propagated during evaluation of the MsIzE program through the

definition of an application operator of the MsIzE, which constitutes the heart of the

16
	

Chapter 1. Introduction

analysis. Making the mechanism work efficiently requires careful design of the im-

plementation model and choice of the components of the cost tuple. The inter-action

of those components could generate useful static information on intermediate results

which could be used by a compiler for various purposes to improve efficiency. In this

thesis, we construct a cost analysis which has the property of automatic, communica-

tion sensitive, machine performance sensitive and absolute value cost derivation.

1.3 Contributions of the Thesis

The main contributions of this thesis can be summarised as follows.

. We demonstrate the first completely automated, communication sensitive shape-

base cost analysis system for an implicitly parallel skeletal programming lan-

guage of nested arrays. This builds on earlier work by Jay et al. [54] in the area

by quantifying communication as well as computation costs, with the former

being derived by changing target implementation model from PRAM to BSP;

• We add several built-in second-order functions, each of which has a parallel

implementation template and predefined application cost which is parameterised

by the argument shape, in order to enhance the skeletal approach of parallel

programming and to broaden applicability of our analysis;

• We extend Jay's shape-based analysis framework with cost tuples which can con-

tain useful static information as components, and illustrate how this information

is used for costing the communication process, optimising interface communi-

cation and eventually computing BSP cost;

• We partially relax our strict requirements on data structure regularity (but with-

out losing static predictability) by introducing new shape expressions in our anal-

ysis frame work;

• We present the first analysis of a complete derivation, the well known maximum

segment sum algorithm of Skillicorn and Cai;

1.4. Structure of the Thesis 	 17

• We illustrate skeletal programming in VEc-BSP by implementing several exam-

ple programs. The accuracy of predictions made by our cost calculator against

the run time of real parallel programs is tested experimentally.

1.4 Structure of the Thesis

The following chapters can be divided into three parts. The first part, chapter 2 presents

a survey of existing cost models giving the background of our cost model. In the

second part, chapters 3, 4, 5 present our language, its implementation strategy, the

definition and implementation of our analytic technique. The third part, chapters 6, 7

demonstrate applications and possible extensions of our analysis, with the concluding

chapter 8. More details of contents of each chapter is as follows:

• Chapter 2 begins with a survey of the main theoretical low level cost models for

parallel programming. Next, we explain the concept of the "skeleton" method-

ology and investigate three works of cost analysis for BMF style parallel skeletal

programming in detail. Then we give a short survey of more related works.

• Chapter 3 is the central part of the thesis which gives the definition of VEC-

BSP, its implementation strategy and cost analysis framework.

• Chapter 4 gives the parallel implementation templates of the built-in second or-

der functions with application costs, which completes the cost analysis presented

in chapter 3.

• Chapter 5 outlines the Haskell implementation of our cost analysis.

• Chapter 6 demonstrates that our analysis allows us to compare the performance

of alternative algorithms for the same problem against one another in a concrete

way. The comparison between predicted costs against the run-time of equivalent

hand-compiled BSP programs on a real machine is also given.

• Chapter 7 augments our analysis framework to partially relax our strict require-

ments on data structure regularity. We demonstrate that the modified framework

IN, 	 Chapter 1. Introduction

allows the cost analysis system to cost complete derivation steps of an algorithm

for the maximum segment sum problem.

• Chapter 8 presents a summary and contributions of the thesis, with directions

for future research.

Chapter 2

Cost Models for Parallel Computation

In sequential computing, the von Neumann model dominates. Parallel programs are

inherently more complex than their sequential counterparts. This complexity seems

tractable only within some abstracted and idealised model. However, no single model

of parallel computation has yet come to dominate in the way the von Neumann model

has dominated sequential computing. This chapter surveys some of the models for par-

allel computation. Section 2.1 reviews the most influential early theoretical model, the

PRAM. Section 2.2 describes a dominant programming model, message passing pro-

gramming, and two proposed cost models, BSP and LogP. Finally, section 2.3 surveys

the skeleton-oriented languages and their cost models, especially BIVIF style program-

ming.

2.1 The PRAM Model

The most influential early theoretical parallel computation model is the parallel ran-

dom access machine (PRAM) introduced by Fortune and Wyllie [36], which has been

used widely to assess the theoretical performance analysis of parallel algorithms. The

PRAM consists of a shared memory and a number of processors each with local mem-

ory. The processors are controlled by a common clock and operate synchronously.

In every cycle each processor may read a value from global memory, write a value

19

20 	 Chapter 2. Cost Models for Parallel Computation

to the global memory, or compute an operation. So, any location can be accessed by

a processor in unit time (that is, in a single instruction time), independent of the ac-

cess pattern. Normally the PRAM model is used with algorithms in which processors

execute the same instruction together but operating on different data. There are four

subclasses of the PRAM, provided to define how simultaneously reading and writing

to the same memory location should be handled: EREW (Exclusive Read Exclusive

Write), CREW (Concurrent Read Exclusive Write), ERCW (Exclusive Read Concur-

rent Write), CRCW (Concurrent Read Concurrent Write). The ERCW is often not

considered because a machine powerful enough to support concurrent writes can also

support concurrent reads. In those cases where concurrent write is permitted, an addi-

tional strategy is necessary to indicate how conflicts are resolved and what is actually

stored in the location. Some possibilities often quoted are: Common when simultane-

ous writing is only allowed if the values to be written are the same; Arbitrary when the

processor that succeeds in its write operation is selected arbitrarily from the writing

processors; Priority when there exists a predefined priority order to select the proces-

sor that will succeed; Combining when the value written is a linear combination of all

values being written by the individual processors.

The PRAM model is an idealised model that ignores practical considerations and fo-

cuses on concurrency. Its simplicity and generality have led to the widespread accep-

tance of the PRAM within the theoretical community and it offers worthwhile results

in design and analysis of parallel algorithms. However, the idealisation hiding the

issues of synchronisation, data locality, interprocessor or processor-to-memory com-

munication and other machine-specific issues often leads to unreliable prediction of

real execution costs. The complexity of a PRAM algorithm is given in terms of the

number of time steps and maximum number of processors required in any one of those

time steps. There is no straightforward way to add communication costs which could

largely depend on communication performance characteristics of a real machine into

the model and convert PRAM costs to real costs.

2.2. Message Passing Model
	

21

2.2 Message Passing Model

'The message passing programming models provided by communications libraries

such as PYM [37] or MPI [59] have been a dominant model for scientific and commer-

cial parallel applications for the last decade. In this section, we first outline the basic

concepts in message passing computing, and then we outline the two theoretical mod-

els, the BSP model and the LogP model which can model the cost of message passing

processing with small numbers of architecture parameters.

Message Passing Multicomputer

The message passing multicomputer node consists of a processor and local memory

that is not accessible by other processors. The memory is distributed among the com-

puters and each computer has its own address space. A processor can only access a

location in its own memory. The interconnection network is provided for processors

to send messages to other processors. These messages can include data that other pro-

cessors may require for their computations. The messages in a message passing mul-

ticomputer carry data from one processor to another as dictated by the program. The

message passing paradigm can be implemented not only in a message passing multi-

computer but also in a shared memory multiprocessor by using the shared memory to

hold data to be sent from one process to another process.

Message Passing Programming

Progranmiing a message passing multicomputer involves dividing the program into

parts that are intended to be executed simultaneously to solve the problem. Program-

ming could use a parallel or extended sequential language, but a common approach is

to use message passing library routines that are linked to conventional sequential lan-

guages such as C for message passing. A problem is divided into a number of concur-

rent processes which may be executed on individual computers and will communicate

by using message passing instructions to synchronise with and to access memory of

22 	 Chapter 2. Cost Models for Parallel Computation

other processes, that will be the only way to distribute data and results between pro-

cesses. It is necessary to say explicitly what processes are to be executed, when to pass

messages between concurrent processes, and what to pass in the messages. Send and

receive message passing library calls often have the form

send (parameter-list)

recv (parameter_list)

where send() is placed in the source process, originating the message, and recv() is

placed in destination process to collect the messages being sent. The actual parameters

will depend upon the software and in some cases can be complex.

There are usually many other message passing and related routines that provide desir-

able features. A frequent requirement for the process originating the message is to send

the same message to more than one destination process. The term broadcast is used to

describe sending the same message to all the processes concerned with problem. The

term scatter is used to describe sending each element of an array of data in the root to a

separate process. The contents of the ith location of the array is sent to the ith process.

The term gather is used to describe having one process collect individual values from

a set of processes. Gather is normally used after some computation has been done by

these processes. Most message passing systems provide for these operations and other

related operations.

Message Passing Interface (MPI) [59] is an example of such communication routines.

Processes communicate with one another by sending packets of information using the

point-to-point communication routines such as MPLSend() and MPI_RecvO. MPI in-

cludes a wide selection of routines to offer different sorts of synchronisation in the

sending which can be employed to improve the efficiency of an implementation at the

cost of increased program complexity. The type of the values can be simple basic types

such as integer and real, or derived types can be created by the programmer. MPI also

offers a range of collective communication routines which can be used to perform a

common operation across all the processes in a specific communication context. Ex-

amples includes MPI_Bcast() to broadcast a value from one process to all the others,

and MPLScatter() to distribute a one-dimensional array of values over all processes.

2.2. Message Passing Model 	 23

There is also limited scope for performing collective computation within a commu-

nication context, e.g. IMIPLReduce() to perform a tree of binary operations, such as

addition, on one value from each process.

The message-passing paradigm usually requires the programmer to provide explicit

message passing calls in code, which is very error prone and has been compared to

low level assembly language programming. However, the message passing paradigm

has the advantage of its direct applicability to the computers connected on a network.

Using interconnected computers allows newer computers to be more easily incorpo-

rated into the system. These computers could be networked workstations.

2.2.1 The BSP Model

Message passing systems such as MPI and PVM have no simple analytic cost model

for performance prediction. The bulk-synchronous parallel (BSP) model by Valiant

[83] provides an alternative parallel model that has a cost model which is attractive by

virtue of its conceptual simplicity and pragmatic accuracy.

The BSP Machine Model

In the BSP model, a parallel computer consists of three components, that is: a set of

processors, each with a local memory; a global communication network that delivers

message in a point-to-point manner among the processors; and a mechanism for glob-

ally synchronising all processors by means of a barrier. The model has no concept of

processor locality or the topology of the underlying network.

The BSP Programming Model

It is normal for BSP programs to be written in a Single Program Multiple Data (SPIVID)

style in which a fixed number of processes, each of which executes the same pro-

gram, is created at program start-up. The distinguishing feature of the model is that it

24 	 Chapter 2. Cost Models for Parallel Computation

decouples the two fundamental aspects of parallel computation: communication and

synchronisation. This separation is the key to:

a simple and accurate cost model that can be used to analyse and guide the design

of parallel algorithms.

achieving universal applicability across a wide range of parallel architectures,

from shared-memory multiprocessors to tightly-coupled distributed-memory ma-

chines or networks of workstations.

Processors 	 I

'I, 	I
Local Computation

Barrier
Synchronisation

Global
Communication

Figure 2.1: Superstep

BSP programs consist of a sequence of supersteps each of which is conceptually sub-

divided into three ordered phases (figure. 2.1) consisting of:

simultaneous local computation in each process, using only values stored in the

memory of its processor;

communication actions amongst the processors, causing transfers of data be-

tween processors;

a barrier synchronisation, which waits for all of the communication actions to

complete, and which then makes any data transferred visible in the local memo-

ries of the destination processors.

In addition to a model, BSP programs can be implemented. Although it was originally

envisaged that BSP programs would be written using BSP languages, the model has

2.2. Message Passing Mode! 	 25

actually been realised in terms programming libraries. Such libraries provide a very

small number of library functions that implement the necessary communication and

synchronisation primitives. For example, Oxford BSP [63] supports a simple set of

communication primitives, but does not directly support communicating dynamically-

allocated data. However, the library has been tested relatively widely. Versions are

available for Cray, SGI, shared memory, as well as TCP. BSP1ib [48] developed by the

BSP Worldwide organisation, is the successor of Oxford BSP and an attempt at a stan-

dard. It offers a set of communication primitives which support both direct memory

access (buffered and unbuffered puts and gets into remote memory for statically and

dynamically allocated data) and a form of bulk synchronous message passing (sends

to a remote buffer). The library is available in a number of native, hardware-specific

implementations(Cray, SGI, etc.) as well as shared memory and generic (based on

IvJPI) versions.

Green BSP library [41] offers a simple set of communication primitives based on bulk

synchronous message passing rather than the put/get semantics of Oxford BSP. (These

features are now available in BSP1ib.) Shared memory, MN, and TCP versions exist.

Because BSP1ib has been long known as a standard and available for wide range of

hardware including our available hardware, a Sun multiprocessor, we use the BSP1ib

to express BSP implementation template and to write real BSP programs to which

example problems of VEc-BSP are hand compiled.

Recently, the Paderborn University BSP (PUB) Library [15] has been developed. The

PUB library offers the same functionality as BSPlib, but in addition provides several

other features. In particular, it has a mechanism to partition the machine into subsets

which synchronise independently. In this way more complex programs made of pat-

terns which synchronise independently can be built. It also provides other forms of

synchronisation besides standard barrier synchronisation.

26 	 Chapter 2. Cost Models for Parallel Computation

The BSP Cost Model

The standard way of analysing the cost of a parallel algorithm is to use instruction

counts and order analysis. For example, a logarithmic combining technique can be

used to calculate the sum of n values in time O(logn) on n processors. The BSP

has a cost model which is attractive by virtue of its conceptual simplicity and prag-

matic accuracy. Its cost calculus is straightforward because of the superstep structure

of programs. As the barrier synchronisation involves all processes, then the cost of

a sequence of supersteps is simply the sum of the costs of the separate supersteps.

Although existing parallel computers have very different performance characteristics,

these differences are captured by three parameters, that is: p: the number of proces-

sors; g: the ratio of communication throughput to processor throughput; and 1: the time

required to barrier synchronise all processors. All of the effects of contention and con-

gestion on communication is captured in the parameter g. When the communication

pattern requires at most h messages into or out of any processor, the communication

time is determined as h g. The cost of a single superstep is determined by

cost of a superstep = max w + max hi g +1
o<l<p 	O<l<p

where w, = local processing time on processor i, h, = the number of words trans-

mitted/received by processor i. Intuitively, the cost of a superstep is the execution

time of the process that performs the largest local computation (denoted by max w 1),

plus the communication time of the process that performs the largest communication

(maxo< 1< h, . g), plus a constant cost 1 that arises from the barrier synchronisation and

other one-time costs associated with the superstep, such as the overhead of initiating

communication. If h = maxh 1 , then such a communication pattern is called an h-

relation. The costs given by this model are not theoretical costs, but closely match the

observed execution times over a wide variety of applications and target architectures

[72].

The g parameter of the cost model depends on the performance of the underlying ar-

chitecture. For example, it depends on:

1. the bisection bandwidth of the communication network topology;

2.2. Message Passing Model 	 27

the protocols used to interface with and within the communication network;

buffer management by both the processors and the communication network;

the routing strategy used in the communication network.

The 1 parameter also depends on these properties of the architecture, as well as spe-

cialised barrier synchronisation hardware, if this exists. The BSP cost parameters for a

variety of shared-memory and distributed-memory parallel machines are found in [79].

The BSP cost model can be used to analyse algorithms developed in any of the data par -

allel functional languages. Hill [46] discusses the potential for raising the level of ab-

straction of the programming language used to express BSP algorithms and concludes

that the BSP cost calculus provides the right foundations upon which practical variants

of parallel functional languages could be developed. For example, Caml-Flight [35]

and BSML [6, 58] incorporate the one-sided communications of BSP within ML.

2.2.2 The LogP Model

Culler et al. [27] have developed the LogP model, an asynchronous model of a dis-

tributed memory multicomputer in which processors communicate by point-to-point

messages. LogP specifies the performance characteristics of the interconnection net-

work through a small number of machine parameters, but does not take into account

the topology of the network.

The parameters of the LogP model are:

L - upper bound on latency incurred in sending a message from a source to a destina-

tion;

o - overhead, defined as the time the processor is engaged in sending or receiving a

message, during which time it cannot do any thing else;

g - gap, defined as the minimum time between consecutive message transmissions or

receptions;

P - number of processor/memory modules.

The parameters L, o and g are measured in processor cycles. Local operations take

28 	 Chapter 2. Cost Models for Parallel Computation

one cycle. It is also assumed that the interconnection network can only carry a finite

number of messages at any instant, defined by li messages from any processor to any

other processor, where is Gauss' symbol, that is, lxi means the greatest integer that

is less than or equal to x. If a processor attempts to send a message that would exceed

this limit, it will stall. Communication is modeled by point-to-point messages of some

fixed short size. As evidenced by experiential data collected on the CM-5 [82], this

model can accurately predict communication performance when only fixed-sized short

messages are used. Sending a small message between two processors takes o + L + o

cycles: o cycle on the sending processor, L cycles for the communication latency, and

finally another o cycles on the receiving processor. Alexandrov et al. [3] incorporated

long messages into the LogP model by introducing an additional parameter G, which

is the time for each byte for long messages. Under the LogGP model, sending a mes-

sage of k bytes first involves o cycles of sending overhead to get the first byte into the

network. Subsequent bytes take G cycles each to go out. The last byte goes out at time

o + (k - 1)G. Each byte travels through the network for L cycles. Thus the last bytes

exist the network at time o + (k - 1)G -- L. Finally, the receiving processor spends o

cycles in overhead, so the entire message is available at the receiving processor at time

o + (k - 1) G + L + o. The sending and receiving processors are busy only during the

o cycles of overhead, the rest of the time they can overlap computation with commu-

nication. Notice that the LogP model ignores (k - 1)G by assuming messages to be

small.

2.3 Cost Models for Skeleton-Oriented Programming

2.3.1 Skeleton Approach

Parallelism introduces many more degrees of freedom into the space of programs, and

into the space of architectures and machines. When we consider ways of executing a

program on a machine, the number of possibilities is enormous. It is correspondingly

difficult to find an optimal, or even an acceptable, solution within these spaces. It is

2.3. Cost Models for Skeleton-Oriented Programming 	 29

also much more difficult to predict the detailed behaviour and performance of programs

running on machines. One approach to alleviating this problem is to place restrictions

upon the program which can be expressed. The skeleton approach introduced by Cole

in [25] takes this route in terms of commonly occurring algorithmic patterns of parallel

computation. This is led by the observation that many parallel applications developed

up to now exploit parallelism according to a restricted set of regular patterns. In prac-

tice, parallel programmers more or less try to find a useful pattern or paradigm to

solve their problem based on their programming experience. The skeleton-based lan-

guage support this process, aiming to replace creating programs from scratch with the

development of programs through the composition of a small number of architecture

independent control constructs, known as algorithmic skeletons, thus improving pro-

grammability and ease of understanding of the derived program. Each skeleton spec-

ification captures a commonly occurring pattern of parallel computation, while pre-

packing and hiding the details of its implementation using the explicit parallelism of

lower level primitives provided by the target system. Classical examples of skeletons

include farm, which models master-slave parallelism, and divide & conquer, which

solves a problem by recursive splitting.

For skeletons, owing to their regular structure, accurate performance models can be

constructed. This enables estimations of the execution costs of skeletons which can be

used for making algorithmic decisions at a high level.

One of the most commonly discussed skeleton is divide & conquer (d&c).

A general formulation is:

d&c:: (a—*bool)---+(a—b)--*(a—[aJ)—+([b]—b)---a---- b

d&c trivial solve divide conquer P =

if (trivial P) then (solve P)

else conquer (map (d&c trivial solve divide conquer) (divide P))

This skeleton has four functional arguments: trivial tests if a problem is simple

enough to be solved directly, solve solves the problem in this case, divide divides

30 	 Chapter 2. Cost Models for Parallel Computation

a problem into a list of subproblems, and conquer combines a list of sub-solutions

into a new solution. The last argument P is the problem to be solved. The function

map applies a given function to all elements. Given this skeleton, the implementation

of an algorithm that has the structure of d&c requires only the implementation of the

four sequential argument functions and a call of the skeleton. For instance, a quicksort

procedure for lists can be implemented as follows:

quicksort list = d&c is-simple ident divide concat list

where is-simple checks if a list is empty or singleton, ident is the identity function

and divide splits a list into three lists containing the elements that are smaller than

given pivot element, the pivot element itself, and the elements greater than or equal to

the pivot, respectively. Finally, concat concatenates three lists and list is the list to

be sorted.

A variation is Rabhi's recursive partitioning skeleton [68] given by:

rp trivial solve divide conquer P =

if (trivial P) then (solve P)

else conquer P (map (rp trivial solve divide conquer) (divide P))

which differs from d&c in that conquer takes also the original problem P as parameter.

[68] gives its implementation using distributed graph reduction and examples of its

use.

Parallelism emerges naturally from the tree of computations produced by the combina-

tion of recursion and a divide function which generates more than one subproblem.

Algorithms such as Strassen's matrix multiplication, polynomial evaluation, numeri-

cal integration, FFT, etc. [2] can be expressed similarly, only by using different cus-

tomising argument functions. The tree of processes can be mapped down to physical

processors in a number of ways. It would appear that all divide-and-conquer problems

are not cost-optimal, since there is only one particular level in the tree which is active

at any particular time. The main problem is in the difficulty of allocating tasks to pro-

cessors, since tasks are generated dynamically. Some strategy for turning to sequential

evaluation at some point to avoid the tiny tasks at the leaves of the tree may be required.

2.3. Cost Models for Skeleton-Oriented Programming 	 31

A common approach to achieving performance predictability is to derive symbolic

mathematical formulae that describe the execution time of each skeleton. These for-

mulae are typically parameterised by a set of parameters which capture the important

factors that affect the execution time of the program. These parameters usually in-

clude the program size, number of processors used and other algorithm and hardware

characteristics which can be given by a programmer, benchmarking, or a profiling tool.

For example, the performance model for the divide and conquer (DC) skeleton pro-

posed by Darlington et al. [29] assumes the processors are organised into a balanced

binary tree and all processors will eventually be used as leaves. The execution time

can be predicted using the formula:

log(p)-1

tsoi, = 	(tajvx + tsetup x + tcomb x + tcomm x) + tseq x
i=O 	2' 	 2' 	 2' 	 2'

where tsol., is the time to solve a problem of size x, tdjv is the time to divide a problem

of size x, tcombx is the time to combine the two results, tsetupx and tcomm 1 are setup and

transmission time for communication and tseqx is the time to solve a problem of size x

sequentially.

A skeleton can be loosely defined as a pre-defined higher-order function with asso-

ciated parallel implementations. Higher-order functions are commonly used in func-

tional programs to express high-level operations on data structures, for example map

and fold over lists. The style of programming based on higher-order functions over data

structures has been influenced by the work of Backus [5] and the Bird-Meertens for-

malism [9]. Several researchers have developed skeleton programming systems where

the only skeletons available are these data parallel higher-order functions such as map

and fold. For example, the work of Skillicorn [77] uses the Bird-Meertens Formalism

(BMF) as a calculus for deriving efficient programs from problem specifications using

transformations. Examples include the derivation of data-parallel divide-and-conquer

algorithms. We refer to such a programming style as BMF style parallel programming,

which is similar to our language VEc-BSP. In this approach, performance models

are required to investigate how the performance model of each higher-order function

can be composed for estimation of the execution cost of a data-parallel functional pro-

gram. Among cost models proposed for BMF style parallel programming, three of

32 	 Chapter 2. Cost Models for Parallel Computation

them provide the bases of our cost analysis, that is, Skillicorn's parallelised BMF,

Rangaswami's HOPP model, and particularly Jay's shapely language VEC. The next

three sections in this chapter investigate these models.

2.3.2 The Bird-Meertens Theory of Lists

The Bird-Meertens Formalism (BMF) [11, 10] developed by Bird and Meertens is a

collection of second-order functions, algebraic identities and theorems relating these

with concise notations which facilitate the transformation approach. Although a large

amount of work has been done on other data types (arrays [10, 71, trees [38]), the theory

of lists was the first studied and is the most well developed [9, 101. We will focus on

the theory of lists, as most of the work concerning the implementation and the cost

calculus has been done on this theory. When given a data type along with a set of

predefined collective operations, the programmer can express his/her algorithms only

by means of the hierarchical composition of the operations provided in the language,

much in the philosophy of combinatoric functional languages such as PP [5].

The following set of second-order functions are provided in the theory.

map (written f*), which applies f to all the elements of the list:

f * 	. 	= [fai,fa2,. . .,fa,]

reduce (written /) which reduces a list by an associative binary operator :

prefix (written //) which given a list returns the list of results of reduce applied to all

the initial segments of the list:

in its returns the list of initial segments of its argument list, shortest first:

inits[a1,a2,...,a] = [[],{al],[al,a2],...,[al,a2,...,aflh]

2.3. Cost Models for Skeleton-Oriented Programming 	 33

tails, which returns the list of all final segments of its argument list, longest first:

tails [a1,a2,...,a] =

cross-products (written c_prod) which applies f to all pairs with one element from the

first argument and the other from the second:

c_prodf [Xl, X2," . xm][yi, Y2, 	, y] = [[fxiyi, fx2yl,. ,fxm yiJ,

[fxly2, fx2y2,..., fXmY2]1

[fxiy, fx2y,•.., fxmynll

The theory has a set of algebraic identities as meaning-preserving laws which can be

used to transform an algorithm with a poor performance to a more effective one. The

following laws are some examples.

(fog) * = (f*) o (g*) 	(map distributivity)

where fog means the function composition off and g:

(fog) x = f (g x)

It states that the map operator distributes over functional composition.

(map promotion)

where -H- denotes the concatenation function that takes two lists and returns a list

which is the concatenation of the argument lists. It states that the result of concatenat-

ing a list of lists, and then apply f to each element, is the same as applying f* to each

component list and then concatenating the outcomes.

(/) * o -H-/ = 	o (/) * 	(reduce promotion)

which states that to reduce the components of a list of lists with an associative operator

ED we can either concatenate the component lists and reduce the results, or reduce each

34 	 Chapter 2. Cost Models for Parallel Computation

component list and then reduce the results.

A function It satisfying the following three equations is called a list homomorphism.

h[x] = fx

h(xs-f+ys) = hxsEBhys

where is an associative binary operator with unit t. We write ([f, e]) for the unique

function h. Many important functions are defined as list homomorphisms.

The following result was first noted by Bird and Meertens and called the first homo-

morphism theorem [9].

The First Homomorphism Theorem Any homomorphism can be expressed in the

form

h(xs-H-ys) = (/)o(f*)

2.3.3 Skillicorn's Cost Calculus for ParaHelised BMF

BMF has good properties as a parallel programming model. Clearly f* is the most

basic form of parallelism. / can be computed in parallel using the obvious tree-like

structure. The first homomorphism theorem implies that any list homomorphism can

be structured as a parallel algorithm consisting of two steps: a single parallel operation

applied to each element followed by a tree-like reduction. Skillicom established a

methodology using BMF as a parallel programming model [77].

Programming Style

The programmer is provided with a set of aggregate data types (list, arrays, trees...),

along with a set of predefined collective operations. The programmer can express

his/her algorithms only by means of composition of the provided operations.

2.3. Cost Models for Skeleton-Oriented Programming 	 35

Implementation of the Model

The implementation of the model proposed reflects the structuring imposed by the

Bird-Meertens theories. As the theory provides a small set of second order operators

and all programs are compositions of these operators, the implementation of a program

proceeds as a sequence of templates of the used operators.

Standard Topology

Because of the fixed set of operations and template-based implementation of the sup-

port, there is only a fixed set of communication and computation patterns that can

occur. We need only to solve the mapping problem for the union of the patterns used

in the templates, and then to use a combination of predefined templates to solve any

problems. The union of the patterns needed is called the standard topology. Solving

the mapping problem in this framework means embedding the standard topology in a

target architecture. Observation of the templates implementing each operation reveals

that the standard topology is given by a set of distributed memory MHVID processors

whose interconnection satisfies the following requirements: the existence of a Hamil-

tonian cycle, the capability to do a tree-structured reduction in logarithmic time, and

the ability to deliver an arbitrary permutation in logarithmic time. Skillicorn claims

in [76] that such a standard topology can be mapped on any main class of massively

parallel architectures with no more than a constant slowdown. That is, the cost of the

emulation is asymptotically the same on those architectures. This result allows him to

sketch an asymptotic performance prediction at the language level without considering

communication characteristics of the target architectures.

Cost Calculus

Transformational derivations should be guided by some concept of the execution cost

of the developing program. Skillicorn and Cai [78] present a strategy for building cost

calculi which can be used for transformational program development. They take the

36 	 Chapter 2. Cost Models for Parallel Computation

following general approach. Whenever a composition go f has an implementation that

is cheaper than the sum of the costs of g and f, define a new operation to represent the

combined cheaper operation, thus:

newop = go f

Both sides denote the same function. However, the left hand side denotes a single

operation, while the right hand side means all processors must have completed f before

any processors may begin computing g. The cost of the right hand side is the sum of

the costs of composition. This view allows the cost of both sides to be computed and

the equation to be labelled with its cost-reducing direction. For the theory of lists, a

cost is computed as follows.

A list of length n is stored on a p-processor system with about n/p elements in each

processor. Computing f* applied to such a list means applying f sequentially to the

n/p elements in each processor. The implementation equation for list map is

f* = (j-;)

where subscripts indicate the size of piece to which an operation applies and an over-

bar indicates the sequential version of an operation. Reductions are first done sequen-

tially on the list segments stored in each processor, and the results are then reduced in

parallel between processors. The implementation equation for list reduction is there-

fore

= 	0 	*p

For list map we have

t(f*) =

and for list reduction we have

t,, (/) = Iogp +
n
 -

P

The costs of other useful operations can be computed in a similar way and the cost

information is used to direct equations of the theory. Cost results are parameterised

by the number of processors used and the size of list elements, thus we can know the

2.3. Cost Models for Skeleton-Oriented Programming 	 37

asymptotic behaviour of cost. Some translation laws which are cost-reducing directed

based on the calculus are:

(fog)* ± 	f*og* (2.1)

f *o(++/) - 	(-H-/) o (f*) * (2.2)

(/) o (-i-+ /) - 	(/) o (/) * (2.3)

- 	(/) * o inits (2.4)

inits - 	(-f-f-//)o([.])* (2.5)

OlidO E)
- 	(/) o ((D/) * o tails (2.6)

(®/id®)*oinits (2.7)

where recur-reduce (written ®/b0), given coefficients ai, . . . , an and b1,. . . , bn com-

putes the nth value generated by a linear recurrence function Xj+1 = x, ® a1+i

where x0 = b0, ® and e are associative, and ® distributes backwards over E1:

0/b0[b1,...,bj,...,bn]

=

and recur-prefix (written 0//b0) computes all values generated by the same linear

recurrence:

=

and when [bi,... , b,] = [id®,. . . , id®] and b0 = id® , where id is the identity element

of operator , we write

[a1,...,afl]01b0 [b1,...,b] as 0Iid®[b1,...,bn]

[a i,. . . , a,] 0 I/b0 	[bi, . . . , b,] 	as 0 lid0 	[bi,. . . , b,,]

Transformational Development

A set of transformation laws allows the programmer to transform the programs from

a first (possibly inefficient) formulation to a more efficient implementation. Transfor-

38 	 Chapter 2. Cost Models for Parallel Computation

mational development of BMF is illustrated by an example problem maximum segment

sum(mss). The problem is: given a list of integers, find the greatest sum of values from

a contiguous sublist. It begins from an obviously correct solution: compute all of the

subsegments, sum the elements of each, and select the largest of the sums. It can be

expressed in BMF style by

mss= (t/)o(+/)*osegs

where I denotes the function which takes the maximum of two arguments and segs is

defined by using tails and inits:

segs = (-H- /)o tails* omits

As an example, we have

mss[2,-4,2,-1,6,-3] =7

In [78], Skillicorn and Cai derived an parallel algorithm from the specification:

mss = {definition}

(1/) 0 (+1) *osegs

= {by definition, segs = (-H- /) o tails *0 inits}

(1/) 0 (+/) * 0 -i—i--/ o tails * 0 inits

= {Eq. (2.2), cost — reducing}

(1/) 0 (-H- /) 0 ((+/)*) * otails * 0 inits

= {Eq. (2.3), cost — reducing}

(1/)°(I/) * o ((+/) *) * o tails * o inits

= {map promotion, Eq. (2. 1), cost - neutral}

(1/) 0 (1 0 (+/) * otails) * 0 inits

= {Eq. (2.6), cost — reducing}

(1 /)o(+/o1)*oinits

= {Eq. (2.7), cost — reducing}

1/o(+//oI)

2.3. Cost Models for Skeleton-Oriented Programming 	 39

Note that the 0 subscript of / and if is the identity element of +. The derived algorithm

has complexity of O(logn) under the condition that n processors are available.

While BIVIF gives a formal foundation of transformational development, it has some

aspects which might be seen as drawbacks. Firstly, the expression is restrictive be-

cause parallelism is introduced by only predefined second-order functions. Secondly,

it is difficult to implement efficiently when the second-order functions are composed.

Finally, successful cost-reduced transformations are often not easy to find out in the

general case.

2.3.4 Compile-time Cost Analysis for HOPP

Rangaswami [71] has developed a compile-time cost analysis for a parallel program-

ming model called Higher-Order Parallel Programming (HOPP). In the HOPP model,

parallelism in programs is expressed implicitly using the fixed set of BUT functions.

Its cost analysis aims to exploit a more concrete model than Skillicorn's cost calculus,

considering lower level information such as architecture topologies and bandwidth of

communication links. It also estimates the costs of different possible implementations

of nested higher-order functions, in contrast to Skillicorn's one in which only paral-

lelism at the level of the outermost higher-order function is handled, to choose the

most cost-effective one. The HOPP model consists of three components: the program

model, the machine model and the cost model.

The Program Model

The program model is similar to that of Skillicorn's parallelised BMF. It has prede-

fined (parallel) recognised functions, which are second-order functions from BMF,

some additional functions having parallel implementations, and user-defined sequen-

tial functions. A program is expressed only as a composition of those functions. Each

component of the composition is referred to as a phase of the program. The only data

structure is the list, on which all the functions operate. Lists can be arbitrarily nested

and any type. Since the behaviour of each of the functions is predetermined, a regular

40 	 Chapter 2. Cost Models for Parallel Computation

program expressed in terms of these functions can be analysed at compile-time. A

regular problem in this context is one whose behaviour does not depend on the actual

input values. A further assumption which is made by the analyser is that sublists are of

equal length. The cost analysis needs type information in order to compute communi-

cation costs. Consequently definition of sequential functions that allow polymorphism

is not permitted.

The Machine Model

The programs are targeted at distributed-memory machines which consist of a set of

interconnected processors. The machine model provides a range of target architectures,

on which the cost model predicts execution cost of the program. It includes hypercube,

2-D torus, linear array and tree.

The Cost Model

In the HOPP model, the parallelism is exploited by the occurrence of recognised func-

tions in each phase. The phases themselves are sequential so that phase i does not

commence until phase i - 1 is completed. The cost system examines cases in which

the nesting level is less than three. Any recognised function more than four levels deep

is considered as a sequential function. The cost analysis was implemented in the form

of an analyser. The application program is input to the analyser which first constructs

a program tree. Each branch in the tree corresponds to a phase of the program.

The information used in the analyser is in the form of the following tuple:

program= (P,M,D,I,Ft , S,Cj,Fs)

where

P is a program tree.

M is a 4-tuple which describes the characteristics of the parallel machine.

M = (topology, number-of-processors, start-up cost, bandwidth)

2.3. Cost Models for Skeleton-Oriented Programming 	 41

D represents the level of nesting of the input lists.

D = (variable of the input list, level of nesting of input list)

i is a D-tuple which represents the list sizes at each level.

F, is a function that computes the size of each element in level (D - 1) of the input

list(s).

S is a set of relationships between sizes in different levels of the input list and the

number of processors.

Cj is the cost of the sequential function.

F is the output type of the sequential function.

Although this information is supplied by a programmer, D, P, and F5 could be deduced

from the type if the analyser incorporated a type-checker. C1 and I could be estimated

if the analyser incorporated a profiler. The start-up cost and the bandwidth are specific

to a given architecture and can be obtained from the machine manufacturer.

The cost of a program comprising n phases is given by:

n 	n—i
Cost = Cpi + E C1 ,,+1

i=1 	i=O

where Ci,, is the cost of phase i and C +i is the communication cost for rearranging

the output of phase ito suit the implementation of phase i + 1 when necessary.

The cost of implementing a recognised function, F, operating on an input list of sizes

n, in parallel on p processors, is represented by:

C = F(n,p,C1)

where, C1 is the cost of F's argument function. The analyser performs a cost analysis

for each phase in the program, for a given topology. The cost of the sequential imple-

mentation is also computed in each case. The phase could contain up to three nested

recognised functions. Seven possibilities arise, corresponding to the implementation

of any one of the three functions in parallel, any two in parallel and all three in parallel.

42 	 Chapter 2. Cost Models for Parallel Computation

The Cost of Parallel Functions

The recognised functions in HOPP have their definition of execution cost on each

architecture topology considered. For example, the cost of map on any topology is

Cmap =

where f is the sequential argument function and Cj is its cost. There are two versions

for fold, that is s_fold and g_fold. The size of the intermediate results is constant in

sfold, but it grows in gfold. The algorithms for the two versions are the same: each

processor performs the sequential fold on its local elements, then the partial results are

combined globally to obtain the final result. But the communication costs are different.

For example, the cost of the both versions on a hypercube of dimension d is given by

. s_fold

Cf0ld =C1(+d— 1)+7 m d
P 	

co

. g_fold

d-1 2! m
CfOld=Cf(+d-1)+ 	com

P

where T,m represents the cost of communicating m elements of the lists to a neighbour.

Tcmom =Ko+j - ms

where s is the size of each element of the list, K0 is the start-up cost, and K1 is the

bandwidth of the communication link.

Data Rearrangement Communication Cost

The rearrangement costs are computed using the information of the current data distri-

bution which is obtained from the current node in the search tree and the required data

distribution. Five models of data rearrangement communication were identified. As

example, we give the each cost of them on the hypercube of d dimensions.

2.3. Cost Models for Skeleton-Oriented Programming
	

43

Nearest Neighbour: The cost for communicating a data packet of size n bytes to

a nearest neighbour is

Ko+ -n
KI

. Broadcast: The cost for sending a data packet of size n bytes to all the other

processors is
1 1-

broad =d(Ko+j-n)

• Scatter: The cost for scattering data of size n bytes equally to the other processors

is
in

'-'scatter
,-h 	=dKo+j(pi)

. Gather: The cost for collecting distributed data of size n bytes across the proces-

sors is the same as that of scattering.

• Total Exchange: The cost for sending data of n bytes from every processor to

every other processor is

in
C xci ange =2dKo+2--(p— 1)

Kip

The Search Tree

The costs predicted by the analyser are used to construct a search tree to realise cost-

effective parallel implementation for a given architecture. The cost of all possible

implementations for each of the phases are estimated by the analyser and a search

tree is constructed. The weights on the nodes at a level represent the costs associated

with the different implementations for the corresponding phase. The weights on the

edges represent the costs of phase transition. The least-cost path in the search tree

corresponds to the most efficient implementation for the whole program, for which

code can then be generated and executed on the parallel machine.

44 	 Chapter 2. Cost Models for Parallel Computation

2.3.5 VEC and Shape-based Cost Analysis

Static shape analysis to support compilation and cost prediction for parallel programs

was originally suggested by Jay [52] and first applied in detail to the cost analysis

of VEc, a small shapely functional language [55]. VEc supports a new account of

arrays that combines the benefits of the list programming style with the efficiency of

array programming, by means of shape analysis. [55] represents the first attempt to

produce a formal cost calculus for a parallel programming language of nested arrays

that automatically derive costs from program source. As the paper [55] by Jay et al.

is the most fundamental previous work for this thesis, we review the large part of its

contents here for the purpose of both giving the basis of our work and making clear the

difference with our work presented in the following chapters.

Programming Model

VEC by Jay et al. is a simply-typed lambda-calculus with products, a unit type, and a

vector type constructor for nested arrays that supports the BMF style of programming.

Its types are

D ::= nat I bool

t::=DIszIunI'rx'rlvect

where D can include other simple datum types, and the type stratification precludes

vectors of functions. The terminology of vectors (rather than lists) is used to emphasise

the fact that the lengths of such objects will be statically determinable even though the

language syntax itself will use the familiar nomenclature of lists. Type sz is introduced

as the type of lengths of vectors and index vector entries, although the set of the values

of sz is isomorphic to the set of natural numbers. Type un is a unit type.

Terms in VEC are given by

t ::=dI cIxIXx° . t itt I if t then t else t I ifs tthen t else I recfö.t

2.3. Cost Models for Skeleton-Oriented Programming 	 45

where d ranges over simple constants (integers, booleans, arithmetic operations, etc)

and c ranges over the combinators with non-trivial shapes (i.e. those whose behaviour

impacts upon the shape of terms, such as vector constructors, a selection of conven-

tional sequential functional operators such as length, fst, snd, hd, tI, entry and so on,

and second-order vector operations like map, fold and zip). There are two forms of

conditional: a data conditional if, whose condition is given by a datum; and a shape

conditional ifs, whose condition is a size (with 0 interpreted as false, other sizes as

true). The data conditional allows the condition to be data-dependent, but ensures

shapeliness by requiring that the branches have the same shape, drawn from the shapes

of terms in 'r above. By contrast, the branch taken by the shape conditional ifs is known

by shape analysis, so the branches may have arbitrary types and shapes.

The superscript on the recursion operator indicates restriction to functions with trivial

shape (i.e. involving only datum types and their composition, but no vectors). This

guarantees termination of shape analysis, but requires the programmer to estimate the

number of unfoldings for recursive functions to perform cost analysis. Shape rules

(analogous to type rules) ensure that all elements of a vector have the same shape.

Collectively, the constraints ensure that the compiler is able to evaluate the shape of

every program, and detect any shape errors. In turn, this facilitates efficient imple-

mentation since vectors can be implemented as arrays rather than lists. In VEC, shape

tycostM of a type 0 is defined inductively by

tyCOStM(D) = un

tyCOStM(Ufl) = un

tYCOStM(0 x 0') = tyCOStM(0) x tycOstM(0')

tycostM(vec 0) = sz x (tycOstM(0))

tycostM (sz) = sz

tYCOStM(0 -* 0') = tycOstM(0) -p (tycOstM(0') x T)

The shape of an object whose type is D or un is bang, which is defined as the canonical

term of discrete type 8 , which are constructed without using the vector construction or

sz:

::=DIunI8x8I8 -*

46 	 Chapter 2. Cost Models for Parallel Computation

The shape of a pair is a pair of the shape of each component and the shape of a vector

is a pair comprising its length and the common shape of its elements. The shape of

a function is a function from the shape of an argument to a pair comprising the shape

of the result and the cost to apply it, whose type is T from a cost algebra, which is

explained below.

There are intrinsic limitations of expressiveness in the shapely programming model.

In addition to the restriction about data conditional mentioned above, it excludes any

use of functions whose result shape is data-dependent. The well known function filter

is a typical example.

Cost Algebras

The cost analysis is founded on the concept of a cost algebra, which captures the char-

acteristics which determine execution cost on some target architecture and mechanisms

for the combination of such costs. A cost algebra has signature (T, +) 0 1 , ®, max)

with binary operations

+,e : T — T —* T

0: sz -f T -f T

max: T -f T -p T

where T represents execution costs of some kind. The operations + and are sequen-

tial addition and parallel addition of costs (in other words, capturing what happens

when two computations are respectively run sequentially and concurrently). The oper-

ation ® is parallel "multiplication" capturing the notion of running a number of copies

of the same computation concurrently. 0 is the identity element of +. The operation

max takes some kind of maximum between two costs.

Cost Calculus

Cost analysis of terms is structured compositionally, analogously to the shape analysis

of earlier work. For example, where the shape of a term which reduces to a vector

2.3. Cost Models for Skeleton-Oriented Programming 	 47

consists of a pair comprising the length of that vector and the (necessarily common)

shape of its elements, the cost analysis computes both the shape and an element of T

(from the cost algebra) corresponding to the cost of the reduction itself. That is, the

analysis of a term whose type is 0 produces an object of type

tycOStM(9) x T

The analysis of a datum constant term defines

cost(d) = (bang, 0) 	where d is a datum constant

As the shape of a function term is a function from the shape of an argument to the pair

of the shape of the result and the cost to apply it, the analysis of a function term (itself

of type 0 -* 0') produces an object of type

(tycOstM(0) -+ (tyCOStM(0') x T)) x T

where, tycostM(0) and tycOStM(0') reflect the shape behaviour of the function. The

outermost T reflects the cost of reducing the term itself, while the inner T reflects the

cost of applying the function. For example, the analysis of a binary datum operation

term defines

cost(d) = (A.(Xx.(bang, binOpConst),0),O) where d is a binary datum operation

As examples of the analysis of purely sequential operation terms, the analysis of the

terms hd (the usual "head of a list" function, but now as a vector operation) and length

define

cost(hd) = (Xx. (snd x, hdConst), 0)

and

cost (length) = (Xx. (fst x, IengthConst) , 0)

respectively, where fst and snd are the functions which take a pair and return the first

and the second component of the pair, respectively. These indicate that the term itself

costs nothing to evaluate and that the head (or length) function costs some machine

dependent constant quantity of time to execute, producing a result whose shape is that

48 	 Chapter 2. Cost Models for Parallel Computation

of the elements for hd (or the length for length) of the vector to which it is applied. A

more interesting example is the second-order function map.

cost(map) = (if. (Ax. ((fstx, fst (f(sndx))), (fstx) ® (snd (f (sndx)))), 0), 0)

This indicates that the term itself costs nothing to evaluate and that applying map to

an argument function costs nothing but application of the resulting function to an ar -

gument vector costs some quantity of time that depends on the definition of ® in the

cost algebra, producing a result whose shape is a pair of the length of the vector and

the shape of the result of the application of the function to the element of the vector.

The cost-accounting of parallelism in [55] reflects the implementation choices which

were assumed. Firstly, the skeletal combinators (such as map) were assumed to intro-

duce parallelism in the conventional way. Secondly, function application terms (i.e.

terms of the form tl t2) were assumed to be implemented first by evaluating tj and

t2, possibly in parallel, then evaluating the application itself. The of the cost alge-

bra captures the first of these two stages (and its implicit compile-time optimisation).

Thus, the analysis of application terms of the form tl t2 is performed by applying the

corresponding shape-cost pair of t1, (f,t) to that of t2, (x, t') by using a SIZE operator

capp:

cost (t1 t2) = capp cost (t1) cost (t2)

where capp is defined by

capp:(0—+(O'xT))xT----*(OxT)--*(O'xT)

capp(f,t)(x,t') = (fst(fx), (snd (fx)) + (tat'))

This implies that the cost of an application term is a combination of the application

cost (snd(fx)) and the cost of function term t and cost of argument term t'. + and ED

can be changed to reflect the definition of a cost algebra.

Notice that two terms which reduce to the same value (and hence have the same shape)

can have different costs, depending upon the method by which they are computed (e.g.

which parallel operators are used, if any). Consider terms ta and tb which evaluate

to the same vector of length n. Suppose ta computes its result in parallel, while tb is

2.3. Cost Models for Skeleton-Oriented Programming 	 49

entirely sequential. The costs of the terms will take similar forms ((n, bang), t,) and

((n, bang), t,) indicating that both results have the same shape (n, bang). Meanwhile,

the cost functions t and t, are distinct, distinguishing the implementations.

Implementation Model

The choice of implementation model is made by the definition of operations of a cost

algebra without changing any other details of the cost analysis framework. For ex-

ample, sequential executions are costed using the cost algebra (T, +,'lJ, +, *, max) in

which T is sz and simply counts clock ticks, and the other components are the standard

integer operations. For parallel execution, T is a set of functions from parallel machine

descriptions to times. The chosen parallel model in [55] was the PRAM model. For

the PRAM model, with its collection of processors computing synchronously in par -

allel and interacting through a unit access-time shared memory, we have T = sz - sz,

representing time functions from the number of processors to the number of time steps.

Sequential cost addition is pointwise addition on time functions, and max is pointwise

maximum. An addition for parallel execution ' is defined by using static cost in-

formation to determine an optimal division of processors between two parallel tasks

(since this information would also, of course, be available to the compiler).

(f(D'g)p = min {max{fq, g(p—q)}}
O<q<p

Because sequential execution may be faster, parallel addition ED in the cost algebra is

defined by

(f(g)p= min {(f+g)p, (f dg) p}

Parallel multiplication ® is defined by

(n®f) = if(n mod p==0)

then (n±p) * (f 1)

else (n-i-p) * (f '1) + (f (p -i-- (n mod p)))

Notice that static shape information is used to divide the "leftover" tasks among the

processors to increase efficiency, just as a compiler in possession of this information

50 	 Chapter 2. Cost Models for Parallel Computation

would do. The skeleton combinators which are executed in parallel in VEC are map

and a parallel fold, pfold.

In subsequent work [54], Jay raises the possibility of BSP costing of GoldFiSh (a

related parallel shapely language), but no attempt is made to capture matters formally.

2.3.6 Related Work with Skeletons

There are currently a number of research groups working on the design and implemen-

tation of parallel languages with algorithmic skeletons.

Early work in the area of using algorithmic skeletons concentrated on describing each

program using a single skeleton. Cole introduced in [25] the skeletal concept, defin-

ing four general skeletons: divide & conquer, task queue, iterative combination, and

cluster (solving problem by decomposition on a grid network).

Subsequent work by various groups has been addressing the complications that arise

by allowing the composition and nesting of algorithmic skeletons.

Darlington's group at the Imperial College has been one of the most prolific in this

field. Their first approach was to embed a set of general skeletons, including pipe, farm,

d&c, and ramp in a purely functional language [29]. This was followed by a refined

approach, called SPP(X), standing for Structured Parallel Programming parameterised

by a base language X. SPP(X) is a two-layer scheme, comprising a high-level, func-

tional language, called the Structured Control Language (SCL), in which applications

(containing skeleton calls) are written, and a Low-level Base Language for efficient

sequential code called from within the skeletons [30]. The skeletons presented in this

context are both general ones, like farm and SPMD, and data-parallel ones working

on distributed arrays, like map, fold, and rotate. Although the language and prototype

implementation supports programs consisting of many skeletons, the focus of the pre-

liminary implementation is on transforming and optimising individual skeletons. To

[8 1] addressed this issue by investigating the possibility of using cost functions, which

are to be derived from skeleton performance models, in optimising the implementation

of compositions of the components built using the approach.

2.3. Cost Models for Skeleton-Oriented Programming 	 51

The Pisa Parallel Programming Language (P3L) [67, 28], group led by Pelagatti and

Danelutto has been similarly active for a number of years. P3L is an imperative-based

(typically C) programming language that supports a set of predefined programming

templates, or skeletons. These include farm, pipe, map, tree reduction and loop, each

of which has an associated functional language definition. The language allows un-

restricted composition and nesting of these skeletons in a user program. Each of the

P3L implementation templates is associated with a performance model function pa-

rameterised by both machine and application specific parameters. The compilation

philosophy employs templates for each construct, targeting the P3L abstract machine,

a distributed-memory, message passing model with options for either full or mesh con-

nectivity. Many decisions are guided by the use of profiling information gathered

sequentially and plugged into the template performance models. Zavanella [86] de-

scribes the methodology to implement an adaptive support for a skeleton language

(Skel-BSP) on top of the EdD-BSP (a simple extension of the BSP) computer as a

method to provide both efficiency and performance portability.

The Heriot-Watt group have extracted and exploited skeletal parallelism within Stan-

dard ML programs. Busvine's PUFF compiler [24] generates sequential occam2 from

SML and can identify useful parallelism in general linear recursion. Bratvold's SkelML

compiler [18] recognises a set of predefined higher-order functions, or skeletons, in-

cluding map, filter, and fold in standard ML programs and maps their implementations

to abstract process network templates. The compiler also uses a set of preoptimised im-

plementation templates for recognised sequential compositions of the supported skele-

tons. A performance model formula for each of the skeletons is derived by the compiler

designer, and quantified by benchmarking. Using these formulae, the compiler com-

pares the costs of different process to processor mappings in an attempt to minimise

the total execution time of the program. The compiler relies on profiled sample data

provided by the programmer to obtain information about the execution time of the user-

supplied sequential code. Michaelson et al. [61, 62, 75] have developed a parallelising

compiler for Standard ML using algorithmic skeletons including map and fold. While

PUFF and SkeIML are compilers from a subset of Standard ML to occam2 and are

oriented specifically to the Meiko Computing architecture, based on T800 transputers,

52 	 Chapter 2. Cost Models for Parallel Computation

the new work generates predictably portable C with IVIPI from Standard ML. Arbitrary

depth nesting of skeletons can be implemented in parallel using a static approach for

generating parallel code. Hamdan's Ektran compiler [43] can also compile and exe-

cute arbitrarily nested skeletons. The static analysis of the source program generates a

nesting structure which is used to combine the corresponding higher-order functions in

a process termed "nesting deduction". The run-time scheduling relies on the compile-

time analysis and uses message passing groups to run combined higher order functions

in parallel.

Rabhi and Schwarz [69,70], have developed a Paradigm Oriented Programming Envi-

ronment (POPE) in which a purely functional realisation of the "static iterative trans-

formation" skeleton is added to skeletons similar to those found in Cole's original

approach.

Feldcamp et al. developed Parsec (Parallel System for Efficient Compilation) [33, 34],

which is a skeleton-based parallel programming environment. The system provides

virtual machines (called skeleton-template-module objects) which provide skeleton

code for the supported template, which the user completes to implement an application.

The supported skeletons are processor farms and divide and conquer. Each skeleton is

parametrised on information such as number of processors, topology and granularity.

The parameters include both static information such as its shape and size that can be

specified by the user and dynamic performance tuning parameters that are determined

by the analysis from information gathered from test runs and the performance model

provided to each skeleton. The performance model was validated on a 74 node T800

Transputer based multicomputer system.

Deldarie et al. [31] developed special cases of skeletons related to image processing.

The provided skeletons are local window (LW), where each pixel in the resulting out-

put is derived from pixels in a window surrounding the corresponding pixel in the input

image, and split and merge (SAM) where an image is partitioned into slices, an oper-

ation is applied to each slice then the results are merged. Performance models for the

skeletons are derived in terms of the WPRAM computational model [65] and the exe-

cution time for a skeleton is presented as a generic higher order complexity function.

2.3. Cost Models for Skeleton-Oriented Programming 	 53

The time complexity of the particular application is derived when the skeleton with a

specific set of parameters is instantiated. The approach is illustrated by some examples

from image processing, and is extended to analyse the scalability of skeleton-based ap-

plications, using isoefficiency functions [42] . Measured performance on the WPRAM

simulator shows a close match to theoretical predictions.

The recent work of Gorlatch et al. [39, 40] present a methodology for designing mes-

sage passing programs with collective operations, such as reduction, scan, gather, etc.

The design process is based on correctness-preserving transformation rules, provable

in a formal functional framework. The impact of the design rules on the target perfor-

mance is estimated analytically and tested in the machine experiments. The method-

ology is illustrated by a case study, the MPI implementation of the maximum segment

sum problem, starting from an intuitive but inefficient algorithm specification.

The Skeletons Imperative Language (Skil) [16, 17] has been developed by Botorog

and Kuchen. Skil is an imperative language aiming at integrating skeletal functional

features with the efficiency of the C language.

NESL [14] developed by Blelloch is a data-parallel strict functional language, which

has, an MIL-like syntax and supports polymorphism. The language based performance

model gives a formal way to calculate the work (total number of operations) and depth

(longest sequence of dependences, or critical path) of a program and defines rules for

composing these costs across expressions. These measures can be related to running

time on parallel machines.

Loidl [56] gives granularity analysis for a simple strict higher-order functional lan-

guage. The purpose of this analysis is to statically derive information about compu-

tation costs that can be used by the parallel runtime-system to improve performance.

Static analysis is based on the sized time system, which is a combination of the in-

ference system developed by Reistad and Gifford [73] and sized types developed by

Hughes et al. [51], to propagate information about sizes and costs.

Brinch-Hansen [19] presents a number of independent imperative skeletal case-studies.

54 	 Chapter 2. Cost Models for Parallel Computation

2.3.7 Profiling Approach and Recursion Analysis

Apart from skeletal restrictions, our language VEC-BSP imposes additional restric-

tions to achieve static cost predictability and automatability of cost analysis. For ex-

ample, we exclude non-shapely functions like filter whose result shape depends on

input data, and recursive functions, whose termination and cost are not decidable in

the general case. As these restrictions are strict, our static cost analysis in this thesis

could be incorporated with more experimental approaches for a more practical analysis

system. Those approaches such as profiling methods and recursion analysis themselves

have been long known as important research areas. The remainder of this chapter sum-

marises some related works of these issues.

Profiling Approach

One approach for extracting information about the performance of program is to exe-

cute it with some sample input and to generate profiling information. This information

is then fed back into the program development or compilation process and can be used

to generate more efficient code. Ideally, predicting the execution time solely by static

analysis is preferable because a programmer or a compiler can make all decisions based

on source code. In contrast, information of the profiling method depends on the choice

of the initial input set. If the run-time behaviour of the program varies much between

different inputs, to reach a good result without a large-compile time is difficult and, the

choice of good sample input is not obvious in general. However, as the execution time

of a program is not a decidable property and information of input data is desirable for

accurate prediction in some case, for example at the branching points in the program,

introducing a profiling approach would be indispensable in more practical use. Good

examples of the profiling approach combined with a skeleton-based approach can be

seen in the works of the Heriot-Watt group. In Busvine's PUFF compiler [24], the pro-

gram is run on one or more sets of data, collecting statistics about computation costs

and execution frequencies. This information is used to transform the program into a

parallel version that has improved performance. Bratvold's Ske1MIL [18] is a skeleton

based parallelising compiler, which is based on sequential program instrumentation

2.3. Cost Models for Skeleton-Oriented Programming 	 55

through Structural Operational Semantics (SOS) [64]. Skeleton performance models

are instantiated using the SOS measures to determine useful parallelism. Michaelson

et al. [61] present the design of an architecture-independent parallelising compiler

for SML in which these costs are parameterised over machine specific parameters, so

that instantiating these parameters and combining the profiling information can give

accurate granularity information.

Recursion Analysis

Functions are said to be defined recursively when the body of the definition refers

to the function itself. We usually demand that recursive definitions are terminating,

i.e. given some particular input the function will call itself only a finite number of

times before stopping with some output. In general, however, there is no guarantee

that a function defined by recursion will always terminate. The usual approach is to

provide the user with a pre-defined set of well-founded induction schemes. To use a

scheme not specified in this set, the user must specify an ordering and prove that this

orderings is well-founded. There are possible constraints on recursion to aid analysis of

termination. The simplest way to ensure termination is to forbid recursion. This would

give a restrictive language. Another alternative is to restrict the recursive function

to be primitive recursive, as all primitive recursive programs terminate with easily

characterisable time and space behaviour. There are functions that are not primitive

recursive to which we cannot in any simple way give an upper bound for the number

of reductions needed when applying it to an argument.

Burstall [22] contributed structured recursion, a generalised form of primitive recur-

sion, to analytic syntax, with an associated principle of structural induction. Burstall

[23] also showed that if the recursion is combined with a case expression which de-

composes elements of the data type, the ordinary scoping rule for variables can be used

to ensure termination, without imposing any special schema.

Abel [1] has introduced a language based upon lambda calculus with products, coprod-

ucts and strictly positive inductive types that allows the definition of recursive terms.

Their termination checker foetus ensures that all such terms are structurally recursive,

56 	 Chapter 2. Cost Models for Parallel Computation

i.e. recursive calls appear only with arguments structurally smaller than the input pa-

rameters of terms considered.

Walter [84] has described reduction checking, which is sometimes referred to as Walter

recursion. His estimation calculus examines whether functions are terminating and

also whether the output of the function is smaller than the input. This information can

be used to check termination of nested recursive functions.

More work on the estimation calculus has been done by Bundy and others. Recursion

editor [20] is an editor for Prolog that only allows terminating definitions, which en-

sure the termination of severely restricted kinds of recursive procedures chosen from

Peter's classification. More recently, in CYNTHIA [85], an editor for a subset of ML,

which grew out of work on recursion editor, each ML function definition is represented

as a proof of a specification of that function using the idea of proofs-as-programs [49].

The proof is written in Oyster [21], a proof-checker implementing a variant of Martin-

Löf Type Theory. CYNTHIA restricts the user to the set of Walter recursive functions,

which includes primitive recursive functions over an inductively-defined data types,

multiple recursive functions, nested recursive functions and functions that reference

previously defined functions in a recursive call. It analyse the termination of the pro-

gram and gives useful feedback.

Telford and Turner [80] are investigating Elementary Strong Functional programming,

i.e., functional programming where only terminating functions can be defined. They

use abstract interpretations to ensure termination. They can handle a wider class of

functions than Walters recursion since they keep track not of whether an argument

is decreasing but how much it is decreasing or increasing, thus allowing temporary

growth that is compensated by sufficient shrinkage later.

Related works on deriving cost information (statically or experimentally) and the treat-

ment of recursion include the following.

Busvine's PUFF [24], which compiles SML to occam2, uses instrumentation to iden-

tify useful parallelism in linear recursion.

The ACE system of Le Métayer [60] transforms an FP program with call-by-name se-

2.4. Chapter Conclusion 	 57

mantics into a program with call-by-value semantics. This performs a macro-analysis,

that is, it measures the time in the number of applications of the dominant operation

which is used in the program. He uses a set of rewrite rules to derive complexity

functions, simplify them and finally eliminate recursion.

Huelsbergen et al. [50] were able to handle recursion successfully by using abstraction.

They have defined an abstract interpretation of a higher order, strict language for de-

termining computation cost, which uses dynamic estimates of the sized data structure.

Their analysis uses the well-known trick of iteration in the abstract interpretation stops

as soon as a certain bound for the computation costs of an expression is surpassed.

This prevents non-termination in the analysis.

Rosendahl [74] presents a program transformation that yields a time bounded program

for a given first-order Lisp program. His system deals with recursive functions by

providing a set of translation rules that eliminate recursion.

Loidl and Hammond [57] present an inference system to determine the cost of evaluat-

ing expressions in a strict purely functional language. Upper bounds can be derived for

both computation and size of data structures. The analysis is a synthesis of the sized

system of Hughes et al. [51], and the time system of Dominic et al. [32], which was

extended to static dependent costs by Reistad and Gifford [73]. Sized types can also

be used to analyse the costs of user-defined recursive functions.

2.4 Chapter Conclusion

We surveyed some of the models for parallel computation. Table 2.1 summarises the

cost modelling aspects of models and languages described in this chapter. Models

which do not account for cost are omitted from the table. Many of the models use

measurement analysis based on some benchmark data that is specific to a given archi-

tecture or profiling information obtained by running the input sets of data on a given

architecture. Although typical cost modelling for skeletons includes parameters on

some communication performance such as bandwidth and start-up cost, some mod-

58 	 Chapter 2. Cost Models for Parallel Computation

els such as PRAM and VEc have no consideration of communication cost, to reduce

the complexity of cost analysis. Only VEC and VEC-BSP have full-automatic static

analysis. Some BMF style models and Darlington's skeletons discuss application of

their cost models to program translation. Many models that support analysis tools have

done accuracy tests but some theoretical models have not. A few models present a cost

model which accounts for the costs of the implementation of programs in which some

degree of nested skeletons is allowed.

Table 2.1 includes VEC-BSP, which will be presented in the next chapter. Its static

cost analysis is developed building on Jay's cost calculus since it has a formal analytic

framework and the characteristic of being automatable. The implementation model

for VEC-BSP is BSP, whose level of abstraction is lower than the PRAM and Skil-

licorn's model but higher than Rangaswami's model. Communication performance

characteristics of a target machine are considered in terms of the BSP parameters, but

the architecture topology is abstracted. Accuracy tests have been performed for sev-

eral examples. The analysis can predict the absolute value of execution cost based on

the BSP benchmark. We will discuss application of our automated cost analysis to

program derivation steps. The analysis deals with parallelism only at the level of the

outermost higher-order function. Optimisations considering possible implementations

of nested skeletal combinators remains a topic for future work.

2.4. Chapter Conclusion 	 59

Model

Language

Meas.

Asym.

Stat.

Prof.

Comm.

Sen.

Accur.

Test

Prog.

Trans.

Nest.

Skel.

PRAM Asy Stat No No No No

BSP Mea Stat Yes Yes No No

LogP Mea Stat Yes Yes No No

Cole Mea Stat No No No No

Darlington Mea Stat Yes Yes Yes No

P3L Mea Prof Yes Yes No Yes

Skel-BSP Mea Prof Yes Yes Yes Yes

PUFF Mea Prof Yes Yes No No

SkeIML Mea Prof Yes Yes No No

Parsec Mea Prof Yes Yes No No

Deldaie Asy Stat Yes Yes No No

Gorlatch Asy Stat Yes No Yes Yes

Ski! Asy Stat Yes No No No

NESL Mea Stat No Yes No Yes

Loid! Mea Stat No No No No

HOPP Mea Stat Yes Yes No Yes

VEC Mea Stat* No No No Yes

Skillicorn Asy Stat Yes No Yes No

VEC-BSP Mea Stat* Yes Yes Yes No

Meas. Asym. column specifies if each cost model is measurement analysis (Mea) or asymp-

totic analysis (Asym).

Stat. Prof. column specifies if each cost model is static approach (Sta) or profiling-based ap-

proach (Prof). Sta* indicates its static analysis is automatic.

Comm. Sen. column specifies if each cost model is communication cost sensitive (Yes) or not

(No).

Accur. Test column specifies if the accuracy of cost model was tested (Yes) or not (No).

Prog. Trans. column specifies if each cost model was applied to program translation process

(Yes) or not (No).

Nest. Skel. column specifies if each model allows nested skeleton (Yes) or not (No).

Table 2.1: Summary of cost models

Chapter 3

VEC-BSP and its BSP Cost Analysis

System

This chapter describes the detail of our language and its cost analysis system. In section

3.1 we overview our approach's structure and terminology. Section 3.2 presents the

detail of the source language. Section 3.3 introduces the target language MsIzE. Sec-

tion 3.4 gives the BSP implementation strategy for VEc-BSP. Section 3.5 describes

our cost analysis technique and section 3.6 explains the details of translation functions.

3.1 Overview and Terminology

The proposed parallel model for VEC in [55] used the tightly synchronised, uniform

access cost, shared memory PRAM model as its target architecture. The PRAM is

an abstract model which takes no account of the communication and contention costs

incurred on realistic parallel machines (whether explicitly programmed or in support

of a shared memory abstraction). This chapter addresses this issue with BSP replacing

the PRAM. There are several reasons for the choice of BSP. One is that it is able to

model message passing, which is the dominant parallel programming style. Another

is that it has a simple cost model which is suitable for predicting communication cost

62 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

on wide range of actual machines. BSP and LogP models have been proposed in

similar context and have attracted more attention than other alternative models. [8]

compared these two models and summarised that BSP seems somewhat preferable due

to greater simplicity and portability, and slightly greater power. In our context, the

superstep structure of BSP, in which the communication phase and communication

phase are separated by global synchronisation is particularly preferable because we

need to only add a mechanism to the existing shape-based cost analysis so that it can

cost the communication and synchronisation phases.

Changing the model requires a number of amendments to the assumed implementa-

tion mechanism (compiling VEC programs to BSP) and the analytic framework. New

operators (and their implementation skeletons) are added to VEc, in order to broaden

applicability and facilitate coding of our examples. We call the resulting language

VEC-BSP to distinguish it from its predecessors.

As in the original analytic framework for VEc, our shape-based cost analysis aims

to translate terms of source program to terms of another program which performs the

analysis. Translated terms take the form of shape-cost pairs in the original work, but

those in our analysis take the form of tuples whose components capture additional

information from the BSP implementation. This information can be used at compile

time for various purposes, in particular, costing communication (Hayashi and Cole

[44]) and optimising communication (Hayashi and Cole [45]). The original analysis

has a general framework based on the concept of a cost algebra whose operations may

be customised to handle different cost regimes. Although the initial attempt for BSP

costing in [44] was to customise the components of the cost algebra to compute BSP

cost while keeping the original structure, it seems that some useful information to

compute BSP cost is difficult to express within the operations of the cost algebra. Our

solution is that such information is added to the shape-cost pair by extending it into

the form of a tuple (called a cost tuple) rather than in the cost algebra. We now outline

the structure of our analysis process mentioning differences with the original work for

VEC.

3. 1. Overview and Terminology
	

63

Source Language

VEc-BSP is based on VEC, a shapely functional language which operates upon nested

vectors of data. Shapeliness means that the form and size of data structures can be

deduced statically. Shape constraints (which are analogous to type constraints) are

used to ensure that all elements of a vector have the same shape (so that information

about large structures can be captured and manipulated concisely.) This restriction is

partially relaxed in an expanded version of VEc-BSP described in chapter 7. As VEC,

VEC-BSP terms use standard functional terminology and have the expected semantics.

The pair data type is extended as tuple data types and a small number of built-in second

order functions are added to VEc-BSP in order to broaden applicability and facilitate

coding our examples. The cost model for VEC needs assistance with general recursion;

the programmer must indicate the anticipated recursion depth. We excludes recursion

in this version since our goal is full automation. Our terms and types are discussed in

more detail in 3.2.

Implementation Model

While the parallel implementation model proposed for VEc is the PRAM, that of VEc-

BSP is the BSP model. Our basic BSP implementation structure is the nested structure

of the implementation of the application term t t' that consists of the four ordered parts,

E1 ': evaluation of the argument, E: evaluation of the function, C: communication part

and A: application part. Nesting arises because Et , and Et can themselves be applica-

tion terms. The communication part C is the communication of data rearrangement for

the next application part. When function t is a built-in second order function which

has a parallel implementation, (that is skeleton,) the application part follows its pre-

defined BSP implementation template. More details of implementation strategies are

discussed in 3.4.

64 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

Target Language

A source program is translated to another program in the target language MsIzE which,

when run, will compute some implementation information such as shape and run-time

cost. MsIzE is essentially a variant of VEC-BSP in which types, terms and operators

which represent and manipulate real data have been removed, and with the addition of

new features which manipulate implementation information not present in VEc-BSP.

These are discussed in section 3.3.

Type Framework

The types of VEc-BSP terms are basically those of VEc, that is expected for an equiv-

alent conventional functional program (primitive datum types, pairing and function

types), with the addition of a type constructor vec for vectors (instead of lists), tupling

(extention of pairing) types and types sz and un. sz is used to denote vector lengths,

indices and other shape oriented quantities, while un denotes a unit type.

Types available in MsIzE are similar to those of VEC-BSP, with the exceptions that

there are no primitive datum types (integer, boolean and so on) or structured types built

from these.

While the modeled evaluation costs in the PRAM analysis are functions from the num-

ber of processors to time, those in BSP analysis are functions from the standard BSP

performance parameters to time. Thus, for a given program and data set, our analysis

returns a function which can itself be evaluated with the characteristics of different real

machines. We use T to denote the type of such time functions.

Translation Function

The core of our method is a translation function cost which accepts VEc-BSP terms

and returns MsIzE terms. An MsIzE term takes the following form called a cost tuple,

(shape, data size, data pattern, cost).

3. 1. Overview and Terminology 	 65

The shape of a function term is a function from the shape of an argument to an appli-

cation tuple,

shape of argument - (shape of result, application pattern, application cost).

Each component captures some kind of evaluation information. We added three new

components which are not addressed in the original work for VEc, that is, data size,

application pattern and data patten. Information of data size during the computation is

required to determine the cost of communication phases. Although we can get data size

of a non-function term from its shape, we add the data size component to the shape-

cost pair to define the data size for a function term as well. The motivation for the

addition of the application pattern and the data pattern is that when parallel functions

(that is skeletons) are successively applied to some argument, if we can statically know

the information of implementation pattern of a function application and that of the

previous function application which generates the argument, it is possible to optimise

their interface communication statically. The former information is added in the shape

of a function term as the application pattern and the latter is added to shape-cost pair

as a new component, the data pattern. A brief description for each component is:

. data size - a measure of the quantity of data which would have to be commu-

nicated to describe the term (in order to compute communication cost from the

transmitted data);

. data pattern - an indication of the data distribution strategy required by the term's

implementation. (in order that communication of the data between evaluation

phases can be optimised);

• cost - an evaluation cost function for the term, mapping from performance pa-

rameters to time (so that evaluation time for the term can be computed, given the

performance characteristics of the specific target);

• application pattern - an indication of application structure, that is whether Se-

quential or parallel (in order to compute communication cost between the com-

ponent evaluation process and the application process, and to optimise the com-

munication of data between evaluation phases).

66 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

At the heart of the translation lies the mechanism for costing application terms of the

form t t', given the costings of the function t and argument t'. The intricate details

are captured in our MsIzE function bspapp presented in section 3.5.4. While the cor-

responding capp function in the original work is customised by the operators of the

cost algebra, our bspapp function is defined specially for BSP cost modeling. Essen-

tially, this combine the costs of computing t and t' with the cost of applying t to t',

also deducing information on the shape, data content and distribution information of

the result. The type information involved in the translation is presented in 3.5 and the

translation itself is discussed in detail in section 3.6.

3.2 VEC-BSP: A Shapely Skeletal Language

The source language of VEc-BSP is based on that of VEC defined in [55]. The dif-

ferences between them are: VEc-BSP has more parallel skeletons; the pair data type

in VEC is extended as the tuple data type in YEC-BSP; recursion in VEC is excluded

from VEc-BSP.

We summarise its features here. The types are

D ::= nat I bool

c::=Dlszlunitx ... xtivect

where D can include other simple datum types, and the type hierarchy precludes vec-

tors of functions. The terminology of vectors (rather than lists) is used to emphasise

the fact that the lengths of such objects will be statically determinable as items of type

sz. Although sz is isomorphic to the natural numbers we will initially use the notation

n to distinguish shape sizes from ordinary numbers. We introduce two tuple data types

which have three and four component respectively as an extention of the pair type in

VEC so that we can express our example problem in chapter 6 in which a tuple data

structure is required to compute an almost homomorphism [26]. The tuple data struc-

ture is also used in the MsIzE language to express cost tuples. Terms in VEC-BSP are

3.2. VEC-BSP: A Shapely Skeletal Language 	 67

given by

t ::=d I Ix I Xx.t I t t I ifr then t else I ifs then t else

where d ranges over simple constants (integers, arithmetic operations and so on) and

c ranges over the combinators with non-trivial shapes (those whose behaviour impacts

upon the shape of terms) including our skeletons and a selection of conventional se-

quential functional operators (length, fst, snd and so on). The general typing rules are

given in figure 3.1

id
Fl-x:0

if
FHt:boolFI-t':FI--t":

['F -if t then t' else t":

abs 	
[',x:01-t : 0'

ifs
['l-t:szFF-t':OFI--t":O
I' F- ifs t then t' else t" : 0

IF[-t:O—':O' ['F-t':O
app

r F- W: 01

Figure 3.1: VEc-BSP type inference rules

A full list of primitive functions (except for arithmetic operations) and their type is

given in figure 3.2. Note that these functions were chosen as a basic set of standard

functions. Some functions are not used in the examples in the thesis. Other functions

can be added as long as they are shapely.

VEC-BSP has five skeletal combinators. Their informal definitions are:

map - applies some function f to each element of an argument vector.

map f[xi, X2,", x,] = [fxi, fx2,...,fx]

. fold - combines the elements of a vector using an associative binary operator El?.

fold 	x,.. ., x,] = xi 	x2 	El?x,

• pair-map - applies a function to elementwise pairs drawn from a pair of vectors

of the same length.

pair_mapf([xl,x2,...,xfl], [yi,y2,",ynJ)=[fxiy1,fx2y2,",fxyfl]

M.
	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

unit Un

pair : O-'O'--+OxO'

fst :OxO' -O

snd :OxO'-*O'

tuple3

I113 :0xOx0-40

It23 :OxO'x Off -40'

It33 0 x Of x 0" - 0"

tuple4 0 — Of —4 0" —+ 0" - 0 x Of x 0" x 0"

It14 : 0x0'x Off x0"-0

OxO'x Off xO"-40'

It34 : 0 x Of x 0" x 0" — 0"

7144 0 x Of x 0" x 0" — 0"

length : vect -sz

hd : vect-+t

ti : vect -*vect

entry : vect -*sz -- t

map : (-t')-*vect--vect'

fold : (t —' t —* 'r) — vec t —i c

pair-map : (,r 	T' —it") -ivec'rx vect' - vect"

scan : ('v —it—)—ivecr--ivec'r

c_prod : (t-i'r'--it")--iveccxvect'-ivec(vect")

iter : ('v—it) —i'r ----isz --i'r

Figure 3.2: VEc-BSP primitive functions

• scan - applies to a vector and the partial result of fold up to the ith element is

returned as the ith element of the resulting vector.

scan 	[xl,x2,.• ,X fl] = [xl, xl Ex2, 	,x1 	X2 EI 	E1 xfl]

cprod - applies a function to the all elements of the cross product of two vectors.

c_prod! [XI, x2,• . ., x] [y1, Y2, , y,} = [[fxiyi, fx2yl, . . . ,fxmyi],

[fxly2, fx2y2,• . •, fX m Y2],

[fxiy, fx2y,..., fxmyn]l

3.3. Msize: A Target Language 	 69

As in the original work on VEC there are two forms of conditional: a data conditional

if, whose condition is given by a datum; and a shape conditional ifs, whose condition

is a size (with 0 interpreted as false, other sizes as true). The iter combinator allows

bounded iteration, controlling repeated application of a function to data. The number

of repeats must be statically determined. VEc has recursion, but the programmer needs

to anticipate its depth. We exclude recursion, since our goal is full automation.

3.3 Msize: A Target Language

VEc-BSP is translated to a target language called MsIzE, which corresponds to the

SIZE language for VEc, generating cost tuples which consist of information of shape,

data size, data pattern and cost. The types of MsIzE are

O::=unisziOx ... xOiOxOiO-O

MsIZE has two kinds of pair type. One is 0 x 0, a special case of the tuple type that has

two components and the other is 0 0, a pair type for a shape expression that comprises

the length and the element shape. The tuple type that has four components is used as

the type of a cost tuple. The terms of MsIzE are given by

t ::= c ixiXx. t itt I if t then t else t

where c denotes VEC-BSP functions. Its type inference rules are the applicable VEc-

BSP rules.

3.4 Implementation Strategy

Now we give an implementation strategy for VEc-BSP on its target implementation

model BSP. Because BSP has no shared memory the main issue is to specify placement

and movement of data in the style of message passing programming, while keeping

things simple enough to predict cost automatically. Furthermore, our implementation

70 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

model should follow the superstep structure of BSP. We use execution diagrams to ex-

plain the implementation model and data movements on it. In our execution diagrams,

time proceeds from left to right with activities in a processor proceeding horizontally.

Data flows from left to right being manipulated and transmitted following instructions

from terms of the source program. We use one of the processors (at the top in our

diagram) as a master processor in which the necessary data is stored at the beginning

of computation and the result is eventually stored at the end of the computation.

A complete computation of a program t t' has a nested structure consisting of four

ordered parts, which are illustrated in the diagram of figure 3.3 in which shaded pro-

cessors indicate existence of data in those processors.

. Es': an evaluation of the argument t'

. E1 : an evaluation of the function t

. C: a communication, in which the data of the results of E, and Et are redis-

tributed to processors for the next process if necessary, followed by a barrier

synchronisation

A: an application, in which the result of Et is applied to the result of Es'.

Time

Processors

'E - U------ '0

0: 	:o o: 	:o \\ :o
Et'

I
i 	Et 	I
I

\\ i 	A
I

0: 	:o °: 	:o \ C:

o: 	2 0 :--------
c\ I

o: 	-

Figure 3.3: Parallel application

Nesting arises because E1 and E1 can themselves be application terms. In each part,

the data is stored in the master processor at its end with the exception that automatic

3.4. Implementation Strategy
	

71

optimisation is used to remove some overhead incurred, as explained later. The appli-

cation phase A may be either sequential or parallel. A sequential application illustrated

in figure 3.4 is executed only in the master processor when t is a sequential function (its

information can be known from the application tuple). There is no communication in

Time

Processors

:© 4®

0: 	:oo: :oo 0
Et'

I
Et 	I

I
A

0: 	:00: :oo 0
I

0

I

: 	 1 00 0

Figure 3.4: Sequential application

C because the necessary data already resides in the master processor. The parallel ap-

plication illustrated in figure 3.3 is executed among the processors when the function

t is a skeleton combinator (this information also can be known from the application

tuple) whose parallel implementation template is predefined. We place the following

restrictions on the implementation template.

The template must follow the BSP model, that is computation and communica-

tion are separated by machine wide synchronisation.

. The data of the argument is distributed evenly at the beginning of the template.

. All processors perform the same operation.

. The result is eventually stored in the master processor.

Combinators map and fold are typical examples of second-order functions which have

parallel templates. The implementation template of map applies the function sequen-

tially on the vector segments in each processor then gathers the results to the master.

72 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

The fold implementation template folds sub-vectors sequentially on each processor.

Results are transferred to the master processor which folds them together sequentially

to compute the overall result. Figure 3.5 illustrates these applications. Solid lines in-

dicate computation and dotted lines indicate gather. The narrow vertical box denotes

machine wide synchronisation. The details of the full set of our current implementation

o -------- o
Q—c-Q MT

sequential 	 map 	 fold

Figure 3.5: Application examples

skeletons are presented in chapter 4.

Using a skeleton requires communication for data rearrangement in C in which the

data describing the result of E,' is scattered to all processors evenly. If there is any

data component of the result of E, it is broadcast to all processors. For example, if

t is map (+t"), where t' generates some value, then that value must be broadcast to

all processors. Therefore, costing communication in C means costing the broadcast

and scatter communication. The formula for this will be given in section in 3.5.3.

Figure 3.6 illustrates the scatter and broadcast - scatter communication. In the scatter

diagram the master processor (at the top) scatters data between itself and three other

processors. Dotted lines indicate scatter and dashed lines indicate broadcast.

OF , 3-0

"o
10

scatter 	 broadcast - scatter

Figure 3.6: Communication patterns

Additional comments are required for the implementation of the application of a lambda

3.4. Implementation Strategy 	 73

0 Hi
'o 	o :

••••o —: \:o
M0. o—o. 1 0

Et. 	 E t 	 C

Or -0
-

o o-----O: : 	 o

0-0 3

o o—o
E. 	 E t 	 C 	 A

Figure 3.7: Removal of unnecessary communication

term. Implementation of the application of (Ax.t(x)) a is: a is evaluated first and x is

substituted by the result of evaluation of a, and t (a) is evaluated in the application part

A following the strategy described above. We assume that it takes no time to evaluate

the term ()Lx.t(x)), that means we count the costs to evaluate a and to evaluate t(a),

which is performed in the application part and ignore the other costs involved.

Efficiency Problem

We required the parallel implementation templates to store data in the master processor

at the end of A. Consequently, the data of the results of E' and Et are also always stored

in the master processor, since these are either themselves nested parallel applications

abiding by the same rule, or are already sequential. This rule simplifies implementa-

tion and costing communication by providing a common interface for communication

patterns across the nested term. However, it also causes an efficiency problem. For

example, if a parallel application process finishes by gathering the local result in each

processor to the master, only for these to be subsequently scattered as the inputs to

an enclosing parallel function, then the gathering and scattering are superfluous. The

upper half of figure 3.7 illustrates the structure of such a computation, for a term of the

form map f (map g v). The first phase implements the map of g (with g assumed to be

74 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

primitive), the second phase computes f (sequentially in this example), the third phase

broadcasts data describing f and scatters the result of the first phase and the final phase

computes the outer map. The gathering and subsequent scattering of the result of the

inner map is clearly redundant. When the data size of the result of map g v is s,

2s ' g+l
p

where p, g, 1 are the BSP parameters, can be saved.

There are several possible solutions. One solution would be to define several versions

of a skeleton, with implementations differing only in data distribution at the end of the

application process and expect the programmer to chose one of them to optimise each

C. It would be performed by hand and makes the programming more difficult. Another

solution would be to predefine combining skeletons which combine skeletons so that

interface communication of component skeletons can be easily optimised following

To's work [81]. Instead we chose an automated route, demonstrating that our static

analysis can be extended to analyse the interface communication pattern by adding an

argument data pattern to cost tuples. How our tool detects and resolves such inefficient

cases and excludes these unnecessary costs from the predicted BSP cost is described

in the next section.

3.5 Cost Analysis

This section presents an analytic framework to compute both the computation costs and

inter-processor communication costs of our BSP implementation. We also show how

the analysis captures information on communication patterns by which some commu-

nication costs can be optimised.

3.51 Cost Tuples and Application Tuples

The translation is defined by a function cost which is now from VEc-BSP to MsIzE.

The translated program, which when run, will compute the shape of the result with

3.5. Cost Analysis 	 75

other information including the run-time cost of the corresponding compiled BSP pro-

gram. The terms of the VEc-BSP programs are translated to cost tuples in MsIzE

which take the form

(shape, data size, data pattern, cost)

For a VEc-BSP term t: 0, the corresponding MsIzE term has type

cost (t) : tycostc (0) x sz x sz x T

where tycostc(0) reflects the shape oft. The first sz reflects the size of the data which

will be transmitted to the following process when t is involved in an application. The

second sz reflects the data pattern, which we introduce to analyse interface commu-

nication patterns between individual skeletons. T reflects the BSP cost of term t. We

now look at more details of each component.

Application Pattern

To simplify our explanation, we begin with the definition of the application pattern.

To optimise communication between a component evaluation part and an application

part, the data distribution of the result of Et, and the data distribution which is required

for A should be well matched. In order to achieve this, we distinguish the parallel

application pattern in which the result is obtained by just gathering the local results on

the worker processors at the end of application process like map (referred to as map

pattern) from the other parallel patterns like fold (referred to as fold pattern). The

sequential pattern is referred to as sequential pattern. Although the language actually

uses sz for application patterns, with - 1 for map pattern,2 for fold pattern, andO for

the other cases (sequential pattern or t itself is primitive), in the following explanation

in the thesis (except for the Haskell implementation in chapter 5), we use MAP, FOLD,

SEQ instead of 1,2,0 in order to improve readability.

Data Pattern

Data patterns indicate which application pattern was used to generate t, MAP for map

pattern, FOLD for fold pattern, and SEQ for the other cases (sequential pattern or t

76 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

itself is primitive).

Shape

The type translation of shape for a non-function term tycostc is defined as follows:

tycostc (D) 	 = sz

tycostc(un) 	 = sz

tycostc(Oix ... xO) 	= tycostc(Oi)x ... xtycostc (0)

tycostc (vec 0) 	= sz tycostc (0)

tycostc(sz) 	 = sz

We assign 1 to the shape of D and un. The shape of a tuple is a tuple of the shape

of each component. The shape of a vector is a pair comprising its length and the

common shape of its elements. In MsIzE, the shapes of tuples and vectors are de-

noted by (,...,) and (,) respectively, corresponding to the types tycostc (Oi) x ... x

tycostc (0) and sz tycostc (0). The is used to indicate that its pair type is different

from the pair type which is the special case of tuple type that has two components.

The shape of a function is a function from the shape of an argument to an application

tuple, which is composed by attaching an application pattern and an application cost

to a resulting shape, taking the form of

shape of argument -+ (shape of result, application pattern, application cost),

with the corresponding type

tycostc (0 - 0') = tycostc (0) - (tycostc (0') x sz x T)

The shape types tycostc (0) and tycostc (0') reflect the change of shape. T is the type of

a function from the BSP parameters to cost, reflecting the application cost of the func-

tion, sz reflects the application pattern. A term by term definition of cost is presented

in the section 3.6 and chapter 4.

3.5. Cost Analysis 	 77

Data Size

Data sizes of non-function terms are computed from the shape by using an MsIzE

operator size defined by

size (xi, . . . ,x,,) = sizexi+.. + sizex,,

size (x, y) =size x sizey

sizen =

Data sizes of primitive functions themselves are defined as 0. For function terms gen-

erated by partial applications, we define those data sizes as the sum of the data sizes of

the function term and the argument term of the partial application.

Cost

Cost is a function from standard BSP performance parameters to time for evaluation

of the term. We use T to denote the type of such time functions. Thus, for a given

program and data set, our analysis returns a function which can itself be evaluated

with the characteristics of different real machines.

3.5.2 Cost Translations Framework

According to the explanation of cost tuples in the previous section, the cost function

for datum constant and primitive functions is given in figure 3.8. To further simplify

presentation, we use the following notation to describe cost tuples in MsIzE whose

elements are 0 (or SEQ for data patten) except for its first element:

X'x. t = ()x. t,0,SEQ,0)

If x is the shape of a vector, to take the length of the vector and the shape of the

elements from x, we use the notations tJen x and t_eshp x for fst x and snd x. From the

78 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

cost (d) 	= (1, 1, SEQ, 0) where d is a datum constant

cost (d) 	= X'x. (Ay.
(
l,S EQ, bi nOpConst), SEQ, 0) where d is a binary datum operation

cost (length) 	= A'x.
(
t_lenx, SEQ, IengthConst)

cost (hd) 	= A'x.(t_eshpx,SEQ, hdConst)

cost (tI) 	= X'x. ((fstx - 1, t_eshpx), SEQ, tlConst)

cost (entry) 	= A'x.(Ay. (t_eshpx, SEQ, entryConst), SEQ, 0)

cost (pair) 	=)Jx.(Ay.((x,y),SEQ, pairConst), SEQ, 0)

cost (fst) 	= X'x.(fstx,SEQ,fstConst)

cost (snd) 	= X'x.
(
sndx, SEQ, sndConst)

cost (tuple3) 	= A'x. (Ày. (Az. ((x,y, z), SEQ,tuple3Const), SEQ, 0), SEQ, 0)

cost (it13) 	= A'x.(ic13x, SEQ, projecConst)

cost (7123) 	= A'x. ('923 x, S EQ, projecConst)

cost (7t33) 	= A'x.(1t33x, SEQ, projecConst)

cost (iter) 	= A'f. (Ax. (Ay. iter (preiterf)(x, SEQ, iterConst) y, SEQ, 0), SEQ, 0)

cost (map) 	= A'f.(Ax.((t_len (x),t_shp(f (t_eshpx))), MAP, apcost_mapfx),SEQ,O)

cost (fold) 	= A' 	.(Ax.(t_shp (iter (preiter (t_shp
(

(t_shp (iter_rit))))) (t_shp (iter_rit)) (p - 1)),

FOLD,ap_cost_fold (D x),SEQ,0)

cost (scan) 	= A'f. (Ax. (x, MAP, ap_costscan fx), SEQ, 0)

cost (pair-map) = A'f. (Ax. ((t_len (fstx), t_shp (f (t_eshp (fstx))(t_eshp (sndx)))), MAP

ap_cost_pair_mapfx), SEQ, 0)

cost (c_prod) 	= A'f. (Ax. (Ay.
(

(t_leny, (t_len x, t_sh p (t_sh p (fx) y))), MAP, a p_cost_c_prod fxy),

SEQ,O),SEQ,0)

Figure 3.8: Cost translations (1)

definition of the shape of a function, if f is the shape of a function and x is the shape

of an argument, f takes the form

(resulting shape of application, application pattern, application cost)

We use shorthands t_shp (f x), t_pattern (f x), t_apcost (f x), t_size (fx) (this is equiv-

alent to size (t.sh p (fx))) to represent the operation to take the shape of the result, the

application pattern, the application cost and the size of the result from fx.

Note that these cost terms are predefined according to the meanings of cost tuple com-

ponents under the assumption of the cost modeling and implementation strategy. The

3.5. Cost Analysis 	 79

cost (x) 	= (x,sizex,SEQ,O)

cost ()u.t) 	= A'x. (iti (cost (t)), SEQ,it4 (cost (t)))

cost (tt') 	= bs pap p cost (t) cost (t')

cost (if t then t' else t")

= add1 (tuplemax cost (t') cost (t")) (it4 cost (t))

cost (ifs t then t' else t")

= add (ifs iti cost (t) then cost (t') else cost (t"))(lt4 cost (t))

Figure 3.9: Cost translations (2)

shapes of the primitive functions are defined so that they capture the change of shape,

application pattern, and application cost. The change of shape is captured by the result

shape expressed as a function of input shape. The application pattern is defined ac-

cording to the predefined implementation template. The application costs that do not

depend on the argument shape are expressed like binOpConst for a binary operation

and IengthConst for length. We assign times to the various costs later, based on some

benchmarks of the target machine. The application costs that do depend on the argu-

ment shape are expressed as a function of input shape. Application cost function for

our parallel function, that is skeleton, are too complex to present in-line and so we give

them name here (apcosLmap and so on), presenting full definition in Chapter 4. The

data size, data patten and cost of a primitive function term itself are defined as 0, SEQ,

and 0 respectively. The cost functions for other expressions are given in figure 3.9.

How this information is predefined (including the definitions of functions in the list,

which have not yet been defined) for each individual construct is explained later in

more detail in section 3.6 and chapter 4.

The program in VEC-BSP is transformed to a program in MsIzE by cost using these

definitions as translation rules. A simple (sequential) example of the translation is:

cost(+ 3 5)

= {definition of cost (t t') }

bspapp (cost(+ 3)) cost(5)

= {definition of cost (t t') }

80 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

bspapp (bspapp cost(+) cost(3)) cost(5)

= {definition of cost (d) }

bspapp (bspapp X'x.(Xy.(l, SEQ, binOpConst), SEQ,0) (1, 1,SEQ,0)) 0,1, SEQ,0)

When the translated MSIZE program is evaluated, the fourth component of the result-

ing tuple is the predicted cost of the source VEc-BSP program. The cost modeling,

that is explained in the next section relies on the application mechanism, that is how

function is applied to the argument in MSIZE using information from cost tuples.

3.5.3 Cost Modeling

The BSP cost modeling of our assumed implementation model is carried out by adding

the mechanism to compute communication and synchronisation phase costs into the

definition of capp for the PRAM cost modeling, resulting in the definition of bsppapp.

bsppapp also includes the mechanism to optimise communication. We explain first

how to cost the communication phase, next how to detect the inefficient case, and

finally the definition of bsppapp.

Costing Communication

The communication which is involved in our computation model occurs in two situ-

ations, firstly in C when the parallel pattern is used, and secondly within A when a

parallel template which includes a communication process is used. Here we discuss

how to compute communication cost in the former situation, giving the reasons for the

rules imposed in the implementation strategy. The communication cost in the latter

situation is counted as the part of application cost, which is defined for each skeletal

combinator in chapter 4.

In the BSP cost model, the cost of a communication phase is determined by the formula

h . g, where g is one of the BSP parameters and h is the largest message size h sent or

received by any one processor during the phase. Since g is determined as a parameter

to capture the communication performance of the target architecture, which is obtained

3.5. Cost Analysis 	 81

experimentally by running a benchmark program on the architecture, what we need is

machinery to determine the value of h at every communication phase in our analytic

framework.

In the general case, determining h in the communication part C requires the following

information:

• the distribution pattern of components evaluation, that is how the data of the

results of E1 and E1 are distributed among the processors.

• the size of the data of the results of E1' and El placed in each processor.

• the distribution pattern which is required by the application.

• the communication pattern to realise the data rearrangement from the data dis-

tribution at the end of component evaluation to the data distribution which is

required by the application.

To get all this information in the framework of shape analysis would require a complex

mechanism and consequently may impose expensive analysis costs. To simplify the

issue, we used one processor as the master processor and imposed the rule that the data

of the result of each part is eventually stored in the master processor. This made in-

formation on distribution pattern and size of the result of components evaluation quite

simple. We also restricted the data distribution patterns at the beginning of application

parts. If the function is sequential, we use the master processor for the application part

so that there is no communication in C since the necessary data all resides in the master

processor. For a parallel function, we placed a restriction on the parallel application

templates so that the data of the argument are always distributed evenly among the

processors and all processors perform the same operation. Thus, the communication

pattern in C in the case of parallel application is determined uniquely that is, the data

of the result of E1 is scattered to the processors evenly and that of E1 is broadcast to

the processors. Whether a function is sequential or parallel can be known from in-

formation on the application pattern in the cost tuple. Consequently, the information

components, message size in cost tuples and application pattern in application tuples

are sufficient to determine h.

82 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

The communication cost in C is now determined by computing the number of words

transmitted by processor 0, that is

s.(p — 1).g

for broadcasting s words of the results of E1 to the worker processors, and

. P — 1• g
p

for scattering s' words of the results of E' to the worker processors.

Optimising Communication

The strategy described above allows us to compute the communication cost in C but it

caused an efficiency problem as explained in 3.4. It requires further refinement of our

analytic framework to solve this problem.

In our translation framework, information on the application pattern is used for two

purposes. One is that it tells whether the function is parallel or sequential, which

determines the data distribution pattern required in A, and is used to compute the com-

munication cost. The other is that it tells whether the application template finishes by

gathering the local results or not. This information is not used for costing this appli-

cation process itself but is kept in the cost tuple of the result as a component, the data

pattern, giving information on how the data is generated, which is used when the re-

sult becomes an argument of another function. Thus, the cost tuple of any argument

always has information on the data pattern. Note that the data pattern of a primitive

datum is predefined as SEQ. To indicate information for the second purpose, one of

the three notations SEQ, MAP, FOLD which indicate sequential, parallel with a gather

at the end, and other parallel, respectively is used and it also gives information for the

first purpose (SEQ is sequential, other values are parallel). The inefficient case is de-

tected by checking the combination of the application pattern in the application tuple

of the function and the data pattern in the cost tuple of the argument. If the application

pattern indicates that the function is parallel (MAP or FOLD), and the data pattern indi-

cates that the data of the argument was generated by gathering the local results (that is,

3.5. Cost Analysis 	 83

MAP), the inefficient case is detected and the cost for the gather and the scatter is not

counted in the resulting cost. Note that this decision would be available to the compiler

to make the corresponding optimisation in a real implementation.

3.5.4 bspapp Operation

In the original work for VEC, the analysis process of a program tit2 is captured by the

capp operator in VEC, which applies to the corresponding translated terms of t1 and t2,

that is (f, t') and (x, t2) respectively.

cost (t1 t2) = capp cost (t1) cost (t2)

where the definition of capp is

ca pp (f, t') (x, t2) = (fst (fx), (snd (fx)) + (tç t))

This implies that the cost of the application term is some kind of the combination of

application cost snd (f x), the cost of the function term t and the cost of the argument

term t. +, and T can be changed reflecting the underlying cost model. The proposed

cost model was the PRAM model. For the PRAM model, we have T = sz -+ sz,

representing time functions from the number of processors to the number of time steps.

Sequential cost addition + is pointwise addition on time functions, and addition ED for

parallel execution is:

(fg)p= min {(f+g)p, (f(9'g)p}

where

(fEJ ' g) p = min { max {fq, g (p - q)}}
O<q<p

Our BSP cost analysis process described in 3.5.3 is captured by a MsIzE operation

bspapp using information from cost tuples and application tuples described in 3.5.1

rather than operations of a cost algebra. For the BSP model, the cost is a function

from BSP parameters to time for evaluation of the term. Reflecting our implementa-

tion model described in 3.4, the BSP cost of the application term is the sum of the

84 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

cost of the argument term, the cost of the function term, cost of the communication

phase, the cost of the synchronisation and the cost of application phase. The first two

costs are already known as the fourth component of the argument and the function.

The communication cost can be computed by the formula presented in the previous

section using information of data size, that is third components of the argument and

the function. The synchronisation cost is 1. The application cost can be obtained from

the application tuple in the first component of the function. In addition, the inefficient

case of communication interface can be detected by checking the data pattern infor-

mation that is the third component of the data argument and the application pattern

information, that is the third component of the function. All these costing mechanisms

are formulated as the definition of bspapp:

cost (t1 t2) = bspapp cost (t1) cost (t2)

The definition of bspapp is

bspapp (f, s, d, t)(x, s', d', t')

= (t.shp (fx), data _sz (t_a pcost (fx)), t_pattern (f x),

(t + t') + X(p, g, 1). ((comm_cost (t_pattern (fx)) d' s s') + 1) + t_apcost (fx))

where

datasz ap_c s + s', 	if ap_c =0

= t..size(fx), 	otherwise

commcost ap..pat datpat fsz xsz

=- 0, 	 if appat = SEQ

= (f.sz(p— 1)—xsz ((p — l)/p)) g — l, if daLpat = MAP

= (fsz . (p — 1)+xsz ((p — 1) /P)) - g)
	otherwise

t_sh p (fx) represents the result shape. If the result of an application is a function, then

there is no application cost and the message size of ti t2 is just the sum of s and s'. When

the result is not a function, the message size of ti t2 is t_size (f x). The cost of term t1 t2

combines the four costs, that is the costs of the component evaluations t + t', the com-

munication cost, synchronisation cost 1 and the application cost t_a pcost (f x). The

3.6. Details of Cost Translation Rules 	 85

communication cost depends on the application pattern t_pattern (fx) and the argu-

ment data pattern d'. If the application pattern is not SEQ and the data pattern is MAP,

the communication costs for gathering the local results and the synchronisation at the

end of the evaluation of the argument are removed and the communication cost for the

next scattering of the data is not counted. The data pattern is equal to the application

pattern. Note that the communication which occurs in A depends on the assumed im-

plementation template of each skeleton and its cost is counted in t_apcost (f x) which

is defined in chapter 4.

Using the bspapp operation, MSIzE is evaluated reflecting our cost model and gener -

ating the predicted cost. Here is the evaluation of the MsIzE example program given

in section 3.5.2, which was translated from + 3 5.

bspapp(bspappA'x.(Xy.(l,SEQ,binOpConst),SEQ,O) (1,1,SEQ,O)) (1,1,SEQ,O)

bspapp (Xy.(1,SEQ, binOpConst), SEQ,O) (1,1, SEQ,O)

= (1,1,SEQ,binOpConst)

A complete example of costing for a VEc-BSP program .which includes a parallel

function is given in chapter 5, after chapter 4 has explained the application cost of

skeletons.

3.6 Details of Cost Translation Rules

We now present the cost translation rules from VEc-BSP to MsIzE for basic term

expressions and functions except for those for our parallel combinators, which are

given in chapter 4. We now omit the notation for size numerals to reduce clutter.

Semantically, the terms of the language have the obvious strict functional operational

interpretation with the exception of parallel skeletons like map and fold which are

operationally parallel, as indicated by the presence of the parallel patterns in their cost

expressions.

86 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

Datum Constant and Binary Data Operator

The cost function of an atomic datum constant d is

cost (d)= (1,1,SEQ,O)

The shape of datum constant is 1 and so its size is 1. That means the constant is initially

stored in the master processor and is transmitted to the processors when it is used for

parallel evaluation. It takes no time to evaluate the term d itself and the data pattern of

the term itself is SEQ.

The cost function of a binary datum operation d is

cost(d) = ()Lx.(Xy.(l, SEQ, binOpConst), SEQ, O),O, SEQ,O)

Working from the right hand end of the expression in, the first 0 indicates that it takes

no time to evaluate the term d itself and SEQ indicates data pattern of the term itself

is SEQ. The next 0 indicates that it carries no data (in other words it can be compiled

directly onto the processors which use it). The next 0 indicates that it takes no time

to apply d to a first argument and SEQ indicates the application pattern involved is

SEQ. binOpConst is the time to apply the resulting function to a second argument,

that is the time to execute a binary operation. As in the original work for VEc, it

and other constants that appear later such as IengthConst are determined "somewhat

arbitrarily" and assigned values according to some benchmark of the target machine.

In our examples in the thesis, binOpConst is set at 1 and converted to seconds by the

instruction rate of a processor gained by running the BSP1ib benchmark program on

our target architecture. The other constants are set as 0. The next SEQ indicates that

the application pattern of the application d to the first argument is SEQ. Finally, 1 is

the shape of the result.

Conventional Sequential Functions

The cost function of length is

cost (length) = (Ax. (1, SEQ, IengthConst) , 0, SEQ, 0)

3.6. Details of Cost Translation Rules 	 87

The first 0 from the right hand end indicates that it takes no time to evaluate the term

length itself. The SEQ indicates that the data pattern of the term itself is SEQ. The

next 0 indicates that it carries no data. lengthConst is the time to apply length to an

argument and SEQ indicates its application pattern is SEQ. Finally, 1 is the shape of

the result.

Cost functions of other sequential functions are defined similarly. Note that each cost

function captures the impact of shape change. The cost function of hd (usual head

function) is

cost (hd) = (Xx.(t_eshpx, SEQ, hdConst),0, SEQ, 0)

Note that the shape of the result is the shape of the elements of the argument vector,

that is t_eshpx since all the elements of the argument vector have the same shape. The

cost function of tI (usual tail function) is

cost (tI) = (A.x.((fstx - 1, t_eshpx), SEQ, tlConst),0, SEQ, 0)

Note that application of tI decreases the length of the argument vector by 1 while it

does not change the shape of its elements. The cost function of pair is

cost (pair) = (Xx. (Xy. ((x, y), SEQ, pairConst), SEQ,0),0, SEQ, 0)

The shape of a pair of two arguments is the pair of the shapes of each argument. The

cost function of fst is

cost (fst) = (Xx. (fstx, SEQ, fstConst) , 0, S EQ, 0)

Since fst takes the first component of the pair, the shape of the result is the first com-

ponent of the shape of the pair. The cost function of snd is

cost (snd) = (Xx. (sndx, SEQ, sndConst), 0, SEQ, 0)

Since snd takes the second component of the pair, the shape of the result is the second

component of the shape of the pair.

We extend the pair data structure to the tuple data structures, which have more than

two components. tuple3 is an extention of pair which constructs a tuple with three

88 	 Chapter 3. VEC-BSP and Its BSP Cost Analysis System

components. Correspondingly, fst and snd are also extended to projection operators

11j3 (i= 1,2,3).

cost (tuple3) = (Ax. (Xy. (Az. ((x,y, z),O, tuple3Const), SEQ, 0), SEQ, 0), 0, SEQ, 0)

cost (7t13) = (Xx.(lti3x, SEQ, projecConst), 0, SEQ, 0)

cost (1t23) = (Ax.(it23x, SEQ, projecConst), 0, SEQ, 0)

cost (it33) = (Xx.(it33x, SEQ, projecConst), 0, SEQ, 0)

The cost functions of tuple constructors which construct a tuple with j (more than

three) components and itjj (i = 1,2,. . . , j) are defined similarly. We often omit j from

the notation itj in the following descriptions to reduce clutter.

Lambda Expression

cost (x) 	= (x, sizex, SEQ, 0)

cost (Ax.t) 	= (AX-(7E 1 (cost (t)), 0, 7t4 (cost (t))), 0, SEQ, 0)

Remember that the implementation strategy of the term (Xxi (x)) a is: after x is sub-

stituted by the result of evaluation of a, t (a) is evaluated in the application part A

(figure 3.10).

Sincex is substituted by the result of evaluation a, the cost function of x is (x, sizex, SEQ,

0). The resulting shape of Xx.t is the shape of the result of the application part, that is

it (cost (t)). The application pattern is SEQ even if t itself involves a parallel function

because no communication between the component evaluations part, (Et and E,), and

application part A occurs. The application cost of Xx.t is the cost of the application

part, that is 1t4(cost (t)). The data size, data pattern and cost of (Xxi (x)) itself are 0,

SEQ, 0 respectively. The data size of (Ax.t (x)) is determined as 0 since the evalua-

tion of t is performed in the application process after the value of x is determined. In

other words, the lambda expression has no data which is transmitted to the processors.

For example, in the term map Xx. (x + (1 + 2)) v where v is a some vector, 1 and 2 are

statically allocated in each processor and x + (1 + 2) is performed in the application

process A in each processor after x is determined.

3.6. Details of Cost Translation Rules
	

we

Time

A

Processors
	 a 	 t(a)

Figure 3.10: Implementation of (?u.t (x)) a

If Statements

There are two kinds of conditional. In a data conditional if, we require that both

branches have the same shape. We need to define a kind of max operation tuplemax to

determine the cost tuple of the branch, which gives upper bound information of each

component.

tuplemax(x, s) d, t) (x, s', d',?) = (shpmax(x,x'), max (s, s'), max (d, d'), fmax(t, t'))

where shpmax gives the maximum of the shape components, taking the pointwise max-

imum for functions and fmax takes the pointwise maximum of the time functions. The

cost function is defined taking account of the cost of the conditional.

cost (if t then t' else t")

= add (tuplemax cost (t') cost (t")) (it4 cost (t))

where the definition of add1 is

add1 (x,s,d,t)t'= (x,s,d,t+t')

Even if the branches have the same shape, their costs can be very different in general

programs and in that case, the upper bound could lead to a much larger cost than

real run time. This is a fundamental problem of static analysis since it alone cannot

determine the choice of a branch. It would require the help of a dynamic approach to

improve this. This is beyond the scope of our work.

90 	 Chapter 3. VEC-BSP and its BSP Cost Analysis System

By contrast, since the result of a shape conditional is known statically, the result of the

cost function is obtained from the result of the cost function of the taken branch and

the cost for evaluation of the conditional.

cost(ifs t then t' else i")

- add (ifs ni cost (t) then cost (t') else cost (t")) (74 cost (t))

Iteration

The cost function of iteration iter is

cost (iter) = (Xf. (Xx. (Xy. iter (preiterf) (x, 0, iterConst) y, SEQ, 0), S EQ, 0), 0, SEQ, 0)

where the definitions of preiter and add2 are

preiterf (x, d, t) = add2(fx)t

add2 (x,d,t)t'= (x,d,t+t')

Notice that items f, x and y in iter fxy correspond to the function to be iterated, the

initial data and the number of iterations respectively, while preiter adds the structure

required to gather costs as iteration proceeds. In the iteration steps, the shape is re-

placed for the shape of the application result at every step and the cost is accumulated

through iteration steps.

3.7 Chapter Conclusion

Our language VEC-BSP is based on the shapely language VEC. The VEC-BSP term

is translated into an MsIzE term, which takes the form of a cost tuple that includes

the additional information components of data size, application pattern and data patten

as well as shape and cost. We predefine the cost function for the VEc-BSP primitive

constructs and expressions according to our assumptions of cost modeling and our un-

derlying BSP implementation model. The translation from the VEc-BSP program to

MsIzE program is performed using these predefined cost functions as translation rules.

3.7. Chapter Conclusion
	

91

BSP costing is carried out by the evaluation of the translated MsIzE program, in which

bspapp plays the central rule of including the communication cost and synchronisation

cost as well as computation cost by using the information from the cost tuples.

Chapter 4

Implementation Templates for

Skeletons

4.1 Introduction

In parallel programming, some kinds of pattern of parallel control structure often ap-

pear in different application programs. The idea of the concept called algorithmic

skeletons [25, 29] or parallel program paradigms [19] is to separate these common

parallel structures from details of applications and predefine them as program compo-

nents. In skeletal programming, a program is composed of pre-defined parallel com-

ponents that implement parallel control structures and sequential components for a

specific application.

In our context, each predefined parallel combinator such as map and fold represents

a skeleton and has a parallel control structure implementation template which follows

the BSP model. Programs are composed of those skeletons and other sequential com-

ponents.

In this chapter, we define our BSP implementation template for the skeletons of VEC-

BSP and their shapes to complete the definition of cost. The application cost of each

combinator is defined as a function of shape so that it can be embedded in our shape-

93

94 	 Chapter 4. Implementation Templates for Skeletons

based cost analysis framework. We express our implementations in an SPMD pseudo-

code, indicating calls to the standard BSP operations bspput (copy to remote memory),

bspget (copy from remote memory), bspsync (barrier synchronisation), and bsppid

(find my process identifier) [48].

4.2 Implementation and Costing of the Parallel Combi-

nators

4.2.1 map

map applies some function t1 to each element of an argument vector tx = [xi ,X2,•••,

xnI.
map tj [xi, X2, 	, x,] = [t1 (xi), tf(x2), . . . , t1 (x,)]

It has a simple parallel implementation in which the same operation is applied to each

element in the segment distributed to each processor. This corresponds to Darlington's

FARM skeleton [29] and plays a central role in other paradigms.

Our BSP implementation strategy for map is:

the data in tj' is broadcast and the data in t is scattered to all p processors;

synchronisation;

each processor applies tj' to the local element of t;

the local result in each processor is gathered to the master processor;

synchronisation.

The corresponding SPMD pseudo-code is:

bsp.get(data describing t1 from P0);

bsp_get(local share of tx from P0);

4.2. Implementation and Costing of the Parallel Combinators 	 95

bsp_syncO;

for each local item

apply tj to this local element of t;

bsp_put(result to P0);

bsp_syncO;

The application cost of map in terms of the BSP cost model takes the form of a func-

tion of shapes of arguments. We express the shapes of the tj and t as f and x respec-

tively. The application cost is: the local computation cost t_apcost (f (t_eshp (x))).

(t_Ien (x)/p) for step 3, the communication cost

tsize(f(t_eshp(x))). (t_Ien(x)/p). (p — i) -g

for step 4, and the synchronisation cost 1 for step 5. Thus, the overall application cost

Is

apcost_mapfx (p, g, 1)

= t..apcost (f (t_eshp (x))). (tien (x)/p)

+t.size(f(t_eshp(x))) . (t_ten(x)/p) . (p—i) •g+l

Note that the application cost does not include the costs for step 1 and step 2, which

are computed by the bspapp operation as a communication cost of C. The shape of

map is:

Xf. (Ax. ((tJen (x), t...shp (f (t_eshpx))), MAP, apcost_mapfx), SEQ, 0)

Notice that this is the first component of cost (map). This packs in the following in-

formation. Working from the right hand end, it takes no time to apply map to a given

function tj and its application pattern is SEQ. The application cost to apply maptj to

a given vector is apcost_map, which was given above. The application pattern used

to apply maptj to the given vector is MAP since the implementation skeleton ends by

gathering the local result. The resulting shape of the application maptj to the given

vector is (t_Ien (x), t.shp (f (t_eshp (x)))).

96 	 Chapter 4. Implementation Templates for Skeletons

The cost function of map is

cost (map) = (Xf.(Xx.((t_len (x),t.shp (f (t_eshpx))), MAP, apcost_mapfx),

SEQ,O),O,SEQ,O)

Working from the right hand end of the expression in, the first 0 indicates that it takes

no time to evaluate the term map itself and data pattern of the term map itself is SEQ.

The next 0 indicates that it carries no data (in other words that it can be compiled

directly onto the processors which use it). The next component

Xf.(Xx.((t_len (x),tshp (f (t_eshpx))), MAP, apcost_mapfx), SEQ, 0)

is the shape of term map, which was explained above.

4.2.2 fold

fold combines the elements of a vector tx = [xi, x2, ,x,,] using an associative binary

operator t.

fold t [x , X2, . . . , xnI = x1 t X2 t•• tED Xn

The combination of map and fold forms the important "map and reduce" paradigm

in BMF [77]. fold has a few possible BSP implementations. One is the well-known

tree-like structure implementation. For example, the result of fold (+) x (that gener-

ates sum of n elements of an argument vector x), can be calculated in two stages where

each of the processors sequentially sums the values in their possession in time O(),

and then parallel sum of the resulting p values can be obtained using the logarithmic

technique in time O(logp). This asymptotic cost analysis of the logarithmic summa-

tion can be refined into the BSP cost calculus by considering the communication and

synchronisation costs of a single stage of the logarithmic algorithm. Combining the

cost of locally summing each processor's A values with the cost of the summation of

p values gives a total cost of summing n values on p processes as + log p(1 + g + 1).

From this cost formula, and from the values of I and g for typical parallel machines

[47] (e.g. p = 16, 1 = 751 [flops] and g = 1.6 [flops/word] for a 16 processor Cray

T3E), it can be seen that the logarithmic number of barrier synchronisations used in

4.2. Implementation and Costing of the Parallel Combinators 	 97

this algorithm will form the dominant cost, unless n > p log p(1 + g + 1). Therefore,

although the logarithmic fold minimises the computational cost of summing p values,

it places a great burden on the communication performance. Another implementation

is that after the cost of locally summing, the resulting p values are gathered into one

processor where sequential sum is calculated. Its BSP cost is + (p - 1) + (p - 1)g + 1.

This reduces the synchronisation cost significantly and the total cost is usually smaller

than the former when p is a moderate number. For example, logp(1 +g +1) = 3014.4

and (p - 1) + (p - 1)g + 1 = 790 on a 16 processor Cray T3E. This example shows

the importance of considering the communication and synchronisation costs as well as

the computation cost. We take the latter implementation strategy for implementation

of fold to avoid the logarithmic number of barrier synchronisations and to reduce the

complexity of the analysis cost.

the data in tED is broadcast and the data in t., is scattered from the master processor

to all p processors;

synchronisation;

each processor folds the vector segments with t;

the local result in each processor is gathered to the master processor;

synchronisation;

the gathered local results are folded with t in the master processor.

The corresponding SPMD pseudo-code is:

bsp_get(data describing t(D from P0);

bsp_get(local share of t,, from P0);

bsp_sync 0;

for each local item

combine this item into emerging local result;

if (p > 1) {

bsp_put(local result to P0);

bsp_sync 0;

Chapter 4. Implementation Templates for Skeletons

if (bsp_pid() == 0)

sequentially fold together collected sub results;

}

The cost of each part of the application of fold is as follows. The computation cost is

t_apcost (iter_rit) for step 3 and

t_a pcost (iter (preiter (t_sh p ((t_sh p (iter_rit))))) (t...sh p (iter_rlt), SEQ, 0) (p - 1))

for step 6, where

iter..rlt 	iter (preiter (t.shp ((t_eshp (x))))) (t_eshp (x), SEQ, 0) ((t_len (x)/p) - 1)

and the definitions of preiter and add2 are

preiter f (x, d, t) = add2(fx)t

add2 (x,d,t)t'= (x,d,t+t')

Note that the iter..rlt denotes the result of the initial local folding phase. The arguments

of iter, that is preiter(t_shp (ED (t_eshp(x)))), (t_eshp(x),SEQ, 0), and (t_len (x) 1p) —1

correspond to the function to be iterated, the initial data and the number of iterations

respectively, while preiter adds the structure required to gather costs as iteration pro-

ceeds. The iter combinator is required to model the repeated application of the t to

allow for situations in which the resulting shapes of the intermediate results are not

same as the shape of the original elements. This means we do not need different fold

operators (so it is an improvement on Skillicom's and Rangaswami's schemes, for

example). The communication cost is t_size (iter_rit) (p - 1) g for step 4. The syn-

chronisation cost is 1 for step 5. Thus the overall application cost of fold is expressed

as

ap_cost_fold ED x(p,g,1)

= t_apcost (iter_rit) + t_size (iter_rit). (p - 1) g + l +

t_apcost (iter (preiter (t_shp ((t_shp (iter_rit))))) (tshp (iter_rit), SEQ, 0) (p - 1))

4.2. Implementation and Costing of the Parallel Combinators 	 99

The shape of fold is:

A. . (Xx. (tshp (iter (preiter ((t...shp (iterlt)))) (tshp (iter..rlt), SEQ, 0) (p - 1)),

FOLD,ap_cosLfold x),SEQ,O)

This packs in the following information. Working from the right hand end, it takes

no time to apply fold to a given function t and its application pattern is SEQ. The

application cost to apply fold t to a given vector is apcost_fold, which is given above.

The application pattern involved to apply fold t to the given vector is FOLD since the

implementation skeleton ends with the sequential folding. The resulting shape of the

application foldtED to the given vector is

t..shp (iter (preiter (Lshp ((t...shp (iter.rlt))))) (t.shp (iter..rlt), SEQ, 0) (p - 1))

Notice that the preiter adds the structure required to gather costs as iteration proceeds

in the sequential folding phase.

The cost function of fold is

cost (fold) = (A . (Ax. (t.shp (iter (preiter (t..shp ((Lshp (iter...rlt)))))

(tshp (iter.rlt))(p - 1)), FOLD, ap_cost_fold ED x), SEQ, 0), 0, SEQ, 0)

where

iter_.rlt = iter (preiter (t.shp ((t_eshp (x))))) (t_eshp (x), SEQ, 0) ((t_len (x)/p) - 1)

The first 0 from the right hand end indicates that it takes no time to evaluate the term

fold itself and data pattern of the term fold itself is SEQ. The next 0 indicates that it

carries no data. The next component

A. . ()Lx.(t_shp (iter (preiter (t_shp ((t_shp (iter_rit))))) (t_shp (iter_rlt))(p - 1)),

FOLD, ap_cost_fold ED x), SEQ, 0)

is the shape of the term fold, which was explained above.

100 	 Chapter 4. Implementation Templates for Skeletons

4.2.3 scan

scan applies to a vector t = [xi ,x2, • ,x,] and the partial result of fold tD up to the ith

element is returned as the ith element of the resulting vector.

scan t [Xi ,x2,...,x fl]= [XI ,xitx2,...,xitiJx2te ... txfl }

It is known that the scan operation is useful for describing various data-parallel al-

gorithms, and leads to efficient run time codes. For example, [12] describes five al-

gorithms that illustrate how the scan can be used in algorithm design: a radix-sort, a

quick sort, a minimum-spanning-tree algorithm, a line-drawing algorithm and a merg-

ing algorithm. In some parallel computation models such as the Scan Vector Model

[13], simple operations are implemented through scan.

Our BSP implementation strategy for scan is:

the data in tED is broadcast and the data in t is scattered to all p processors;

synchronisation;

each processor scans the segment distributed from the master processor with t;

the final element of the local scan in each processor is scanned across processors

with t using the obvious tree algorithm, which involves log p iterations of a

(data transmission + synchronisation + execution of t(D) process;

the result of the global scan in the processor i(< p) is sent to processor i + 1;

synchronisation;

each processor applies te to the pair of the value sent to the processor in 5 and

each element of the results in 3;

the local result in each processor is gathered to the master processor;

synchronisation.

The corresponding SPMD pseudo-code is:

4.2. Implementation and Costing of the Parallel Combinators 	 101

bsp.get(data describing tED from P0);

bsp_get(local share of t from P0);

bsp_sync ()

for each local item

scan this item into emerging local result;

if (p > 1){

for(i=l; log(p); i++) {

send the item to the next processor;

bsp_sync 0;

apply t to the item and the sent item;

}

send the item of the result of the global scan to the next processor;

apply t to the sent item and each item;

bsp_put(local result to P0);

bsp_sync;

}

The cost of each part of the application of scan is as follows. The computation cost is

t_apcost (t...shp ((t_eshp (x))) (t_eshp (x))) (t_Ien (x)/p - 1)

for step 3,

ta pcost (t...shp ((t_esh p (x))) (t_esh p (x))) . log(p)

for the computation part in step 4, and

t_a pcost (t...sh p ((t_esh p (x))) (t_esh p (x))). (t_Ien (x)/p)

for step 7. As this cost is necessary only when p> 1 but this formula does not result

in 0 when p = 1 (therefore, g = 1 = 0), we use the formula

(eqone p) . t_apcost (t...shp ((t_eshp (x)))(t_eshp (x))) (t_Ien (x)/p)

where eqone is defined as eqoney = if (y = 1) then 0 else 1.

102 	 Chapter 4. Implementation Templates for Skeletons

The communication cost is size (t_eshp(x)) . g . log(p) for the communication part in

step 4, (size (t_eshp(x)) g for step 5, and (size(x)/p). (p—i). g for step 8. The

synchronisation cost is 1• log(p) for the synchronisation part in step 4, 1 for step 6 and

I for step 9. Therefore, the overall application cost is expressed as

ap_cost.scan x(p,g,l)

= t_apcost (t.shp ((t_eshp (x)))(t_eshp (x))) ((t_Ien (x)/p + eqone p) + log (p) - 1)

+(size(t_eshp(x))• (log (p)+ 1) + (size (x)/p) . (p—i)) .g

+(log(p) + 2) .1

The shape of scan is:

X EEL (Ax. (x, MAP, ap...costscan x), SEQ, 0)

This packs in the following information. Working from the right hand end, it takes

no time to apply scan to a given function t and its application pattern is SEQ. The

application cost to apply scant to a given vector is apcosLscan, which was given

above. The application pattern involved to apply scan t to the given vector is MAP

since the implementation skeleton ends by gathering the local results. The resulting

shape of the application scan tED to the given vector is the same as the shape of the

vector t since we assumed that application of t does not change the shape.

The cost function of scan is

cost (scan) = (Xf.(Xx.(x, MAP,ap_cosLscan fx), SEQ, 0), 0, SEQ, 0)

The first 0 from the right hand end indicates that it takes no time to evaluate the term

scan itself and data pattern of the term scan itself is SEQ. The next 0 indicates that it

carries no data. The next component

Xf.(Xx.(x, MAP,apcost_scan fx), SEQ, 0)

is the shape of the term scan, which was explained above.

4.2. Implementation and Costing of the Parallel Combinators 	 103

4.2.4 pair-map

pair-map applies a function t1 to pairs of elements drawn from a pair of vectors of the

same length.

Our BSP implementation strategy for pair-map is:

the data in tf is broadcast and the data in fst t and snd t (the two vectors) are

scattered to all p processors;

synchronisation;

each processor applies t1 to the elementwise pairs;

the local result in each processor is gathered to the master processor;

synchronisation.

In SPMD pseudo-code this is:

bspget(data describing tj from P0);

bsp_get(local share of fst t from P0);

bsp_get(local share of snd t. from P0);

for each local items from t

apply fx to local (fst t) and corresponding local (snd ti);

bsp_put(results to P0);

bsp_sync;

The application cost of pair-map in terms of the BSP cost model is the computation

cost t_apcost (t_shp (f (t_eshp (fstx)))(t_eshp (sndx))) (t_Ien (fstx)/p) for step 3, the

communication cost t_size (t_sh p (f (t_esh p (fstx))) (t_esh p (snd x))) (p - 1) g for step

4 and the synchronisation cost 1 for step 5. Thus, the overall cost is expressed as

ap_cost_pair_mapfx(p,g,l)

= t_apcost (t_shp (f (t_eshp (fstx))) (t_eshp (sndx))). (t_Ien (fstx)/p)

104 	 Chapter 4. Implementation Templates for Skeletons

+t.size(t_shp(f(t_eshp (fstx)))(t_eshp (sndx))) (p—i). g+l

The shape of pair-map is:

Af. (Ax. ((t_Ien (fstx), t_shp (t_shp (f (t_eshp (fstx)))(t_eshp (sndx)))), MAP,

a p_cost_pair_mapfx), SEQ, 0)

This packs in the following information. Working from the right hand end, it takes no

time to apply pair-map to a given function t1 and its application pattern is SEQ. The

application cost to apply pair_mapt1 to a given vector is apcost_pair_map, which is

given above. The application pattern involved to apply pair_maptj to the given vector

is MAP since the implementation skeleton ends by gathering the local result. The

resulting shape of the application pairmapt j' to the given vector is

(t_Ien (fstx), t_sh p (t_sh p (f (t_esh p (fstx))) (t_eshp (snd x))))

The cost function of pair-map is

cost (pair_map) = (Af. (Ax. ((t_Ien (fstx), t...sh p (f (t_esh p (fstx)) (t_esh p (snd x)))),

MAP, ap_cost_pair_mapfx), SEQ, 0), 0, SEQ, 0)

The first 0 from the right hand end indicates that it takes no time to evaluate the term

pair-map itself and SEQ indicates data pattern of the term pair-map itself is SEQ. The

next 0 indicates that it carries no data. The next component

Af. (Ax. ((Lien (fstx),t_shp (t_shp (f (t_eshp (fstx))) (t_eshp (sndx)))), MAP,

ap_cost_pair_mapfx), SEQ, 0)

is the shape of the term pair-map, which was explained above.

4.2.5 cprod

c_prod applies a function to each member of the cross-product of two vectors t x and ti,.

c_prodtf[xl,x2,...,xm][yl,y2,.•.,yn] = [[t1xiyi, tfx2yl, ",tfX m Yl],

[tjxiy2, t1X2y2, • ,tfXmY2],

[tjxiyn , tf X2Yn, • ,tfXmYn]]

4.2. Implementation and Costing of the Parallel Combinators 	 105

It is used for a class of algorithms in which each object interacts with every other and

corresponds to the All-Pairs Paradigm in [19] and the RaMP(Reduce-and-Map-over-

Pairs) skeleton in Darlington's skeletons [29].

The BSP implementation strategy for c_prod is:

the data in t1 and in t,, is broadcast and the data in t, are scattered to all p proces-

sors;

synchronisation;

each processors applies tf to the all members of the cross product of t and the

local segments of t;

the local result in each processor is gathered to the master processor;

synchronisation

In SPMD pseudo-code this is:

bsp_get(data describing f from P0);

bsp_get(copy of t from P0);

bsp.get(local share of t, from P0);

bspsync 0;

for each local item t)/ from t,

for each item t' from copy of t,

apply tj to ti and ty ;

bsp_put(results to P0);

bsp_sync0;

The application cost for c_prod is: the communication cost

t_apcost (t_shp (f (teshp (x)))(t.eshp (y)))• (tJen (y)/p) . (t_Ien (x))

for step 3, the communication cost

(t.size(t_shp(f(t_eshp(x)))(teshp(y))). (t_Ien (y)/p) (tJen (x)). (p— 1)) g

106 	 Chapter 4. Implementation Templates for Skeletons

for step 4 and the synchronisation cost 1 for step 5. Thus, the overall cost is expressed

RV

ap_cost_c_prodfxy(p,g,l)

= t_apcost(t_shp(f(t_eshp(x)))(t_eshp(y))) (t_Ien (y)/p). (t_Ien (x))

+(t_size(t_shp(f(t_eshp (x)))(t_eshp(y))). (tJen (y)/p). (t_len (x)) . (p - 1))

g+l

The shape of c_prod is:

Xf. (Xx. (Xy. ((tlen (y), (t_Ien (x), t_shp (t_sh p(fx) y))), MAP, a p_cost_c_prod fxy),

SEQ,O), SEQ, 0)

This packs in the following information. Working from the right hand end, it takes

no time to apply cprod to a given function tf and its application pattern is SEQ. The

application cost to apply c_prod tj to a given vector t is 0 and its application pattern

is SEQ. The application cost to apply cprod tj tx to a given vector t, is apcost_c_prod,

which is given above. The application pattern involved to apply c_prod t1 t to the

given vector t is MAP since the implementation skeleton ends by gathering the 1-

cal result. The resulting shape of the application c_prod tf t to the given vector t is

(t-ten y, (t_Ien x, t_sh p (t_sh p (f x) y))).

The cost function of cprod is

cost (c_prod) = (Xf. (Ax. (Ay. ((t_ien y, (t_Ien x, t_sh p (t_sh p (fx) y))),

MAP, apcosLcprod fxy), SEQ, 0), SEQ, 0), 0, SEQ, 0)

The first 0 from the right hand end indicates that it takes no time to evaluate the term

c_prod itself and SEQ indicates data pattern of the term c_prod itself is SEQ. The next

0 indicates that it carries no data. The next component

Af. (Ax. (Xy. ((t_Ien y, (t_Ien x, t_shp (t_sh p (fx) y))), MAP, a p_cost_c_prod fxy),

SEQ,0),SEQ,O)

is the shape of the term c_prod, which was explained above.

4.3. Chapter Conclusion
	

107

4.3 Chapter Conclusion

A common approach to cost consideration for the skeleton approach is to formulate the

cost of each skeleton based on its low level implementation using some parameters. In

our context, skeletons are higher-order functions each of which has a predetermined

template based on the BSP computation model. We presented details of the algorithm

and its SPMD pseudo-code for the implementation of each skeleton and defined a cost

formula in the form of a function of shape and the BSP parameters.

In skeleton-based models in which a parallel algorithm is expressed using more than

one skeleton, cost would be expressed as some kind of combination of the cost formula

of each single skeleton. However, a simple summation of each formula does not work

well because the input size (or shape) parameterised in each formula will take different

values in the general case. We need to take account of the impact of size (or shape)

changes between skeletons. The distinguishing feature of shape-based cost analysis

is that the composition of these formula can be automated by the incorporation of au-

tomatic shape analysis. Our analysis adds to this feature the ability to compute the

communication and synchronisation cost considering impact of architecture character-

istics through BSP parameters.

Efficiency of the BSP implementation of each skeleton could be improved by investi-

gating the costs of possible alternative implementations and the implications of param-

eter sizes. This remains as future work.

Chapter 5

Implementation of Cost Analysis

This chapter outlines the Haskell implementation of our cost analysis, which was de-

scribed in chapters 3 and 4. It illustrates some details of the system structure and

definitions of functions by using examples rather than full source code. The system

was developed by modifying the Haskell implementation of PRAM cost analysis de-

veloped at the University of Technology Sydney, reflecting the amendments to achieve

our BSP cost analysis. The basic structure of the system is based on that of the original

PRAM cost analysis implementation.

5.1 Automating Cost Analysis

The natural use of our system would be as an aid during program development, al-

lowing the programmer to experiment with the behaviour of various equivalent pro-

gram structures on various data sets. Since the cornerstone of shapely programming

is that behavioural structure is independent of data content, it would be both unneces-

sary and time-consuming to require the provision of real data sets during development

(e.g. constructing an array of 1000 by 1000 values only for the cost calculator to

immediately throw them away). Thus, for development purposes we add a new con-

structor dummyvec, which allows the programmer to directly specify the input shape

as its argument, and use dummyvec ishp instead of the real input data vector. This

109

110
	

Chapter 5. Implementation of Cost Analysis

would be replaced by calls to TO operations in the real program. The cost function for

dummyvec ishp is simple, as the programmer provides the input shape directly.

cost (dummyvec ishp) = (ishp, sz ishp, 0, SEQ, 0)

Note that this implies that we are not costing the 110 for the real program.

5.2 Example of Cost Analysis by Hand

The analysis process can be illustrated by an example of a complete cost derivation by

hand. We derive the cost of

map (+9) [1,2,3,4,5,6,7,8]

The input data [1,2,3,4,5,6,7,8] is replaced by dummyvec (8,1) by the programmer

before cost is applied.

cost (map (+9) dummyvec (8, 1))

= {def. of cost tt'}

bspapp cost (map (+9)) cost (dummyvec (8, 1))

= {def. of cost tt' anddef. of cost (dummyvec (8,1))}

bspapp (bspapp cost (map) cost (+9)) ((8,1),8,SEQ,0)

= {def. of cost tt'}

bspapp (bspapp cost (map) (bspapp cost (+) cost 9)) ((8, 1),8,SEQ,0)

Within the above,

cost (map)

= {def. of cost map}

(Af. (Ax. ((t_Ien (x), t.shp (f (t_eshpx))), MAP, apcost_mapfx),

SEQ, 0), 0, SEQ,O)

and

5.2. Example of Cost Analysis by Hand 	 111

bspapp cost (+) cost 9

= {def. of cost + and cost 9}

bspapp (Ax. (Xy.(l, SEQ, binOpConst), SEQ,O),O, SEQ,O)(1, 1, SEQ, 0)

Therefore, the translated MsIzE program is

bspapp (bspapp (Af. (Ax. ((tJen (x), tshp (f (t_eshpx))), MAP, apcost_mapfx),

SEQ, 0), 0, SEQ, 0)(bspapp (Xx.(Ay.(l, SEQ, binOpConst), SEQ,0), 0, SEQ, 0)

(1,1,SEQ,0))) ((8,1),8,SEQ,0)

Within the above,

bspapp (Ax. (Ay. (1, SEQ, binOpConst), SEQ, 0), 0, SEQ,0)(1, 1, SEQ, 0)

= {def. of bspapp}

(Xy. (1, SEQ, binOpConst), 1, SEQ, 0)

And so,

bspapp (Xf. (Ax. ((tien (x), t.shp (f (t_eshpx))), MAP, apcost_mapfx),

SEQ, 0),0, SEQ, 0) (Xy.(l, SEQ, binOpConst), SEQ,0), 1, SEQ, 0)

= {def. of bspapp}

(Xx.((t_Ien (x),tshp (Xy. (1, SEQ, binOpConst) (t_eshpx))),

MAP, apcost_map Xy. (1, SEQ, binOpConst) x), 1, MAP,0)

where

apcost_map Ay. (l, SEQ, binOpConst)x

= {def. of apcost_map}

La pcost (Ay. (1, SEQ, binOpConst) (t_esh p (x))). (t_Ien (x) /p)

+t-size (Ay. (1, SEQ, binOpConst) (t_eshp (x))). (t_Ien (x)/p) . (p - 1) g + I

Thus,

bspapp (Ax. ((t_Ien (x), tshp (Ày. (1, SEQ, binOpConst) (t_eshpx))),

MAP, apcost_map Ày. (1, SEQ, binOpConst)x), 1, MAP, 0) ((8, 1), 8, SEQ, 0)

= {def. of bspapp}

112 	 Chapter 5. Implementation of Cost Analysis

((8,1),Lsize(8,1), MAP, (comrn_cost 10 0) + 1 +

apcost_mapXy.(1, SEQ, binOpConst) (8, 1))

= {def. ofapcost_mapetc.}

((8,1),8, MAP, (1. (p — i) +8• ((p— l)/p)) g+l+

binOpConst• (81p) + 1 (81p) (p - 1) g + 1)

= ((8, 1),8,MAP, (8. binOpConst/p) + (p+ 15— i6/p) •g+2 .1)

The result shows that the cost of

map (+9) [1,2,3,4,5,6, 7, 8]

is

(8. binOpConst/p) -I- (p + 15 - 161p) g + 2.1

This example shows that the hand calculation of the analysis is hard task even for a

simple example and, therefore, automation of the analysis is important for practical

use. The analysis might looks expensive even if it can be automated, notice, however,

that the analysis cost of this example does not change even if input vector is replaced

by a large sized vector. For example, the analysis of

map (+9) [1, 2, 3, .. ., 80000]

changes the value 8 to 80000 in the calculation without changing the complexity of

the analysis cost, while the run time cost of the program will be roughly 10000 times

larger.

5.3 System Structure

The whole cost analysis system is divided into seven modules.

CostDefsBsp.hs: definitions of cost tuples;

CostTransBsp.hs: definitions for translation from VEc-BSP terms to MsIzE terms;

CostConstBsp.hs: definitions of constants used in the analysis;

5.4. CostTestBsp.hs: Definitions of Cost Tests 	 113

CostTestBsp.hs: VEc-BSP codes for test programs;

CostParaBsp.hs: BSP parameters;

VecBspSugar.hs: syntax sugar for VEc-BSP programming;

TimingsBsp.hs: target file in which generated Haskell codes are stored.

The structure of VEc-BSP terms is given in the file CostTransBsp.hs. The user writes

VEC-BSP programs in the module CostTestBsp.hs. CostTestBsp.hs also includes a do

expression that contains a sequence of the operations including: transforming VEC-

BSP programs into MSIZE programs using the definitions in other modules; Out-

putting MsIzE programs as Haskell programs into the output file TimingsBsp.hs; and

applying the resulting cost functions to the BSP parameters, outputting the BSP cost.

CostTransBsp.hs which is imported to CostTestBsp.hs also has the structure of MsIzE

terms, the definitions for the cost function, which references cost tuple definitions in

CostDefsBsp.hs, and a pretty-printer to convert MsIzE programs into Haskell pro-

grams. The definitions of cost tuples in CostDefsBsp.hs use the values of constants

defined in CostConstBsp.hs and BSP parameters in CostParaBsp.hs. CostConstBsp.hs

and CostParaBsp.hs are imported to CostDefsBsp.hs. VecBspSugar.hs includes def-

initions of syntax sugar for convenient VEc-BSP programming and is imported to

CostTestBsp.hs. In the following sections in this chapter, we look at the definitions

in CostTestBsp.hs (section 5.4), definitions of cost tuples in CostDefsBsp.hs (section

5.5), definitions of cost translation in CostTransBsp.hs (section 5.6), and definitions in

other modules (section 5.7).

5.4 CostTestBsp.hs: Definitions of Cost Tests

The test VEC-BSP programs for which a user wants to calculate costs are given in the

list theTests in CostTestBsp.hs.

{- list of Vec-BSP terms that are tested -}

theTests =

TestPrograml,

TestProgram2,

114 	 Chapter 5. Implementation of Cost Analysis

TestProgram3

The structure of VEc-BSP terms is given in the file CostTransBsp.hs as the data type

VecBspTerm as explained later in this chapter. CostTestBsp.hs also has definitions to

manage the test procedure.

{- give the name of the file for generated Haskell code -}

outputFile = "timingsBsp.hs"

{- testing procedure -}

genTests = do { putStr "\nGenerating code ... ";

appendFile outputFile "import CostDefsBsp\n\n";

appendFile outputFile ("run (_,_,_,f) = timeFunApp f

++ (show paraBSP) ++ "\n\n");

appendFile outputFile (codeGen theTests);

putStr ("done!\n\n");

putStr ("First, load " ++ outputFile ++

"into Hugs\n\n");

putStr ("Then, to get the timing for the i'th entry

in the list of VecBsp terms, \n");

putStr ("enter \"run terini\" at the Hugs prompt\n")

I

After CostTestBsp.hs is loaded to Hugs (the Haskell system), the user enters genTests

at Hugs prompt which performs: displaying Generating code ... on the screen;

writing import Cos tDefsBsp in timingsBsp.hs; writing run(-, -,-, f =timeFunApp

f paraBSP in TimingsBsp.hs; performing codeGen theTests and then writing the

result, that is translated MsIzE terms, into TimingsBsp.hs, where codeGen is a code

generator which is defined in CostTransBsp.hs as explained later in this chapter; dis-

playingdone! on the screen; displaying First, load TimingsBsp.hs into Hugs

on the screen; displaying Then, to get the timing for the i'th entry in

the list of VecBsp terms on the screen; and displaying enter 'run termi' at

5.5. CostDefsBsp.hs: Definitions of Cost Tuples 	 115

the Hugs prompt on the screen. Following the given instructions, the user loads Tim-

ingsBsp.hs and then enters run termi to evaluate run (_, -, -, f) = timeFunApp f

paraBSP, that is, to evaluate the MsIzE term and then apply the resulting time function

to the BSP parameters, getting the calculated cost of TestProgrami.

5.5 CostDefsBsp.hs: Definitions of Cost Tuples

CostDefsBsp.hs has definitions of cost tuples for constructors. First, some algebraic

types of the data which are used in the cost tuple definitions are defined.

The algebraic type for time functions from the BSP parameters to time, that is Timefun

type is defined by

data TimeFun = 	VarTimeFun ((It, Float, Float) -> Float)

I ConstTimeFun Float

in which the CostTimeFun case is introduced to improve analysis speed for the case in

which the time function is a constant function. The algebraic type for shapes, that is

Shape type is defined by

data Shape = 	Size mt

I Tuple2 (Shape, Shape)

I Tuple3 (Shape, Shape, Shape)

I Tuple4 (Shape, Shape, Shape, Shape)

Pair2 (Size mt 1 Shape)

Fun (Shape -> (Shape, Size mt 1 TimeFun))

in which we define the tuple data types which have up to four components.

Next, some auxiliary functions which are used in the cost tuple definitions are defined.

timeFunApp takes a time function and BSP parameters and returns BSP cost. Its defi-

nition is

timeFunApp 	TimeFun -> (Integer,Float,Float) -> Float

116
	

Chapter 5. Implementation of Cost Analysis

timeFunApp (ConstTimeFun n) - = n

timeFunApp (VarTimeFun f) (p,g,1) = f (p,g,l)

funApp takes the shape of a function and the shape of an argument, and returns an

application tuple, whose components are the result shape, application pattern and ap-

plication cost. Its definition is

funApp :: Shape -> Shape -> (Shape, Integer, TimeFun)

funApp (Fun f) x = f x

size, which takes the shape of a data item and returns its size is defined by

size :: Shape -> Integer

size (Tuple2 (xl,x2)) = size xl + size x2

size (Tuple3 (xl,x2,x3)) = size xl + size x2 + size x3

size (Tuple4 (xl,x2,x3,x4)) = size xl + size x2 + size x3 + size x4

size (Pair2 (x,y)) = x * size y

size (Size n) = n

bspapp takes the cost tuple of a function term and the cost tuple of an argument term

and returns the cost tuple of the result term. The definition is referenced in the defini-

tion of the cost function for application term App t t' in CostTransBsp.hs as shown

in the next section. It is defined by

bspapp:: (Shape, Integer, Integer, TimeFun)

->(Shape, Integer, Integer, TimeFun)

->(Shape, Integer, Integer, TimeFun)

bspapp (Fun f, s, d, h) (t, s', d', h') =

let (V1 ap, g') = f t

in (v , (if (constFunEq g' (ConstTimeFun 0)) then (s + s')

else size v), ap,

VarTimeFun (\(p,g,l) ->

((timeFunApp (timePlus (timePlus h h') g') (p,g,l) +

(if (p == 1) then 0

5.5. CostDefsBsp.hs: Definitions of Cost Tuples 	 117

else (if ap == 0 then 0

else (if d' == 1 then

((fromlntegral s * fromlntegral(p-l)

- (fromlntegral s'

* (fromlntegral(p-1)/ fromlntegral p)))

* g - 1)

else ((fromlntegral s * fromlntegral(p-1)

+ (fromlntegral s')

* (fromlntegral (p-i) /fromlntegral p))
* g + 1)))))))

where, cons tFunEq, which checks the equality of two constant time functions is de-

fined by

constFunEq :: TimeFun -> TimeFun -> Bool

constFunEq (ConstTimeFun a) (ConstTimeFun b) =

if (a == b) then True

else False

constFunEq (VarTimeFun a) - = False

and timeplus, which adds two time functions is defined by

timePlus 	TimeFun -> TimeFun -> TirneFun

timePius (ConstTimeFun n) (ConstTimeFun m) = ConstTimeFun (n + m)

timePlus (ConstTimeFun n) (VarTimeFun h) =

VarTimeFun (\(p,g,l) -> n + (h (p,g,l)))

timePlus (VarTimeFun f) (ConstTimeFun m) =

VarTimeFun (\(p,g,l) -> (f (p,g,l)) + m)

timePlus (VarTimeFun f) (VarTimeFun h) =

VarTimeFun (\(p,g,l) -> (f (p,g,l)) + (h (p,g,l)))

A cost tuple is defined for each VEc-BSP constructor, which is referenced by the

cost function for the constructor in CostTransBsp.hs as shown in the next section. As

examples, we here give the definitions of cost tuples for an atomic datum constant, a

118
	

Chapter 5. Implementation of Cost Analysis

binary datum operation, length, and map.

constCost 	(Shape, Integer, Integer, TimeFun)

constCost = (Size 1, Size 1, Size 0, ConstTimeFun 0)

primBinOpCost :: (Shape, Integer, Integer, TirneFun)

primBinOpCost = (Fun (\x ->

(Fun (\y ->

(Size 1, Size 0, ConstTimeFun primBinOpConst)),

Size 0, ConstTimeFun 0)),

Size 0, Size 0, ConstTimeFun 0)

lengthCost :: (Shape, Integer, Integer, TimeFun)

lengthCost = (Fun (\x -> (Size 1, Size 0, ConstTimeFun lengthConst)),

Size 0, Size 0, ConstTimeFun 0)

mapCost :: (Shape, Integer, Integer, TimeFun)

mapCost = (Fun (\f -> (Fun (shapeMap f), Size 0, ConstTimeFun 0)),

Size 0, Size 0, ConstTimeFun 0)

shapeMap :: Shape -> (Shape -> (Shape, Integer, TimeFun))

shapeMap f (Pair2 (len, eshp)) =

let shps = Pair2 (len, pilFroin3(funApp f eshp))

in (shps, Size 1,

VarTimeFun (\(p,g,l) ->

(timeFunApp(tensorMult len (pi3From3 (funApp f eshp))) (p, g, 1) +

(if (p==l) then 0

else (fromlntegral(size(sndPair2(shps))) *

fromlntegral (ceiling (fromlntegral (len) If romlntegral p)) *

fromlntegral(p - 1) * g + 1))))

where the functions such as pilTuple3, which take the ith components of a three-

components-tuple are defined by

5.6. CostTransBsp.hs: Definitions for Cost Translation 	 119

pilTuple3 (Tuple3' (t,_,_)) = t

pi2Tuple3 (Tuple3' (_,t,_)) = t

pi3Tuple3 (Tuple3' (_,_,t)) = t

and the functions such as sndPair2, which take a component from a size-cost pair are

defined by

fstPair2 (Pair2 (t,_)) = t

sndPair2 (Pair2 (_,t)) = t

and tensorMult, which takes the number of tasks multiplied and the time function of

the single task, and returns the time function of the multiple tasks using p processors

is

tensorMult :: Integer -> TimeFun -> TimeFun

tensorMult 0 - = ConstTimeFun 0

tensorMult n (VarTimeFun f) =

VarTimeFun (\(p, g, 1) ->

((frornlntegral (ceiling ((fromlntegral n) / (fromlntegral p)))) *

(f (1,g, 1))

tensorMult - (ConstTimeFun 0) = ConstTimeFun 0

tensorMult n (ConstTimeFun m) =

VarTimeFun (\(p,g,l) ->

(fromlntegral (ceiling ((fromlntegral n) / (fromlntegral p)))) * m)

5.6 CostlransBsp.hs: Definitions for Cost Translation

CostTransBsp.hs has definitions to translate VEc-BSP terms to MSIZE terms. First,

the algebraic type for constructors, and then the algebraic type for VEc-BSP terms

and Msize terms are defined.

The algebraic type for term constructors, that is TCons type is defined by

data TCons = Hd I Tl I PilFrom2 I Pi2From2 I PilFrom3 I Pi2From3

120 	 Chapter 5. Implementation of Cost Analysis

Pi3From3 I PilFrom4 IPi2From4 j Pi3From4

Pi4From4 I Length I Pair I Tuple2 I Tuple3 I Tuple4

Scan I Map I Pairmap Equal I Geq I And I Entry I
Plus Mult Minus 	Div I Mod I Fold I Iter

Cproduct I min I Max

The algebraic type for VEC-BSP terms, that is VecBspTerm type is defined by

data VecBspTerm = Combr TCons Const Integer I BoolConst Bool

Var String I Abs String VecTerm I
App VecTerm VecBspTerm I
If VecTerm VecBspTerirt VecBspTerm

Ifs VecBspTerm VecBspTerm VecBspTerm

The algebraic type for MsIzE terms, that is MsizeTerm type is defined by

data MsizeTerin = MszCombr TCons I MszConst Integer I
MszBoolConst Bool I MszVar String I
MszAbs String MsizeTerm I MszConstFun MsizeTerin

Msz Integer I MszApp MsizeTerm MsizeTerm

Mszlfs MsizeTerm MsizeTerm MsizeTerm

The MsIzE terms are converted to Haskell expressions by a pretty-printer and output

in the file TimingBsp.hs. First, we make MsizeTerm an instance of the class Show. The

instance declaration is

instance Show MsizeTerin where

showsPrec p = showMsizeTerin

showMsizeTerm t = shows (getMsizeTermString t)

The names of the constructors are converted to strings by getCombrString. For exam-

ple,

getCombrString Hd = "head"

getCombrString Tl = "tails

5.6. CostTransBsp.hs: Definitions for Cost Translation 	 121

getCombrString Fst =

getCombrString Snd =

getCombrString Entry

getCornbrString Map =

getCombrString And =

getCombrString Equal

getCombrString Geq =

getCombrString Plus

getCombrString Mult

getCombrString Minus

getCombrString Div =

getCombrString Mod

"fs t"

"snd"

"entry"
1111

and
-

N > = N

Is + N

n*N

"div' 1

"mod"

MsIzE terms are converted to strings by getMsizeTermString.

getMsizeTermString (MszApp (MszApp (MszCombr Pair) t) t') =

++ (getMsizeTermString t) ++ "," ++

(getMsizeTerinString t') ++

getMsizeTermString (MszApp (MszApp (MszCombr Tuple2) t) t').=

"(" ++ (getMsizeTermString t) ++ "," ++

(getMsizeTermString t') ++ ")"

getMsizeTermString (MszApp (MszApp (MszApp (MszCornbr Tuple3)

t) t') t'') = "(" ++ (getMsizeTermString t) ++ "," ++

(getMsizeTermString t') ++ "," ++

(getMsizeTerinString t'') ++ ")"

getMsizeTerinString (MszApp (MszApp (NszApp (MszApp

(MszCombr Tuple4) t) t') t'') t''') =

"(I' ++

(getMsizeTermString t) ++
11,11 ++

(getMsizeTermString t') ++
U ++

(getMsizeTermString t'') ++

122 	 Chapter 5. Implementation of Cost Analysis

II

(getMsizeTermString t''') ++

11
 11 II

getMsizeTermString (MszApp (MszApp (MszCombr Equal) t) t') =

showAslnfix t t' "=="

getMsizeTerinString (MszApp (MszApp (MszCombr Plus) t) t') =

showAslnfix t t' tIlI

getMsizeTermString (MszApp (MszApp (MszCombr Minus) t) t') =

showAslnfix t t I 1111

getMsizeTermString (MszApp (MszApp (MszCombr Mult) t) t') =

showAslnfix t t' 11*11

getMsizeTermString (MszApp (MszApp (MszCoinbr Div) t) t') =

showAslnfix t t I

getMsizeTermString (MszApp (MszApp (MszConibr Mod) t) t') =

showAslnfix t Y "'mod",

getMsizeTermString (MszApp (MszApp (MszCombr And) t) t') =

"and [" ++

getMsi zeTerinString

getMs I zeTermString

getMsi zeTermString

getMsi zeTermString

getMsi zeTermString

getMsi zeTermString

(getMsizeTermString t) ++
nfl ++

(getMsizeTenrtString t i') ++

if] "

(MszBoolConst b) = show b

(MszCombr C) = getCombrString c

(MszVar x) = x

(MszConst n) = show n

(MszVectorConst n) = show n

(MszAbs x t) = "(Fun (\\" ++ x ++ " ->

++ (getMsizeTermString t) ++ "))"

getMsizeTermString (MszConstFun t) = "(ConstTimeFun " ++

(getMsizeTermString t) ++ ")"

getMsizeTermString (MszApp t t') = "(" ++

5.6. CostTransBsp.hs: Definitions for Cost Translation 	 123

(getMsizeTermString t) ++
N N

(getMsizeTermString t') ++ II)n

getMsizeTermString (Mszlfs t t' t'') = 	N ++

(getMsizeTermString t)

++ N then N ++

(getMsizeTerinString t') ++
N else 11 ++

(getMsizeTermString t'') ++
N) N

getMsizeTermString (Msz n) = (show n)

showAslnf ix t t' s = "(° ++ (getMsizeTermString t) ++ N N ++ s ++
N N ++ (getMsizeTermString t') ++ I)N

The function cost takes a VEc-BSP term and returns an MsIzE term. Many of the

definitions of cost for constants and combinators in VEc-BSP reference the corre-

sponding cost tuple definitions in CostDefsBsp.hs. Some examples are

cost :: VecBspTerm -> MsizeTerm

cost (Const _) = (MszVar NconstCostN)

cost (VectorConst v) = app(MszVar vectorCost") (MszVectorConst v)

cost (Combr Plus) = (MszVar "primBinOpCost")

cost (Combr Minus) = (MszVar "primBinOpCost")

cost (Combr Mult) = (MszVar hlprimBinOpCostN)

cost (Combr Div) = (MszVar "primBinOpCost")

cost (Combr Max) = (MszVar "primBinOpCost")

cost (Combr Hd) = (MszVar "headCost")

cost (Combr Map) = (MszVar "mapCosttt)

cost (Cornbr Fold) = (MszVar "foldCost")

cost for an application term references the definition of bspapp operation.

cost (App t t') = MszApp(MszApp(MszVar "bsppapp") (cost t))(cost t')

124
	

Chapter 5. Implementation of Cost Analysis

The Haskell code corresponding to an MsIzE program is generated by the following

code generator, codeGen.

noDblSlash [] = [1

noDblSlash (h: '\\' :'\\' :tl) = h:'\\' (noDblSlash tl)

noDblSlash (h:tl) = h: (noDblSlash ti)

vec2HaskellCost t =

let 1st = (show (cost t))

in no]DblSlash (tail (take ((length 1st) - 1) 1st))

codeGen 1st = codeGenLoop 1 1st

codeGenLoop - [] =

codeGenLoop n (h:t) = "term" ++ " 	" ++

(vec2HaskellCost h) ++ "\n\n" ++ (codeGenLoop (n + 1) t)

5.7 Other Modules

5.7.1 CostParaBsp.hs: Definitions for BSP parameters

CostParaBsp.hs includes definitions of BSP parameters, which are obtained from run-

ning a benchmark program on the target architecture. For example,

paraBSP :: (Integer, Float, Float)

paraBSP = (8,1.6,67150)

p 	Integer

p = pilFrom3(paraBSP)

g :: Float

g = pi2From3(paraBSP)

1 :: Float

1 = pi2From3(paraBSP)

5.7. Other Modules 	 125

5.7.2 CostConstBsp.hs: Definitions for Constants

The constants used in the definitions of cost tuples in CostDefsBsp.hs are defined in

CostConstBsp.hs. In current version, primBinOpConst is defined as 1 and the others

as 0.

primBinOpConst = 1 :: Float

5.7.3 VecBspSugar.hs: Syntax Sugar

VecBspSugar.hs includes syntax sugar for convenience of VEc-BSP programming.

For example,

Ct fl = Const n

v x = Var x

vabs x t = Abs x t

vapp f t = App f t

vapp2 f t t' = vapp (vapp f t) t'

vapp3 f t t' t'' = vapp (vapp2 f t t') t''

vapp4 f t t' t'' t 11 ' = vapp (vapp3 f t t' t'') tf if

vmap f v = vapp2 (Combr Map) f v

fold f v = vapp2 (Combr Fold) f v

For example, the straightforward VEc-BSP expression for map (x2) v is

App (App (Combr Map) (App (Combr Mul t) (Const 2))) v

but it can be expressed with sugaring as

vmap (vapp (Combr Mult) (Ct 2)) v

126 	 Chapter 5. Implementation of Cost Analysis

5.8 Chapter Conc'usion

This chapter outlined the Haskell implementation of our cost analysis, which is based

on the existing PRAM calculator. The main differences with the PRAM calculator

reflect those of the analysis itself, that is: the new components of size, application

pattern and data pattern; the cost function is a function of BSP parameters; the bspapp

which captures the communication and synchronisation cost as well as the computation

cost; a set of skeletons each of which has the application cost that is based on the BSP

cost model. One more technical change is that we avoided the analysis of the input

vector itself, which is done in the PRAM calculator using singleton and cons operators

(and which would be possible for our analysis as well), by giving the input shape

directly. This saves analysis cost and brings the desirable property that the analysis

cost is independent of input vector size.

Chapter 6

Experiments: Comparing Different

Algorithms

In this chapter we describe our experimental framework for automatic cost prediction.

We consider different algorithms for simple example problems, namely, matrix-vector

multiplication and maximum segment sum, and show that our method allows detailed

consideration of constant factors across a range of problem sizes which would be diffi-

cult in a pencil-and-paper analysis. We then report on the results of experiments which

compare our predictions with the performance of real programs.

6.1 Matrix Multiplication

The first example problem is a matrix vector multiplication Mv, where M is an m x n

matrix and v is an n element vector. We consider different two algorithms, contrasting

the analysis of their efficiency by traditional, intuitive methods with that achieved by

our cost calculator. The communication optimisation described in chapter 3 is appli-

cable in the second algorithm. The first algorithm is expressed in VEc-BSP as:

map (Xy. (Ax. (fold + (pair_map(.)(pair y x)))) v)M 	 (1)

127

128 	 Chapter 6. Experiments: Comparing Different Algorithms

where, v = dummyvec(n, 1) and M = dummyvec(m, (n, 1)) for analysis purposes. Its

BSP implementation based on our strategy is:

the elements of v in the master processor are broadcast to the p processors and

M's contents, consisting of mn integers in the master processor, are scattered to

the p processors in vector-block-wise manner;

synchronisation;

each processor computes the elementwise multiplication of v and each distributed

vector;

the results of 3 are folded with addition on each processor;

the local result on each processor is gathered to the master processor;

synchronisation.

Notice that the function Ax. (fold + (pair_map(.) (pairvx))) takes a vector and returns

its inner product with v. The parallel structure of the algorithm is illustrated in a

diagram in figure 6.1. An intuitive BSP cost analysis is made by counting the number

	

0 O 	c-o p 	 :.O.

	

"o 	p
"o •o p

	

'0 	OO

Figure 6.1: Parallel structure of algorithm (1)

of operations and message size by hand. The resulting computation cost is mn/p for

integer multiplications and m(n - 1)/p for integer additions. Communication cost is

n(p - 1)g to broadcast n integer elements of v, mn((p - 1)/p)g to scatter mn integer

elements of M and (m/p) (p - 1)g to gather local results, so the overall communication

cost is ((mn + m + np) (p - I) 1p)g- There are two synchronisations at a cost of 21.

The second algorithm is expressed in VEC-BSP as:

fold (Xxy.(pair_map + (pairxy))) (pair-map (Xxy.map (Xz.(y . z))x) (pair Lv)) (2)

6. 1. Matrix Multiplication
	

129

where, L = M' = dummyvec(n, (m, 1)) and v = dummyvec(n, 1) as before. The imple-

mentation of this skeletal program has two parallel phases.

• pairmap phase:

the contents of L and v in the master processor are scattered to the p pro-

cessors;

synchronisation;

each processor computes the element-wise application of Xxy. map (Az. (y.

z)) x to each distributed integers from v and each corresponding distributed

vectors from L. (The effect of this is that each element of the ith vector of

L is multiplied by the ith element of v.).

• fold phase:

each processor computes the element-wise addition of all local vectors;

the local result on each processor is gathered to the master processor;

synchronisation;

the master processor computes element-wise addition of the gathered vec-

tors.

Notice that the communications implied by the gather step at the end of the pair-map

phase and the broadcast-scatter step in the beginning of the fold phase can be opti-

mised away by our analysis, leading directly to the computation step of the fold phase.

Thus, our cost analysis does not count these communication costs. The parallel struc-

ture of this algorithm (2) is illustrated in a diagram in figure 6.2. An intuitive BSP

•. o p
op

Figure 6.2: Parallel structure of algorithm (2)

130 	 Chapter 6. Experiments: Comparing Different Algorithms

cost analysis of (2) is made as follows. The computation cost is mn/p integer mul-

tiplications and m(n/p - 1) + m(p - 1) integer additions. The communication cost

is (m + 1)n((p - 1)/p)g for scattering the elements of L and the elements of v, and

m(p - 1)g for gathering local results in the fold application, so the overall communi-

cation cost is ((mn + n) ((p - 1) 1p) + m(p - 1))g. The synchronisation cost is 21.

We now apply our cost calculator to the two algorithms. Our target system is an 8-

processor Sun HPC 3500 U1traSPARC II machine hosted by the Edinburgh Parallel

Computer Centre. BSP parameters obtained by running a benchmark program pro-

vided by Oxford BSPlib are p = 8, g = 1.6, l = 67150. The binary operator constant

is set at 1 and the total calculated cost in operations is converted into seconds by di-

viding by 13 million as directed by s, the benchmark returned factor which normalises

1 and g to the single processor computational speed. In this section we investigate the

performance predicted by our cost calculator, and compare with a pencil-and-paper

asymptotic analysis. Comparison of predicted and real execution costs is presented in

section 6.3.

025

02

0.15
&0

0

E

0.1

0.05

0

—-pedicted(1)

-o—predlcted(2)

—0— pedicted(1)

200 1 	400 600 800 1 	1000 1 	1200

0.0166 1 0.031022 1 0.056699 0.092329 0.138214 0.194252

0.016694 1 0.031211 1 0.056882 0.092705 0.138685 0.194812

nn

Figure 6.3: Prediction when m=n, p=8

6. 1. Matrix Multiplication 	 131

First, as a concrete example we investigate the case in which p = 8 and M is square (i.e.

m = n), with m varying. Our cost system automatically translates the source program

to a Haskell program which computes BSP cost. Figure 6.3 shows the predicted result

of varying m in increments of 200 up to 1200. We can see that the predicted BSP

costs of the two programs are almost the same and that their time complexity seems

to be 0(m2). This concurs with the intuitive BSP analysis above. From the intuitive

analysis, we can easily see that both algorithms have BSP cost complexity 0(m2) when

p is fixed. In computation cost, (2) needs m(p + i/p —2) more additions than (1).

These come from the use of parallel fold that has a phase in which only one processor

is working, while (1) uses sequential fold in parallel map. Since the difference of the

communication costs, (2)—(1) is ((m - n)(p - 1) 21p)g, the communication costs are

the same when in = n. Therefore, while the BSP cost complexity of both programs are

0(m2), the actual difference of BSP cost, m(p + i/p - 2), has complexity of 0(m).

This means that the difference is not significant when m(= n) is large.

0.35

0.3

025

02

E
0.15

0.1

0.05

0

1 -0-- predicted(l)

-0— predIcted2

20000 40000 60000 80000 1E+06 I E405

0.032607 0.054876 0.077145 0.099415 0.121684 0.143963

0.057101 0.10387 0.160639 0.197408 0.244178 0.290947

M

Figure 6.4: Prediction when n=8, p=8

Next we investigate the case in which n is fixed and m varies. Is there any significant

difference in efficiency between (1) and (2)? Figure 6.4 shows the cost predicted by

132 	 Chapter 6. Experiments: Comparing Different Algorithms

our calculator when n is fixed at 8 and m varies in increments of 20000 up to 120000.

We can see that (1) is more efficient than (2). According to the intuitive analysis

both algorithms have BSP cost complexity 0(m). Since the difference of computation

costs (2)—(1), m(p + i/p - 2) and the difference of communication costs (2)—(1),

((m - n)(p - 1) 2 1p)g have complexity of 0(m), the overall difference of costs also

has complexity of 0(m). This could be significant, and the results from figure 6.4

predict that this is indeed the case.

Finally we investigate the case when m is fixed and n is varied. Figure 6.5 shows the

predicted results when m is fixed at 8 and n varies in increments of 20000 up to 120000.

Now (2) is more efficient than (1). According to the intuitive analysis, both algorithms

-c'- predlcted(1)

-0- predIcted2) I 	
z

20000 40000 60000 80000 1E+06 IE+05

0.04787 0.085408 0.122947 0.160486 0.198029 0235562 1 0.032803 0.055264 0.077726 0.100188 0.122649 0.145111

Figure 6.5: Prediction when m=8, p=8

have BSP cost complexity 0(n). The computation cost of (1) is less than that of (2) but

the difference m(p + i/p —2), is only constant. In contrast, the communication cost of

(1) is more than that of (2) and the difference, ((n - m)(p - 1) 21p)g, has complexity of

0(n). As before, this could be significant and the prediction of figure 6.5 again shows

this to be the case.

026

0.2

0.15

0

E

0.1

0.05

0

-o-predicted(1)

-0- predlcted(2)

n

6.2. Maximum Segment Sum Problem 	 133

6.2 Maximum Segment Sum Problem

As the second example problem, we take the maximum segment sum problem, which is

often used as an example of BUT style algorithm derivation. The problem is to find the

sum of the contiguous segment of a list whose members have the largest sum among

all such segments. As an example, we have

mss[2,-4,2,-1,6,-3] =7

We predict the costs of three different algorithms taken from papers of the field, that is

Bird's algorithm [11], Skillicom and Cai's algorithm [78] and Cole's algorithm [26].

6.2.1 Three Different Algorithms

Bird's Algorithm

Bird derived a 0(n) sequential time algorithm from a 0(n3) sequential time specifica-

tion [11] by BMF style program calculation. It uses a sequential second-order function

left accumulate defined by

The algorithm is expressed concisely as

MSS = T / ° 0

where a Gb = (a + b) 10.

Skillicorn and Cai's Algorithm

In [78], Skillicorn and Cai derived a parallel algorithm from the same specification.

It has complexity of 0(logn) under the condition that n processors are available. It

uses the recur-prefix operation defined in section 2.3.3. The algorithm is expressed

concisely as

mss= I /o+// I

134 	 Chapter 6. Experiments: Comparing Different Algorithms

Cole's Algorithm

The mss problem is also used by Cole [26] to explain the idea of constructing a ho-

momorphism from a near homomorphism by the use of a tuple with extra functions. It

has 0(logn) parallel time complexity under the condition that 0(n/ log n) processors

are available. The algorithm is expressed as

mss = tieup o (/) o (f*)

where

fx=(xIO,xIO,xtO,x),

(xl,x2,x3,x4) (yl,y2,y3,y4)

= (XI Iyi 1 (x3+y2),x2 I (x4+y2),(x3+y4) 1Y3+Y4) 1Y3,X4+Y4),

tieup(a, -, -, -) = a

Note that both Cole's and Skillicorn and Cai's cost analysis assumes that the number of

processors can increase infinitely according to the increase of the input data size. They

also assumes that the data is already distributed across the processors. Our analysis will

fix the number of available processors of the target machine as one of BSP parameters

and will charge for the initial distribution cost explicitly (so their complexities will be

0(n) at best).

6.2.2 VEC-BSP Programs of the mss Problem

Our strategy to write a VEc-BSP program from a BMF expression is:

. If a BMF function can be directly expressed by some VEc-BSP predefined func-

tions, it is replaced by the VEc-BSP terms.

o If a sequential BUT function cannot be expressed by any predefined functions a

new operator is added and its cost function is defined.

® All compositions of BMF functions are expressed as corresponding application

terms in VEc-BSP.

6.2. Maximum Segment Sum Problem
	

135

Bird's Algorithm

Expressing Bird's algorithm as a VEc-BSP program is straightforward. We need only

to add the left-accumulate operation laccum and to define its cost function.

cost(laccum) = (A .(Xx.((t_Ienx+ 1, t_eshpx), SEQ,

t_apcost (t.shp ((D(t_eshpx)) (t_eshpx)) t_lenx), SEQ, 0), 0, SEQ, 0)

Using laccum, Bird's algorithm is expressed in VEc-BSP as:

mssv = fold (1) (laccum (Xxy.((x+y) 1 0)) v)

Its implementation is that the master processor computes the left accumulation of v

with binary operator Xxy. ((x + y) 1 0), and then the result is folded in the master pro-

cessor with the maximum operator. The cost of the left accumulation is n additions

and n maximum operations. The cost of the fold is n - 1 maximum operations. The

total cost is n additions and 2n - 1 maximum operations, so its overall time complexity

is 0(n).

Skillicorn and Cai's Algorithm

Since the recur-prefix can be expressed as a prefix following [77]

®//id® 	 = [id®] ++((D)*(ø//([ai, ... a n]
Y [id (& ,...,id®]))

where Y is zip function and

Skillicorn and Cai's algorithm is expressed by using scan in VEc-BSP as

mss = fold (1) (shiftright(0) (map (T) (scan (0') (map (pairo)v))))

where

0' = Xxy. pair (fstx+ fsty)((sndx + fsty) 1 0)

136 	 Chapter 6. Experiments: Comparing Different Algorithms

and shiftright (0) rotates the entire list right one place, moving a single element from

each processor i (p :!~ p - 1) to the processor i + 1 and inserting 0 at the left end in the

master processor. Its cost function is

cost (shiftright) = (Xe. (Xx.
((

tJen (x) + 1, t_eshpx), SEQ, size (t_eshpx) g),

SEQ, 0), 0, SEQ, 0)

The BSP implementation of the algorithm based on our implementation strategy is:

• map(pairO) phase:

the elements of v in the master processor are scattered to the p processors;

synchronisation;

each processor applies (pairO) to each distributed element.

• scan (0') phase:

each processor computes the local scan with 0' for the local results of 3;

the final value of the each local scan is scanned in parallel across the pro-

cessors in the tree-structured way;

the result of the global scan in processor i (p :!~ p - 1) is sent to processor

1+1;

synchronisation;

each processor applies 0' to the pairs of the pair received in 6 and each pair

of the results of 4.

• map() phase:

each processor takes the maximum element of each pair of the result of 8.

• shiftright (0) phase:

10, shiftright (0) rotates the entire list right one place, moving a single element

from each processor to the next and inserting 0 at the left end.

fold (T) phase:

6.2. Maximum Segment Sum Problem
	

137

each processor folds the local results of 10 with the maximum operation;

the local result of 11 in each processor is gathered to the master processor;

synchronisation;

the master processor folds the gathered results with the maximum operation.

The BSP cost of each phase is as follows, map (pairO) phase: the computation cost

pair operations, communication cost n(p - 1)g and synchronisation cost 1. scan (0')

phase: the computation cost - 10 1 operations each of which has 2 additions and 1

maximum operation, the communication cost (log p+ 1)g and the synchronisation cost

(log p + 2)!. shiftright (0) phase: the communication cost g and the synchronisation

cost 1. map (1) phase: 11 maximum operations. fold (1) phase: + p —2 maximum

operations. We can see that the overall complexity of Skillicom's algorithm is 0(n) in

our cost models when p is fixed.

Cole's Algorithm

In order to deal with algorithms to compute a homomorphism with a tuple, we intro-

duced a tuple data structure as an extension of pair. Cole's algorithm can be expressed

in VEc-BSP as:

MSS = lti (fold (mapfv))

where

f = Xx.(xIO,xIO,xIO,x)

Xx.y. (itt X 7t1 y I (7t3 x + 1t2 y), (it2 X 7t4 x) + it2 Y

(it3x+714y) Iit3y,it4X+it4y)

Its BSP implementation based on our strategy is

• map phase:

the elements of v in the master processor are scattered to the p processors;

synchronisation;

138 	 Chapter 6. Experiments: Comparing Different Algorithms

each processor applies f to each scattered element.

• fold ED phase:

each processor computes the sequential fold of the result of 3 with El);

the local results in each processor are gathered to the master processors;

synchronisation;

7, the master processor folds the gathered results with El).

• Iti phase:

8. In is applied to the result of 7 in the master processor.

The BSP costs of the two phases are as follows, map phase: the computation cost

f operations, each of which has three maximum operations, the communication cost

(n - 1)g and the synchronisation cost 1. fold phase: the computation cost (+p —2)

operations, each of which has four maximum operations and three additions, the

communication cost 4(p - 1)g and the synchronisation cost 1. We can see that Cole's

algorithm has cost complexity of 0(n) when p is fixed.

6.2.3 Predicted Results

Figure 6.6 shows the cost of each algorithm predicted by our calculator when the input

list size n varies in increments of 800000 up to 4800000. We can see that all the pre-

dicted costs seem to have complexity 0(n) as we predicted by intuitive cost analysis.

The predicted results also show that the efficiency of the three algorithms are almost

the same in our cost model under the condition that only 8 processors are available.

6.2.4 Complexity of Cost Analysis

From the definition of bspapp in chapter 3, the analysis cost involved in the calcula-

tion of bspapp (f, s) d, t)(x, s', d', t') is: one calculation of f x; five projections (two

t_apcost, two t_pattern and one t_shape); four additions; one data_sz; one comm_cost.

6.2. Maximum Segment Sum Problem
	

139

I I -c-Bird

I -c-- Skilhicom

-o-Coie
02

0.6

0.4

02

0
8E+05 I 	2E'06 I 	2E+06 I 	3E106 I 	4E+06 I 	5E+06

I-c-Bird 0.184615

.

I 0553846

I

I 	0369231 I 	0.738462 I 0.923077

I

 I
	1.107692

I -O-Skiiiicom

I

017364 03218 04657 I 	0.6167 0.76474 I 0.9128

-.6r-Cole 0.181115 0351894 I 	0.622672 I 	0.693449 I 	0264231 I 	1.035008

n

Figure 6.6: Predicted costs

The cost for data..sz is one conditional and one addition (or one projection). The cost

for commcost is two conditionals, three multiplications, four subtractions and one

division (in the most expensive case). Therefore, at most the total charged cost for

bspcost except for calculation off x is: five projections, thirteen arithmetic operations

and three conditionals. The calculation of f x largely depends on f. When f is the

shape of a conventional sequential function, its costs are a few arithmetic operations

or projections to calculate the resulting shape. When f is a shape of a parallel func-

tion such as map t1, its costs can depend on the argument function and involve the

calculation of application costs according to the definitions in chapter 4 as well as the

calculation of the resulting shape. For example, in the case of map t1, the cost for cal-

culation of the resulting shape is the cost for f (t_eshp (x)) and three projections. The

cost for calculation of the application cost is twice of the cost for f (t_eshp (x)) and

four projections, eight arithmetic operations and one size operation. Note that these

calculations for shapes and application costs are calculated using the components of

the argument shape, that is the length of the argument and the element shape, but these

costs do not depend on the size of an input vector, as changing input size changes

the first components of shapes. In conclusion, the analysis of shape and cost charges

140 	 Chapter 6. Experiments: Comparing Different Algorithms

some projections and arithmetic operations proportional to the number of applications,

but its cost does not depends on the input data size. Therfore, when the input vector

becomes bigger, the analysis cost becomes relatively less significant.

6.3 Accuracy Tests

To test the accuracy of our static cost prediction against time on a real machine we hand

compiled VEC-BSP programs into Oxford BSPlib following the compilation strategy

proposed in 3.4 and implementation templates for each skeleton given in 4.2, trying

to write natural straightforward C code for the computation part without any technical

optimisation, and then ran them on an 8-processor Sun HPC 3500.

6.3.1 Matrix Multiplication

Following the same sequence of experiments as for the predictions, figure 6.7 and fig-

ure 6.8 plot the predicted BSP cost, the predicted computation cost and the real run

time of each program when m = n varying m in increments of 200 up to 1200. "pre-

comp" represents the predicted computation cost obtained by setting BSP parameters

g and 1 to 0 to show the impact of counting communication and synchronisation costs.

Similarly, figure 6.9 and figure 6.10 plot times when n is fixed and m varies in incre-

ments of 20000 up to 120000, and figure 6.11 and figure 6.12 plot times when m is

fixed and n varies in increments of 20000 up to 120000. In five out of six cases, real

and predicted curves are very close. They also show that counting only computation

costs for our assumed implementation model does not generate accurate absolute value

prediction in these experiments.

Accuracy is inferior in the case of algorithm (2) when n is fixed (the upper two curves

in figure 6.10). We note that when m is large in (2), the final sequential folding process

performed by the master processor is dominant. Our calculator seems to underestimate

that cost, suggesting that our modelling of sequential computation (rather than parallel

interaction) is less successful for this algorithm.

6.4. Chapter Conclusion
	

141

6.3.2 Maximum Segment Sum

Figure 6.13 - figure 6.15 plot the predicted costs of the three mss algorithms and the

real run times of the BSP programs in Oxford BSP1ib on the Sun machine when the

list size n varies in increments of 800000 up to 4800000. For both Skillicorn and Cai's

and Cole's algorithms, figure 6.14 and figure 6.15 also plot the predicted computation

costs by setting BSP parameters g and I to 0 for the same purpose as for the matrix

multiplication examples. Notice that as Bird' algorithm is sequential, the predicted

BSP cost is equal to the predicted computation cost.

For Bird's algorithm and Skillicorn and Cai's algorithm, the real cost and the predicted

curves are very close. Accuracy is a little inferior in the case of Cole's algorithm. As

most of the computation costs in Cole's algorithm are maximum operation costs, we

infer that our cost calculator tends to overestimate maximum operations. Again, count-

ing only computation costs for our assumed implementation model does not generate

an accurate absolute value prediction for Skillicorn and Cai's and Cole's algorithms.

6.4 Chapter Conclusion

Ad-hoc analysis is a hard task even for a simple algorithm. Our cost calculator can

automatically perform the analysis of any arbitrarily complex programs for arbitrary

specified parameters, considering the effect of underlying message passing perfor-

mance. This allows us to make detailed comparisons of algorithms which have the

same intuitive asymptotic complexity.

The accuracy of our prediction is encouraging. In general, our accuracy also depends

on how the g and 1 values experienced by the computation patterns and communica-

tion patterns used in an application program are matched by those in the benchmark

program used to determine the BSP parameters (in other words how robust the BSP

framework is itself). Although we used the benchmark program provided with BSPlib,

developing a benchmark program more suitable for the computation and communica-

tion patterns used in our more restricted computational model should further improve

accuracy.

142 	 Chapter 6. Experiments: Comparing Different Algorithms

.-c-predicted(1)

02 ____

0.1

0.05

0
200 400 600 800 1000 1200

-0-prdIctd(1) 0.0156 0.031022 0.056599 0.092329 0.138214 0.194252

-C)-pre.cemp(1) 0.000161 0.003073 0.008917 0.0123 0.019221 0.02768

-ó-real(1) 1 	0.016484 0.032234 0.057117 0.092148 0.131761 0.198086

m=n

Figure 6.7: Accuracy of (1) when m=n, p=8

-o- predicted(2)
02

-o-pre-comp(2) /J>
-&real(2)

0.15

0

E

0.1

0.05

0
200 400 600 800 1000 1200

-o-predIcted2) 0.015694 0.031211 0.056882 0.092708 0.138685 0.194817

-o-pre-comp(2) 0.000862 0.003262 0.0072 0.012677 0.019692 0.028246

--A- real(2) 1 	0.01611 0.032624 0.057037 0.093367 0.142252 0212574

mtmn

Figure 6.8: Accuracy of (2) when m=n, p=8

6.4. Chapter Conclusion

0.14

0.12

0.1

0.08

I -0-predicted(1

0.06

0.04

0.02

0
20000 I 	40900 I 	60000 180080 I 	1E44)5

I-o-predlcted(1) 0.032607 0.054876 I 0.077145 I 0.099415 I 0.121684 I 0.143953

I -o-pre.comp(1 0.002885 I 0064 I 00769 I 001638 0.014423 I 0.017308

0033047 0.054771 I 0.076999 I 	0.09586 	I 0.116696 I 0.140966

Figure 6.9: Accuracy of (1) when n=8, p=8

0.35
-o-predicted2) 	I

0.3
 -0-pre-comp(2)

I
-fr-real(2) //

0.26

02

0.15

0.1

0.06

0
20000 I 	40900 I 	60000 80000 I 	IE+06 I 	1E45

I
I

0.057101 I 	0.10387 I 0.150639

I

I 0.197408

I

I 0244178

I

I 0290974

I

-

--1fr

D----pprreed

.(c2I)

mdp)

I

 0.012309 I 0.024615 0036923

eaI

0.0421 0.061538 0.073846

0.079412 I 0.131146 I 0.188744 I 0.246801 I 0.314281 I 0.376309

143

Figure 6.10: Accuracy of (2) when n=8, p=8

144 	 Chapter 6. Experiments: Comparing Different Algorithms

u.'o

-c-- predicted(1)
0.2 -Cl- pre-comp

0.15

0

E

0.1

0.05

0
20000 I 	40000 I 	60000 I 	80000 I 	IE+05 I 	IEOS

I-Q--predicted(1) 0787 0.00 0.122947 I 0.160485

I

I 0.1909 I 023562

I

 I p

rerae!-(c1o)

mp(1)

I -
-4

o

J-

-

0.07 0.015 00923 0.012308 0.015385 0.018461

03 0.117706 0.0818

I 0.152316 I 	0.19209 I 0236004

Figure 6.11: Accuracy of (1) when m=8, p=8

u.lo

0.14 -c'-predicted(2)

-a-pre-comp(2)
0.12

0.1

0.08

0.06

0.04

0.02

0
20000 I 	40000 	I 60000 I 	80000 I 	1E+05 I 	IE+05

I-O-predIctedr2 0.032803 I 0.055264 	I 0.077726 I 0.100188 I 0.122649 I 0.145111

0.003081 I 0.006158 	I I -o-pre-comp(2) 0.009234 0.012311 I 0.015388 I 0.018465

I --real(2) 0.033733 I 0.054835 	I 0.077826 I 0.098563 I 0.119468 I 0.142026

Figure 6.12: Accuracy of (2) when m=8, p=8

6.4. Chapter Conclusion
	

145

1.2

O.S.

J 	0.6

0.4

02

0

-0-predicted

-0-real

edided

8E+05 2E+06 2E+06 3E+06 4E+06 5E+06

0.184615 0.369231 0.553846 I 0738462 0.923077 1.107692
0.153068 030511 0A75672 0.671029 0.870188 1.047206

Figure 6.13: Accuracy of Bird's algorithm

02
-0-predicted I I

O.S. -0-pre-comp

0.7 --a-real I
I

0.6

0.5

0.4

0.3

02

0.1

0
8E.05 I 	2E06 I 	2E+06 I 	3E+06 I 	4E406 I 	6E+06

I-o-predicted 0.17354 I 	0.321248 .6167 I I 0212085

I

 -c-pre-comp 0.061556 I 0.12311

M ,6%785

2219 0.307774 0.369328
real 0.16854 I 	0.304909 0.710103 I 	0.862944

Figure 6.14: Accuracy of Skillicorn and Cai's algorithm

146 	 Chapter 6. Experiments: Comparing Different Algorithms

- I

-0-predicted

-a-pre-comp

0.8 --A-real

0.6
E

0.4

02

0
8E+05 I 	2E406 I 	2E+06 3E'06 I 	4E'O6 I 	5E406

I-Q-predicted 0.181115 I 	0.351894 I 	0.522672 I 	0.693449 I 	0.864231 1.035008

0.084628 0.16=2 0.169252 I -4J-pre-comp

I 0253875 0.3385 I 	0.423124 I 	0.507748

I -á-reai 0.142746 I 	0271711 I 	0.399435 I 	0.53311 I 	0.661277 I 	0.823869

Figure 6.15: Accuracy of Cole's algorithm

Chapter 7

Expansion: Costing Algorithm

Derivation Steps

7.1 Introduction

Built on the cost analysis described in chapter 3 and 4, the main aim of this chapter is

to augment our framework to partially relax our strict requirements on data structure

regularity (but without losing static predictability). This arose because Jay's original

work and our initial calculus required all elements of a vector (our nestable bulk data

structure) to have the same shape. This made shape expression concise and conse-

quently made automated analysis fast. However, although many practical algorithms

(for example in linear algebra) can be expressed within this class, the restriction can be

a big obstacle when applying the analysis to compare the costs of intermediate algo-

rithms of a BMF style algorithm derivation because we often encounter an algorithm

which cannot be expressed with it. For example, in the derivation of the maximum

segment sum algorithm given below, while the final algorithm has the required prop-

erty the algorithms at intermediate steps do not because they use the standard BMF

functions inits and tails. However, this irregularity is entirely shapely, in the sense of

being statically predictable. In this chapter we attempt to relieve the constraint (but

preserve shapeliness) of our analysis while keeping the property of being automatable

147

148 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

and avoiding increase in analysis cost (because irregular shaped vector data has more

information to express its shape, consequently, the cost analysis using these shape ex-

pressions also tends to become more expensive). After this amendment we present our

first analysis of a complete derivation of the maximum segment sum algorithm, and

examine the accuracy of our predictions against the run time of real parallel programs

as previous examples.

mss algorithm derivation

Remember from section 2.3.3 that Skillicorn and Cai derived a parallel algorithm from

the specification by the following calculation.

mss = 1/o+/*osegs 	 (1).

= 1/0 +/*°++/ o tails *oinits 	 (2)

= I /o-H-/o+/**otalls*oinits 	 (3)

1/ 0 1/ *o+/**o tails* oinits 	 (4)

= 1/o(Io+/*otails)*oinits 	 (5)

= 1/o(+/oI)*oinits 	 (6)

= I/o-i-/loT 	 (7)

7.2 Expanding Shape Analysis

An important feature of our original source language, VEc-BSP, was that it con-

strained vector elements to have the same shape. This not only makes shape expression

concise but also makes shape analysis much quicker than source program evaluation

because it avoids purely data dependent computation. For example, computation of

map (+1) v where v is a vector of length 1000 performs 1000 binary operations, but the

corresponding shape analysis concerns only the shape (1000, 1). This characteristic is

a key point to keep cost analysis time reasonably small in spite of the extra compu-

tations of evaluation information. However, when we try to use this cost analysis to

7.2. Expanding Shape Analysis 	 149

compare algorithms in BMF style derivations (using vectors to represent lists) we of-

ten encounter an algorithm which cannot be expressed with this constraint. Therefore,

we need to relax our requirement of shape regularity to express this kind of algorithm.

Because application of tails or inits generates a vector of vectors which still has some

kind of regularity, the ith vector has 1 i(i + 1) elements, and this "triangular shape" can

be characterised by the length of the last element, it might seems that only relaxation

that allows a triangular shape in addition to the length-element pair shape would be

enough. However, the observation of the following example of the intermediate real

data structures of the initial version of the mss algorithm with [1, 2,3,4]

[1,2,3,4]

.t inits

[[1], [1,2], [1,2) 3], [1,2,3,4]]

.iJ. *tails

[[[1]], [[2], [1,2]], [[3], [2,3], [1,2,31], [[4], [3,4], [2,3,4], [1,2,3,4]]]

.13.-H-I

[[1], [2], [1,2], [3], [2,3], [1,2,3], [4], [3,4], [2,3,4], [1,2,3,4]]

[1,2,3,3,5,6,4,7,9,10]

10

reveals that the second intermediate data has the triangular shape, the third intermediate

data is a vector of triangular shape and the fourth data has neither uniform shape nor

triangular shape. Therefore, we relax the restriction further to allows vectors whose

sub-vectors can have arbitrary length. When we relieve the constraints of the uni-

formity of vector elements, the intermediate shape information which is required to

compute cost becomes extremely complicated and we need to introduce a new way

to express it. In Skillicorn's calculus [77, 78] a shape vector is introduced to express

shape information. For example, a shape vector [n, m, p] denotes a list of n elements,

each of which is a list of no more than m elements, each of which is an object of size

150 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

no more than p. Except for the top level, the shape vector entry gives the maximum

length of list at each level, and the last entry in a shape vector gives the total size of any

substructure. This shape vector is annotated to indicate intermediate shape expressions

in the algorithm in order to calculate the cost. For example, the initial version of the

mss algorithm is

[1] T / [n2]
+1 * [

2,]
-H-/ oE'' 1 tails *

When the argument vector is [1, 2,3,4] (that is n = 4), these shape vectors are

[4]

[4,4]

[4,4,4]

[16,4]

[16]

[1]

This shape vector expression is concise, but the calculation of shape is done by hand

because no attempt for automation has been made. Even if we can automate the cal-

culation, using only information of this "no more than" type is inaccurate. In this

example, the real resulting shape of the second last step is (10, 1) in our expression,

but reduced shape vector is [16].

Another solution would be to translate vectors to vectors keeping their form and simply

replacing unknown real data with a dummy value. For example,

[1,2,3] — [1,1,1]

[[11, [1, 2], [1,2 7 3]]

map (+1) [1, 2,3] —* map (Ax.1) [1,1,1]

fold (+) [1, 2,3] .-* fold (Xx,y.1) [1,1,1]

Automation of shape deduction would be possible in a similar framework to that in

chapter 3. The corresponding shapes of the above example are

[1,1,1,1]

7.2. Expanding Shape Analysis 	 151

ill [i,i, ill, [[i],[i,i],[i,i,i],[i,i,i,i]]]

[1, 1 , 1], [1,1,1, 1]]

1

However this would involve similar memory usage and computation time to that of the

original source program and is consequently unattractive.

Our solution in this chapter is to try to use the (length, element shape) pair as much as

possible, that is, wherever it may be statically deduced (in reasonable analysis time)

that sub-vector elements have the same shape. Otherwise, we use the vector constructor

[] as the shape, allowing it to include both (,) and [] expressions as sub-vectors.

This means that two kinds of shape expressions for vectors can exist in one shape

expression.

The corresponding shape expressions should be

(4,1)

[(1, 1), (2, 1), (3) 1), (4, 1)]

[[(1,1)], [(1, 1), (2,1)1, [(I l l), (2,1), (3,1)1, [(1, 1), (2,1), (3,1), (4,1)]]

[(1, 1), (1, 1), (2 7 1), (1,1), (2,1), (3,1), (I l l), (2,1), (3,1), (4,1)]

(10,1)

1

respectively with the difference in data size becoming more significant as the length

of the input vector grows. The memory and time required for analysis of a program

will depend upon the degree of uniformity of its vector elements. As more vectors in

the source program can be expressed in the (length, element shape) form, so analysis

costs become smaller. The triangular shapes of the second intermediate data and the

element vectors of the third intermediate data might be expressed more concisely by

introducing new pair expression like {a, b} where a is the length of the last element

vector and b is the shape of an element of the element vectors. Its shape expression

152 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

would be

(4,1)

{4, 1}

[{1, 11, 12, 1}, {3, 1}, 14, 1}]

[(1, 1), (1, 1), (2 7 1), (1, 1),(2, 1), (3,1), (1,1), (2,1), (3,1), (4,1)]

(10,1)

1

However the automatic reduction from the third expression to the fourth expression, for

example, seems to be more difficult than that of the above shape expression for which

a relatively straightforward reduction strategy can be defined as explained below.

The basic idea to make the shape analysis (using only vector shape and pair shape) with

new expressions automatable is to define each shape function so that it has a function

for each kind of expression, reflecting the corresponding shape change. The shape

function f takes the form of

	

f = fix, 	ifxispair

	

f2 x, 	if x is vector

Each function shape distinguishes which expression is used for the argument shape

from its type and returns an appropriate result shape. For example, the shape function

of hd is

	

shapehd x = srid x, 	if x is pair shape

	

hd x, 	 if x is vector shape

The shape function of map is

shape-map fx = (t_Ienx,Lshp(f(t_eshpx))), 	if x is pair shape

map fx, 	 if x is vector shape

7.2. Expanding Shape Analysis 	 153

This amendment makes it possible to automate the new shape deduction and its infor-

mation can be used to compute cost. However, in some cases, shapes which have

uniform element shape are expressed as a vector rather than a pair. For example,

shape-map which was defined above cannot detect that the elements of the vector at

the second last step in the derivation have regular sized elements. From

[(1, 1), (1, 1), (2 7 1), (1,1), (2,1), (3,1), (1,1), (2,1), (3,1), (4,1)]

it reduces [1,1,1,1,1,1,1,1,1,1] rather than (10,1). Although both expressions are cor -

rect and have the same effect on the resulting cost, the latter is preferable in terms of

both memory usage and time for shape analysis. One solution would be to check the

result to determine whether its shape has uniform element shape by using some op-

eration like fold eq, where eq is an operation to check if the two shapes are equal or

not, after every function application. However this would be very expensive in term

of analysis time. Our solution is to add one more information component vector level

to the cost tuple and an information component level change to the application tuple.

The vector level of a real data item is (the number of nested levels) + 1, e.g. 1 for a

non-nested vector and 2 for a vector of a vector of a non-nested vector. We set the

vector levels of a datum constant and a primitive function term to 0. The level change

is a function that captures the change of the vector level after function application. Its

type is sz - sz. The new cost tuple takes the form

(shape, data size, data pattern, vector level, cost)

and the new application tuple takes the form

argument shape

(result shape, application pattern, level change, application cost)

When the result shape has a vector shape and the nested level of the result is 1, the

vector is converted to a pair shape using topair in the new bspapp operation.

topair n x = if (n = 1 and x has vector type) then (Iengthx, hdx) else x

Note that this solution can detect regularity of the elements only when the vector level

of a vector is 1. Finding a good solution which can deal with the general case remains

154 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

future work. The definition of the new shape expressions is as follows. The shape of

datum terms is 1. The shape of a tuple is a tuple (denoted with (,...,)) of the shape

of the components. The shape of a vector is a vector if its element shapes are not the

same, or (length, element shape) pair if its element shapes are the same. Their types

are

tycostc (D) 	 = sz

tycostc(un) 	 = sz

tycostc(Oix .. . xO) 	= tycostc(Oi)x ... xtycostc(0)

tycostc (vec 0) 	= sz X tycostc (0) or vec tycostc (0)

tycostc(sz) 	 = sz

The new shape expression which allows sub-vectors to have different shapes affects

associated definitions such as data size, application cost and communication cost. Data

size can be computed by the operator size defined by

size (XI,X2,•,X) =sizexi +sizex2++sizex

size (x, y) = sizex• sizey

size [xl,x2,•.•,xn] = fold (+) (map (size) [X1,X2,..,X])

size n = n

Since the result of the evaluation of an argument could have different sized sub-vectors,

the size of data (whose shape is x) which is sent to the processors by the master pro-

cessor in a scattering is determined by the operator scatsz:

scatszx = sizex (p— l)/p, 	 if x is pair shape

size (drop ((Iengthx)/p)x), 	if x is vector shape

where drop is a function which takes an integer n and a vector xs and removes the first

n elements from xs. Computing the communication cost of broadcasting the data in

a function is similar. Consequently, the communication cost of the part C which is

counted in bspapp is replaced by

comm_cost (t-pattern (f x)) d' s (scatsz x)

7.2. Expanding Shape Analysis

where

comm..cost appat daL.pat f..sz x..sz

=- o,

= (f..sz - (p - 1) - x-sz. ((p - 1) /p))

= (f-.sz(p -1)+x...sz . ((p — 1) /P))

155

if ap...pat = SEQ

g-1, if daLpat =MAP

g, 	otherwise

The application costs for combinators are given in the next section. In the follow-

ing definitions we use tJchange for taking the level change component from the result

of an application of a function shape to an argument shape.

The definition of new bspapp is

cost (t t') = bspapp cost (t) cost (t')

bspapp(f, s, d, n, T)(x, s', d', n', T')

= (topa i r (t_Icha nge (fx) n') (t.sh p (f x)), data_sz (t_a pcost (fx)),

t_pattern (fx), t_Ichange (fx) n', (T + T')

+X(p,g,l).(comm_cost (t-pattern (fx)) d's (scatszx) +1)+t_apcost(fx))

where

datasz apc =5+5' , 	if ap..c=1)

= t_size(fx), 	otherwise

The main difference from the old bspapp (except for the comm_cost part explained

above) is that the new bspapp calculates the vector level of the application result by

applying the level change of a function to the vector level of an argument, and then,

when it is 0 and the shape of the result is a vector shape, the shape of the result is

converted to a pair shape.

Recall that the definition of the application pattern is: SEQ for a sequential function;

MAP for a parallel function whose implementation template finishes by gathering local

results to the master; FOLD for any other parallel function. The data pattern indicates

which application pattern was used to generate the term (0 for atomic term). A trans-

156 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

lation function cost translates source terms to cost tuples. For example,

cost (d) = (1, 1,SEQ,O,0) where d is a datum constant

Note that the second 0 from the right hand end means the vector level of a datum

constant is 0.

cost (d) = (Xx.(Xy.(1,SEQ,+0,1),SEQ,+0,0),0,SEQ,0,0)

where d is a binary datum operation

Note that the second 0 from the right hand end means the vector level of a binary datum

operation itself is 0. The first +0 from the right hand means application of d to the first

argument does not change the vector level, and the second +0 means the application

of the resulting function to the second argument also does not change the vector level.

The new cost functions for x and Ax.t are

cost (x) 	= (x,sizex,SEQ,vlevelx,0)

cost (Ax.t) = (Ax. (it1 (cost (t)), SEQ, +(it4 (cost(t)) - vievel x) ,1t5 (cost (t))),

0,SEQ,0,0)

where cost (t) gives the cost tuple of t(x), which is computed by using the cost tuple of

variable x, cost (x) = (x, size x, SEQ, vievel x, 0). The function Ax. cost (t (x)) represents

the function which takes sa : the shape of the argument a, and generates cost tuple

of t(a). The shape component of cost(x) is x because it is substituted by the shape

of the result of evaluation of an argument Sa. The data size component of cost (x) is

sizex which computes the data size of a when x is substituted by 5a• The data pattern

component of cost (x) is SEQ because the result of evaluation a is treated as initial data

for evaluation of t(a) in the application part. The vector level component of cost (x) is

vieveix which computes the vector level of a when xis substituted by Sa. The definition

of vievel which computes the vector level from its shape is:

vievel 'A 	= 0

vlevel(A,B) = vlevelB+1

veveI[A] 	= vlevel(hdA)+1

7.3. New Cost Functions for Combinators 	 157

The cost component of cost (x) is 0 because the result of evaluation a is treated as

initial data for evaluation of t (a) in the application part.

In the definition of cost (Xx.t), the result shape of application (Ax.t) is equal to the

shape component of cost (t), that is lti (cost (t)) because it computes the shape of t(a)

when x is substituted by 5a Note that A.x.ic1 (cost (t)) captures the shape change. The

application pattern of application (Xx.t) to some argument a is SEQ because there is

no communication in the redistribution communication part. (Note that the data of

the result of evaluation of a is used as initial data stored in the master for evaluation

of t(a) in the application part and the necessary data in (Xx.t) is statically distributed

to the processors.) The level change of (Xx.t) is +(7r4(cost(t)) - vieveix) because

It4 (cost (t)) computes the vector level of the result t (a) when x is substituted by 5a and

vleveix computes the vector level of the argument a when x is substituted by 5a• The

application cost of application (Xx.t) is equal to the cost component of cost tuple of

t(x), that is 715 (cost (t)) because it computes cost of t(a), (which is evaluated in the

application part,) when x is substituted by Sa.

7.3 New Cost Functions for Combinators

Defining cost functions for combinators involves defining functions which capture the

shape change and determining the application cost and the application pattern based

on assumed implementation skeletons. For some combinators which take a vector as

the argument we need to define two kinds of functions selected according whether the

argument shape expression is a pair (referred to as pair shape) or a vector (referred

to as vector shape). The cost functions which are given below, except for map and

fold when x is pair shape, are introduced for the first time in this chapter. In particu-

lar, the introduction of foldconcat, inits and tails are made possible by the new shape

expression.

158 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

map

The modelled implementation of map is: apply the function sequentially on the vector

segments in each processor then gather the results to the master. Its cost function is:

cost (map) = (Xf.(Ax.shape_map, SEQ, +0,0), 0, SEQ, 0, 0),

shape _map

= ((t_lenx, t...shp (f (t_eshpx))), MAP,t_lchange (fx), t_apcost (f (t_eshpx)).

(tjen (x)/p) + t_size (f (t_eshpx)) . (t_len (x)/p) . (p - 1) g + 1), if x is pair shape

(map (t_sh p) tuples, MAP, t_lcha nge (fx), maxsum (map (t_a pcost) tuples)

+gath_sz (map (t_size) tuples).g+l), if xis vector shape

where tuples= (mapfx)

The second 0 from the right hand end means the vector level of map is 0. The +0

means the application of map to a given function tf does not change the vector level.

The level change function of map tj' is the same as the level change function of t1,

that is tJchange (fx). When x is a pair shape the cost function of map is the same

as that in chapter 4 except for this additional information of the vector level and the

level change. When x is a vector shape the analysis performs map fx, that is the shape

function f is applied to each element of x generating each application tuple, which

becomes an element of the resulting vector. The result shape of map tj tx is obtained by

taking the result shape component of each application tuple, that is map (Lshp) tuples.

Since the data size of the vector elements allocated to each processor can be different,

the local computation cost to apply t1 to the segments in each processor can also be

different. Therefore the cost of this parallel computation part is the maximum of the

local computation cost in any processor. It is computed by taking the application cost

component from each application tuple (that is map (t_apcost) tuples), computing the

summation for every (length x)/p elements, and then taking the maximum among

them. The last two steps are expressed by the operator maxsum. The communication

cost is computed using the message size to gather the local result, that is taking the

size of each result shape of element, (that is map (t.size) tuples) and computing the

summation of them excluding the first (length x)/p elements which are already kept

7.3. New Cost Functions for Combinators 	 159

in the master. The last step is expressed by the operator gath_sz. The definitions of

maxsum and gath_sz are

maxsum x = (sum (take (t_Ien (x)/p)x)) I
(if length (drop (t_Ien (x)/p)x) > 0

then maxsum (drop (t_len (x)/p)x) else 0),

gathsz x = sum (drop (length (x)/p)x)

where take is a function which takes an integer n and a vector xs and returns the first n

elements from xs.

fold

The modelled implementation of fold is: the sub-vectors are folded sequentially on

each processor, with results then transferred to the master processor which folds them

together. As in Skillicorn's calculus, fold is used only with operators which take con-

stant space, that is the shapes of their results are same as the shapes of their arguments.

Fold operations with a non-constant space operation are defined individually (e.g. fold-

concat defined below). Its cost function is:

cost (fold) = (X E). (Xx. shapelold, SEQ, +0) 0), 0, SEQ, 0, 0))

shape-fold

= (t_eshpx, FOLD, (-1), t_apcost (t_shp ((D (t_eshpx)) (t_eshpx)) (t_len (x)/p +

p —2) + size(t_eshpx) . (p—i) g+l), ifxis pair shape

(hdx, FOLD, (-1),t_apcost (t.shp (e (hdx))(hdx)) . (length (x)/p +p —2)

+size(hdx).(p-1).g+l), if xis vector shape

The second 0 from the right hand end means the vector level of fold is 0. The +0

means the application of fold to a given function tED does not change the vector level.

The level change function of fold tD is (-1) because fold t reduces the vector level

by 1. When x is a pair shape, the shape of the result of fold t tx is t_eshp x because of

the assumption of constant space. The application cost of fold t t is the computation

160 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

cost for t_len (x)/p + p —2 applications of fold t (in which t_len (x)/p - 1 are for the

parallel part and p - 1 are for the sequential part), that is

t_apcost (t...shp ((t_eshpx)) (t_eshpx)). (t_Ien (x)/p + p - 2),

the communication cost for gathering the local results, that is size (t_eshpx) (p - 1) g

and the synchronisation cost 1. The case when x is a vector shape is similar, but the

computation of the shape and the application cost is performed using hd and length

instead of t_eshp and t_Ien to take the element shape and the length respectively.

foldconcat

In the expanded version described in this chapter, foldconcat (fold with concatenate) is

added to the primitive functions in order to express one of the intermediate algorithms

in the mss derivation. The modelled implementation of foldconcat is to concatenate

sequentially in the master processor rather than in parallel to avoid distribution cost.

cost (foldconcat) = (Ax. shapeioldconcat, 0, SEQ, 0,0),

shapeJbldconcat

= ((i_len x t_len (t...eshpx),t_eshp(t_eshpx)), SEQ, (-1),

concatConst. (t_lenx— 1)), ifxis pair shape

(foldconcatx,SEQ, (-1),concatConst. (length (x) - 1)), if xis vector shape

Working from the right hand end, the cost of foldconcat itself and vector level are

0. The data pattern is SEQ and the message size is 0. When x is a pair shape, the

result shape of foldconcat x is (t_Ien x t_Ien (t_esh px), t_esh p (t_esh px)). The applica-

tion pattern is SEQ since it is sequential function. The level change is (-1) because

foldconcat reduces the vector level by 1. The application cost is some constant time

for concatenation multiplied by t_len x - 1. When x is a vector shape, the result shape

is foldconcat x and the other components are the same as those when x is a pair shape.

7.3. New Cost Functions for Combinators
	

161

scan

The implementation of scan is: the assigned block of elements is scanned sequentially;

the final value of local scan is scanned across processors in parallel using the obvious

tree algorithm; the result of the global scan on processor i (< p) is sent to processor

i + 1. In each processor, tD is applied to the pair of the result of global scan and the

local results; the result in each processor is gathered to the master processor. We make

the same restriction concerning constant space operators as for fold. Its cost function

is:

cost(scan) = (Xf.(Xx.shape_scan, SEQ, +0,0), 0, SEQ, 0,0),

shape-scan

= (x, MAP) 0,t_apcost (t.shp ((t_eshp (x)))(t_eshp (x))). (2. (tJen (x)/p) -I+

log (p)) + (size (t_eshp(x)). (log (p) + 1) + (size(x)/p). (p—i)) •g

+(log(p) +2) .1), ifxis pair shape

(x, MAP,0, t_apcost (t.shp ((hd (x)))(hd (x))) . (2. (length (x)/p) - 1 +

log (p)) + (size(hd (x)) (log (p) + 1) + (size(x)/p). (p—i)) g

+(log (p) + 2) .1), if x is vector shape

The second 0 from the right hand end means the vector level of scan is 0. The +0 means

the application of scan to a given function tD does not change the vector level. The level

change function of scan tED is 0 since scan does not change the vector level. When x

is a pair shape, the shape of the result of scan t tx is x because of the assumption

of constant space. The application cost of scan tED tx is the computation cost for 2

(t_Ien (x)/p) - 1 +log(p) applications of t (in which (t_Ien (x)/p) - 1 are for the local

scan, log (p) are in the tree algorithm and t_len (x)/p are for between each element of

the local scan result and the global scan result), that is

t_apcost (t_shp ((t_eshp (x))) (t_eshp (x))) . (2. (tJen (x)/p) - 1 + log (p)),

the communication cost is size (t_eshp (x)) log (p) . g in the tree algorithm,

size (t_eshp (x)) g for sending the local result to the next processor and size (t_eshp (x)).

162 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

(p - 1) for gathering the local results, in total,

(size (t_eshp(x)). (log (p) + 1) + (size(x)/p). (p—i)) •g

and the synchronisation cost is log (p) 1 in the tree algorithm, 1 after sending the local

result to the next processor and 1 for gathering, in total, (log (p) +2) 1. The case when

x is a vector shape is similar, but the computation of the shape and the application cost

is performed using hd and length instead of t_eshp and t_len to take the element shape

and the length respectively.

inits and tails

The modelled implementation of in its begins with each processor computing the local

initial segments of its part of the list. The last element of this local result is then passed

to the processor immediately to its right, where it is prepended to each of the partial

initial segments held by that processor. After p - 1 steps, the values from the first

processor are prepended to each of the segments in the last processor, and then the

local results from all processors are gathered to the master processor. Its cost function

is:

cost (in its) = ()Lx. shapeinits, 0, SEQ, 0, 0),

shapeinits

= ([(1,t_eshp(x)),(2,t_eshp(x)),...,(t_len(x),t_eshp(x))],

MAP, +1, concatConst. (t_len (x) 1p)

+(size (t_eshp (x)) (LIen (x)/p) g+ (t_len (x)/p) concatConst + 1). (p - 1) +

size (drop (t_Ien (x)/p)) {(1,t_eshp(x)), (2,t_eshp(x)),..., (t_len (x),t_eshp(x))] -g

+1), if x is pair shape

(inits x, MAP, +1, concatConst. (length (x)/p)

+ ((size (take (length (x)/p)x)) . g +concatConst + 1). (p - 1)

+size (drop (length (x)/p) initsx) .g+l), if x is vector shape

Working from the right end, the cost of inits itself and vector level are 0. The data

patten is SEQ. The message size is 0. When xis a pair shape, the result shape of in its x

7.4. Costing Derivation Steps 	 163

is

[(1,t_eshp(x)),(2,t_eshp(x)),...,(t_Ien(x),t_eshp(x))]

which is a vector shape. The level change function is (+1) since in its increases the vec-

tor level by 1. The application pattern is MAP since the modelled implementation ends

by gathering the local results. The application cost is: concatConst• (Lien (x)/p) for

computing the local initial segments; (size (t_eshp (x)) . (t_Ien (x)/p) g+ (t_len (x)/p).

concatConst + 1) . (p - 1) for the p - 1 steps of passing the last element of the local

result followed by prepending to each element; and

[(l,t_eshp(x)),(2,t_eshp(x)),...,(t_len(x),t_eshp(x))].g+l

for gathering the local results followed by a synchronisation. When x is a vector shape,

the result shape is inits x. The application cost is concatConst. (t_len (x)/p) for com-

puting the local initial segments, ((size (take (length (x)/p)x)) g + concatConst + 1).

(p - 1) for the p - 1 steps of passing the last element of the local result followed by

prepending to each element and size (drop (length (x)/p) inits x) . g + 1.

tails is an analogue of in its, which computes the suffix segments of its argument vector

and its cost function is the same as that of inits.

7.4 Costing Derivation Steps

Reflecting the new shape expression, our Haskell implementation, which was outlined

in chapter 5 has been modified. In this section, we first rewrite the BMF expression

of each intermediate algorithm as the corresponding VEc-BSP program. Next we use

our cost calculator to predict the cost of five different algorithms in the derivation steps,

comparing one to another for each transformation step. Finally, we test the accuracy

of the predicted costs against the real run time of hand compiled BSP program in

Oxford BSP1ib. The comparison of efficiencies depends on the values of the BSP

benchmark which capture performance characteristics of computation, communication

and synchronisation of the target systems. Our real target system is the same as that

is used in chapter 6, that is an 8-processor Sun HPC 3500 UItraSPARC II machine.

164 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

As before, BSP parameters obtained by running a benchmark program provided by

Oxford BSP1ib are p = 8, g = 1.6, 1 = 67150. The binary operator constant is set at 1

and the total calculated cost in operations is converted into seconds by dividing by 13

million as directed by s, the benchmark returned factor which normalises 1 and g to the

single processor computational speed.

7.4.1 VEC-BSP Programs of Derivation Steps

First, we express the mss derivation in terms of VEc-BSP program using the new

operations that were introduced above.

fold (1) (ma p(fold (+)) (foldconcat (ma p (ta ils) (initsx)))) 	 (8)

= fold (1) (foldconcat (map (map (fold (+))) (map (tails) (initsx)))) 	(9)

= fold (1) (map (fold (1)) (map (map (fold (+))) (map (tails) (initsx)))) 	(10)

= fold (1) (map (Xv. ((fstA) I (sndA)))(initsx)) 	 (11)

where

A = fold (0) (map (pairO) v)

0 = Xxy. pair (fstx+fsty)((sndx+fsty) I 0)

= fold (I) (shiftright(0) (map (I) (scan (0) (map (pairO) v)))) 	 (12)

where

= Xxy. pair (fstx+ fsty)((sndx +fsty) 1 0)

Since recur-reduce and recur-scan can be expressed as a reduce and a scan respectively

(chapter 8 in Skillicorn [77]) the BMF expressions of algorithms (6) and (7) can be

expressed in VEc-BSP as (11) and (12), where shiftright(0) rotates the entire list right

one place, moving a single element from each processor to the next and inserting 0 at

the left end. shiftright is now added to the set of primitive functions. The cost function

of shiftright is defined as

cost (shift right) = (Xe. (Xx. ((t_len (x) + 1, t_eshpx), SEQ, 0, size (t_eshp (x)) . g), SEQ, 0,0>,

0 7 SEQ, 0,0)

7.4. Costing Derivation Steps 	 165

7.4.2 BSP Implementations of Derivation Steps

We outline the BSP implementation of each BSP program (8)-(12) based on the im-

plementation strategy given in 3.3 and implementation skeletons for combinators in

6.3.

Algorithm (8): fold (1) (map (fold (+)) (foldconcat (map (tails) (initsx))))

inits phase:

the contents of x in the master processor are scattered to the p processors;

synchronisation;

each processor computes the local initial segments;

the last element of the local initial segment in processor i is sent to processor

i + 1 and prepended to each of the partial initial segments held by processor

i + 1 followed by synchronisation. this is repeated p times.

• map(tails) phase:

each processor computes the tail segments for each partial initial segment

held by the processor;

the local result in each processor is gathered to the master processor;

synchronisation.

• foldconcat phase:

the master processor computes foldconcat for the result of 7.

• map(fold(+)) phase:

the contents of the result of 8 in the master processor are scattered to the p

processors in vector block manner;

each processor computes the fold (+) for each vector held by the processor.

• fold (T) phase:

166 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

each processor computes fold (1)' that is takes the maximum of the result

of 10 held by the processor;

the local result in each processor is gathered to the master processor;

synchronisation;

the master processor computes fold(1), that is takes the maximum of the

gathered local results.

Algorithm (9): fold (1) (foldconcat (map (map (fold (+))) (map (tails) (initsx))))

• in its phase:

This is the same as the step 1.4. of algorithm (8).

• map (tails) phase:

each processor computes the tail segments for each partial initial segments

held by the processor.

• map (map (fold(+))) phase:

each processor computes the fold (+) for each inner vector held by the pro-

cessor;

the local result in each processor is gathered to the master processor;

synchronisation.

• foldconcat phase:

the master processor computes foldconcat for the result of 7.

• fold (1) phase:

the contents of the result of 9 in the master processor are scattered to the p

processors;

11, each processor computes fold (1) for the result of 10;

12. the local result in each processor is gathered to the master processor;

7.4. Costing Derivation Steps 	 167

synchronisation;

the master processor computes fold (1) for the gathered local results.

The BSP implementation of the algorithm (9) is similar to algorithm (8). The dif-

ference between (8) and (9) is the timing of the use of foldconcat. We look at the

difference using an example in which the input vector is [1,2,3,4] and the number of

processors is 4. In (8), after the computation of map (tails) (step 5), the local results

are

P0: [[1]],

P1: [[2],[1,2]],

F2: [[3], [2,3], [1,2,3]],

P3: [[4],[3,4],[2,3,4],[1,2,3,4]]

The local result in each processor is gathered into the master processor (step 6) fol-

lowed by foldconcat (step 8), and redistributed among the worker processors evenly in

vector-block manner (step 9). The data distribution at this time is

P0: [1],[2],[1,2]

[3],[2,3],[1,2,3],

[4],[3,4],

[2,3,4],[1,2,3,4]

and then fold (+) is applied in each vector, resulting in

P0:1,2,3,

P1:3,5,6,

P2:4,7,

P3:9,10

As we can see, after the application of map (tails) (initsx)) the outermost elements

have different number of inner vector elements which become the outermost elements

after application of the next foldconcat in the master processor. Since redistribution of

these for the next fold (+) is made in terms of these new outermost elements, the load

imbalance caused by inits and map (tails) is improved and the computation costs of

the following operations are reduced, but the gather and redistribution cost to perform

foldconcat is introduced.

168 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

In contrast, in the algorithm (9), for the result of map (tails) (step 5)

PO : [[1]],

[[2],[1,2]],

[[3],[2,3],[1,2,3]],

[[4], [3,4], [2,3,4], [1,2,3,4]]

map (map (fold (+))) is applied immediately (step 6), resulting in

PO: [11,
[2,3],

[3,5,6],

[4,7,9, 10]

The local result in each processor is now gathered into the master processor (step 7)

followed by foldconcat (step 9), and redistributed among the worker processors evenly

in vector-block manner in step 10, resulting in

P0: 1, 2,3,

P1:3,5,6,

P2:4,7,

P3:9,10

As we can see, the application map (map (fold (+))) is applied to the unbalanced dis-

tributed data, which could introduce a considerable parallel computation cost. How-

ever, the gather and redistribution costs to perform foldconcat are relatively small be-

cause the data size transmitted for the communication is small after the application of

map (map (fold (+))).

Algorithm (10): fold (1) (map (fold (1)) (map (map (fold (+))) (map (tails)(initsx))))

. inits phase:

This is the same as the step L-4. of algorithm (8) and (9).

• map (tails) phase:

5. each processor computes the tail segments for each partial initial segments

held by the processor;

7.4. Costing Derivation Steps
	

169

• map (map (fold(+))) phase:

each processor computes the map (fold (+)) for each vector held by the pro-

cessor.

• map (fold (1)) phase:

each processor computes the fold (1) for each vector held by the processor.

• fold (T) phase:

each processor takes the maximum of the result of 7;

the local result in each processor is gathered to the master processor;

synchronisation;

the master processor takes the maximum of the gathered local results.

The BSP implementation of algorithm (10) is similar to (8) and (9). In algorithm (10),

redconcat is not used and gathering occurs only in the last phase fold (1).

Algorithm (11): fold (1) (map (Xv. ((fstA) I (sndA)))(initsx))

• inits phase:

This is the same as the step 1.-4. of algorithm (8),(9) and (10).

• map(Xv. ((fstA) J (sndA))) phase:

each processor computes A, that is, makes a pair with 0 for each vector

segment and folds with 0;

each processor takes the maximum of each resulting pair in 6.

• fold (T) phase:

each processor computes fold (I) for the result of 7;

the local result in each processor is gathered to the master processor;

synchronisation;

170 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

11. the master processor takes the maximum of the gathered local results.

Algorithm (12): fold (1) (shiftright(0) (map (1) (scan (0) (map (pairO) v))))

• map(pairO) phase:

the contents of x in the master processor are scattered to the p processors;

synchronisation;

each processor makes a pair with 0 for local element.

• scan (0) phase:

each processor computes local scan with 0;

the final element of the local scan in each processor is scanned in parallel

across the processors with 0 using the obvious tree algorithm;

the result of the global scan in the processor i (< p) is sent to processor

i+1;

synchronisation;

each processor applies 0 to the pair of the value sent to the processor in 6

and each element of the results of 4.

• map (1) phase:

each processor takes the maximum element of each pair of the result of 8.

• shiftright (0) phase:

shiftright (0) rotates the entire list right one place, moving a single element

from each processor to the next and inserting 0 at the left end.

• fold (1) phase:

each processor computes fold (1) for the result of 10;

the local result in each processor is gathered to the master processor;

7.4. Costing Derivation Steps 	 171

synchronisation;

the master processor takes the maximum of the gathered local results.

7.4.3 Predicted Results of Derivation Steps

We now look the predicted result for each derivation step that is computed by our cost

calculator with the architecture parameters of our target machine. Experiments are

made varying the input vector size n up to the value which is large enough to show

significant differences of efficiency. Figure 7.1 plots the predicted results of (8) and

(9) varying the input vector size n up to 160. It shows that the cost of (8) increases

much faster than (9). Its complexity looks like 0(n2) or faster. Figure 7.2 plots the

predicted results of (9) and (10) varying n up to 224. In this case, (10) is a little more

efficient than (9) but their plots draw similar curves. It seems that the difference of

efficency would not change significantly even if n becomes large. The complexity

of both algorithms looks like 0(n2) or faster. Figure 7.3 plots the predicted results

of (10) and (11) varying n up to 256. It reveals that complexity of (10) is 0(n2) or

faster as predicted above. The costs of (10) and (11) are similar up to about 100, but

the difference of the costs becomes significantly large as we increase the value of n.

looks very efficient and its complexity looks linear, but it is not clear without

checking the case when n is larger. Figure 7.4 plots the predicted results of (11) and

of varying n up to 2400. After n = 400, the cost of (11) increases rapidly drawing

a curve which suggests that the complexity of (11) would be 0(n2) or faster. (12)

appears almost constant and its complexity looks linear, but it is not clear again without

checking in the case when n is larger. Figure 7.5 shows the cost behaviour of (12) when

n varies up to 400000. It appears that the complexity of (12) is linear.

Overall, we can predict not only the difference of order of complexity but also the size

of input vector when the difference of order is beginning to be significant. In this exam-

ple, (8) - (9) reduces cost dramatically even if n is very small. It implies that the re-

distribution cost caused by foldconcat between map (tails) (initsx) and map (fold (+))

is very expensive. (9) -* (10) seems to reduce the cost slightly, but does not depend on

172 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

the value of n. (10) -* (11) reduces the cost significantly when n is larger than about

100. (11) -p (12) also reduces the cost significantly when n is larger than about 500.

The analysis time for (12) is a few seconds which does not depend on n. The analysis

time for (8)-(1 1) at the largest value of n in the above experiment can take a few

minutes, although it depends on the speed of the machine. Whether its efficiency is

good enough for practical use would also depend on the range of problem sizes of

interest as well as machine speed.

7.4.4 Accuracy Test

To test the accuracy of our cost analysis against performance on a real machine we

hand compiled the BSP program in Oxford BSP1ib for each of the five algorithms

according to the implementations that are outlined in 7.4.2 and ran them on an 8-

processor Sun HPC 3500. Following the same sequence of experiments using the

same range of n as for the predictions, figure 7.6 - figure 7.10 plot predicted and real

run times for (8) - (12) respectively for the range of n used for the predictions. The

tables of difference between predicted and real run times also given in those figures.

Although our calculator seems to tend to underestimate a little (except for the case

(8)), those curves capture the characteristics of the behaviours of real run time costs.

The reason why only the estimated cost for (8) overestimates might be that our cost

calculator overestimates its communication costs which take a considerable part in the

total cost when input data is large.

7.5 Experiments with Different Number of Processors

In order to show another use of our cost calculator, we examined the impact of the

changing the number of processors. We predict the costs of algorithm (12) when p =

1,2,4,8 and n = 400000, and then test the accuracy of the predictions, comparing to

real run time costs. First we look again the implementation details of (12) specifying

the case when p = 1, 2,4,8 individually.

7.5. Experiments with Different Number of Processors 	 173

Algorithm (12): fold (T) (shiftright(0) (map() (scan (0) (map (pairO)v))))

when p=l:

• map(pairO) phase:

master processor makes a pair with 0 for the elements.

scan (0) phase:

master processor computes sequential scan with 0.

• map (T) phase:

master processor takes the maximum element of each pair of the result of 2.

• shiftright(0) phase:

master processor inserts 0 at the left end of the result of 3.

• fold (T) phase:

master processor computes fold (1) for the result of 4.

when p=2:

• map(pairO) phase:

the second half of contents of x in the master processor are sent to the worker

processor;

synchronisation;

each processor makes a pair with 0 for the local elements.

• scan (0) phase:

each processor computes local scan with 0;

the final element of the local scan in the master processor is sent to the

worker processor;

synchronisation;

174 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

the worker processor applies 0 to the data sent in 5 and the final element of

the local scan in the worker processor;

the final element of the local scan in the master processor is sent to the

worker processor;

synchronisation;

the worker processor applies 0 to the pair of the value sent to the processor

in 8 and each element of the results of 4.

• map(1) phase:

each processor takes the maximum element of each pair of the result of 10.

• shiftright (0) phase:

master processor send the last element of the local result to the left end of

the local result in the other processor and inserting 0 at the left end.

• fold (T) phase:

each processor computes fold (1) for the result of 12;

the local result in the worker processor is sent to the master processor;

synchronisation;

the master processor takes maximum of the local result in the master and

the local result in the worker which was sent to the master in 14.

when p=4:

• map(pairo) phase:

1 the contents of x in the master processor are scattered to the worker proces-

sors;

synchronisation;

each processor makes a pair with 0 for the local elements.

e scan (0) phase:

7.5. Experiments with Different Number of Processors 	 175

each processor computes local scan with 0;

the final element of the local scan in each processor is scanned in parallel

across the processors with 0 using the obvious tree algorithm;

the result of the global scan in the processor i(< 4) is sent to processor i+ 1;

synchronisation;

each processor applies 0 to the pair of the value sent to the processor in 6

and each element of the results of 4.

• map (T) phase:

each processor takes the maximum element of each pair of the result of 8.

. shiftright(0) phase:

- 	10. shiftright (0) rotates the entire list right one place, moving a single element

from each processor to the next and inserting 0 at the left end.

• fold (T) phase:

each processor computes fold (1) for the result of 10;

the local result in each processor is gathered to the master processor;

synchronisation;

the master processor takes the maximum of the gathered local results of 12.

when p=8:

The description for this case is similar to that for the case when p = 4.

Next, we predict the cost of algorithm (12) when p = 1,2,4,8 using our cost calcu-

lator. BSP parameters used in the prediction are obtained by running the benchmark

program provided with BSP1ib on the Sun }TPC 3500, and given in table 7.1. Note

that as system conditions of our target system has changed since when the previous

experiments were done, the values of these parameters when p = 8 are different from

those for the previous experiments.

176 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

p g (flops/word) 1 (flops) s

1 0.06 810 16

2 1.09 5479 16

4 1.37 25671 16

8 1.63 104230 16

Table 7.1: BSP parameters when p = 1, 2, 4, 8

Figure 7.11 plots the predicted and real run time results of algorithm (12) when p =

1,2,4,8. The table of difference between predicted and real run time is also given with

the graph. The predictions when p = 1 and p = 4 are very close and the predictions

are a little inferior when p = 2 and p = 8. As a result, the best case (p = 4) and the

worst case (p = 1) in real run time results were successfully predicted from the results

obtained by our cost calculator. The second best case (p = 2) and third best case (p = 8)

in real run time results does not correspond with the predicted order partly because the

calculator overestimated when p = 2 and underestimated when p = 8.

Although we would need to make more experiments and improve accuracy from the

investigation of the results, the calculator seems to have promise as a tool to predict an

optimal number of processors.

7.6 Chapter Conclusion

We have demonstrated the first example of application of our cost calculator to a com-

plete algorithm derivation. It required a new shape expression in which two types of

shape expression are mixed in order to express a shape which has different shaped

elements while trying to avoid a large increase of the analysis time. It required us

to introduce new operators such as inits and tails. Our cost analysis mechanism was

augmented so that it can deduce the new shape expressions and costs automatically.

Our cost calculator can automatically perform the analysis for arbitrary specified pa-

rameters. This allows us to make detailed comparisons of algorithms, which would be

difficult in the traditional order analysis. The accuracy test of our predictions against

7.6. Chapter Conclusion
	

177

real run time costs shows that the predictions are accurate enough to capture the be-

haviours of each run time cost when the input data size grows. Future development

would include the improvement of both accuracy of prediction and efficiency of analy-

sis cost, and the addition of more combinators which would enable us to apply the tool

to a wide ranger of application problems.

178 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

025

02

0.15

a)
E

0.1

0.05

0

-0- predicted(8)

-o-predlcted19

-0- prethcted(8)

-0-predicted(9)

32 48 64 80 96 112 128 144 160

0.06318 0.06666 0.06332 0.07421 0.09041 0.11291 0.14276 0.18106 0.22878

0.06193 0.06241 0.06327 IO.Mal 0.06663 0.093 0.06252 0.06681 0.0720e

Figure 7.1: Comparison of predicted cost between (8) and (9)

U. IS

-0-predlcted(9) I
0.1

-0- predicted(10)

0.08

0.06
33

0.04

0.02

0
_______ 32 1 	64 1 	96 I

1 	128 11601192 1224

I -o-predicted) 0.0519261 0.0634 10.06652910.06252610.07209310.08606510.105274
1--o-predicted(10) 0.0414791 0 .042485 1 0 .045172 1 0 .050376 1 0 .058923 1 0 .071651 10.089388

Figure 7.2: Comparison of predicted cost between (9) and (10)

7.6. Chapter Conclusion

0.1

0.08

0.06
E

0.04

predicted(10)

--a—predicted(l1)

0.02

0
321641961128 1 16011921224 1 256 1-o- predicted(10) 0 .04148 1 0 .04249 1 0 .04517 1 0 .06038 1 0.0589210.0716510.0893910.11287

1-0- predicted(1 1) 0.0413610.041451 0.0416 10.04178I0.0420510.0423610.0427310.04315

Figure 7.3: Comparison of predicted cost between (10) and (11)

02 -I —c—predlcted(11)

0.15

E

0.1

0.06

p 	 p 	 0 	p 	 p

0
400 I 	800 1 	1200 1800 2000 I 	2400

1 -0--predcted(11) 0.04574 I 0.068812 I 0.080638 I 0.110922 I 0.149962 I 0.197653

I-0-predicted(12) 0.026904 I 0.026978 I 0.026052 I 0.026126 I 	0.0262 I 0.026273

179

Figure 7.4: Comparison of predicted cost between (11) and (12)

/P

48 64 80 96 112 129 144 160 1 32

0.06318 0.05666 0.06332 0.07421 0.09041 0.11291 0.14276 0.18106 0.22878

0.0643 0.05616 0.0684 0.07328 0.093 0.1111 0.13496 0.1718 0.20513

0.25

0.2

0.15

0I

E

0.1

0.05

-0- predicted(8)

-0- real(8)

180 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

U."

0.1

0.08

0.04

0.02

0
80000 I 	2E+06 I 	2E+05 I 	3E+05 I 	4E+O5_j

I -o-Predicted(12)1 0.040601 I 	0.055372 I 	0.070143 1 	0.084914 I 	0.099685

Figure 7.5: Predicted cost of (12)

a 	1 	32 	1 	48 	1 	64 	1 	80 	1 	96 	1 	112 	1 	128 	1 	144 	1 	160

real-predicted 1 0.01112 1 -0.0005 1 0.00508 1 -0.00093 1 0.00259 1 -0.000181 1 -0.0078 1 -0.00926 1 -0.02265

Figure 7.6: Comparison of predicted and real cost of (8)

7.6. Chapter Conclusion
	

181

U. IQ

0.12

I

--predlcted9)

0.1

reii
0.08

E

0.05

0.04

0.02

0
32 1 	64 1 	96 I 	128 I 	160 I 	192 I

1-0-- predIcted 0.051926 10.05327371 0.056529 I 0.062625 I 0.072093 I 0.086065 10-105274_

I -O-real(9) 0.053412 10.057627 10.067914 10.074024 10.078654 10.102996 I 0.127829

a 1 	32 1 	64 1 	96 1 	128 1 	160 1 	192 1 	224

real - predicted 1 0.001486 1 0.004249 1 0.011385 1 0.011499 1 0.006561 1 -0.01693 1 0.022555

Figure 7.7: Comparison of predicted and real cost of (9)

V.14

0.12

Tt predict.d(10)

real(10)
0.1

0.08

0.06

0.04
0.02

0
32 1 	64 1 	96 	1 128 160 192 224 266

predicted(10) 0.04148 0.04249 0.04517 0.06038 0.05892 0.07165 0.08939 0.11297

-0-real(1O) OMWI 1046162 1 0.04951 I 0.05601 I 0.06664 11 0.10371 0.12912

n 1 	32 1 	64 1 	96 1 	128 1 	160 1 	192 1 	224 1 	266

real -predicted 1 0.00283 1 	0.01913 1 0.00444 1 0.01563 1 0.00772 1 0.01167 1 0.01432 1 0.01615

Figure 7.8: Comparison of predicted and real cost of (10)

182 	 Chapter 7. Expansion: Costing Algorithm Derivation Steps

v.a

02 I _0-PrediCtOd(11)I

-O-real(11)

0.15

0.1

0.05

0
400 I 	800 I 	1200 I 	1600 I 	2000

I

I 	2400

I-c.-predicted(11) 0.04574 I 0.058812 I 0.080638 I 0.110922 1 0.149962 I 0.197663

I -O-real(11) 0.056118 I 0.067716 I 0.089861 I 0.116445 I 0.166989 I 0.199659

n

ii 1 	400 1 	800 1 	1200 1 	1600 2000 1 	2400

real - predicted 1 0.020378 1 0.008904 1 0.009323 1 0.05523 0.017037 1 0.002006

Figure 7.9: Comparison of predicted and real cost of (11)

0.12

0.1
 17

-o-predlcted(12)

-O-rea(12)

0.08

0.06

0.02

0
80000 I 2E05 	2E+05 	3E+05 	4E+05

0.040601 1 0.055372 	0.070143 	0.084914 	0.099686

n

n 1 	80000 160000 240000 320000 400000

real - predicted 1 0.006345 0.007005 0.006519 0.00366 0.001594

Figure 7.10: Comparison of predicted and real cost of (12)

7.6. Chapter Conclusion
	

183

0.14

0.12

0.1

008

008

0.04

0.02

0

-0-predicted

-0-real

-0- predicted

-0-real

1 2 4 8

0.125074 0.109687 0083558 0.091868

0.132575 0085284 0083966 0.107509

P I 	1 2 1 	4 8

real cost - predicted cost 1 0.006501 - 0.014403 1 0.000407 0.01564

Figure 7.11: Predicted and real cost of (12) when p=1,2,4,8

Chapter 8

Summary and Directions for Future

Research

8.1 Thesis Summary

We first give a summary of each chapter, and then summarise the whole thesis.

• Chapter 1 explained the motivation for this work and gave a short overview of

our analysis and a list of contributions of the thesis.

• Chapter 2 first surveyed the main theoretical low level cost models for parallel

programming. Next, we explained the concept of the "skeleton" methodology

and investigated three works on cost analysis for BMF style parallel skeletal

programming in detail. Then we gave a short survey of more related works.

• Chapter 3 was the central part of the thesis which gave the definition of VEC-

BSP, implementation strategy and cost analysis frame work.

• Chapter 4 gave the BSP implementation templates of the built-in second or-

der functions with their application costs, which complete the cost analysis pre-

sented in chapter 3.

• Chapter 5 explained the Haskell implementation of our cost analysis.

185

186 	 Chapter 8. Summary and Directions for Future Research

• Chapter 6 demonstrated that our analysis allows us to compare performance of

alternative algorithms for the same problem in a concrete way. Comparisons

between the predicted costs and the run times of the equivalent hand-compiled

BSP programs on a real machine were also given.

• Chapter 7 augmented our analysis framework to partially relax our strict re-

quirements on data structure regularity. We demonstrated that the modified

frame work allows the cost analysis of a derivation of the mss algorithm;

The initial motivation of this work was to modify the shape-based analysis that was

presented in [55] so that it can account for communication cost as well as computation

cost by changing the assumed target implementation model, because the communica-

tion cost which is incurred in real parallel computation could have a significant effect

on the total execution cost. Since their analysis was based on the PRAM model which

ignores communication cost, we tried to replace PRAM by BSP as the target imple-

mentation model because it has a simple, pragmatically accurate, and machine perfor-

mance sensitive mechanism for costing the communication process. The main issue

for a BSP implementation of VEc-BSP was to specify the placement and movement

of data, while maintaining simplicity of the mechanism to compute cost automatically.

The basic implementation structure has a nested structure for the implementation of the

application term t t' that consists of the four parts, Es': evaluation of the argument, E1 :

evaluation of the function, C: communication part and A: application part. To compute

the cost of the communication part with the BSP cost model, we need to determine

the largest message size h sent or received by any processor. This requires informa-

tion on the size of data placed in each processor, how the data is distributed among

the processors, and how processors communicate the data. This is too complicated in

the general case for automatic analysis. We addressed this issue by using one of the

processors as the master processor and imposed the rule that the data of the result of

each part is eventually stored in the master processor. This makes the data distribution

and data size of the result in each part quite simple. The data size of the result is com-

puted from the shape and added to the shape-cost pair as in the form of a tuple. We

also need to determine the data distribution pattern at the beginning of the application

8. 1. Thesis Summary 	 187

parts. If the function is sequential, we use the master processor for the application part

so that there is no communication in C, since the necessary data all resides in the mas-

ter processor. For a parallel function, we addressed this issue by restricting the parallel

application templates to those in which the data of the argument are always distributed

evenly among the processors and all processors perform the same operation. Thus, the

communication pattern in C in the case of parallel application is determined uniquely

that is, the data of result of E, is scattered to the processors evenly and that of E1

is broadcast to the processor. We added information on the application pattern to the

shape of a function to indicate if the function is sequential or parallel. This new in-

formation, that is, message size and application pattern, is sufficient to determine h for

the computation of the communication cost in C.

However, this strategy caused efficiency problems. When an application process ends

by gathering the local results and it is the argument of another parallel function, just

gathering for the next scattering is apparently redundant. To remedy this, we dis-

tinguished such application patterns from the others. The information on which ap-

plication pattern was used to generate the intermediate results is recorded as a new

component of cost tuple, data pattern, which is propagated by the information on the

application pattern. Thus the analysis can detect redundant communication cases by

checking the combination of the data pattern and the application pattern for each ap-

plication and give the optimised cost.

The analysis has been implemented in Haskell. Automated cost analysis is useful espe-

cially for parallel programs because counting the number of instructions and deducing

the shape and the message size of the intermediate results by hand is a complicated

task. The analysis produces absolute value cost prediction based on the factors of

benchmark results of the target architecture. Changing the target machine involves just

the change of the values of the parameters without changing the source VEc-BSP pro-

gram or the cost calculator program. In contrast with conventional order analysis, our

analysis allows us to examine the cost behaviour on a particular range of the problem

sizes or number of processors. It is possible to compare the efficiency of algorithms

188 	 Chapter 8. Summary and Directions for Future Research

which have the same asymptotic complexity. Our experiments testing accuracy against

real programs show that the predictions have enough accuracy to capture the trends of

the cost behaviours for our example programs.

VEC and our initial shapely language impose restrictions on the uniformity of the ele-

ment shape of the vectors. That is a key point which makes its shape expression concise

and so the shape analysis time is much quicker than the execution time of the source

program itself. However it is also a drawback when we try to apply our cost calculator

to a BMF style program derivation since we often encounter an intermediate algorithm

which does not satisfy this restriction. Our approach to address this issue was to pre-

pare two kinds of shape expression. When the data has different shaped elements we

express its shape as a vector. When the data has a common element shape we express

its shape as a pair of its length and the element shape. The analysis distinguishes the

kind of shape expression from its data type and generates an appropriate shape which

is used to compute cost information. The efficiency of cost analysis depends on the

degree of uniformity of the shape. This amendment allows our analysis to cost the

complete derivation of Skillicorn and Cai's mss algorithm.

Finally, we assess how far our aims described in the introduction have been met by

these achievements. Our initial motivation was to develop a cost analysis as an alter-

native to conventional asymptotic analysis (typically, for PRAM model) which suffers

from

. lack of ability to cost communication

• difficulty in counting the number of instructions

• lack of ability to model the cost behaviour for a modest number of processors p

and a particular range of problem sizes.

We chose Jay's shape-based cost analysis as the start point because its automatic and

absolute value cost analysis has already solved the second and third problems. By

incorporating the BSP approach to shape-based cost analysis, we achieved a commu-

8.2. Contributions of Thesis 	 189

nication sensitive shape-based cost analysis while keeping the characteristics of au-

tomatability and absolute value prediction. We also mentioned in chapter 1 that one of

main problems of parallel computing is lack of portability as well as cost predictability.

Although we have not yet achieved an implementation of the language, our language

takes the skeletal approach, which enhances portability. The source language is implic-

itly parallel and assumed to be compiled to a BSP target which can be implemented

on wide range of architectures through the existing communication libraries. Further-

more, as the impact of architecture change, including difference of communication

performance characteristics, is reflected in our cost analysis results through the BSP

parameters, our programming language could serve as a basis for the implementation

of a programming language which is not only portable but also performance portable.

Another aim was to use cost analysis to predict the effect of performance change in

program transformation. An obstacle to this was that our source language is often too

restrictive to express all intermediate algorithm in derivation steps. To alleviate the

problem we partially relaxed our strong restriction on uniformity and showed the ex-

ample of complete derivation of the mss program. Further research for this direction

will involve applying our cost analysis to more examples and to identifying functions

which are often used in the program transformational technique so that so that our lan-

guage has a rich set of primitive function to express derivation steps. Improving the

efficiency of the analysis developed in the work might be necessary.

8.2 Contributions of Thesis

The main contributions of this thesis can be summarised as follows.

• We demonstrated the first completely automated, communication sensitive shape-

base cost analysis system for an implicitly parallel skeletal programming lan-

guage of nested arrays. This builds on earlier work by Jay et al. [54] in the

area by quantifying communication as well as computation costs, with the for-

mer being derived by changing the target implementation model from PRAM to

BSP;

190 	 Chapter 8. Summary and Directions for Future Research

• We added several built-in second-order functions, each of which has a parallel

implementation template and predefined application cost which is parameterised

by the argument shape, in order to enhance the skeletal approach of parallel

programming and to broaden applicability of our analysis;

• We extended Jay's shape-based analysis framework with cost tuples which con-

tain useful static information as their components, and illustrated how this in-

formation is used for costing the communication process, optimising interface

communication and eventually computing BSP cost.

• We partially relaxed our strict requirements on data structure regularity (but

without losing static predictability) by introducing new shape expression in our

analysis frame work;

We presented the first analysis of a complete derivation, the well known maxi-

mum segment sum algorithm of Skillicorn and Cai;

. We illustrated skeletal programming in VEc-BSP by implementing several ex-

ample programs. The accuracy of predictions made by our cost calculator against

the run time of real parallel programs was tested experimentally.

8.3 Limitations

The main limitations of our analysis constitute the trade-offs involved in obtaining

the static predictability and automatability of the analysis and a simple programming

model that provides a high level of abstraction. These limitations can be summarised

as follows.

• Only programs which are shapely, that is, for which the shape of the result is de-

termined by the shape of the input can be expressed and analysed. Non-shapely

function such as filter cannot be used.

@ The program is expressed by combining predefined constructs. Although a num-

ber of types of data parallel programs can be expressed within this restriction,

8.4. Avenues for Future Research
	

191

some parallel algorithmic techniques cannot, or are difficult to express. This lim-

itation of expressiveness could be partly alleviated if the language incorporated

more useful functions as primitive functions. It would also possible to give the

language a facility whereby the user can define a new function which cannot be

composed from other function, but it requires the user to give information which

is necessary for the cost analysis such as how it changes the shape of an input,

the application cost and application pattern. It might be a considerable burden

for the programmer.

8.4 Avenues for Future Research

The main future directions are summarised as follows

Improving Efficiency

We kept the assumed implementation mechanism deliberately simple in order to

focus on its structural mechanism. Improving efficiency of the implementations

of source programs would involve investigation of the possibility of different

implementation templates for the built-in second order functions. Optimisation

considering possible implementations of nested skeletons would also be possi-

ble. More complex communication patterns such as multi-cast would improve

the efficiency of communication costs. Since improving the efficiency of the im-

plementations of source programs tends to make the implementation mechanism

more complicated, it would also increase the complexities of the cost analysis it-

self. Improving efficiency of both implementations of source programs and their

cost analysis would require further refinement of analysis including choice of

information components in the cost tuple and investigation of their interaction.

• Improving Accuracy

Accuracy depends on how the g and 1 values experienced by the computation

patterns and communication patterns used in an application program are matched

by those in the benchmark program used to determine the BSP parameters (in

other words how robust the BSP framework is itself). Although we used the

192 	 Chapter 8. Summary and Directions for Future Research

benchmark program provided with BSP1ib, developing a benchmark program

more suitable for the computation and communication patterns used in our more

restricted computation model should further improve accuracy.

Testing More Application Problems

More example problems that have different parallel structures could be tested on

the scheme. This would assist in identifying more useful functions to be added

to the set of built-in functions.

• Implementing the Language

An obvious important future work would be the construction of a source to

source compiler to automatically generate CIBSP code from VEc-BSP accord-

ing to the assumed implementation strategy using the static information which

is extracted from the analysis system. To examine if our cost analysis can be

applied when a source language is translated to a target language with other

message passing communication libraries such as CIMPI would be interesting.

As pointed out in [46], it is possible to program in a BSP style in MPI, although

it has been found that such systems are rarely optimised for the small number

of primitives that are necessary for BSP programming. It would be possible to

develop a similar cost analysis if we can find a parameter which corresponds to

g in BSP for broadcast and gather communication.

• Application to Transformational Program Development

We demonstrated that our analysis technique is useful in the example of mss

algorithm derivation steps. Tools to support the validation of transformation

step already exist (e.g. [66]). Integration with automatic cost modelling would

provide the programmer with immediate feedback on the performance implica-

tions of transformation decisions and could also assist with automated or semi-

automated heuristic driven searches through the transformation space.

• Future Research Beyond VEC..BSP

VEC-BSP and its shape-based cost analysis has limitations which come from

intrinsic nature of static analysis, that is, it is not possible to predict the cost of

programs which varys for different data values. This fact excludes the use of

8.4. Avenues for Future Research
	

193

non-shapely functions like filter and prevent the accurate prediction of programs

which includes some kind of branch point for conditionals. More powerful lan-

guage support by a cost analysis requires some extended environment beyond the

static approach. The introduction of profiling techniques in the analyser could

overcome the problem to some extent. Profiling could be used to capture run-

time information at the points where shape and cost are dynamically determined.

Effective cooperation of a static component and a dynamic component of a cost

analyser would a key point for such a future parallel programming system.

Bibliography

A. Abel. Specification and Verification of a Formal System for Structurally Re-

cursive Functions. In Types for Proofs and Programs, International Workshop,

TYPES '99, number 1956 in Lecture Notes in Computer Science, pages 1-20.

Springer-Verlag, 2000.

A. V. Aho, J. B. Hoperoft, and J. D. Ullman. The Design and Analysis of Com-

puter Algorithms. Addison-Wesley, 1974.

A. Alexandrov, M. F lonescu, K. E. Schauser, and C. Scheiman. LoGP: Incor-

porating Long Messages into the LogP Model. In Proceedings of the 7th ACM

Symposium on Parallel Algorithms and Architecture, pages 95-105, 1995.

B. Bacci, S. Gorlatch, C. Lengauer, and S. Pelagatti. Skeletons and Transforma-

tions in an Integrated Parallel Programming Environment. In Parallel Computing

Technologies (PaCT-99), LNCS 1662, pages 13-27. Springer-Verlag, 1999.

J. Backus. Can Programming be Liberated from the von Neumann Style? Com-

munications of the ACM, 21(8):613-641, August 1978.

0. Ballereau, F. Loulergue, and G. Hams. High Level BSP Programming: BSML

and BSlambda. In G. Michaelson and P. Trinder, editors, Trends in Functional

Programming, pages 29-38. Intellect, 2000.

C. R. Banger. Arrays with Categorical Type Constructors. PhD thesis, Queen's

University, Kingston, Ontario, Canada, 1992.

195

196
	

Bibliography

G. Bilardi, K. T. Herley, A Pietracaprima, G. Pucci, and P. Spirakis. BSP vs

LogP. In Proceedings of the 8th Annual Symposium on Parallel Algorithms and

Architectures, pages 25-32, 1996.

R. S. Bird. An Introduction to the Theory of Lists. In M. Broy, editor, Logic

of Programming and Calculi of Discrete Design, pages 3-42. Springer-Verlag,

1987.

R. S. Bird. Lectures on Constructive Functional Programming. Constructive

Methods in Computing Science, volume F55 of NATO ASI:151-216, 1988.

[I I] R. S. Bird. Algebraic Identities for Program Calculation. the Computer Journal,

32(2):122-126,1989.

G. E. Blelloch. Scans as Primitive Parallel Operations. IEEE Transactions on

Computers, 38(11):1526-1538, 1989.

G. E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.

G. E. Blelloch. NESL: A Nested Data-Parallel Language. Technical Report

CIMU-CS-95-170, Carnegie Mellon University, 1995.

0. Bonorden, B. Juulink, I. von Otto, and I. Rieping. The Paderbom Univer-

sity BSP (PUB) Library-design, Implementation and Performance. In 13th In-

ternational Parallel Processing Symposium & 10th Symposium on Parallel and

Distributed Processing, April 1999.

G. H. Botorog. High-Level Parallel Programming and the Efficient Implemen-

tation of Numerical Algorithms. PhD thesis, Aachen University of Technology,

1998.

G. H. Botorog and H. Kuchen. Efficient Parallel Programming with Algorithmic

Skeletons. In Euro-Par'96 Parallel Processing, number 980 in Lecture Notes in

Computer Science, pages 718-731. Springer-Verlag, 1996.

T. A. Bratvold. Skeleton-Based Parallelisation of Functional Programs. PhD

thesis, Heriot-Watt University, 1994.

Bibliography 	 197

P. Brinch Hansen. Studies in Computational Science. Prentice Hall, 1995.

A. Bundy, G. Grosse, and P. Brna. A Recursive Techniques Editor for Prolog.

Instructional Science, 20:135-172, 1991.

A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam System.

In M. B. Stickel, editor, In Proceedings of 10th International Conference on Au-

tomated Deduction, number 449 in Lecture Notes in Artificial Intelligence, pages

647-648. Springer-Verlag, 1990.

R. M. Burstall. Proving Properties of Programs by Structural Induction. The

Computer Journal, 12(l):41-48,1969.

R. M. Burstall. Inductively Defined Functions in Functional Programming Lan-

guages. Journal of Computer and System Sciences, 34(2/3):409-421, 1978.

D. Busvine. Detecting Parallel Structures in Functional Programs. PhD thesis,

Heriot-Watt University, 1993.

M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-

tion. MIT Press, 1989.

M. Cole. Parallel Programming with List Homomorphisms. Parallel Processing

Letters, 5(2):191-203, 1995.

D. E. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, B. Santos, Sub-

ramoinian, and T. V. Eiken. LogP: Towards a Realistic Model of Parallel Com-

putation. In Proc. 10th symp. Theory Computing, pages 114-118. ACM, 1993.

M. Danelutto, R. D. Meglio, S. Orlando, S. Palagatti, and M. Vanneschi. A

Methodology for the Development and the Support of Massively Parallel Pro-

grams. In D. Skillicorn and D. Talia, editors, Programming Languages for Par-

allel Processing, pages 205-220. IEEE Computer Society Press, 1994.

J. Darlington, A. Field, P. Kelly, and R. Wu. Parallel Programming Using Skele-

ton Functions. In PARLE'93, number 694 in Lecture Notes in Computer Science,

pages 146-160, Munich, June 1993. Springer-Verlag.

198 	 Bibliography

J. Darlington, Y. K. Guo, H. W. To, and J. Yang. Functional Skeletons for Parallel

Coordination. In Euro -Par'95 Parallel Processing, number 966 in Lecture Notes

in Computer Science, pages 55-69, Stockholm, August 1995. Springer-Verlag.

H. Deldarie, J. R. Davy, and P. M. Dew. The Performance of Parallel Algorithmic

Skeletons. In Proceedings of ZEUS '95, pages 65-74. lOS press, 1995.

V. Domic, P. Jouvelet, and D. K. Gifford. Polymorphic Time Systems for Es-

timating Program Complexity. ACM Letters on Programming Languages and

Systems, 1(1):33-45, 1992.

D. Feldcamp, H. V. Streekantaswamy, A. Wagner, and S. Chanson. Towards a

Skeleton-based Parallel Programming Environment. In A. Veronis and Y. Paker,

editors, Transputer Research and Applications, volume 5, pages 104-115. lOS

press, 1992.

D. Feldcamp and A. Wagner. Parsec - A Software Development Environment

for Performance Oriented Parallel Programming. In S. Atkins and A. S. Wagner,

editors, Transputer Research and Applications, volume 6, pages 247-262. lOS

press, 1993.

C. Foisy and E. Chailloux. Cami Flight: A Portable SPMD Extension of ML

for Distributed Memory Multiprocessors. In Workshop on High Performance

Functional Computing, pages 83-96, April 1995.

S. Fortune and J. Wyllie. Parallelism in Random Access Machine. In Conference

record of the Tenth Annual ACM Symposium on Theory of Computing, pages

114-118, San Diego, California, May 1978.

G. A. Geist, J. A. Kohia, and P M. Papadopoulos. PVM: Parallel Virtual Ma-

chine. A User's Guide and Tutorial for Networked Parallel Computing. MIT

Press, 1994.

[38] J. Gibbons. Algebras For Tree Algorithms. PhD thesis, University of Oxford,

1991.

Bibliography 	 199

S. Gorlatch. Toward Formally-Based Design of Message Passing Programs. IEEE

Transactions on Software Engineering, 26(3):276-288, 2000.

Sergei Gorlatch, Christoph Wedler, and Christian Lengauer. Optimization

Rules for Programming with Collective Operations. In Mikhail Atallah, editor,

IPPS/SPDP'99. 13th mt. Parallel Processing Symp. & 10th Symp. on Parallel

and Distributed Processing, pages 492-499, 1999.

M. W. Goudreau, K. lang, S. B. Rao, T. Suel, and T. Tsantilas. Towards Efficiency

and Portability: Programming with the BSP Model. In Proceedings of 8th Annual

ACM Symposium on Parallel Algorithms and Architectures, June 1996.

Ananth Y. Grama, Anshul Gupta, and Vipin Kumar. Isoefficiency: Measuring the

scalability of parallel algorithms and architectures. IEEE Parallel and Distributed

Technology, 1(2):12-21, August 1993.

M. Hamdan. A Combinational Framework for Parallel Programming using Al-

gorithmic Skeletons. PhD thesis, Heriot-Watt University, 1999.

Y. Hayashi and M. Cole. BSP-based Cost Analysis of Skeletal Programs. In

G. Michaelson and P. Trinder, editors, Trends in Functional Programming, pages

20-28. Intellect, 2000.

Y. Hayashi and M. Cole. Static Performance Prediction of Skeletal Programs.

Parallel Algorithms and Applications, 2002. to appear.

J. Hill. Portability of Performance in the BSP Model. In K. Hammond and

G. Michaelson, editors, Research Directions in Parallel Functional Program-

ming, pages 267-287. Springer-Verlag, 1999.

J. M. D. Hill, S. R. Donaldson, and D. B. Skillicom. Portability of Performance

with the BSPIib Communications Library. In Programming Models for Massively

Parallel Computers, (MPPM'97), pages 33-42. IEEE Computer Society Press,

1997.

J. M. D. Hill, B. McColl, D. C. Stefanescu, K. Lang, S. B. Rao, T.Suel, T. Tsan-

tilas, and R. Bisseling. BSPlib: The Programming Library. Technical Report

200 	 Bibliography

PRG-TR-29-97, Oxford University Computing Laboratory, 1997.

W. A. Howard. The Formulae-as-types Notion of Construction. In J. P. Seldin

and J. R. Hindle, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

calculus and Formalism, pages 479-490. Academic Press, 1980.

L. Huelsbergen, J. R. Larus, and A. Aiken. Using Run-Time List Sizes to Guide

Parallel Thread Creation. In LEF'94 - Conference on Lisp and Functional Pro-

gramming, pages 79-90. ACM Press, 1994.

R. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive System

Using Sized Types. In POPL'96 - Symposium on Principles of Programming

Languages, pages 21-24. ACM Press, 1996.

C. B. Jay. Shape Analysis for Parallel Computing. In J. Darlington, editor, Pro-

ceedings of the fourth international parallel computing workshop: Imperial Col-

lege London, 25-26 September, 1995, pages 287-298. Imperial College/Fujitsu

Parallel Computing Research Centre, 1995.

C. B. Jay. Shape in Computing. ACM Computing Surveys, 28(2):355-357, 1996.

C. B. Jay. Costing Parallel Programs as a Function of Shapes. Science of Com-

puter Programming, 37:207-224,2000.

C. B. Jay, M. I. Cole, M. Sekanina, and P. A. Steckler. A Monadic Calculus for

Parallel Costing of a Functional Language of Arrays. In C. Lengauer, M. Griebl,

and S. Gorlatch, editors, Euro -Par'97 Parallel Processing, number 1300 in Lec-

ture Notes in Computer Science, pages 650-661, Passau, August 1997. Springer-

Verlag.

H. W. Loidl. Granularity in Large-Scale Parallel Functional Programming. PhD

thesis, University of Glasgow, 1997.

H. W. Loidl and K. Hammond. A Sized Time System for a Parallel Functional

Language. In Glasgow Workshop on Functional Programming 1996, 1996.

Bibliography 	 201

F. Loulergue. Parallel Composition and Bulk Synchronous Parallel Functional

Programming. In S. Gilmore, editor, Trends in Functional Programming, Volume

2, pages 77-88. Intellect, 2001.

Message Passing Interface Forum. MIPI: A Message Passing Interface. In Pro-

ceedings of Supercomputing '93, pages 878-883. IEEE Computer Society Press,

1993.

D. Le Métayer. ACE: An Automatic Complexity Evaluator. ACM Transactions

on Programming Languages and Systems, 10(2), 1988.

G. Michaelson, A. Ireland, and P. King. Towards a Skeleton Based Parallelising

Compiler for SML. In C. Clack, K. Hammond, and T. Davie, editors, Proceedings

of 9th International Workshop on the Implementation of Functional Languages,

number 1467 in Lecture Notes in Computer Science, pages 539-546. Springer-

Verlag, 1997.

G. Michaelson, N. Scaife, P. Bristow, and P. King. Nested Algorithmic Skeletons

from Higher Order Functions. Parallel Algorithms and Applications special issue

on High Level Models and Languages for Parallel Processing, 16:181-206,2001.

R. Miller. A Library for Bulk Synchronous Parallel Programming. In Proceedings

of the BCS Parallel Processing Specialist Group Workshop on General Purpose

Parallel computing, pages 100-108, December 1993.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. NET Press,

1990.

J. M. Nash, P. M. Dew, M. E. Dyer, and J. R. Davy. Parallel Algorithm Design

on the WPRAM Model. In J. R. Davy and P. M. Dew, editors, Abstract Machine

Models for Highly Parallel Computers, pages 83-102. Oxford University Press,

1995.

Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A Calculational Fusion System

HYLO. In IFIP TC2 Working Conference on Algorithmic Language and Calculi,

pages 76-106. Chapman&Hall, 1997.

202 	 Bibliography

S. Pelagatti. Structured Development of Parallel Programming. Taylor & Francis,

1997.

F. A. Rabhi. Exploiting Parallelism in Functional Languages: a Paradigm-

Oriented Approach. In T. Lake and P. Dew, editors, Abstract Machine Models

for Highly Parallel Computers, pages 118-139. Oxford University Press, 1993.

F. A. Rabhi. A Parallel Programming Methodology Based on Paradigms. In

P. Nixon, editor, Transputer and Occam Developments. lOS Press, 1995.

F. A. Rabhi and J. Schwarz. POPE: Paradigm-Oriented Design of Parallel Pro-

gramming Environment for SIT Algorithms. In J. G. W. Glauert, editor, 6th

Workshop on the Implementation of Functional Languages, Norwich, September

1994. Springer.

R. Rangaswami. A Cost Analysis for a High-order Parallel Programming Model.

PhD thesis, University of Edinburgh, 1996.

J. Reed, K. Parrott, and T. Lanfear. Portability, Predictability, and Performance

for Parallel Computing: BSP in Practice. Concurrency: Practice and Experience,

8(10):799-812, December 1996.

B. Reistad and D. Gifford. Static Dependent Costs for Estimating Execution

Time. In LFP'94 - Conference on Lisp and Functional Programming, pages 65-

78. ACM Press, 1994.

M. Rosendahl. Automatic Complexity Analysis. In FPCA'89 - Conference on

Functional Programming Language and Computer Architecture, pages 144-156.

ACM Press, 1989.

N. Scaife, P. Bristo, and G. Michaelson. Engineering a Parallel Compiler for

Standard ML. In Proceedings of the 10th International Workshop on Implemen-

tations of Functional Language, pages 213-225, 1998.

[76] D. B. Skillicorn. Architecture-independent Parallel Computation. IEEE Com-

puter, pages 38-50, December 1990.

Bibliography 	 203

D. B. Skillicorn. Foundations of Parallel Programming. Cambridge University

Press, 1994.

D. B. Skillicorn and W. Cai. A Cost Calculus for Parallel Functional Program-

ming. Journal of Parallel and Distributed Computing, 28(1):65-83, July 1985.

D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about

BSP. Scientific Programming, 6(3):249-274, Fall 1997.

A. J. Telford and D. A. Turner. Ensuring Termination in ESFP. Journal of Uni-

versal Computer Science, 6(4):474-490, 2000.

H. W. To. Optimizing the Parallel Behaviour of Combinations of Program Com-

ponents. PhD thesis, Department of Computing, Imperial College of Science,

Technology and Medicine, London, 1995.

L. M. Tucker and A. Mainwaring. CMMD: Active Messages on the CM-5. Par-

allel Computing, 20(4), 1995.

L. G. Valiant. A Bridging Model for Parallel Computation. Communications of

the ACM, 33(8):103-111, August 1990.

C. Walther. Argument-Bounded Algorithms as a Basis for Automated Termina-

tion Proofs. In Proceedings of of the 9th International Conference on Automated

Deduction, number 310 in Lecture Notes in Computer Science, pages 602-621.

Springer-Verlag, 1988.

J. Whittle, R. Boulton A. Bundy, and H. Lowe. An ML Editor Based on Proofs-

as-Programs. In Proceedings of the 14th IEEE International Conference on Auto-

mated Software Engineering (ASE'99), pages 166-173. IEEE Computer Society

Press, 1999.

A. Zavanella. Skeletons and BSP: Performance Portability for Parallel Program-

ming. PhD thesis, University of Pisa, 1999.

