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Abstract 

This work presents an automatic cost-analysis system for an implicitly parallel skeletal 

programming language. 

Although deducing interesting dynamic characteristics of parallel programs (and in 

particular, run time) is well known to be an intractable problem in the general case, it 

can be alleviated by placing restrictions upon the programs which can be expressed. 

By combining two research threads, the "skeletal" and "shapely" paradigms which 

take this route, we produce a completely automated, computation and communication 

sensitive cost analysis system. This builds on earlier work in the area by quantifying 

communication as well as computation costs, with the former being derived for the 

Bulk Synchronous Parallel (BSP) model. 

We present details of our shapely skeletal language and its BSP implementation strat-

egy together with an account of the analysis mechanism by which program behaviour 

information (such as shape and cost) is statically deduced. This information can be 

used at compile-time to optimise a BSP implementation and to analyse computation 

and communication costs. The analysis has been implemented in Haskell. We con-

sider different algorithms expressed in our language for some example problems and 

illustrate each BSP implementation, contrasting the analysis of their efficiency by tra-

ditional, intuitive methods with that achieved by our cost calculator. The accuracy of 

cost predictions by our cost calculator against the run time of real parallel programs is 

tested experimentally. 

Previous shape-based cost analysis required all elements of a vector (our nestable bulk 

data structure) to have the same shape. We partially relax this strict requirement on data 

structure regularity by introducing new shape expressions in our analysis framework. 

We demonstrate that this allows us to achieve the first automated analysis of a complete 

derivation, the well known maximum segment sum algorithm of Skillicorn and Cai. 
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Chapter 1 

Introduction 

1.1 Motivation 

One of the main reasons for the failure of parallelism to enter mainstream computing 

is the lack of the portability and performance predictability enjoyed by sequential sys-

tems. In sequential programming, the measure of efficiency is based on instruction 

counts and order analysis, and is often called the von Neumann cost model or RAM 

model. A similar approach is widely used for theoretical analysis of parallel programs. 

However, it is less useful than its sequential counterpart for the following reasons. 

. Real parallel computing usually involves communication and contention costs 

which can significantly depend on characteristics of parallel machines. Anal-

ysis ignores these and leads to unreliable predictability and poor performance 

portability. 

• Counting the number of instructions is a complicated task in the parallel setting 

because it depends on the data allocation strategy as well as intermediate data 

size. 

• Conventional asymptotic cost analysis, which is based on instruction counts and 

order analysis parameterised by input size and the number of processors, mod-

els behaviour when these parameters grow towards the infinite, but very often 
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12 	 Chapter 1. Introduction 

the target architecture has a moderate and fixed number of processors and the 

application will involve only a particular range of problem sizes. 

In practice, parallel programmers largely rely upon a combination of common sense, 

intuition and profiling to make the important algorithmic decisions which will affect 

performance. One approach to alleviating this problem is to place restrictions upon the 

programs which can be expressed. Two research threads which have taken this route 

involve the "skeletal" and "shapely" paradigms. In the extreme, these can produce a 

language for which static analysis becomes tractable. 

The skeletal approach to the design of parallel programming systems [25, 29, 62, 671 

proposes that the complexity of parallel programming be contained by restricting the 

mechanisms through which parallelism can be introduced to a small number of ar-

chitecture independent control constructs, originally known as algorithmic skeletons. 

Each skeleton specification captures the logical behaviour of a commonly occurring 

pattern of parallel computation (such as "divide-and-conquer", "farm" or "scan"), 

while pre-packaging and hiding the details of its implementation using the explicit 

parallelism of lower level primitives provided by the target system. Since a parallel• 

program is constructed from predefined skeletons, the cost of the program can also be 

expressed in terms of its parallel control structure. 

The shapely programming methodology [52, 53, 541 proposes that through careful 

language design the shape (loosely speaking, the size and structure) of data at any point 

during execution can be determined statically and automatically, even for programs in 

which shape is varied dynamically. This is fundamental for static cost analysis because 

it requires information about the sizes and shapes of the input data structure and, when 

programs are compositions of parallel operations it is extremely difficult to capture the 

behaviour of these intermediate results by hand. When we consider inter-processor 

communication cost, this is again fundamental since predicting the size of messages is 

also required. 

Shape-based cost analysis for functional languages based on these restrictions was first 

proposed by Jay et al. [55]. The analysis has the characteristics of being automatable 

and giving absolute value prediction (rather than asymptotic). It used the tightly syn- 
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chronised, uniform access cost, shared memory PRAM model as its target architecture. 

The PRAM is an abstract model which takes no account of the communication and con-

tention costs incurred on realistic parallel machines (whether explicitly programmed 

or in support of a shared memory abstraction). The main motivation of this thesis is 

to develop a cost analysis for their language which can account for communication as 

well as computation, while keeping its characteristics of being automatable. To achieve 

this we choose the Bulk Synchronous Parallel (BSP) computation [48, 79, 83] as our 

implementation model (therefore, SPMD model) to introduce parallelism. 

The BSP model proposes that decoupling communication and synchronisation is the 

key to a simple and accurate cost model that can be used to analyse and guide design 

of parallel algorithms. The purpose of the BSP cost model is to refine the standard 

simple asymptotic cost analysis by 

decoupling the asymptotic analysis of the problem size n, from the potentially 

modest number of processors p; 

costing communication as well as computation; 

• introducing a small number of parameters that capture performance characteris-

tics of a machine, so that the comparative performance of an algorithm can be 

analysed across machines. 

It can be used both to choose an appropriate architecture among possible target com-

puters and to adapt an algorithm which is more efficient on the target architecture. 

This thesis investigates the use of skeletal, shapely and BSP approaches to produce a 

skeleton-oriented parallel programming language for which static performance anal-

ysis is completely automatable, communication sensitive, architecture characteristic 

sensitive and absolute value predictable. Our source language is functional, since this 

is the most convenient paradigm within which to express our constraints. Our anal-

ysis predicts the behaviour of these programs when compiled to a BSP target. Such 

information can be used to choose one algorithm over another, or one data structure 

over another when the program is constructed. The functional paradigm also has more 

advantages: 
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. ease of program construction; 

. ease of function/module reuse; 

. ease of program transformation; 

. scope for optimisation. 

In particular, one of our aims is to use our cost analysis to predict the effect of per-

formance change in program transformation steps. The bulk of previous work has 

focused on the fundamental question of the semantic soundness of each step, with re-

sponsibility for choosing steps and for judging their effect on performance left to the 

programmer's intuition. Automatic cost modelling could provide the programmer with 

immediate feedback on performance implications. 

In common with other skeletal languages, our approach provides a structured concep-

tual framework for message passing programming. Structured languages and method-

ologies promote an approach in which the key algorithmic decisions are taken early 

and at a high level, enhancing both portability and maintainability [4, 39]. Our lan-

guage and analysis could be used either as a real programming framework in its own 

right, or as a testbed for algorithmic ideas which would subsequently be re-coded semi-

automatically into a more conventional form, for example following the BSP imple-

mentation templates of the skeletons. 

1.2 Overview of the Analysis 

Our language VEc-BSP is a simple shapely functional language which operates upon 

nested vectors of data. It has a cost analysis system which produces predicted run-time 

costs based on the BSP model from a source code. Shapeliness means that the form 

and size of data structures can be deduced statically. Shape constraints (which are 

analogous to type constraints) are used to ensure that all elements of a vector have the 

same shape so that information about large structures can be captured and manipulated 

concisely. (This restriction is partially relaxed in an expanded version of VEc-BSP 

described in chapter 7). Parallelism is introduced by a small number of skeletons, that 
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is higher order functions each of which has a predefined parallel implementation tem-

plate. The program is written by means of the application of predefined operations 

(which includes conventional sequential operations and skeletons) and lambda expres-

sions and conditionals. VEc-BSP excludes unbound iteration and recursion since our 

goal is full automation. 

In essence, our approach to cost analysis is a form of abstract interpretation. A source 

program is translated to another program in the target language MsIzE which, when 

run, will compute some implementation information such as shape and run-time cost. 

MsIzE is essentially a variant of VEC-BSP in which types, terms and operators which 

represent and manipulate real data have been removed, and with the addition of new 

features which manipulate implementation information not present in VEc-BSP. The 

core of the method is a translation function cost which accepts VEc-BSP terms and 

returns MSIZE terms in the form of cost tuples, whose components capture some kinds 

of evaluation information. For example, 

. data size - a measure of the quantity of data which would have to be commu-

nicated to describe the term (in order to compute communication cost from the 

transmitted data); 

• data pattern - an indication of the data distribution strategy required by the term's 

implementation. (in order that communication of the data between evaluation 

phases can be optimised); 

• cost - an evaluation cost function for the term, mapping from performance pa-

rameters to time (so that evaluation time for the term can be computed, given the 

performance characteristics of the specific target); 

• application pattern - an indication of application structure, that is whether se-

quential or parallel (in order to compute communication cost between the com-

ponent evaluation process and the application process, and to optimise the com-

munication of data between evaluation phases). 

This information is propagated during evaluation of the MsIzE program through the 

definition of an application operator of the MsIzE, which constitutes the heart of the 
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analysis. Making the mechanism work efficiently requires careful design of the im-

plementation model and choice of the components of the cost tuple. The inter-action 

of those components could generate useful static information on intermediate results 

which could be used by a compiler for various purposes to improve efficiency. In this 

thesis, we construct a cost analysis which has the property of automatic, communica-

tion sensitive, machine performance sensitive and absolute value cost derivation. 

1.3 Contributions of the Thesis 

The main contributions of this thesis can be summarised as follows. 

. We demonstrate the first completely automated, communication sensitive shape-

base cost analysis system for an implicitly parallel skeletal programming lan-

guage of nested arrays. This builds on earlier work by Jay et al. [54] in the area 

by quantifying communication as well as computation costs, with the former 

being derived by changing target implementation model from PRAM to BSP; 

• We add several built-in second-order functions, each of which has a parallel 

implementation template and predefined application cost which is parameterised 

by the argument shape, in order to enhance the skeletal approach of parallel 

programming and to broaden applicability of our analysis; 

• We extend Jay's shape-based analysis framework with cost tuples which can con-

tain useful static information as components, and illustrate how this information 

is used for costing the communication process, optimising interface communi-

cation and eventually computing BSP cost; 

• We partially relax our strict requirements on data structure regularity (but with-

out losing static predictability) by introducing new shape expressions in our anal-

ysis frame work; 

• We present the first analysis of a complete derivation, the well known maximum 

segment sum algorithm of Skillicorn and Cai; 
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• We illustrate skeletal programming in VEc-BSP by implementing several exam-

ple programs. The accuracy of predictions made by our cost calculator against 

the run time of real parallel programs is tested experimentally. 

1.4 Structure of the Thesis 

The following chapters can be divided into three parts. The first part, chapter 2 presents 

a survey of existing cost models giving the background of our cost model. In the 

second part, chapters 3, 4, 5 present our language, its implementation strategy, the 

definition and implementation of our analytic technique. The third part, chapters 6, 7 

demonstrate applications and possible extensions of our analysis, with the concluding 

chapter 8. More details of contents of each chapter is as follows: 

• Chapter 2 begins with a survey of the main theoretical low level cost models for 

parallel programming. Next, we explain the concept of the "skeleton" method-

ology and investigate three works of cost analysis for BMF style parallel skeletal 

programming in detail. Then we give a short survey of more related works. 

• Chapter 3 is the central part of the thesis which gives the definition of VEC-

BSP, its implementation strategy and cost analysis framework. 

• Chapter 4 gives the parallel implementation templates of the built-in second or-

der functions with application costs, which completes the cost analysis presented 

in chapter 3. 

• Chapter 5 outlines the Haskell implementation of our cost analysis. 

• Chapter 6 demonstrates that our analysis allows us to compare the performance 

of alternative algorithms for the same problem against one another in a concrete 

way. The comparison between predicted costs against the run-time of equivalent 

hand-compiled BSP programs on a real machine is also given. 

• Chapter 7 augments our analysis framework to partially relax our strict require-

ments on data structure regularity. We demonstrate that the modified framework 
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allows the cost analysis system to cost complete derivation steps of an algorithm 

for the maximum segment sum problem. 

• Chapter 8 presents a summary and contributions of the thesis, with directions 

for future research. 



Chapter 2 

Cost Models for Parallel Computation 

In sequential computing, the von Neumann model dominates. Parallel programs are 

inherently more complex than their sequential counterparts. This complexity seems 

tractable only within some abstracted and idealised model. However, no single model 

of parallel computation has yet come to dominate in the way the von Neumann model 

has dominated sequential computing. This chapter surveys some of the models for par-

allel computation. Section 2.1 reviews the most influential early theoretical model, the 

PRAM. Section 2.2 describes a dominant programming model, message passing pro-

gramming, and two proposed cost models, BSP and LogP. Finally, section 2.3 surveys 

the skeleton-oriented languages and their cost models, especially BIVIF style program-

ming. 

2.1 The PRAM Model 

The most influential early theoretical parallel computation model is the parallel ran-

dom access machine (PRAM) introduced by Fortune and Wyllie [36], which has been 

used widely to assess the theoretical performance analysis of parallel algorithms. The 

PRAM consists of a shared memory and a number of processors each with local mem-

ory. The processors are controlled by a common clock and operate synchronously. 

In every cycle each processor may read a value from global memory, write a value 
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to the global memory, or compute an operation. So, any location can be accessed by 

a processor in unit time (that is, in a single instruction time), independent of the ac-

cess pattern. Normally the PRAM model is used with algorithms in which processors 

execute the same instruction together but operating on different data. There are four 

subclasses of the PRAM, provided to define how simultaneously reading and writing 

to the same memory location should be handled: EREW (Exclusive Read Exclusive 

Write), CREW (Concurrent Read Exclusive Write), ERCW (Exclusive Read Concur-

rent Write), CRCW (Concurrent Read Concurrent Write). The ERCW is often not 

considered because a machine powerful enough to support concurrent writes can also 

support concurrent reads. In those cases where concurrent write is permitted, an addi-

tional strategy is necessary to indicate how conflicts are resolved and what is actually 

stored in the location. Some possibilities often quoted are: Common when simultane-

ous writing is only allowed if the values to be written are the same; Arbitrary when the 

processor that succeeds in its write operation is selected arbitrarily from the writing 

processors; Priority when there exists a predefined priority order to select the proces-

sor that will succeed; Combining when the value written is a linear combination of all 

values being written by the individual processors. 

The PRAM model is an idealised model that ignores practical considerations and fo-

cuses on concurrency. Its simplicity and generality have led to the widespread accep-

tance of the PRAM within the theoretical community and it offers worthwhile results 

in design and analysis of parallel algorithms. However, the idealisation hiding the 

issues of synchronisation, data locality, interprocessor or processor-to-memory com-

munication and other machine-specific issues often leads to unreliable prediction of 

real execution costs. The complexity of a PRAM algorithm is given in terms of the 

number of time steps and maximum number of processors required in any one of those 

time steps. There is no straightforward way to add communication costs which could 

largely depend on communication performance characteristics of a real machine into 

the model and convert PRAM costs to real costs. 
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2.2 Message Passing Model 

'The message passing programming models provided by communications libraries 

such as PYM [37] or MPI [59] have been a dominant model for scientific and commer-

cial parallel applications for the last decade. In this section, we first outline the basic 

concepts in message passing computing, and then we outline the two theoretical mod-

els, the BSP model and the LogP model which can model the cost of message passing 

processing with small numbers of architecture parameters. 

Message Passing Multicomputer 

The message passing multicomputer node consists of a processor and local memory 

that is not accessible by other processors. The memory is distributed among the com-

puters and each computer has its own address space. A processor can only access a 

location in its own memory. The interconnection network is provided for processors 

to send messages to other processors. These messages can include data that other pro-

cessors may require for their computations. The messages in a message passing mul-

ticomputer carry data from one processor to another as dictated by the program. The 

message passing paradigm can be implemented not only in a message passing multi-

computer but also in a shared memory multiprocessor by using the shared memory to 

hold data to be sent from one process to another process. 

Message Passing Programming 

Progranmiing a message passing multicomputer involves dividing the program into 

parts that are intended to be executed simultaneously to solve the problem. Program-

ming could use a parallel or extended sequential language, but a common approach is 

to use message passing library routines that are linked to conventional sequential lan-

guages such as C for message passing. A problem is divided into a number of concur-

rent processes which may be executed on individual computers and will communicate 

by using message passing instructions to synchronise with and to access memory of 
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other processes, that will be the only way to distribute data and results between pro-

cesses. It is necessary to say explicitly what processes are to be executed, when to pass 

messages between concurrent processes, and what to pass in the messages. Send and 

receive message passing library calls often have the form 

send (parameter-list) 

recv (parameter_list) 

where send() is placed in the source process, originating the message, and recv() is 

placed in destination process to collect the messages being sent. The actual parameters 

will depend upon the software and in some cases can be complex. 

There are usually many other message passing and related routines that provide desir-

able features. A frequent requirement for the process originating the message is to send 

the same message to more than one destination process. The term broadcast is used to 

describe sending the same message to all the processes concerned with problem. The 

term scatter is used to describe sending each element of an array of data in the root to a 

separate process. The contents of the ith location of the array is sent to the ith process. 

The term gather is used to describe having one process collect individual values from 

a set of processes. Gather is normally used after some computation has been done by 

these processes. Most message passing systems provide for these operations and other 

related operations. 

Message Passing Interface (MPI) [59] is an example of such communication routines. 

Processes communicate with one another by sending packets of information using the 

point-to-point communication routines such as MPLSend() and MPI_RecvO. MPI in-

cludes a wide selection of routines to offer different sorts of synchronisation in the 

sending which can be employed to improve the efficiency of an implementation at the 

cost of increased program complexity. The type of the values can be simple basic types 

such as integer and real, or derived types can be created by the programmer. MPI also 

offers a range of collective communication routines which can be used to perform a 

common operation across all the processes in a specific communication context. Ex-

amples includes MPI_Bcast() to broadcast a value from one process to all the others, 

and MPLScatter() to distribute a one-dimensional array of values over all processes. 
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There is also limited scope for performing collective computation within a commu-

nication context, e.g. IMIPLReduce() to perform a tree of binary operations, such as 

addition, on one value from each process. 

The message-passing paradigm usually requires the programmer to provide explicit 

message passing calls in code, which is very error prone and has been compared to 

low level assembly language programming. However, the message passing paradigm 

has the advantage of its direct applicability to the computers connected on a network. 

Using interconnected computers allows newer computers to be more easily incorpo-

rated into the system. These computers could be networked workstations. 

2.2.1 The BSP Model 

Message passing systems such as MPI and PVM have no simple analytic cost model 

for performance prediction. The bulk-synchronous parallel (BSP) model by Valiant 

[83] provides an alternative parallel model that has a cost model which is attractive by 

virtue of its conceptual simplicity and pragmatic accuracy. 

The BSP Machine Model 

In the BSP model, a parallel computer consists of three components, that is: a set of 

processors, each with a local memory; a global communication network that delivers 

message in a point-to-point manner among the processors; and a mechanism for glob-

ally synchronising all processors by means of a barrier. The model has no concept of 

processor locality or the topology of the underlying network. 

The BSP Programming Model 

It is normal for BSP programs to be written in a Single Program Multiple Data (SPIVID) 

style in which a fixed number of processes, each of which executes the same pro- 

gram, is created at program start-up. The distinguishing feature of the model is that it 
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decouples the two fundamental aspects of parallel computation: communication and 

synchronisation. This separation is the key to: 

a simple and accurate cost model that can be used to analyse and guide the design 

of parallel algorithms. 

achieving universal applicability across a wide range of parallel architectures, 

from shared-memory multiprocessors to tightly-coupled distributed-memory ma- 

chines or networks of workstations. 

Processors 	 I 

'I, 	I  
Local Computation 

Barrier 
Synchronisation 

Global 
Communication 

Figure 2.1: Superstep 

BSP programs consist of a sequence of supersteps each of which is conceptually sub-

divided into three ordered phases (figure. 2.1) consisting of: 

simultaneous local computation in each process, using only values stored in the 

memory of its processor; 

communication actions amongst the processors, causing transfers of data be-

tween processors; 

a barrier synchronisation, which waits for all of the communication actions to 

complete, and which then makes any data transferred visible in the local memo-

ries of the destination processors. 

In addition to a model, BSP programs can be implemented. Although it was originally 

envisaged that BSP programs would be written using BSP languages, the model has 
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actually been realised in terms programming libraries. Such libraries provide a very 

small number of library functions that implement the necessary communication and 

synchronisation primitives. For example, Oxford BSP [63] supports a simple set of 

communication primitives, but does not directly support communicating dynamically-

allocated data. However, the library has been tested relatively widely. Versions are 

available for Cray, SGI, shared memory, as well as TCP. BSP1ib [48] developed by the 

BSP Worldwide organisation, is the successor of Oxford BSP and an attempt at a stan-

dard. It offers a set of communication primitives which support both direct memory 

access (buffered and unbuffered puts and gets into remote memory for statically and 

dynamically allocated data) and a form of bulk synchronous message passing (sends 

to a remote buffer). The library is available in a number of native, hardware-specific 

implementations(Cray, SGI, etc.) as well as shared memory and generic (based on 

IvJPI) versions. 

Green BSP library [41] offers a simple set of communication primitives based on bulk 

synchronous message passing rather than the put/get semantics of Oxford BSP. (These 

features are now available in BSP1ib.) Shared memory, MN, and TCP versions exist. 

Because BSP1ib has been long known as a standard and available for wide range of 

hardware including our available hardware, a Sun multiprocessor, we use the BSP1ib 

to express BSP implementation template and to write real BSP programs to which 

example problems of VEc-BSP are hand compiled. 

Recently, the Paderborn University BSP (PUB) Library [15] has been developed. The 

PUB library offers the same functionality as BSPlib, but in addition provides several 

other features. In particular, it has a mechanism to partition the machine into subsets 

which synchronise independently. In this way more complex programs made of pat-

terns which synchronise independently can be built. It also provides other forms of 

synchronisation besides standard barrier synchronisation. 
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The BSP Cost Model 

The standard way of analysing the cost of a parallel algorithm is to use instruction 

counts and order analysis. For example, a logarithmic combining technique can be 

used to calculate the sum of n values in time O(logn) on n processors. The BSP 

has a cost model which is attractive by virtue of its conceptual simplicity and prag-

matic accuracy. Its cost calculus is straightforward because of the superstep structure 

of programs. As the barrier synchronisation involves all processes, then the cost of 

a sequence of supersteps is simply the sum of the costs of the separate supersteps. 

Although existing parallel computers have very different performance characteristics, 

these differences are captured by three parameters, that is: p: the number of proces-

sors; g: the ratio of communication throughput to processor throughput; and 1: the time 

required to barrier synchronise all processors. All of the effects of contention and con-

gestion on communication is captured in the parameter g. When the communication 

pattern requires at most h messages into or out of any processor, the communication 

time is determined as h g. The cost of a single superstep is determined by 

cost of a superstep = max w + max hi g +1 
o<l<p 	O<l<p 

where w, = local processing time on processor i, h, = the number of words trans-

mitted/received by processor i. Intuitively, the cost of a superstep is the execution 

time of the process that performs the largest local computation (denoted by max w 1), 

plus the communication time of the process that performs the largest communication 

(maxo< 1<  h, . g), plus a constant cost 1 that arises from the barrier synchronisation and 

other one-time costs associated with the superstep, such as the overhead of initiating 

communication. If h = maxh 1 , then such a communication pattern is called an h-

relation. The costs given by this model are not theoretical costs, but closely match the 

observed execution times over a wide variety of applications and target architectures 

[72]. 

The g parameter of the cost model depends on the performance of the underlying ar-

chitecture. For example, it depends on: 

1. the bisection bandwidth of the communication network topology; 
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the protocols used to interface with and within the communication network; 

buffer management by both the processors and the communication network; 

the routing strategy used in the communication network. 

The 1 parameter also depends on these properties of the architecture, as well as spe- 

cialised barrier synchronisation hardware, if this exists. The BSP cost parameters for a 

variety of shared-memory and distributed-memory parallel machines are found in [79]. 

The BSP cost model can be used to analyse algorithms developed in any of the data par -

allel functional languages. Hill [46] discusses the potential for raising the level of ab-

straction of the programming language used to express BSP algorithms and concludes 

that the BSP cost calculus provides the right foundations upon which practical variants 

of parallel functional languages could be developed. For example, Caml-Flight [35] 

and BSML [6, 58] incorporate the one-sided communications of BSP within ML. 

2.2.2 The LogP Model 

Culler et al. [27] have developed the LogP model, an asynchronous model of a dis-

tributed memory multicomputer in which processors communicate by point-to-point 

messages. LogP specifies the performance characteristics of the interconnection net-

work through a small number of machine parameters, but does not take into account 

the topology of the network. 

The parameters of the LogP model are: 

L - upper bound on latency incurred in sending a message from a source to a destina-

tion; 

o - overhead, defined as the time the processor is engaged in sending or receiving a 

message, during which time it cannot do any thing else; 

g - gap, defined as the minimum time between consecutive message transmissions or 

receptions; 

P - number of processor/memory modules. 

The parameters L, o and g are measured in processor cycles. Local operations take 
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one cycle. It is also assumed that the interconnection network can only carry a finite 

number of messages at any instant, defined by li messages from any processor to any 

other processor, where is Gauss' symbol, that is, lxi means the greatest integer that 

is less than or equal to x. If a processor attempts to send a message that would exceed 

this limit, it will stall. Communication is modeled by point-to-point messages of some 

fixed short size. As evidenced by experiential data collected on the CM-5 [82], this 

model can accurately predict communication performance when only fixed-sized short 

messages are used. Sending a small message between two processors takes o + L + o 

cycles: o cycle on the sending processor, L cycles for the communication latency, and 

finally another o cycles on the receiving processor. Alexandrov et al. [3] incorporated 

long messages into the LogP model by introducing an additional parameter G, which 

is the time for each byte for long messages. Under the LogGP model, sending a mes-

sage of k bytes first involves o cycles of sending overhead to get the first byte into the 

network. Subsequent bytes take G cycles each to go out. The last byte goes out at time 

o + (k - 1)G. Each byte travels through the network for L cycles. Thus the last bytes 

exist the network at time o + (k - 1)G -- L. Finally, the receiving processor spends o 

cycles in overhead, so the entire message is available at the receiving processor at time 

o + (k - 1) G + L + o. The sending and receiving processors are busy only during the 

o cycles of overhead, the rest of the time they can overlap computation with commu-

nication. Notice that the LogP model ignores (k - 1)G by assuming messages to be 

small. 

2.3 Cost Models for Skeleton-Oriented Programming 

2.3.1 Skeleton Approach 

Parallelism introduces many more degrees of freedom into the space of programs, and 

into the space of architectures and machines. When we consider ways of executing a 

program on a machine, the number of possibilities is enormous. It is correspondingly 

difficult to find an optimal, or even an acceptable, solution within these spaces. It is 
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also much more difficult to predict the detailed behaviour and performance of programs 

running on machines. One approach to alleviating this problem is to place restrictions 

upon the program which can be expressed. The skeleton approach introduced by Cole 

in [25] takes this route in terms of commonly occurring algorithmic patterns of parallel 

computation. This is led by the observation that many parallel applications developed 

up to now exploit parallelism according to a restricted set of regular patterns. In prac-

tice, parallel programmers more or less try to find a useful pattern or paradigm to 

solve their problem based on their programming experience. The skeleton-based lan-

guage support this process, aiming to replace creating programs from scratch with the 

development of programs through the composition of a small number of architecture 

independent control constructs, known as algorithmic skeletons, thus improving pro-

grammability and ease of understanding of the derived program. Each skeleton spec-

ification captures a commonly occurring pattern of parallel computation, while pre-

packing and hiding the details of its implementation using the explicit parallelism of 

lower level primitives provided by the target system. Classical examples of skeletons 

include farm, which models master-slave parallelism, and divide & conquer, which 

solves a problem by recursive splitting. 

For skeletons, owing to their regular structure, accurate performance models can be 

constructed. This enables estimations of the execution costs of skeletons which can be 

used for making algorithmic decisions at a high level. 

One of the most commonly discussed skeleton is divide & conquer (d&c). 

A general formulation is: 

d&c:: (a—*bool)---+(a—b)--*(a—[aJ )—+( [b]—b)---a---- b 

d&c trivial solve divide conquer P = 

if (trivial P) then (solve P) 

else conquer (map (d&c trivial solve divide conquer) (divide P)) 

This skeleton has four functional arguments: trivial tests if a problem is simple 

enough to be solved directly, solve solves the problem in this case, divide divides 
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a problem into a list of subproblems, and conquer combines a list of sub-solutions 

into a new solution. The last argument P is the problem to be solved. The function 

map applies a given function to all elements. Given this skeleton, the implementation 

of an algorithm that has the structure of d&c requires only the implementation of the 

four sequential argument functions and a call of the skeleton. For instance, a quicksort 

procedure for lists can be implemented as follows: 

quicksort list = d&c is-simple ident divide concat list 

where is-simple checks if a list is empty or singleton, ident is the identity function 

and divide splits a list into three lists containing the elements that are smaller than 

given pivot element, the pivot element itself, and the elements greater than or equal to 

the pivot, respectively. Finally, concat concatenates three lists and list is the list to 

be sorted. 

A variation is Rabhi's recursive partitioning skeleton [68] given by: 

rp trivial solve divide conquer P = 

if (trivial P) then (solve P) 

else conquer P (map (rp trivial solve divide conquer) (divide P)) 

which differs from d&c in that conquer takes also the original problem P as parameter. 

[68] gives its implementation using distributed graph reduction and examples of its 

use. 

Parallelism emerges naturally from the tree of computations produced by the combina-

tion of recursion and a divide function which generates more than one subproblem. 

Algorithms such as Strassen's matrix multiplication, polynomial evaluation, numeri-

cal integration, FFT, etc. [2] can be expressed similarly, only by using different cus-

tomising argument functions. The tree of processes can be mapped down to physical 

processors in a number of ways. It would appear that all divide-and-conquer problems 

are not cost-optimal, since there is only one particular level in the tree which is active 

at any particular time. The main problem is in the difficulty of allocating tasks to pro-

cessors, since tasks are generated dynamically. Some strategy for turning to sequential 

evaluation at some point to avoid the tiny tasks at the leaves of the tree may be required. 
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A common approach to achieving performance predictability is to derive symbolic 

mathematical formulae that describe the execution time of each skeleton. These for-

mulae are typically parameterised by a set of parameters which capture the important 

factors that affect the execution time of the program. These parameters usually in-

clude the program size, number of processors used and other algorithm and hardware 

characteristics which can be given by a programmer, benchmarking, or a profiling tool. 

For example, the performance model for the divide and conquer (DC) skeleton pro-

posed by Darlington et al. [29] assumes the processors are organised into a balanced 

binary tree and all processors will eventually be used as leaves. The execution time 

can be predicted using the formula: 

log(p)-1 

tsoi, = 	(tajvx  + tsetup x  + tcomb x  + tcomm x ) + tseq x 
i=O 	2' 	 2' 	 2' 	 2' 

where tsol., is the time to solve a problem of size x, tdjv  is the time to divide a problem 

of size x, tcombx  is the time to combine the two results, tsetupx  and tcomm 1  are setup and 

transmission time for communication and tseqx  is the time to solve a problem of size x 

sequentially. 

A skeleton can be loosely defined as a pre-defined higher-order function with asso-

ciated parallel implementations. Higher-order functions are commonly used in func-

tional programs to express high-level operations on data structures, for example map 

and fold over lists. The style of programming based on higher-order functions over data 

structures has been influenced by the work of Backus [5] and the Bird-Meertens for-

malism [9].  Several researchers have developed skeleton programming systems where 

the only skeletons available are these data parallel higher-order functions such as map 

and fold. For example, the work of Skillicorn [77] uses the Bird-Meertens Formalism 

(BMF) as a calculus for deriving efficient programs from problem specifications using 

transformations. Examples include the derivation of data-parallel divide-and-conquer 

algorithms. We refer to such a programming style as BMF style parallel programming, 

which is similar to our language VEc-BSP. In this approach, performance models 

are required to investigate how the performance model of each higher-order function 

can be composed for estimation of the execution cost of a data-parallel functional pro-

gram. Among cost models proposed for BMF style parallel programming, three of 
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them provide the bases of our cost analysis, that is, Skillicorn's parallelised BMF, 

Rangaswami's HOPP model, and particularly Jay's shapely language VEC. The next 

three sections in this chapter investigate these models. 

2.3.2 The Bird-Meertens Theory of Lists 

The Bird-Meertens Formalism (BMF) [11, 10] developed by Bird and Meertens is a 

collection of second-order functions, algebraic identities and theorems relating these 

with concise notations which facilitate the transformation approach. Although a large 

amount of work has been done on other data types (arrays [10, 71, trees [38]),  the theory 

of lists was the first studied and is the most well developed [9, 101. We will focus on 

the theory of lists, as most of the work concerning the implementation and the cost 

calculus has been done on this theory. When given a data type along with a set of 

predefined collective operations, the programmer can express his/her algorithms only 

by means of the hierarchical composition of the operations provided in the language, 

much in the philosophy of combinatoric functional languages such as PP [5]. 

The following set of second-order functions are provided in the theory. 

map (written f*), which applies f to all the elements of the list: 

f * 	. 	= [fai,fa2,. . .,fa,] 

reduce (written /) which reduces a list by an associative binary operator : 

prefix (written //) which given a list returns the list of results of reduce applied to all 

the initial segments of the list: 

in its returns the list of initial segments of its argument list, shortest first: 

inits[a1,a2,...,a] = [[],{al],[al,a2],...,[al,a2,...,aflh] 
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tails, which returns the list of all final segments of its argument list, longest first: 

tails [a1,a2,...,a] = 

cross-products (written c_prod) which applies f to all pairs with one element from the 

first argument and the other from the second: 

c_prodf [Xl, X2," . xm][yi, Y2, 	, y] = [[fxiyi, fx2yl,. ,fxm yiJ, 

[fxly2, fx2y2,..., fXmY2]1 

[fxiy, fx2y,•.., fxmynll 

The theory has a set of algebraic identities as meaning-preserving laws which can be 

used to transform an algorithm with a poor performance to a more effective one. The 

following laws are some examples. 

(fog) * = (f*) o (g*) 	(map distributivity) 

where fog means the function composition off and g: 

(fog) x = f (g x) 

It states that the map operator distributes over functional composition. 

(map promotion) 

where -H- denotes the concatenation function that takes two lists and returns a list 

which is the concatenation of the argument lists. It states that the result of concatenat-

ing a list of lists, and then apply f to each element, is the same as applying f* to each 

component list and then concatenating the outcomes. 

(/) * o -H-/ = 	o (/) * 	(reduce promotion) 

which states that to reduce the components of a list of lists with an associative operator 

ED we can either concatenate the component lists and reduce the results, or reduce each 
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component list and then reduce the results. 

A function It satisfying the following three equations is called a list homomorphism. 

h[x] = fx 

h(xs-f+ys) = hxsEBhys 

where is an associative binary operator with unit t. We write ([f, e]) for the unique 

function h. Many important functions are defined as list homomorphisms. 

The following result was first noted by Bird and Meertens and called the first homo-

morphism theorem [9]. 

The First Homomorphism Theorem Any homomorphism can be expressed in the 

form 

h(xs-H-ys) = (/)o(f*) 

2.3.3 Skillicorn's Cost Calculus for ParaHelised BMF 

BMF has good properties as a parallel programming model. Clearly f* is the most 

basic form of parallelism. / can be computed in parallel using the obvious tree-like 

structure. The first homomorphism theorem implies that any list homomorphism can 

be structured as a parallel algorithm consisting of two steps: a single parallel operation 

applied to each element followed by a tree-like reduction. Skillicom established a 

methodology using BMF as a parallel programming model [77]. 

Programming Style 

The programmer is provided with a set of aggregate data types (list, arrays, trees...), 

along with a set of predefined collective operations. The programmer can express 

his/her algorithms only by means of composition of the provided operations. 
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Implementation of the Model 

The implementation of the model proposed reflects the structuring imposed by the 

Bird-Meertens theories. As the theory provides a small set of second order operators 

and all programs are compositions of these operators, the implementation of a program 

proceeds as a sequence of templates of the used operators. 

Standard Topology 

Because of the fixed set of operations and template-based implementation of the sup-

port, there is only a fixed set of communication and computation patterns that can 

occur. We need only to solve the mapping problem for the union of the patterns used 

in the templates, and then to use a combination of predefined templates to solve any 

problems. The union of the patterns needed is called the standard topology. Solving 

the mapping problem in this framework means embedding the standard topology in a 

target architecture. Observation of the templates implementing each operation reveals 

that the standard topology is given by a set of distributed memory MHVID processors 

whose interconnection satisfies the following requirements: the existence of a Hamil-

tonian cycle, the capability to do a tree-structured reduction in logarithmic time, and 

the ability to deliver an arbitrary permutation in logarithmic time. Skillicorn claims 

in [76] that such a standard topology can be mapped on any main class of massively 

parallel architectures with no more than a constant slowdown. That is, the cost of the 

emulation is asymptotically the same on those architectures. This result allows him to 

sketch an asymptotic performance prediction at the language level without considering 

communication characteristics of the target architectures. 

Cost Calculus 

Transformational derivations should be guided by some concept of the execution cost 

of the developing program. Skillicorn and Cai [78] present a strategy for building cost 

calculi which can be used for transformational program development. They take the 
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following general approach. Whenever a composition go f has an implementation that 

is cheaper than the sum of the costs of g and f, define a new operation to represent the 

combined cheaper operation, thus: 

newop = go f 

Both sides denote the same function. However, the left hand side denotes a single 

operation, while the right hand side means all processors must have completed f before 

any processors may begin computing g. The cost of the right hand side is the sum of 

the costs of composition. This view allows the cost of both sides to be computed and 

the equation to be labelled with its cost-reducing direction. For the theory of lists, a 

cost is computed as follows. 

A list of length n is stored on a p-processor system with about n/p elements in each 

processor. Computing f* applied to such a list means applying f sequentially to the 

n/p elements in each processor. The implementation equation for list map is 

f* = (j-;) 

where subscripts indicate the size of piece to which an operation applies and an over-

bar indicates the sequential version of an operation. Reductions are first done sequen-

tially on the list segments stored in each processor, and the results are then reduced in 

parallel between processors. The implementation equation for list reduction is there-

fore 

= 	0 	*p  

For list map we have 

t(f*) = 

and for list reduction we have 

t,, (/) = Iogp + 
n 
 - 

P 

The costs of other useful operations can be computed in a similar way and the cost 

information is used to direct equations of the theory. Cost results are parameterised 

by the number of processors used and the size of list elements, thus we can know the 



2.3. Cost Models for Skeleton-Oriented Programming 	 37 

asymptotic behaviour of cost. Some translation laws which are cost-reducing directed 

based on the calculus are: 

(fog)* ± 	f*og* (2.1) 

f *o(++/)  - 	(-H-/) o (f*) * (2.2) 

(/) o (-i-+ /) - 	(/) o  (/) * (2.3) 

- 	(/) * o inits (2.4) 

inits - 	(-f-f-//)o([.])* (2.5) 

OlidO E) 
- 	(/) o ((D/) * o tails (2.6) 

(®/id® )*oinits (2.7) 

where recur-reduce (written ®/b0),  given coefficients ai, . . . , an  and b1,. . . , bn  com-

putes the nth value generated by a linear recurrence function Xj+1 = x, ® a1+i 

where x0 = b0, ® and e are associative, and ® distributes backwards over E1: 

0/b0[b1,...,bj,...,bn] 

= 

and recur-prefix (written 0//b0  ) computes all values generated by the same linear 

recurrence: 

= 

and when [bi,... , b,] = [id®,. . . , id® ] and b0 = id® , where id is the identity element 

of operator , we write 

[a1,...,afl]01b0 [b1,...,b] as 0Iid®[b1,...,bn] 

[a i,. . . , a,] 0 I/b0 	[bi, . . . , b,] 	as 0 lid0 	[bi,. . . , b,,] 

Transformational Development 

A set of transformation laws allows the programmer to transform the programs from 

a first (possibly inefficient) formulation to a more efficient implementation. Transfor- 



38 	 Chapter 2. Cost Models for Parallel Computation 

mational development of BMF is illustrated by an example problem maximum segment 

sum(mss). The problem is: given a list of integers, find the greatest sum of values from 

a contiguous sublist. It begins from an obviously correct solution: compute all of the 

subsegments, sum the elements of each, and select the largest of the sums. It can be 

expressed in BMF style by 

mss= (t/)o(+/)*osegs 

where I denotes the function which takes the maximum of two arguments and segs is 

defined by using tails and inits: 

segs = ( -H- /)o tails* omits 

As an example, we have 

mss[2,-4,2,-1,6,-3] =7 

In [78],  Skillicorn and Cai derived an parallel algorithm from the specification: 

mss = {definition} 

(1/) 0  (+1) *osegs 

= {by definition, segs = (-H- /) o tails *0 inits} 

(1/) 0 (+/) * 0 -i—i--/ o tails * 0 inits 

= {Eq. (2.2), cost — reducing} 

(1/) 0 (-H- /) 0  ((+/)*) * otails * 0 inits 

= {Eq. (2.3), cost — reducing} 

(1/)°(I/) * o ((+/) *) * o tails * o inits 

= {map promotion, Eq. (2. 1), cost - neutral} 

(1/) 0 (1 0  (+/) * otails) * 0 inits 

= {Eq. (2.6), cost — reducing} 

(1 /)o(+/o1)*oinits 

= {Eq. (2.7), cost — reducing} 

1/o(+//oI) 
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Note that the 0 subscript of / and if is the identity element of +. The derived algorithm 

has complexity of O(logn) under the condition that n processors are available. 

While BIVIF gives a formal foundation of transformational development, it has some 

aspects which might be seen as drawbacks. Firstly, the expression is restrictive be-

cause parallelism is introduced by only predefined second-order functions. Secondly, 

it is difficult to implement efficiently when the second-order functions are composed. 

Finally, successful cost-reduced transformations are often not easy to find out in the 

general case. 

2.3.4 Compile-time Cost Analysis for HOPP 

Rangaswami [71] has developed a compile-time cost analysis for a parallel program-

ming model called Higher-Order Parallel Programming (HOPP). In the HOPP model, 

parallelism in programs is expressed implicitly using the fixed set of BUT functions. 

Its cost analysis aims to exploit a more concrete model than Skillicorn's cost calculus, 

considering lower level information such as architecture topologies and bandwidth of 

communication links. It also estimates the costs of different possible implementations 

of nested higher-order functions, in contrast to Skillicorn's one in which only paral-

lelism at the level of the outermost higher-order function is handled, to choose the 

most cost-effective one. The HOPP model consists of three components: the program 

model, the machine model and the cost model. 

The Program Model 

The program model is similar to that of Skillicorn's parallelised BMF. It has prede-

fined (parallel) recognised functions, which are second-order functions from BMF, 

some additional functions having parallel implementations, and user-defined sequen-

tial functions. A program is expressed only as a composition of those functions. Each 

component of the composition is referred to as a phase of the program. The only data 

structure is the list, on which all the functions operate. Lists can be arbitrarily nested 

and any type. Since the behaviour of each of the functions is predetermined, a regular 
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program expressed in terms of these functions can be analysed at compile-time. A 

regular problem in this context is one whose behaviour does not depend on the actual 

input values. A further assumption which is made by the analyser is that sublists are of 

equal length. The cost analysis needs type information in order to compute communi-

cation costs. Consequently definition of sequential functions that allow polymorphism 

is not permitted. 

The Machine Model 

The programs are targeted at distributed-memory machines which consist of a set of 

interconnected processors. The machine model provides a range of target architectures, 

on which the cost model predicts execution cost of the program. It includes hypercube, 

2-D torus, linear array and tree. 

The Cost Model 

In the HOPP model, the parallelism is exploited by the occurrence of recognised func-

tions in each phase. The phases themselves are sequential so that phase i does not 

commence until phase i - 1 is completed. The cost system examines cases in which 

the nesting level is less than three. Any recognised function more than four levels deep 

is considered as a sequential function. The cost analysis was implemented in the form 

of an analyser. The application program is input to the analyser which first constructs 

a program tree. Each branch in the tree corresponds to a phase of the program. 

The information used in the analyser is in the form of the following tuple: 

program= (P,M,D,I,Ft , S,Cj,Fs ) 

where 

P is a program tree. 

M is a 4-tuple which describes the characteristics of the parallel machine. 

M = (topology, number-of-processors, start-up cost, bandwidth) 
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D represents the level of nesting of the input lists. 

D = (variable of the input list, level of nesting of input list) 

i is a D-tuple which represents the list sizes at each level. 

F, is a function that computes the size of each element in level (D - 1) of the input 

list(s). 

S is a set of relationships between sizes in different levels of the input list and the 

number of processors. 

Cj is the cost of the sequential function. 

F is the output type of the sequential function. 

Although this information is supplied by a programmer, D, P, and F5  could be deduced 

from the type if the analyser incorporated a type-checker. C1 and I could be estimated 

if the analyser incorporated a profiler. The start-up cost and the bandwidth are specific 

to a given architecture and can be obtained from the machine manufacturer. 

The cost of a program comprising n phases is given by: 

n 	n—i 
Cost = Cpi + E C1 ,,+1 

i=1 	i=O 

where Ci,, is the cost of phase i and C +i is the communication cost for rearranging 

the output of phase ito suit the implementation of phase i + 1 when necessary. 

The cost of implementing a recognised function, F, operating on an input list of sizes 

n, in parallel on p processors, is represented by: 

C = F(n,p,C1) 

where, C1 is the cost of F's argument function. The analyser performs a cost analysis 

for each phase in the program, for a given topology. The cost of the sequential imple-

mentation is also computed in each case. The phase could contain up to three nested 

recognised functions. Seven possibilities arise, corresponding to the implementation 

of any one of the three functions in parallel, any two in parallel and all three in parallel. 
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The Cost of Parallel Functions 

The recognised functions in HOPP have their definition of execution cost on each 

architecture topology considered. For example, the cost of map on any topology is 

Cmap = 

where f is the sequential argument function and Cj is its cost. There are two versions 

for fold, that is s_fold and g_fold. The size of the intermediate results is constant in 

sfold, but it grows in gfold. The algorithms for the two versions are the same: each 

processor performs the sequential fold on its local elements, then the partial results are 

combined globally to obtain the final result. But the communication costs are different. 

For example, the cost of the both versions on a hypercube of dimension d is given by 

. s_fold 

Cf0ld =C1(+d— 1)+7 m d 
P 	

co 

. g_fold 

d-1 2! m 
CfOld=Cf(+d-1)+ 	com 

P 

where T,m  represents the cost of communicating m elements of the lists to a neighbour. 

Tcmom  =Ko+j - ms 

where s is the size of each element of the list, K0 is the start-up cost, and K1 is the 

bandwidth of the communication link. 

Data Rearrangement Communication Cost 

The rearrangement costs are computed using the information of the current data distri-

bution which is obtained from the current node in the search tree and the required data 

distribution. Five models of data rearrangement communication were identified. As 

example, we give the each cost of them on the hypercube of d dimensions. 
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Nearest Neighbour: The cost for communicating a data packet of size n bytes to 

a nearest neighbour is 

Ko+ -n 
KI 

. Broadcast: The cost for sending a data packet of size n bytes to all the other 

processors is 
1 1- 

broad =d(Ko+j-n) 

• Scatter: The cost for scattering data of size n bytes equally to the other processors 

is 
in 

'-'scatter 
,-h 	=dKo+j(pi) 

. Gather: The cost for collecting distributed data of size n bytes across the proces-

sors is the same as that of scattering. 

• Total Exchange: The cost for sending data of n bytes from every processor to 

every other processor is 

in 
C xci ange  =2dKo+2--(p— 1) 

Kip 

The Search Tree 

The costs predicted by the analyser are used to construct a search tree to realise cost-

effective parallel implementation for a given architecture. The cost of all possible 

implementations for each of the phases are estimated by the analyser and a search 

tree is constructed. The weights on the nodes at a level represent the costs associated 

with the different implementations for the corresponding phase. The weights on the 

edges represent the costs of phase transition. The least-cost path in the search tree 

corresponds to the most efficient implementation for the whole program, for which 

code can then be generated and executed on the parallel machine. 
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2.3.5 VEC and Shape-based Cost Analysis 

Static shape analysis to support compilation and cost prediction for parallel programs 

was originally suggested by Jay [52] and first applied in detail to the cost analysis 

of VEc, a small shapely functional language [55]. VEc supports a new account of 

arrays that combines the benefits of the list programming style with the efficiency of 

array programming, by means of shape analysis. [55] represents the first attempt to 

produce a formal cost calculus for a parallel programming language of nested arrays 

that automatically derive costs from program source. As the paper [55] by Jay et al. 

is the most fundamental previous work for this thesis, we review the large part of its 

contents here for the purpose of both giving the basis of our work and making clear the 

difference with our work presented in the following chapters. 

Programming Model 

VEC by Jay et al. is a simply-typed lambda-calculus with products, a unit type, and a 

vector type constructor for nested arrays that supports the BMF style of programming. 

Its types are 

D ::= nat I bool 

t::=DIszIunI'rx'rlvect 

where D can include other simple datum types, and the type stratification precludes 

vectors of functions. The terminology of vectors (rather than lists) is used to emphasise 

the fact that the lengths of such objects will be statically determinable even though the 

language syntax itself will use the familiar nomenclature of lists. Type sz is introduced 

as the type of lengths of vectors and index vector entries, although the set of the values 

of sz is isomorphic to the set of natural numbers. Type un is a unit type. 

Terms in VEC are given by 

t ::=dI cIxIXx° . t itt I if t then t else t I ifs tthen t else  I recfö.t 
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where d ranges over simple constants (integers, booleans, arithmetic operations, etc) 

and c ranges over the combinators with non-trivial shapes (i.e. those whose behaviour 

impacts upon the shape of terms, such as vector constructors, a selection of conven-

tional sequential functional operators such as length, fst, snd, hd, tI, entry and so on, 

and second-order vector operations like map, fold and zip). There are two forms of 

conditional: a data conditional if, whose condition is given by a datum; and a shape 

conditional ifs, whose condition is a size (with 0 interpreted as false, other sizes as 

true). The data conditional allows the condition to be data-dependent, but ensures 

shapeliness by requiring that the branches have the same shape, drawn from the shapes 

of terms in 'r above. By contrast, the branch taken by the shape conditional ifs is known 

by shape analysis, so the branches may have arbitrary types and shapes. 

The superscript on the recursion operator indicates restriction to functions with trivial 

shape (i.e. involving only datum types and their composition, but no vectors). This 

guarantees termination of shape analysis, but requires the programmer to estimate the 

number of unfoldings for recursive functions to perform cost analysis. Shape rules 

(analogous to type rules) ensure that all elements of a vector have the same shape. 

Collectively, the constraints ensure that the compiler is able to evaluate the shape of 

every program, and detect any shape errors. In turn, this facilitates efficient imple-

mentation since vectors can be implemented as arrays rather than lists. In VEC, shape 

tycostM of a type 0 is defined inductively by 

tyCOStM(D) = un 

tyCOStM(Ufl) = un 

tYCOStM(0 x 0') = tyCOStM(0) x tycOstM(0') 

tycostM(vec 0) = sz x (tycOstM(0)) 

tycostM (sz) = sz 

tYCOStM(0 -* 0') = tycOstM(0) -p (tycOstM(0') x T) 

The shape of an object whose type is D or un is bang, which is defined as the canonical 

term of discrete type 8 , which are constructed without using the vector construction or 

sz: 

::=DIunI8x8I8 -* 
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The shape of a pair is a pair of the shape of each component and the shape of a vector 

is a pair comprising its length and the common shape of its elements. The shape of 

a function is a function from the shape of an argument to a pair comprising the shape 

of the result and the cost to apply it, whose type is T from a cost algebra, which is 

explained below. 

There are intrinsic limitations of expressiveness in the shapely programming model. 

In addition to the restriction about data conditional mentioned above, it excludes any 

use of functions whose result shape is data-dependent. The well known function filter 

is a typical example. 

Cost Algebras 

The cost analysis is founded on the concept of a cost algebra, which captures the char-

acteristics which determine execution cost on some target architecture and mechanisms 

for the combination of such costs. A cost algebra has signature (T, +) 0 1  , ®, max) 

with binary operations 

+,e : T — T —* T 

0: sz -f T -f T 

max: T -f T -p T 

where T represents execution costs of some kind. The operations + and are sequen-

tial addition and parallel addition of costs (in other words, capturing what happens 

when two computations are respectively run sequentially and concurrently). The oper-

ation ® is parallel "multiplication" capturing the notion of running a number of copies 

of the same computation concurrently. 0 is the identity element of +. The operation 

max takes some kind of maximum between two costs. 

Cost Calculus 

Cost analysis of terms is structured compositionally, analogously to the shape analysis 

of earlier work. For example, where the shape of a term which reduces to a vector 
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consists of a pair comprising the length of that vector and the (necessarily common) 

shape of its elements, the cost analysis computes both the shape and an element of T 

(from the cost algebra) corresponding to the cost of the reduction itself. That is, the 

analysis of a term whose type is 0 produces an object of type 

tycOStM(9) x T 

The analysis of a datum constant term defines 

cost(d) = (bang, 0) 	where d is a datum constant 

As the shape of a function term is a function from the shape of an argument to the pair 

of the shape of the result and the cost to apply it, the analysis of a function term (itself 

of type 0 -* 0') produces an object of type 

(tycOstM(0) -+ (tyCOStM(0') x T)) x T 

where, tycostM(0) and tycOStM(0') reflect the shape behaviour of the function. The 

outermost T reflects the cost of reducing the term itself, while the inner T reflects the 

cost of applying the function. For example, the analysis of a binary datum operation 

term defines 

cost(d) = (A.(Xx.(bang, binOpConst),0),O) where d is a binary datum operation 

As examples of the analysis of purely sequential operation terms, the analysis of the 

terms hd (the usual "head of a list" function, but now as a vector operation) and length 

define 

cost(hd) = (Xx. (snd x, hdConst), 0) 

and 

cost (length) = (Xx. (fst x, IengthConst) , 0) 

respectively, where fst and snd are the functions which take a pair and return the first 

and the second component of the pair, respectively. These indicate that the term itself 

costs nothing to evaluate and that the head (or length) function costs some machine 

dependent constant quantity of time to execute, producing a result whose shape is that 
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of the elements for hd (or the length for length) of the vector to which it is applied. A 

more interesting example is the second-order function map. 

cost(map) = (if. (Ax. ((fstx, fst (f(sndx))), (fstx) ® (snd (f (sndx)))), 0), 0) 

This indicates that the term itself costs nothing to evaluate and that applying map to 

an argument function costs nothing but application of the resulting function to an ar -

gument vector costs some quantity of time that depends on the definition of ® in the 

cost algebra, producing a result whose shape is a pair of the length of the vector and 

the shape of the result of the application of the function to the element of the vector. 

The cost-accounting of parallelism in [55] reflects the implementation choices which 

were assumed. Firstly, the skeletal combinators (such as map) were assumed to intro-

duce parallelism in the conventional way. Secondly, function application terms (i.e. 

terms of the form tl t2) were assumed to be implemented first by evaluating tj and 

t2, possibly in parallel, then evaluating the application itself. The of the cost alge-

bra captures the first of these two stages (and its implicit compile-time optimisation). 

Thus, the analysis of application terms of the form tl t2 is performed by applying the 

corresponding shape-cost pair of t1, (f,t) to that of t2, (x, t') by using a SIZE operator 

capp: 

cost (t1 t2) = capp cost (t1) cost (t2) 

where capp is defined by 

capp:(0—+(O'xT))xT----*(OxT)--*(O'xT) 

capp(f,t)(x,t') = (fst(fx), (snd (fx)) + (tat')) 

This implies that the cost of an application term is a combination of the application 

cost (snd(fx)) and the cost of function term t and cost of argument term t'. + and ED 

can be changed to reflect the definition of a cost algebra. 

Notice that two terms which reduce to the same value (and hence have the same shape) 

can have different costs, depending upon the method by which they are computed (e.g. 

which parallel operators are used, if any). Consider terms ta  and tb which evaluate 

to the same vector of length n. Suppose ta computes its result in parallel, while tb is 
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entirely sequential. The costs of the terms will take similar forms ((n, bang), t,) and 

((n, bang), t,) indicating that both results have the same shape (n, bang). Meanwhile, 

the cost functions t and t, are distinct, distinguishing the implementations. 

Implementation Model 

The choice of implementation model is made by the definition of operations of a cost 

algebra without changing any other details of the cost analysis framework. For ex-

ample, sequential executions are costed using the cost algebra (T, +,'lJ, +, *, max) in 

which T is sz and simply counts clock ticks, and the other components are the standard 

integer operations. For parallel execution, T is a set of functions from parallel machine 

descriptions to times. The chosen parallel model in [55] was the PRAM model. For 

the PRAM model, with its collection of processors computing synchronously in par -

allel and interacting through a unit access-time shared memory, we have T = sz - sz, 

representing time functions from the number of processors to the number of time steps. 

Sequential cost addition is pointwise addition on time functions, and max is pointwise 

maximum. An addition for parallel execution ' is defined by using static cost in-

formation to determine an optimal division of processors between two parallel tasks 

(since this information would also, of course, be available to the compiler). 

(f(D'g)p = min {max{fq, g(p—q)}} 
O<q<p 

Because sequential execution may be faster, parallel addition ED in the cost algebra is 

defined by 

(f(g)p= min {(f+g)p, (f dg) p} 

Parallel multiplication ® is defined by 

(n®f) = if(n mod p==0) 

then (n±p) * (f 1) 

else (n-i-p) * (f '1) + (f (p -i--  (n mod p))) 

Notice that static shape information is used to divide the "leftover" tasks among the 

processors to increase efficiency, just as a compiler in possession of this information 
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would do. The skeleton combinators which are executed in parallel in VEC are map 

and a parallel fold, pfold. 

In subsequent work [54], Jay raises the possibility of BSP costing of GoldFiSh (a 

related parallel shapely language), but no attempt is made to capture matters formally. 

2.3.6 Related Work with Skeletons 

There are currently a number of research groups working on the design and implemen-

tation of parallel languages with algorithmic skeletons. 

Early work in the area of using algorithmic skeletons concentrated on describing each 

program using a single skeleton. Cole introduced in [25] the skeletal concept, defin-

ing four general skeletons: divide & conquer, task queue, iterative combination, and 

cluster (solving problem by decomposition on a grid network). 

Subsequent work by various groups has been addressing the complications that arise 

by allowing the composition and nesting of algorithmic skeletons. 

Darlington's group at the Imperial College has been one of the most prolific in this 

field. Their first approach was to embed a set of general skeletons, including pipe, farm, 

d&c, and ramp in a purely functional language [29]. This was followed by a refined 

approach, called SPP(X), standing for Structured Parallel Programming parameterised 

by a base language X. SPP(X) is a two-layer scheme, comprising a high-level, func-

tional language, called the Structured Control Language (SCL), in which applications 

(containing skeleton calls) are written, and a Low-level Base Language for efficient 

sequential code called from within the skeletons [30]. The skeletons presented in this 

context are both general ones, like farm and SPMD, and data-parallel ones working 

on distributed arrays, like map, fold, and rotate. Although the language and prototype 

implementation supports programs consisting of many skeletons, the focus of the pre-

liminary implementation is on transforming and optimising individual skeletons. To 

[8 1] addressed this issue by investigating the possibility of using cost functions, which 

are to be derived from skeleton performance models, in optimising the implementation 

of compositions of the components built using the approach. 
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The Pisa Parallel Programming Language (P3L) [67, 28], group led by Pelagatti and 

Danelutto has been similarly active for a number of years. P3L is an imperative-based 

(typically C) programming language that supports a set of predefined programming 

templates, or skeletons. These include farm, pipe, map, tree reduction and loop, each 

of which has an associated functional language definition. The language allows un-

restricted composition and nesting of these skeletons in a user program. Each of the 

P3L implementation templates is associated with a performance model function pa-

rameterised by both machine and application specific parameters. The compilation 

philosophy employs templates for each construct, targeting the P3L abstract machine, 

a distributed-memory, message passing model with options for either full or mesh con-

nectivity. Many decisions are guided by the use of profiling information gathered 

sequentially and plugged into the template performance models. Zavanella [86] de-

scribes the methodology to implement an adaptive support for a skeleton language 

(Skel-BSP) on top of the EdD-BSP (a simple extension of the BSP) computer as a 

method to provide both efficiency and performance portability. 

The Heriot-Watt group have extracted and exploited skeletal parallelism within Stan-

dard ML programs. Busvine's PUFF compiler [24] generates sequential occam2 from 

SML and can identify useful parallelism in general linear recursion. Bratvold's SkelML 

compiler [18] recognises a set of predefined higher-order functions, or skeletons, in-

cluding map, filter, and fold in standard ML programs and maps their implementations 

to abstract process network templates. The compiler also uses a set of preoptimised im-

plementation templates for recognised sequential compositions of the supported skele-

tons. A performance model formula for each of the skeletons is derived by the compiler 

designer, and quantified by benchmarking. Using these formulae, the compiler com-

pares the costs of different process to processor mappings in an attempt to minimise 

the total execution time of the program. The compiler relies on profiled sample data 

provided by the programmer to obtain information about the execution time of the user-

supplied sequential code. Michaelson et al. [61, 62, 75] have developed a parallelising 

compiler for Standard ML using algorithmic skeletons including map and fold. While 

PUFF and SkeIML are compilers from a subset of Standard ML to occam2 and are 

oriented specifically to the Meiko Computing architecture, based on T800 transputers, 
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the new work generates predictably portable C with IVIPI from Standard ML. Arbitrary 

depth nesting of skeletons can be implemented in parallel using a static approach for 

generating parallel code. Hamdan's Ektran compiler [43] can also compile and exe-

cute arbitrarily nested skeletons. The static analysis of the source program generates a 

nesting structure which is used to combine the corresponding higher-order functions in 

a process termed "nesting deduction". The run-time scheduling relies on the compile-

time analysis and uses message passing groups to run combined higher order functions 

in parallel. 

Rabhi and Schwarz [69,70], have developed a Paradigm Oriented Programming Envi-

ronment (POPE) in which a purely functional realisation of the "static iterative trans-

formation" skeleton is added to skeletons similar to those found in Cole's original 

approach. 

Feldcamp et al. developed Parsec (Parallel System for Efficient Compilation) [33, 34], 

which is a skeleton-based parallel programming environment. The system provides 

virtual machines (called skeleton-template-module objects) which provide skeleton 

code for the supported template, which the user completes to implement an application. 

The supported skeletons are processor farms and divide and conquer. Each skeleton is 

parametrised on information such as number of processors, topology and granularity. 

The parameters include both static information such as its shape and size that can be 

specified by the user and dynamic performance tuning parameters that are determined 

by the analysis from information gathered from test runs and the performance model 

provided to each skeleton. The performance model was validated on a 74 node T800 

Transputer based multicomputer system. 

Deldarie et al. [31] developed special cases of skeletons related to image processing. 

The provided skeletons are local window (LW), where each pixel in the resulting out-

put is derived from pixels in a window surrounding the corresponding pixel in the input 

image, and split and merge (SAM) where an image is partitioned into slices, an oper-

ation is applied to each slice then the results are merged. Performance models for the 

skeletons are derived in terms of the WPRAM computational model [65] and the exe- 

cution time for a skeleton is presented as a generic higher order complexity function. 
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The time complexity of the particular application is derived when the skeleton with a 

specific set of parameters is instantiated. The approach is illustrated by some examples 

from image processing, and is extended to analyse the scalability of skeleton-based ap-

plications, using isoefficiency functions [42] . Measured performance on the WPRAM 

simulator shows a close match to theoretical predictions. 

The recent work of Gorlatch et al. [39, 40] present a methodology for designing mes-

sage passing programs with collective operations, such as reduction, scan, gather, etc. 

The design process is based on correctness-preserving transformation rules, provable 

in a formal functional framework. The impact of the design rules on the target perfor-

mance is estimated analytically and tested in the machine experiments. The method-

ology is illustrated by a case study, the MPI implementation of the maximum segment 

sum problem, starting from an intuitive but inefficient algorithm specification. 

The Skeletons Imperative Language (Skil) [16, 17] has been developed by Botorog 

and Kuchen. Skil is an imperative language aiming at integrating skeletal functional 

features with the efficiency of the C language. 

NESL [14] developed by Blelloch is a data-parallel strict functional language, which 

has, an MIL-like syntax and supports polymorphism. The language based performance 

model gives a formal way to calculate the work (total number of operations) and depth 

(longest sequence of dependences, or critical path) of a program and defines rules for 

composing these costs across expressions. These measures can be related to running 

time on parallel machines. 

Loidl [56] gives granularity analysis for a simple strict higher-order functional lan-

guage. The purpose of this analysis is to statically derive information about compu-

tation costs that can be used by the parallel runtime-system to improve performance. 

Static analysis is based on the sized time system, which is a combination of the in-

ference system developed by Reistad and Gifford [73] and sized types developed by 

Hughes et al. [51], to propagate information about sizes and costs. 

Brinch-Hansen [19] presents a number of independent imperative skeletal case-studies. 
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2.3.7 Profiling Approach and Recursion Analysis 

Apart from skeletal restrictions, our language VEC-BSP imposes additional restric-

tions to achieve static cost predictability and automatability of cost analysis. For ex-

ample, we exclude non-shapely functions like filter whose result shape depends on 

input data, and recursive functions, whose termination and cost are not decidable in 

the general case. As these restrictions are strict, our static cost analysis in this thesis 

could be incorporated with more experimental approaches for a more practical analysis 

system. Those approaches such as profiling methods and recursion analysis themselves 

have been long known as important research areas. The remainder of this chapter sum-

marises some related works of these issues. 

Profiling Approach 

One approach for extracting information about the performance of program is to exe-

cute it with some sample input and to generate profiling information. This information 

is then fed back into the program development or compilation process and can be used 

to generate more efficient code. Ideally, predicting the execution time solely by static 

analysis is preferable because a programmer or a compiler can make all decisions based 

on source code. In contrast, information of the profiling method depends on the choice 

of the initial input set. If the run-time behaviour of the program varies much between 

different inputs, to reach a good result without a large-compile time is difficult and, the 

choice of good sample input is not obvious in general. However, as the execution time 

of a program is not a decidable property and information of input data is desirable for 

accurate prediction in some case, for example at the branching points in the program, 

introducing a profiling approach would be indispensable in more practical use. Good 

examples of the profiling approach combined with a skeleton-based approach can be 

seen in the works of the Heriot-Watt group. In Busvine's PUFF compiler [24], the pro-

gram is run on one or more sets of data, collecting statistics about computation costs 

and execution frequencies. This information is used to transform the program into a 

parallel version that has improved performance. Bratvold's Ske1MIL [18] is a skeleton 

based parallelising compiler, which is based on sequential program instrumentation 
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through Structural Operational Semantics (SOS) [64]. Skeleton performance models 

are instantiated using the SOS measures to determine useful parallelism. Michaelson 

et al. [61] present the design of an architecture-independent parallelising compiler 

for SML in which these costs are parameterised over machine specific parameters, so 

that instantiating these parameters and combining the profiling information can give 

accurate granularity information. 

Recursion Analysis 

Functions are said to be defined recursively when the body of the definition refers 

to the function itself. We usually demand that recursive definitions are terminating, 

i.e. given some particular input the function will call itself only a finite number of 

times before stopping with some output. In general, however, there is no guarantee 

that a function defined by recursion will always terminate. The usual approach is to 

provide the user with a pre-defined set of well-founded induction schemes. To use a 

scheme not specified in this set, the user must specify an ordering and prove that this 

orderings is well-founded. There are possible constraints on recursion to aid analysis of 

termination. The simplest way to ensure termination is to forbid recursion. This would 

give a restrictive language. Another alternative is to restrict the recursive function 

to be primitive recursive, as all primitive recursive programs terminate with easily 

characterisable time and space behaviour. There are functions that are not primitive 

recursive to which we cannot in any simple way give an upper bound for the number 

of reductions needed when applying it to an argument. 

Burstall [22] contributed structured recursion, a generalised form of primitive recur-

sion, to analytic syntax, with an associated principle of structural induction. Burstall 

[23] also showed that if the recursion is combined with a case expression which de-

composes elements of the data type, the ordinary scoping rule for variables can be used 

to ensure termination, without imposing any special schema. 

Abel [ 1 ] has introduced a language based upon lambda calculus with products, coprod- 

ucts and strictly positive inductive types that allows the definition of recursive terms. 

Their termination checker foetus ensures that all such terms are structurally recursive, 
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i.e. recursive calls appear only with arguments structurally smaller than the input pa-

rameters of terms considered. 

Walter [84] has described reduction checking, which is sometimes referred to as Walter 

recursion. His estimation calculus examines whether functions are terminating and 

also whether the output of the function is smaller than the input. This information can 

be used to check termination of nested recursive functions. 

More work on the estimation calculus has been done by Bundy and others. Recursion 

editor [20] is an editor for Prolog that only allows terminating definitions, which en-

sure the termination of severely restricted kinds of recursive procedures chosen from 

Peter's classification. More recently, in CYNTHIA [85],  an editor for a subset of ML, 

which grew out of work on recursion editor, each ML function definition is represented 

as a proof of a specification of that function using the idea of proofs-as-programs [49]. 

The proof is written in Oyster [21], a proof-checker implementing a variant of Martin-

Löf Type Theory. CYNTHIA restricts the user to the set of Walter recursive functions, 

which includes primitive recursive functions over an inductively-defined data types, 

multiple recursive functions, nested recursive functions and functions that reference 

previously defined functions in a recursive call. It analyse the termination of the pro-

gram and gives useful feedback. 

Telford and Turner [80] are investigating Elementary Strong Functional programming, 

i.e., functional programming where only terminating functions can be defined. They 

use abstract interpretations to ensure termination. They can handle a wider class of 

functions than Walters recursion since they keep track not of whether an argument 

is decreasing but how much it is decreasing or increasing, thus allowing temporary 

growth that is compensated by sufficient shrinkage later. 

Related works on deriving cost information (statically or experimentally) and the treat-

ment of recursion include the following. 

Busvine's PUFF [24], which compiles SML to occam2, uses instrumentation to iden-

tify useful parallelism in linear recursion. 

The ACE system of Le Métayer [60] transforms an FP program with call-by-name se- 
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mantics into a program with call-by-value semantics. This performs a macro-analysis, 

that is, it measures the time in the number of applications of the dominant operation 

which is used in the program. He uses a set of rewrite rules to derive complexity 

functions, simplify them and finally eliminate recursion. 

Huelsbergen et al. [50] were able to handle recursion successfully by using abstraction. 

They have defined an abstract interpretation of a higher order, strict language for de-

termining computation cost, which uses dynamic estimates of the sized data structure. 

Their analysis uses the well-known trick of iteration in the abstract interpretation stops 

as soon as a certain bound for the computation costs of an expression is surpassed. 

This prevents non-termination in the analysis. 

Rosendahl [74] presents a program transformation that yields a time bounded program 

for a given first-order Lisp program. His system deals with recursive functions by 

providing a set of translation rules that eliminate recursion. 

Loidl and Hammond [57] present an inference system to determine the cost of evaluat-

ing expressions in a strict purely functional language. Upper bounds can be derived for 

both computation and size of data structures. The analysis is a synthesis of the sized 

system of Hughes et al. [51], and the time system of Dominic et al. [32], which was 

extended to static dependent costs by Reistad and Gifford [73].  Sized types can also 

be used to analyse the costs of user-defined recursive functions. 

2.4 Chapter Conclusion 

We surveyed some of the models for parallel computation. Table 2.1 summarises the 

cost modelling aspects of models and languages described in this chapter. Models 

which do not account for cost are omitted from the table. Many of the models use 

measurement analysis based on some benchmark data that is specific to a given archi-

tecture or profiling information obtained by running the input sets of data on a given 

architecture. Although typical cost modelling for skeletons includes parameters on 

some communication performance such as bandwidth and start-up cost, some mod- 
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els such as PRAM and VEc have no consideration of communication cost, to reduce 

the complexity of cost analysis. Only VEC and VEC-BSP have full-automatic static 

analysis. Some BMF style models and Darlington's skeletons discuss application of 

their cost models to program translation. Many models that support analysis tools have 

done accuracy tests but some theoretical models have not. A few models present a cost 

model which accounts for the costs of the implementation of programs in which some 

degree of nested skeletons is allowed. 

Table 2.1 includes VEC-BSP, which will be presented in the next chapter. Its static 

cost analysis is developed building on Jay's cost calculus since it has a formal analytic 

framework and the characteristic of being automatable. The implementation model 

for VEC-BSP is BSP, whose level of abstraction is lower than the PRAM and Skil-

licorn's model but higher than Rangaswami's model. Communication performance 

characteristics of a target machine are considered in terms of the BSP parameters, but 

the architecture topology is abstracted. Accuracy tests have been performed for sev-

eral examples. The analysis can predict the absolute value of execution cost based on 

the BSP benchmark. We will discuss application of our automated cost analysis to 

program derivation steps. The analysis deals with parallelism only at the level of the 

outermost higher-order function. Optimisations considering possible implementations 

of nested skeletal combinators remains a topic for future work. 
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Model 

Language 

Meas. 

Asym. 

Stat. 

Prof. 

Comm. 

Sen. 

Accur. 

Test 

Prog. 

Trans. 

Nest. 

Skel. 

PRAM Asy Stat No No No No 

BSP Mea Stat Yes Yes No No 

LogP Mea Stat Yes Yes No No 

Cole Mea Stat No No No No 

Darlington Mea Stat Yes Yes Yes No 

P3L Mea Prof Yes Yes No Yes 

Skel-BSP Mea Prof Yes Yes Yes Yes 

PUFF Mea Prof Yes Yes No No 

SkeIML Mea Prof Yes Yes No No 

Parsec Mea Prof Yes Yes No No 

Deldaie Asy Stat Yes Yes No No 

Gorlatch Asy Stat Yes No Yes Yes 

Ski! Asy Stat Yes No No No 

NESL Mea Stat No Yes No Yes 

Loid! Mea Stat No No No No 

HOPP Mea Stat Yes Yes No Yes 

VEC Mea Stat* No No No Yes 

Skillicorn Asy Stat Yes No Yes No 

VEC-BSP Mea Stat*  Yes Yes Yes No 

Meas. Asym. column specifies if each cost model is measurement analysis (Mea) or asymp-

totic analysis (Asym). 

Stat. Prof. column specifies if each cost model is static approach (Sta) or profiling-based ap-

proach (Prof). Sta*  indicates its static analysis is automatic. 

Comm. Sen. column specifies if each cost model is communication cost sensitive (Yes) or not 

(No). 

Accur. Test column specifies if the accuracy of cost model was tested (Yes) or not (No). 

Prog. Trans. column specifies if each cost model was applied to program translation process 

(Yes) or not (No). 

Nest. Skel. column specifies if each model allows nested skeleton (Yes) or not (No). 

Table 2.1: Summary of cost models 



Chapter 3 

VEC-BSP and its BSP Cost Analysis 

System 

This chapter describes the detail of our language and its cost analysis system. In section 

3.1 we overview our approach's structure and terminology. Section 3.2 presents the 

detail of the source language. Section 3.3 introduces the target language MsIzE. Sec-

tion 3.4 gives the BSP implementation strategy for VEc-BSP. Section 3.5 describes 

our cost analysis technique and section 3.6 explains the details of translation functions. 

3.1 Overview and Terminology 

The proposed parallel model for VEC in [55] used the tightly synchronised, uniform 

access cost, shared memory PRAM model as its target architecture. The PRAM is 

an abstract model which takes no account of the communication and contention costs 

incurred on realistic parallel machines (whether explicitly programmed or in support 

of a shared memory abstraction). This chapter addresses this issue with BSP replacing 

the PRAM. There are several reasons for the choice of BSP. One is that it is able to 

model message passing, which is the dominant parallel programming style. Another 

is that it has a simple cost model which is suitable for predicting communication cost 
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on wide range of actual machines. BSP and LogP models have been proposed in 

similar context and have attracted more attention than other alternative models. [8] 

compared these two models and summarised that BSP seems somewhat preferable due 

to greater simplicity and portability, and slightly greater power. In our context, the 

superstep structure of BSP, in which the communication phase and communication 

phase are separated by global synchronisation is particularly preferable because we 

need to only add a mechanism to the existing shape-based cost analysis so that it can 

cost the communication and synchronisation phases. 

Changing the model requires a number of amendments to the assumed implementa-

tion mechanism (compiling VEC programs to BSP) and the analytic framework. New 

operators (and their implementation skeletons) are added to VEc, in order to broaden 

applicability and facilitate coding of our examples. We call the resulting language 

VEC-BSP to distinguish it from its predecessors. 

As in the original analytic framework for VEc, our shape-based cost analysis aims 

to translate terms of source program to terms of another program which performs the 

analysis. Translated terms take the form of shape-cost pairs in the original work, but 

those in our analysis take the form of tuples whose components capture additional 

information from the BSP implementation. This information can be used at compile 

time for various purposes, in particular, costing communication (Hayashi and Cole 

[44]) and optimising communication (Hayashi and Cole [45]).  The original analysis 

has a general framework based on the concept of a cost algebra whose operations may 

be customised to handle different cost regimes. Although the initial attempt for BSP 

costing in [44] was to customise the components of the cost algebra to compute BSP 

cost while keeping the original structure, it seems that some useful information to 

compute BSP cost is difficult to express within the operations of the cost algebra. Our 

solution is that such information is added to the shape-cost pair by extending it into 

the form of a tuple (called a cost tuple) rather than in the cost algebra. We now outline 

the structure of our analysis process mentioning differences with the original work for 

VEC. 
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Source Language 

VEc-BSP is based on VEC, a shapely functional language which operates upon nested 

vectors of data. Shapeliness means that the form and size of data structures can be 

deduced statically. Shape constraints (which are analogous to type constraints) are 

used to ensure that all elements of a vector have the same shape (so that information 

about large structures can be captured and manipulated concisely.) This restriction is 

partially relaxed in an expanded version of VEc-BSP described in chapter 7. As VEC, 

VEC-BSP terms use standard functional terminology and have the expected semantics. 

The pair data type is extended as tuple data types and a small number of built-in second 

order functions are added to VEc-BSP in order to broaden applicability and facilitate 

coding our examples. The cost model for VEC needs assistance with general recursion; 

the programmer must indicate the anticipated recursion depth. We excludes recursion 

in this version since our goal is full automation. Our terms and types are discussed in 

more detail in 3.2. 

Implementation Model 

While the parallel implementation model proposed for VEc is the PRAM, that of VEc-

BSP is the BSP model. Our basic BSP implementation structure is the nested structure 

of the implementation of the application term t t' that consists of the four ordered parts, 

E1 ': evaluation of the argument, E: evaluation of the function, C: communication part 

and A: application part. Nesting arises because Et , and Et  can themselves be applica-

tion terms. The communication part C is the communication of data rearrangement for 

the next application part. When function t is a built-in second order function which 

has a parallel implementation, (that is skeleton,) the application part follows its pre-

defined BSP implementation template. More details of implementation strategies are 

discussed in 3.4. 
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Target Language 

A source program is translated to another program in the target language MsIzE which, 

when run, will compute some implementation information such as shape and run-time 

cost. MsIzE is essentially a variant of VEC-BSP in which types, terms and operators 

which represent and manipulate real data have been removed, and with the addition of 

new features which manipulate implementation information not present in VEc-BSP. 

These are discussed in section 3.3. 

Type Framework 

The types of VEc-BSP terms are basically those of VEc, that is expected for an equiv-

alent conventional functional program (primitive datum types, pairing and function 

types), with the addition of a type constructor vec for vectors (instead of lists), tupling 

(extention of pairing) types and types sz and un. sz  is used to denote vector lengths, 

indices and other shape oriented quantities, while un denotes a unit type. 

Types available in MsIzE are similar to those of VEC-BSP, with the exceptions that 

there are no primitive datum types (integer, boolean and so on) or structured types built 

from these. 

While the modeled evaluation costs in the PRAM analysis are functions from the num-

ber of processors to time, those in BSP analysis are functions from the standard BSP 

performance parameters to time. Thus, for a given program and data set, our analysis 

returns a function which can itself be evaluated with the characteristics of different real 

machines. We use T to denote the type of such time functions. 

Translation Function 

The core of our method is a translation function cost which accepts VEc-BSP terms 

and returns MsIzE terms. An MsIzE term takes the following form called a cost tuple, 

(shape, data size, data pattern, cost). 
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The shape of a function term is a function from the shape of an argument to an appli-

cation tuple, 

shape of argument - (shape of result, application pattern, application cost). 

Each component captures some kind of evaluation information. We added three new 

components which are not addressed in the original work for VEc, that is, data size, 

application pattern and data patten. Information of data size during the computation is 

required to determine the cost of communication phases. Although we can get data size 

of a non-function term from its shape, we add the data size component to the shape-

cost pair to define the data size for a function term as well. The motivation for the 

addition of the application pattern and the data pattern is that when parallel functions 

(that is skeletons) are successively applied to some argument, if we can statically know 

the information of implementation pattern of a function application and that of the 

previous function application which generates the argument, it is possible to optimise 

their interface communication statically. The former information is added in the shape 

of a function term as the application pattern and the latter is added to shape-cost pair 

as a new component, the data pattern. A brief description for each component is: 

. data size - a measure of the quantity of data which would have to be commu-

nicated to describe the term (in order to compute communication cost from the 

transmitted data); 

. data pattern - an indication of the data distribution strategy required by the term's 

implementation. (in order that communication of the data between evaluation 

phases can be optimised); 

• cost - an evaluation cost function for the term, mapping from performance pa-

rameters to time (so that evaluation time for the term can be computed, given the 

performance characteristics of the specific target); 

• application pattern - an indication of application structure, that is whether Se-

quential or parallel (in order to compute communication cost between the com-

ponent evaluation process and the application process, and to optimise the com-

munication of data between evaluation phases). 
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At the heart of the translation lies the mechanism for costing application terms of the 

form t t', given the costings of the function t and argument t'. The intricate details 

are captured in our MsIzE function bspapp presented in section 3.5.4. While the cor-

responding capp function in the original work is customised by the operators of the 

cost algebra, our bspapp function is defined specially for BSP cost modeling. Essen-

tially, this combine the costs of computing t and t' with the cost of applying t to t', 

also deducing information on the shape, data content and distribution information of 

the result. The type information involved in the translation is presented in 3.5 and the 

translation itself is discussed in detail in section 3.6. 

3.2 VEC-BSP: A Shapely Skeletal Language 

The source language of VEc-BSP is based on that of VEC defined in [55]. The dif-

ferences between them are: VEc-BSP has more parallel skeletons; the pair data type 

in VEC is extended as the tuple data type in YEC-BSP; recursion in VEC is excluded 

from VEc-BSP. 

We summarise its features here. The types are 

D ::= nat I bool 

c::=Dlszlunitx ... xtivect 

where D can include other simple datum types, and the type hierarchy precludes vec-

tors of functions. The terminology of vectors (rather than lists) is used to emphasise 

the fact that the lengths of such objects will be statically determinable as items of type 

sz. Although sz is isomorphic to the natural numbers we will initially use the notation 

n to distinguish shape sizes from ordinary numbers. We introduce two tuple data types 

which have three and four component respectively as an extention of the pair type in 

VEC so that we can express our example problem in chapter 6 in which a tuple data 

structure is required to compute an almost homomorphism [26]. The tuple data struc-

ture is also used in the MsIzE language to express cost tuples. Terms in VEC-BSP are 
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given by 

t ::=d I  Ix I Xx.t I t t I ifr then t else  I ifs  then t else  

where d ranges over simple constants (integers, arithmetic operations and so on) and 

c ranges over the combinators with non-trivial shapes (those whose behaviour impacts 

upon the shape of terms) including our skeletons and a selection of conventional se-

quential functional operators (length, fst, snd and so on). The general typing rules are 

given in figure 3.1 

id 
Fl-x:0 

if 
FHt:boolFI-t':FI--t": 

['F -if t then t' else t": 

abs 	
[',x:01-t : 0' 

ifs 
['l-t:szFF-t':OFI--t":O 
I' F- ifs t then t' else t" : 0 

IF[-t:O—':O' ['F-t':O 
app 

r F- W: 01  

Figure 3.1: VEc-BSP type inference rules 

A full list of primitive functions (except for arithmetic operations) and their type is 

given in figure 3.2. Note that these functions were chosen as a basic set of standard 

functions. Some functions are not used in the examples in the thesis. Other functions 

can be added as long as they are shapely. 

VEC-BSP has five skeletal combinators. Their informal definitions are: 

map - applies some function f to each element of an argument vector. 

map f[xi, X2,", x,] = [fxi, fx2,...,fx] 

. fold - combines the elements of a vector using an associative binary operator El?. 

fold 	x,.. ., x,] = xi 	x2 	El?x, 

• pair-map - applies a function to elementwise pairs drawn from a pair of vectors 

of the same length. 

pair_mapf([xl,x2,...,xfl], [yi,y2,",ynJ)=[fxiy1,fx2y2,",fxyfl] 
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unit Un 

pair : O-'O'--+OxO' 

fst :OxO' -O 

snd :OxO'-*O' 

tuple3 

I113 :0xOx0-40 

It23 :OxO'x Off  -40' 

It33 0 x Of  x 0" - 0" 

tuple4 0 — Of —4 0" —+ 0" - 0 x Of x 0" x 0" 

It14 : 0x0'x Off x0"-0 

OxO'x Off xO"-40' 

It34 : 0 x Of  x 0" x 0" — 0" 

7144 0 x Of  x 0" x 0" — 0" 

length : vect -sz 

hd : vect-+t 

ti : vect -*vect 

entry : vect -*sz -- t 

map : (-t')-*vect--vect' 

fold : (t —' t —* 'r) — vec t —i c 

pair-map : ( ,r 	T' —it") -ivec'rx vect' - vect" 

scan : ('v —it— 	)—ivecr--ivec'r 

c_prod : (t-i'r'--it")--iveccxvect'-ivec(vect") 

iter : ('v—it) —i'r ----isz --i'r 

Figure 3.2: VEc-BSP primitive functions 

• scan - applies to a vector and the partial result of fold up to the ith element is 

returned as the ith element of the resulting vector. 

scan 	[xl,x2,.• ,X fl] = [xl, xl Ex2, 	,x1 	X2 EI 	E1 xfl ] 

cprod - applies a function to the all elements of the cross product of two vectors. 

c_prod! [XI, x2,• . ., x] [y1, Y2, , y,} = [[fxiyi, fx2yl, . . . ,fxmyi], 

[fxly2, fx2y2,• . •, fX m Y2], 

[fxiy, fx2y,..., fxmyn]l 
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As in the original work on VEC there are two forms of conditional: a data conditional 

if, whose condition is given by a datum; and a shape conditional ifs, whose condition 

is a size (with 0 interpreted as false, other sizes as true). The iter combinator allows 

bounded iteration, controlling repeated application of a function to data. The number 

of repeats must be statically determined. VEc has recursion, but the programmer needs 

to anticipate its depth. We exclude recursion, since our goal is full automation. 

3.3 Msize: A Target Language 

VEc-BSP is translated to a target language called MsIzE, which corresponds to the 

SIZE language for VEc, generating cost tuples which consist of information of shape, 

data size, data pattern and cost. The types of MsIzE are 

O::=unisziOx ... xOiOxOiO-O 

MsIZE has two kinds of pair type. One is 0 x 0, a special case of the tuple type that has 

two components and the other is 0 0, a pair type for a shape expression that comprises 

the length and the element shape. The tuple type that has four components is used as 

the type of a cost tuple. The terms of MsIzE are given by 

t ::= c ixiXx. t itt I if t then t else t 

where c denotes VEC-BSP functions. Its type inference rules are the applicable VEc-

BSP rules. 

3.4 Implementation Strategy 

Now we give an implementation strategy for VEc-BSP on its target implementation 

model BSP. Because BSP has no shared memory the main issue is to specify placement 

and movement of data in the style of message passing programming, while keeping 

things simple enough to predict cost automatically. Furthermore, our implementation 
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model should follow the superstep structure of BSP. We use execution diagrams to ex-

plain the implementation model and data movements on it. In our execution diagrams, 

time proceeds from left to right with activities in a processor proceeding horizontally. 

Data flows from left to right being manipulated and transmitted following instructions 

from terms of the source program. We use one of the processors (at the top in our 

diagram) as a master processor in which the necessary data is stored at the beginning 

of computation and the result is eventually stored at the end of the computation. 

A complete computation of a program t t' has a nested structure consisting of four 

ordered parts, which are illustrated in the diagram of figure 3.3 in which shaded pro-

cessors indicate existence of data in those processors. 

. Es': an evaluation of the argument t' 

. E1 : an evaluation of the function t 

. C: a communication, in which the data of the results of E, and Et  are redis-

tributed to processors for the next process if necessary, followed by a barrier 

synchronisation 

A: an application, in which the result of Et  is applied to the result of Es'. 

Time 

Processors 

'E - U------ '0 

0: 	:o o: 	:o \\ :o 
Et' 

I 
i 	Et 	I  
I 

\\ i 	A 
I 

0: 	:o °: 	:o \ C: 

o: 	2 0 :-------- 
c\ I  

o: 	- 

Figure 3.3: Parallel application 

Nesting arises because E1  and E1  can themselves be application terms. In each part, 

the data is stored in the master processor at its end with the exception that automatic 
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optimisation is used to remove some overhead incurred, as explained later. The appli-

cation phase A may be either sequential or parallel. A sequential application illustrated 

in figure 3.4 is executed only in the master processor when t is a sequential function (its 

information can be known from the application tuple). There is no communication in 

Time 

Processors 

:© 4® 

0: 	:oo: :oo 0 
Et' 

I 
Et 	I  

I 
A 

0: 	:00: :oo 0 
I 

0 

I 

: 	 1 00 0 

Figure 3.4: Sequential application 

C because the necessary data already resides in the master processor. The parallel ap-

plication illustrated in figure 3.3 is executed among the processors when the function 

t is a skeleton combinator (this information also can be known from the application 

tuple) whose parallel implementation template is predefined. We place the following 

restrictions on the implementation template. 

The template must follow the BSP model, that is computation and communica-

tion are separated by machine wide synchronisation. 

. The data of the argument is distributed evenly at the beginning of the template. 

. All processors perform the same operation. 

. The result is eventually stored in the master processor. 

Combinators map and fold are typical examples of second-order functions which have 

parallel templates. The implementation template of map applies the function sequen- 

tially on the vector segments in each processor then gathers the results to the master. 
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The fold implementation template folds sub-vectors sequentially on each processor. 

Results are transferred to the master processor which folds them together sequentially 

to compute the overall result. Figure 3.5 illustrates these applications. Solid lines in-

dicate computation and dotted lines indicate gather. The narrow vertical box denotes 

machine wide synchronisation. The details of the full set of our current implementation 

o -------- o ..... 
Q—c-Q MT   

sequential 	 map 	 fold 

Figure 3.5: Application examples 

skeletons are presented in chapter 4. 

Using a skeleton requires communication for data rearrangement in C in which the 

data describing the result of E,' is scattered to all processors evenly. If there is any 

data component of the result of E, it is broadcast to all processors. For example, if 

t is map (+t"), where t' generates some value, then that value must be broadcast to 

all processors. Therefore, costing communication in C means costing the broadcast 

and scatter communication. The formula for this will be given in section in 3.5.3. 

Figure 3.6 illustrates the scatter and broadcast - scatter communication. In the scatter 

diagram the master processor (at the top) scatters data between itself and three other 

processors. Dotted lines indicate scatter and dashed lines indicate broadcast. 

OF , 3-0 

"o 
10 

scatter 	 broadcast - scatter 

Figure 3.6: Communication patterns 

Additional comments are required for the implementation of the application of a lambda 
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0  Hi 
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M0.  o—o.  1 0 

Et. 	 E t 	 C 

Or -0 
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o o-----O: : 	 o 

--- 

0-0 3 

o o—o 
E. 	 E t 	 C 	 A 

Figure 3.7: Removal of unnecessary communication 

term. Implementation of the application of (Ax.t(x)) a is: a is evaluated first and x is 

substituted by the result of evaluation of a, and t (a) is evaluated in the application part 

A following the strategy described above. We assume that it takes no time to evaluate 

the term ()Lx.t(x)), that means we count the costs to evaluate a and to evaluate t(a), 

which is performed in the application part and ignore the other costs involved. 

Efficiency Problem 

We required the parallel implementation templates to store data in the master processor 

at the end of A. Consequently, the data of the results of E' and Et  are also always stored 

in the master processor, since these are either themselves nested parallel applications 

abiding by the same rule, or are already sequential. This rule simplifies implementa-

tion and costing communication by providing a common interface for communication 

patterns across the nested term. However, it also causes an efficiency problem. For 

example, if a parallel application process finishes by gathering the local result in each 

processor to the master, only for these to be subsequently scattered as the inputs to 

an enclosing parallel function, then the gathering and scattering are superfluous. The 

upper half of figure 3.7 illustrates the structure of such a computation, for a term of the 

form map f (map g v). The first phase implements the map of g (with g assumed to be 
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primitive), the second phase computes f (sequentially in this example), the third phase 

broadcasts data describing f and scatters the result of the first phase and the final phase 

computes the outer map. The gathering and subsequent scattering of the result of the 

inner map is clearly redundant. When the data size of the result of map g v is s, 

2s '  g+l 
p 

where p, g, 1 are the BSP parameters, can be saved. 

There are several possible solutions. One solution would be to define several versions 

of a skeleton, with implementations differing only in data distribution at the end of the 

application process and expect the programmer to chose one of them to optimise each 

C. It would be performed by hand and makes the programming more difficult. Another 

solution would be to predefine combining skeletons which combine skeletons so that 

interface communication of component skeletons can be easily optimised following 

To's work [81]. Instead we chose an automated route, demonstrating that our static 

analysis can be extended to analyse the interface communication pattern by adding an 

argument data pattern to cost tuples. How our tool detects and resolves such inefficient 

cases and excludes these unnecessary costs from the predicted BSP cost is described 

in the next section. 

3.5 Cost Analysis 

This section presents an analytic framework to compute both the computation costs and 

inter-processor communication costs of our BSP implementation. We also show how 

the analysis captures information on communication patterns by which some commu-

nication costs can be optimised. 

3.51 Cost Tuples and Application Tuples 

The translation is defined by a function cost which is now from VEc-BSP to MsIzE. 

The translated program, which when run, will compute the shape of the result with 
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other information including the run-time cost of the corresponding compiled BSP pro-

gram. The terms of the VEc-BSP programs are translated to cost tuples in MsIzE 

which take the form 

(shape, data size, data pattern, cost) 

For a VEc-BSP term t: 0, the corresponding MsIzE term has type 

cost (t) : tycostc (0) x sz x sz x T 

where tycostc(0) reflects the shape oft. The first sz reflects the size of the data which 

will be transmitted to the following process when t is involved in an application. The 

second sz reflects the data pattern, which we introduce to analyse interface commu-

nication patterns between individual skeletons. T reflects the BSP cost of term t. We 

now look at more details of each component. 

Application Pattern 

To simplify our explanation, we begin with the definition of the application pattern. 

To optimise communication between a component evaluation part and an application 

part, the data distribution of the result of Et, and the data distribution which is required 

for A should be well matched. In order to achieve this, we distinguish the parallel 

application pattern in which the result is obtained by just gathering the local results on 

the worker processors at the end of application process like map (referred to as map 

pattern) from the other parallel patterns like fold (referred to as fold pattern). The 

sequential pattern is referred to as sequential pattern. Although the language actually 

uses sz for application patterns, with - 1 for map pattern,2 for fold pattern, andO for 

the other cases (sequential pattern or t itself is primitive), in the following explanation 

in the thesis (except for the Haskell implementation in chapter 5), we use MAP, FOLD, 

SEQ instead of 1,2,0 in order to improve readability. 

Data Pattern 

Data patterns indicate which application pattern was used to generate t, MAP for map 

pattern, FOLD for fold pattern, and SEQ for the other cases (sequential pattern or t 
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itself is primitive). 

Shape 

The type translation of shape for a non-function term tycostc is defined as follows: 

tycostc (D) 	 = sz 

tycostc(un) 	 = sz 

tycostc(Oix ... xO) 	= tycostc(Oi)x ... xtycostc (0) 

tycostc (vec 0) 	= sz tycostc (0) 

tycostc(sz) 	 = sz 

We assign 1 to the shape of D and un. The shape of a tuple is a tuple of the shape 

of each component. The shape of a vector is a pair comprising its length and the 

common shape of its elements. In MsIzE, the shapes of tuples and vectors are de-

noted by (,..., ) and  (, ) respectively, corresponding to the types tycostc (Oi) x ... x 

tycostc (0) and sz tycostc (0). The is used to indicate that its pair type is different 

from the pair type which is the special case of tuple type that has two components. 

The shape of a function is a function from the shape of an argument to an application 

tuple, which is composed by attaching an application pattern and an application cost 

to a resulting shape, taking the form of 

shape of argument -+ (shape of result, application pattern, application cost), 

with the corresponding type 

tycostc (0 - 0') = tycostc (0) - (tycostc (0') x sz x T) 

The shape types tycostc (0) and tycostc (0') reflect the change of shape. T is the type of 

a function from the BSP parameters to cost, reflecting the application cost of the func-

tion, sz reflects the application pattern. A term by term definition of cost is presented 

in the section 3.6 and chapter 4. 
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Data Size 

Data sizes of non-function terms are computed from the shape by using an MsIzE 

operator size defined by 

size (xi, . . . ,x,,) = sizexi+.. + sizex,, 

size (x, y) =size x  sizey 

sizen = 

Data sizes of primitive functions themselves are defined as 0. For function terms gen-

erated by partial applications, we define those data sizes as the sum of the data sizes of 

the function term and the argument term of the partial application. 

Cost 

Cost is a function from standard BSP performance parameters to time for evaluation 

of the term. We use T to denote the type of such time functions. Thus, for a given 

program and data set, our analysis returns a function which can itself be evaluated 

with the characteristics of different real machines. 

3.5.2 Cost Translations Framework 

According to the explanation of cost tuples in the previous section, the cost function 

for datum constant and primitive functions is given in figure 3.8. To further simplify 

presentation, we use the following notation to describe cost tuples in MsIzE whose 

elements are 0 (or SEQ for data patten) except for its first element: 

X'x. t = ()x. t,0,SEQ,0) 

If x is the shape of a vector, to take the length of the vector and the shape of the 

elements from x, we use the notations tJen x and t_eshp x for fst x and snd x. From the 
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cost (d) 	= (1, 1, SEQ, 0) where d is a datum constant 

cost (d) 	= X'x. (Ay. 
( 
l,S EQ, bi nOpConst), SEQ, 0) where d is a binary datum operation 

cost (length) 	= A'x. 
( 
t_lenx, SEQ, IengthConst) 

cost (hd) 	= A'x.(t_eshpx,SEQ, hdConst) 

cost (tI) 	= X'x. ((fstx - 1, t_eshpx), SEQ, tlConst) 

cost (entry) 	= A'x.(Ay. (t_eshpx, SEQ, entryConst), SEQ, 0) 

cost (pair) 	= )Jx.(Ay.((x,y),SEQ, pairConst), SEQ, 0) 

cost (fst) 	= X'x.(fstx,SEQ,fstConst) 

cost (snd) 	= X'x. 
( 
sndx, SEQ, sndConst) 

cost (tuple3) 	= A'x. (Ày. (Az. ((x,y, z), SEQ,tuple3Const), SEQ, 0), SEQ, 0) 

cost (it13) 	= A'x.(ic13x, SEQ, projecConst) 

cost (7123) 	= A'x. ('923  x, S EQ, projecConst) 

cost (7t33) 	= A'x.(1t33x, SEQ, projecConst) 

cost (iter) 	= A'f. (Ax. (Ay. iter (preiterf)(x, SEQ, iterConst) y, SEQ, 0), SEQ, 0) 

cost (map) 	= A'f.(Ax.((t_len (x),t_shp(f (t_eshpx))), MAP, apcost_mapfx),SEQ,O) 

cost (fold) 	= A' 	.(Ax.(t_shp (iter (preiter (t_shp 
( 	

(t_shp (iter_rit))))) (t_shp (iter_rit)) (p - 1)), 

FOLD,ap_cost_fold (D x),SEQ,0) 

cost (scan) 	= A'f. (Ax. (x, MAP, ap_costscan fx), SEQ, 0) 

cost (pair-map) = A'f. (Ax. ((t_len (fstx), t_shp (f (t_eshp (fstx))(t_eshp (sndx)))), MAP 

ap_cost_pair_mapfx), SEQ, 0) 

cost (c_prod) 	= A'f. (Ax. (Ay. 
( 

(t_leny, (t_len x, t_sh p (t_sh p (fx) y))), MAP, a p_cost_c_prod fxy), 

SEQ,O),SEQ,0) 

Figure 3.8: Cost translations (1) 

definition of the shape of a function, if f is the shape of a function and x is the shape 

of an argument, f  takes the form 

(resulting shape of application, application pattern, application cost) 

We use shorthands t_shp (f x), t_pattern (f x), t_apcost (f x), t_size (fx) (this is equiv-

alent to size (t.sh p (fx)) ) to represent the operation to take the shape of the result, the 

application pattern, the application cost and the size of the result from fx. 

Note that these cost terms are predefined according to the meanings of cost tuple com- 

ponents under the assumption of the cost modeling and implementation strategy. The 
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cost (x) 	= (x,sizex,SEQ,O) 

cost ()u.t) 	= A'x. (iti (cost (t)), SEQ,it4  (cost (t))) 

cost (tt') 	= bs pap p cost (t) cost (t') 

cost (if t then t' else t") 

= add1 (tuplemax cost (t') cost (t")) (it4 cost (t)) 

cost (ifs t then t' else t") 

= add  (ifs iti cost (t) then cost (t') else cost (t"))(lt4 cost (t)) 

Figure 3.9: Cost translations (2) 

shapes of the primitive functions are defined so that they capture the change of shape, 

application pattern, and application cost. The change of shape is captured by the result 

shape expressed as a function of input shape. The application pattern is defined ac-

cording to the predefined implementation template. The application costs that do not 

depend on the argument shape are expressed like binOpConst for a binary operation 

and IengthConst for length. We assign times to the various costs later, based on some 

benchmarks of the target machine. The application costs that do depend on the argu-

ment shape are expressed as a function of input shape. Application cost function for 

our parallel function, that is skeleton, are too complex to present in-line and so we give 

them name here (apcosLmap and so on), presenting full definition in Chapter 4. The 

data size, data patten and cost of a primitive function term itself are defined as 0, SEQ, 

and 0 respectively. The cost functions for other expressions are given in figure 3.9. 

How this information is predefined (including the definitions of functions in the list, 

which have not yet been defined) for each individual construct is explained later in 

more detail in section 3.6 and chapter 4. 

The program in VEC-BSP is transformed to a program in MsIzE by cost using these 

definitions as translation rules. A simple (sequential) example of the translation is: 

cost(+ 3 5) 

= {definition of cost (t t') } 

bspapp (cost(+ 3)) cost(5) 

= {definition of cost (t t') } 
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bspapp (bspapp cost(+) cost(3)) cost(5) 

= {definition of cost (d) } 

bspapp (bspapp X'x.(Xy.(l, SEQ, binOpConst), SEQ,0) (1, 1,SEQ,0)) 0,1, SEQ,0) 

When the translated MSIZE program is evaluated, the fourth component of the result-

ing tuple is the predicted cost of the source VEc-BSP program. The cost modeling, 

that is explained in the next section relies on the application mechanism, that is how 

function is applied to the argument in MSIZE using information from cost tuples. 

3.5.3 Cost Modeling 

The BSP cost modeling of our assumed implementation model is carried out by adding 

the mechanism to compute communication and synchronisation phase costs into the 

definition of capp for the PRAM cost modeling, resulting in the definition of bsppapp. 

bsppapp also includes the mechanism to optimise communication. We explain first 

how to cost the communication phase, next how to detect the inefficient case, and 

finally the definition of bsppapp. 

Costing Communication 

The communication which is involved in our computation model occurs in two situ-

ations, firstly in C when the parallel pattern is used, and secondly within A when a 

parallel template which includes a communication process is used. Here we discuss 

how to compute communication cost in the former situation, giving the reasons for the 

rules imposed in the implementation strategy. The communication cost in the latter 

situation is counted as the part of application cost, which is defined for each skeletal 

combinator in chapter 4. 

In the BSP cost model, the cost of a communication phase is determined by the formula 

h . g, where g is one of the BSP parameters and h is the largest message size h sent or 

received by any one processor during the phase. Since g is determined as a parameter 

to capture the communication performance of the target architecture, which is obtained 
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experimentally by running a benchmark program on the architecture, what we need is 

machinery to determine the value of h at every communication phase in our analytic 

framework. 

In the general case, determining h in the communication part C requires the following 

information: 

• the distribution pattern of components evaluation, that is how the data of the 

results of E1  and E1  are distributed among the processors. 

• the size of the data of the results of E1' and El  placed in each processor. 

• the distribution pattern which is required by the application. 

• the communication pattern to realise the data rearrangement from the data dis-

tribution at the end of component evaluation to the data distribution which is 

required by the application. 

To get all this information in the framework of shape analysis would require a complex 

mechanism and consequently may impose expensive analysis costs. To simplify the 

issue, we used one processor as the master processor and imposed the rule that the data 

of the result of each part is eventually stored in the master processor. This made in-

formation on distribution pattern and size of the result of components evaluation quite 

simple. We also restricted the data distribution patterns at the beginning of application 

parts. If the function is sequential, we use the master processor for the application part 

so that there is no communication in C since the necessary data all resides in the master 

processor. For a parallel function, we placed a restriction on the parallel application 

templates so that the data of the argument are always distributed evenly among the 

processors and all processors perform the same operation. Thus, the communication 

pattern in C in the case of parallel application is determined uniquely that is, the data 

of the result of E1  is scattered to the processors evenly and that of E1  is broadcast to 

the processors. Whether a function is sequential or parallel can be known from in-

formation on the application pattern in the cost tuple. Consequently, the information 

components, message size in cost tuples and application pattern in application tuples 

are sufficient to determine h. 
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The communication cost in C is now determined by computing the number of words 

transmitted by processor 0, that is 

s.(p — 1).g 

for broadcasting s words of the results of E1  to the worker processors, and 

. P —  1• g 
p 

for scattering s' words of the results of E' to the worker processors. 

Optimising Communication 

The strategy described above allows us to compute the communication cost in C but it 

caused an efficiency problem as explained in 3.4. It requires further refinement of our 

analytic framework to solve this problem. 

In our translation framework, information on the application pattern is used for two 

purposes. One is that it tells whether the function is parallel or sequential, which 

determines the data distribution pattern required in A, and is used to compute the com-

munication cost. The other is that it tells whether the application template finishes by 

gathering the local results or not. This information is not used for costing this appli-

cation process itself but is kept in the cost tuple of the result as a component, the data 

pattern, giving information on how the data is generated, which is used when the re-

sult becomes an argument of another function. Thus, the cost tuple of any argument 

always has information on the data pattern. Note that the data pattern of a primitive 

datum is predefined as SEQ. To indicate information for the second purpose, one of 

the three notations SEQ, MAP, FOLD which indicate sequential, parallel with a gather 

at the end, and other parallel, respectively is used and it also gives information for the 

first purpose (SEQ is sequential, other values are parallel). The inefficient case is de-

tected by checking the combination of the application pattern in the application tuple 

of the function and the data pattern in the cost tuple of the argument. If the application 

pattern indicates that the function is parallel (MAP or FOLD), and the data pattern indi-

cates that the data of the argument was generated by gathering the local results (that is, 
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MAP), the inefficient case is detected and the cost for the gather and the scatter is not 

counted in the resulting cost. Note that this decision would be available to the compiler 

to make the corresponding optimisation in a real implementation. 

3.5.4 bspapp Operation 

In the original work for VEC, the analysis process of a program tit2 is captured by the 

capp operator in VEC, which applies to the corresponding translated terms of t1 and t2, 

that is (f, t') and (x, t2 ) respectively. 

cost (t1 t2) = capp cost (t1) cost (t2) 

where the definition of capp is 

ca pp (f, t') (x, t2) = (fst (fx), (snd (fx)) + (tç t)) 

This implies that the cost of the application term is some kind of the combination of 

application cost snd (f x), the cost of the function term t and the cost of the argument 

term t. +, and T can be changed reflecting the underlying cost model. The proposed 

cost model was the PRAM model. For the PRAM model, we have T = sz -+ sz, 

representing time functions from the number of processors to the number of time steps. 

Sequential cost addition + is pointwise addition on time functions, and addition ED for 

parallel execution is: 

(fg)p= min {(f+g)p, (f(9'g)p} 

where 

(fEJ '  g) p = min { max {fq, g (p - q)}} 
O<q<p 

Our BSP cost analysis process described in 3.5.3 is captured by a MsIzE operation 

bspapp using information from cost tuples and application tuples described in 3.5.1 

rather than operations of a cost algebra. For the BSP model, the cost is a function 

from BSP parameters to time for evaluation of the term. Reflecting our implementa-

tion model described in 3.4, the BSP cost of the application term is the sum of the 
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cost of the argument term, the cost of the function term, cost of the communication 

phase, the cost of the synchronisation and the cost of application phase. The first two 

costs are already known as the fourth component of the argument and the function. 

The communication cost can be computed by the formula presented in the previous 

section using information of data size, that is third components of the argument and 

the function. The synchronisation cost is 1. The application cost can be obtained from 

the application tuple in the first component of the function. In addition, the inefficient 

case of communication interface can be detected by checking the data pattern infor-

mation that is the third component of the data argument and the application pattern 

information, that is the third component of the function. All these costing mechanisms 

are formulated as the definition of bspapp: 

cost (t1 t2) = bspapp cost (t1) cost (t2) 

The definition of bspapp is 

bspapp (f, s, d, t)(x, s', d', t') 

= (t.shp (fx), data _sz (t_a pcost (fx)), t_pattern (f x), 

(t + t') + X(p, g, 1). ((comm_cost (t_pattern (fx)) d' s s') + 1) + t_apcost (fx)) 

where 

datasz ap_c s + s', 	if ap_c =0 

= t..size(fx), 	otherwise 

commcost ap..pat datpat fsz xsz 

=- 0, 	 if appat = SEQ 

= (f.sz(p— 1)—xsz ((p —  l)/p)) g — l, if daLpat = MAP 

= (fsz . (p —  1)+xsz ((p —  1 ) /P)) - g) 
	otherwise 

t_sh p (fx) represents the result shape. If the result of an application is a function, then 

there is no application cost and the message size of ti t2 is just the sum of s and s'. When 

the result is not a function, the message size of ti t2 is t_size (f x). The cost of term t1 t2 

combines the four costs, that is the costs of the component evaluations t + t', the com-

munication cost, synchronisation cost 1 and the application cost t_a pcost (f x). The 
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communication cost depends on the application pattern t_pattern (fx) and the argu-

ment data pattern d'. If the application pattern is not SEQ and the data pattern is MAP, 

the communication costs for gathering the local results and the synchronisation at the 

end of the evaluation of the argument are removed and the communication cost for the 

next scattering of the data is not counted. The data pattern is equal to the application 

pattern. Note that the communication which occurs in A depends on the assumed im-

plementation template of each skeleton and its cost is counted in t_apcost (f x) which 

is defined in chapter 4. 

Using the bspapp operation, MSIzE is evaluated reflecting our cost model and gener -

ating the predicted cost. Here is the evaluation of the MsIzE example program given 

in section 3.5.2, which was translated from + 3 5. 

bspapp(bspappA'x.(Xy.(l,SEQ,binOpConst),SEQ,O) (1,1,SEQ,O)) (1,1,SEQ,O) 

bspapp (Xy.(1,SEQ, binOpConst), SEQ,O) (1,1, SEQ,O) 

= (1,1,SEQ,binOpConst) 

A complete example of costing for a VEc-BSP program .which includes a parallel 

function is given in chapter 5, after chapter 4 has explained the application cost of 

skeletons. 

3.6 Details of Cost Translation Rules 

We now present the cost translation rules from VEc-BSP to MsIzE for basic term 

expressions and functions except for those for our parallel combinators, which are 

given in chapter 4. We now omit the notation for size numerals to reduce clutter. 

Semantically, the terms of the language have the obvious strict functional operational 

interpretation with the exception of parallel skeletons like map and fold which are 

operationally parallel, as indicated by the presence of the parallel patterns in their cost 

expressions. 
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Datum Constant and Binary Data Operator 

The cost function of an atomic datum constant d is 

cost (d)= (1,1,SEQ,O) 

The shape of datum constant is 1 and so its size is 1. That means the constant is initially 

stored in the master processor and is transmitted to the processors when it is used for 

parallel evaluation. It takes no time to evaluate the term d itself and the data pattern of 

the term itself is SEQ. 

The cost function of a binary datum operation d is 

cost(d) = ()Lx.(Xy.(l, SEQ, binOpConst), SEQ, O),O, SEQ,O) 

Working from the right hand end of the expression in, the first 0 indicates that it takes 

no time to evaluate the term d itself and SEQ indicates data pattern of the term itself 

is SEQ. The next 0 indicates that it carries no data (in other words it can be compiled 

directly onto the processors which use it). The next 0 indicates that it takes no time 

to apply d to a first argument and SEQ indicates the application pattern involved is 

SEQ. binOpConst is the time to apply the resulting function to a second argument, 

that is the time to execute a binary operation. As in the original work for VEc, it 

and other constants that appear later such as IengthConst are determined "somewhat 

arbitrarily" and assigned values according to some benchmark of the target machine. 

In our examples in the thesis, binOpConst is set at 1 and converted to seconds by the 

instruction rate of a processor gained by running the BSP1ib benchmark program on 

our target architecture. The other constants are set as 0. The next SEQ indicates that 

the application pattern of the application d to the first argument is SEQ. Finally, 1 is 

the shape of the result. 

Conventional Sequential Functions 

The cost function of length is 

cost (length) = (Ax. (1, SEQ, IengthConst) , 0, SEQ, 0) 
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The first 0 from the right hand end indicates that it takes no time to evaluate the term 

length itself. The SEQ indicates that the data pattern of the term itself is SEQ. The 

next 0 indicates that it carries no data. lengthConst is the time to apply length to an 

argument and SEQ indicates its application pattern is SEQ. Finally, 1 is the shape of 

the result. 

Cost functions of other sequential functions are defined similarly. Note that each cost 

function captures the impact of shape change. The cost function of hd (usual head 

function) is 

cost (hd) = (Xx.(t_eshpx, SEQ, hdConst),0, SEQ, 0) 

Note that the shape of the result is the shape of the elements of the argument vector, 

that is t_eshpx since all the elements of the argument vector have the same shape. The 

cost function of tI (usual tail function) is 

cost (tI) = (A.x.((fstx - 1, t_eshpx), SEQ, tlConst),0, SEQ, 0) 

Note that application of tI decreases the length of the argument vector by 1 while it 

does not change the shape of its elements. The cost function of pair is 

cost (pair) = (Xx. (Xy. ((x, y), SEQ, pairConst), SEQ,0),0, SEQ, 0) 

The shape of a pair of two arguments is the pair of the shapes of each argument. The 

cost function of fst is 

cost (fst) = (Xx. ( fstx, SEQ, fstConst) , 0, S EQ, 0) 

Since fst takes the first component of the pair, the shape of the result is the first com-

ponent of the shape of the pair. The cost function of snd is 

cost (snd) = (Xx. ( sndx, SEQ, sndConst), 0, SEQ, 0) 

Since snd takes the second component of the pair, the shape of the result is the second 

component of the shape of the pair. 

We extend the pair data structure to the tuple data structures, which have more than 

two components. tuple3 is an extention of pair which constructs a tuple with three 
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components. Correspondingly, fst and snd are also extended to projection operators 

11j3 (i= 1,2,3). 

cost (tuple3) = (Ax. (Xy. (Az. ((x,y, z),O, tuple3Const), SEQ, 0), SEQ, 0), 0, SEQ, 0) 

cost (7t13) = (Xx.(lti3x, SEQ, projecConst), 0, SEQ, 0) 

cost (1t23) = (Ax.(it23x, SEQ, projecConst), 0, SEQ, 0) 

cost (it33) = (Xx.(it33x, SEQ, projecConst), 0, SEQ, 0) 

The cost functions of tuple constructors which construct a tuple with j (more than 

three) components and itjj (i = 1,2,. . . , j) are defined similarly. We often omit j from 

the notation itj in the following descriptions to reduce clutter. 

Lambda Expression 

cost (x) 	= (x, sizex, SEQ, 0) 

cost (Ax.t) 	= (AX-(7E 1 (cost (t)), 0, 7t4 (cost (t))), 0, SEQ, 0) 

Remember that the implementation strategy of the term (Xxi (x)) a is: after x is sub-

stituted by the result of evaluation of a, t (a) is evaluated in the application part A 

(figure 3.10). 

Sincex is substituted by the result of evaluation a, the cost function of x is (x, sizex, SEQ, 

0). The resulting shape of Xx.t is the shape of the result of the application part, that is 

it (cost (t)). The application pattern is SEQ even if t itself involves a parallel function 

because no communication between the component evaluations part, (Et  and E,), and 

application part A occurs. The application cost of Xx.t is the cost of the application 

part, that is 1t4(cost (t)). The data size, data pattern and cost of (Xxi (x)) itself are 0, 

SEQ, 0 respectively. The data size of (Ax.t (x)) is determined as 0 since the evalua-

tion of t is performed in the application process after the value of x is determined. In 

other words, the lambda expression has no data which is transmitted to the processors. 

For example, in the term map Xx. (x + (1 + 2)) v where v is a some vector, 1 and 2 are 

statically allocated in each processor and x + (1 + 2) is performed in the application 

process A in each processor after x is determined. 
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Figure 3.10: Implementation of (?u.t (x)) a 

If Statements 

There are two kinds of conditional. In a data conditional if, we require that both 

branches have the same shape. We need to define a kind of max operation tuplemax to 

determine the cost tuple of the branch, which gives upper bound information of each 

component. 

tuplemax(x, s )  d, t) (x, s', d',?) = (shpmax(x,x'), max (s, s'), max (d, d'), fmax(t, t')) 

where shpmax gives the maximum of the shape components, taking the pointwise max-

imum for functions and fmax takes the pointwise maximum of the time functions. The 

cost function is defined taking account of the cost of the conditional. 

cost (if t then t' else t") 

= add  (tuplemax cost (t') cost (t")) (it4 cost (t)) 

where the definition of add1 is 

add1 (x,s,d,t)t'= (x,s,d,t+t') 

Even if the branches have the same shape, their costs can be very different in general 

programs and in that case, the upper bound could lead to a much larger cost than 

real run time. This is a fundamental problem of static analysis since it alone cannot 

determine the choice of a branch. It would require the help of a dynamic approach to 

improve this. This is beyond the scope of our work. 
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By contrast, since the result of a shape conditional is known statically, the result of the 

cost function is obtained from the result of the cost function of the taken branch and 

the cost for evaluation of the conditional. 

cost(ifs t then t' else i") 

- add  (ifs ni cost (t) then cost (t') else cost (t")) (74  cost (t)) 

Iteration 

The cost function of iteration iter is 

cost (iter) = (Xf. (Xx. (Xy. iter (preiterf) (x, 0, iterConst) y, SEQ, 0), S EQ, 0), 0, SEQ, 0) 

where the definitions of preiter and add2 are 

preiterf (x, d, t) = add2(fx)t 

add2 (x,d,t)t'= (x,d,t+t') 

Notice that items f, x and y in iter fxy correspond to the function to be iterated, the 

initial data and the number of iterations respectively, while preiter adds the structure 

required to gather costs as iteration proceeds. In the iteration steps, the shape is re-

placed for the shape of the application result at every step and the cost is accumulated 

through iteration steps. 

3.7 Chapter Conclusion 

Our language VEC-BSP is based on the shapely language VEC. The VEC-BSP term 

is translated into an MsIzE term, which takes the form of a cost tuple that includes 

the additional information components of data size, application pattern and data patten 

as well as shape and cost. We predefine the cost function for the VEc-BSP primitive 

constructs and expressions according to our assumptions of cost modeling and our un-

derlying BSP implementation model. The translation from the VEc-BSP program to 

MsIzE program is performed using these predefined cost functions as translation rules. 
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BSP costing is carried out by the evaluation of the translated MsIzE program, in which 

bspapp plays the central rule of including the communication cost and synchronisation 

cost as well as computation cost by using the information from the cost tuples. 



Chapter 4 

Implementation Templates for 

Skeletons 

4.1 Introduction 

In parallel programming, some kinds of pattern of parallel control structure often ap-

pear in different application programs. The idea of the concept called algorithmic 

skeletons [25, 29] or parallel program paradigms [19] is to separate these common 

parallel structures from details of applications and predefine them as program compo-

nents. In skeletal programming, a program is composed of pre-defined parallel com-

ponents that implement parallel control structures and sequential components for a 

specific application. 

In our context, each predefined parallel combinator such as map and fold represents 

a skeleton and has a parallel control structure implementation template which follows 

the BSP model. Programs are composed of those skeletons and other sequential com-

ponents. 

In this chapter, we define our BSP implementation template for the skeletons of VEC-

BSP and their shapes to complete the definition of cost. The application cost of each 

combinator is defined as a function of shape so that it can be embedded in our shape- 
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based cost analysis framework. We express our implementations in an SPMD pseudo-

code, indicating calls to the standard BSP operations bspput (copy to remote memory), 

bspget (copy from remote memory), bspsync (barrier synchronisation), and bsppid 

(find my process identifier) [48]. 

4.2 Implementation and Costing of the Parallel Combi-

nators 

4.2.1 map 

map applies some function t1 to each element of an argument vector tx  = [xi ,X2,•••, 

xnI. 
map tj [xi, X2, 	, x,] = [t1 (xi), tf(x2), . . . , t1 (x,)] 

It has a simple parallel implementation in which the same operation is applied to each 

element in the segment distributed to each processor. This corresponds to Darlington's 

FARM skeleton [29] and plays a central role in other paradigms. 

Our BSP implementation strategy for map is: 

the data in tj' is broadcast and the data in t is scattered to all p processors; 

synchronisation; 

each processor applies tj' to the local element of t; 

the local result in each processor is gathered to the master processor; 

synchronisation. 

The corresponding SPMD pseudo-code is: 

bsp.get(data describing t1 from P0); 

bsp_get(local share of tx  from P0); 
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bsp_syncO; 

for each local item 

apply tj to this local element of t; 

bsp_put(result to P0); 

bsp_syncO; 

The application cost of map in terms of the BSP cost model takes the form of a func-

tion of shapes of arguments. We express the shapes of the tj and t as f and x respec-

tively. The application cost is: the local computation cost t_apcost (f (t_eshp (x))). 

(t_Ien (x)/p) for step 3, the communication cost 

tsize(f(t_eshp(x))). (t_Ien(x)/p). (p — i) -g 

for step 4, and the synchronisation cost 1 for step 5. Thus, the overall application cost 

Is 

apcost_mapfx (p, g, 1) 

= t..apcost (f (t_eshp (x))). (tien (x)/p) 

+t.size(f(t_eshp(x))) . (t_ten(x)/p) . (p—i) •g+l 

Note that the application cost does not include the costs for step 1 and step 2, which 

are computed by the bspapp operation as a communication cost of C. The shape of 

map is: 

Xf. (Ax. ((tJen (x), t...shp (f (t_eshpx))), MAP, apcost_mapfx), SEQ, 0) 

Notice that this is the first component of cost (map). This packs in the following in-

formation. Working from the right hand end, it takes no time to apply map to a given 

function tj and its application pattern is SEQ. The application cost to apply maptj to 

a given vector is apcost_map, which was given above. The application pattern used 

to apply maptj to the given vector is MAP since the implementation skeleton ends by 

gathering the local result. The resulting shape of the application maptj to the given 

vector is (t_Ien (x), t.shp (f (t_eshp (x)))). 
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The cost function of map is 

cost (map) = (Xf.(Xx.((t_len (x),t.shp (f (t_eshpx))), MAP, apcost_mapfx), 

SEQ,O),O,SEQ,O) 

Working from the right hand end of the expression in, the first 0 indicates that it takes 

no time to evaluate the term map itself and data pattern of the term map itself is SEQ. 

The next 0 indicates that it carries no data (in other words that it can be compiled 

directly onto the processors which use it). The next component 

Xf.(Xx.((t_len (x),tshp (f (t_eshpx))), MAP, apcost_mapfx), SEQ, 0) 

is the shape of term map, which was explained above. 

4.2.2 fold 

fold combines the elements of a vector tx  = [xi, x2, ,x,,] using an associative binary 

operator t. 

fold t [x , X2, . . . , xnI = x1 t X2 t•• tED Xn 

The combination of map and fold forms the important "map and reduce" paradigm 

in BMF [77]. fold has a few possible BSP implementations. One is the well-known 

tree-like structure implementation. For example, the result of fold (+) x (that gener-

ates sum of n elements of an argument vector x), can be calculated in two stages where 

each of the processors sequentially sums the values in their possession in time O(), 

and then parallel sum of the resulting p values can be obtained using the logarithmic 

technique in time O(logp). This asymptotic cost analysis of the logarithmic summa-

tion can be refined into the BSP cost calculus by considering the communication and 

synchronisation costs of a single stage of the logarithmic algorithm. Combining the 

cost of locally summing each processor's A values with the cost of the summation of 

p values gives a total cost of summing n values on p processes as + log p(1 + g + 1). 

From this cost formula, and from the values of I and g for typical parallel machines 

[47] (e.g. p = 16, 1 = 751 [flops] and g = 1.6 [flops/word] for a 16 processor Cray 

T3E), it can be seen that the logarithmic number of barrier synchronisations used in 
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this algorithm will form the dominant cost, unless n > p log p(1 + g + 1). Therefore, 

although the logarithmic fold minimises the computational cost of summing p values, 

it places a great burden on the communication performance. Another implementation 

is that after the cost of locally summing, the resulting p values are gathered into one 

processor where sequential sum is calculated. Its BSP cost is + (p - 1) + (p - 1 )g + 1. 

This reduces the synchronisation cost significantly and the total cost is usually smaller 

than the former when p is a moderate number. For example, logp(1 +g +1) = 3014.4 

and (p - 1) + (p - 1)g + 1 = 790 on a 16 processor Cray T3E. This example shows 

the importance of considering the communication and synchronisation costs as well as 

the computation cost. We take the latter implementation strategy for implementation 

of fold to avoid the logarithmic number of barrier synchronisations and to reduce the 

complexity of the analysis cost. 

the data in tED is broadcast and the data in t., is scattered from the master processor 

to all p processors; 

synchronisation; 

each processor folds the vector segments with t; 

the local result in each processor is gathered to the master processor; 

synchronisation; 

the gathered local results are folded with t in the master processor. 

The corresponding SPMD pseudo-code is: 

bsp_get(data describing t(D from P0); 

bsp_get(local share of t,, from P0); 

bsp_sync 0; 

for each local item 

combine this item into emerging local result; 

if (p > 1) { 

bsp_put(local result to P0); 

bsp_sync 0; 
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if (bsp_pid() == 0) 

sequentially fold together collected sub results; 

} 

The cost of each part of the application of fold is as follows. The computation cost is 

t_apcost (iter_rit) for step 3 and 

t_a pcost (iter (preiter (t_sh p ( (t_sh p (iter_rit))))) (t...sh p (iter_rlt), SEQ, 0) (p - 1)) 

for step 6, where 

iter..rlt 	iter (preiter (t.shp ( (t_eshp (x))))) (t_eshp (x), SEQ, 0) ((t_len (x)/p) - 1) 

and the definitions of preiter and add2 are 

preiter f (x, d, t) = add2(fx)t 

add2 (x,d,t)t'= (x,d,t+t') 

Note that the iter..rlt denotes the result of the initial local folding phase. The arguments 

of iter, that is preiter(t_shp (ED (t_eshp(x)))), (t_eshp(x),SEQ, 0), and (t_len (x) 1p) —1 

correspond to the function to be iterated, the initial data and the number of iterations 

respectively, while preiter adds the structure required to gather costs as iteration pro-

ceeds. The iter combinator is required to model the repeated application of the t to 

allow for situations in which the resulting shapes of the intermediate results are not 

same as the shape of the original elements. This means we do not need different fold 

operators (so it is an improvement on Skillicom's and Rangaswami's schemes, for 

example). The communication cost is t_size (iter_rit) (p - 1) g for step 4. The syn-

chronisation cost is 1 for step 5. Thus the overall application cost of fold is expressed 

as 

ap_cost_fold ED x(p,g,1) 

= t_apcost (iter_rit) + t_size (iter_rit). (p - 1) g + l + 

t_apcost (iter (preiter (t_shp ( (t_shp (iter_rit))))) (tshp (iter_rit), SEQ, 0) (p - 1)) 
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The shape of fold is: 

A. . (Xx. (tshp (iter (preiter ( (t...shp (iterlt)))) (tshp (iter..rlt), SEQ, 0) (p - 1)), 

FOLD,ap_cosLfold x),SEQ,O) 

This packs in the following information. Working from the right hand end, it takes 

no time to apply fold to a given function t and its application pattern is SEQ. The 

application cost to apply fold t to a given vector is apcost_fold, which is given above. 

The application pattern involved to apply fold t to the given vector is FOLD since the 

implementation skeleton ends with the sequential folding. The resulting shape of the 

application foldtED  to the given vector is 

t..shp (iter (preiter (Lshp ( (t...shp (iter.rlt))))) (t.shp (iter..rlt), SEQ, 0) (p - 1)) 

Notice that the preiter adds the structure required to gather costs as iteration proceeds 

in the sequential folding phase. 

The cost function of fold is 

cost (fold) = (A . (Ax. (t.shp (iter (preiter (t..shp ( (Lshp (iter...rlt))))) 

(tshp (iter.rlt))(p - 1)), FOLD, ap_cost_fold ED x), SEQ, 0), 0, SEQ, 0) 

where 

iter_.rlt = iter (preiter (t.shp ( (t_eshp (x))))) (t_eshp (x), SEQ, 0) ((t_len (x)/p) - 1) 

The first 0 from the right hand end indicates that it takes no time to evaluate the term 

fold itself and data pattern of the term fold itself is SEQ. The next 0 indicates that it 

carries no data. The next component 

A. . ()Lx.(t_shp (iter (preiter (t_shp ( (t_shp (iter_rit))))) (t_shp (iter_rlt))(p - 1)), 

FOLD, ap_cost_fold ED x), SEQ, 0) 

is the shape of the term fold, which was explained above. 
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4.2.3 scan 

scan applies to a vector t = [xi ,x2, • ,x,] and the partial result of fold tD up to the ith 

element is returned as the ith element of the resulting vector. 

scan t [Xi  ,x2,...,x fl]= [XI ,xitx2,...,xitiJx2te  ... txfl } 

It is known that the scan operation is useful for describing various data-parallel al-

gorithms, and leads to efficient run time codes. For example, [12] describes five al-

gorithms that illustrate how the scan can be used in algorithm design: a radix-sort, a 

quick sort, a minimum-spanning-tree algorithm, a line-drawing algorithm and a merg-

ing algorithm. In some parallel computation models such as the Scan Vector Model 

[13], simple operations are implemented through scan. 

Our BSP implementation strategy for scan is: 

the data in tED is broadcast and the data in t is scattered to all p processors; 

synchronisation; 

each processor scans the segment distributed from the master processor with t; 

the final element of the local scan in each processor is scanned across processors 

with t using the obvious tree algorithm, which involves log p iterations of a 

(data transmission + synchronisation + execution of t(D) process; 

the result of the global scan in the processor i(< p) is sent to processor i + 1; 

synchronisation; 

each processor applies te to the pair of the value sent to the processor in 5 and 

each element of the results in 3; 

the local result in each processor is gathered to the master processor; 

synchronisation. 

The corresponding SPMD pseudo-code is: 
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bsp.get(data describing tED from P0); 

bsp_get(local share of t from P0); 

bsp_sync () 

for each local item 

scan this item into emerging local result; 

if (p > 1){ 

for(i=l; log(p); i++) { 

send the item to the next processor; 

bsp_sync 0; 

apply t to the item and the sent item; 

} 

send the item of the result of the global scan to the next processor; 

apply t to the sent item and each item; 

bsp_put(local result to P0); 

bsp_sync; 

} 

The cost of each part of the application of scan is as follows. The computation cost is 

t_apcost (t...shp ( (t_eshp (x))) (t_eshp (x))) (t_Ien (x)/p - 1) 

for step 3, 

ta pcost (t...shp ( (t_esh p (x))) (t_esh p (x))) . log(p) 

for the computation part in step 4, and 

t_a pcost (t...sh p ( (t_esh p (x))) (t_esh p (x))). (t_Ien (x)/p) 

for step 7. As this cost is necessary only when p> 1 but this formula does not result 

in 0 when p = 1 (therefore, g = 1 = 0), we use the formula 

(eqone p) . t_apcost (t...shp ( (t_eshp (x)))(t_eshp (x))) (t_Ien (x)/p) 

where eqone is defined as eqoney = if (y = 1) then 0 else 1. 
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The communication cost is size (t_eshp(x)) . g . log(p) for the communication part in 

step 4, (size (t_eshp(x)) g for step 5, and (size(x)/p). (p—i). g for step 8. The 

synchronisation cost is 1• log(p) for the synchronisation part in step 4, 1 for step 6 and 

I for step 9. Therefore, the overall application cost is expressed as 

ap_cost.scan x(p,g,l) 

= t_apcost (t.shp ( (t_eshp (x)))(t_eshp (x))) ((t_Ien (x)/p + eqone p) + log (p) - 1) 

+(size(t_eshp(x))• (log (p)+ 1) + (size (x)/p) . (p—i)) .g 

+(log(p) + 2) .1 

The shape of scan is: 

X EEL (Ax. (x, MAP, ap...costscan x), SEQ, 0) 

This packs in the following information. Working from the right hand end, it takes 

no time to apply scan to a given function t and its application pattern is SEQ. The 

application cost to apply scant to a given vector is apcosLscan, which was given 

above. The application pattern involved to apply scan t to the given vector is MAP 

since the implementation skeleton ends by gathering the local results. The resulting 

shape of the application scan tED to the given vector is the same as the shape of the 

vector t since we assumed that application of t does not change the shape. 

The cost function of scan is 

cost (scan) = (Xf.(Xx.(x, MAP,ap_cosLscan fx), SEQ, 0), 0, SEQ, 0) 

The first 0 from the right hand end indicates that it takes no time to evaluate the term 

scan itself and data pattern of the term scan itself is SEQ. The next 0 indicates that it 

carries no data. The next component 

Xf.(Xx.(x, MAP,apcost_scan fx), SEQ, 0) 

is the shape of the term scan, which was explained above. 
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4.2.4 pair-map 

pair-map applies a function t1 to pairs of elements drawn from a pair of vectors of the 

same length. 

Our BSP implementation strategy for pair-map is: 

the data in tf is broadcast and the data in fst t and snd t (the two vectors) are 

scattered to all p processors; 

synchronisation; 

each processor applies t1 to the elementwise pairs; 

the local result in each processor is gathered to the master processor; 

synchronisation. 

In SPMD pseudo-code this is: 

bspget(data describing tj from P0); 

bsp_get(local share of fst t from P0); 

bsp_get(local share of snd t.  from P0); 

for each local items from t 

apply fx  to local (fst t) and corresponding local (snd ti); 

bsp_put(results to P0); 

bsp_sync; 

The application cost of pair-map in terms of the BSP cost model is the computation 

cost t_apcost (t_shp (f (t_eshp (fstx)))(t_eshp (sndx))) (t_Ien (fstx)/p) for step 3, the 

communication cost t_size (t_sh p (f (t_esh p (fstx))) (t_esh p (snd x))) (p - 1) g for step 

4 and the synchronisation cost 1 for step 5. Thus, the overall cost is expressed as 

ap_cost_pair_mapfx(p,g,l) 

= t_apcost (t_shp (f (t_eshp (fstx))) (t_eshp (sndx))). (t_Ien (fstx)/p) 
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+t.size(t_shp(f(t_eshp (fstx)))(t_eshp (sndx))) (p—i). g+l 

The shape of pair-map is: 

Af. (Ax. ((t_Ien (fstx), t_shp (t_shp (f (t_eshp (fstx)))(t_eshp (sndx)))), MAP, 

a p_cost_pair_mapfx), SEQ, 0) 

This packs in the following information. Working from the right hand end, it takes no 

time to apply pair-map to a given function t1 and its application pattern is SEQ. The 

application cost to apply pair_mapt1 to a given vector is apcost_pair_map, which is 

given above. The application pattern involved to apply pair_maptj to the given vector 

is MAP since the implementation skeleton ends by gathering the local result. The 

resulting shape of the application pairmapt j' to the given vector is 

(t_Ien (fstx), t_sh p (t_sh p (f (t_esh p (fstx))) (t_eshp (snd x)))) 

The cost function of pair-map is 

cost (pair_map) = (Af. (Ax. ((t_Ien (fstx), t...sh p (f (t_esh p (fstx)) (t_esh p (snd x)))), 

MAP, ap_cost_pair_mapfx), SEQ, 0), 0, SEQ, 0) 

The first 0 from the right hand end indicates that it takes no time to evaluate the term 

pair-map itself and SEQ indicates data pattern of the term pair-map itself is SEQ. The 

next 0 indicates that it carries no data. The next component 

Af. (Ax. ((Lien (fstx),t_shp (t_shp (f (t_eshp (fstx))) (t_eshp (sndx)))), MAP, 

ap_cost_pair_mapfx), SEQ, 0) 

is the shape of the term pair-map, which was explained above. 

4.2.5 cprod 

c_prod applies a function to each member of the cross-product of two vectors t x  and ti,. 

c_prodtf[xl,x2,...,xm][yl,y2,.•.,yn] = [[t1xiyi, tfx2yl, ",tfX m Yl], 

[tjxiy2, t1X2y2, • ,tfXmY2], 

[tjxiyn , tf X2Yn, • ,tfXmYn]] 
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It is used for a class of algorithms in which each object interacts with every other and 

corresponds to the All-Pairs Paradigm in [19] and the RaMP(Reduce-and-Map-over-

Pairs) skeleton in Darlington's skeletons [29]. 

The BSP implementation strategy for c_prod is: 

the data in t1 and in t,, is broadcast and the data in t, are scattered to all p proces-

sors; 

synchronisation; 

each processors applies tf to the all members of the cross product of t and the 

local segments of t; 

the local result in each processor is gathered to the master processor; 

synchronisation 

In SPMD pseudo-code this is: 

bsp_get(data describing f from P0); 

bsp_get(copy of t from P0); 

bsp.get(local share of t, from P0); 

bspsync 0; 

for each local item t)/ from t, 

for each item t' from copy of t,  

apply tj to ti and ty ; 

bsp_put(results to P0); 

bsp_sync0; 

The application cost for c_prod is: the communication cost 

t_apcost (t_shp (f (teshp (x)))(t.eshp (y)))• (tJen (y)/p) . (t_Ien (x)) 

for step 3, the communication cost 

(t.size(t_shp(f(t_eshp(x)))(teshp(y))). (t_Ien (y)/p) (tJen (x)). (p— 1)) g 
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for step 4 and the synchronisation cost 1 for step 5. Thus, the overall cost is expressed 

RV 

ap_cost_c_prodfxy(p,g,l) 

= t_apcost(t_shp(f(t_eshp(x)))(t_eshp(y))) (t_Ien (y)/p). (t_Ien (x)) 

+(t_size(t_shp(f(t_eshp (x)))(t_eshp(y))). (tJen (y)/p). (t_len (x)) . (p - 1)) 

g+l 

The shape of c_prod is: 

Xf. (Xx. (Xy. (( tlen (y), (t_Ien (x), t_shp (t_sh p(fx) y))), MAP, a p_cost_c_prod fxy), 

SEQ,O), SEQ, 0) 

This packs in the following information. Working from the right hand end, it takes 

no time to apply cprod to a given function tf and its application pattern is SEQ. The 

application cost to apply c_prod tj to a given vector t is 0 and its application pattern 

is SEQ. The application cost to apply cprod tj tx  to a given vector t, is apcost_c_prod, 

which is given above. The application pattern involved to apply c_prod t1 t to the 

given vector t is MAP since the implementation skeleton ends by gathering the 1-

cal result. The resulting shape of the application c_prod tf t to the given vector t is 

(t-ten y, (t_Ien x, t_sh p (t_sh p (f x) y))). 

The cost function of cprod is 

cost (c_prod) = (Xf. (Ax. (Ay. ( (t_ien y, (t_Ien x, t_sh p (t_sh p (fx) y))), 

MAP, apcosLcprod fxy), SEQ, 0), SEQ, 0), 0, SEQ, 0) 

The first 0 from the right hand end indicates that it takes no time to evaluate the term 

c_prod itself and SEQ indicates data pattern of the term c_prod itself is SEQ. The next 

0 indicates that it carries no data. The next component 

Af. (Ax. (Xy. ( (t_Ien y, (t_Ien x, t_shp (t_sh p (fx) y))), MAP, a p_cost_c_prod fxy), 

SEQ,0),SEQ,O) 

is the shape of the term c_prod, which was explained above. 
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4.3 Chapter Conclusion 

A common approach to cost consideration for the skeleton approach is to formulate the 

cost of each skeleton based on its low level implementation using some parameters. In 

our context, skeletons are higher-order functions each of which has a predetermined 

template based on the BSP computation model. We presented details of the algorithm 

and its SPMD pseudo-code for the implementation of each skeleton and defined a cost 

formula in the form of a function of shape and the BSP parameters. 

In skeleton-based models in which a parallel algorithm is expressed using more than 

one skeleton, cost would be expressed as some kind of combination of the cost formula 

of each single skeleton. However, a simple summation of each formula does not work 

well because the input size (or shape) parameterised in each formula will take different 

values in the general case. We need to take account of the impact of size (or shape) 

changes between skeletons. The distinguishing feature of shape-based cost analysis 

is that the composition of these formula can be automated by the incorporation of au-

tomatic shape analysis. Our analysis adds to this feature the ability to compute the 

communication and synchronisation cost considering impact of architecture character-

istics through BSP parameters. 

Efficiency of the BSP implementation of each skeleton could be improved by investi-

gating the costs of possible alternative implementations and the implications of param-

eter sizes. This remains as future work. 



Chapter 5 

Implementation of Cost Analysis 

This chapter outlines the Haskell implementation of our cost analysis, which was de-

scribed in chapters 3 and 4. It illustrates some details of the system structure and 

definitions of functions by using examples rather than full source code. The system 

was developed by modifying the Haskell implementation of PRAM cost analysis de-

veloped at the University of Technology Sydney, reflecting the amendments to achieve 

our BSP cost analysis. The basic structure of the system is based on that of the original 

PRAM cost analysis implementation. 

5.1 Automating Cost Analysis 

The natural use of our system would be as an aid during program development, al-

lowing the programmer to experiment with the behaviour of various equivalent pro-

gram structures on various data sets. Since the cornerstone of shapely programming 

is that behavioural structure is independent of data content, it would be both unneces-

sary and time-consuming to require the provision of real data sets during development 

(e.g. constructing an array of 1000 by 1000 values only for the cost calculator to 

immediately throw them away). Thus, for development purposes we add a new con-

structor dummyvec, which allows the programmer to directly specify the input shape 

as its argument, and use dummyvec ishp instead of the real input data vector. This 
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would be replaced by calls to TO operations in the real program. The cost function for 

dummyvec ishp is simple, as the programmer provides the input shape directly. 

cost (dummyvec ishp) = (ishp, sz ishp, 0, SEQ, 0) 

Note that this implies that we are not costing the 110 for the real program. 

5.2 Example of Cost Analysis by Hand 

The analysis process can be illustrated by an example of a complete cost derivation by 

hand. We derive the cost of 

map (+9) [1,2,3,4,5,6,7,8] 

The input data [1,2,3,4,5,6,7,8] is replaced by dummyvec (8,1) by the programmer 

before cost is applied. 

cost (map (+9) dummyvec (8, 1)) 

= {def. of cost tt'} 

bspapp cost (map (+9)) cost (dummyvec (8, 1)) 

= {def. of cost tt' anddef. of cost (dummyvec (8,1))} 

bspapp (bspapp cost (map) cost (+9)) ((8,1),8,SEQ,0) 

= {def. of cost tt'} 

bspapp (bspapp cost (map) (bspapp cost (+) cost 9)) ((8, 1),8,SEQ,0) 

Within the above, 

cost (map) 

= {def. of cost map} 

(Af. (Ax. ((t_Ien (x), t.shp (f (t_eshpx))), MAP, apcost_mapfx), 

SEQ, 0), 0, SEQ,O) 

and 
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bspapp cost (+) cost 9 

= {def. of cost + and cost 9} 

bspapp (Ax. (Xy.(l, SEQ, binOpConst), SEQ,O),O, SEQ,O)( 1, 1, SEQ, 0) 

Therefore, the translated MsIzE program is 

bspapp (bspapp (Af. (Ax. (( tJen (x), tshp (f (t_eshpx))), MAP, apcost_mapfx), 

SEQ, 0), 0, SEQ, 0)(bspapp (Xx.(Ay.(l, SEQ, binOpConst), SEQ,0), 0, SEQ, 0) 

(1,1,SEQ,0))) ((8,1),8,SEQ,0) 

Within the above, 

bspapp (Ax. (Ay. (1, SEQ, binOpConst), SEQ, 0), 0, SEQ,0)( 1, 1, SEQ, 0) 

= {def. of bspapp} 

(Xy. (1, SEQ, binOpConst), 1, SEQ, 0) 

And so, 

bspapp (Xf. (Ax. ((tien (x), t.shp (f (t_eshpx))), MAP, apcost_mapfx), 

SEQ, 0),0, SEQ, 0) (Xy.(l, SEQ, binOpConst), SEQ,0), 1, SEQ, 0) 

= {def. of bspapp} 

(Xx.((t_Ien (x),tshp (Xy. (1, SEQ, binOpConst) (t_eshpx))), 

MAP, apcost_map Xy. (1, SEQ, binOpConst) x), 1, MAP,0) 

where 

apcost_map Ay. (l, SEQ, binOpConst)x 

= {def. of apcost_map} 

La pcost (Ay. (1, SEQ, binOpConst) (t_esh p (x))). (t_Ien (x) /p) 

+t-size (Ay. (1, SEQ, binOpConst) (t_eshp (x))). (t_Ien (x)/p) . (p - 1) g + I 

Thus, 

bspapp (Ax. ((t_Ien (x), tshp (Ày. (1, SEQ, binOpConst) (t_eshpx))), 

MAP, apcost_map Ày. (1, SEQ, binOpConst)x), 1, MAP, 0) ((8, 1), 8, SEQ, 0) 

= {def. of bspapp} 
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((8,1),Lsize(8,1), MAP, (comrn_cost 10 0) + 1 + 

apcost_mapXy.(1, SEQ, binOpConst) (8, 1)) 

= {def. ofapcost_mapetc.} 

((8,1),8, MAP, (1. (p — i) +8• ((p— l)/p)) g+l+ 

binOpConst• (81p) + 1 (81p) (p - 1) g + 1) 

= ((8, 1),8,MAP, (8. binOpConst/p) + (p+ 15— i6/p) •g+2 .1) 

The result shows that the cost of 

map (+9) [1,2,3,4,5,6, 7, 8] 

is 

(8. binOpConst/p) -I- (p + 15 - 161p) g + 2.1 

This example shows that the hand calculation of the analysis is hard task even for a 

simple example and, therefore, automation of the analysis is important for practical 

use. The analysis might looks expensive even if it can be automated, notice, however, 

that the analysis cost of this example does not change even if input vector is replaced 

by a large sized vector. For example, the analysis of 

map (+9) [1, 2, 3, .. ., 80000] 

changes the value 8 to 80000 in the calculation without changing the complexity of 

the analysis cost, while the run time cost of the program will be roughly 10000 times 

larger. 

5.3 System Structure 

The whole cost analysis system is divided into seven modules. 

CostDefsBsp.hs: definitions of cost tuples; 

CostTransBsp.hs: definitions for translation from VEc-BSP terms to MsIzE terms; 

CostConstBsp.hs: definitions of constants used in the analysis; 
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CostTestBsp.hs: VEc-BSP codes for test programs; 

CostParaBsp.hs: BSP parameters; 

VecBspSugar.hs: syntax sugar for VEc-BSP programming; 

TimingsBsp.hs: target file in which generated Haskell codes are stored. 

The structure of VEc-BSP terms is given in the file CostTransBsp.hs. The user writes 

VEC-BSP programs in the module CostTestBsp.hs. CostTestBsp.hs also includes a do 

expression that contains a sequence of the operations including: transforming VEC-

BSP programs into MSIZE programs using the definitions in other modules; Out-

putting MsIzE programs as Haskell programs into the output file TimingsBsp.hs; and 

applying the resulting cost functions to the BSP parameters, outputting the BSP cost. 

CostTransBsp.hs which is imported to CostTestBsp.hs also has the structure of MsIzE 

terms, the definitions for the cost function, which references cost tuple definitions in 

CostDefsBsp.hs, and a pretty-printer to convert MsIzE programs into Haskell pro-

grams. The definitions of cost tuples in CostDefsBsp.hs use the values of constants 

defined in CostConstBsp.hs and BSP parameters in CostParaBsp.hs. CostConstBsp.hs 

and CostParaBsp.hs are imported to CostDefsBsp.hs. VecBspSugar.hs includes def-

initions of syntax sugar for convenient VEc-BSP programming and is imported to 

CostTestBsp.hs. In the following sections in this chapter, we look at the definitions 

in CostTestBsp.hs (section 5.4), definitions of cost tuples in CostDefsBsp.hs (section 

5.5), definitions of cost translation in CostTransBsp.hs (section 5.6), and definitions in 

other modules (section 5.7). 

5.4 CostTestBsp.hs: Definitions of Cost Tests 

The test VEC-BSP programs for which a user wants to calculate costs are given in the 

list theTests in CostTestBsp.hs. 

{- list of Vec-BSP terms that are tested -} 

theTests = 

TestPrograml, 

TestProgram2, 
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TestProgram3 

The structure of VEc-BSP terms is given in the file CostTransBsp.hs as the data type 

VecBspTerm as explained later in this chapter. CostTestBsp.hs also has definitions to 

manage the test procedure. 

{- give the name of the file for generated Haskell code -} 

outputFile = "timingsBsp.hs" 

{- testing procedure -} 

genTests = do { putStr "\nGenerating code ... "; 

appendFile outputFile "import CostDefsBsp\n\n"; 

appendFile outputFile ("run (_,_,_,f) = timeFunApp f 

++ (show paraBSP) ++ "\n\n"); 

appendFile outputFile (codeGen theTests); 

putStr ("done!\n\n"); 

putStr ("First, load " ++ outputFile ++ 

"into Hugs\n\n"); 

putStr ("Then, to get the timing for the i'th entry 

in the list of VecBsp terms, \n"); 

putStr ("enter \"run terini\" at the Hugs prompt\n") 

I 

After CostTestBsp.hs is loaded to Hugs (the Haskell system), the user enters genTests 

at Hugs prompt which performs: displaying Generating code ... on the screen; 

writing import Cos tDefsBsp in timingsBsp.hs; writing run(-, -,-, f =timeFunApp 

f paraBSP in TimingsBsp.hs; performing codeGen theTests and then writing the 

result, that is translated MsIzE terms, into TimingsBsp.hs, where codeGen is a code 

generator which is defined in CostTransBsp.hs as explained later in this chapter; dis-

playingdone! on the screen; displaying First, load TimingsBsp.hs into Hugs 

on the screen; displaying Then, to get the timing for the i'th entry in 

the list of VecBsp terms on the screen; and displaying enter 'run termi' at 
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the Hugs prompt on the screen. Following the given instructions, the user loads Tim-

ingsBsp.hs and then enters run termi to evaluate run (_, -, -, f) = timeFunApp f 

paraBSP, that is, to evaluate the MsIzE term and then apply the resulting time function 

to the BSP parameters, getting the calculated cost of TestProgrami. 

5.5 CostDefsBsp.hs: Definitions of Cost Tuples 

CostDefsBsp.hs has definitions of cost tuples for constructors. First, some algebraic 

types of the data which are used in the cost tuple definitions are defined. 

The algebraic type for time functions from the BSP parameters to time, that is Timefun 

type is defined by 

data TimeFun = 	VarTimeFun ((It, Float, Float) -> Float) 

I ConstTimeFun Float 

in which the CostTimeFun case is introduced to improve analysis speed for the case in 

which the time function is a constant function. The algebraic type for shapes, that is 

Shape type is defined by 

data Shape = 	Size mt 

I Tuple2 (Shape, Shape) 

I Tuple3 (Shape, Shape, Shape) 

I Tuple4 (Shape, Shape, Shape, Shape) 

Pair2 (Size mt 1  Shape) 

Fun (Shape -> (Shape, Size mt 1  TimeFun)) 

in which we define the tuple data types which have up to four components. 

Next, some auxiliary functions which are used in the cost tuple definitions are defined. 

timeFunApp takes a time function and BSP parameters and returns BSP cost. Its defi-

nition is 

timeFunApp 	TimeFun -> (Integer,Float,Float) -> Float 
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timeFunApp (ConstTimeFun n) - = n 

timeFunApp (VarTimeFun f) (p,g,1) = f (p,g,l) 

funApp takes the shape of a function and the shape of an argument, and returns an 

application tuple, whose components are the result shape, application pattern and ap-

plication cost. Its definition is 

funApp :: Shape -> Shape -> (Shape, Integer, TimeFun) 

funApp (Fun f) x = f x 

size, which takes the shape of a data item and returns its size is defined by 

size :: Shape -> Integer 

size (Tuple2 (xl,x2)) = size xl + size x2 

size (Tuple3 (xl,x2,x3)) = size xl + size x2 + size x3 

size (Tuple4 (xl,x2,x3,x4)) = size xl + size x2 + size x3 + size x4 

size (Pair2 (x,y)) = x * size y 

size (Size n) = n 

bspapp takes the cost tuple of a function term and the cost tuple of an argument term 

and returns the cost tuple of the result term. The definition is referenced in the defini-

tion of the cost function for application term App t t' in CostTransBsp.hs as shown 

in the next section. It is defined by 

bspapp:: (Shape, Integer, Integer, TimeFun) 

->(Shape, Integer, Integer, TimeFun) 

->(Shape, Integer, Integer, TimeFun) 

bspapp (Fun f, s, d, h) (t, s', d', h') = 

let (V1 ap, g') = f t 

in (v , (if (constFunEq g' (ConstTimeFun 0)) then (s + s') 

else size v), ap, 

VarTimeFun (\(p,g,l) -> 

((timeFunApp (timePlus (timePlus h h') g') (p,g,l) + 

(if (p == 1) then 0 
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else (if ap == 0 then 0 

else (if d' == 1 then 

((fromlntegral s * fromlntegral(p-l) 

- (fromlntegral s' 

* (fromlntegral(p-1)/ fromlntegral p))) 

* g - 1) 

else ((fromlntegral s * fromlntegral(p-1) 

+ (fromlntegral s') 

* (fromlntegral (p-i) /fromlntegral p)) 
* g + 1)))) ))) 

where, cons tFunEq, which checks the equality of two constant time functions is de-

fined by 

constFunEq :: TimeFun -> TimeFun -> Bool 

constFunEq (ConstTimeFun a) (ConstTimeFun b) = 

if (a == b) then True 

else False 

constFunEq (VarTimeFun a) - = False 

and timeplus, which adds two time functions is defined by 

timePlus 	TimeFun -> TimeFun -> TirneFun 

timePius (ConstTimeFun n) (ConstTimeFun m) = ConstTimeFun (n + m) 

timePlus (ConstTimeFun n) (VarTimeFun h) = 

VarTimeFun (\(p,g,l) -> n + (h (p,g,l))) 

timePlus (VarTimeFun f) (ConstTimeFun m) = 

VarTimeFun (\(p,g,l) -> (f (p,g,l)) + m) 

timePlus (VarTimeFun f) (VarTimeFun h) = 

VarTimeFun (\(p,g,l) -> (f (p,g,l)) + (h (p,g,l))) 

A cost tuple is defined for each VEc-BSP constructor, which is referenced by the 

cost function for the constructor in CostTransBsp.hs as shown in the next section. As 

examples, we here give the definitions of cost tuples for an atomic datum constant, a 
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binary datum operation, length, and map. 

constCost 	(Shape, Integer, Integer, TimeFun) 

constCost = (Size 1, Size 1, Size 0, ConstTimeFun 0) 

primBinOpCost :: (Shape, Integer, Integer, TirneFun) 

primBinOpCost = (Fun (\x -> 

(Fun (\y -> 

(Size 1, Size 0, ConstTimeFun primBinOpConst)), 

Size 0, ConstTimeFun 0)), 

Size 0, Size 0, ConstTimeFun 0) 

lengthCost :: (Shape, Integer, Integer, TimeFun) 

lengthCost = (Fun (\x -> (Size 1, Size 0, ConstTimeFun lengthConst)), 

Size 0, Size 0, ConstTimeFun 0) 

mapCost :: (Shape, Integer, Integer, TimeFun) 

mapCost = (Fun (\f -> (Fun (shapeMap f), Size 0, ConstTimeFun 0)), 

Size 0, Size 0, ConstTimeFun 0) 

shapeMap :: Shape -> (Shape -> (Shape, Integer, TimeFun)) 

shapeMap f (Pair2 (len, eshp)) = 

let shps = Pair2 (len, pilFroin3(funApp f eshp)) 

in (shps, Size 1, 

VarTimeFun (\(p,g,l) -> 

(timeFunApp(tensorMult len (pi3From3 (funApp f eshp))) (p, g, 1) + 

(if (p==l) then 0 

else (fromlntegral(size(sndPair2(shps))) * 

fromlntegral (ceiling (fromlntegral (len) If romlntegral p)) * 

fromlntegral(p - 1) * g + 1)))) 

where the functions such as pilTuple3, which take the ith components of a three-

components-tuple are defined by 
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pilTuple3 (Tuple3' (t,_,_)) = t 

pi2Tuple3 (Tuple3' (_,t,_)) = t 

pi3Tuple3 (Tuple3' (_,_,t)) = t 

and the functions such as sndPair2, which take a component from a size-cost pair are 

defined by 

fstPair2 (Pair2 (t,_)) = t 

sndPair2 (Pair2 (_,t)) = t 

and tensorMult, which takes the number of tasks multiplied and the time function of 

the single task, and returns the time function of the multiple tasks using p processors 

is 

tensorMult :: Integer -> TimeFun -> TimeFun 

tensorMult 0 - = ConstTimeFun 0 

tensorMult n (VarTimeFun f) = 

VarTimeFun (\(p, g, 1) -> 

((frornlntegral (ceiling ((fromlntegral n) / (fromlntegral p)))) * 

(f (1,g, 1)) 

tensorMult - (ConstTimeFun 0) = ConstTimeFun 0 

tensorMult n (ConstTimeFun m) = 

VarTimeFun (\(p,g,l) -> 

(fromlntegral (ceiling ((fromlntegral n) / (fromlntegral p)))) * m) 

5.6 CostlransBsp.hs: Definitions for Cost Translation 

CostTransBsp.hs has definitions to translate VEc-BSP terms to MSIZE terms. First, 

the algebraic type for constructors, and then the algebraic type for VEc-BSP terms 

and Msize terms are defined. 

The algebraic type for term constructors, that is TCons type is defined by 

data TCons = Hd I Tl  I PilFrom2 I Pi2From2 I PilFrom3 I Pi2From3 
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Pi3From3 I PilFrom4 IPi2From4 j Pi3From4 

Pi4From4 I Length I Pair I Tuple2 I Tuple3  I Tuple4 

Scan I Map  I Pairmap Equal I Geq I And I Entry  I 
Plus Mult Minus 	Div I Mod I Fold I Iter 

Cproduct I min I Max 

The algebraic type for VEC-BSP terms, that is VecBspTerm type is defined by 

data VecBspTerm = Combr TCons Const Integer I BoolConst Bool 

Var String I Abs String VecTerm I 
App VecTerm VecBspTerm I 
If VecTerm VecBspTerirt VecBspTerm 

Ifs VecBspTerm VecBspTerm VecBspTerm 

The algebraic type for MsIzE terms, that is MsizeTerm type is defined by 

data MsizeTerin = MszCombr TCons I MszConst Integer I 
MszBoolConst Bool I MszVar String I 
MszAbs String MsizeTerm I MszConstFun MsizeTerin 

Msz Integer I MszApp MsizeTerm MsizeTerm 

Mszlfs MsizeTerm MsizeTerm MsizeTerm 

The MsIzE terms are converted to Haskell expressions by a pretty-printer and output 

in the file TimingBsp.hs. First, we make MsizeTerm an instance of the class Show. The 

instance declaration is 

instance Show MsizeTerin where 

showsPrec p = showMsizeTerin 

showMsizeTerm t = shows (getMsizeTermString t) 

The names of the constructors are converted to strings by getCombrString. For exam-

ple, 

getCombrString Hd = "head" 

getCombrString Tl = "tails 
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getCombrString Fst = 

getCombrString Snd = 

getCombrString Entry 

getCornbrString Map = 

getCombrString And = 

getCombrString Equal 

getCombrString Geq = 

getCombrString Plus 

getCombrString Mult 

getCombrString Minus 

getCombrString Div = 

getCombrString Mod 

"fs t" 

"snd" 

"entry" 
1111 

and 
- 

N > = N 

Is  + N  

n*N 

"div' 1  

"mod" 

MsIzE terms are converted to strings by getMsizeTermString. 

getMsizeTermString (MszApp (MszApp (MszCombr Pair) t) t') = 

++ (getMsizeTermString t) ++ "," ++ 

(getMsizeTerinString t') ++ 

getMsizeTermString (MszApp (MszApp (MszCombr Tuple2) t) t').= 

"(" ++ (getMsizeTermString t) ++ "," ++ 

(getMsizeTermString t') ++ ")" 

getMsizeTermString (MszApp (MszApp (MszApp (MszCornbr Tuple3) 

t) t') t'') = "(" ++ (getMsizeTermString t) ++ "," ++ 

(getMsizeTermString t') ++ "," ++ 

(getMsizeTerinString t'') ++ ")" 

getMsizeTerinString (MszApp (MszApp (NszApp (MszApp 

(MszCombr Tuple4) t) t') t'') t''') = 

"(I' ++ 

(getMsizeTermString t) ++ 
11,11 ++ 

(getMsizeTermString t') ++ 
U  ++ 

(getMsizeTermString t'') ++ 
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II 

(getMsizeTermString t''') ++ 

11 
 11 II 

getMsizeTermString (MszApp (MszApp (MszCombr Equal) t) t') = 

showAslnfix t t' "==" 

getMsizeTerinString (MszApp (MszApp (MszCombr Plus) t) t') = 

showAslnfix t t' tIlI 

getMsizeTermString (MszApp (MszApp (MszCombr Minus) t) t') = 

showAslnfix t t I 1111  

getMsizeTermString (MszApp (MszApp (MszCombr Mult) t) t') = 

showAslnfix t t' 11*11 

getMsizeTermString (MszApp (MszApp (MszCoinbr Div) t) t') = 

showAslnfix t t I  

getMsizeTermString (MszApp (MszApp (MszConibr Mod) t) t') = 

showAslnfix t Y "'mod",  

getMsizeTermString (MszApp (MszApp (MszCombr And) t) t') = 

"and [" ++ 

getMsi zeTerinString 

getMs I zeTermString 

getMsi zeTermString 

getMsi zeTermString 

getMsi zeTermString 

getMsi zeTermString 

(getMsizeTermString t) ++ 
nfl ++ 

(getMsizeTenrtString t i') ++ 

if ] "  

(MszBoolConst b) = show b 

(MszCombr C) = getCombrString c 

(MszVar x) = x 

(MszConst n) = show n 

(MszVectorConst n) = show n 

(MszAbs x t) = "(Fun (\\" ++ x ++ " -> 

++ (getMsizeTermString t) ++ "))" 

getMsizeTermString (MszConstFun t) = "(ConstTimeFun " ++ 

(getMsizeTermString t) ++ ")" 

getMsizeTermString (MszApp t t') = "(" ++ 
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(getMsizeTermString t) ++ 
N N 

(getMsizeTermString t') ++ II)n 

getMsizeTermString (Mszlfs t t' t'') = 	N ++ 

(getMsizeTermString t) 

++ N then N ++ 

(getMsizeTerinString t') ++ 
N  else 11  ++ 

(getMsizeTermString t'') ++ 
N) N 

getMsizeTermString (Msz n) = (show n) 

showAslnf ix t t' s = "(° ++ (getMsizeTermString t) ++ N N  ++ s ++ 
N N  ++ (getMsizeTermString t') ++ I)N 

The function cost takes a VEc-BSP term and returns an MsIzE term. Many of the 

definitions of cost for constants and combinators in VEc-BSP reference the corre-

sponding cost tuple definitions in CostDefsBsp.hs. Some examples are 

cost :: VecBspTerm -> MsizeTerm 

cost (Const _) = (MszVar NconstCostN) 

cost (VectorConst v) = app(MszVar vectorCost") (MszVectorConst v) 

cost (Combr Plus) = (MszVar "primBinOpCost") 

cost (Combr Minus) = (MszVar "primBinOpCost") 

cost (Combr Mult) = (MszVar hlprimBinOpCostN) 

cost (Combr Div) = (MszVar "primBinOpCost") 

cost (Combr Max) = (MszVar "primBinOpCost") 

cost (Combr Hd) = (MszVar "headCost") 

cost (Combr Map) = (MszVar "mapCosttt) 

cost (Cornbr Fold) = (MszVar "foldCost") 

cost for an application term references the definition of bspapp operation. 

cost (App t t') = MszApp(MszApp(MszVar "bsppapp") (cost t))(cost t') 
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The Haskell code corresponding to an MsIzE program is generated by the following 

code generator, codeGen. 

noDblSlash [] = [ 1 

noDblSlash (h: '\\' :'\\' :tl) = h:'\\' (noDblSlash tl) 

noDblSlash (h:tl) = h: (noDblSlash ti) 

vec2HaskellCost t = 

let 1st = (show (cost t)) 

in no]DblSlash (tail (take ((length 1st) - 1) 1st)) 

codeGen 1st = codeGenLoop 1 1st 

codeGenLoop - [] = 

codeGenLoop n (h:t) = "term" ++ " 	" ++ 

(vec2HaskellCost h) ++ "\n\n" ++ (codeGenLoop (n + 1) t) 

5.7 Other Modules 

5.7.1 CostParaBsp.hs: Definitions for BSP parameters 

CostParaBsp.hs includes definitions of BSP parameters, which are obtained from run-

ning a benchmark program on the target architecture. For example, 

paraBSP :: (Integer, Float, Float) 

paraBSP = (8,1.6,67150) 

p 	Integer 

p = pilFrom3(paraBSP) 

g :: Float 

g = pi2From3(paraBSP) 

1 :: Float 

1 = pi2From3(paraBSP) 
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5.7.2 CostConstBsp.hs: Definitions for Constants 

The constants used in the definitions of cost tuples in CostDefsBsp.hs are defined in 

CostConstBsp.hs. In current version, primBinOpConst is defined as 1 and the others 

as 0. 

primBinOpConst = 1 :: Float 

5.7.3 VecBspSugar.hs: Syntax Sugar 

VecBspSugar.hs includes syntax sugar for convenience of VEc-BSP programming. 

For example, 

Ct fl = Const n 

v x = Var x 

vabs x t = Abs x t 

vapp f t = App f t 

vapp2 f t t' = vapp (vapp f t) t' 

vapp3 f t t' t'' = vapp (vapp2 f t t') t'' 

vapp4 f t t' t'' t 11 ' = vapp (vapp3 f t t' t'') tf if  

vmap f v = vapp2 (Combr Map) f v 

fold f v = vapp2 (Combr Fold) f v 

For example, the straightforward VEc-BSP expression for map (x2) v is 

App (App (Combr Map) (App (Combr Mul t) (Const 2))) v 

but it can be expressed with sugaring as 

vmap (vapp (Combr Mult) (Ct 2)) v 
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5.8 Chapter Conc'usion 

This chapter outlined the Haskell implementation of our cost analysis, which is based 

on the existing PRAM calculator. The main differences with the PRAM calculator 

reflect those of the analysis itself, that is: the new components of size, application 

pattern and data pattern; the cost function is a function of BSP parameters; the bspapp 

which captures the communication and synchronisation cost as well as the computation 

cost; a set of skeletons each of which has the application cost that is based on the BSP 

cost model. One more technical change is that we avoided the analysis of the input 

vector itself, which is done in the PRAM calculator using singleton and cons operators 

(and which would be possible for our analysis as well), by giving the input shape 

directly. This saves analysis cost and brings the desirable property that the analysis 

cost is independent of input vector size. 



Chapter 6 

Experiments: Comparing Different 

Algorithms 

In this chapter we describe our experimental framework for automatic cost prediction. 

We consider different algorithms for simple example problems, namely, matrix-vector 

multiplication and maximum segment sum, and show that our method allows detailed 

consideration of constant factors across a range of problem sizes which would be diffi-

cult in a pencil-and-paper analysis. We then report on the results of experiments which 

compare our predictions with the performance of real programs. 

6.1 Matrix Multiplication 

The first example problem is a matrix vector multiplication Mv, where M is an m x n 

matrix and v is an n element vector. We consider different two algorithms, contrasting 

the analysis of their efficiency by traditional, intuitive methods with that achieved by 

our cost calculator. The communication optimisation described in chapter 3 is appli-

cable in the second algorithm. The first algorithm is expressed in VEc-BSP as: 

map (Xy. (Ax. (fold + (pair_map(.)(pair y x)))) v)M 	 (1) 
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where, v = dummyvec(n, 1) and M = dummyvec(m, (n, 1)) for analysis purposes. Its 

BSP implementation based on our strategy is: 

the elements of v in the master processor are broadcast to the p processors and 

M's contents, consisting of mn integers in the master processor, are scattered to 

the p processors in vector-block-wise manner; 

synchronisation; 

each processor computes the elementwise multiplication of v and each distributed 

vector; 

the results of 3 are folded with addition on each processor; 

the local result on each processor is gathered to the master processor; 

synchronisation. 

Notice that the function Ax. (fold + (pair_map(.) (pairvx))) takes a vector and returns 

its inner product with v. The parallel structure of the algorithm is illustrated in a 

diagram in figure 6.1. An intuitive BSP cost analysis is made by counting the number 

	

0 O 	c-o p 	 :.O. 
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"o •o p 
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Figure 6.1: Parallel structure of algorithm (1) 

of operations and message size by hand. The resulting computation cost is mn/p for 

integer multiplications and m(n - 1)/p for integer additions. Communication cost is 

n(p - 1)g to broadcast n integer elements of v, mn((p - 1)/p)g to scatter mn integer 

elements of M and (m/p) (p - 1)g to gather local results, so the overall communication 

cost is ((mn + m + np) (p - I) 1p)g-  There are two synchronisations at a cost of 21. 

The second algorithm is expressed in VEC-BSP as: 

fold (Xxy.(pair_map + (pairxy))) (pair-map (Xxy.map (Xz.(y . z))x) (pair Lv)) (2) 
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where, L = M' = dummyvec(n, (m, 1)) and v = dummyvec(n, 1) as before. The imple-

mentation of this skeletal program has two parallel phases. 

• pairmap phase: 

the contents of L and v in the master processor are scattered to the p pro-

cessors; 

synchronisation; 

each processor computes the element-wise application of Xxy. map (Az. (y. 

z) ) x to each distributed integers from v and each corresponding distributed 

vectors from L. (The effect of this is that each element of the ith vector of 

L is multiplied by the ith element of v.). 

• fold phase: 

each processor computes the element-wise addition of all local vectors; 

the local result on each processor is gathered to the master processor; 

synchronisation; 

the master processor computes element-wise addition of the gathered vec-

tors. 

Notice that the communications implied by the gather step at the end of the pair-map 

phase and the broadcast-scatter step in the beginning of the fold phase can be opti-

mised away by our analysis, leading directly to the computation step of the fold phase. 

Thus, our cost analysis does not count these communication costs. The parallel struc-

ture of this algorithm (2) is illustrated in a diagram in figure 6.2. An intuitive BSP 

•. o p 
op 

Figure 6.2: Parallel structure of algorithm (2) 
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cost analysis of (2) is made as follows. The computation cost is mn/p integer mul-

tiplications and m(n/p - 1) + m(p - 1) integer additions. The communication cost 

is (m + 1)n((p - 1)/p)g for scattering the elements of L and the elements of v, and 

m(p - 1)g for gathering local results in the fold application, so the overall communi-

cation cost is ((mn + n) ((p - 1) 1p) + m(p - 1) )g. The synchronisation cost is 21. 

We now apply our cost calculator to the two algorithms. Our target system is an 8-

processor Sun HPC 3500 U1traSPARC II machine hosted by the Edinburgh Parallel 

Computer Centre. BSP parameters obtained by running a benchmark program pro-

vided by Oxford BSPlib are p = 8, g = 1.6, l = 67150. The binary operator constant 

is set at 1 and the total calculated cost in operations is converted into seconds by di-

viding by 13 million as directed by s, the benchmark returned factor which normalises 

1 and g to the single processor computational speed. In this section we investigate the 

performance predicted by our cost calculator, and compare with a pencil-and-paper 

asymptotic analysis. Comparison of predicted and real execution costs is presented in 

section 6.3. 
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Figure 6.3: Prediction when m=n, p=8 
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First, as a concrete example we investigate the case in which p = 8 and M is square (i.e. 

m = n), with m varying. Our cost system automatically translates the source program 

to a Haskell program which computes BSP cost. Figure 6.3 shows the predicted result 

of varying m in increments of 200 up to 1200. We can see that the predicted BSP 

costs of the two programs are almost the same and that their time complexity seems 

to be 0(m2 ). This concurs with the intuitive BSP analysis above. From the intuitive 

analysis, we can easily see that both algorithms have BSP cost complexity 0(m2 ) when 

p is fixed. In computation cost, (2) needs m(p + i/p —2) more additions than (1). 

These come from the use of parallel fold that has a phase in which only one processor 

is working, while (1) uses sequential fold in parallel map. Since the difference of the 

communication costs, (2)—(1) is ((m - n)(p - 1) 21p)g, the communication costs are 

the same when in = n. Therefore, while the BSP cost complexity of both programs are 

0(m2 ), the actual difference of BSP cost, m(p + i/p - 2), has complexity of 0(m). 

This means that the difference is not significant when m(= n) is large. 
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Figure 6.4: Prediction when n=8, p=8 

Next we investigate the case in which n is fixed and m varies. Is there any significant 

difference in efficiency between (1) and (2)? Figure 6.4 shows the cost predicted by 
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our calculator when n is fixed at 8 and m varies in increments of 20000 up to 120000. 

We can see that (1) is more efficient than (2). According to the intuitive analysis 

both algorithms have BSP cost complexity 0(m). Since the difference of computation 

costs (2)—(1), m(p + i/p - 2) and the difference of communication costs (2)—(1), 

((m - n)(p - 1) 2 1p)g have complexity of 0(m), the overall difference of costs also 

has complexity of 0(m). This could be significant, and the results from figure 6.4 

predict that this is indeed the case. 

Finally we investigate the case when m is fixed and n is varied. Figure 6.5 shows the 

predicted results when m is fixed at 8 and n varies in increments of 20000 up to 120000. 

Now (2) is more efficient than (1). According to the intuitive analysis, both algorithms 
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Figure 6.5: Prediction when m=8, p=8 

have BSP cost complexity 0(n). The computation cost of (1) is less than that of (2) but 

the difference m(p + i/p —2), is only constant. In contrast, the communication cost of 

(1) is more than that of (2) and the difference, ((n - m)(p - 1) 21p)g, has complexity of 

0(n). As before, this could be significant and the prediction of figure 6.5 again shows 

this to be the case. 
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6.2 Maximum Segment Sum Problem 

As the second example problem, we take the maximum segment sum problem, which is 

often used as an example of BUT style algorithm derivation. The problem is to find the 

sum of the contiguous segment of a list whose members have the largest sum among 

all such segments. As an example, we have 

mss[2,-4,2,-1,6,-3] =7 

We predict the costs of three different algorithms taken from papers of the field, that is 

Bird's algorithm [11], Skillicom and Cai's algorithm [78] and Cole's algorithm [26]. 

6.2.1 Three Different Algorithms 

Bird's Algorithm 

Bird derived a 0(n) sequential time algorithm from a 0(n3 ) sequential time specifica-

tion [11] by BMF style program calculation. It uses a sequential second-order function 

left accumulate defined by 

The algorithm is expressed concisely as 

MSS = T / ° 0 

where a Gb = (a + b) 10. 

Skillicorn and Cai's Algorithm 

In [78],  Skillicorn and Cai derived a parallel algorithm from the same specification. 

It has complexity of 0(logn) under the condition that n processors are available. It 

uses the recur-prefix operation defined in section 2.3.3. The algorithm is expressed 

concisely as 

mss= I /o+// I 
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Cole's Algorithm 

The mss problem is also used by Cole [26] to explain the idea of constructing a ho-

momorphism from a near homomorphism by the use of a tuple with extra functions. It 

has 0(logn) parallel time complexity under the condition that 0(n/ log n) processors 

are available. The algorithm is expressed as 

mss = tieup o (/) o (f*) 

where 

fx=(xIO,xIO,xtO,x), 

(xl,x2,x3,x4) (yl,y2,y3,y4) 

= (XI Iyi 1 (x3+y2),x2 I (x4+y2),(x3+y4) 1Y3+Y4) 1Y3,X4+Y4), 

tieup(a, -, -, -) = a 

Note that both Cole's and Skillicorn and Cai's cost analysis assumes that the number of 

processors can increase infinitely according to the increase of the input data size. They 

also assumes that the data is already distributed across the processors. Our analysis will 

fix the number of available processors of the target machine as one of BSP parameters 

and will charge for the initial distribution cost explicitly (so their complexities will be 

0(n) at best). 

6.2.2 VEC-BSP Programs of the mss Problem 

Our strategy to write a VEc-BSP program from a BMF expression is: 

. If a BMF function can be directly expressed by some VEc-BSP predefined func-

tions, it is replaced by the VEc-BSP terms. 

o If a sequential BUT function cannot be expressed by any predefined functions a 

new operator is added and its cost function is defined. 

® All compositions of BMF functions are expressed as corresponding application 

terms in VEc-BSP. 
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Bird's Algorithm 

Expressing Bird's algorithm as a VEc-BSP program is straightforward. We need only 

to add the left-accumulate operation laccum and to define its cost function. 

cost(laccum) = (A .(Xx.((t_Ienx+ 1, t_eshpx), SEQ, 

t_apcost (t.shp ((D(t_eshpx)) (t_eshpx)) t_lenx), SEQ, 0), 0, SEQ, 0) 

Using laccum, Bird's algorithm is expressed in VEc-BSP as: 

mssv = fold (1) (laccum (Xxy.((x+y) 1 0)) v) 

Its implementation is that the master processor computes the left accumulation of v 

with binary operator Xxy. ((x + y) 1 0), and then the result is folded in the master pro-

cessor with the maximum operator. The cost of the left accumulation is n additions 

and n maximum operations. The cost of the fold is n - 1 maximum operations. The 

total cost is n additions and 2n - 1 maximum operations, so its overall time complexity 

is 0(n). 

Skillicorn and Cai's Algorithm 

Since the recur-prefix can be expressed as a prefix following [77] 

®//id® 	 = [id®] ++((D)*(ø//([ai, ... a n ] 
Y [id (& ,...,id®])) 

where Y is zip function and 

Skillicorn and Cai's algorithm is expressed by using scan in VEc-BSP as 

mss = fold (1) (shiftright(0) (map (T) (scan (0') (map (pairo)v)))) 

where 

0' = Xxy. pair (fstx+ fsty)((sndx + fsty) 1 0) 
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and shiftright (0) rotates the entire list right one place, moving a single element from 

each processor i (p :!~ p - 1) to the processor i + 1 and inserting 0 at the left end in the 

master processor. Its cost function is 

cost (shiftright) = (Xe. (Xx. 
(( 

tJen (x) + 1, t_eshpx), SEQ, size (t_eshpx) g), 

SEQ, 0), 0, SEQ, 0) 

The BSP implementation of the algorithm based on our implementation strategy is: 

• map(pairO) phase: 

the elements of v in the master processor are scattered to the p processors; 

synchronisation; 

each processor applies (pairO) to each distributed element. 

• scan (0') phase: 

each processor computes the local scan with 0' for the local results of 3; 

the final value of the each local scan is scanned in parallel across the pro-

cessors in the tree-structured way; 

the result of the global scan in processor i (p :!~ p - 1) is sent to processor 

1+1; 

synchronisation; 

each processor applies 0' to the pairs of the pair received in 6 and each pair 

of the results of 4. 

• map() phase: 

each processor takes the maximum element of each pair of the result of 8. 

• shiftright (0) phase: 

10, shiftright (0) rotates the entire list right one place, moving a single element 

from each processor to the next and inserting 0 at the left end. 

fold (T) phase: 
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each processor folds the local results of 10 with the maximum operation; 

the local result of 11 in each processor is gathered to the master processor; 

synchronisation; 

the master processor folds the gathered results with the maximum operation. 

The BSP cost of each phase is as follows, map (pairO) phase: the computation cost 

pair operations, communication cost n(p - 1)g and synchronisation cost 1. scan (0') 

phase: the computation cost - 10 1  operations each of which has 2 additions and 1 

maximum operation, the communication cost (log p+ 1)g and the synchronisation cost 

(log p + 2)!. shiftright (0) phase: the communication cost g and the synchronisation 

cost 1. map (1) phase: 11  maximum operations. fold (1) phase: + p —2 maximum 

operations. We can see that the overall complexity of Skillicom's algorithm is 0(n) in 

our cost models when p is fixed. 

Cole's Algorithm 

In order to deal with algorithms to compute a homomorphism with a tuple, we intro-

duced a tuple data structure as an extension of pair. Cole's algorithm can be expressed 

in VEc-BSP as: 

MSS  = lti (fold (mapfv)) 

where 

f = Xx.(xIO,xIO,xIO,x) 

Xx.y. (itt X 7t1 y I (7t3 x + 1t2 y), (it2 X 7t4 x) + it2 Y 

(it3x+714y) Iit3y,it4X+it4y) 

Its BSP implementation based on our strategy is 

• map phase: 

the elements of v in the master processor are scattered to the p processors; 

synchronisation; 
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each processor applies f to each scattered element. 

• fold ED phase: 

each processor computes the sequential fold of the result of 3 with El); 

the local results in each processor are gathered to the master processors; 

synchronisation; 

7, the master processor folds the gathered results with El). 

• Iti phase: 

8. In is applied to the result of 7 in the master processor. 

The BSP costs of the two phases are as follows, map phase: the computation cost 

f operations, each of which has three maximum operations, the communication cost 

(n - 1)g and the synchronisation cost 1. fold phase: the computation cost ( +p —2) 

operations, each of which has four maximum operations and three additions, the 

communication cost 4(p - 1)g and the synchronisation cost 1. We can see that Cole's 

algorithm has cost complexity of 0(n) when p is fixed. 

6.2.3 Predicted Results 

Figure 6.6 shows the cost of each algorithm predicted by our calculator when the input 

list size n varies in increments of 800000 up to 4800000. We can see that all the pre-

dicted costs seem to have complexity 0(n) as we predicted by intuitive cost analysis. 

The predicted results also show that the efficiency of the three algorithms are almost 

the same in our cost model under the condition that only 8 processors are available. 

6.2.4 Complexity of Cost Analysis 

From the definition of bspapp in chapter 3, the analysis cost involved in the calcula- 

tion of bspapp (f, s )  d, t)(x, s', d', t') is: one calculation of f x; five projections (two 

t_apcost, two t_pattern and one t_shape); four additions; one data_sz; one comm_cost. 
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Figure 6.6: Predicted costs 

The cost for data..sz is one conditional and one addition (or one projection). The cost 

for commcost is two conditionals, three multiplications, four subtractions and one 

division (in the most expensive case). Therefore, at most the total charged cost for 

bspcost except for calculation off x is: five projections, thirteen arithmetic operations 

and three conditionals. The calculation of f x largely depends on f. When  f is the 

shape of a conventional sequential function, its costs are a few arithmetic operations 

or projections to calculate the resulting shape. When f is a shape of a parallel func-

tion such as map t1, its costs can depend on the argument function and involve the 

calculation of application costs according to the definitions in chapter 4 as well as the 

calculation of the resulting shape. For example, in the case of map t1, the cost for cal-

culation of the resulting shape is the cost for f (t_eshp (x)) and three projections. The 

cost for calculation of the application cost is twice of the cost for f (t_eshp (x)) and 

four projections, eight arithmetic operations and one size operation. Note that these 

calculations for shapes and application costs are calculated using the components of 

the argument shape, that is the length of the argument and the element shape, but these 

costs do not depend on the size of an input vector, as changing input size changes 

the first components of shapes. In conclusion, the analysis of shape and cost charges 
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some projections and arithmetic operations proportional to the number of applications, 

but its cost does not depends on the input data size. Therfore, when the input vector 

becomes bigger, the analysis cost becomes relatively less significant. 

6.3 Accuracy Tests 

To test the accuracy of our static cost prediction against time on a real machine we hand 

compiled VEC-BSP programs into Oxford BSPlib following the compilation strategy 

proposed in 3.4 and implementation templates for each skeleton given in 4.2, trying 

to write natural straightforward C code for the computation part without any technical 

optimisation, and then ran them on an 8-processor Sun HPC 3500. 

6.3.1 Matrix Multiplication 

Following the same sequence of experiments as for the predictions, figure 6.7 and fig-

ure 6.8 plot the predicted BSP cost, the predicted computation cost and the real run 

time of each program when m = n varying m in increments of 200 up to 1200. "pre-

comp" represents the predicted computation cost obtained by setting BSP parameters 

g and 1 to 0 to show the impact of counting communication and synchronisation costs. 

Similarly, figure 6.9 and figure 6.10 plot times when n is fixed and m varies in incre-

ments of 20000 up to 120000, and figure 6.11 and figure 6.12 plot times when m is 

fixed and n varies in increments of 20000 up to 120000. In five out of six cases, real 

and predicted curves are very close. They also show that counting only computation 

costs for our assumed implementation model does not generate accurate absolute value 

prediction in these experiments. 

Accuracy is inferior in the case of algorithm (2) when n is fixed (the upper two curves 

in figure 6.10). We note that when m is large in (2), the final sequential folding process 

performed by the master processor is dominant. Our calculator seems to underestimate 

that cost, suggesting that our modelling of sequential computation (rather than parallel 

interaction) is less successful for this algorithm. 
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6.3.2 Maximum Segment Sum 

Figure 6.13 - figure 6.15 plot the predicted costs of the three mss algorithms and the 

real run times of the BSP programs in Oxford BSP1ib on the Sun machine when the 

list size n varies in increments of 800000 up to 4800000. For both Skillicorn and Cai's 

and Cole's algorithms, figure 6.14 and figure 6.15 also plot the predicted computation 

costs by setting BSP parameters g and I to 0 for the same purpose as for the matrix 

multiplication examples. Notice that as Bird' algorithm is sequential, the predicted 

BSP cost is equal to the predicted computation cost. 

For Bird's algorithm and Skillicorn and Cai's algorithm, the real cost and the predicted 

curves are very close. Accuracy is a little inferior in the case of Cole's algorithm. As 

most of the computation costs in Cole's algorithm are maximum operation costs, we 

infer that our cost calculator tends to overestimate maximum operations. Again, count-

ing only computation costs for our assumed implementation model does not generate 

an accurate absolute value prediction for Skillicorn and Cai's and Cole's algorithms. 

6.4 Chapter Conclusion 

Ad-hoc analysis is a hard task even for a simple algorithm. Our cost calculator can 

automatically perform the analysis of any arbitrarily complex programs for arbitrary 

specified parameters, considering the effect of underlying message passing perfor-

mance. This allows us to make detailed comparisons of algorithms which have the 

same intuitive asymptotic complexity. 

The accuracy of our prediction is encouraging. In general, our accuracy also depends 

on how the g and 1 values experienced by the computation patterns and communica-

tion patterns used in an application program are matched by those in the benchmark 

program used to determine the BSP parameters (in other words how robust the BSP 

framework is itself). Although we used the benchmark program provided with BSPlib, 

developing a benchmark program more suitable for the computation and communica-

tion patterns used in our more restricted computational model should further improve 

accuracy. 
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Chapter 7 

Expansion: Costing Algorithm 

Derivation Steps 

7.1 Introduction 

Built on the cost analysis described in chapter 3 and 4, the main aim of this chapter is 

to augment our framework to partially relax our strict requirements on data structure 

regularity (but without losing static predictability). This arose because Jay's original 

work and our initial calculus required all elements of a vector (our nestable bulk data 

structure) to have the same shape. This made shape expression concise and conse-

quently made automated analysis fast. However, although many practical algorithms 

(for example in linear algebra) can be expressed within this class, the restriction can be 

a big obstacle when applying the analysis to compare the costs of intermediate algo-

rithms of a BMF style algorithm derivation because we often encounter an algorithm 

which cannot be expressed with it. For example, in the derivation of the maximum 

segment sum algorithm given below, while the final algorithm has the required prop-

erty the algorithms at intermediate steps do not because they use the standard BMF 

functions inits and tails. However, this irregularity is entirely shapely, in the sense of 

being statically predictable. In this chapter we attempt to relieve the constraint (but 

preserve shapeliness) of our analysis while keeping the property of being automatable 

147 
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and avoiding increase in analysis cost (because irregular shaped vector data has more 

information to express its shape, consequently, the cost analysis using these shape ex-

pressions also tends to become more expensive). After this amendment we present our 

first analysis of a complete derivation of the maximum segment sum algorithm, and 

examine the accuracy of our predictions against the run time of real parallel programs 

as previous examples. 

mss algorithm derivation 

Remember from section 2.3.3 that Skillicorn and Cai derived a parallel algorithm from 

the specification by the following calculation. 

mss = 1/o+/*osegs 	 (1). 

= 1/0 +/*°++/ o tails *oinits 	 (2) 

= I /o-H-/o+/**otalls*oinits 	 (3) 

1/ 0 1/ *o+/**o tails* oinits 	 (4) 

= 1/o(Io+/*otails)*oinits 	 (5) 

= 1/o(+/oI)*oinits 	 (6) 

= I/o-i-/loT 	 (7) 

7.2 Expanding Shape Analysis 

An important feature of our original source language, VEc-BSP, was that it con-

strained vector elements to have the same shape. This not only makes shape expression 

concise but also makes shape analysis much quicker than source program evaluation 

because it avoids purely data dependent computation. For example, computation of 

map (+1) v where v is a vector of length 1000 performs 1000 binary operations, but the 

corresponding shape analysis concerns only the shape (1000, 1). This characteristic is 

a key point to keep cost analysis time reasonably small in spite of the extra compu- 

tations of evaluation information. However, when we try to use this cost analysis to 
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compare algorithms in BMF style derivations (using vectors to represent lists) we of-

ten encounter an algorithm which cannot be expressed with this constraint. Therefore, 

we need to relax our requirement of shape regularity to express this kind of algorithm. 

Because application of tails or inits generates a vector of vectors which still has some 

kind of regularity, the ith vector has 1  i(i + 1) elements, and this "triangular shape" can 

be characterised by the length of the last element, it might seems that only relaxation 

that allows a triangular shape in addition to the length-element pair shape would be 

enough. However, the observation of the following example of the intermediate real 

data structures of the initial version of the mss algorithm with [1, 2,3,4] 

[1,2,3,4] 

.t inits 

[[1], [1,2], [1,2 )  3], [1,2,3,4]] 

.iJ. *tails 

[[[1]], [[2], [1,2]], [[3], [2,3], [1,2,31], [[4], [3,4], [2,3,4], [1,2,3,4]]] 

.13.-H-I 

[[1], [2], [1,2], [3], [2,3], [1,2,3], [4], [3,4], [2,3,4], [1,2,3,4]] 

[1,2,3,3,5,6,4,7,9,10] 

10 

reveals that the second intermediate data has the triangular shape, the third intermediate 

data is a vector of triangular shape and the fourth data has neither uniform shape nor 

triangular shape. Therefore, we relax the restriction further to allows vectors whose 

sub-vectors can have arbitrary length. When we relieve the constraints of the uni-

formity of vector elements, the intermediate shape information which is required to 

compute cost becomes extremely complicated and we need to introduce a new way 

to express it. In Skillicorn's calculus [77, 78] a shape vector is introduced to express 

shape information. For example, a shape vector [n, m, p] denotes a list of n elements, 

each of which is a list of no more than m elements, each of which is an object of size 
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no more than p. Except for the top level, the shape vector entry gives the maximum 

length of list at each level, and the last entry in a shape vector gives the total size of any 

substructure. This shape vector is annotated to indicate intermediate shape expressions 

in the algorithm in order to calculate the cost. For example, the initial version of the 

mss algorithm is 

[1] T / [n2] 
+1 * [

2,] 
-H-/ oE'' 1  tails * 

When the argument vector is [1, 2,3,4] (that is n = 4), these shape vectors are 

[4] 

[4,4] 

[4,4,4] 

[16,4] 

[16] 

[1] 

This shape vector expression is concise, but the calculation of shape is done by hand 

because no attempt for automation has been made. Even if we can automate the cal-

culation, using only information of this "no more than" type is inaccurate. In this 

example, the real resulting shape of the second last step is (10, 1) in our expression, 

but reduced shape vector is [16]. 

Another solution would be to translate vectors to vectors keeping their form and simply 

replacing unknown real data with a dummy value. For example, 

[1,2,3] — [1,1,1] 

[[11, [1, 2], [1,2 7  3]]  

map (+1) [1, 2,3] —* map (Ax.1) [1,1,1] 

fold (+) [1, 2,3] .-* fold (Xx,y.1) [1,1,1] 

Automation of shape deduction would be possible in a similar framework to that in 

chapter 3. The corresponding shapes of the above example are 

[1,1,1,1] 
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ill [i,i,  ill,  [[i],[i,i],[i,i,i],[i,i,i,i]]]  

[1, 1 , 1], [1,1,1, 1]] 

1 

However this would involve similar memory usage and computation time to that of the 

original source program and is consequently unattractive. 

Our solution in this chapter is to try to use the (length, element shape) pair as much as 

possible, that is, wherever it may be statically deduced (in reasonable analysis time) 

that sub-vector elements have the same shape. Otherwise, we use the vector constructor 

[] as the shape, allowing it to include both (,) and  [ ] expressions as sub-vectors. 

This means that two kinds of shape expressions for vectors can exist in one shape 

expression. 

The corresponding shape expressions should be 

(4,1) 

[(1, 1), (2, 1), (3 )  1), (4, 1)] 

[[(1,1)], [(1, 1), (2,1)1, [(I l l), (2,1), (3,1)1, [(1, 1), (2,1), (3,1), (4,1)]] 

[(1, 1), (1, 1), (2 7  1), (1,1), (2,1), (3,1), (I l l), (2,1), (3,1), (4,1)] 

(10,1) 

1 

respectively with the difference in data size becoming more significant as the length 

of the input vector grows. The memory and time required for analysis of a program 

will depend upon the degree of uniformity of its vector elements. As more vectors in 

the source program can be expressed in the (length, element shape) form, so analysis 

costs become smaller. The triangular shapes of the second intermediate data and the 

element vectors of the third intermediate data might be expressed more concisely by 

introducing new pair expression like {a, b} where a is the length of the last element 

vector and b is the shape of an element of the element vectors. Its shape expression 
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would be 

(4,1) 

{4, 1} 

[{1, 11, 12, 1}, {3, 1}, 14, 1}] 

[(1, 1), (1, 1), (2 7  1), (1, 1),(2, 1), (3,1), (1,1), (2,1), (3,1), (4,1)] 

(10,1) 

1 

However the automatic reduction from the third expression to the fourth expression, for 

example, seems to be more difficult than that of the above shape expression for which 

a relatively straightforward reduction strategy can be defined as explained below. 

The basic idea to make the shape analysis (using only vector shape and pair shape) with 

new expressions automatable is to define each shape function so that it has a function 

for each kind of expression, reflecting the corresponding shape change. The shape 

function f takes the form of 

	

f  = fix, 	ifxispair 

	

f2 x, 	if x is vector 

Each function shape distinguishes which expression is used for the argument shape 

from its type and returns an appropriate result shape. For example, the shape function 

of hd is 

	

shapehd x = srid x, 	if x is pair shape 

	

hd x, 	 if x is vector shape 

The shape function of map is 

shape-map fx = ( t_Ienx,Lshp(f(t_eshpx))), 	if x is pair shape 

map fx, 	 if x is vector shape 
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This amendment makes it possible to automate the new shape deduction and its infor-

mation can be used to compute cost. However, in some cases, shapes which have 

uniform element shape are expressed as a vector rather than a pair. For example, 

shape-map which was defined above cannot detect that the elements of the vector at 

the second last step in the derivation have regular sized elements. From 

[(1, 1), (1, 1), (2 7  1), (1,1), (2,1), (3,1), (1,1), (2,1), (3,1), (4,1)] 

it reduces [1,1,1,1,1,1,1,1,1,1] rather than (10,1). Although both expressions are cor -

rect and have the same effect on the resulting cost, the latter is preferable in terms of 

both memory usage and time for shape analysis. One solution would be to check the 

result to determine whether its shape has uniform element shape by using some op-

eration like fold eq, where eq is an operation to check if the two shapes are equal or 

not, after every function application. However this would be very expensive in term 

of analysis time. Our solution is to add one more information component vector level 

to the cost tuple and an information component level change to the application tuple. 

The vector level of a real data item is (the number of nested levels) + 1, e.g. 1 for a 

non-nested vector and 2 for a vector of a vector of a non-nested vector. We set the 

vector levels of a datum constant and a primitive function term to 0. The level change 

is a function that captures the change of the vector level after function application. Its 

type is sz - sz. The new cost tuple takes the form 

(shape, data size, data pattern, vector level, cost) 

and the new application tuple takes the form 

argument shape 

(result shape, application pattern, level change, application cost) 

When the result shape has a vector shape and the nested level of the result is 1, the 

vector is converted to a pair shape using topair in the new bspapp operation. 

topair n x = if (n = 1 and x has vector type) then (Iengthx, hdx) else x 

Note that this solution can detect regularity of the elements only when the vector level 

of a vector is 1. Finding a good solution which can deal with the general case remains 
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future work. The definition of the new shape expressions is as follows. The shape of 

datum terms is 1. The shape of a tuple is a tuple (denoted with (,..., )) of the shape 

of the components. The shape of a vector is a vector if its element shapes are not the 

same, or (length, element shape) pair if its element shapes are the same. Their types 

are 

tycostc (D) 	 = sz 

tycostc(un) 	 = sz 

tycostc(Oix .. . xO) 	= tycostc(Oi)x ... xtycostc(0) 

tycostc (vec 0) 	= sz X tycostc (0) or vec tycostc (0) 

tycostc(sz) 	 = sz 

The new shape expression which allows sub-vectors to have different shapes affects 

associated definitions such as data size, application cost and communication cost. Data 

size can be computed by the operator size defined by 

size (XI,X2,•,X)  =sizexi +sizex2++sizex 

size (x, y) = sizex• sizey 

size [xl,x2,•.•,xn] = fold (+) (map (size) [X1,X2,..,X]) 

size n = n 

Since the result of the evaluation of an argument could have different sized sub-vectors, 

the size of data (whose shape is x) which is sent to the processors by the master pro-

cessor in a scattering is determined by the operator scatsz: 

scatszx = sizex (p— l)/p, 	 if x is pair shape 

size (drop ((Iengthx)/p)x), 	if x is vector shape 

where drop is a function which takes an integer n and a vector xs and removes the first 

n elements from xs. Computing the communication cost of broadcasting the data in 

a function is similar. Consequently, the communication cost of the part C which is 

counted in bspapp is replaced by 

comm_cost (t-pattern (f x)) d' s (scatsz x) 
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where 

comm..cost appat daL.pat f..sz x..sz 

=- o, 

= (f..sz - (p - 1) - x-sz. ((p - 1) /p)) 

= (f-.sz(p -1 )+x...sz . ((p — 1 ) /P)) 
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if ap...pat = SEQ 

g-1, if daLpat =MAP 

g, 	otherwise 

The application costs for combinators are given in the next section. In the follow-

ing definitions we use tJchange for taking the level change component from the result 

of an application of a function shape to an argument shape. 

The definition of new bspapp is 

cost (t t') = bspapp cost (t) cost (t') 

bspapp(f, s, d, n, T)(x, s', d', n', T') 

= (topa i r (t_Icha nge (fx) n') (t.sh p (f x)), data_sz (t_a pcost (fx)), 

t_pattern (fx), t_Ichange (fx) n', (T + T') 

+X(p,g,l).(comm_cost (t-pattern (fx)) d's (scatszx) +1)+t_apcost(fx)) 

where 

datasz apc =5+5' , 	if ap..c=1) 

= t_size(fx), 	otherwise 

The main difference from the old bspapp (except for the comm_cost part explained 

above) is that the new bspapp calculates the vector level of the application result by 

applying the level change of a function to the vector level of an argument, and then, 

when it is 0 and the shape of the result is a vector shape, the shape of the result is 

converted to a pair shape. 

Recall that the definition of the application pattern is: SEQ for a sequential function; 

MAP for a parallel function whose implementation template finishes by gathering local 

results to the master; FOLD for any other parallel function. The data pattern indicates 

which application pattern was used to generate the term (0 for atomic term). A trans- 
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lation function cost translates source terms to cost tuples. For example, 

cost (d) = (1, 1,SEQ,O,0) where d is a datum constant 

Note that the second 0 from the right hand end means the vector level of a datum 

constant is 0. 

cost (d) = (Xx.(Xy.(1,SEQ,+0,1),SEQ,+0,0),0,SEQ,0,0) 

where d is a binary datum operation 

Note that the second 0 from the right hand end means the vector level of a binary datum 

operation itself is 0. The first +0 from the right hand means application of d to the first 

argument does not change the vector level, and the second +0 means the application 

of the resulting function to the second argument also does not change the vector level. 

The new cost functions for x and Ax.t are 

cost (x) 	= (x,sizex,SEQ,vlevelx,0) 

cost (Ax.t) = (Ax. (it1 (cost (t)), SEQ, +(it4 (cost(t)) - vievel x) ,1t5 (cost (t))), 

0,SEQ,0,0) 

where cost (t) gives the cost tuple of t(x), which is computed by using the cost tuple of 

variable x, cost (x) = (x, size x, SEQ, vievel x, 0). The function Ax. cost (t (x)) represents 

the function which takes sa : the shape of the argument a, and generates cost tuple 

of t(a). The shape component of cost(x) is x because it is substituted by the shape 

of the result of evaluation of an argument Sa. The data size component of cost (x) is 

sizex which computes the data size of a when x is substituted by 5a•  The data pattern 

component of cost (x) is SEQ because the result of evaluation a is treated as initial data 

for evaluation of t(a) in the application part. The vector level component of cost (x) is 

vieveix which computes the vector level of a when xis substituted by Sa. The definition 

of vievel which computes the vector level from its shape is: 

vievel 'A 	= 0 

vlevel(A,B) = vlevelB+1 

veveI[A] 	= vlevel(hdA)+1 
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The cost component of cost (x) is 0 because the result of evaluation a is treated as 

initial data for evaluation of t (a) in the application part. 

In the definition of cost (Xx.t), the result shape of application (Ax.t) is equal to the 

shape component of cost (t), that is lti (cost (t)) because it computes the shape of t(a) 

when x is substituted by 5a  Note that A.x.ic1 (cost (t)) captures the shape change. The 

application pattern of application (Xx.t) to some argument a is SEQ because there is 

no communication in the redistribution communication part. (Note that the data of 

the result of evaluation of a is used as initial data stored in the master for evaluation 

of t(a) in the application part and the necessary data in (Xx.t) is statically distributed 

to the processors.) The level change of (Xx.t) is +(7r4(cost(t)) - vieveix) because 

It4 (cost (t)) computes the vector level of the result t (a) when x is substituted by 5a  and 

vleveix computes the vector level of the argument a when x is substituted by 5a•  The 

application cost of application (Xx.t) is equal to the cost component of cost tuple of 

t(x), that is 715 (cost (t)) because it computes cost of t(a), (which is evaluated in the 

application part,) when x is substituted by Sa. 

7.3 New Cost Functions for Combinators 

Defining cost functions for combinators involves defining functions which capture the 

shape change and determining the application cost and the application pattern based 

on assumed implementation skeletons. For some combinators which take a vector as 

the argument we need to define two kinds of functions selected according whether the 

argument shape expression is a pair (referred to as pair shape) or a vector (referred 

to as vector shape). The cost functions which are given below, except for map and 

fold when x is pair shape, are introduced for the first time in this chapter. In particu-

lar, the introduction of foldconcat, inits and tails are made possible by the new shape 

expression. 
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map 

The modelled implementation of map is: apply the function sequentially on the vector 

segments in each processor then gather the results to the master. Its cost function is: 

cost (map) = (Xf.(Ax.shape_map, SEQ, +0,0), 0, SEQ, 0, 0), 

shape _map 

= ((t_lenx, t...shp (f (t_eshpx))), MAP,t_lchange (fx), t_apcost (f (t_eshpx)). 

(tjen (x)/p) + t_size (f (t_eshpx)) . (t_len (x)/p) . (p - 1) g + 1), if x is pair shape 

(map (t_sh p) tuples, MAP, t_lcha nge (fx), maxsum (map (t_a pcost) tuples) 

+gath_sz (map (t_size) tuples).g+l), if xis vector shape 

where tuples= (mapfx) 

The second 0 from the right hand end means the vector level of map is 0. The +0 

means the application of map to a given function tf does not change the vector level. 

The level change function of map tj' is the same as the level change function of t1, 

that is tJchange (fx). When x is a pair shape the cost function of map is the same 

as that in chapter 4 except for this additional information of the vector level and the 

level change. When x is a vector shape the analysis performs map fx, that is the shape 

function f is applied to each element of x generating each application tuple, which 

becomes an element of the resulting vector. The result shape of map tj tx  is obtained by 

taking the result shape component of each application tuple, that is map (Lshp) tuples. 

Since the data size of the vector elements allocated to each processor can be different, 

the local computation cost to apply t1 to the segments in each processor can also be 

different. Therefore the cost of this parallel computation part is the maximum of the 

local computation cost in any processor. It is computed by taking the application cost 

component from each application tuple (that is map (t_apcost) tuples), computing the 

summation for every (length x)/p elements, and then taking the maximum among 

them. The last two steps are expressed by the operator maxsum. The communication 

cost is computed using the message size to gather the local result, that is taking the 

size of each result shape of element, (that is map (t.size) tuples) and computing the 

summation of them excluding the first (length x)/p elements which are already kept 
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in the master. The last step is expressed by the operator gath_sz. The definitions of 

maxsum and gath_sz are 

maxsum x = (sum (take (t_Ien (x)/p)x)) I 
(if length (drop (t_Ien (x)/p)x) > 0 

then maxsum (drop (t_len (x)/p)x) else 0), 

gathsz x = sum (drop (length (x)/p)x) 

where take is a function which takes an integer n and a vector xs and returns the first n 

elements from xs. 

fold 

The modelled implementation of fold is: the sub-vectors are folded sequentially on 

each processor, with results then transferred to the master processor which folds them 

together. As in Skillicorn's calculus, fold is used only with operators which take con-

stant space, that is the shapes of their results are same as the shapes of their arguments. 

Fold operations with a non-constant space operation are defined individually (e.g. fold-

concat defined below). Its cost function is: 

cost (fold) = (X E). (Xx. shapelold, SEQ, +0 ) 0), 0, SEQ, 0, 0) )  

shape-fold 

= (t_eshpx, FOLD, (-1), t_apcost (t_shp ((D (t_eshpx)) (t_eshpx)) (t_len (x)/p + 

p —2) + size(t_eshpx) . (p—i) g+l), ifxis pair shape 

(hdx, FOLD, (-1),t_apcost (t.shp (e (hdx))(hdx)) . (length (x)/p +p —2) 

+size(hdx).(p-1).g+l), if xis vector shape 

The second 0 from the right hand end means the vector level of fold is 0. The +0 

means the application of fold to a given function tED does not change the vector level. 

The level change function of fold tD is (-1) because fold t reduces the vector level 

by 1. When x is a pair shape, the shape of the result of fold t tx  is t_eshp x because of 

the assumption of constant space. The application cost of fold t t is the computation 
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cost for t_len (x)/p + p —2 applications of fold t (in which t_len (x)/p - 1 are for the 

parallel part and p - 1 are for the sequential part), that is 

t_apcost (t...shp ( (t_eshpx)) (t_eshpx)). (t_Ien (x)/p + p - 2), 

the communication cost for gathering the local results, that is size (t_eshpx) (p - 1) g 

and the synchronisation cost 1. The case when x is a vector shape is similar, but the 

computation of the shape and the application cost is performed using hd and length 

instead of t_eshp and t_Ien to take the element shape and the length respectively. 

foldconcat 

In the expanded version described in this chapter, foldconcat (fold with concatenate) is 

added to the primitive functions in order to express one of the intermediate algorithms 

in the mss derivation. The modelled implementation of foldconcat is to concatenate 

sequentially in the master processor rather than in parallel to avoid distribution cost. 

cost (foldconcat) = (Ax. shapeioldconcat, 0, SEQ, 0,0), 

shapeJbldconcat 

= ((i_len x t_len (t...eshpx),t_eshp(t_eshpx)), SEQ, (-1), 

concatConst. (t_lenx— 1)), ifxis pair shape 

(foldconcatx,SEQ, (-1),concatConst. (length (x) - 1)), if xis vector shape 

Working from the right hand end, the cost of foldconcat itself and vector level are 

0. The data pattern is SEQ and the message size is 0. When x is a pair shape, the 

result shape of foldconcat x is (t_Ien x t_Ien (t_esh px), t_esh p (t_esh px)). The applica-

tion pattern is SEQ since it is sequential function. The level change is (-1) because 

foldconcat reduces the vector level by 1. The application cost is some constant time 

for concatenation multiplied by t_len x - 1. When x is a vector shape, the result shape 

is foldconcat x and the other components are the same as those when x is a pair shape. 
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scan 

The implementation of scan is: the assigned block of elements is scanned sequentially; 

the final value of local scan is scanned across processors in parallel using the obvious 

tree algorithm; the result of the global scan on processor i (< p) is sent to processor 

i + 1. In each processor, tD is applied to the pair of the result of global scan and the 

local results; the result in each processor is gathered to the master processor. We make 

the same restriction concerning constant space operators as for fold. Its cost function 

is: 

cost(scan) = (Xf.(Xx.shape_scan, SEQ, +0,0), 0, SEQ, 0,0), 

shape-scan 

= (x, MAP )  0,t_apcost (t.shp ( (t_eshp (x)))(t_eshp (x))). (2. (tJen (x)/p) -I+ 

log (p)) + (size (t_eshp(x)). (log (p) + 1) + (size(x)/p). (p—i)) •g 

+(log(p) +2) .1), ifxis pair shape 

(x, MAP,0, t_apcost (t.shp ( (hd (x)))(hd (x))) . ( 2. (length (x)/p) - 1 + 

log (p)) + (size(hd (x)) (log (p) + 1) + (size(x)/p). (p—i)) g 

+(log (p) + 2) .1), if x is vector shape 

The second 0 from the right hand end means the vector level of scan is 0. The +0 means 

the application of scan to a given function tD does not change the vector level. The level 

change function of scan tED is 0 since scan does not change the vector level. When x 

is a pair shape, the shape of the result of scan t tx  is x because of the assumption 

of constant space. The application cost of scan tED tx  is the computation cost for 2 

(t_Ien (x)/p) - 1 +log(p) applications of t (in which (t_Ien (x)/p) - 1 are for the local 

scan, log (p) are in the tree algorithm and t_len (x)/p are for between each element of 

the local scan result and the global scan result), that is 

t_apcost (t_shp ( (t_eshp (x))) (t_eshp (x))) . ( 2. (tJen (x)/p) - 1 + log (p)), 

the communication cost is size (t_eshp (x)) log (p) . g in the tree algorithm, 

size (t_eshp (x)) g for sending the local result to the next processor and size (t_eshp (x)). 
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(p - 1) for gathering the local results, in total, 

(size (t_eshp(x)). (log (p) + 1) + (size(x)/p). (p—i)) •g 

and the synchronisation cost is log (p) 1 in the tree algorithm, 1 after sending the local 

result to the next processor and 1 for gathering, in total, (log (p) +2) 1. The case when 

x is a vector shape is similar, but the computation of the shape and the application cost 

is performed using hd and length instead of t_eshp and t_len to take the element shape 

and the length respectively. 

inits and tails 

The modelled implementation of in its begins with each processor computing the local 

initial segments of its part of the list. The last element of this local result is then passed 

to the processor immediately to its right, where it is prepended to each of the partial 

initial segments held by that processor. After p - 1 steps, the values from the first 

processor are prepended to each of the segments in the last processor, and then the 

local results from all processors are gathered to the master processor. Its cost function 

is: 

cost (in its) = ()Lx. shapeinits, 0, SEQ, 0, 0), 

shapeinits 

= ([(1,t_eshp(x)),(2,t_eshp(x)),...,(t_len(x),t_eshp(x))], 

MAP, +1, concatConst. (t_len (x) 1p) 

+(size (t_eshp (x)) (LIen (x)/p) g+ (t_len (x)/p) concatConst + 1). (p - 1) + 

size (drop (t_Ien (x)/p)) {(1,t_eshp(x)), (2,t_eshp(x)),..., (t_len (x),t_eshp(x))] -g 

+1), if x is pair shape 

(inits x, MAP, +1, concatConst. (length (x)/p) 

+ ((size (take (length (x)/p)x)) . g +concatConst + 1). (p - 1) 

+size (drop (length (x)/p) initsx) .g+l), if x is vector shape 

Working from the right end, the cost of inits itself and vector level are 0. The data 

patten is SEQ. The message size is 0. When xis a pair shape, the result shape of in its x 
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is 

[(1,t_eshp(x)),(2,t_eshp(x)),...,(t_Ien(x),t_eshp(x))] 

which is a vector shape. The level change function is (+1) since in its increases the vec-

tor level by 1. The application pattern is MAP since the modelled implementation ends 

by gathering the local results. The application cost is: concatConst• (Lien (x)/p) for 

computing the local initial segments; (size (t_eshp (x)) . (t_Ien (x)/p) g+ (t_len (x)/p). 

concatConst + 1) . (p - 1) for the p - 1 steps of passing the last element of the local 

result followed by prepending to each element; and 

[(l,t_eshp(x)),(2,t_eshp(x)),...,(t_len(x),t_eshp(x))].g+l 

for gathering the local results followed by a synchronisation. When x is a vector shape, 

the result shape is inits x. The application cost is concatConst. (t_len (x)/p) for com-

puting the local initial segments, ((size (take (length (x)/p)x)) g + concatConst + 1). 

(p - 1) for the p - 1 steps of passing the last element of the local result followed by 

prepending to each element and size (drop (length (x)/p) inits x) . g + 1. 

tails is an analogue of in its, which computes the suffix segments of its argument vector 

and its cost function is the same as that of inits. 

7.4 Costing Derivation Steps 

Reflecting the new shape expression, our Haskell implementation, which was outlined 

in chapter 5 has been modified. In this section, we first rewrite the BMF expression 

of each intermediate algorithm as the corresponding VEc-BSP program. Next we use 

our cost calculator to predict the cost of five different algorithms in the derivation steps, 

comparing one to another for each transformation step. Finally, we test the accuracy 

of the predicted costs against the real run time of hand compiled BSP program in 

Oxford BSP1ib. The comparison of efficiencies depends on the values of the BSP 

benchmark which capture performance characteristics of computation, communication 

and synchronisation of the target systems. Our real target system is the same as that 

is used in chapter 6, that is an 8-processor Sun HPC 3500 UItraSPARC II machine. 
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As before, BSP parameters obtained by running a benchmark program provided by 

Oxford BSP1ib are p = 8, g = 1.6, 1 = 67150. The binary operator constant is set at 1 

and the total calculated cost in operations is converted into seconds by dividing by 13 

million as directed by s, the benchmark returned factor which normalises 1 and g to the 

single processor computational speed. 

7.4.1 VEC-BSP Programs of Derivation Steps 

First, we express the mss derivation in terms of VEc-BSP program using the new 

operations that were introduced above. 

fold (1) (ma p(fold (+)) (foldconcat (ma p (ta ils) (initsx)))) 	 (8) 

= fold (1) (foldconcat (map (map (fold (+))) (map (tails) (initsx)))) 	(9) 

= fold (1) (map (fold (1)) (map (map (fold (+))) (map (tails) (initsx)))) 	(10) 

= fold (1) (map (Xv. ((fstA) I (sndA)))(initsx)) 	 (11) 

where 

A = fold (0) (map (pairO) v) 

0 = Xxy. pair (fstx+fsty)((sndx+fsty) I 0) 

= fold (I) (shiftright(0) (map (I) (scan (0) (map (pairO) v)))) 	 (12) 

where 

= Xxy. pair (fstx+ fsty)((sndx +fsty) 1 0) 

Since recur-reduce and recur-scan can be expressed as a reduce and a scan respectively 

(chapter 8 in Skillicorn [77])  the BMF expressions of algorithms (6) and (7) can be 

expressed in VEc-BSP as (11) and (12), where shiftright(0) rotates the entire list right 

one place, moving a single element from each processor to the next and inserting 0 at 

the left end. shiftright is now added to the set of primitive functions. The cost function 

of shiftright is defined as 

cost (shift right) = (Xe. (Xx. ((t_len (x) + 1, t_eshpx), SEQ, 0, size (t_eshp (x)) . g), SEQ, 0,0>, 

0 7  SEQ, 0,0) 



7.4. Costing Derivation Steps 	 165 

7.4.2 BSP Implementations of Derivation Steps 

We outline the BSP implementation of each BSP program (8)-(12) based on the im-

plementation strategy given in 3.3 and implementation skeletons for combinators in 

6.3. 

Algorithm (8): fold (1) (map (fold (+)) (foldconcat (map (tails) (initsx)))) 

inits phase: 

the contents of x in the master processor are scattered to the p processors; 

synchronisation; 

each processor computes the local initial segments; 

the last element of the local initial segment in processor i is sent to processor 

i + 1 and prepended to each of the partial initial segments held by processor 

i + 1 followed by synchronisation. this is repeated p times. 

• map(tails) phase: 

each processor computes the tail segments for each partial initial segment 

held by the processor; 

the local result in each processor is gathered to the master processor; 

synchronisation. 

• foldconcat phase: 

the master processor computes foldconcat for the result of 7. 

• map(fold(+)) phase: 

the contents of the result of 8 in the master processor are scattered to the p 

processors in vector block manner; 

each processor computes the fold (+) for each vector held by the processor. 

• fold (T) phase: 
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each processor computes fold (1)' that is takes the maximum of the result 

of 10 held by the processor; 

the local result in each processor is gathered to the master processor; 

synchronisation; 

the master processor computes fold(1), that is takes the maximum of the 

gathered local results. 

Algorithm (9): fold (1) (foldconcat (map (map (fold (+))) (map (tails) (initsx)))) 

• in its phase: 

This is the same as the step 1.4. of algorithm (8). 

• map (tails) phase: 

each processor computes the tail segments for each partial initial segments 

held by the processor. 

• map (map (fold(+))) phase: 

each processor computes the fold (+) for each inner vector held by the pro-

cessor; 

the local result in each processor is gathered to the master processor; 

synchronisation. 

• foldconcat phase: 

the master processor computes foldconcat for the result of 7. 

• fold (1) phase: 

the contents of the result of 9 in the master processor are scattered to the p 

processors; 

11, each processor computes fold (1) for the result of 10; 

12. the local result in each processor is gathered to the master processor; 
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synchronisation; 

the master processor computes fold (1) for the gathered local results. 

The BSP implementation of the algorithm (9) is similar to algorithm (8). The dif-

ference between (8) and (9) is the timing of the use of foldconcat. We look at the 

difference using an example in which the input vector is [1,2,3,4] and the number of 

processors is 4. In (8), after the computation of map (tails) (step 5), the local results 

are 

P0: [[1]], 

P1: [[2],[1,2]], 

F2: [[3], [2,3], [1,2,3]], 

P3: [[4],[3,4],[2,3,4],[1,2,3,4]] 

The local result in each processor is gathered into the master processor (step 6) fol-

lowed by foldconcat (step 8), and redistributed among the worker processors evenly in 

vector-block manner (step 9). The data distribution at this time is 

P0: [1],[2],[1,2] 

[3],[2,3],[1,2,3], 

[4],[3,4], 

[2,3,4],[1,2,3,4] 

and then fold (+) is applied in each vector, resulting in 

P0:1,2,3, 

P1:3,5,6, 

P2:4,7, 

P3:9,10 

As we can see, after the application of map (tails) (initsx)) the outermost elements 

have different number of inner vector elements which become the outermost elements 

after application of the next foldconcat in the master processor. Since redistribution of 

these for the next fold (+) is made in terms of these new outermost elements, the load 

imbalance caused by inits and map (tails) is improved and the computation costs of 

the following operations are reduced, but the gather and redistribution cost to perform 

foldconcat is introduced. 
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In contrast, in the algorithm (9), for the result of map (tails) (step 5) 

PO : [[1]], 

[[2],[1,2]], 

[[3],[2,3],[1,2,3]], 

[[4], [3,4], [2,3,4], [1,2,3,4]] 

map (map (fold (+))) is applied immediately (step 6), resulting in 

PO: [11, 
[2,3], 

[3,5,6], 

[4,7,9, 10] 

The local result in each processor is now gathered into the master processor (step 7) 

followed by foldconcat (step 9), and redistributed among the worker processors evenly 

in vector-block manner in step 10, resulting in 

P0: 1, 2,3, 

P1:3,5,6, 

P2:4,7, 

P3:9,10 

As we can see, the application map (map (fold (+))) is applied to the unbalanced dis-

tributed data, which could introduce a considerable parallel computation cost. How-

ever, the gather and redistribution costs to perform foldconcat are relatively small be-

cause the data size transmitted for the communication is small after the application of 

map (map (fold (+))). 

Algorithm (10): fold (1) (map (fold (1)) (map (map (fold (+))) (map (tails)(initsx)))) 

. inits phase: 

This is the same as the step L-4. of algorithm (8) and (9). 

• map (tails) phase: 

5. each processor computes the tail segments for each partial initial segments 

held by the processor; 
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• map (map (fold(+))) phase: 

each processor computes the map (fold (+)) for each vector held by the pro-

cessor. 

• map (fold (1)) phase: 

each processor computes the fold (1) for each vector held by the processor. 

• fold (T) phase: 

each processor takes the maximum of the result of 7; 

the local result in each processor is gathered to the master processor; 

synchronisation; 

the master processor takes the maximum of the gathered local results. 

The BSP implementation of algorithm (10) is similar to (8) and (9). In algorithm (10), 

redconcat is not used and gathering occurs only in the last phase fold (1). 

Algorithm (11): fold (1) (map (Xv. ((fstA) I (sndA)))(initsx)) 

• inits phase: 

This is the same as the step 1.-4. of algorithm (8),(9) and (10). 

• map(Xv. ((fstA) J (sndA))) phase: 

each processor computes A, that is, makes a pair with 0 for each vector 

segment and folds with 0; 

each processor takes the maximum of each resulting pair in 6. 

• fold (T) phase: 

each processor computes fold (I) for the result of 7; 

the local result in each processor is gathered to the master processor; 

synchronisation; 
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11. the master processor takes the maximum of the gathered local results. 

Algorithm (12): fold (1) (shiftright(0) (map (1) (scan (0) (map (pairO) v)))) 

• map(pairO) phase: 

the contents of x in the master processor are scattered to the p processors; 

synchronisation; 

each processor makes a pair with 0 for local element. 

• scan (0) phase: 

each processor computes local scan with 0; 

the final element of the local scan in each processor is scanned in parallel 

across the processors with 0 using the obvious tree algorithm; 

the result of the global scan in the processor i (< p) is sent to processor 

i+1; 

synchronisation; 

each processor applies 0 to the pair of the value sent to the processor in 6 

and each element of the results of 4. 

• map (1) phase: 

each processor takes the maximum element of each pair of the result of 8. 

• shiftright (0) phase: 

shiftright (0) rotates the entire list right one place, moving a single element 

from each processor to the next and inserting 0 at the left end. 

• fold (1) phase: 

each processor computes fold (1) for the result of 10; 

the local result in each processor is gathered to the master processor; 
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synchronisation; 

the master processor takes the maximum of the gathered local results. 

7.4.3 Predicted Results of Derivation Steps 

We now look the predicted result for each derivation step that is computed by our cost 

calculator with the architecture parameters of our target machine. Experiments are 

made varying the input vector size n up to the value which is large enough to show 

significant differences of efficiency. Figure 7.1 plots the predicted results of (8) and 

(9) varying the input vector size n up to 160. It shows that the cost of (8) increases 

much faster than (9). Its complexity looks like 0(n2 ) or faster. Figure 7.2 plots the 

predicted results of (9) and (10) varying n up to 224. In this case, (10) is a little more 

efficient than (9) but their plots draw similar curves. It seems that the difference of 

efficency would not change significantly even if n becomes large. The complexity 

of both algorithms looks like 0(n2 ) or faster. Figure 7.3 plots the predicted results 

of (10) and (11) varying n up to 256. It reveals that complexity of (10) is 0(n2 ) or 

faster as predicted above. The costs of (10) and (11) are similar up to about 100, but 

the difference of the costs becomes significantly large as we increase the value of n. 

looks very efficient and its complexity looks linear, but it is not clear without 

checking the case when n is larger. Figure 7.4 plots the predicted results of (11) and 

of varying n up to 2400. After n = 400, the cost of (11) increases rapidly drawing 

a curve which suggests that the complexity of (11) would be 0(n2 ) or faster. (12) 

appears almost constant and its complexity looks linear, but it is not clear again without 

checking in the case when n is larger. Figure 7.5 shows the cost behaviour of (12) when 

n varies up to 400000. It appears that the complexity of (12) is linear. 

Overall, we can predict not only the difference of order of complexity but also the size 

of input vector when the difference of order is beginning to be significant. In this exam-

ple, (8) - (9) reduces cost dramatically even if n is very small. It implies that the re-

distribution cost caused by foldconcat between map (tails) (initsx) and map (fold (+)) 

is very expensive. (9) -* (10) seems to reduce the cost slightly, but does not depend on 
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the value of n. (10) -* (11) reduces the cost significantly when n is larger than about 

100. (11) -p (12) also reduces the cost significantly when n is larger than about 500. 

The analysis time for (12) is a few seconds which does not depend on n. The analysis 

time for (8)-(1 1) at the largest value of n in the above experiment can take a few 

minutes, although it depends on the speed of the machine. Whether its efficiency is 

good enough for practical use would also depend on the range of problem sizes of 

interest as well as machine speed. 

7.4.4 Accuracy Test 

To test the accuracy of our cost analysis against performance on a real machine we 

hand compiled the BSP program in Oxford BSP1ib for each of the five algorithms 

according to the implementations that are outlined in 7.4.2 and ran them on an 8-

processor Sun HPC 3500. Following the same sequence of experiments using the 

same range of n as for the predictions, figure 7.6 - figure 7.10 plot predicted and real 

run times for (8) - (12) respectively for the range of n used for the predictions. The 

tables of difference between predicted and real run times also given in those figures. 

Although our calculator seems to tend to underestimate a little (except for the case 

(8)), those curves capture the characteristics of the behaviours of real run time costs. 

The reason why only the estimated cost for (8) overestimates might be that our cost 

calculator overestimates its communication costs which take a considerable part in the 

total cost when input data is large. 

7.5 Experiments with Different Number of Processors 

In order to show another use of our cost calculator, we examined the impact of the 

changing the number of processors. We predict the costs of algorithm (12) when p = 

1,2,4,8 and n = 400000, and then test the accuracy of the predictions, comparing to 

real run time costs. First we look again the implementation details of (12) specifying 

the case when p = 1, 2,4,8 individually. 
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Algorithm (12): fold (T) (shiftright(0) (map() (scan (0) (map (pairO)v)))) 

when p=l: 

• map(pairO) phase: 

master processor makes a pair with 0 for the elements. 

scan (0) phase: 

master processor computes sequential scan with 0. 

• map (T) phase: 

master processor takes the maximum element of each pair of the result of 2. 

• shiftright(0) phase: 

master processor inserts 0 at the left end of the result of 3. 

• fold (T) phase: 

master processor computes fold (1) for the result of 4. 

when p=2: 

• map(pairO) phase: 

the second half of contents of x in the master processor are sent to the worker 

processor; 

synchronisation; 

each processor makes a pair with 0 for the local elements. 

• scan (0) phase: 

each processor computes local scan with 0; 

the final element of the local scan in the master processor is sent to the 

worker processor; 

synchronisation; 
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the worker processor applies 0 to the data sent in 5 and the final element of 

the local scan in the worker processor; 

the final element of the local scan in the master processor is sent to the 

worker processor; 

synchronisation; 

the worker processor applies 0 to the pair of the value sent to the processor 

in 8 and each element of the results of 4. 

• map(1) phase: 

each processor takes the maximum element of each pair of the result of 10. 

• shiftright (0) phase: 

master processor send the last element of the local result to the left end of 

the local result in the other processor and inserting 0 at the left end. 

• fold (T) phase: 

each processor computes fold (1) for the result of 12; 

the local result in the worker processor is sent to the master processor; 

synchronisation; 

the master processor takes maximum of the local result in the master and 

the local result in the worker which was sent to the master in 14. 

when p=4: 

• map(pairo) phase: 

1 the contents of x in the master processor are scattered to the worker proces-

sors; 

synchronisation; 

each processor makes a pair with 0 for the local elements. 

e scan (0) phase: 
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each processor computes local scan with 0; 

the final element of the local scan in each processor is scanned in parallel 

across the processors with 0 using the obvious tree algorithm; 

the result of the global scan in the processor i(< 4) is sent to processor i+ 1; 

synchronisation; 

each processor applies 0 to the pair of the value sent to the processor in 6 

and each element of the results of 4. 

• map (T) phase: 

each processor takes the maximum element of each pair of the result of 8. 

. shiftright(0) phase: 

- 	10. shiftright (0) rotates the entire list right one place, moving a single element 

from each processor to the next and inserting 0 at the left end. 

• fold (T) phase: 

each processor computes fold (1) for the result of 10; 

the local result in each processor is gathered to the master processor; 

synchronisation; 

the master processor takes the maximum of the gathered local results of 12. 

when p=8: 

The description for this case is similar to that for the case when p = 4. 

Next, we predict the cost of algorithm (12) when p = 1,2,4,8 using our cost calcu-

lator. BSP parameters used in the prediction are obtained by running the benchmark 

program provided with BSP1ib on the Sun }TPC 3500, and given in table 7.1. Note 

that as system conditions of our target system has changed since when the previous 

experiments were done, the values of these parameters when p = 8 are different from 

those for the previous experiments. 
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p g (flops/word) 1 (flops) s 

1 0.06 810 16 

2 1.09 5479 16 

4 1.37 25671 16 

8 1.63 104230 16 

Table 7.1: BSP parameters when p = 1, 2, 4, 8 

Figure 7.11 plots the predicted and real run time results of algorithm (12) when p = 

1,2,4,8. The table of difference between predicted and real run time is also given with 

the graph. The predictions when p = 1 and p = 4 are very close and the predictions 

are a little inferior when p = 2 and p = 8. As a result, the best case (p = 4) and the 

worst case (p = 1) in real run time results were successfully predicted from the results 

obtained by our cost calculator. The second best case (p = 2) and third best case (p = 8) 

in real run time results does not correspond with the predicted order partly because the 

calculator overestimated when p = 2 and underestimated when p = 8. 

Although we would need to make more experiments and improve accuracy from the 

investigation of the results, the calculator seems to have promise as a tool to predict an 

optimal number of processors. 

7.6 Chapter Conclusion 

We have demonstrated the first example of application of our cost calculator to a com-

plete algorithm derivation. It required a new shape expression in which two types of 

shape expression are mixed in order to express a shape which has different shaped 

elements while trying to avoid a large increase of the analysis time. It required us 

to introduce new operators such as inits and tails. Our cost analysis mechanism was 

augmented so that it can deduce the new shape expressions and costs automatically. 

Our cost calculator can automatically perform the analysis for arbitrary specified pa-

rameters. This allows us to make detailed comparisons of algorithms, which would be 

difficult in the traditional order analysis. The accuracy test of our predictions against 
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real run time costs shows that the predictions are accurate enough to capture the be-

haviours of each run time cost when the input data size grows. Future development 

would include the improvement of both accuracy of prediction and efficiency of analy-

sis cost, and the addition of more combinators which would enable us to apply the tool 

to a wide ranger of application problems. 
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Figure 7.8: Comparison of predicted and real cost of (10) 
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Chapter 8 

Summary and Directions for Future 

Research 

8.1 Thesis Summary 

We first give a summary of each chapter, and then summarise the whole thesis. 

• Chapter 1 explained the motivation for this work and gave a short overview of 

our analysis and a list of contributions of the thesis. 

• Chapter 2 first surveyed the main theoretical low level cost models for parallel 

programming. Next, we explained the concept of the "skeleton" methodology 

and investigated three works on cost analysis for BMF style parallel skeletal 

programming in detail. Then we gave a short survey of more related works. 

• Chapter 3 was the central part of the thesis which gave the definition of VEC-

BSP, implementation strategy and cost analysis frame work. 

• Chapter 4 gave the BSP implementation templates of the built-in second or-

der functions with their application costs, which complete the cost analysis pre-

sented in chapter 3. 

• Chapter 5 explained the Haskell implementation of our cost analysis. 

185 



186 	 Chapter 8. Summary and Directions for Future Research 

• Chapter 6 demonstrated that our analysis allows us to compare performance of 

alternative algorithms for the same problem in a concrete way. Comparisons 

between the predicted costs and the run times of the equivalent hand-compiled 

BSP programs on a real machine were also given. 

• Chapter 7 augmented our analysis framework to partially relax our strict re-

quirements on data structure regularity. We demonstrated that the modified 

frame work allows the cost analysis of a derivation of the mss algorithm; 

The initial motivation of this work was to modify the shape-based analysis that was 

presented in [55] so that it can account for communication cost as well as computation 

cost by changing the assumed target implementation model, because the communica-

tion cost which is incurred in real parallel computation could have a significant effect 

on the total execution cost. Since their analysis was based on the PRAM model which 

ignores communication cost, we tried to replace PRAM by BSP as the target imple-

mentation model because it has a simple, pragmatically accurate, and machine perfor-

mance sensitive mechanism for costing the communication process. The main issue 

for a BSP implementation of VEc-BSP was to specify the placement and movement 

of data, while maintaining simplicity of the mechanism to compute cost automatically. 

The basic implementation structure has a nested structure for the implementation of the 

application term t t' that consists of the four parts, Es': evaluation of the argument, E1 : 

evaluation of the function, C: communication part and A: application part. To compute 

the cost of the communication part with the BSP cost model, we need to determine 

the largest message size h sent or received by any processor. This requires informa-

tion on the size of data placed in each processor, how the data is distributed among 

the processors, and how processors communicate the data. This is too complicated in 

the general case for automatic analysis. We addressed this issue by using one of the 

processors as the master processor and imposed the rule that the data of the result of 

each part is eventually stored in the master processor. This makes the data distribution 

and data size of the result in each part quite simple. The data size of the result is com-

puted from the shape and added to the shape-cost pair as in the form of a tuple. We 

also need to determine the data distribution pattern at the beginning of the application 
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parts. If the function is sequential, we use the master processor for the application part 

so that there is no communication in C, since the necessary data all resides in the mas-

ter processor. For a parallel function, we addressed this issue by restricting the parallel 

application templates to those in which the data of the argument are always distributed 

evenly among the processors and all processors perform the same operation. Thus, the 

communication pattern in C in the case of parallel application is determined uniquely 

that is, the data of result of E, is scattered to the processors evenly and that of E1  

is broadcast to the processor. We added information on the application pattern to the 

shape of a function to indicate if the function is sequential or parallel. This new in-

formation, that is, message size and application pattern, is sufficient to determine h for 

the computation of the communication cost in C. 

However, this strategy caused efficiency problems. When an application process ends 

by gathering the local results and it is the argument of another parallel function, just 

gathering for the next scattering is apparently redundant. To remedy this, we dis-

tinguished such application patterns from the others. The information on which ap-

plication pattern was used to generate the intermediate results is recorded as a new 

component of cost tuple, data pattern, which is propagated by the information on the 

application pattern. Thus the analysis can detect redundant communication cases by 

checking the combination of the data pattern and the application pattern for each ap-

plication and give the optimised cost. 

The analysis has been implemented in Haskell. Automated cost analysis is useful espe-

cially for parallel programs because counting the number of instructions and deducing 

the shape and the message size of the intermediate results by hand is a complicated 

task. The analysis produces absolute value cost prediction based on the factors of 

benchmark results of the target architecture. Changing the target machine involves just 

the change of the values of the parameters without changing the source VEc-BSP pro-

gram or the cost calculator program. In contrast with conventional order analysis, our 

analysis allows us to examine the cost behaviour on a particular range of the problem 

sizes or number of processors. It is possible to compare the efficiency of algorithms 
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which have the same asymptotic complexity. Our experiments testing accuracy against 

real programs show that the predictions have enough accuracy to capture the trends of 

the cost behaviours for our example programs. 

VEC and our initial shapely language impose restrictions on the uniformity of the ele-

ment shape of the vectors. That is a key point which makes its shape expression concise 

and so the shape analysis time is much quicker than the execution time of the source 

program itself. However it is also a drawback when we try to apply our cost calculator 

to a BMF style program derivation since we often encounter an intermediate algorithm 

which does not satisfy this restriction. Our approach to address this issue was to pre-

pare two kinds of shape expression. When the data has different shaped elements we 

express its shape as a vector. When the data has a common element shape we express 

its shape as a pair of its length and the element shape. The analysis distinguishes the 

kind of shape expression from its data type and generates an appropriate shape which 

is used to compute cost information. The efficiency of cost analysis depends on the 

degree of uniformity of the shape. This amendment allows our analysis to cost the 

complete derivation of Skillicorn and Cai's mss algorithm. 

Finally, we assess how far our aims described in the introduction have been met by 

these achievements. Our initial motivation was to develop a cost analysis as an alter-

native to conventional asymptotic analysis (typically, for PRAM model) which suffers 

from 

. lack of ability to cost communication 

• difficulty in counting the number of instructions 

• lack of ability to model the cost behaviour for a modest number of processors p 

and a particular range of problem sizes. 

We chose Jay's shape-based cost analysis as the start point because its automatic and 

absolute value cost analysis has already solved the second and third problems. By 

incorporating the BSP approach to shape-based cost analysis, we achieved a commu- 



8.2. Contributions of Thesis 	 189 

nication sensitive shape-based cost analysis while keeping the characteristics of au-

tomatability and absolute value prediction. We also mentioned in chapter 1 that one of 

main problems of parallel computing is lack of portability as well as cost predictability. 

Although we have not yet achieved an implementation of the language, our language 

takes the skeletal approach, which enhances portability. The source language is implic-

itly parallel and assumed to be compiled to a BSP target which can be implemented 

on wide range of architectures through the existing communication libraries. Further-

more, as the impact of architecture change, including difference of communication 

performance characteristics, is reflected in our cost analysis results through the BSP 

parameters, our programming language could serve as a basis for the implementation 

of a programming language which is not only portable but also performance portable. 

Another aim was to use cost analysis to predict the effect of performance change in 

program transformation. An obstacle to this was that our source language is often too 

restrictive to express all intermediate algorithm in derivation steps. To alleviate the 

problem we partially relaxed our strong restriction on uniformity and showed the ex-

ample of complete derivation of the mss program. Further research for this direction 

will involve applying our cost analysis to more examples and to identifying functions 

which are often used in the program transformational technique so that so that our lan-

guage has a rich set of primitive function to express derivation steps. Improving the 

efficiency of the analysis developed in the work might be necessary. 

8.2 Contributions of Thesis 

The main contributions of this thesis can be summarised as follows. 

• We demonstrated the first completely automated, communication sensitive shape-

base cost analysis system for an implicitly parallel skeletal programming lan-

guage of nested arrays. This builds on earlier work by Jay et al. [54] in the 

area by quantifying communication as well as computation costs, with the for-

mer being derived by changing the target implementation model from PRAM to 

BSP; 
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• We added several built-in second-order functions, each of which has a parallel 

implementation template and predefined application cost which is parameterised 

by the argument shape, in order to enhance the skeletal approach of parallel 

programming and to broaden applicability of our analysis; 

• We extended Jay's shape-based analysis framework with cost tuples which con-

tain useful static information as their components, and illustrated how this in-

formation is used for costing the communication process, optimising interface 

communication and eventually computing BSP cost. 

• We partially relaxed our strict requirements on data structure regularity (but 

without losing static predictability) by introducing new shape expression in our 

analysis frame work; 

We presented the first analysis of a complete derivation, the well known maxi-

mum segment sum algorithm of Skillicorn and Cai; 

. We illustrated skeletal programming in VEc-BSP by implementing several ex-

ample programs. The accuracy of predictions made by our cost calculator against 

the run time of real parallel programs was tested experimentally. 

8.3 Limitations 

The main limitations of our analysis constitute the trade-offs involved in obtaining 

the static predictability and automatability of the analysis and a simple programming 

model that provides a high level of abstraction. These limitations can be summarised 

as follows. 

• Only programs which are shapely, that is, for which the shape of the result is de-

termined by the shape of the input can be expressed and analysed. Non-shapely 

function such as filter cannot be used. 

@ The program is expressed by combining predefined constructs. Although a num- 

ber of types of data parallel programs can be expressed within this restriction, 
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some parallel algorithmic techniques cannot, or are difficult to express. This lim-

itation of expressiveness could be partly alleviated if the language incorporated 

more useful functions as primitive functions. It would also possible to give the 

language a facility whereby the user can define a new function which cannot be 

composed from other function, but it requires the user to give information which 

is necessary for the cost analysis such as how it changes the shape of an input, 

the application cost and application pattern. It might be a considerable burden 

for the programmer. 

8.4 Avenues for Future Research 

The main future directions are summarised as follows 

Improving Efficiency 

We kept the assumed implementation mechanism deliberately simple in order to 

focus on its structural mechanism. Improving efficiency of the implementations 

of source programs would involve investigation of the possibility of different 

implementation templates for the built-in second order functions. Optimisation 

considering possible implementations of nested skeletons would also be possi-

ble. More complex communication patterns such as multi-cast would improve 

the efficiency of communication costs. Since improving the efficiency of the im-

plementations of source programs tends to make the implementation mechanism 

more complicated, it would also increase the complexities of the cost analysis it-

self. Improving efficiency of both implementations of source programs and their 

cost analysis would require further refinement of analysis including choice of 

information components in the cost tuple and investigation of their interaction. 

• Improving Accuracy 

Accuracy depends on how the g and 1 values experienced by the computation 

patterns and communication patterns used in an application program are matched 

by those in the benchmark program used to determine the BSP parameters (in 

other words how robust the BSP framework is itself). Although we used the 
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benchmark program provided with BSP1ib, developing a benchmark program 

more suitable for the computation and communication patterns used in our more 

restricted computation model should further improve accuracy. 

Testing More Application Problems 

More example problems that have different parallel structures could be tested on 

the scheme. This would assist in identifying more useful functions to be added 

to the set of built-in functions. 

• Implementing the Language 

An obvious important future work would be the construction of a source to 

source compiler to automatically generate CIBSP code from VEc-BSP accord-

ing to the assumed implementation strategy using the static information which 

is extracted from the analysis system. To examine if our cost analysis can be 

applied when a source language is translated to a target language with other 

message passing communication libraries such as CIMPI would be interesting. 

As pointed out in [46], it is possible to program in a BSP style in MPI, although 

it has been found that such systems are rarely optimised for the small number 

of primitives that are necessary for BSP programming. It would be possible to 

develop a similar cost analysis if we can find a parameter which corresponds to 

g in BSP for broadcast and gather communication. 

• Application to Transformational Program Development 

We demonstrated that our analysis technique is useful in the example of mss 

algorithm derivation steps. Tools to support the validation of transformation 

step already exist (e.g. [66]).  Integration with automatic cost modelling would 

provide the programmer with immediate feedback on the performance implica-

tions of transformation decisions and could also assist with automated or semi-

automated heuristic driven searches through the transformation space. 

• Future Research Beyond VEC..BSP 

VEC-BSP and its shape-based cost analysis has limitations which come from 

intrinsic nature of static analysis, that is, it is not possible to predict the cost of 

programs which varys for different data values. This fact excludes the use of 



8.4. Avenues for Future Research 
	

193 

non-shapely functions like filter and prevent the accurate prediction of programs 

which includes some kind of branch point for conditionals. More powerful lan-

guage support by a cost analysis requires some extended environment beyond the 

static approach. The introduction of profiling techniques in the analyser could 

overcome the problem to some extent. Profiling could be used to capture run-

time information at the points where shape and cost are dynamically determined. 

Effective cooperation of a static component and a dynamic component of a cost 

analyser would a key point for such a future parallel programming system. 
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