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David Castro, Kevin Hammond, Susmit Sarkar, Yasir Alguwaifli
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Abstract

Structured parallelism using nested algorithmic skeletons can greatly ease the
task of writing parallel software, since common, but hard-to-debug, problems
such as race conditions are eliminated by design. However, choosing the best
combination of algorithmic skeletons to yield good parallel speedups for a spe-
cific program on a specific parallel architecture is still a difficult problem. This
paper uses the unifying notion of hylomorphisms, a general recursion pattern, to
make it possible to reason about both the functional correctness properties and
the extra-functional timing properties of structured parallel programs. We have
previously used hylomorphisms to provide a denotational semantics for skele-
tons, and proved that a given parallel structure for a program satisfies functional
correctness. This paper expands on this theme, providing a simple operational
semantics for algorithmic skeletons and a cost semantics that can be automat-
ically derived from that operational semantics. We prove that both semantics
are sound with respect to our previously defined denotational semantics. This
means that we can now automatically and statically choose a provably optimal
parallel structure for a given program with respect to a cost model for a (class
of) parallel architecture. By deriving an automatic amortised analysis from our
cost model, we can also accurately predict parallel runtimes and speedups.

1. Introduction

In previous work [9], we have defined a type-based mechanism for reasoning
about the safe introduction of parallelism using a structured parallel approach.
Our approach allows us to extract parallel program structure as a type. Given
a suitable model of a program’s execution cost (e.g. in terms of its time perfor-
mance), we can reason formally about performance improvements for alterna-
tive parallelisations, and so select a provably optimal parallel implementation.
In this paper, we show how to derive appropriate cost models formally from the
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Figure 1: Deriving Cost Equations from Operational Semantics.

parallel structure of a program, using a new queue-based operational semantics.
This gives a completely formal system for reasoning about the performance of
structured parallel programs. We combine related work on algorithmic skeletons
and recursion schemes. Algorithmic skeletons [11] are parametric implementa-
tions of common patterns of parallel programming. Using a pattern/skeleton
approach, the programmer can design and implement a parallel program in a
top-down manner. For example, the programmer could first identify the parallel
patterns that occur in a particular piece of software, then select the patterns that
potentially lead to the best speedups, and finally select a suitable implementa-
tion for those patterns, as a composition of one or more algorithmic skeletons.
This composition then exposes the parallel structure of the implementation. De-
veloping an equational theory for easily, and automatically, changing the parallel
structure of a program has been the subject of research in the skeletons com-
munity for the last two decades [42, 3, 1, 8]. Over a similar timeframe, in the
functional programming community, a structured form of recursion has been
explored, in the form of patterns of recursion, or recursion schemes [31]. Re-
search on this topic has brought many improvements to equational reasoning in
functional languages. One example is the application of the laws and properties
of recursion schemes to the well-known deforestation optimisation [47, 36].

There is an obvious connection between algorithmic skeletons and recursion
schemes: algorithmic skeletons are essentially higher order functions that im-
plement some common pattern of parallelism. This has already been exploited a
number of times [42, 22, 38, 44]. In [9], we expand on this connection, using the
fact that a large number of recursion patterns can be represented as instances
of a more general pattern, a hylomorphism. The basic idea is to provide a sin-
gle unifying framework for reasoning both about program transformations and
about parallel execution times. This unifying framework provides a type-level
abstraction of the program structure, given as a combination of the hylomor-
phisms and algorithmic skeletons that are used to implement a particular pro-
gram. This allows us to define a type-based mechanism for reasoning about the
safe introduction of parallelism: specific combinations of hylomorphisms can be
“replaced” by specific combinations of algorithmic skeletons. We provide strong
static guarantees that the resulting program will be functionally equivalent to
the original one. Given a suitable model for the cost of a parallel implementa-
tion (e.g. in terms of execution time), we can then use this type-based approach
to reason formally about performance improvements for alternative parallelisa-
tions, and so to select a provably optimal parallel implementation.
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1.1. Novel Contributions
In this paper, we show how to formally derive appropriate cost models from the
parallel structure of a program, using a new queue-based operational semantics.
This gives a completely formal system for reasoning about the performance of
structured parallel programs. The main novel contributions of the paper are:

• We define the operational semantics of a queue language that is powerful
enough to describe the operational semantics of a number of algorithmic
skeletons, and small and restrictive enough to facilitate reasoning about
correctness and execution times (Sec. 4).

• We define the operational semantics of a number of key algorithmic skele-
tons using this queue language (Sec. 5).

• We derive a set of cost equations for a number of algorithmic skeletons
from the operational semantics in a systematic way. We combine these
cost equations with the notion of sized types, and sketch how this process
can be automated (Sec. 6).

1.2. Motivating Example
We illustrate our approach using the image merge example from [9]. The pur-
pose of the imgMerge function is to mark and then merge pairs of images.

imgMerge : List(Img× Img) → List Img
imgMerge = map (merge ◦ mark)

This has many possible, semantically equivalent, parallel implementations.

imgMerge1 = farm n (fun (merge ◦ mark))
imgMerge2 = farm m (fun mark) ‖ farm n (fun merge)
imgMerge3 = farm n (fun mark) ‖ fun merge

. . .

Here, farm n is a task farm skeleton that replicates its argument n times, fun
captures primitive (sequential) functions, ◦ is the normal function composition,
and ‖ is a parallel pipeline, i.e. the parallel composition of two skeletons. The
structure of each parallel implementation can be lifted into an appropriate type
signature, so that

imgMerge1 : List(Img× Img)
farmn(fun (merge◦mark))−−−−−−−−−−−−−−−−−→ List Img

By combining well-known properties of algorithmic skeletons [2] and hylomor-
phisms [31], we can define a convertibility relation that relates each of these
types for imgMerge to any of the other types. Moreover, this same relation
also allows the underlying program to be automatically rewritten so that it
matches the new type. We can thus automatically select any valid parallel im-
plementation of imgMerge simply by changing the type, and without changing
its definition. Finally, if we have a cost model for these types, we can now reason
about costs, and automatically select the provably best parallel implementation
for imgMerge, or, indeed, for any appropriately structured parallel program.
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2. Algorithmic Skeletons

We use algorithmic skeletons [11] to represent structured parallel patterns.
Skeletons are parameterised templates (higher-order functions) that capture
the structure of a parallel program. That is, they implement a specific parallel
pattern, that can be instantiated to produce a specific parallel algorithm. In
this paper, as in our earlier work [9, 21], we use a “pluggable” approach, where
all skeletons are streaming entities (that is, they operate over multiple inputs
and produce multiple results). Each skeleton takes its inputs from an input
queue, and produces a result queue. This approach allows skeletons to be easily
nested or linked together into more complex structures, whose sub-components
are connected via intermediate queues. In this paper, we will consider four
common parallel skeletons, task farms, parallel pipelines, feedbacks, and parallel
divide-and-conquer, plus one basic building block, structured functions.

. . . , x6, x5 f f x2, f x1, . . .
x3 x4

Structured Functions (fun f) lift basic (sequentially executed) functions so
that they can be used as building blocks for our skeletons. These may be either
named functions; compositions of one or more structured functions, constructed
using the sequential composition operator (◦); or recursive functions that have
been built using common patterns of recursion. Structured functions expose the
underlying structure of a computation, enabling possible parallelisations.

. . . , x12, x11, x10

f

f

f

f x2, f x1, f x3, . . .

x7

x9

x8

f x5

f x6

f x4

Task farms (farm) apply the same operation to each element of an input stream
of tasks, using a fixed number of parallel workers. The input tasks must be in-
dependent, and the outputs can be produced in an arbitrary order.

. . . , x12, x11, x10
x9

f
f x8

f x7, f x6, f x5
f x4

g
g (f x3)

g (f x2), g (f x1), . . .

Parallel pipelines (‖) compose two other streaming skeletons, in parallel. This
can be used to parallelise two or more stages of a computation, e.g. marking
and merging in the image merge example above.

4



. . . , x9, x7, f x2 f f (f x1), f x3, . . .
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Feedbacks (fb) capture recursion in a streaming computation, operating over
some internally nested skeleton with a given predicate e.g. f . This could be
used, for example, to repeatedly transform an image using some parallel skele-
ton until a certain dynamic condition was met.

div

x

div div
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div · · · div · · · div · · · div
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conq · · · conq · · · conq · · · conq

· · · · · · · · · · · ·
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Parallel Divide-and-Conquers (dc) are parallel implementations of classical
divide-and-conquer algorithms. Parallelism comes from performing each of the
recursive calls in the divide-and-conquer in parallel. In our framework, each
instance of a divide-and-conquer skeleton divides an input into n sub-inputs
using a n+ 1-ary operation, so that we do not need to assume associativity.

3. A Type-Level Treatment of Parallel Structure

3.1. Functors

We begin by defining some basic concepts from category theory. A functor is
a structure-preserving mapping between categories. We will only require end-
ofunctors on CPO , F : CPO → CPO , which will represent type constructors,
F : Type→ Type. Bifunctors are functors that are generalised to multiple argu-
ments. We use them to define polymorphic data types. Our functors are either:
i) standard polynomial functors with constant types; ii) the left section of a
bifunctor; or iii) a polymorphic type defined as the fixpoint of some bifunctor.
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Bifunctors are defined using products and sums alone. Functors are defined
using a pointed notation, with the obvious semantic interpretation. If A and B
are type variables, and T is a type, we accept the following definitions:

G A B = T (bifunctor defined using sums and products)
F A = T (functor defined using sums and products)
F A = G T A (G is a bifunctor)
F A = µ(G A) (G is a bifunctor)

Example 1 (Lists). Given the bifunctor L A B = 1 + A× B , the polymorphic
List data type is defined by the fixpoint of L A: List A = µ(L A). Note that given
a base bifunctor G A B, the data type F A = µ(G A) is also a functor. The
two list constructors are defined in a standard way:

nil : List A
nil = inLA (inj 1 ())

cons : A→ List A→ List A
cons x l = inLA (inj 2 (x , l))

3.2. Hylomorphisms

Hylomorphisms are a well known, very general, recursion pattern [31], that can
be seen as a generalised divide-and-conquer pattern. Intuitively, hyloF f g is
a regular recursive algorithm (i.e. with no nested or mutual recursion), where
g describes how the algorithm divides the input problem into sub-problems,
stored in a structure F , and f describes how these results are combined.

hyloF : (F B → B)→ (A→ F A)→ A→ B
hyloF f g = f ◦ F (hyloF f g) ◦ g

Catamorphisms (folds), anamorphisms (unfolds) and maps are just special cases
of hylomorphisms.

T A = µ(F A)
mapT f = hyloF A (inF B ◦ (F f id)) outF A,

where A = dom(f ) and B = codom(f )
cataF f = hyloF f outF
anaF f = hyloF inF f

For any recursive type that is defined as the fixpoint of a functor, µF , the
standard inF : FµF → µF and outF : µF → FµF capture the isomor-
phism between FµF and µF . Note that, since outF ◦ inF = id , hyloF f g =
cataF f ◦ anaF g .

Example 2 (Quicksort). Assuming a type A, and two functions, leq and gt

that filter the elements appropriately, we can implement näıve quicksort as:

qsort : ListA→ ListA
qsort nil = []
qsort (cons x xs) = qsort (leq x xs) ++ cons x (qsort (gt x l))
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We make the recursive structure explicit by using a tree. The split function
unfolds the arguments into this tree, and the join function then flattens it.

split : List A→ Tree A
split nil = empty

split (cons x l) = node (split (leq x l)) x (split (gt x l))

join : Tree A→ List A
join empty = nil

join (node l x r) = join l ++ cons x (join r)

qsort : List A→ List A
qsort = join ◦ split

We can remove the explicit recursion from these definitions, since split is a
tree anamorphism, and join is a tree catamorphism.

split : List A→ T A (List A)
split nil = inj 1 ()
split (cons x l) = inj 2 (x , leq x l , gt x l)

join : T A (List A)→ List A
join (inj 1 ()) = nil

join (inj 2 (x , l , r)) = l ++ cons x r

qsort : List A→ List A
qsort = cataT A join ◦ anaT A split

Finally, since we have a composition of a catamorphism and an anamorphism,
we can write qsort as the equivalent hylomorphism.

qsort = hyloT A join split

3.3. Type System and Semantics

The syntax of expressions, E, is shown below. We distinguish between two levels
of expressions: Structured Expressions (S) describe primitive (sequential) forms,
and Structured Parallel Processes (P) introduce specific parallel skeletons.

e ∈ E ::= s | parT p
s ∈ S ::= f | e1 ◦ e2 | hyloF e1 e2
p ∈ P ::= fun s | p1 ‖ p2 | dcn,F s1 s2 | farm n p | fb p

3.3.1. Denotational Semantics

Our denotational semantics is likewise split into two parts: SJ·K describes the
base semantics, and J·K lifts this to a streaming form. We use a global environ-
ment for atomic function types, ρ, and the corresponding global environment of
functions, ρ̂:

ρ = {f : A→ B , . . .} ρ̂ = {[[f ]] ∈ [[A→ B ]], . . .}
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SJp : T A→ T BK : [[A→ B ]]
SJfun f K = ρ̂(f )
SJp1 ‖ p2K = SJp2K ◦ SJp1K
SJfarm n pK = SJpK
SJfb pK = iter SJpK
SJdcn,T ,F f gK = cataF (ρ̂(f )) ◦ anaF (ρ̂(g))

Jp : T A→ T BK : [[T A→ T B ]]
JpK = mapT SJpK

Here ◦ denotes the usual function composition; iter captures the iterative struc-
ture of a feedback skeleton (the usual trampoline function [9]); and cata and ana
are the usual cata/anamorphisms. Instead of assuming a dynamic termination
condition, we require the worker operation, p, of a feedback loop, fb p to return
a sum type A + B . The feedback skeleton will apply p to a stream of inputs of
type A, merging any results of type A with the other inputs, and returning any
results of type B as its outputs. Since the iter, cata, ana and map operations
are all instances of hylomorphisms, it follows that there is a single, underpinning
theoretical formulation for all our skeleton forms, and it also follows that our
structured programs may be easily transformed to introduce/remove parallelism
in a provably sound way. We will achieve this using a type system.

3.3.2. The Structure-Annotated Type System

We annotate top-level program types with an abstraction of the parallel structure
of the program, σ ∈ Σ. Figure 2 shows our structure-annotated type system.
Intuitively, Σ is a “pruned” version of E that retains information about how
the computation is performed, while removing as many details as possible about
what is being computed. We once again split its definition into two levels, Σs

for sequential structures, and Σp for parallel ones.

σ ∈ Σ ::= σs | parF σp
σs ∈ Σs ::= a | σ ◦ σ | hyloF σ σ
σp ∈ Σp ::= fun σs | dcn,F σs σs

| σp ‖ σp | farmn σp | fb σp

3.3.3. Convertibility

Our type system needs to include a non-structural rule that captures the con-
vertibility relation, ≡, for Σ.

` e : A
σ1−→ B σ1 ≡ σ2

` e : A
σ27−→ B

This allows us to transform between structurally equivalent forms. For example,
a sequential composition can be transformed into a parallel pipeline or vice-versa,
or a task farm can be introduced wherever we are using any other skeleton. ≡
is defined in terms of the relations ≡s (for sequential operations) and ≡p (for

8



ρ(f ) = A→ B

` f : A
a−→ B

` e1 : B
σ1−→ C

` e2 : A
σ2−→ B

` e1 ◦ e2 : A
σ1◦σ2−−−−→ C

` e1 : F B
σ1−→ B

` e2 : A
σ2−→ F A G = base F

` hyloF e1 e2 : A
hyloG σ1 σ2−−−−−−−−−→ B

` p : T A
σ−→ T B

F = base T

` parT p : T A
parF σ−−−−−→ T B

` s : A
σ−→ B

` fun s : T A
fun σ−−−−→ TB

` s1 : F B
σ1−→ B ` s2 : A

σ2−→ F A G = base F

` dcn,F s1 s2 : T A
dcn,G σ1 σ2−−−−−−−−−→ T B

n : N ` p : T A
σ−→ T B

` farm n p : T A
farmn σ−−−−−−→ T B

` p1 : T A
σ1−→ T B ` p2 : T B

σ2−→ T C

` p1 ‖ p2 : T A
σ1 ‖ σ2−−−−−→ T C

` p : T A
σ−→ T (A+ B)

` fb p : T A
fb σ−−−→ T B

Figure 2: Structure-Annotated Type System.

parallel skeletons), plus a lifting rule that links the two, par-equiv.

σ1 ≡s σ2
σ1 ≡ σ2

σ1 ≡p σ2
parF σ1 ≡ parF σ2

parF (fun σ) ≡ mapF σ (par-equiv)

In [9], we have defined a number of equivalences, using well-known properties of
skeletons (e.g. [2, 7]) plus fundamental hylomorphism laws [31]. For example,
a parallel pipeline structure (‖) is functionally equivalent to a function compo-
sition; a task farm farm can be introduced for any structure; and divide-and-
conquer dc and feedback fb skeletons can both be derived from hylomorphisms.

fun σ1 ‖ fun σ2 ≡p fun (σ2 ◦ σ1) (pipe-equiv)
dcn,F σ1 σ2 ≡p fun (hyloF σ1 σ2) (dc-equiv)

farmn σ ≡p σ (farm-equiv)
fb(fun σ) ≡p fun (iter σ) (fb-equiv)

These equivalences, plus reflexivity, symmetry and transitivity, define an equa-
tional theory that allows conversion between different parallel forms, as well as
conversion between structured expressions and parallel forms.

9



3.4. Automatic Rewriting using Cost Information

We can use the convertibility relation to define a rewriting system that allows us
to automatically rewrite functionally equivalent structured parallel forms. We
interpret structured expressions and parallel processes as members of families of
functionally equivalent expressions Es , indexed by a representative structured
expression s. For all well-typed s : A

σ7−→ B , σ is an index of the family
defined by s, i.e. φs(σ) ∈ Es . The function φs : Σ → Es is a partial func-
tion whose result is defined for any structure σ that is an index of the family
Es . The type-checking algorithm needs to decide whether rewriting s to the
desired structure would result in a member of the family Es . We achieve this
by defining a confluent rewriting system on structures, Σ  Σ [9]. Since, for
a given s, the family Es is finite, we can use cost information to find optimal
structures. For small enough parallel structures, exhaustive search is feasi-
ble. For larger structures, we can equip a family Es with a strong ordering
σ1, σ2 ∈ dom(φs), σ1 ≤ σ2 iff cost(σ1) ≤ cost(σ2), and use this ordering
to optimise the search process, at the cost of not necessarily finding an opti-
mal structure1 In order to exploit this technique, we must provide a cost model
that is strongly connected to our execution semantics. This is the focus of the
remainder of this paper.

4. An Operational Semantics for Queues

In order to obtain a sound cost model, we need to first give an operational
semantics for each of our skeletons, and derive then cost information from this
semantics. We will build our skeleton semantics (Sec. 5) on a small-step trace-
based operational semantics for the queues that are used to link these skeletons.
Each step in the queue semantics will describe a state transition within a simple
parallel process abstraction. We first give a number of basic definitions.

State. A state comprises a tuple of three main structures, W ×Q× S:

• an environment of worker definitions, W, which is a mapping from worker
identifiers to worker loop definitions, i.e. to the code that is run by each
worker of the parallel process;

• an environment of worker states, S, which represents the instruction that
is currently being executed by the worker; and,

• a queue environment, Q, which represents the buffers that link the workers.

We will assume that the worker environment, W, is fixed. The rules in our
operational semantics therefore have the form:

(Q,S)
α−→ (Q′,S ′)

1We conjecture that a family Es that is equipped with an ordering relation such that
σ1 ≤ σ2 iff σ2  σ1 forms a lattice, and that we can use this information, together with cost
information, to optimise the search for an optimal structure within a family.
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They are given in terms of a labelled state transition system. The labels are the
actions α ::= gwq | ew(f, x) | pw(x, q), which respectively get an input from a
queue, evaluate a function f on an input x, or put a result on a queue. Actions
are performed on specific queues q, and are tagged with the worker, w, that
performs the action.

Queue Environments. A queue environment is a mapping from queue identifiers
to sequences of values.

Q =



q0 7→ 〈x0, x1, . . .〉
. . .
qn 7→ 〈. . .〉




Queue Operations. We assume the usual basic, thread-safe, enqueue and de-
queue operations.

enqueue (Q[q 7→ vs], x, q) → Q[q 7→ 〈x | vs〉]
dequeue (Q[q 7→ 〈vs | x〉], q) → Q[q 7→ vs], x

We overload the notation for enqueue/dequeue operations to also work on sums
and products. Enqueuing a product type value into a “product queue” results
in a pairwise enqueue on each sub-queue. Enqueuing a sum type value into a
“sum queue” yields a single enqueue operation, on the corresponding queue. We
use Q to refer to these queue structures, and q to refer to queue identifiers.

Q ::= q | q1 × · · · × qn | q1 + · · ·+ qn

We interpret the enqueue operation on products of queues as a sequence of
simple enqueue operations:

enqueue (Q, q1 × · · · × qn, (x1, . . . , xn))
= enqueue (enqueue (. . . enqueue (Q, q1, x1) . . .) , qn, xn)

An enqueue on a sum of queues is an enqueue on the corresponding queue. For
example, if 0 ≤ i ≤ n:

enqueue (Q, q1 + · · ·+ qn, inj1 x) = enqueue (Q, qi, x)

Dequeue operations work similarly. We interpret the dequeue operation on prod-
ucts of queues as a sequence of simple dequeue operations:

dequeue (Q, q1 × · · · × qn) = (dequeue (Q, q1) , . . . , dequeue (Q, q1))

A dequeue operation on a sum of queues dequeues an element from the first non-
empty queue. For example, if 0 ≤ i ≤ n, and for all j, 0 ≤ j < i, Q[qj 7→ 〈〉],
and Q[qi 7→ 〈vs|x〉], then:

dequeue (Q, q1 + · · ·+ qn) = inji (dequeue (Q, qi))
This is a purely arbitrary choice. Any alternative ordering (e.g. round-robin) is
equally acceptable. In the operational semantics, each action will represent an
enqueue or dequeue operation on a single queue. So dequeuing from a tuple of
n queues will result in n dequeue actions.
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Workers. In each iteration, a worker first performs a sequence of dequeues, then
performs its local computation, f , and finally performs a sequence of enqueue
operations. We represent this as:

W =




· · ·
w 7→ worker (Qi, f, Qo)

· · ·




where Qi and Qo are the input and output queue structures. The example
below shows the state of a worker that is in the process of dequeuing from a
tuple of queue identifiers, and that has already dequeued n elements from the
first n queues:

S =




· · ·
w 7→ (x1, . . . , xn, dequeue (qn+1) , . . . , dequeue (qm))

· · ·




Generally, a worker state can be either a sequence (or sum) of dequeue/enqueue
operations, or an eval operation. Let v be a value:

st ::= inSt | outSt | eval (x)
inSt ::= v | dequeue (q) | (inSt, . . . , inSt)
outSt ::= v | enqueue (q, x) | outSt; . . . ; outSt

The transition rules for our operational semantics are given in Figure 3. Note
that we overload enqueue/dequeue operations to also deal with sums and prod-
ucts. We also assume that enqueues on simple queues are trivial. It is now
straightforward to define the operational semantics on a sequence of workers:

(Q, st)
αw

−−→ (Q′, st′)
(Q,S[w 7→ st])

αw

−−→ (Q′,S[w 7→ st′])

It is easy to see that the only rules that affect the output are those involving
communication (enqueue/dequeue).

Definition 4.1 (Ready and Idle State). A worker w 7→ worker (Qi, f,Qo) is
in a ready state if it is at the beginning of its worker loop. A worker is idle if
it is ready and there are no inputs in its input queue structure Qi

Definition 4.2 (Initial and Final State). A parallel process is initial if all its
workers are ready and all the queues except the input queue are empty. A
parallel process is final if all its workers are idle.
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dequeue (Q, qn+1)→ (Q′, v)

(Q, (v1, . . . , vn, dequeue (qn+1) , . . .))
gwqn+1−−−−−→ (Q′, (v1, . . . , vn, v, . . .))

dequeue (Q, qn+1)→ (Q′, v)

(Q, (v1, . . . , vn, dequeue (qn+1)))
gwqn+1−−−−−→ (Q′, eval (v1, . . . , vn, v))

enqueue (Q, q1, x1)→ Q′

(Q, enqueue (q1, x1) ; . . .)
pwq1−−−→ (Q′, . . .)

enqueue (Q, q, x)→ Q′ W[w 7→ worker (Qi, f,Qo)]

(Q, enqueue (q, x))
pwq−−→ (Q′, dequeue (Qi, x))

[[f ]](x) = y W[w 7→ worker (Qi, f,Qo)]

(Q, eval (x))
ew(x)−−−→ (Q, enqueue (Qo, y))

Figure 3: Transition Rules for queue operations.

5. A Queue-Based Operational Semantics of Algorithmic Skeletons

We can now build the parallel structures that we require.

Parallel Composition of Processes. We define the parallel composition of pro-
cesses as the union of their queues and workers.

(W1,Q1,S1) ‖ (W2,Q2,S2) = (W1 ]W2,Q1 ∪Q2,S1 ] S2)

Worker. We lift sequential functions into workers with input and output queue
structures. The new worker is ready.

qfun(f)(Q0, Q1) =
W = [w 7→ worker (Q0, f,Q1)] ,Q = Q0 ∪Q1,S = [w 7→ dequeue (Q0)]

Task farm. A task farm replicates a structure n times:

qfarm(n,P)(Q0, Q1) =

n times︷ ︸︸ ︷
P(Q0, Q1) ‖ . . . ‖ P(Q0, Q1)

Parallel pipeline. A parallel pipeline is the parallel composition of two struc-
tures, linked by an intermediate queue. Let q be a fresh queue identifier:

qpipe(P1,P2)(Q0, Q1) = P1(Q0, q) ‖ P2(q,Q1)
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Feedback loop. A feedback loop is created by simply inspecting the output of a
structure, and placing it back in the input queue depending on the result:

qfeedback(P)(Q0, Q1) = P(Q0, Q0 +Q1)

Parallel Hylomorphism. One of the novelties of this paper lies in describing how
to parallelise an arbitrary hylomorphism using a divide-and-conquer skeleton.
We will first describe a series of simple semantics-preserving transformations
for any hylomorphism. The idea is that if the anamorphism part of a hylo-
morphism needs to split an input value into at most n sub-values, then we
will create n + 1 queues, the first of which will send the corresponding input
to the “combine” worker, and the remaining n of which will send the subdi-
vided inputs to the subsequent divide stages. If an input cannot be divided
any further, then a synchronisation token, 1, will be sent. Given a functor F
described as a combination of sums, products and constants, F A = T, where
A is nested at most n times within a product in T , we define the functor DF

as DF B = (1 + T [1/A])×
n times︷ ︸︸ ︷

(B × · · · ×B) . If we can convert any hylomorphism
to this new structure, then we can use its regular structure to create a regular
“divide-and-conquer graph” with the following communication structure:

1. The divide worker will communicate a value of type 1 + T [1/A] to the
corresponding combine worker, and values of type B to the subsequent
divide workers.

• A value of type 1+T [1/A] contains the “non-recursive” part of T , plus
a unit to indicate that the input could not be divided any further.

• A combine worker can use a value of this type to decide how to
recombine the n values of type B that has been received from the
previous stages of the divide-and-conquer skeleton.

2. A divide worker takes an element of type 1+A. If it is 1, then it transmits
inj1 () to all its output queues. This indicates to the subsequent workers
that there is no more work to be done. If it receives a value of type A, it
divides it, splits the recursive and non-recursive parts of T , and sends the
corresponding elements to the output queues.

3. A combine worker that receives an element of type 1 from the correspond-
ing divide worker will simply discard all values received from the previous
level, and send 1 to the combine worker of the next level. If it receives an
element of type T [1/A], it will need to recombine the corresponding value
of type F A from the inputs, and apply the combine function to it.

We need a way to change a hylomorphism from an F structure to DF . Note
that there are two functions

d : 1 + F A→ DF (1 +A)
c : DF (1 +A)→ 1 + F A.
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The d function separates the occurrences of values of type A in some structure
F A into the corresponding T [1/A] and n-tuple of 1 + A, and the function c
recomposes a structure F A from the structure of DF . If d receives inj1 (),
then it just returns a n+1 tuple of inj1 (). The c function returns inj1 () if the
first component of the tuple DF (1 +A) is inj1 (). Note that the types F and
DF are not isomorphic, since the function c is partial. However, the following
properties do hold:

c ◦ d = id

d ◦ (1 + F f) = DF (1 + f) ◦ d.

Using these properties, we can show that the following condition holds for any
functor F :

1 + hyloF g h
=

1 + g ◦ F (hyloF g h) ◦ h
=

(1 + g) ◦ (1 + F (hyloF g h)) ◦ (1 + h)
=

((1 + g) ◦ c ◦ d) ◦ (1 + F (hyloF g h)) ◦ (1 + h)
=

((1 + g) ◦ c) ◦ DF (1 + hyloF g h) ◦ (d ◦ (1 + h))
=

hyloDF
((1 + g) ◦ c) (d ◦ (1 + h))

Using this, we can convert to a hylomorphism of a different structure. For all
hyloF g h : A→ B, given any x : B, then

xOid ◦ (hyloDF
((1 + g) ◦ c) (d ◦ (1 + h))) ◦ inj2

=
xOid ◦ (1 + hyloF g h) ◦ inj2

=
(x ◦ 1)O(id ◦ hyloF g h) ◦ inj2

=
id ◦ hyloF g h

=
hyloF g h

This shows that the first level of a divide-and-conquer must wrap the input in
inj2, and the last level of a divide-and-conquer must unwrap the result using
xOid, for any arbitrary x : B. We define these as:

D1(F, h) = d ◦ inj2 ◦ h C2(F, g) = (1 + g) ◦ c
D2(F, h) = d ◦ (1 + h) C1(F, g) = (xOid) ◦ (1 + g) ◦ c

Although the structure DF may appear to be complicated, it neatly fits our
queue-based model, in that we can create queues that send/receive values of
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D1(F, h)

D2(F, h) D2(F, h)

· · · · · · · · ·

C2(F, g) C2(F, g)

C1(F, h)

q1 q2

q′1 q′2

q0

Figure 4: Divide-and-conquer skeleton: the qi are the queues; circles represent the workers.

types (1 +T [1/A]) and 1 +A, and can create workers that split/combine values
of these types, as shown in Figure 4. Values of type 1 are simply used to
synchronise the different divide and combine workers, so that the different levels
of a divide-and-conquer skeleton can operate on different inputs in parallel. We
define this as:

qdc(n, F, g, h)(Q0, Q1) = qdc′(hyloF g h, n, F, g, h, C1, D1)(Q0, Q1)

qdc′(f, 0, F, g, h, c, d)(Q0, Q1) = qfun(f)(Q0, Q1)
qdc′(f, n, F, g, h, c, d)(Q0, Q1) =

qfun(d(F, h))(Q0, q0 × q1 × · · · × qn)
‖ qdc′(1 + hyloF g h, n− 1, F, g, h, C2,D2)(q1, q

′
1)

‖ . . .
‖ qdc′(1 + hyloF g h, n− 1, F, g, h, C2,D2)(qn, q

′
n)

‖ qfun(c(F, g))(q0 × q′1 × · · · × q′n, Q1)

Soundness. It is obvious from these definitions that the soundness of the oper-
ational semantics with respect to the denotational semantics can be reduced to
correctly connecting the queues of the algorithmic skeletons.

6. Predicting Parallel Performance

We will now formally derive a set of cost equations from our operational se-
mantics in a systematic way. These cost equations can then be used by our
type-system to derive cost-models for the high-level parallel structures. This
gives two main benefits: i) the cost models are sound w.r.t. the operational
semantics by construction; and ii) this provides a way to automatically derive
cost equations for newly defined parallel structures. Defining this automatic
process is out of the scope of this paper, but we will discuss later how this can
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be realised as an algorithm. In this paper, we are mainly interested in predict-
ing realistic lower bounds on the execution times of parallel programs. While
the more usual worst-case predictions might be useful for safety reasons, they
would not provide sufficient information to enable us to choose the best parallel
implementation. Moreover, when “initialisation” and “finalisation” times are
taken into account, the worst-case parallel execution time will generally be very
similar to the sequential case, and so provide very little insight into parallel
performance. The amortised average case timings that we use here are much
more useful for predicting the actual parallel performance of the system.

6.1. Costs and Sizes

The sequential components of our algorithmic skeletons are given as suitably
lifted functions. Before we can define their cost models, we must first explain
how we derive cost models for hylomorphisms. Vasconcelos [46] showed how to
use sized types [24] for developing an accurate space cost analysis. Sized types
have also been used for estimating upper bounds of execution times of parallel
functional programs [28]. The success on using sized types for cost analysis
motivated our approach. We exploit this previous research on sized types [46],
as well as previous research on cost equations [40]. A cost equation for a function
f : A → B provides an estimate of the execution time of f given an input of
a given size.

costf : sizeA → time

To obtain the inputs for these cost equations, we use a variant of the usual
notion of sized types [24]. The only difference is that, since we are interested in
amortised costs, we use average sizes rather than upper or lower bounds. The
notion of average size is dependent on each problem, so rather than defining
a generic calculation, we require specific definitions for each function and type
constructor. Suitable definitions include, e.g. the average depth of a tree, the
average number of elements in a structure etc.

Type Constructors. These are either constant types C, or recursive types defined
as the fixpoint of some base functor µF .

Sizes and Size Constraints. We reuse the idea of stages [5]. Essentially, sizes
are either size variables or sums of sizes, and size constraints are inequalities on
sizes. We write Ai | C for a sized type A with size i and constraint C.

Sized types. We require the basic polynomial (bi-) functors to be annotated
with size expressions for each alternative (given as a sum-type). For example,
the base bifunctor of a binary tree can be annotated as follows:

F 0∨1+i+j A B = 1 +A×Bi ×Bj

The size expression 0 ∨ 1 + i + j states that functor F either has size 0, i.e. it
contains no elements of type A; or it has size 1 + i + j, i.e. it has one element
of type A, plus the sizes of the elements of type B, one of size i and the other
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of size j. Note that there are alternative definitions for the size of a functor
F , e.g: F 1∨max(i,j) A B = 1 + A × Bi × Bj . In a more general sense, a
sized-type is a type constructor that is annotated with size information, e.g.
Inti, Listj+k A, . . .. The inF and outF functions for a sized base functor of a
recursive type must have the following type and constraints:

inF : F jµF → µiF | i = j
outF : µiF → F jµF | i = j

That is, we require that the sizes of the base functor represent the same infor-
mation as the sizes of the recursive type. Finally, we will use |A| to denote all
the nested size information and size constraints in a type A. This is useful for
defining cost models that require access to nested size information.

Deriving Recurrences from Hylomorphisms. We now show how we use sized
types to derive recurrences. Essentially, we will define a cost equation for each
syntactic construct, that takes some cost equation parameters and produces
another cost equation. Although the cost of a function is not, in general, com-
positional, since it may depend on previous computations as well as on other
properties of the input data, we will here take a compositional approach under
the assumption that only the sizes will affect the execution times. This is a
valid way to obtain amortised costs. The execution time of each primitive oper-
ation is assumed to be a constant that depends on the target architecture. This
must be provided as a parameter. The cost of a function composition is the
sum of the run-times of each stage, plus some architecture-dependent overhead.
The only difficult case involves recursive functions. For recursive functions that
are defined as hylomorphisms, we generate recurrence relations, as with Bar-
bosa et al. [4]. In a similar sense to Sands’ work [40], our cost equations can
be thought of as functions that we are integrating into our type-system. For
example, assuming that we have the following sized-type for quicksort :

merge : T 0∨1+i+jA (List A) → Listk A | k = 0 ∨ k = i+ 1 + j
split : Listn A → T 0∨1+r+sA (List A) | n = 0 ∨ n = 1 + r + s

qs : Listi A → Listj A | i = j
qs = hyloT merge split

Given suitable cost equations for split and merge, costsplit, costmerge, then
there are two cases. Either n = 0, in which case t = 0, so we assume some time
costsplit(0) + costmerge(0), or n = 1 + r + s, in which case:

costqs = costsplit(1 + r + s) + costmerge(r + 1 + s) + costqs(r) + costqs(s)

To complete the cost equation, we need now to relate r and s with the input
size n. By assuming that these sizes correspond to a balanced computation, we
can then automatically calculate an amortised cost. Taking more extreme cases

18



into account would, of course, require further programmer input.

costqs(n) =
costsplit(1 + r + s) + costmerge(r + 1 + s) + costqs(r) + costqs(s)
where r = (n− 1)/2 and s = (n− 1)/2

We simplify this internally to generate the desired recurrence relation:

costqs(0) = costsplit(0) + costmerge(0)
costqs(n) = costsplit(n) + costmerge(n) + 2× costqs((n− 1)/2)

6.2. Costing Traces of Parallel Processes

We now describe a systematic way to derive cost equations. We start with a
structure C, with some initial empty Pi and cost ci. Taking suitably sound sim-
plifications and approximations of time(α1, . . .), we then derive an “amortised
cost equation” costC such that for all input l with sized-type 〈A〉i and trace,

C(P1, . . . ,Pn)(qin 7→ l, qout 7→ 〈〉) α1,...−−−→ C(P1, . . . ,Pn)(qin 7→ 〈〉, qout 7→ l′),
then i× costC(c1, . . . , cn) |A| ≈ time(α1, . . .). We differentiate three phases in
the execution of a parallel process: an initialisation phase, a steady state, and a
final flushing phase. For example, a pipeline of two atomic functions, w1 ‖ w2,
reaches a steady state after executing the initialisation phase of w1. At this
point, w2 can run in parallel with w1:





q0 7→ 〈x1, x2, . . .〉,
q1 7→ 〈〉,
q2 7→ 〈〉


 ,
[
w1 7→ worker (q0, f, q1)
w2 7→ worker (q1, g, q2)

]


gw1q0, e
w1x1, p

w1q1−−−−−−−−−−−−−→



q0 7→ 〈x2, . . . 〉,
q1 7→ 〈f x1〉,
q2 7→ 〈〉


 ,
[
w1 7→ worker (q0, f, q1)
w2 7→ worker (q1, g, q2)

]


We capture these ideas in the definitions below.

Definition 6.1 (Steady State). A parallel process P is in a steady state, steady(P),
if for all w ∈ P, ¬idle(w).

Definition 6.2 (Initialisation Phase). The initialisation phase for a paral-
lel process initial(P1) is the shortest sequence of a1, a2, . . . , an, such that if

P1
a1,a2,...,an−−−−−−−→ P2, then steady(P).

Definition 6.3 (Flushing Phase). The flushing phase for a parallel process P1

is the sequence of a1, a2, . . . , an, such that for all i ∈ [1 . . . n] and for all w ∈ P1,

ai 6= dequeue (qin )
w

, and if P1
a1,a2,...,an−−−−−−−→ P2, then final(P2).
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cost(fun σn,m) = Tenqueue(n) + cost i+ Tdequeue(m)
where |σ| = i→ j |C

cost(farm n σi,o) =
cost(σi×n,o×n)

n
cost(σi,j1 ‖ σk,l2 ) = max

{
cost(σi,j+k1 ), cost(σj+k,l2 )

}

cost(fb σn,m) = if (|σ| = 0)
then cost(σn+m,m)
else cost(σn+m,m) + cost(fb (resize(σn,m, |σ|)))

cost(dcn,F σ1 σ2) = max





cost(D(F, σ2)),
cost(dcn−1,F σ1 σ2),
cost(C(F, σ1))





Figure 5: Cost equations.

Total Cost and Amortised Cost:. Given some initial P and final P ′, where

P α1,...,αn−−−−−→ P ′, the total cost of a parallel computation is time(α1, . . . , αn).
The cost of each action depends on the worker environment. Based on [21], we
calculate the queue contention on each queue by simply counting the number of
workers in which a queue appears in W. Then, the cost of the gw and pw is ad-

justed according to the corresponding overhead. If we split the trace into P init−−−→
P1

steady−−−−→ P2
flush−−−→ P ′, where init = α1, . . . , αi, steady = αi, . . . , αj ,

flush = αj , . . . , αn such that initial(P), steady(P1), and final(P ′) then
the total time is: time(α1, . . . , αn) = time(init)+time(steady)+time(flush).
We can systematically derive cost models for time(init) and time(flush) using
the method shown below.

6.3. Deriving Cost Equations from the Operational Semantics

We now show how to systematically derive the cost equations in Figure 5 from
our operational semantics for skeletons. We base our approach on symbolic ex-
ecution. The following assumptions are used to automatically derive amortised
cost equations for our parallel structures.

1. The queues contain enough elements for each dequeue to succeed.

2. Each time an element is dequeued, we will return a size that is extracted
from its type.

3. Evaluating a function on a size immediately returns the size of the output
type of that function, plus the set of constraints that relate the input and
output sizes.

4. An enqueue operation always succeeds, and has no effect on the queues.
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5. Any substructure (e.g. a farm worker) produces a trace that can be safely
interleaved with the trace that is produced by other substructures (i.e.
without modifying the result of the overall computation), and that has a
known cost.

Note that assumption 1 holds only for a steady structure, so these cost equa-
tions would not be useful for estimating run-times of a computation where
time(init) and/or time(flush) dominate.

Worker cost. A worker, w, computing f : Ai → Bj | C in environment
W[w 7→ worker (qi, f, qo)] produces the “symbolic trace”: gwqi, e

w |Ai|, pwqo.
Assuming there exists some trace α1, . . . , αn that can be safely interleaved
with this trace, we want to know the cost of the actions in α1, . . . , g

wqi, . . .,
ew i, . . . , pwqo, . . . , αn. Here, the cost of gwqi will depend on any other action
that is happening in parallel. The only actions that can affect the cost of a
queue operation are other queue operations that are acting on the same queue.
If n is the number of workers wget ∈ W such that wget 6= wi and the number
of workers operating on qo is m, then if we assume that the cost of the enqueue
and dequeue operations is as described by [21], then the cost is:

time(gwqi, e
w i, pwqo) = Tenqueue(n) + costf (i) + Tdequeue(m)

We associate this cost with the corresponding high-level structure, so that it
can be used by our type-checking algorithm:

cost(funσ) = Tenqueue(n) + cost(σ) + Tdequeue(m)

The parameters n, m and cost(σ) can be instantiated from the context, and
added to the structure σ by the type-checking algorithm in a straightforward
way. We write σn,m for a structure with n contending workers in the input
queue, and with m contending workers in the output queue. Note that the real
cost, understood as an equation from an input size to an execution time, would
be cost(funσn,m)(T i j) = i × (Tenqueue(n) + costσ(j) + Tdequeue(m)), if we
assume that T contains i elements of size j. Since we can annotate structures,
σ, with sizes, we can abuse our notation for extracting sizes of types, |σ|, and
“overload” the meaning of cost to take a structure and yield an amortised cost.

Farm cost. A farm, C(Q0, Q1) ‖ · · · ‖ C(Q0, Q1), consists of a number of paral-
lel processes that are joined using our parallel composition operator, and that
share input and output queues. Since we symbolically evaluate the enqueue and
dequeue operations, we can take n arbitrary traces, one for each farm worker:

C(Q0, Q1)
α1

1,α
1
2,...−−−−−→ P ′, . . . , C(Q0, Q1)

αn
1 ,α

n
2 ,...−−−−−−→ P ′

Each trace has cost ci, . . . , cn. To obtain amortised costs, we assume that each
of these values is equal to some average cost c. Because we assume that these
actions can be safely interleaved, and because the cost of the workers already
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considers the queue contention, we simply need to calculate the maximum cost
of any worker, assuming that each sub-trace can be performed in parallel:

time(αia, α
j
b, . . .) = max





time(α1
1, α

1
2, . . .),

time(. . .),
time(αn1 , α

n
2 , . . .)



 = max {c1, . . . , cn} = c

Note that if each P produces k outputs, then qfarm(n,P) produces k × n out-
puts. So, in order to obtain an amortised cost, when we associate it with the
high-level structure, we need to divide the total cost by n.

cost(farm n σ) =
cost(σ)

n

Note that, although this cost is obviously correct, the main point is that it was
systematically derived from the simple queue-based model. It is thus sound by
construction, and so no longer needs to be a parameter of our type system.

Parallel pipeline. A pipeline, C1(Q0, q) ‖ C2(q,Q1), consists of two parallel pro-
cesses that are joined using our parallel composition operator, and connected
using an intermediate queue q. Again, we take a similar reasoning process:

C1(Q0, q)
α1

1,α
1
2,...−−−−−→ P1 C2(q,Q1)

α2
1,α

2
2,...−−−−−→ P2

Assume costs c1,and c2 for each process:

time(αia, α
j
b, . . .) = max

{
time(α1

1, α
1
2, . . .),

time(α2
1, α

2
2, . . .)

}
= max {c1, c2}

Note that, in order to accurately lift these costs to the high-level structures,
we need to consider the size of the output of α1

i , not the size of the α2
j input.

We do this by writing resize(σ2, |σ1|), meaning that the input of σ2 is altered
to have the size of the output size in |σ1|. We can do this safely since our
type-checking algorithm can ensure that sizes meet the necessary constraints.
Finally, we associate the cost with the corresponding high-level structure:

cost(σ1 ‖ σ2) = max {cost(σ1), cost(resize(σ2, |σ1|))}

Feedback loop. A feedback loop requires us to take into consideration that an
element may be written back to the input queue, C1(Q0, Q0+Q1). The structure
C must compute some function f , and we require it to have type:

Fn∨0 A = An +B, s.t. f : Ai → F Aj | j < i.

Since we require j to be strictly smaller than i, we can estimate the number of
steps that are required until i = 0 to be n, i.e. the average number of times
an element will need to be put back into the input queue. Basically, a trace
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C1(Q0, Q0 + Q1)
α1

1,α
1
2,...−−−−−→ P1 will need to be taken n times to ensure that, on

average, at least one element is enqueued into output queue Q1.

C1(Q0, Q0 +Q1)
α1

1,α
1
2,...−−−−−→ P1

...−→ Pn

Since this parameter can be estimated from the sized types, we can again assume
that a structure σ is parameterised on it, and can use this in our high-level cost
models. Again, we need to use resize to generate the appropriate cost equation:

cost(fb σ) = if (|σ| = 0)
then cost(σ)
else cost(σ) + cost(fb (resize(σ, σ)))

Divide-and-Conquer. The divide-and-conquer skeleton requires a little more
work, since we first need to transform the structure so that it matches the
skeleton. Since this transformation can be done in a fairly standard way, we
initially focus on the cost of the divide-and-conquer skeleton:

qdc′(0, F, g, h)(Q0, Q1) = qfun(1 + hyloF g h)(Q0, Q1)
qdc′(n, F, g, h)(Q0, Q1) = qfun(D2(F, h))(Q0, q0 × q1 × · · · × qm)

‖ qdc′(n− 1, F, g, h)(q1, q
′
1)

‖ . . .
‖ qdc′(n− 1, F, g, h)(qm, q

′
m)

‖ qfun(C2(F, g))(q0 × q′1 × · · · × q′m, Q1)

Since we define this skeleton inductively for some “depth” n, we start with the
base case (depth 0), which is equivalent to the cost of an atomic function:

cost(dc0,F σ1 σ2) = cost(fun (hyloF σ1 σ2))

For the recursive case, we assume 2 + m traces, one for each “recursive” case,
plus the trace of the divide and the trace of the combine parts. Again, we
assume that the traces can be safely interleaved, so we can calculate the cost of
the total trace as:

time(α1, . . .) = max





time(αdiv, . . .),
time(αqdc, . . .),
time(. . .),
time(αqdc, . . .),
time(αconq, . . .)





= max





time(αdiv, . . .),
time(αqdc, . . .),
time(αconq, . . .)





We can then associate this cost equation with the costs of the high-level struc-
tures, by simply substituting the cost of the relevant trace. Note that the
elements in the queues decrease in size for each level that we descend into the
divide-and-conquer structure. Assuming that our structures are annotated with
sizes, we need to update the sizes accordingly in the recursive call to the cost of
a divide-and-conquer structure, and in the combine part. Although we can once
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again use resize, we assume that the actual sizes have been correctly updated
in the dc structure:

cost(dcn,F σ1 σ2) = max





cost(D(F, σ2)),
cost(dcn−1,F σ1 σ2),
cost(C(F, σ1))





7. Examples

This section a) illustrates the cost equations that can be derived from some
parallel structures, as they are inferred by the type system; and, b) compare the
costs that are obtained by cost models for some simple structures with actual
runtimes, in order to provide evidence for the feasibility of our approach.

7.1. Type-based Derivation of Cost Equations

7.1.1. Image Merge

Image merge basically composes two functions: mark and merge. It can be
directly parallelised using different combinations of farms and pipelines.

im n = parL (m1 ‖ farm n m2)

imgMerge : Listk(Img×i+j Img)
im n7−−−→ Listk(Imgmax(i,j))

imgMerge = mapList (merge ◦ mark)

The type system tries the following substitutions for m1 and m2 in im:

δ = {m1 ∼ fun a, m2 ∼ fun a}
δ1 = {m1 ∼ farm n1 (fun a), m2 ∼ farm n2 (fun a)}
δ2 = {m1 ∼ fun a, m2 ∼ farm n2 (fun a)}
δ3 = {m1 ∼ farm n1 (fun a), m2 ∼ fun a}
δ4 = {m1 ∼ fun a, m2 ∼ fun a}

Note that the substitutions that introduce a farm to m2 would yield a structure
farm n (farm n2) . In our model, this would not be a problem, since the un-
derlying structure would be equivalent to farm (n × n2) . We could improve
our type-checking implementation by considering the context of a metavari-
able. This would avoid superfluous rewritings. In our example, we assume that
sz = [d]

1000
. This represents the size of 1000 pairs of images of d dimensions.

Arithmetic operations on sz are applied to the superscript. The size function of
the first stage |ac1 | is the identity, since we are not modifying the images. The
parameters for the number of farm workers are fixed to be those with the least
cost, given some maximum number of available cores. For δ1, we determine
that n1 = 9, n = 3 and n2 = 5. The values of the costs on those sizes, and the
overheads of farms and pipelines are given below. In the example cost equation
below, |ac1 |(sz ) denotes the output size of the first stage, obtained using resize,
and κ is the overhead of the parallel structure. In the following examples, we
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omit these numbers and just assume a 24-core machine with similar overheads
for farms, pipelines, divide-and-conquer and feedbacks.

c1 [(2048× 2048, 2048× 2048)]
n

= × 25.11ms
c2 [(2048× 2048, 2048× 2048)]

n
= × 45.21ms

κ (9) = 29.66ms κ (15) = 60.93ms

cost (δ1im(n)) sz

= max {c1 (
sz

n1
) + κ(n1 + n2), c2 (

|ac1 |(sz )

n2
) + κ(n1 + n2)} = 3145.69ms

cost (δ2im(n)) sz = 25123.81ms
cost (δ3im(n)) sz = 3189.60ms
cost (δ4im(n)) sz = 25123.81ms

The structure that results from applying δ1 is the least cost one, δ1(im2(3)),
with n1 = 9 and n2 = 5.

7.1.2. Quicksort

We will now analyse quicksort and show how it can exploit a divide-and-conquer
parallel structure. Our cost models show the following estimations, where κ is
adjusted to take into account the overheads of a dc structure, again calculated
as the cost of the queue contention. In this example, we set the size parameter
of our cost model to 1000 lists of 3,000,000 elements:

qsorts : List(List A) 7−→ List(List A)
qsorts = mapList (hyloF A merge div)

cost (parL (dcn,F ac1 ac2)) sz
= max{c2 (|ac2 |isz ), . . .

, cost (hyloF ac1 ac2) (|ac2 |nsz ), . . .
, max{c1 (|ac1 |i |ac2 |nsz )} = 42602.72ms

cost (parL (farmn (fun (anaL ac2)) ‖ (fun (cataL ac1)))) sz
= 27846.13ms
cost (parL (farmn (fun (hyloF ac1 ac2)))) sz
= 32179.77ms
. . .

Since the most expensive part of the quicksort function is the divide, and since
flattening a tree is linear, the cost of adding a farm to the divide part is less
than the cost of using a divide-and-conquer skeleton for this example.

7.1.3. N-Body Simulation

N-Body simulations are widely used in astrophysics. They comprise a simulation
of a dynamic system of particles, usually under the influence of physical forces.
The Barnes-Hut simulation recursively divides the n bodies, storing them in
a Octree, or a 8-ary tree. Each node in the tree represents a region of the
space, where the topmost node represents the whole space and the eight children

25



represent the eight octants of the space. The leaves of the tree contain the
bodies. We then calculate the cumulative mass and centre of mass of each
region of the space. Finally, the algorithm calculates the net force on each
particular body by traversing the tree, and updates its velocity and position.
This process is repeated for a number of iterations. We will here abstract most
of the concrete, well known details of the algorithm, and present its high-level
structure, using the following types and functions:

C = Q×Q
F A B = A + C × B8

G A = F Body

Octree = µG
insert : Body× Octree→ Octree

Since this algorithm also involves iterating for a fixed number of steps, we define
iteration as a hylomorphism, as well as its structure.

loop : Σ→ Σ
loop σ = hylo(+) (idOσ) ((a + (a M (a ◦ a))) ◦ (a ◦ a?))

loopA : (A
m7−→ A)→ A× N loop m7−−−−−−→ A

loopA s =
hylo(A+) (id O s)

((π1 + (π1 M ((−1) ◦ π2))) ◦ ((== 0) ◦ π2)?)

This example uses some additional functions: calcMass annotates each node
with the total mass and centre of mass; dist distributes the octree to all the
bodies, to allow independent calculations, calcForce calculates the force of one
body; and move updates the velocity and position of the body.

calcMass : G Octree→ G Octree

dist : Octree× List Body
→ L (Octree× Body) (Octree× List Body)

The algorithm is:

nbody : List Body× N loop σ7−−−−−→ List Body
nbody = loop (anaL (L (move ◦ calcForce) ◦ dist)

◦((cataG (inG ◦ calcMass) ◦ cataL insert) M id))

Note that we do not allow the fixed structure determined by loop to be rewrit-
ten. Even if we were to allow this, there is a data dependency in its definition
that suggests that no parallelism can be extracted from it. However, the loop
body does contain sources of parallelism, which our type system is able to ex-
ploit. In particular, the structure of the loop body is:

σ = anaL(L (a ◦ a) ◦ a) ◦ (cataG(in ◦ a) ◦ cataL a) M id

The normalised structure reveals more opportunities for parallelisation:

σ = mapLa ◦ mapL a ◦ anaL a ◦ (cataG(in ◦ a) ◦ cataL a) M id
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After normalisation, this structure is equivalent to:

σ = parL (fun (a ◦ a)) ◦

The structure makes it clear that there are many possibilities for parallelism
using farms and pipelines. As before, parallelism can be introduced semi-
automatically using our cost models. For example, setting the input size to
20,000 bodies:

σ = parL (farm n ‖ ) ◦
σ′ = parL (min cost ( ‖ )) ◦

cost (fun ac1 ‖ fun ac2) sz = 310525.67ms
cost (farm6 (fun ac1) ‖ (fun ac2)) sz = 55755.43ms
cost (fun ac1 ‖ farm1 (fun ac2)) sz = 310525.67ms
cost (farm20(fun ac1) ‖ farm4(fun ac2)) sz = 15730.46ms

7.1.4. Iterative Convolution

Image convolution is also widely used in image processing applications. We as-
sume the type Img of images, the type Kern of kernels, the functor F A B =
A + B × B × B × B , and the split, combine, kern and finished functions. The
split function splits an image into 4 sub-images with overlapping borders, as
required for the kernel. The combine function concatenates the sub-images in
the corresponding positions. The kern function applies a kernel to an image. Fi-
nally, the finished function tests whether an image has the desired properties,
in which case the computation terminates. We can represent image convolution
on a list of input images as follows:

conv : Kern→ (List Img
σ7−→ List Img)

conv k =
mapList (iterImg (finished? ◦ hyloF (combine ◦ F (kern k))

(split k)))

The structure of conv is equivalent to a feedback loop, which exposes many
opportunities for parallelism. Again, we assume a suitable cost model. Our
estimates are given for 1000 images, of size 2048×2048.
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σ = parL (fb (dcn,L,F (a ◦ F a) a ‖ ))
= parL (fb ( farm n ‖ ‖ ))
= min cost (parL (fb ( ‖ )))
= . . .

cost (parL (fb (ac1 ‖ ac2))) sz =∑
1≤i,|ac1

‖ac2
|isz>0

cost (ac1 ‖ ac2) (|ac1 ‖ ac2 |isz )

= 20923.02ms
cost (parL (fb (farm4 (fun ac1) ‖ (fun ac2)))) sz

= 6649.55ms
cost (parL (fb (fun ac1 ‖ farm1 (fun ac2)))) sz

= 20923.02ms
cost (parL (fb (farm14 (fun ac1) ‖ farm4 (fun ac2)))) sz

= 2694.30ms
. . .

Collectively, these four examples have demonstrated the use of our techniques
for all the parallel structures that we consider in this paper. In the next section,
we provide evidence to validate the cost models that we have derived from our
operational semantics against actual parallel executions.

7.2. Actual vs Predicted Speedups

In order to validate our results, we have compared predicted versus actual
speedups for a number of example parallel programs. Our results not only vali-
date our cost equations, but also confirm our previous experimental results [21].
We have taken the results of type-checking a number of examples, and im-
plemented the corresponding structures in C, following our model, using the
pthreads-based queue implementation that we described in [21]. In Section 6.3,
we showed that most of the cost equations can be simplified to the expected
ones, apart from the cost of a fun σ structure. Basically, the idea is that the
overhead of the parallel structures can be safely pushed down into its workers.
We show here how that overhead cost affects the actual runtimes, comparing
this with the predicted speedups for some of our parallel structures.

We use two different real multicore machines: titanic, a 800MHz 24-core,
AMD Opteron 6176, running Centos Linux 2.6.18;and lovelace, a 1.4GHz 64-
core, AMD Opteron 6376, running GNU/Linux 2.6.32.All the speedups shown
here have been calculated as the mean of ten runs. Figure 6 shows the real
vs. predicted speedups for task farms, using a simple matrix multiplication
example; Figure 7 shows the corresponding speedups for the image merge ex-
ample, parallelised as a farm of a pipeline; and Figure 8 shows the corresponding
speedups for the image convolution example. The latter example was originally
described using a similar structured expression to that for image merge, i.e. as
the composition of two functions, read and process. However, the cost models
predict that a different parallel structure is optimal: a pipeline of two farms.
Finally, Figures 9 and 10 compare several different possible parallel structures
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Figure 6: Speedup (solid lines) vs prediction (dashed lines). Matrix Multiplication of matrices
of sizes N×N (titanic).
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Figure 7: Speedup (solid lines) vs prediction (dashed lines). Image Merge, 500 input tasks
(titanic).

over farms and pipelines for the image convolution example. These examples
collectively verify the experimental results that we previously showed in [21],
and show that the cost models defined in this paper are able to correctly capture

29



1 2 4 6 8 10 12 14 16 18 20 22

1
2

4

6

8

10

12

14

16

18

20

n2 Workers

S
p

ee
d

u
p

farmn1(fun σ1) ‖ farmn2(fun σ2)

n1 = 1

n1 = 2

n1 = 4

n1 = 6

n1 = 8

Figure 8: Speedup (solid lines) vs prediction (dashed lines). Image Convolution, 500 input
tasks (titanic).
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Figure 9: Speedup (solid lines) vs predicted (dashed lines). Different Parallel Structures for
Image Convolution, 500 Images 1024 * 1024: titanic

queue contentions. We are thus able to predict a safe, tight upper bound on
execution times.
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Figure 10: Speedup (solid lines) vs predicted (dashed lines). Different Parallel Structures for
Image Convolution, 500 Images 1024 * 1024: lovelace.

8. Related Work

There have been a few previous treatments of parallelism using types, but these
deal only with sizes and productivity. One line of work uses sized types [24] to
incorporate a notion of the sizes of streaming data into a type system. This
has been extended to cover a small number of skeletons in the Eden dialect
of Haskell [37]. More recently, López et al [29] have presented a type-based
methodology, inspired by session types, for verifying that parallel MPI programs
follow some given protocol. This approach provides a scalable methodology to
statically guarantee that a program satisfies a number of interesting safety prop-
erties, such as the absence of deadlocks. Both approaches show that types are
indeed useful to prove a number of interesting properties of parallel programs,
e.g. termination and productivity. In contrast, our work focuses on the different,
but equally important, properties of semantic equivalence and cost.

The expressive power of hylomorphisms for parallel programming was first
explored by Fischer and Gorlatch [12], who showed that a programming lan-
guage based on catamorphisms and anamorphisms is Turing-universal. The idea
of using hylomorphisms for parallel programming also appears in Morihata’s
work [33]. Morihata explores a theory for developing parallelisation theorems
based on the third homomorphism theorem and shortcut fusion, and generalises
it to hylomorphisms. In contrast, our work directly exploits the properties of
hylomorphisms, in order to choose a suitable parallel skeleton implementation
for hylomorphisms. The two lines of work are therefore orthogonal, and we can
potentially benefit from Morihata’s results in our future work.

Deriving parallel implementations from small, simple specifications has been
widely studied. The third homomorphism theorem, list homomorphisms, and
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the Bird-Meertens Formalism are amongst the many techniques that have been
explored [18, 22, 23, 26, 30, 32, 34, 39, 42, 41]. The third homomorphism the-
orem states that if a function can be written both as a left fold and a right
fold, then it can also be evaluated in a divide-and-conquer manner [16]. This
theorem has been widely used for parallelism [10, 14, 15, 17, 27, 33, 35]. The
majority of this work enables suitable automation and derivation of efficient
parallel implementations. Our work differs in that we allow part of the parallel
structure to be chosen in an automated way. This adds flexibility, enabling
a parallel implementation to be changed quickly and easily by changing only
a single type annotation. One possible extension of our work is to include
some automatic transformations derived from the third homomorphism theo-
rem. By parameterising our type system over some cost function on parallel
structures, we smoothly integrate the introduction of parallelism with the abil-
ity to reason about the run-time behaviour of the parallel program. Skillicorn
and Cai [43] have previously shown the utility of such an integration of a cost
calculus with derivational software development, illustrating the approach for
the Bird-Meertens theory of lists. In this paper, we take this approach one step
further by using a more general equational theory based on hylomorphisms.
Moreover, our type-based approach introduces new benefits, by providing a
mechanism for specifying new parallel structures whose denotational semantics
can be described as a composition of hylomorphisms.

Specific algorithmic skeletons are frequently associated with timing cost
models [20]. However, these are almost exclusively obtained through mea-
surement or approximation rather than being systematically derived from an
operational semantics, as here. Much of the work on developing cost models
for parallel execution has focused on data parallelism. The Parallel Random-
Access Machine (PRAM) execution model [13] acts as a theory of complexity
for parallel algorithms on idealised shared-memory SIMD machines. In the ba-
sic PRAM execution model, basic computations and shared-memory accesses
are both assumed to take unit time. Unfortunately, PRAM costs underestimate
actual machine execution costs, but in an unpredictable way [43]. The Bulk
Synchronous Parallel (BSP) model [45] extends the PRAM model in a more
realistic way, introducing a synchronising communication step after each set of
computation steps. Lisper [19] has investigated the use of a Bulk Synchronous
Parallel skeleton for determining worst-case execution times, but only infor-
mally, and not in the context of real processor models. Skillicorn and Cai have
likewise developed a high-level cost calculus for data parallel computations [43],
based on the shape of data structures, and known properties of primitive par-
allel operations, but have not based this on a strong machine-level semantics.
Blelloch and Greiner have demonstrated provable time and space bounds for
nested data parallel computations in NESL [6]. None of these models has the
generality of the one given here. By linking the model given in this paper with
the machine-level operational semantics for queueing that we have previously
produced [21], we are now able to give a complete operational model for par-
allel algorithmic skeletons that accounts for all levels from the memory model
upwards, including dealing with real memory effects on x86 architectures.
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In a structured parallelism setting, Janjic et al. [25] define a high-level DSL,
the Refactoring Pattern Language (RPL), that aims to represent the parallel
structure of a program, and capture its execution time. This DSL is a powerful
tool, since it allows suitable parallelisations to be found for a given program, and
then to apply them to a real C++ program. There are a number of differences
between the approach that is described here and RPL. First, our type-based
approach does not need to realise parallelisations as refactoring rules: parallel
structures are tied to programs in a systematic way by each syntactic construct.
The advantage of our approach is that we can use type information to automat-
ically generate parallel code at compile-time. The corresponding disadvantage
is lack of flexibility: the RPL approach can be combined with a number of refac-
torings that can take into account the user input in a more interactive way. The
second important difference is that we use hylomorphisms as an unifying con-
struct. This enables us to use the rich theory of hylomorphisms for parallelism.
Moreover, we base our approach on a decision procedure that is derived from
an equational theory that is both sound and complete w.r.t. the rules of the un-
derlying equational theory, and we use a standard type unification algorithm to
instantiate parallel structures from sequential code. Finally, our parallel struc-
tures and cost models are not built-in, but are derived in a systematic way from
an underlying cost model and operational semantics.

Finally, Steuwer et al. [44] generate high-performance OpenCL code from
a high-level specification by applying a simple set of rewrite rules, and using
Monte-Carlo search to traverse the corresponding search space to find an im-
plementation. Our approach provides a way to narrow down this search space,
while using cost models to automate the rest of the search. It is, in a sense, more
general, since we allow our parallel structures to be easily extended. However,
we could benefit from exploiting Steuwer et al.’s work in GPU-specific rewriting
rules and skeletons.

9. Conclusions

This paper has introduced new formally-based cost models for common algorith-
mic skeletons. Unlike previous approaches, these cost models are derived from a
formal operational semantics for these skeletons, and consider both queue con-
tention and scheduling. Using our approach, we can be sure that our cost models
are sound w.r.t. the operational semantics by construction and we can automat-
ically derive cost equations for newly defined parallel structures. A key aspect
of our approach is the use of hylomorphisms, combinations of catamorphisms
and anamorphisms (or fold/unfold operations). We have used hylomorphisms
to capture some common patterns of parallelism: task farms, pipelines, divide-
and-conquers and feedbacks. As shown in our examples, this single construct
is surprisingly powerful, providing a system of canonical representations that is
easy to understand and that is also easy to transform.

We have shown how our cost models can be used to drive type-level decisions
about parallelisation, supporting a type-level reasoning system that we recently
introduced [9]. Collectively, this allows the construction of provably optimal
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parallel solutions, that need to take into account only basic, easily obtained,
information about the costs of executing sequential operations. The use of a
type-level approach avoids the usual separation of analysis from program, al-
lowing structures and costs to be directly and accurately associated with the
program. In particular, all transformations are performed internally by the type
checker and we ensure the preservation of the underlying functional behaviour
simply by construction. Moreover, our concrete results show that our cost mod-
els are good predictors for actual parallel performance.

A number of obvious extensions can be made to this work. Firstly, there
are a few forms of parallel pattern that we have not yet considered: map (re-
duce) and fold are clearly instances of hylomorphisms, but stencil and bulk
synchronous parallel patterns, for example, may require deeper thought. Sec-
ondly, we could investigate more complex and detailed cost models that take
into account even more details of a parallel system. Finally, we believe that
hylomorphisms and type structures can form the basis for a good, new parallel
programming methodology. We intend to explore this by building our ideas into
a new parallel library for Haskell that will enable the automatic introduction of
parallelism into normal Haskell programs, under type control.
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[40] D. Sands. A Näıve Time Analysis and its Theory of Cost Equivalence.
Journal of Logic and Computation, 5(4):495–541, 1995.

[41] D. B. Skillicorn. Models for Practical Parallel Computation. International
Journal of Parallel Programming, 20(2):133–158, 1991.

[42] D. B. Skillicorn. The Bird-Meertens Formalism as a Parallel Model.
Springer, 1993.

[43] D. B. Skillicorn and W. Cai. A Cost Calculus for Parallel Functional
Programming. J. Parallel Distrib. Comput., 28(1):65–83, 1995.

[44] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. Generating Performance
Portable Code Using Rewrite Rules. In Proc ICFP 2015: 20th ACM Conf.
on Functional Prog. Lang. and Comp. Arch., pages 205–217, 2015.

[45] L. G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103–111, 1990.

[46] P. B. Vasconcelos. Space Cost Analysis using Sized Types. PhD thesis,
University of St Andrews, 2008.

[47] P. Wadler. Deforestation: Transforming Programs to Eliminate Trees.
Theoretical Computer Science, 73(2):231–248, 1990.

37



Prof. Kevin Hammond (Principal Investigator) leads the Programming 

Languages group in the School of Computer Science. He has over 30 years 

of research experience, having worked extensively in the field of 

advanced programming language design and implementation, with a focus on 

understanding and reasoning about extra-functional properties. His work 

concentrates on declarative language designs, including that of the 

standard non-strict functional language Haskell [34], where he served on 

the international design committee, worked on the dominant compiler, GHC 

[33], and developed the GUM parallel Haskell implementation of GHC with 

colleagues at Glasgow and elsewhere [36]. In 2011, GHC was awarded the 

ACM SigPlan prize for significant programming language software. He has 

published over 100 books, book chapters, journal papers and other 

refereed publications focusing on functional programming, domain-specific 

programming languages, type systems, real-time systems, cost issues, 

adaptive run-time environments, lightweight concurrency, high-level 

programming language design, parallel programming and performance 

monitoring/visualisation. He is the recently-appointed Director of SICSA, 

the pan-Scottish pooling agreement for Informatics and Computer Science, 

which groups the 14 Scottish universities. He is a Senior Member of the 

ACM, a founder member of IFIP WG 2.11 (Generative Programming), and an 

honorary Professor at Heriot-Watt University. He sits on the board of the 

Scottish government funded Data Lab Innnovation Centre. He was awarded a 

personal award for his services to the parallel programming community at 

the HiPEAC 2016 conference. 

 

*Biographies (Text)



*Biographies (Photograph)
Click here to download high resolution image


