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Abstract

No longer the preserve of specialist hardware, parallel devices
are now ubiquitous. Pattern-based approaches to parallel-
ism, such as algorithmic skeletons, simplify traditional low-level
approaches by presenting composable high-level patterns of
parallelism to the programmer. This allows optimal parallel
configurations to be derived automatically, and facilitates the
use of different parallel architectures. Moreover, parallel pat-
terns can be swap-replaced for sequential recursion schemes,
thus simplifying their introduction. Unfortunately, there is no
guarantee that recursion schemes are present in all functional
programs. Automatic pattern discovery techniques can be used
to discover recursion schemes. Current approaches are limited
by both the range of analysable functions, and by the range of
discoverable patterns. In this thesis, we present an approach
based on program slicing techniques that facilitates the analysis
of a wider range of explicitly recursive functions. We then
present an approach using anti-unification that expands the
range of discoverable patterns. In particular, this approach is
user-extensible; i.e. patterns developed by the programmer can
be discovered without significant effort. We present prototype
implementations of both approaches, and evaluate them on
a range of examples, including five parallel benchmarks and
functions from the Haskell Prelude. We achieve maximum
speedups of 32.93⇥ on our 28-core hyperthreaded experi-
mental machine for our parallel benchmarks, demonstrating
that our approaches can discover patterns that produce good
parallel speedups. Together, the approaches presented in this
thesis enable the discovery of more loci of potential paral-
lelism in pure functional programs than currently possible.
This leads to more possibilities for parallelism, and so more
possibilities to take advantage of the potential performance
gains that heterogeneous parallel systems present.





Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Kevin
Hammond, for his guidance throughout my studies. His advice and
patience has been invaluable for not only developing ideas, but also for
providing encouragement.

I would also like to thank Dr Christopher Brown for his ongoing
assistance as my second supervisor. His knowledge and perspective on a
wide range of topics has never not been a great help.

My special thanks to my fellow PhD students, Chris S., Matus, and
Franck, with whom I have had the honour to share an office throughout
my studies. Our conversations have always been full of insights, ideas,
and information that I would be all the poorer for without. My special
thanks also to David, a fellow student under Kevin, without whom
the final stretch would have been a lot harder. Thanks to Jan, for his
friendship and advice on all things St Andrean. I am also grateful to the
other members of the St Andrews Functional Programming group.

Finally, I thank my parents, Frederick and Gillian, for their support
and patience throughout my university life.

vii



This work was supported by the EU FP7 grant ‘ParaPhrase:Parallel Pat-
terns for Adaptive Heterogeneous Multicore Systems’ (no. 288570); by the
EU H2020 grant ‘RePhrase: Refactoring Parallel Heterogeneous Resource-
Aware Applications – a Software Engineering Approach” (ICT-644235), by
COST Action IC1202 (TACLe), supported by COST (European Coopera-
tion in Science and Technology); and by EPSRC grant ‘Discovery: Pattern
Discovery and Program Shaping for Manycore Systems’ (EP/P020631/1).

viii



Contents

Contents ix

1 Introduction 1
1.1 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Automatic Pattern Discovery . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Existing Parallelisation Approaches 15
2.1 Automatic Approaches to Parallelisation . . . . . . . . . . 16
2.2 Semi-Automatic Approaches to Parallelisation . . . . . . . 17
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Automatic Pattern Discovery for Parallelisation 25
3.1 Program Calculation Approaches . . . . . . . . . . . . . . . 26
3.2 Non-Calculational Approaches . . . . . . . . . . . . . . . . 31
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Automatic Pattern Discovery via Program Slicing 35
4.1 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Preliminaries and Assumptions . . . . . . . . . . . . . . . . 42
4.3 Determining Obstructiveness . . . . . . . . . . . . . . . . . 47
4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Refactoring to Introduce Map Operations . . . . . . . . . . 56

ix



Contents

4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . 93

5 Automatic Pattern Discovery via Anti-Unification 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Preliminaries and Assumptions . . . . . . . . . . . . . . . . 107
5.3 Argument Derivation via Anti-Unification . . . . . . . . . . 112
5.4 Deriving Pattern Arguments . . . . . . . . . . . . . . . . . . 121
5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6 Finding unfold . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.8 Summary and Discussion . . . . . . . . . . . . . . . . . . . 148

6 Conclusions and Future Work 151
6.1 Main Achievements . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 164

A Proof for Soundness of Slicing Algorithm 165

B Proof for Soundness of Anti-Unification Algorithm 175

C Patterns Used in the Anti-Unify Module Refactoring 179

Bibliography 181

x



Chapter 1
Introduction

The overall goal of this thesis is to develop new approaches to discover
loci of potential parallelism in pure functional programs in order to facil-
itate the introduction of parallelism. We introduce two novel approaches
to automatic pattern discovery. Parallel programming allows programs
to take advantage of the potential performance gains that are offered by
parallel hardware. In response to complex low-level approaches, the past
few decades have seen the development of a range of techniques that are
designed to simplify the parallelisation process. In particular, structured
approaches present composable high-level patterns to the programmer
that are usually defined as higher-order functions in functional languages.
While these approaches do not describe how or where parallel patterns
can be introduced, recursion schemes, which are often also defined as
higher-order functions, can be used as loci of potential parallelism. The
introduction of parallelism then becomes changing a call to a specific
recursion scheme instance to a call to the desired equivalent parallel
pattern. Unfortunately, there is no guarantee that all recursion scheme
instances are used in a program, or that the scheme that most closely
reflects the traversal behaviour of the operation is used. An absence of
recursion scheme instances, or the use of a more general scheme in place
of a valid specialisation, can reduce the opportunities for parallelism, or
for alternative parallel structures. Automatic pattern discovery techniques
can be used to avoid this possibility, by discovering instances of recursion
schemes in pure functional programs, and therefore loci of potential par-

1



1. Introduction

allelism. Current pattern discovery approaches are often limited both in
the range of functions they can analyse, and in the range of patterns that
they can discover. This limits the number of recursion scheme instances
that can be discovered for a given program, and therefore also oppor-
tunities for parallelism. The automatic pattern discovery approaches
presented in this thesis build upon existing approaches, and address both
of these limitations. We use program slicing and anti-unification techniques
to enable the discovery of patterns in pure functional code. In particular,
our anti-unification approach is user-extensible, where patterns developed
by the programmer can be discovered without requiring significant effort
to extend the approach. To the best of our knowledge, this is the first
user-extensible approach to automatic pattern discovery. Improving auto-
matic pattern discovery techniques simplifies the parallelisation process
by making it increasingly automatic, without sacrificing the range of par-
allel structures that we can introduce, or the performance gains that they
provide. Consequently, this allows programmers to easily take advantage
of heterogeneous parallel hardware, and so improve the performance of
their programs, with minimal effort or opportunities for error.

1.1 Parallelism

No longer the preserve of servers and supercomputers, parallel processors
are now ubiquitous [11]. Multi-core processors can be found in many of
the devices with which we surround ourselves; from laptop and tablet
computers, mobile telephones, to portable games consoles. This is a
trend that is set to continue, as epitomised by Intel’s new 18-core i9-
7980XE X-series desktop processor. Moreover heterogeneous systems,
including distributed computing power such as Amazon AWS, and
increased prevalence of accelerators, such as FPGAs, discrete GPUs, and
Digital Signal Processors, are becoming more common. Consequently,
parallel programming is an increasingly necessary skill.

Traditional, predominantly imperative, parallel programming tech-
niques often consist of low-level primitives and libraries that require
manual management of threads, communication, locking, synchronisa-
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Figure 1.1: A task farm, or parallel map, skeleton. Applies a nested
skeleton or function, si, to each input, xj, in parallel.

tion, etc. These low-level components often mean that traditional ap-
proaches are tedious, difficult, and error-prone [56]. This makes parallel
programming largely inaccessible to the average programmer. More
recent structured approaches to parallelism, such as algorithmic skelet-
ons [38], simplify the parallelisation process by abstracting away these
low-level components. There is a close, and long-observed, correspond-
ence between these structured approaches and functional programming.
Futures [110], the Strategies library [111], the Par Monad [87], the Ac-
celerate library [33], the actor model [7], and algorithmic skeletons are
all structured approaches for functional languages, where the algorithm
and parallel structure of a program are defined separately.

Skeletons, in particular, are implementations of language-independent
high-level composable patterns. To introduce parallelism, the program-
mer calls the skeleton like any other function, passing any context-specific
sequential code and any additional parameters as arguments. For ex-
ample, the task farm skeleton in Figure 1.1 applies a given skeleton or
sequential function to each input in parallel. The farm also takes the
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1. Introduction

number of workers as a parameter, allowing the programmer to control
the amount of parallelism that is introduced. Since skeletons can be
composed and nested, a wide range of parallel structures can be repres-
ented by a small set of skeletons. Moreover, a skeleton can have multiple
implementations, including those for GPUs [70] and or high performance
systems [113, 42] This makes swapping between the different imple-
mentations as simple as calling a different function, and equivalences
between configurations of skeletons can be used to further improve per-
formance [31]. In functional languages, skeletons are often implemented
as higher-order functions. For example, the task farm skeleton in Figure 1.1
has implementations in the Strategies library (parList), the Par Monad
(parMap), and the Accelerate library (map), amongst others.

Recursion schemes describe how data structures can be traversed or
constructed [90]. The well-known map, for instance, applies a function
to each element in a data structure without changing the spine of the
structure itself. In functional languages, recursion schemes are often
implemented as higher-order functions. For example, the standard map

over cons-lists can be defined in Haskell as

1 map : (a -> b) -> [a] -> [b]

2 map f [] = []

3 map f (x:xs) = f x : map f xs

Recursion schemes are generic descriptions and so can be implemented
for arbitrary types; e.g. binary trees, rose trees, and octtrees. Since many
parallel patterns have sequential recursion scheme equivalents, e.g. the
task farm and map, it follows that we can use instances of sequential
recursion schemes as loci of potential parallelism. A scheme can then be
swap-replaced for an equivalent parallel pattern, just as the introduced
pattern can then be swap-replaced for other equivalent parallel patterns or
configurations thereof. For example, given the simple Sudoku solver [86]

1 sudoku ps = map solve ps

where ps is a list of puzzles, and solve is a function that solves a given
puzzle, we can swap the call to map for a call to, e.g., the Par Monad:
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1.2. Automatic Pattern Discovery

1 sudoku ps = runPar $ parMap solve ps

Here, parMap is the task farm skeleton that applies solve to each
element in ps in parallel, and runPar lifts the result out of the Par
Monad. By taking advantage of equivalent recursion schemes and parallel
patterns, parallelism can, in principle, be introduced quickly, easily, and
(potentially) automatically and in a way that can take advantage of a
range of architectures and parallel structures.

Despite the advantages of abstraction that are provided by both
pattern-based parallelism and functional programming, introducing par-
allelism can still be a non-trivial task. Whilst we can in principle replace
recursion schemes with their parallel equivalents, parallelising all recur-
sion scheme instances in a program does not guarantee good parallel
speedups. Choosing the recursion schemes, or loci of potential parallelism
that are best suited for parallelism, and which of the potentially infinite
equivalent configurations of patterns will produce good speedups, can
be guided by the use of cost models or by profiling tools [32]. Another,
more fundamental, problem is that there is no guarantee that the pro-
grammer will use recursion schemes in all possible instances, or that the
best recursion scheme will be used. This means that opportunities for
parallelism may limited, including the discovery of equivalent parallel
structures that may confer performance gains.

1.2 Automatic Pattern Discovery

In order for recursion schemes to be effective and optimal loci of paral-
lelism, they must i) be used in the source code, ii) be used in the right
places, and iii) be the recursion scheme that best represents the traversal
behaviour. Despite the prevalence of higher-order functions in func-
tional programs, there is no guarantee that all programmers will always
choose to use recursion schemes over explicit recursion. For example, the
Spectral set of the NoFib suite of Haskell benchmarks comprises a total
of 48 programs [99]. Manual inspection shows that at least 19 (39.6%)
of these have one or more functions that could be rewritten in terms
of map or fold patterns alone. There are a number of reasons why a
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1. Introduction

programmer may not use a valid recursion scheme. For example, the
programmer may not know a certain recursion scheme exists. Whilst map,
foldr, and foldl are well-known recursion schemes, other schemes
are less well-known; e.g. scanl, unfold, or one of the many general
morphisms [59]. Alternatively, the choice may be deliberate: an explicitly
recursive function may express its behaviour more clearly. For example,
wc, as defined in [59], calculates the number of words in a string,

1 wc :: [Char] -> Int

2 wc cs =

3 para (\x xs z ->

4 if not (isSpace x)

5 && (null xs isSpace (head xs))

6 then z+1

7 else z) 0 cs

Here, para is a paramorphism, a less common recursion scheme where the
fixpoint function, i.e. the anonymous function passed to para, has access
to both the results, z, of the recursive calls but also to the substructures,
xs, that produced z. To understand wc, the programmer must be familiar
with the definition of para before understanding the fixpoint function.
We can define wc to use explicit recursion,

1 wc :: [Char] -> Int

2 wc [] = 0

3 wc (c:cs)

4 | not (isSpace c) && (null cs || isSpace (head cs))

5 = wc cs + 1

6 | otherwise

7 = wc cs

Here, it is immediately apparent that wc is using structural recursion [68],
and so the programmer only needs to understand the guard expression
as before. Similarly, the starting point of any program is to determine
what the program needs to do and how this can be expressed. Explicitly
recursive functions can be a simple means to check whether an idea works,
and they can be easily adjusted if they do not. Conversely, recursion
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1.2. Automatic Pattern Discovery

schemes may require the programmer to significantly reformulate the
problem. Once the program is functionally correct, the programmer may
then transform their code to introduce relevant recursion schemes.

A manual approach to pattern discovery can be non-trivial, error-
prone, and subject to the same reasons why recursion schemes are not
used in the first place. The programmer may not realise that a function
can be expressed as a particular scheme; they may know that a relevant
scheme exists, e.g. unfold or para; and they may not introduce the
scheme that accurately describes the behaviour of a given function. It
follows, therefore, that if pattern discovery can be automated, and if
all possible recursion schemes can be found and introduced, then more
opportunities for parallelism are available while reducing the chances for
introducing errors. Classical approaches to automatic pattern discovery
have focussed on program calculational approaches. These are based
on the Bird-Meertens Formalism [15] and equational reasoning [101]
techniques, and reformulate function definitions into a desired pattern.

Most program calculation approaches use the Third List Homomorph-
ism theorem [46], which states that if an operation can be expressed
as both a leftwards-fold and a rightwards-fold, then that operation can
be performed as part of a divide-and-conquer (parallel) pattern. For
example, a function to sum a list of numbers, sum, can be defined as both
a leftwards- and rightwards-fold:

1 sum = foldl (+) 0

2

3 sum = foldr (+) 0

This indicates that (+) is associative, and so may be performed as part of
a divide-and-conquer pattern; e.g.

1 sum [x] = x

2 sum (xs ++ ys) = (sum xs) + (sum ys)

Here, xs and ys are two halves of the input list and are both passed to
recursive calls, the results of those calls are then summed together using
(+).
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1. Introduction

Earlier list homomorphism approaches are limited in that they can
only inspect functions that traverse lists, that the programmer must sup-
ply two versions of the same function (i.e. a leftwards- and a rightwards-
fold), and that operations that do not prove to be associative cannot be
used in a divide-and-conquer pattern. Later approaches seek to address
these limitations. For example, Morihata et al. demonstrate how to gener-
ate a rightwards-fold from a leftwards-fold [94], and how the approach
can be extended to trees, using upwards- and downwards-folds [93].
Elsewhere, Geser and Gorlatch rewrite almost-homomorphisms as homo-
morphisms using anti-unification [45]. Despite the improvements to the
approach these make, they are themselves limited. Deriving rightwards-
folds requires the leftwards-folds to be in a stylised form that limits the
functions to which the technique can be applied. The generalisation
to trees converts those trees to zippers [67], i.e. lists of subtrees, which
introduces potentially significant overheads. Finally, Geser and Gor-
latch’s approach shares the above limitations since it requires that both
leftwards and rightwards definitions are provided in the form of cons-
and snoc-lists, and is defined for list operations only. Another limitation
of the list homomorphism approach is that it only finds one pattern;
i.e. divide-and-conquer. Specialisations of the pattern, such as map or
scanl, must be derived as an additional step to take advantage of their
parallelisations. Similarly, patterns with different structures cannot be
found. For example, unfold is a corecursive pattern that allows the
guarded generation of arbitrary data-structures [47].

Other calculational approaches to automatic pattern discovery address
these limitations by using a more general pattern: hylomorphisms. These
are also divide-and-conquer patterns, but are not limited to lists, or a
particular type. Hylomorphisms are comprised of fold and unfold

parts, and can be used to express a wide range of patterns. Moreover,
the laws that govern hylomorphisms can be used to calculate equivalent
parallel pattern configurations [31]. Unfortunately, hylomorphisms in
this form require highly stylistic code that is unlikely to be written by
hand [61]. Hylomorphisms must therefore be discovered in arbitrary
code, specifically requiring the discovery of fold and unfold patterns.
Specialisations of fold and unfold can also be found and represented as

8



1.2. Automatic Pattern Discovery

hylomorphisms. Little work has focussed on discovering hylomorphisms
in arbitrary code, with approaches often limited by the functions that they
can inspect and rewrite, and the inability to discover useful specialisations
of fold and unfold.

There are few non-calculational approaches to automatic pattern
discovery. One approach, introduced by Ahn and Han, uses program
slicing to categorise subexpressions in recursive functions, where those
categories denote whether the calculation can be performed as part of a
particular pattern [2]. While this approach can discover a wider range of
patterns than other approaches, it is nevertheless limited by the functions
that it can analyse since they must be defined in a certain way.

Another non-calculational approach, introduced by Cook [41], uses
higher-order unification. This approach compares the structure of two
functions to infer whether the inspected function is an instance of a
pattern that is defined by the second function, and if so, the arguments
needed to express the inspected function as that pattern. This approach
requires functions to be defined in a very stylistic way, thus reducing
the range of functions to which it can be applied. Since the higher-order
unification is performed by a proof assistant, any inspected code must
be translated into the language of the proof assistant, then back again
once analysis is complete. The approach is further limited in the range
of functions to which it can be applied and the patterns it can discover,
since it cannot e.g. inspect functions that use simultaneous induction (e.g.
zipWith) or corecursive functions (e.g. unfold). Finally, higher-order
unification itself is undecidable. Semi-decidable variants exist, but these
further limit the range of functions to which the approach can be applied.

In this thesis, we build upon existing automatic approaches to pattern
discovery. In Chapter 4, we introduce a novel program slicing approach
that can inspect arbitrary pure functions. This expands the range of
functions that can be analysed by current approaches. In Chapter 5, we
introduce a novel anti-unification approach that can discover arbitrary
recursive patterns and a limited set of corecursive patterns in pure func-
tions. Additionally, this approach is user-extensible such that patterns to
be discovered can be provided by the programmer. This expands the
the range of patterns that can be automatically discovered by existing
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1. Introduction

techniques. Together, our approaches are able to discover more patterns
in a wider range of functions than previously possible. Consequently,
our approaches are able to discover more loci of potential parallelism,
and so simplify and further automate the parallelisation process.

1.3 Contributions

This thesis makes the following novel contributions.

1. In Chapter 4, we introduce a novel approach that can discover
mappable computations in arbitrary pure recursive functions using
program slicing techniques.

2. In Chapter 5, we introduce a novel approach to determine whether
a given function can be rewritten as a call to a given recursion
scheme implementation, and if so, to derive the arguments to that
recursion scheme that are needed to maintain functional correct-
ness. We use anti-unification techniques as the foundation of this
approach. Our technique is able to discover instances of schemes
that can be represented as fold patterns. We demonstrate how
our approach can be extended to discover schemes with different
pattern structures.

3. As part of our approach defined in Chapter 4, we define a novel
program slicing algorithm, where inclusion in a slice indicates that
a variable is either used or updated between successive recursive
calls. We prove that our algorithm is sound with respect to our
definition of a slice and our assumptions, and that the calculated
slice is unique for each recursive function and slicing criterion.

4. As part of our approach defined in Chapter 5, we define a novel anti-
unification algorithm that compares the structures of two functions
in order to infer candidates of pattern arguments. We prove that
our algorithm is sound with respect to the syntactic equivalence
property that we define based on the standard syntactic equality
property of traditional anti-unification algorithms.

10
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5. We have implemented prototypes for both slicing and anti-unification
approaches to pattern discovery, which we describe in Sections 4.4
and 5.5 respectively. Our prototype for the slicing approach is
implemented as a stand-alone Erlang program, and our prototype
for the anti-unification approach is implemented as an extension to
the Haskell refactoring tool, HaRe [18].

6. We have evaluated both of our pattern discovery approaches on a
range of examples. These include five standard parallel benchmarks,
including benchmarks from the NoFib suite [99]. Other examples in-
clude examples from the Haskell Prelude, and examples from Cook
and Kannan’s theses [41, 74]. We demonstrate that our approaches
are able to discover all instances of a range of common patterns,
including map, foldr, foldl, scan, and zip. We present our
results in Sections 4.6 and 5.7, respectively.

7. We give the average times taken by our prototype implementations
for all examples. Our program slicing approach is able to discover
all mappable computations in our largest example in under 0.7ms,
and our anti-unification approach is able to discover all patterns
in our largest example in under 2s. As a synthetic benchmark,
we have tested our prototypes with varying sizes of input. Our
results suggest that the prototype implementation of our program
slicing approach runs in quadratic time with respect to the number
of operations classified. Similarly, our results suggest that the
prototype implementation of our anti-unification approach runs in
exponential time with respect to the number of function clauses of
both the inspected function and the given pattern, but also that our
prototype implementation runs in linear time with respect to the
number of functions and patterns that are compared.

8. In section 4.6.2, we present parallel speedup results for our parallel
benchmarks. For all our experiments, we achieve maximum spee-
dups of 32.93⇥ sequential runtimes on our 28-core (56-core with
hyperthreading enabled) experimental machine, corryvreckan. This
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1. Introduction

shows that standard recursion schemes can be used to introduce
parallelism and that they can produces good speedups.

1.4 Publications

Some of the work presented in this thesis has been previously published
in a number of journal and workshop papers. In this section, we give
an overview of these papers and describe how this thesis expands upon
them.

In Search of a Map: Using Program Slicing to Discover Potential Parallel-
ism in Recursive Functions, Workshop on Functional High-Performance
Computing (FHPC), co-located with ACM International Conference on
Functional Programming (ICFP), Oxford, UK, pp 30–41. A. D. Barwell
and K. Hammond. In this paper, the author developed and presented the
program slicing approach that is described in Chapter 4. Results are also
presented. The author wrote the paper with K. Hammond assisting with
editing, and advised upon the presentation and correctness of definitions.
Chapter 4 extends this work by defining a refactoring to introduce map
operations, and presents additional examples.

Finding Parallel Functional Pearls: Automatic Parallel Recursion Scheme Detec-
tion in Haskell Functions via Anti-Unification, Future Generation Computer
Systems, 2017. A. D. Barwell, C. Brown, and K. Hammond. In this
paper, the author developed and presented the anti-unification approach
that is described in Chapter 5. Results, including those of the parallel
benchmarks, are included here. The author wrote the paper with C.
Brown assisting with editing the initial submission, and K. Hammond
assisting with editing the final version. Chapter 5 extends this paper by:
i) describing our prototype implementation; ii) introducing an approach
to discover instances of the unfold pattern; and iii) presents additional
examples, including an analysis of the time complexity of our prototype.
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1.4. Publications

Using Program Shaping and Algorithmic Skeletons to Parallelise an Evolution-
ary Multi-Agent System in Erlang, Computing and Informatics 35(4), pp
738–818, 2016. A. D. Barwell, C. Brown, K. Hammond, W. Turek, and
A. Byrski. This paper describes a case study that shows how refactoring
techniques can introduce parallelism in an Evolutionary Multi-Agent
System (EMAS). In this paper, we define novel refactorings, and apply
those refactorings to the EMAS, producing a parallel version. The author
defined and implemented refactorings to transform the code from sequen-
tial to parallel versions. The EMAS itself was developed and described,
and parallel results were provided by co-authors at the AGH Univer-
sity of Science and Technology in Krakow, Poland. The author wrote
the paper with the exception of the background section explaining the
EMAS, and the majority of the results section, outlining parallel results.
The experiments were also run by AGH. C. Brown and K. Hammond
assisted with editing the paper. We cite this paper in Chapter 2 as an
example of how refactoring techniques can facilitate the introduction and
manipulation of parallelism.

Towards Semi-Automatic Data-Type Translation for Parallelism in Erlang, ACM
Erlang Workshop 2016, Nara, Japan. A. D. Barwell, C. Brown, D. Castro,
and K. Hammond. This short paper proposes a refactoring approach to
the semi-automatic conversion of Erlang data-structures of one type to
an equivalent data-structure in another type. The proposed approach
uses program slicing to ensure that all expressions that depend upon
the translated data-structure are themselves translated accordingly. The
author developed the translation approach and wrote the original full
paper, with editorial assistance from C. Brown and K. Hammond. Once
accepted as a short paper, K. Hammond edited the original full paper to
its current length and form, taking information only from the original pa-
per. D. Castro presented the work at the workshop. We cite this paper in
Chapter 2 as an example of how static analysis techniques can be used to
guide the refactoring process, and ultimately tune parallel performance.
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The Missing Link! A New Skeleton for Evolutionary Multi-Agent Systems in
Erlang, IJPP, 2017. J. Stypka, W. Turek, A. Byrski, M. Kisiel-Dorohinicki, A.
D. Barwell, C. Brown, K. Hammond, and V. Janjic. This paper describes
the EMAS in [11] as a generic meta-heuristic framework that may be in-
stantiated for different context-specific examples. The author contributed
only the experimental results, and the descriptions thereof. AGH and
C. Brown wrote and prepared the majority of the paper, with additional
editing by K. Hammond.

Discovering Parallel Pattern Candidates in Erlang, ACM Erlang Workshop
2014, pp 13–23, Göteborg, Sweden. I. Bozó, V. Fordós, Z. Horvath, M.
Tóth, D. Horpácsi, T. Kozsik, J. Közegi, A D. Barwell, C. Brown, and
K. Hammond. This paper reports on the ParaPhrase Refactoring Tool
for Erlang. The tool is designed to inspect Erlang source code for par-
allelisable computations. Once found, the tool introduces algorithmic
skeletons from the Skel library [70], and profiles the produced parallel
code in order to find and introduce the optimal parallel configuration.
The writing of this paper was led by our co-authors at Eötvös Loránd
University in Hungary; the author contributed to the background section
on algorithmic skeletons and the development of the Skel library. We
discuss this technique in Chapter 3, and explain its relation to the work
presented in this thesis.

Using Erlang Skeletons to Parallelise Realistic Medium-Scale Parallel Programs,
High-Level Programming for Heterogeneous and Hierarchical Parallel
Systems (HLPGPU) 2017, Austria. V. Janjic, A. D. Barwell, and K. Ham-
mond. This paper reports on parallel speedup results achieved using
the algorithmic skeleton library, Skel, on three medium-scale Erlang pro-
grams. The writing of this paper was lead by our colleague Vladimir
Janjic at the University of St Andrews; the author contributed to the
introduction, conclusions, and background sections. The author also
contributed parallel results for the Image Merge example, and to their
presentation in the paper.
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Chapter 2
Existing Parallelisation

Approaches

For decades, Moore’s Law has allowed programmers to benefit from
performance improvements for free [43]. However, as sequential pro-
cessors have tended towards the physical limits of miniaturisation, we
have turned to replication in order to continue to find improvements
to performance [52]. Consequently, parallel hardware is now ubiquit-
ous [11]. Unfortunately, and unlike sequential processors, adding more
cores does not confer free performance improvements to programs [43].
The ability to take advantage of parallel hardware, and thus the potential
improvements to performance they represent via parallel programming,
has become a necessary skill for expert and average programmers alike.
Unfortunately, and unlike sequential programming, taking advantage
of parallel hardware requires the programmer to consider additional
coordination aspects; e.g. how a computation is decomposed, communic-
ated among, and synchronised across available processing elements [14].
Moreover, since parallel hardware is increasingly heterogeneous [8, 42,
70], and that each architecture has its own requirements, such as GPUs
needing to apply the same instructions to batches of data, writing paral-
lel programs that take advantage of all available hardware can further
complicate an already difficult parallelisation process [70].

Traditional approaches to parallelism, such as pthreads [28] or Parallel
STL in C++ [88], consist of low-level parallel primitives added to existing
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programming languages. They require the programmer to consider
all coordination aspects of parallelism. Due to the complexity of this
approach, these approaches are highly susceptible to errors; such as race
conditions, deadlocks, and livelocks [11, 14, 52]. In response, a range of
techniques have been developed to facilitate parallelisation, including
both fully-automatic and semi-automatic approaches, which we describe
in this chapter.

2.1 Automatic Approaches to Parallelisation

Automatic approaches to parallelisation seek to simplify parallelisation
for the programmer by removing the programmer from the equation.
The majority of automatic approaches focus on introducing low-level
parallel primitives transparently at compile-time in imperative languages.
Amongst others, these include: Lamport’s parallelisation of Fortran do-
loops [77]; Burke and Cytron’s improvements to the detection of nested
loops [26]; and Artigas’ approach for Java’s loops [5]. These approaches
generally use data-dependency information to work out which loops
can be parallelised, combined with profiling information to determine
whether parallelisation would be profitable [109, 116].

More recent approaches for automatic parallelisation have focussed
on the use of GPUs [54, 80] and the polyhedral model [6]. The polyhedral
model is a loop optimisation and parallelisation approach that represents
each stage in a (potentially nested) loop as a point in a lattice. This ex-
poses dependencies between lattice points, and so enables the reordering
of statements in the analysed loops to safely optimise their operation
and introduce parallelism [13]. One limitation of the polyhedral model,
is that it requires the AST of the loop to be translated into a specific
linear-algebraic form, and not all statements can be translated to this
form [13, 53].

Despite being generally desirable, automatic approaches to parallelisa-
tion are limited in a number of ways. Since these approaches are depend-
ent on complex program analyses, it follows that they can only inspect the
patterns in code to which their analysis can be applied. Moreover, extend-
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ing these analyses can be difficult; any program transformations must be
correct for all cases, for example. An automatic parallelising tool must
be trustworthy since the programmer cannot influence the introduced
parallelism; they should therefore introduce no errors, and they should
improve the performance of the parallel program. Another limitation of
automatic approaches is that they can often only introduce one type of
parallel structure, and normally for one type of architecture. Approaches
that use GPUs can expand the range of architectures automatic parallel-
isation approaches can use, but are still limited by both the structures
they can analyse and the structure of parallelism they can introduce.
Moreover, since automatic approaches often introduce low-level parallel
primitives, it can be difficult to easily swap between equivalent parallel
implementations. These limitations can reduce the amount of parallel-
ism that can be introduced to a program, and so potentially reduce any
performance gains that can be achieved.

2.2 Semi-Automatic Approaches to
Parallelisation

An alternative is to use programmer-in-the-loop, or semi-automatic, ap-
proaches. These can enable the programmer to see what parallelism
is being introduced, but also to affect the outcome. For example, in
1991, Kennedy et al. developed an editor that allowed the programmer
to inspect control and data dependencies in Fortran code and then in-
troduce parallelism via refactorings [75]. Since these approaches can
use the programmer as an oracle, Udupa et al. take a more speculat-
ive approach to parallelisation, where dependencies are broken without
guarantees of correctness [114]. Instead, the programmer must inspect
the suggested changes, and determine whether functional correctness is
maintained. Since these approaches introduce parallelism via low-level
parallel primitives and libraries, it remains difficult to swap between
parallel implementations and architectures. An alternative approach is to
raise the level of abstraction that is presented to the programmer.
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Functional programming has a long history with parallelism [12] and
can be used to abstract how programs are evaluated, so providing a clear
separation between algorithmic code and its evaluation behaviour [86].
Higher-order functions, in particular, facilitate the abstraction of behaviour
since e.g. context-specific functions can be accepted as input to functions,
such map, that denote how a data-structure is traversed, or how an op-
eration should be evaluated. Haskell, for example, is a lazy functional
language, meaning that evaluation to normal form occurs only when
a value is needed. The language is extended using Futures [86], rep-
resented by the par and seq operators, that allow the programmer to
indicate that a given operation can be performed in parallel. This concept
is not limited to functional languages, a similar technique can be found
in OpenMP’s pragmas, for example, where regions of code are declared as
parallelisable [34]. This allows the parallelism to be introduced transpar-
ently to the programmer, whilst still allowing the programmer to guide
how parallelisation occurs. Similarly, the Task Parallel Library [79] auto-
matically maps tasks to threads, but the programmer is responsible for
splitting and synchronising the data. Another approach by Calderon et al.
uses strictness analysis to automatically activate and deactivate, and in
some cases insert, par and seq operations in Haskell source code [110].
Both par and seq operators can be further abstracted in order to increase
the level of abstraction of parallelism presented to the programmer. The
Strategies Library [111], the Par Monad [87], NESL [16], GUM [112],
Eden [85], and the Accelerate library for GPUs [33], all present higher-
level primitives for introducing and manipulating parallelism. These
approaches allow the programmer to better control when and to what
level (e.g. normal form) an operation will be evaluated. While these ap-
proaches are higher-level than traditional parallel primitives and libraries,
they still require the programmer to coordinate the mapping of tasks to
threads and communication between those threads.

These coordination aspects can be abstracted away by using (embed-
ded) domain-specific languages (DSLs). Feldspar [8] is one approach
for Haskell that is designed to allow the programmer to describe high-
level and platform-independent descriptions of digital signal processing
(DSP) algorithms, compiling them to C. Similarly, RPL by Janjic et al.
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is designed to express the (parallel) structure of a C++ program in a
simplified way, effectively separating what the program does from how
it does it [71]. RPL is extended with a series of refactorings that work
either directly on the C++ source code, or on its RPL representation. To
guide the application of these refactorings, recipes are presented to the
programmer to suggest how an optimal parallel configuration can be
introduced. Aldinucci’s META tool [3] is similar to RPL, but instead
presents the (parallel) structure of a program as a graph. Transform-
ations applied to the graphical representation are similarly applied to
the underlying source code. The META tool is presented for a generic
target-language. DSLs present a simplified interface that the programmer
can use to reason about structure and program transformations when
introducing parallelism. Whilst this is advantageous, it follows that the
source and target language likely need to be transformed to the DSL,
which must be expressive enough to describe all possible parallelism in
the source and target language(s), and whose syntax must be learnt by
the programmer. If the high-level information exposed by DSLs can be
encoded into the language itself, these potential problems can be avoided.

One technique that achieves this is the concept of algorithmic skeletons.
Introduced by Cole in 1988 [38], skeletons are a structured approach to
parallelism that present implementations of high-level patterns to the
programmer. Skeletons abstract away low-level mechanics of parallelism
that are a common source of error; e.g. process management, communic-
ation, locks, and synchronisation [39]. Since skeletons can be nested and
composed, even a small set of skeletons can represent a wide range of
parallel structures [31]. Moreover, a single skeleton may have multiple
implementations, including implementations in various languages [12],
and for heterogeneous [70] or high-performance parallel systems [42], which
may involve massive numbers of processors, of possibly different types.

In functional languages, skeletons are often implemented as higher-
order functions [9]. This allows them to be initialised with any context-
specific sequential code, nested skeleton instances, and parameters that
are required by the skeleton. Implementations of skeletons may be
collected in algorithmic skeleton libraries, allowing the programmer to call
skeletons like any other function. A wide range of skeleton libraries
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have been developed for a number of programming languages since
their introduction in 1988. Some skeleton libraries include: Skel for
Erlang [69]; the Strategies library [111], the Par Monad [87], Eden [85],
and Feldspar [8] for Haskell; FastFlow [72] for C++; Microsoft’s Parallel
Patterns Library [29]; and Intel’s Threading Building Blocks library [40].
Other skeleton libraries are available, with the study by González-Vélez
in 2010 listing at least 22 [50]. Similarly, a range of skeletons has been
developed; including, but not limited to: a pipeline skeleton, a task farm,
and a feedback skeleton.

A parallel pipeline (Figure 2.1) applies a sequence of skeletons, s1, . . . , sn,
in turn to a stream of independent inputs, x1, . . . , xn, where the result
of si is passed as input to si+1. Parallelism arises from the fact that
each si(xj) can be performed in parallel with si+1(xj+1). A task farm,
or parallel map, (Figure 2.1) applies a skeleton, s, to each element in a
stream of independent inputs, x1, . . . , xn. Parallelism arises from the fact
that each s(xi) can be performed in parallel with all other s(xj). Finally,
feedback allows looping operations. It repeatedly applies a skeleton,
s, to each independent input in a stream, until a given condition is
reached. Skeletons can additionally represent context-specific sequential
code, usually in the form of functions. Consequently, nested skeletons
are either: i) context-specific sequential code, or ii) another skeleton
instance. Other skeletons are possible, including skeletons that can be
formed as combinations of other skeletons; e.g. Divide-and-Conquer [50],
Branch and Bound [50], Bulk Synchronous Parallelism (BSP) [97], and
the butterfly pattern [96].

Despite the benefits of abstraction, skeletons are limited by the re-
quirement that the programmer knows which skeletons should be called,
where they should be called, and what parameters should be passed to
them. The RPL approach by Janjic et al. [70], uses profiling information
to determine the optimal configurations of skeletons for a given program,
and then suggests how they might be introduced via the built-in refactor-
ings [70]. However, this approach requires the use of the DSL itself, and
the recipes only focus on the immediate introduction and configuration
of the skeletons. Other approaches also use profile information to sug-
gest where in the source code a program might benefit from parallelism,
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Figure 2.1: Three example algorithmic skeletons: a parallel pipeline, a task
farm, and a feedback.
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and with what configuration of skeletons. Hammond et al. present a
profiling approach to automatically derive skeleton configurations for
EDEN, using Template Haskell to automatically change configurations at
runtime [57]. Similarly, Scaife et al. developed a parallelising compiler
for SML that replaced map and fold operations by equivalent skeletons,
using profiling to determine which map and fold operations should be
replaced [107]. More recently, Castro et al. have combined dependent
types, the laws of hylomorphisms, and cost models to automatically
derive the optimal configuration of skeletons [31, 32].

While profiling and cost models can be used to suggest where in the
source code a program might benefit from parallelisation, and can be used
to determine an optimal configuration of skeletons, these approaches do
not consider how an arbitrary program might be restructured to facilitate,
or even enable, the introduction of skeletons. Recent work considers how
refactoring techniques can be used to facilitate the restructuring of source
code to introduce skeletons.

The term refactoring was introduced by Opdyke in his thesis [98], but
the concept goes back as far as Burstall and Darlington’s fold/unfold
system [27]. Refactoring commonly refers to the act of changing the
internal structure of a program without changing its functional beha-
viour [19]. While such transformations can be performed mechanically, a
range of refactoring tools have been developed for a number of languages
and IDEs [17, 18, 58, 60, 71, 83, 91]. This reduces the opportunity for
error since a refactoring tool can ensure that the correct code is trans-
formed. Whilst the majority of refactoring tools have been developed
for imperative languages, some refactoring tools do exist for functional
languages. These include: Wrangler [83] and RefactorErl [17] for Erlang,
and HaRe [18] and Haskell Tools [58] for Haskell. Common refactorings
include: rename, where a variable, function, or module is renamed, and
all instances are correctly changed; lift function, where a new function is
declared and the selected code is lifted into the body that function; and
inline, which takes a function or variable name and replaces an instance
of that name with its definition.

Refactoring can be seen as an abstraction over low-level transform-
ations, and individual refactorings can be combined to produce more
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complex refactorings [81]. In [43], Dig discusses how refactoring can be
used to facilitate the introduction and management of parallelism. A sim-
ilar approach has been taken by Brown et al. in [19], where they introduce
and manipulate skeletons using a series of refactorings and the Erlang
refactoring tool, Wrangler. Brown et al. define four novel refactorings
to introduce three skeletons using the Skel library, and to group inputs
to increase granularity. Cost models are used to evaluate how well the
introduced parallelism performs. Refactorings can be applied multiple
times, and can be undone should a refactoring reduce parallel speedups.
Both refactorings and Skel were extended in 2015 by Janjic et al. to enable
the use of GPUs [70]. Here, Skel is extended with skeletons that utilise
GPUs, and refactorings are defined to introduce the new skeletons, and
also to generate the GPU kernel code. This approach is not limited to
Erlang, with Brown et al. demonstrating how refactoring can be used to
introduce skeletons in Haskell [22] and C [20].

These refactorings focus primarily on the immediate introduction
and manipulation of skeletons. Since parallelisable code may not be
immediately obvious, it is often necessary to first restructure code to
facilitate, or even enable, the introduction of skeletons. In [11], the au-
thors demonstrate how standard refactorings can be combined with those
defined by Brown et al. in order to restructure an Evolutionary Multi-
Agent System in Erlang. While this demonstrates how refactorings can be
combined to introduce parallelism, it does not discuss how a programmer
should know which refactorings to apply, where to apply them, and in
what order. External guides, such as documentation or design patterns
in object-oriented languages [103], are thus required. Li and Thompson
demonstrate how to introduce patterns of concurrency in Erlang pro-
grams using program slicing to guide the refactoring [82]. This approach
does not use algorithmic skeletons but the concurrency primitives of Er-
lang, and does not provide any guarantee that any concurrency can lead
to parallel speedups. Similarly, the authors in [10] suggest how program
slicing can be combined with refactoring to direct type transformations
in Erlang programs. While this approach can tune parallelism, it does not
introduce it or discover where it might be introduced.
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2.3 Summary

Parallelisation allows programmers to take advantage of the increasingly
parallel and heterogeneous systems that are now ubiquitous in order
to increase the performance of programs. Simplifying traditional, low-
level approaches to parallelisation has been the focus of much work,
including both fully-automatic approaches described in Section 2.1 and
semi-automatic approaches described in Section 2.2.

For this thesis, we have chosen to use algorithmic skeletons for paral-
lelisation since skeletons support a wide range of parallel structures and
can be expressed using a small set of patterns. Additionally, skeletons can
have multiple implementations, and so both a wide range of hardware
and a wide range of underlying approaches can be taken advantage of
easily. This also facilitates switching between different implementations
and architectures. Since parallel patterns are language independent, any
techniques that build upon skeletons are also more likely to be language
independent, as well as simplifying the understanding of parallel pro-
gram structures. Relatedly, and since skeletons can be reasoned about,
the optimal configuration of skeletons can be discovered automatically.
Finally, since skeletons are an explicit approach to parallelism, the pro-
grammer can inspect and affect the introduction of parallelism, meaning
the approach is more flexible than fully-automatic techniques.

Despite the advantages of algorithmic skeletons, they must neverthe-
less be introduced to the program, a problem that is often non-trivial
and is not considered by skeleton approaches. Although refactoring
techniques can be used to aid the restructuring of programs in order to
facilitate the introduction of skeletons, as the number and complexity of
refactorings increases, the original problem of introducing refactorings
is merely converted to a problem of knowing which refactorings to use.
Consequently, alternative approaches must be sought to automatically
determine where in a program that skeletons can be introduced. The
automatic identification of loci of potential parallelism will simplify and
further automate the parallelisation of a wider range of programs, allow-
ing potentially significant performance gains to be achieved simply and
automatically.
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Chapter 3
Automatic Pattern Discovery for

Parallelisation

In order to facilitate and further automate the introduction of parallelism
via algorithmic skeletons, we must overcome the challenge that is determ-
ining where in a program that they can be introduced. Since skeletons
are often implemented as higher-order functions in functional languages,
we can take advantage of equivalences between skeletons and sequential
recursion schemes, such as map or fold. Instances of recursion schemes
can be treated as loci of potential parallelism, and can be swap-replaced
with calls to equivalent skeletons to introduce parallelism. The decision
of whether a scheme instance, or pattern, is worth parallelising can be
determined through the use of cost models or profiling techniques [107].
Moreover, we can also determine an optimal parallel configuration us-
ing equivalences between skeletons, or parallel patterns, to enumerate a
range of possible options, that can be compared using cost models or pro-
filing techniques [31, 32]. While this is possible using an arbitrary pattern,
since some patterns are specialisations of others, such as map and foldr,
and since specialisations more closely reflect the traversal behaviour of a
specific instance than more general patterns, it follows that it is desirable
to choose specialised patterns over more general patterns. This encoded
information can then be used by e.g. [31] to more accurately discover
an optimal parallel configuration. Since there is no guarantee that all
possible patterns will occur in a given program, or that specialisations
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will always be chosen over their more general forms, it is useful to detect
patterns in code automatically. A number of approaches to automatic
pattern discovery currently exist. The majority of these have their roots
in the Bird-Meertens Formalism [15], and calculate instances of patterns
from functions. We refer to these as program calculational approaches, and
discuss these in Section 3.1. Non-calculational approaches also exist, and
we discuss these in Section 3.2.

3.1 Program Calculation Approaches

Since functional languages provide a good foundation for equational
reasoning [115], a number of approaches have been developed based on
the Bird-Meertens Formalism [15] to transform programs using a calcula-
tional approach. This is similar to the Worker/Wrapper transformation
technique described by Gill and Hutton [49], which allows the type of
data structures and operations to be transformed to allow more efficient
accesses. Most calculational approaches to automatic pattern discovery
are based on the Third List Homomorphism theorem, or the discovery of
another general recursion scheme, hylomorphisms. We discuss both in the
below sections.

3.1.1 Using the Third List Homomorphism Theorem

The Third List Homomorphism theorem states that given functionally
equivalent leftwards and rightwards folds that express the same opera-
tion, then the operation is associative and commutative, and can therefore
be performed as part of a divide-and-conquer pattern [46]. In this basic
form, list homomorphisms require two sequential fold implementations
of the same operation. This is limiting in two ways: i) two fold defini-
tions are required for the same operation; and ii) not all interesting list
functions, such as maximum segment sum, are expressible as list homo-
morphisms. In order to address these limitations, Geser and Gorlatch
present an approach that uses anti-unification to derive list homomorph-
isms from two pure explicitly recursive functions: one defined using
cons-lists, and one defined using snoc-lists [45]. This approach is also

26



3.1. Program Calculation Approaches

able to produce list homomorphisms from almost homomorphisms such as
maximum segment sum. Since all functions that traverse a single list can be
represented as almost homomorphisms [51], the ability to discover almost
homomorphisms means that, in principle, all such recursive functions
can be represented as a list homomorphism. Anti-unification compares
the structure of two functions, to produce a third function, known as the
anti-unifier, that represents the shared structure, and two sets of substitu-
tions that represent the rewrites needed to restore the original functions
from the anti-unifier. Geser and Gorlatch apply anti-unification twice,
and use a calculational approach to derive function definitions that com-
prise the list homomorphism. While this approach is able to discover list
and almost homomorphisms from explicitly recursive functions, it still
requires two equivalent sequential functions, only applies to functions
that traverse single lists, and the conversion of almost homomorphism to
list homomorphism uses a projection function that introduces additional
overheads.

Morita et al. address the requirement of two equivalent sequential
definitions by calculating weak right-inverses, or rightwards folds, from left-
wards folds [94]. While this simplifies some cases, leftwards definitions
must be in a stylised form, and some of the requirements preclude the
discovery of obvious examples; e.g. length since the approach assumes
that result of the generated weak right inverse is a list of constant length.
An alternative approach is presented by Hu, Iwasaki, and Takechi [62].
The authors use program calculation to discover list homomorphisms
from a single explicitly recursive function that traverses a single list. The
approach is able to discover almost homomorphisms from mutually re-
cursive functions. The authors also claim that their approach is extensible
to trees but do not demonstrate this. A similar approach is presented
by Chin, Takano, and Hu, that also synthesises the projection function
using calculational techniques [36]. Chin et al. also present a calculational
approach to derive parallel forms for specialisations of catamorphisms,
i.e. folds, and paramorphisms, i.e. folds that remember the substructures
used to produce the accumulated result. Hu, Takeichi, and Chin extend
this parallel form derivation to derive parallel functions from a wider
range of function definitions, and are able to introduce both list homo-
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morphisms and mutumorphisms [63]. A mutumorphism is a collection of
functions that are mutually recursive. Whilst these approaches represent
an improvement, they remain limited by the range of patterns that they
can discover, and both derive and introduce parallel forms as part of
their operation. The derived patterns are unique, and switching between
different parallel implementations of patterns is likely to prove difficult.
Once again, the authors of these approaches claim that the technique is
extensible to data types other than lists, but this is not shown, and is
likely to require significant time and effort of anyone who chooses to
extend the approach.

Where the above techniques are based on calculational approaches
that have been proved sound, Chi et al. synthesise list homomorphisms
from proofs of associativity using a proof assistant [35]. Unfortunately,
this approach means that it is difficult to extend to other languages since
it would require translations between the program language and the
proof assistant language.

One key limitation of approaches that are based on list homomorph-
isms is the range of patterns that they are able to introduce. Approaches
thus far have only been able to introduce list homomorphisms, and in
mutumorphisms in [63]. Mu and Morihata address this limitation, and
extend the calculational approach to discover unfold instances for func-
tions that generate lists [95]. This facilitates the translation of arbitrary
data types to lists, and enables examples that handle sub-lists such as
those found in the standard quicksort definition; i.e.

1 qsort [] = []

2 qsort (x:xs) = (qsort leq) ++ [x] ++ (qsort gt)

3 where leq = filter (=<x) xs

4 gt = filter (>x) xs

Since quicksort is not structurally recursive, it cannot be described as a
fold. Supporting unfold operations also enables data to be distributed
more efficiently since data that can be generated can be sent to a process
and then expanded to their full lists. This is demonstrated by Liu, Hu,
and Matsuzaki by applying the the list homomorphism approach to
Google’s MapReduce skeleton, showing that the structure/divide-and-
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conquer pattern introduced/enforced by homomorphisms can be useful
and automatically adjusted for a range of hardware/systems [84].

Where the unfold pattern can be used to translate arbitrary types to
lists, an alternative approach is to extend list homomorphisms to other
types, such as trees. Morihata et al. generalise homomorphisms on trees,
using upwards- and downwards-folds instead of the usual leftwards-
and rightwards-folds [93]. This approach uses zippers [67] to divide trees
into lists of subtrees and find the list homomorphism over that zipper. It
could therefore be argued that the approach presented in [93] translates
data types to lists, but as part of the homomorphism approach, instead
of being left as an exercise to the programmer. Both unfold and zipper
translation approaches introduce additional runtime overheads.

Conversely, Diffusion [64] has been shown to be extensible to binary
trees without requiring translation. Simple diffusion is based on the
third list homomorphism principle, but is described as being too limiting.
The full diffusion approach can discover map, fold, and scan patterns
using calculation. The approach can also be extended by combining it
with external normalisation procedures, since explicit function definitions
need to be presented in a stylised form in order to successfully find the
recursion schemes. Although Diffusion expands the range of discover-
able patterns to include specialisations of fold, it cannot discover more
general divide-and-conquer patterns like other calculational approaches.
Since Diffusion is also a deforestation technique, it may remove patterns
from code in addition to exposing them. While this may optimise se-
quential programs, it can reduce opportunities for parallelism in parallel
programs [36, 41].

A similar approach, introduced by Launchbury and Sheard, uses
standard fusion techniques in combination with a dynamic set of rewrite
rules to discover folds in source code [78]. Once again, extending this
approach to other patterns is likely to be difficult, and whilst folds
are useful, more specific forms, or other forms of patterns can also be
useful in deriving the optimal configuration. Finally, and since fusion
is another deforestation technique, it too can reduce opportunities for
parallelisation.

The large amount of work on list homomorphisms has produced
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a comprehensive approach to automatically discovering homomorph-
isms. Despite this, a number of general limitations remain. As the name
suggests, list homomorphism approaches are primarily concerned with
the discovery of list homomorphisms. Some approaches have extended
this to other patterns, including mutumorphisms, specialisations such as
map, and unfold, but these still represent a limited subset of patterns.
Moreover, as these extensions demonstrate, extending the approach fur-
ther to other patterns is a difficult challenge. Another limitation of list
homomorphism approaches is the range of functions they are able to
analyse. Whilst the ability to convert almost homomorphisms to list
homomorphisms expands the range of analysable functions, this range
is still limited to explicitly recursive functions that traverse a single list.
Moreover, transforming almost homomorphisms to list homomorphisms
introduces additional overheads. The extensions to trees and other pat-
terns are similarly limited with respect to analysable functions, and also
introduce additional overheads. Extensibility, range of analysable func-
tions, and range of discoverable patterns all limit the number and range
of patterns that can be discovered, and therefore limits possibilities for
parallelism.

3.1.2 Hylomorphisms

A hylomorphism is a more general expression of a divide-and-conquer
skeleton. They comprise a combination of an unfold and a fold.

hyloF f g = f � F (hyloF f g) � g

Here, g describes how the input is split (i.e. an unfold) and f de-
scribes how it is combined (i.e. a fold). The hylomorphism is indexed
by the bifunctor, F, that defines the (un)folding operations. Morihata
demonstrates how hylomorphisms can be used as a generalisation of
the list-homomorphism theorem, and is used to produce good parallel
speedups [92]. Similarly, Castro et al. demonstrate how the hylomorph-
ism laws can be used to calculate equivalent parallel configurations [31],
and when extended by cost models, can be used to discover optimal
parallelisations [32].
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Despite hylomorphisms being more general than list homomorphisms,
and so allowing them to represent arbitrary data-types and a wider
range of operations without producing additional overheads through
projection functions and translations, they are not a standard recursion
scheme. This limits their usefulness as loci of potential parallelism.
Moreover, they are often represented in very stylised forms and/or
programming styles, such as point-free. To address this, Hu, Iwasaki,
and Takeichi present an approach to derive structural hylomorphisms
from recursive definitions [61]. Entire functions are rewritten using
program calculation techniques to represent the transformed functions
as hylomorphisms. No inverse transformation is presented, and since
the entire function is used, near patterns cannot be found. As a result,
hylomorphisms cannot be transformed back into explicit recursive style,
and some normalisation may be necessary in order to first discover those
hylomorphisms. Moreover, this approach finds only hylomorphisms, and
not any specialised forms, e.g. map. In Castro’s thesis [30], he presents an
alternative approach that automatically calculates the fold and unfold

parts of hylomorphisms from an explicitly recursive function using the
Applicative functor. Castro does provide a means to restore to a standard
form, but again, this can only expose hylomorphisms that are in a specific
form. Near patterns, or code that could be written as a hylomorphism,
but isn’t, will not be found.

Whilst hylomorphisms present a generalisation over list homomorph-
isms, the relative lack of work on hylomorphisms means that current
approaches to discovering hylomorphisms are very limited. The range
of functions that can be analysed and rewritten must be instances of
hylomorphisms, and once again, only hylomorphisms can be discovered.

3.2 Non-Calculational Approaches

Three non-calculational approaches exist for automatic pattern discovery
in functional languages. The first of these uses a combination of heur-
istics, profiling, and refactoring techniques to discover and introduce
parallelism in Erlang code [17]. While, unusually, this approach works
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for impure code, it is limited to discovering and introducing map and
pipeline skeletons. The range of patterns it is able to discover is limited by
the heuristics encoded into the system, where the presented heuristics are
relatively simple near patterns. Moreover, this approach is limited to only
two patterns. Since it introduces skeletons, it is at least simple to swap
the introduced skeletons for alternative implementations. Extending this
approach to other patterns is a difficult process, as demonstrated in [76],
which extends the approach to discover divide-and-conquer patterns.
Since this extension is based on the same heuristics approach, it shares
the same limitations.

An alternative approach is presented by Ahn and Han in [2]. This
approach uses program slicing to categorise subexpressions of explicitly
recursive functions according to the pattern in which their computation
may be performed. It is able to discover instances of map, fold, scan,
and zip patterns for a first-order language. Extending the approach to
other patterns is likely to be non-trivial. The functions this approach
can analyse is similarly limited, where each constructor of the traversed
data type must be matched by exactly one clause, and functions must
have exactly one argument. One advantage of this approach, however,
is its ability to analyse individual expressions and whether they can
be performed as part of a pattern. All other current approaches to
automatic pattern discovery analyse functions, such that entire functions
are instances of a particular pattern.

The final non-calculational approach is similar to the synthesis-via-
proof approach in [35]. In his thesis, Cook defines a technique that uses
a combination of proof planning and higher-order unification [41]. Cook
implemented his approach in the theorem prover lClam, and discovers
higher-order functions in ML code that could then be parallelised using
the parallelising compiler designed by Scaife et al. [107]. Cook’s approach
focusses on both the range and permutations of discoverable patterns;
employing a backtracking algorithm, the technique is able to find mul-
tiple configurations of recursion schemes for each function inspected.
Demonstrations of the approach include finding map, foldr, foldl, and
scanl instances, with implementations defined for lists. By implement-
ing his approach in a theorem prover, each of Cook’s transformations

32



3.3. Summary

carry inherent proofs of functional equivalence. Cook’s implemented
approach requires translation from ML into lClam and vice versa; is
defined for recursion schemes over lists only; and only considers simple
induction over a single argument. The approach cannot discover coin-
ductive, e.g. zip, or corecursive structures, e.g. unfold. It is likely to
be non-trivial to extend this approach to other patterns, both including
coinductive and corecursive patterns. An additional complication of this
approach originates from the use of higher-order unification. In general,
higher-order unification is an undecidable problem [66]. Semi-decidable
formulations of higher-order unification have been developed [44], and
have proven effective in a number of applications [65], but impose re-
strictions on the structure of functions that can be analysed. This is in
addition to the inherent restriction that the inspected function must have
a very similar structure to the pattern being searched for.

A more recent implementation of the higher-order unification ap-
proach is presented by Kannan in his thesis [74]. Kannan is primarily
concerned with automatically introducing parallelism in functional pro-
grams, and so pattern discovery is presented as only a minor part of the
approach. Indeed, Kannan’s approach to pattern discovery is a combina-
tion of Distillation [55] and higher-order unification. Despite enabling a
wider range of analysable functions, and as described in Section 3.1, the
use of Distillation can remove patterns and therefore potentially reduce
opportunities for parallelism [36, 41]. Here, higher-order unification is
used to compare ASTs of Distilled functions with ASTs of skeletons. The
range of skeletons that are introduced by this approach is also limited,
and is difficult to extend. The skeletons provided are defined for tra-
versals over lists only, and therefore operations that traverse non-list
data-structures must be first translated, thereby introducing overheads.

3.3 Summary

With the development of pattern-based approaches to parallelism, recent
decades have seen a lot of work on automatic approaches to pattern dis-
covery. The majority of these approaches have focussed on the discovery,
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introduction, and parallelisation of list homomorphisms via program
calculational approaches. These approaches are generally limited by the
range of functions they can analyse, i.e. functions that traverse a single list,
and by the pattern they introduce. Functions that traverse non-list data
types must be converted to lists, and almost homomorphisms must be
converted to list homomorphisms using a projection function; both intro-
duce runtime overheads. Finally, extending the range of patterns that are
discoverable is non-trivial and takes significant amounts of programmer
time and effort. Other program calculational approaches have focussed
on the discovery of hylomorphisms in code. Since hylomorphisms have
received less interest, the range of functions that can be rewritten as
hylomorphisms is very limited. Indeed, near hylomorphisms cannot be
found using current techniques. Non-calculational approaches to pattern
discovery are also limited. Heuristics-based approaches are difficult to ex-
tend, and highly specific to languages. Program slicing is introduced as a
means of automatic pattern discovery, and while it enables the inspection
of individual expressions instead of whole functions, it requires ana-
lysed functions to have a particular structure, and expanding the range
of patterns it can discover is non-trivial. Finally, approaches that use
higher-order unification are, in principle, able to discover a wide range of
patterns, including specialisations of more general patterns, but cannot
discover simultaneously inductive and corecursive patterns. Moreover,
these approaches require that extensive normalisation is performed prior
to comparing the structures of the inspected function and a given pattern.
This is effectively a restriction on the range of analysable patterns.

Current approaches to automatic pattern discovery are therefore
primarily limited by the range of functions that they can analyse, and by
the range of patterns that they can detect. While the range of functions
that are analysable can be mitigated, often this results in other limitations
or introduced overheads. The limited range of patterns is a greater restric-
tion, where most current approaches can find only one generic pattern,
or a few specific patterns. No current approaches are easily extensible
to the point where a programmer can discover arbitrary patterns in a
program.
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Chapter 4
Automatic Pattern Discovery via

Program Slicing

In this chapter we describe a novel approach to discover computations in
recursive functions that can be performed as part of a fixpoint function of
a call to map. Explicit calls to map are effective loci of potential parallelism,
provided that all mapped computations are independent [12]. Program
slicing [117] can be used to statically inspect how the values of variables
change between recursive calls in a function. Furthermore, by inspecting
how values of variables change between recursive calls, it is possible to
determine which computations occur independently, and so can be lifted
into a map operation.

Section 4.1 gives an overview of the approach using a simple example
to illustrate each stage. Section 4.2 defines a simple expression language
that we use as the basis of our analysis, and describes the assumptions
that are required for the technique to work. Section 4.3 presents the
method for classifying computations in recursive functions that can then
be potentially lifted into a map operation. In Section 4.3.2, we define
a novel program slicing algorithm to aid classification of variables and
operations. Section 4.4 describes the implementation of our approach in
Erlang. Section 4.5 defines a composite refactoring that enables automatic
rewriting of inspected functions. Section 4.6 describes our experiments
and results. Finally, in Section 4.7, we discuss the strengths and weak-
nesses of the presented approach.

35



4. Automatic Pattern Discovery via Program Slicing

The core content of this chapter was published in the 2017 Workshop
on Functional High-Performance Computing (FHPC) [12].

4.1 Illustrative Example

This chapter assumes the existence of a parallel map skeleton, such as
those presented in Section 2.2, that can be swap-replaced for the standard
sequential map operation over lists. Multiple parallelisations are possible;
e.g. parList from the Haskell Strategies library [111], parMap from
the Par Monad [87], or using GPUs via the Accelerate library [33]. The
parallel map skeleton can be used to safely plug-replace any standard use
of map, provided that all mapped computations are independent.

Consider a simple Haskell Sudoku solver, sudoku, that solves a list
of Sudoku puzzles [86].

1 sudoku [] = []

2 sudoku (p:ps) = solve p : sudoku ps

Here, sudoku is implicitly sequential: using the function solve, it solves
each puzzle, p, in turn. It also contains no map operations that can be
used as loci of potential parallelism. However, the function application
expression, (solve p), could, in fact, be performed independently on
each element of the input list, (p:ps). The application of solve might
therefore be lifted, perhaps by lambda lifting [73], outside the body of
sudoku. Its result can then be passed as an additional argument to the
helper function, sudoku’, derived as part of the lambda lifting.

1 sudoku ps =

2 sudoku' ps (map solve ps)

3 where

4 sudoku' [] [] = []

5 sudoku' (p:ps) (q:qs) = q : sudoku' ps qs

Since sudoku’ reconstructs the result of the introduced map operation,
sudoku can be further simplified, perhaps by refactoring, to remove
sudoku’:
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1 sudoku ps = map solve ps

It is then easy to introduce parallelism to sudoku by replacing the newly-
introduced map operation with a parallel equivalent, e.g. parMap from
the Par Monad [87].

1 sudoku ps = runPar $ parMap solve ps

Here, runPar runs a parallel computation and returns its result, and
parMap spawns a child process for each input.

As in the above example, the approach described in this chapter in-
spects application subexpressions that are not recursive calls, hereafter
operations, to see if they can be performed as part of a fixpoint function
passed to a map. In the above example, sudoku had one operation,
(solve p), and that operation could be lifted into a map. Whether an
operation might be lifted out of a recursive function and then parallelised
depends solely on: i) function arguments occurring as subexpressions
in the operation; and ii) how the values of arguments to the recursive
function differ between the stages of recursion. In sudoku, for example,
the list argument reduces by one element with each recursive call. This
can be considered a form of dependency analysis, a topic that has been
heavily studied. For example, control- and data-flow analyses [4] are
well-known techniques for calculating dependencies between individual
statements of a program, and can be used to produce a Program Depend-
ence Graph, or PDG. Applying standard control- and data-flow analyses
to sudoku might produce a graph similar to Figure 4.1. This graph
does not immediately reveal how the values of variables change between
recursive calls, or which operations can be lifted.

Program slicing is a technique that is used to extract all the program
statements that may influence, or may be influenced by, a given statement
from the same program, the slicing criterion [106]. Whilst there have
been many variants of program slicing since Weiser first introduced the
concept in 1981 [117], generally, a (static) slice is calculated using a PDG.
Once the PDG of the given program has been calculated, the slice itself is
produced by taking the vertex representing the criterion and, depending
on the specific algorithm, following the edges that lead to it, that lead
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sudoku

c1auses

sudoku [] sudoku (p:ps)

pats body pats body

[] [] (:) (:)

p ps solve psudoku ps

Figure 4.1: Program Dependence Graph for sudoku; control-flow in
black, data-flow in blue.

from it, or perhaps both. The slice can then be presented in a number of
ways, most commonly as the program where all statements that are not
in the slice are removed. For example, the slice of sudoku, with criterion
p, is:

1 sudoku _ = undefined

2 sudoku (p:_) = solve p : undefined

Figure 4.2 shows the PDG of sudoku with the node representing the
criterion, and all nodes reachable by travelling up control-flow arrows
and down data-flow arrows from the criterion, highlighted in red. The
sliced definition of sudoku includes those nodes in the slice; any node
that is not in the slice is represented by the wildcard pattern, (_), or by
undefined, indicating its removal from the definition.
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sudoku

c1auses

sudoku [] sudoku (p:ps)

pats body pats body

[] [] (:) (:)

p ps solve psudoku ps

Figure 4.2: Program Dependence Graph for sudoku; control-flow in
black, data-flow in blue; slice with criterion p in red.

Slicing might therefore be thought of as a narrowing of focus on only
the slicing criteria, the any related expressions, and with all the irrelevant
parts stripped away. For the purposes of this chapter, however, in the
interest of determining how arguments are used and updated, the slice can
be narrowed further, and so make the decision of whether an operation
may be lifted into a map operation easier. A slice only needs to be a set
of variables, where inclusion in the slice indicates use, and annotated
inclusion in the slice indicates update. Taking a slice of sudoku, with
criterion p, now produces the slice {p}, indicating its use as an argument
to solve, and non-update in the recursive call; i.e. that same p is not
accessed in any successive recursive calls. A slicing criterion can be a
set of expressions; e.g. a slice of sudoku with its first argument, i.e. [] in
Line 1 and (p:ps) in Line 2, as a slicing criterion produces: {p,ps}.
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Formal definitions of both usage and update classifications are given
in Section 4.3; but we provide an intuition here. To determine how
arguments are used and updated, function arguments are used as slicing
criteria. A slice is taken for each argument. A variable, vi, where vi is the
ith function argument declared, is used if it appears as a subexpression
in the definition of the inspected recursive function, except in the case
where that variable is passed as the ith argument to a recursive call. For
example, given the definition of elem, which returns True if some a is
an element in a list,

1 elem a [] = False

2 elem a (x:xs) = if a == x then True else elem a xs

a, the first declared argument, is used because it exists as an argument to
the infix equality check. Conversely, without the infix equality check,

1 elem a [] = False

2 elem a (x:xs) = elem a xs

a is not considered used. The right-hand side of the equation in Line 2
comprises a recursive call, and a is passed as the first argument. Unless
a is to be updated, a must be passed to all recursive calls to preserve its
value.

Although variables in a functional language such as Haskell are
immutable, and each function application binds new values to each of its
arguments, the differences in the value of a specific argument between
successive recursive calls are deemed changes to the corresponding bound
variables. A change to the value of the argument vi, is considered to
be significant, and therefore vi is considered to be updated, when the ith

argument of some recursive call is not:

1. vi itself, or a variable declared by case-splitting vi;

2. syntactically equivalent to vi; nor

3. a cons-expression that prepends an expression to vi (or its syntactic
equivalent).
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In sudoku, for example, the recursive call takes the tail of the list argu-
ment, i.e. ps, which is declared by (implicitly) case-splitting on the list
argument. Consequently the list argument is not considered to be updated.
Similarly, the list argument to elem is not considered updated for the
same reason. Finally, a, the first argument declared in elem, is also not
considered to be updated because the first argument to the recursive call
is a itself. Finally, consider the definition of sum, which accumulatively
sums a given list:

1 sum x [] = x

2 sum x (y:ys) = sum (x+y) ys

Here, x is considered to be updated since the first argument to the recursive
call in Line 2 is not: i) x itself or a variable declared by case-splitting x;
ii) syntactically equivalent to x; or iii) a cons-expression that prepends
an expression to x. The slice of sum, with criterion x, is: {x, x̄}, where x̄
denotes that x is updated.

If an argument is used and not updated, as for all arguments in sudoku

and elem, it follows that the argument can be referred to in some map
operation independently of each input. Similarly, if the argument is up-
dated but not used, it can be updated in some map operation independently
of each input. For example, when constructing state in a monad. In
either of these cases, the argument is considered clean. However, when an
argument is both used and updated, it indicates that the usage and update
of the variable is not independent of the other stages of the recursion.
For example, in sum, x is considered to be both used and updated. This
indicates that x depends upon at least one other element in the list to
produce a new value, which is propagated through the recursion. Any
function using such a variable, e.g. (+) in sum, cannot be safely lifted
into a map operation, and that variable is considered to be tainted.

Having determined for each argument in a recursive function whether
they are clean or tainted, each operation within that same function defin-
ition can be inspected to see whether it can be safely lifted into a map

operation. An operation can be lifted into a map operation, deemed
unobstructive, when none of its arguments contain as a subexpression a
tainted variable or a recursive call. Otherwise, an operation is considered

41



4. Automatic Pattern Discovery via Program Slicing

to be obstructive. For example, sum has only one operation, (x+y), which
takes one tainted variable, i.e. x, and is therefore classified as obstructive.
elem has two operations, (a == x) and the if-expression, which we
treat as syntactic sugar for a function. Here, (a == x) is classified as
unobstructive as both a and x are clean. Conversely, the if-operation is
classified as obstructive due to the recursive call in its False branch.
Finally, sudoku has one operation, (solve p), which is considered to
be unobstructive, since p is classified as clean. Unobstructive operations can
potentially be lifted into map operations, and by extension are candidates
for parallelisation. Recall that for sudoku, as (solve p) is unobstruct-
ive, it can be lifted into a map, and sudoku rewritten and parallelised as
before:

1 sudoku ps = runPar $ parMap solve ps

4.2 Preliminaries and Assumptions

We illustrate our approach over the simple expression language, E.

e 2 E ::= true
| false
| Z

| var
| nilt

| const e e
| case var of nilt ! e, const var var ! e
| e~e
| l ~var ! e
| fix e

E is a simple, strict, functional language. Its terms for a common subset of
functional languages: boolean constants, true and false; integer constants,
z 2 Z; variables, var; list constructors, nilt and const e e; case discrimina-
tion on lists, case var of nilt ! e, const var var ! e; function application,
e~e ; lambda expressions, l ~var ! e; and fixpoints, fix e. Constructors
are restricted to cons-lists for simplicity and clarity of presentation, but
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bool1 G ` true : bool
bool2 G ` false : bool

int

G ` Z : int
var

G [ {x : t} ` x : t

list1 G ` nilø : list t
list2

G ` e1 : t G ` e2 : list t

G ` consø e1 e2 : list t

case

G ` xs : list t1 G ` y : t1 G ` ys : list t1 G ` e1 : t2
G [ {y : t1,ys : list t1} ` e2 : t2

G ` case xs of nilt1 ! e1, const1 (y, ys)! ex2 : t2

app

G ` e0 :~t ! tm G `~e :~t
G ` e0~e : tm

fun

G [ {~x :~t} ` e : tm

G ` l~x ! e :~t ! tm

fix

G ` e : (((t2, . . . ,tn)! tm),t2, . . . ,tn)! tm

G ` fix e : (t2, . . . ,tn)! tm

Figure 4.3: Typing judgements for E, determining simple types in T.

the approach is extensible to other types, given a definition of variable
update (Definition 4.3.1) for that type. Similarly, the approach can be
extended to arbitrary types, given that a definition of variable update can
be derived for arbitrary constructors. Vector notation, e.g. ~e, refers to
a non-empty tuple: ~e ⌘ (e1, . . . , en),n � 1. In order to simplify our
presentation, list constructors and case discriminators are annotated with
the (monomorphic) type of the list elements, t. The corresponding type
language, T, is shown below.

t 2 T ::= bool
| int
| list t

| ~t ! t

The typing judgements in Fig. 4.3 then determine the well-formedness
of expressions in E with regard to their monomorphic types in T. A
statement, s 2 S, is an assignment.

s 2 S ::= def var = l ~var ! e
| def var = fix e
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Statements appear only at the top level of a program. A variable may be
bound either to a lambda expression or to a fixpoint expression. Those
bindings are then in scope for the duration of program. A program,
p 2 P, is a series of statements.

p 2 P ::= s
| s ; p

P can be thought of as an intermediate representation to which, e.g.,
Haskell or Erlang are compiled, similar to Core Haskell. For example,
the Haskell definition of sudoku,

1 sudoku [] = []

2 sudoku (p:ps) = solve p : sudoku ps

can be translated into a term in P:

def sudoku= fixl ( f , x) !
case x of

nilp !
nilp,

consp (y, ys)!
consp (solve (y), f (ys))

This chapter will use Haskell syntax for examples in order to improve
readability. All examples given can be translated into P following a
similar principle to the above example. Our approach will inspect only
the code provided and does not presume to predict possible compiler
optimisations, e.g. fusions [48] or worker-wrapper [49] transformations.
As an intermediate representation, these techniques can be applied after,
or prior to, the application of our approach.

Where pattern matching is used, we will use as-patterns to indicate
the implicit list variables; e.g.

1 sudoku ps0@[] = []

2 sudoku ps0@(p:ps) = solve p : sudoku ps

For clarity, all the variables in our examples will be consistent across func-
tion clauses. All variables are assumed to be unique under a-conversion,
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at both the statement and expression levels. Type environments, G, are
defined to be a set of bindings of variables to types:

G 2 {var : T}

As usual, all values in the domain of G are assumed unique, and G(x)
denotes the t of x in G, such that 9t 2 T, (x : t) 2 G. For a given program
p, the program environment, Gp, contains all the variables in p.

Definition 4.2.1 (Program Environment, Gp). Given some program p and
the set of variables X ✓ var that occur (either free or bound) in p, we define an
environment Gp to be a set such that 8x 2 X,9t 2 T, Gp = {x : T} [ Gp.

The above sudoku definition, for example, has the Gp:

Gp = {x : list (list int), y : list int, ys : list (list int),

f : (list (list int))! (list (list int)), solve : (list int)! (list int), . . .}

We omit the variables and types of solve for clarity. For the rest of this
chapter, we will assume that for all given variables x 2 Gp.

It is useful to define the notion of subexpressions in E, since subexpres-
sions are a key element in both slicing and classification definitions.

Definition 4.2.2 (Subexpression). Given two expressions e, e0, say that e0 is a
subexpression of e (denoted e0 ⌧ e) when

e0 = e
e0 ⌧ e

e0 ⌧ e1 _ e0 ⌧ e2

e0 ⌧ const e1 e2

e0 ⌧ e1 _ e0 ⌧ e2

e0 ⌧ case x of nilt ! e1, const x0 x00 ! e2

9i 2 [0,n], e0 ⌧ ei

e0 ⌧ e0~e
e0 ⌧ e

e0 ⌧ l~x ! e
e0 ⌧ e

e0 ⌧ fix e

Subexpressions form a partial order relation.

For example, a function that adds 1 to its argument, l (x) ! add (x,1),
has five subexpressions: i) 1, ii) x, iii) sum, iv) sum (x,1), and finally
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v) l (x) ! sum (x,1). We will refer to any application that is a subex-
pression of a fixpoint and that is not a recursive call as an operation. For
example, the fixpoint expression

fixl ( f , xs) !
case xs of

nilp !
0,

consp (y, ys)!
plus (y, f (ys))

which sums the elements of a list of integers, has one operation: plus.
f (ys) is not an operation because it is a recursive call.

Functions are introduced using a l-expression. They are always pure,
are uncurried, and are never partially applied. They may, however, be
higher-order. Recursive (function) definitions are always introduced
using an explicit fixpoint expression, as in e.g.:

fix (l ( f , xs) ! f (xs)).

The form of recursion is not otherwise restricted; general recursive forms
are allowed, for example.

Lists are defined to be an ordered collection of elements, where
those elements are accessed via case-expressions. As shown by the
typing rules of Figure 43, case discrimination is restricted to lists of
some type t. We assume the existence of built-in functions (e.g. if, eq,
plus) for discrimination and operations on integers and booleans. Case-
expressions can be extended to other types, given an additional check on
the type of the discriminated variable in the relevant definitions. We limit
case-expressions here to simplify our presentation. In the non-nil branch,
new variables are bound respectively to the first element in the list (i.e.
the head) and to the remainder of the list (i.e. the tail). A corresponding
Reachability Relation is defined for each case-expression.

Definition 4.2.3 (Reachability Relation). Given a program p, a program envir-
onment Gp, and a case-expression in p, e = case xs0 of nilt ! e1, const x xs !
e2, we say that x /p xs0 and xs /p xs0. The transitive closure of the reachability
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relation is defined such that z /+p xs0 when 9y, z /+p y ^ y /p xs0. The reflexive-
transitive closure of the reachability relation is defined such that y /

⇤
p xs0 when

9y, y /

+
p xs0 _ y = xs0.

For example, p /

⇤
p ps0, ps /

⇤
p ps0, and ps0 /

⇤
p ps0 all hold for the case-

expression in sudoku. The Reachability Relation will be used to cal-
culate the program slice for a given expression and variable. It is also
useful to know when a cons-expression reconstructs xs0 (e.g. (p:ps)
in sudoku), so that xs0 can be included in the slice. The syntactic
equivalence relation for lists is used to detect such list reconstructions.

Definition 4.2.4 (Syntactic Equivalence for Lists). Given some program p;
argument x of type list t, and an expression, where that expression is either
i) the special symbol #, denoting an empty expression and that an expression for
which it has been substituted is syntactically equivalent to x by Definition 4.3.2;
or ii) a cons-expression e = const e0 e00. We say that e is syntactically equivalent
to x, denoted e ⌘ x, when e = # or e = const e0 e00 given that 9y,9ys, e0 =
y ^ e00 ⌘ ys ^ y /p x ^ ys /p x).

For example, where ps0 is case-split in sudoku into p and ps, ps0 is
syntactically equivalent to a cons-expression with x as the first argument
and ps as the second argument; i.e. ps0 ⌘ const p ps.

4.3 Determining Obstructiveness

Each operation is inspected to determine whether that operation is ob-
structive. An obstructive operation is an operation that has either: i) any
arguments whose subexpressions contain a recursive call; or ii) any argu-
ments that are both used in the body of the fixpoint and whose value is
changed significantly in any recursive call. All other operations are classi-
fied as unobstructive. So, for example, (solve p) in sudoku is classified
as unobstructive because solve is a unary function that takes only the
head of the list. Conversely, the (x+y) operation in sum is classified as
obstructive because it takes the first argument, x, which is updated between
recursive calls. We define both obstructiveness and unobstructiveness
formally in Definition 4.3.6. The nature of significance is defined below.
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4.3.1 Variable Usage and Update

From the intuitive definition of obstructiveness above, all variables in Gp

for some fixpoint expression, e = fixl ( f , x1, . . . , xn) ! e0, must be first
inspected to classify operations in e as (un)obstructive. Each variable
x 2 Gp is classified as used, updated, or both, in e.

Although all the variables in P are immutable, and each function
application binds new values to each of its arguments, the value of
some variable x is considered (potentially) changed in e when x is the ith

argument to f and there exists some recursive call to f in e0 or any of its
subexpressions. That is, the differences in the value of a specific argument
between successive recursive calls are considered to be changes to the
corresponding bound variables. We extend this notion with the concept
of significantly changed. Intuitively, a change in value is considered to be
significant when for some recursive call, f (e1, . . . , en), the ith argument, ei,
is not: i) a variable that is reachable from x; ii) syntactically equivalent
to x; nor iii) a cons-expression that prepends an expression to x (or
its syntactic equivalent) that contains no subexpression that is either a
recursive call or a variable reachable from x. Variables whose value is
significantly changed in this way are classified updated.

Definition 4.3.1 (Variable Update). Given a program p, a program envir-
onment Gp, a fixpoint expression e = fix (l ( f , x1, . . . , xn) ! e0) in p, and an
argument x, where x is the ith argument to f , x is considered to be updated
in e (denoted x̄ ⇠x e) when there exists a recursive call, f (e1, . . . , en) ⌧ e0

such that ¬(ei /
⇤
p x) ^ (ei 6⌘ x) ^ ¬(ei = const ek el ^ el ⌘ x ^ ¬(9e0k, e0k ⌧

ek ^ (e0k /
⇤
p x _ e0k = f (e0k1, . . . , e0kn)))

Usage is a simpler concept: a variable is considered to be used when it
occurs as a subexpression of a fixpoint expression. There is one exception
to this: when a subexpression is the ith argument to a recursive call then
it is not considered to be used. We first define the notion of variable-usage
escapement. This is to avoid the used classification of x, and ultimately the
membership of x in the slice, when ei is an x itself or when prepending
to x. For example, it avoids the erroneous classification of x in:
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4.3. Determining Obstructiveness

1 f a x = if a < 5

2 then f (a+1) x

3 else f (a-1) a

Here, in Line 3, x is correctly classified as being updated. In Line 2, x is
not updated, but it should also not be considered to be used, since x is
necessary as an argument to the recursive call in order to retain the value
of x.

Definition 4.3.2 (Variable-Usage Escapement). For some fixpoint expres-
sion e = fix (l ( f , x1, . . . , xn) ! e0), 8 f (e1, . . . , en)⌧ e0, and for some i 2 [1,n],
given x, the ith argument to f , we substitute the special symbol # for ei

whenever ei = x or ei ⌘ x. When ei = const ek el ^ el ⌘ x ^ ¬(9e0k, e0k ⌧
ek ^ (e0k /

⇤
p x _ e0k = f (e0k1, . . . , e0kn)) holds, we substitute # for el. Variable-usage

escapement of e with respect to x is denoted e \# x.

In the above definition of f, for example, the x in Line 2 would be
substituted for #.

1 f a x = if a < 5

2 then f (a+1) #

3 else f (a-1) a

We can now define variable usage.

Definition 4.3.3 (Variable Usage). Given some fixpoint expression, e, where
e = fix (l ( f , x1, . . . , xn) ! e0), in a program p, and a variable x where x is the
ith argument to f , a variable y is considered to be used in e (denoted y ⇠x e)
when y /

⇤
p x and y exists as a subexpression to the variable-usage escaped e; i.e.

y ⌧ (e \# x). When there exists an expression, such that e1 ⌧ (e \# x) ^ e1 ⌘ x,
x ⇠x e holds.

To illustrate this, consider the following functions.

1 f a xs0@[] = a

2 f a xs0@(x:xs) = f x xs

3

4 g xs0@(x:xs) ys0(y:ys) = g (x:xs) (x:ys)

5 g xs0 ys0 = xs0
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4. Automatic Pattern Discovery via Program Slicing

6

7 h xs0@(x:xs) ys0@(y:ys) = h (y:(x:xs)) (y:(y:ys))

8 h xs0 ys0 = xs0

For f, the value of a is updated since ¬(x /⇤p a). However, the list argument
is not updated since xs is reachable from xs0; i.e. xs /

⇤
p xs0. All variables,

excluding xs0, in the program environment of f are considered to be used:
a is used in Line 1; x in the first argument of the recursive call; and xs in
the second argument of the recursive call. For g, xs0 is not updated since
(x:xs) is syntactically equivalent to xs0; i.e. const x xs⌘ xs0. However,
ys0 is updated since (x:ys) is not syntactically equivalent to ys0. All
variables apart from y and xs are considered to be used in g: xs0 is used
both in Line 6 and as the semantically equivalent first argument to the
recursive call; x and ys are used in the second argument of the recursive
call. Finally, for h, xs0 is not updated, since y (which is not reachable from
xs0) is prepended to xs0. However, ys0 is updated since y is prepended to
ys0 and y is reachable from ys0. y, xs0, and ys0 are all considered to be
used in h: xs0 in Line 9 and the cons in the first argument of the recursive
call; ys0 in the cons in the second argument of the recursive call; y in the
cons of both arguments of the recursive call.

4.3.2 Slicing Algorithm

Intuitively, a slice Se|x of an expression e with criterion x is a set of
variables that indicate whether a variable y is used in e and whether
x is updated in e, denoted by the annotation x̄. A slice can be used to
categorise variables, and ultimately to determine the obstructiveness of
operations.

Definition 4.3.4 (Slice). Given some program p, the program environment
Gp, a fixpoint expression e = fixl ( f , x1, . . . , xn) ! e0, and a variable x, where
x is the ith argument to f , we say that the slice of e with criterion x, denoted
Se|x, is the set of variables such that 8y 2 Se|x, (y ⇠x e) _ (y = x̄ ^ x̄ ⇠x e).

To illustrate the slicing relation, recall the definition of sudoku

1 sudoku ps0@[] = []

2 sudoku ps0@(p:ps) = solve p : sudoku ps
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4.3. Determining Obstructiveness

Considering each variable in sudoku: both p 2 Ssudoku|ps0 and ps 2
Ssudoku|ps0 hold since both p and ps are reachable from ps0 (i.e. p /

⇤
p ps0

and ps /

⇤
p ps0) and both p and ps are used in Line 2; conversely, neither

ps0 2 Ssudoku|ps0 nor ¯ps0 2 Ssudoku|ps0 hold, since ps0 is not considered
to be used, and ps0 is not considered to be updated, in sudoku. For the
definition of sum:

1 sum x ys0@[] = x

2 sum x ys0@(y:ys) = sum (x+y) ys

x 2 Ssum|x holds since x is used in both Lines 1 and 2. x̄ 2 Ssum|x also
holds since x is updated in the recursive call in Line 2 by the (x+y)

operation. As with sudoku, both y 2 Ssum|ys0 and ys 2 Ssum|ys0 hold
since both y and ys are considered to be used in Line 2. Conversely,
neither ys0 2 Ssum|ys0 nor ¯ys0 hold since ys0 is not considered to be used or
updated in sum. The slices of sudoku and sum are:

Ssudoku|xs0 = {x,xs}
Ssum|x = {x, x̄}
Ssum|ys0 = {y,ys}

The slice Se|x is calculated using the inference rules from Figure 4.4. For
clarity of notation, we will write Se|x as S since neither e nor x can be
changed within a slicing operation. Judgements are in the form:

G, f , x, i ` e : S

where Gp is the environment for some program p; f is the name of the
fixpoint function being sliced; x is the slicing criterion that is declared
as the ith argument of f ; e is the expression in p that is being sliced;
and S is the resulting slice. For literal expressions and variables that
are not reachable from x, e produces an empty slice, represented by the
rules bool1, bool2, int, var2, and lst1. A variable that is reachable
from x, as a usage of x, produces the slice containing that variable
(var1). Cons-expressions that are syntactically equivalent to x produce
the slice containing x, and the two subexpressions (lst2). All other
expressions that are not recursive calls produce the union of the slices
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4. Automatic Pattern Discovery via Program Slicing

of their subexpressions, as stated in the rules lst3, case, app, fun, and
fix. Finally, rec-app determines whether x is updated in a recursive
call, producing the appropriate slice. rec-app has two main premises
that: i) slice all subexpressions that are passed to f , apart from the ith

argument; and ii) determines whether x is updated. The second premise
is a disjunction of four implications: i) when ei is either x itself, or is
syntactically equivalent to x; ii) when ei is a variable that is defined via
case-discrimination on x; iii) when x is prepended by some expression
ek that does not contain either a recursive call or a subexpression that is
a variable that is reachable from x; or iv) when x is considered updated.
In the first case, the slice, Si, for the ith argument to f , ei, is the empty
set since the argument preserves the value of x for the next recursive
call. In the second case, Si is the singleton set containing ei itself since
the value of x is changed, and a case-derived variable is used, but x is
not considered to be updated. In the third case, Si is the slice of the
subexpression that is prepended to x. Finally, in the fourth case, Si is the
slice of ei and x is considered to be updated.

Theorem 4.1 (Soundness of Slicing Algorithm). For all programs, p, and
their respective program environments, Gp; for all fixpoint expressions, e, in p
where,

e = fix (l ( f , x1, . . . , xn) ! e0)

and for all variables x, such that x = xµ where µ 2 [1,n], we can derive the slice
of e with criterion x, Se|x, by

Gp, f , x,µ ` e : Se|x

It follows that
8y, y 2 Se|x implies that y ⇠x e

where y ⇠x e denotes that y is either used or updated in e according to
Definitions 4.3.3 and 4.3.1, respectively.

Intuitively, the above soundness property states that the slicing algorithm
in Figure 4.4 is sound with respect to the slicing definition, Defini-
tion 4.3.4, such that our algorithm produces a slice whose members
are only those variables that are considered to be used or updated in e
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4.3. Determining Obstructiveness

with respect to x. We give the proof for the above soundness property in
Appendix A. We conjecture that slices are unique for each e and x. We
defer the proof of uniqueness to future work.

4.3.3 Classifying Variables

Variables can be classified as: global, clean, or tainted. Global variables are
those that are in scope in e, but which are declared and bound outside
of e. They may be used, but cannot be updated during the evaluation
of e; they are therefore treated as literals. Variables that are classified
as either clean or tainted are ones that are either defined in the fixpoint
function (i.e. x1, . . . , xn), or in case-subexpressions of e0, where whenever
8v,w 2 Gp such that v /

+
p w, it follows that v has the same classification

as w.

Definition 4.3.5 (Variable Taint). Given a program p, program environment
Gp, a fixpoint expression e = fix (l ( f , x1, . . . , xn) ! e0) in p, a variable x,
and a slice Se|x of e with criterion x, then x is classified as tainted when
x̄ 2 Se|x ^ x 2 Se|x. The variable is otherwise classified as clean.

Recall the definitions of sudoku, elem, and sum:

1 sudoku xs0@[] = []

2 sudoku xs0@(x:xs) = solve x : sudoku xs

3

4 elem a xs0@[] = False

5 elem a xs0@(x:xs) =

6 if x == a

7 then True

8 else elem a xs

9

10 sum x ys0@[] = x

11 sum x ys0@(y:ys) = sum (x+y) ys
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Figure 4.4: Inference rules to calculate the slice Se|x for an expression e
with criterion x.54



4.3. Determining Obstructiveness

Given the slices of each fixpoint variable in sudoku, elem, and sum,

Ssudoku|xs0 = {x,xs}
Selem|a = {a}
Selem|xs0 = {x,xs}
Ssum|x = {x, x̄}
Ssum|ys0 = {y,ys}

we can proceed to classify the variables for all three functions. In both
sudoku and elem, xs0 is classified as clean, since case-split derived
variables y and ys are used, and xs0 itself is neither used nor updated.
Similarly, a in elem is used but not updated, and is therefore classified
as clean. The list argument, ys0, in sum is also classified as clean, since
its case-derived variables y and ys are used but ys0 itself is neither used
nor updated. Finally, the accumulator argument, x, in sum is classified as
tainted, since it is both used and updated.

4.3.4 Classifying Operations

Once all the arguments of e are classified as global, clean, or tainted, we
can proceed to classify the non-recursive application subexpressions of e,
i.e. the operations in e. Those operations that take one or more variables
that are classified as tainted are themselves classified as obstructive. All
other operations are classified as unobstructive.

Definition 4.3.6 (Operation Obstructiveness). Given some program p, some
program environment Gp, and some fixpoint expression e = fix (l ( f , x1, . . . , xn) !
e0) in p, an operation g (e1, . . . , em)⌧ e0, when g 6= f , is classified as obstruct-
ive when 9i 2 [1,m] such that f (~e f )⌧ ei _ 9y, y ⌧ ei where y is classified as
tainted. The operation is classified as unobstructive otherwise.

For example, sudoku has only one operation, (solve p); since p is
classified as clean, (solve p) is classified as unobstructive. Similarly,
the sole operation in elem, (x == a), is classified as unobstructive since
both x and a are classified as clean. Finally, the sole operation in sum,
(x+y), is classified as obstructive since x is classified as tainted. A similar
result can be obtained when sum is rewritten to remove the accumulator:
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4. Automatic Pattern Discovery via Program Slicing

1 sum ys0@[] = 0

2 sum ys0@(y:ys) = y + sum ys

Here, slicing with criterion ys0 yields:

Ssum|ys0 = {y,ys}

and is therefore classified as clean. However, the (+) operation in Line
2 is classified as obstructive, since the second argument of (+) has as a
subexpression a recursive call.

4.4 Implementation

In this section, we give an overview of our implementation, highlight-
ing differences from the description of our approach. Our implement-
ation can be found at https://adb23.host.cs.st-andrews.ac.
uk/fhpc17-artefact.zip.

Our prototype is implemented in Erlang, and comprises a parser
and a classifier. The parser is implemented using the Leex and Yecc
lexer and parser generators provided by the Erlang standard libraries.
To avoid shift/reduce conflicts in the generated parser, an expression
delimiter (end) is added to some expression types. The BNF grammar
our prototype accepts is shown in Figure 4.5.

Once a file is parsed, our prototype proceeds to inspect each operation
in each top-level fixpoint definition. For each fixpoint definition, it takes
a slice of each variable declared in the fixpoint function. The classifier
reflects the slicing algorithm in Section 4.3.2. It then classifies each
variable according to the definition in Section 4.3.3. Finally, it classifies
each operation according to the definition in Section 4.3.4 and the variable
classifications derived in the previous stage. As a result, our prototype
prints each operation and its classification.

4.5 Refactoring to Introduce Map Operations

The analysis presented in Section 4.3 classifies operations according to
obstructiveness, but does not rewrite the fixpoint expression to introduce
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4.5. Refactoring to Introduce Map Operations

hvarlisti := var | var ‘,’ hvarlisti

harglisti := hexpressioni | hexpressioni ‘,’ harglisti

happlisti := ‘(’ harglisti ‘)’

hlistexpi := ‘nil’ | ‘(’ hexpressioni ‘::’ hexpressioni ‘)’

hifexpi := ‘if’ hexpressioni ‘then’ hexpressioni ‘else’ hexpressioni ‘end’

hcaseexpi := ‘case’ var ‘of’ ‘nil’ ‘->’ hexpressioni ‘,’
var ‘::’ var ‘->’ hexpressioni ‘end’

happexpi := var happlisti
| habsexpi happlisti
| hfixexpi happlisti

habsexpi := ‘\‘ ‘(‘ <varlist> ‘)’ ‘->’ hexpressioni ‘end’

hfixexpi := ‘fix’ habsexpi

hexpressioni := ‘true’
| ‘false’
| int
| var
| hlistexpi
| hifexpi
| hcaseexpi
| happexpi
| habsexpi
| hfixexpi

hstatementi := var ‘:=’ habsexpi
| var ‘:=’ hfixexpi

hprogrami := hstatementi | hstatementi ‘;’ hprogrami

Figure 4.5: Corresponding grammar for E accepted by the prototype
Erlang implementation of our analysis.
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a map operation. In this section, we describe a refactoring that lifts an un-
obstructive operation in a fixpoint expression into a map operation. While
map has multiple possible implementations, according to the number and
type of data structures being traversed, the refactoring defined in this
section will use the standard map, defined over a single list.

1 map g [] = []

2 map g (x:xs) = g x : map g xs

Introducing a call to map places additional conditions on the opera-
tions we can lift into a map operation. We describe these conditions in
Section 4.5.1.

The refactoring to lift operations and introduce a map operation is a
composite refactoring, i.e. a multi-stage refactoring made up of multiple
refactorings [81], with 4 stages. Given a fixpoint expression, f, that
traverses a list, xs0, and an operation, g, that is a subexpression of f, the
refactoring enacts the follow stages:

1. Duplicate the definition of f, perhaps using the Duplicate Function
refactoring. The new, duplicated, definition, f’, becomes the helper
function to f. f is rewritten, perhaps using the Fold/Unfold Definition
refactoring, as a function expression whose body is a call to f’. For
example, a given f,

1 f xs0@[] = 0

2 f xs0@(x:xs) = g x + (f xs)

is refactored

1 f xs0 = f' xs0

2

3 f' xs0@[] = 0

4 f' xs0@(x:xs) = g x + (f' xs)

where f is duplicated to create the helper function, f’, and f

becomes a call to f’.

2. The fixpoint function of the map operation that is to be introduced
is constructed from g, the operation to be lifted. g is first lifted into
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4.5. Refactoring to Introduce Map Operations

a lambda that takes one argument, i.e. the head of xs0, x. While
g may take more than one argument, arguments other than x are
guaranteed to be in scope as a consequence of the conditions in
Section 4.5.1:

• Literals, i.e. booleans, integers, and nilt, are inherently in
scope.

• Variables come in three possibilities: used but not updated;
updated but not used; and updated and used. Variables that
are used but not updated have the same value for all successive
recursive calls to f’, so can be free variables in the constructed
lambda, deriving their initial values in f. Variables that are
updated but not used cannot occur as a subexpression to
the lifted operation since this would contradict the definition
of variable usage. Similarly, variables that are both used and
updated cannot occur as a subexpression to the lifted operation
since this would contradict the condition that g is considered
to be unobstructive, and, by extension, contradict the definition
of clean (Definition 4.3.5).

• Complex expressions, i.e. cons-, application-, case-, if-, lambda-
, and fixpoint expressions, are in scope if their subexpressions
are in scope.

For example, considering the above f’, the lambda constructed by
lifting g is: (\x -> g x).

3. The map operation is now constructed by passing the constructed
lambda and xs0 to map. For example:

1 (map (\x -> g x) xs0)

The constructed map operation is then passed as an additional
argument, ys0, to f’ in f, and the definition of f’ is updated to
accept an additional argument. Pattern matching on ys0 mimics
the pattern matching over xs0, and the tail of ys0 is passed in each
recursive call. For example, in
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1 f xs0 = f' xs0 (map (\x -> g x) xs0)

2

3 f' xs0@[] ys0@[] = 0

4 f' xs0@(x:xs) ys0@(y:ys) = g x + (f' xs ys)

the map operation is passed as a section argument to f’, and f’ has
been updated to traverse the new list by pattern matching nil and
cons constructors respectively, and the tail of ys0, ys, is passed as
the second argument to the recursive call. Where case-expressions
are used to discriminate xs0, as in E, a case-expression is introduced
to f’ within both branches of the case-expression over xs0. The
original body of each case-split is moved into the matching branch
of the case-expression over ys0, and the other branch is undefined.
For example, given a rewritten f’ to use case-expressions instead
of pattern matching:

1 f' xs0 ys0 =

2 case xs0 of

3 [] -> case ys0 of

4 [] -> 0

5 (y:ys) -> undefined

6 (x:xs) -> case ys0 of

7 [] -> undefined

8 (y:ys) -> g x + (f' xs ys)

In Line 3 a case-expression over ys0 is introduced where the ori-
ginal expression, (0), is used in the nil branch. By definition the
cons-branch of the ys0 case-split cannot be reached, so it is left
undefined in Line 4. Similarly, in Line 5, a case-expression over ys0

is introduced with the original expression, (g x + (f’ xs)), is
used in the cons-branch of the ys0 case-split, and the unreachable
nil branch is left undefined. The recursive call in the cons-branch is
updated to pass ys as a second argument.

4. Finally, substitute (or fold, in the transformational sense [27]) g for
the (equivalent) head of ys0. For example, in
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1 f' xs0@[] ys0@[] = 0

2 f' xs0@(x:xs) ys0@(y:ys) = y + (f' xs ys)

(g x) in Line 2 has been substituted for y.

The refactoring can be applied for multiple operations in f by construct-
ing a map operation for each operation to be lifted. The refactoring
should take the outermost unobstructive operation; i.e. there should be no
h such that h is an unobstructive operation and g is a subexpression of h.

4.5.1 Conditions

The conditions for lifting an operation into a map operation, using the
definition of map above, is as follows:

• The operation to be lifted is classified as unobstructive, and all subex-
pressions that are operations are also classified as unobstructive.

• The operation must have exactly one argument with a subexpression
that is a variable y, such that there exists a case-expression in f:

case ys0 of nilt ! enil, const y ys ! econs

• f must traverse exactly one list argument, xs0, and f must contain
exactly one case-expression discriminating on xs0. The tail of the
list, ys, must be passed to all recursive calls as the ith argument,
where xs0 is declared as the ith argument in f.

The requirement that only one list be traversed for the refactoring to
apply may be relaxed if, e.g., a map over two lists is to be introduced. We
conjecture that alternative map definitions will require specific conditions,
according to their definition. For example, the map:

1 map g xs0@[] = []

2 map g xs0@(w:x:xs) = g w x : map g xs

would require that exactly two case-expressions over xs0 occur in f.
Alternatively, the map:
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1 map g xs0@[] ys0@ = []

2 map g xs0@(x:xs) ys0@(y:ys) = g x y : map g xs ys

more commonly known as zipWith, would require exactly two case-
expressions over two list arguments in f.

4.5.2 Additional Cleaning Stages

By lifting unobstructive operations into map operations, some function
arguments may no longer be necessary in the definition of f’. Additional
refactorings can be used to remove those unnecessary arguments, or at
the most extreme, remove an unnecessary helper function.

Once f is refactored, and all unobstructive operations are lifted into
maps and passed to f’, those arguments to f’ which are neither used
nor updated in the definition of f’ may be eliminated, perhaps by the
Eliminate Function Argument refactoring. In the case of list arguments, we
extend this to mean neither the head nor the list itself is used, and the
tail is only used in all recursive calls as a means of traversing the list. For
example, in

1 f xs0 = f' xs0 (map (\x -> g x) xs0)

2

3 f' xs0@[] ys0@[] = 0

4 f' xs0@(x:xs) ys0@(y:ys) = g x + (f' xs ys)

we observe that x and xs0 are not used in f’, nor are they updated. xs
occurs in the recursive call, but only as a means to traverse xs0. f’ may
therefore be refactored to eliminate xs0:

1 f' ys0@[] = 0

2 f' ys0@(y:ys) = y + (f' ys)

Where f’ contains no other (obstructive) operations as subexpressions, f’
itself may be eliminated, where the call to f’ in f’ is replaced with the
call to the introduced map operation. Recall the definition of sudoku,

1 sudoku ps0@[] = []

2 sudoku ps0@(p:ps) = solve p : sudoku ps
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where the operation (solve p) may be lifted into a map:

1 sudoku ps0 = sudoku' ps0 (map (\p -> solve p) ps0)

2

3 sudoku' ps0@[] qs0@[] = []

4 sudoku' ps0@(p:ps) qs0@(q:qs) = q : sudoku' ps qs

Here, no other operations occur within sudoku’, meaning the call to
sudoku’ in sudoku may be wholly replaced by the introduced map

operation.

1 sudoku ps0 = map (\p -> solve p) ps0

Another simplification can be applied when multiple disjoint map
operations are introduced. As a fusion step [48], it is possible to combine
those map operations that act over the same list, perhaps using the
standard Tupling transformation. For example, given a refactored f with
two disjoint unobstructive operations, g and h,

1 f xs0@ =

2 f' (map (\x -> g x) xs0@) (map (\x -> h x) xs0)

3

4 f' ys0@[] zs0@[] = 0

5 f' ys0@(y:ys) zs0@(z:zs) = y + (z + (f ys zs))

the map operations over ys0 and zs0 may be tupled, or zipped:

1 f xs0@ = f' (map (\x -> ((g x),(h x))) xs0)

2

3 f' ws0@[] = 0

4 f' ws0@((y,z):ws) = y + (z + (f ys zs))

When using the standard definition of map, we note that only one list
argument may be traversed as a condition of the refactoring. This means
that all introduced map operations will, by definition, apply to the same
list, and so all map operations may be tupled. This may not hold for
alternative map definitions.
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4.6 Examples

In this section, we demonstrate our approach on 13 examples, including
a suite of five parallel benchmarks and nine other examples. We describe
our experimental setup for our parallel benchmarks in Section 4.6.1.
In Section 4.6.2, we describe our five parallel benchmarks, including
reporting the parallel speedups we achieve, and reporting the results of
our analysis. The examples in described in Section 4.6.3 may not benefit
from parallelisation, but are used to illustrate our approach. All examples
have been translated to our expression language, E, by hand, and then
passed to our prototype implementation described in Section 4.4.

4.6.1 Experimental Setup

Our speedup results are given as an average of five runs on corryvreckan, a
2.6GHz Intel Xeon E5-2690 v4 machine with 28 physical cores and 256GB
of RAM. This machine allows turbo boost up to 3.6GHz, and supports
automatic dynamic frequency scaling between 1.2–3.6GHz. Our parallel
benchmarks have been compiled using GHC 7.6.3 on Scientific Linux
using the flags: -rtsopts, -threaded, and -feager-blackholing,
and also use -O2 for sudoku and -O for all other examples. We found
that these settings gave the best general parallel performance. Our
measurements represent the average of five runs and are taken from
the -s Haskell RTS option, which records execution statistics. Timing
information is taken from two sources: mutator time (MUT, indicating time
spent purely on executing the program) and total time (Total, elapsed
real-time while running the program), both in seconds. Where multiple
parallelisations are possible, we execute the one that reports best parallel
performance. We use a separate, standard desktop machine, neptune, to
test our prototype implementation. neptune is a 2.7GHz Intel Core i5
machine with 8GB of RAM, running Mac OS X 10.11.6 and Erlang 19.2.3.

4.6.2 Parallel Benchmarks

We demonstrate our approach using five parallel benchmarks: sudoku
from [86]; and sumeuler, queens, nbody, and matmult from the
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n MUT SD Total SD Sparks Heap Residency

16 17.52 0.07 18.71 0.10 0 3.39 0.214
160 176.35 2.44 187.75 2.45 0 33.95 1.788
320 348.39 0.42 371.15 0.41 0 67.89 3.826
480 521.63 1.15 555.65 1.13 0 101.84 5.664
640 699.49 2.15 744.99 2.20 0 135.78 7.814
800 878.83 1.95 935.25 2.15 0 169.73 8.822

Figure 4.6: Sequential mutator (MUT) and total (Total) times in seconds
(with standard deviations), total number of sparks for parallel version,
heap allocation in gigabytes, and residency in bytes for sudoku on
corryvreckan. n refers to the number of puzzles, and is a multiple of 103.
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Figure 4.7: sudoku, speedups on corryvreckan, a 28-core hyperthreaded
Intel Xeon server, dashed line shows extent of physical cores using
reported mutator (MUT) time. n denotes the number of sudoku puzzles
solved, and is a multiple of 103.

NoFib suite [99]. We have translated the Haskell definitions to our simple
expression language defined in Section 4.2, unfolded the parallelised map

operations, removing any parallel constructs, and finally, applied our
prototype analyser to the resulting function definitions.
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Figure 4.8: sudoku, speedups on corryvreckan using reported total
(Total) time, dashed line shows extent of physical cores. n is a multiple
of 103.
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Figure 4.9: sudoku, speedups on corryvreckan using reported total
(Total) time. Zoom of Figure 4.8. n is a multiple of 103.

Sudoku

Recall that sudoku solves a list of Sudoku puzzles, is defined:

1 sudoku [] = []

2 sudoku (p:ps) = solve p : sudoku ps

In [86], sudoku consists of nine Haskell files that comprise a sequential
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Figure 4.10: sudoku, percentage of time spent on garbage collection on
corryvreckan using reported total (Total) time, dashed line shows extent
of physical cores. n is a multiple of 103.

implementation and various parallelisations. The sequential implementa-
tion comprises the module Sudoku (150 lines) that contains functions to
solve individual puzzles, and the file sudoku1.hs (16 lines) that contains
one function that reads in a list of puzzles and solves them by applying
solve. sudoku1.hs contains a single function: main, that contains an
explicit map operation to apply solve to each Sudoku problem. We have
derived the above definition of sudoku by lifting this map operation into
a function, and inlining the map. Sudoku contains 10 functions with 10
explicit map operations, four explicit fold operations, three explicit zip
operations, two explicit filter operations, two implicit filter opera-
tions, and one implicit map operation. We include list comprehensions,
but do not count specialisations of map or fold operations, e.g. length
or maximum. The parallel versions comprise four versions using the Par
Monad, and four using the Eval Monad and the Strategies library. All
parallel versions contain focus on the parallelisation of sudoku.

We recall that sudoku has the slice, Ssudoku|xs0 = {x,xs}. The reach-
able arguments p and ps are used in the first and second arguments to
the cons, with ps passed as the first and only argument to the recursive
call. ps0 is not considered to be updated since ps is the tail of ps0. ps0 is
classified as clean. sudoku has only one operation: (solve p). Since p
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is classified as clean, sudoku is therefore classified as unobstructive. Since
(solve p) is the only operation in sudoku we can rewrite sudoku as
a map and then parallelise it, for example, by using the Par Monad,

1 sudoku ps = runPar $ parMap solve ps

as shown in Section 4.1.
We executed the parallel version of sudoku for n = 16,000 and

between 160,000 and 800,000 at intervals of 160,000. Figure 4.6 gives av-
erage sequential times (with standard deviations), the number of sparks,
heap allocation, and residency for all n. Unlike the other parallel bench-
marks, sudoku does not report any sparks for parallel versions since we
use the Par Monad. Figures 4.7 and 4.8 give the corresponding speedups
using mutator and total time. We achieved maximum speedups of 25.13⇥
when n = 320,000 on 56 hyperthreaded cores (MUT), and 6.33⇥ when
n = 320,000 on 26 cores (Total). Figure 4.7 shows that varying n has
little effect on speedup, but that increasing the number of cores produces
good speedups and hence that the example shows good scalability. Our
results show that some benefit can be achieved on hyperthreaded cores,
but that this is insignificant when compared with increasing the number
of physical cores. The total times show that speedups are only half those
that would be expected from the mutator times alone. This is likely due
to significant garbage collection overheads. Figure 4.10 shows that the
percentage of the total time spent on garbage collection increases with the
number of cores. The increased garbage collection time is likely due to
repeated generation of lists in solve. Unlike mutator time speedups, the
total time speedups plateau before 28 cores. Figure 4.9 shows that there
is some variation in speedups between 24 and 28 physical cores. This
reflects an underlying variation in execution times, e.g. for n = 480,000,
there is a standard deviation (s) of 12.31s for 25 cores, s = 17.78s for 26
cores, and s = 2.25s for 27 cores. This is likely to be due to inconsistent
scheduling as the machine becomes saturated. With hyperthreading
enabled, speedups reduce as more cores are added due to increased
garbage collection times. On 48 cores there is a notable drop in speedups,
again likely due to poor scheduling.
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n MUT SD Total SD Sparks Heap Residency

1 0.06 0.02 0.06 0.02 3 67795856 68256
5 1.29 0.01 1.31 0.01 11 1958285432 214792

10 5.34 0.03 5.39 0.03 21 8296937744 224584
15 12.43 0.03 12.54 0.03 31 19280868336 498624
20 22.82 0.08 23.03 0.07 41 35050884184 761720
25 36.29 0.03 36.6 0.04 51 55705003000 1024160
30 53.24 0.18 53.7 0.18 61 81319554136 1228304
35 73.36 0.3 73.99 0.3 71 111956760792 1428304
40 96.77 0.04 97.6 0.04 81 147666965368 1612232
45 123.98 0.13 125.04 0.13 91 188497463480 1612232
50 154.33 0.25 155.65 0.26 101 234487830776 1778184

Figure 4.11: Sequential mutator (MUT) and total (Total) times in seconds
(with standard deviations), total number of sparks for parallel version,
and heap allocation and residency in bytes for sumeuler on corryvreckan.
n represents the bounding value of the input list [1,n], and is a multiple
of 103.

Sumeuler

sumeuler calculates Euler’s totient function for a list of integers and
sums the results.

1 sumeuler xs0@[] = 0

2 sumeuler xs0@(x:xs) = euler x + (sumeuler xs)

In the NoFib suite, sumeuler consists of three Haskell files: ListAux
(41 lines), SumEulerPrimes (36 lines), and SumEuler (290 lines). Col-
lectively, these introduce 31 functions, 12 of which have explicit maps or
folds as part of their definitions.

As with sudoku, we first slice sumeuler for its only argument, xs0,
producing the slice: Ssumeuler|xs0 = {x,xs}. As before, xs0 is classified
to be clean since both the case-split variables of xs0 are used in the
body of sumeuler, and xs0 itself is not updated. Two operations exist
as subexpressions to sumeuler: (euler x) and the application of
(+) in Line 2. (euler x) takes a single clean argument, i.e. x, and is
classified as unobstructive. Conversely, (+) takes two arguments, where
the second argument comprises a recursive call, and is classified as
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Figure 4.12: Speedups for sumeuler on corryvreckan using reported
mutator times. Dashed line indicates 28 physical cores, with a total of 56
hyper-threaded cores. n is a multiple of 103.

1 8 16 24 32 40 48 56

0

5

10

15

20

25

30

Cores

S
p
ee
d
u
p

n = 1
n = 5
n = 10
n = 15
n = 20
n = 25
n = 30
n = 35
n = 40
n = 45
n = 50

Figure 4.13: Speedups for sumeuler on corryvreckan using reported total
(Total) times. Dashed line indicates 28 physical cores, with a total of 56
hyper-threaded cores. n is a multiple of 103.

obstructive. (euler x) can be lifted into a map operation. Where, with
sudoku we spawned a thread for each element in the input list, here we
introduce chunking. Chunking groups elements into sublists. Evaluation
of each sublist is then performed in parallel. Chunking can help to ensure
that there is enough work per thread, so increasing granularity. We are
also able to take advantage of the associativity of (+), summing each
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chunk before summing the result of all chunks. We can then parallelise
sumeuler.

1 sumeuler :: [[Int]] -> Int

2 sumeuler xs =

3 sum (map (sum . map euler) xs

4 `using` parList rdeepseq)

We executed sumeuler for n = 1,000 and between 5,000 and 50,000
at intervals of 5,000. We chose a chunk size of 500 since it produced the
best speedup. Figure 4.11 gives average sequential times (with standard
deviations), the number of sparks, heap allocation, and residency for all
n. All sparks are converted for all n. Figures 4.12 and 4.13 give speedups
for sumeuler using mutator and total time. We achieve maximum
speedups of 30.50 for n = 50,000 on 48 virtual cores (mutator) and
20.92 for n = 50,000 on 48 virtual cores (total). Our results show that
sumeuler scales with both the number of cores and with the size of n.
Unlike sudoku, mutator time speedups generally plateau due to lack of
work and garbage collection has a minimal effect on sumeuler speedups.
The most notable effect occurs for n = 15,000 and n = 20,000 on 20 cores,
where speedups reduce noticeably. These results suggest that sumeuler
requires relatively large n if parallelism is to be worthwhile. Sequentially,
when n = 50,000 sumeuler has an average runtime of 154.33s (s = 0.25s)
and 155.65s (s = 0.26s) for mutator and total time, respectively.

N-Queens

The queens problem asks how n queens can be placed on a chess board
of size n2 such that no queen may take another according to the usual
rules of chess.

1 queens nq = gen 0 []

2

3 gen nq n b

4 n >= nq = [b]

5 otherwise = genloop nq n (gennext [b])

6
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n MUT SD Total SD Sparks Heap Residency

11 0.1 0.03 0.1 0.03 101 95722624 64088
12 0.42 0.08 0.43 0.08 122 569715376 1693112
13 2.13 0.02 2.19 0.03 145 3590068664 9854376
14 13.65 0 14.1 0.01 170 24108663032 59041312
15 96.36 0.17 103.11 0.18 197 171560553832 479706512
16 717.66 0.81 821.03 0.35 226 1293635766936 3097146864

Figure 4.14: Sequential mutator (MUT) and total (Total) times in seconds
(with standard deviations), total number of sparks for parallel version,
and heap allocation and residency in bytes, for queens on corryvreckan.
n represents the number of queens to be placed on a n ⇥ n chessboard.
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Figure 4.15: Speedups for queens on corryvreckan using reported mutator
(MUT) time. Dashed line indicates 28 physical cores, with a total of 56
hyper-threaded cores.

7 genloop nq n bs0@[] = []

8 genloop nq n bs0@(b:bs) = gen nq (n+1) b ++ genloop bs

Here, nq is the number of queens, and gennext calculates the next safe
position on the board to place a queen. In the NoFib suite, queens
consists of one Haskell file, Main, that is 42 lines long and defines 6
functions. Two of these 6 functions have explicit map and fold operations
(including list comprehensions), and an explicit call to iterate. One
other function, safe, is an implicit foldr over lists.
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Figure 4.16: Speedups for queens on corryvreckan using reported total
(Total) time. Dashed line indicates 28 physical cores, with a total of 56
hyper-threaded cores.
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Figure 4.17: Garbage collection times for queens on corryvreckan. Dashed
line indicates 28 physical cores, with a total of 56 hyper-threaded cores.

Since neither queens nor gen are recursive functions, we instead
slice for all the arguments of genloop.

Sgenloop|nq = {nq} Sgenloop|n = {n} Sgenloop|bs0 = {b,bs}

All three arguments, nq, n, and bs0, are classified as clean since both nq

and n are used but not updated; and both b and bs are used but bs0 is
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neither used nor updated. genloop has three subexpressions: i) (n+1)
in the call to gen; ii) (gen nq (n+1) b) in the first argument to (++);
and iii) the top-level (++). Both (n+1) and (gen nq (n+1) b) are
classified as unobstructive since only clean variables occur in the expres-
sions passed to (+) and gen respectively. We additionally note that
(gen nq (n+1) b) contains the unobstructive operation (n+1) as a
subexpression. Hypothetically, if (n+1) had been classified as obstructive,
then (gen nq (n+1) b) must also be classified as obstructive. While
no tainted variables occur in the arguments to the append operation, its
second argument is a recursive call, which results in an obstructive classi-
fication. Although it is possible to lift either unobstructive operations into
a map operation, we choose to lift the operation which does not occur as
a subexpression of any unobstructive operation, i.e. (gen nq (n+1) b),
in order to maximise the amount of work that is done in parallel.

1 genloop nq n bs0 =

2 genloop' nq n (map (gen nq (n+1)) bs0)

3

4 genloop' cs0@[] = []

5 genloop' cs0@(c:cs) = c ++ genloop' cs

Similarly to f and multMatricesTr in matmult, we observe that gen
and genloop could be merged into a single definition.

1 gen 0 b xs0@[] = [b]

2 gen n b xs0@[] = []

3 gen n b xs0@(x:xs) =

4 (gen (n-1) x (gennext [x])) ++ (gen n b xs)

This definition eliminates the mutual recursion of gen and genloop,
where xs0 traverses two different lists and n acts as an additional bound
on the recursion. As before, our technique will (correctly) classify all
operations as obstructive. In this example, it is the recursive call in the
first argument to (++) that introduces an update to all variables.

Our translation of the queens NoFib implementation comprises two
recursive functions with 11 operations, and 2 recursive calls. Despite the
high number of operations, there are only two unobstructive operations
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in the translation. The majority of operations are found in the definition
of safe.

1 safe x d ys0@[] = True

2 safe x d ys0@(q:l) =

3 x /= q && x /= q+d && x /= q-d && safe x (d+1) l

Slicing safe for all arguments,

Ssafe|x = {x} Ssafe|d = {d, d̄} Ssafe|ys0 = {q,l}

we classify x and ys0 as clean and d as tainted. Here, the tainted clas-
sification of d results in obstructive classifications of all but one infix
inequality operations. Hypothetically, if d had been classified as clean,
we observe that how the infix (&&) operations are compiled can affect
the classifications of operations in safe. Parsing (&&) as either left- or
right-associative can produce different numbers of obstructive operations.
Here, parsing (&&) as left-associative minimises the number of obstructive
operations; i.e. when,

1 (x /= q && x /= q+d) && (x /= q-d && safe x (d+1) l)

only the topmost (&&) and its second argument are classified as obstruct-
ive. Conversely, parsing (&&) as right-associative maximises the number
of obstructive operations; i.e. when,

1 x /= q && (x /= q+d && (x /= q-d && safe x (d+1) l))

all (&&) operations are classified as obstructive.
We executed queens for n ranging from 11 to 16, with a threshold

depth of 2. Figure 4.14 gives average sequential times (with standard
deviations), the number of sparks, heap allocation, and residency for all
n. Figures 4.15 and 4.16 show speedups for queens in terms of mutator
and total time. We achieve maximum speedups of 22.65 for n = 16 on 48
hyperthreaded cores and of 10.00 for n = 12 on 36 hyperthreaded cores.
Sequentially, when n = 16, queens takes an average of 717.66s (s = 0.25s)
and 821.03s (s = 0.26) for mutator and total time, respectively. When
n = 11, the mutator time plateaus before the physical cores are exhausted,
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likely due to a lack of work, as we also observed for sumeuler. When
14  n  16, queens scales well until 28 cores. When hyperthreading
is enabled, we see some further improvement in speedup, albeit at a
reduced rate when compared with those we obtain using physical cores.
Interestingly, for n = 13 and n = 14, we see good scalability continue
between 28 and 40 hyperthreaded cores. This may be due to the lack of
chunking of bs0, resulting in inefficient use of cores up to 28 cores, so
enabling full use of the machine. As with sudoku, total time speedups
reveal an overall halving of performance gains, as a consequence of
increased garbage collection time. Again, this is likely due to repeated
generation of lists.

It is interesting to note that the definitions of gen and genloop may
be merged as part of the unfolding transformation.

1 gen 0 b xs0@[] = [b]

2 gen n b xs0@[] = []

3 gen n b xs0@(x:xs) =

4 (gen (n-1) x (gennext [x])) ++ (gen n b xs)

This eliminates the mutual recursion, but also changes the classification
of n and bto be tainted. Given the slices,

Sgen|n = {n, n̄} Sgen|b = {b, b̄} Sgen|xs0 = {x,xs, ¯xs0}

all three arguments are both used and updated between recursive calls.
The recursive call in the first argument of (++) on Line 3 introduces
an update for all arguments between recursive calls. This results in
all operations being classified as obstructive. This is correct because
the same xs0 is not traversed for all n. gen is a combination of two
patterns: iteration and map. However, we are unable to produce the best
parallelisation in this case: our approach detects only map operations.

N-Body

The nbody problem is to calculate the movement of bodies in m-dimensional
space according to forces between them. The classical representation of
this problem is between celestial bodies, modelling the effects of gravity

76



4.6. Examples

n MUT SD Total SD Sparks Heap Residency

10 2.06 0.06 2.07 0.06 40 6310152 1197488
25 11.61 0.1 11.63 0.11 40 15670360 5216880
50 46.93 0.13 46.98 0.13 40 31270520 12311984
75 104.9 0.35 104.96 0.34 40 46870848 12547600

100 187.47 0.1 187.57 0.11 40 62471232 25082544
250 1164.34 0.68 1164.52 0.65 40 156226496 40215360

Figure 4.18: Sequential mutator (MUT) and total (Total) times in seconds
(with standard deviations), total number of sparks for parallel version,
and heap allocation and residency in bytes, for nbody on corryvreckan. n
denotes the number of points to cluster, and is a multiple of 103.
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Figure 4.19: Speedups for nbody on corryvreckan using reported mutator
(MUT) time. Dashed line indicates 28 physical cores, with a total of 56
hyper-threaded cores. n is a multiple of 103.

on their trajectories. In the NoFib suite, nbody consists of two Haskell
files: Future (16 lines) and nbody (135 lines) which collectively define 8
functions. Two of these 8 functions have an explicit map or fold.
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Figure 4.20: Speedups for nbody on corryvreckan using reported total
(Total) time. Dashed line indicates 28 physical cores, with a total of 56
hyper-threaded cores. n is a multiple of 103.

1 run n =

2 let initVecs = ...

3 chunk = ...

4 in fs n chunk initVecs [1,1+chunk..n]

5

6 fs n chunk initVecs ts0@[] = []

7 fs n chunk initVecs ts0@(t:ts) =

8 f initVecs [t..(min (t+chunk-1) n)]

9 ++ fs n chunk initVecs ts

10

11 f initVecs ts0@[] = []

12 f initVecs ts0@(t:ts) =

13 compute initVecs t : f initVecs ts

where n bodies are stored in an Array (which we convert internally to
cons-lists), split into chunks, and their updated locations are calculated
using compute in Line 11. Both fs and f are fixpoint expressions, which
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we slice. Slicing for all four arguments of fs produces:

Sfs|n = {n} Sfs|chunk = {chunk}
Sfs|initVecs = {initVecs} Sfs|ts0 = {t,ts}

All four arguments are used but not updated, and they are therefore
classified to be clean. When the enumeration syntax is expanded to an
application of enumFromTo, fs has six operations:

1. (...++...);

2. (f initVecs [t..(min (t+chunk-1) n)]);

3. (enumFromTo t (min (t+chunk-1) n));

4. (min (t+chunk-1) n);

5. ((t+chunk)-1); and

6. (t+chunk).

(...++...) is classified as obstructive since its second argument com-
prises a recursive call; all other operations are classified as unobstructive
since they take only clean variables and unobstructive operations as subex-
pressions. Slicing for all arguments of f,

Sf|initVecs = {initVecs} Sf|ts0 = {t,ts}

we classify all arguments as clean since all of them are used but not updated.
The sole operation, (compute initVecs t), on Line 12 is therefore
classified as unobstructive. f is rewritten as a map operation that is then
parallelised.

We executed nbody for n = 10,000 and between 25,000 and 100,000
at intervals of 25,000. Figures 4.19 and 4.20 give speedups for nbody
using mutator and total time, achieving maximum speedups of 27.08
for n = 250,000 on 52 hyperthreaded cores and 26.82 for n = 250,000 on
52 hyper-threaded cores, respectively. Sequentially, where n = 250,000
nbody takes an average of 1164.34s (s = 0.68s) and 1164.52s (s = 0.65s)
for mutator and total time, respectively. Our results show good scaling
for both n and the number of cores, with speedups increasing linearly
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n MUT SD Total SD Sparks Heap Residency

10 13.15 1.59 13.37 1.58 18 317.36 44416
15 56.09 5.12 56.33 5.14 27.5 713.75 44416
20 131.72 14.07 131.96 14.07 38 1268.62 44416
25 226.58 7.49 226.83 7.51 49.5 1835.83 44416
30 402.13 2.71 402.36 2.69 62 1801.41 44416
35 633.18 9.43 633.44 9.43 67 2451.61 44416
40 946.42 12.1 946.67 12.08 80.5 3201.84 44416
45 1344.39 16.09 1344.59 16.08 85.5 4052.05 44416
50 1823.05 0.96 1823.31 0.96 100 5002.25 44416

Figure 4.21: Sequential mutator (MUT) and total (Total) times in seconds
(with standard deviations), total number of sparks for parallel version,
heap allocation in megabytes, and residency in bytes, for matmult on
corryvreckan. n denotes the size of the input matrix, n ⇥ n, and is a
multiple of 102.

with n. As in other examples, performance gains do not grow as quickly
with hyperthreading enabled. There is little difference between mutator
and total reported speedups for nbody, showing that garbage collection
is not significant for this example.

Matrix Multiplication

The NoFib benchmark uses the following implementation of matrix
multiplication.

1 matmult m1 m2 = multMatricesTr m1 (transpose m2))

2

3 multMatricesTr [] m2 = []

4 multMatricesTr (r:rs) m2 =

5 f m2 r : multMatricesTr rs m2

6

7 f cs0@[] row = []

8 f cs0@(c:cs) row = prodEscalar2 row c : f cs row

Here, transpose transposes a matrix and prodEscalar2 calculates
the dot product of two lists. Since matmult is not a fix expression, we
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Figure 4.22: Speedups for matmult on corryvreckan using the row-wise
parallelisation option and reported mutator (MUT) time. Dashed line
indicates 28 physical cores, with a total of 56 hyper-threaded cores. n is a
multiple of 102.

slice for all the arguments to multMatricesTr.

SmultMatricesTr|rs0 = {r,rs} SmultMatricesTr|m2 = {mt}

As with our other examples, both of the arguments are used but not up-
dated and are therefore classified as clean. The sole operation, (f m2 r),
is classified as unobstructive. Slicing for all arguments of f,

Sf|cs0 = {c,cs} Sf|row = {row}

we can see the same pattern: all the arguments are classified as clean, and
the sole operation, (prodEscalar2 row c), is classified as unobstruct-
ive. Both multMatricesTr, and f can be rewritten as map operations.

We executed matmult for n between 1,000 and 5,000 at intervals
of 500, with chunk size set to 20. Two parallel versions are possible:
i) performs the multiplication of each row in parallel, and ii) divides each
matrix into blocks to be computed in parallel and joins their result. We
have used both modes here. Whilst the original NoFib suite definition
provides its own matrix generation function, we have adjusted this so
that matrices are generated using:

1 replicate n [1..n]
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Figure 4.23: Speedups for matmult on corryvreckan using the block-wise
parallelisation option and reported mutator (MUT) time. Dashed line
indicates 28 physical cores, with a total of 56 hyper-threaded cores. n is a
multiple of 102.

since we discovered it produces better parallel performance. Figure 4.21
reports sequential times (with standard deviations), and the number
of sparks, heap allocation size, and residency for each n. The average
number of sparks converted varies with n, instead of the number of
cores seen in previous examples. Converted sparks fluctuate between
100% and not less than 93% (seen on 4 cores), and fluctuations grow
smaller with larger n. Figures 4.22, 4.24, 4.23, and 4.25 give speedups
for matmult using mutator and total time for both parallel modes. Row-
wise parallelisation achieves maximum speedups of 28.26 for n = 2,500
on 56 hyper-threaded cores for both mutator and total values. Block-wise
parallelisation achieves maximum speedups of 32.93⇥ for n = 1,500 on 52
hyper-threaded cores for both mutator and total values. As with nbody,
there is little difference between mutator and total reported speedups for
matmult, and block-wise parallelisation proves generally only slightly
better than row-wise parallelisation. The example demonstrates good
scalability for both varying n and number of cores. Once again, speedup
growth slows after 28 cores due to hyperthreading.

Interestingly, the definition of f might be unfolded (in the transform-
ational sense) in multMatricesTr; e.g.
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Figure 4.24: Speedups for matmult on corryvreckan using the row-wise
parallelisation option and reported total (Total) time. Dashed line
indicates 28 physical cores, with a total of 56 hyper-threaded cores. n is a
multiple of 102.

1 multMatricesTr xs0@[] r m2 =

2 []

3 multMatricesTr xs0@(x:xs) rr@[] m2 =

4 multMatricesTr m2 x m2 : multMatricesTr xs [] m2

5 multMatricesTr xs0@(x:xs) rr m2 =

6 prodEscalar2 rr x : multMatricesTr xs rr m2

Here, multMatricesTr is now a fix-expression, case-splitting on its
first argument, xs0. Slicing for its arguments, gives

SmultMatricesTr|xs0 = {x,xs, ¯xs0}
SmultMatricesTr|rr = {rr, r̄r}
SmultMatricesTr|m2 = {m2}

While xs0 is considered to be updated, due to m2 being passed as the
first argument in the recursive call in line Line 4, both xs0 and m2

are considered to be clean. Conversely, rr is considered to be tainted.
(prodEscalar2 rr x), now the sole operation, is therefore classified
as obstructive, meaning that no map operations can be introduced. This is
a correct result since multMatricesTr traverses two lists, where both
the lists are passed as the first argument. The standard definition of map,
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Figure 4.25: Speedups for matmult on corryvreckan using the block-wise
parallelisation option and reported total (Total) time. Dashed line
indicates 28 physical cores, with a total of 56 hyper-threaded cores. n is a
multiple of 102.

for example, does not allow this behaviour, and any attempt at introdu-
cing a map operation would result in a function that is not functionally
equivalent to multMatricesTr.

Our translation of the NoFib benchmark code comprises 8 recursive
functions over 2 Haskell modules. Within those 8 recursive functions
there are 23 operations, of which 6 are classified as unobstructive and the
remaining 17 are classified as obstructive.
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4.6.3 Other Examples

Our other examples, including the 18 functions from the Haskell Pre-
lude Data.List library, may not all benefit from parallelisation, but
serve as a demonstration of our approach. The 18 examples chosen from
Data.List are: and, or, append, foldl, foldr, init, intersperse,
last, length, map, maximum, replicate, reverse, scan, heads,
subsequences, tails and transpose. These are a representative
subset of the functions in the library; the remaining functions are similar
to these. All our (translated) example code can be found at https:
//adb23.host.cs.st-andrews.ac.uk/fhpc17-examples.zip.

We give an overview of our results in Fig. 4.1, where gcd refers to the
greatest common denominator function, and hanoi refers to the Towers
of Hanoi puzzle. The list_ackermann example is a reimplementation
of the standard Ackermann function that traverses lists.

1 list_ackermann as0@[] bs0 = (1:bs0)

2 list_ackermann as0@(a:as) bs0@[] =

3 list_ackermann as [1]

4 list_ackermann as0@(a:as) bs0@(b:bs) =

5 list_ackermann as (list-ackermann a bs)

k-means refers to Lloyd’s K-Means algorithm and swaterman refers to
the Smith-Waterman algorithm. Both are larger than the other examples,
and we explore them in greater detail below.

Our results show that all operations are correctly classified. For each
example, we give: the number of recursive functions that it contains (RFs),
the total number of operations (Ops), the total number of recursive calls
(RCs), the total number of arguments to all recursive functions (Args), the
expected number of obstructive and unobstructive operations (Actual),
those that are found by our prototype (Found), the average execution
time for our prototype of 50 runs on neptune for that example (Time), and
the standard deviation (s) of those times.

As a synthetic benchmark, we have also applied our prototype to
programs with varying input sizes, measured in the number of opera-
tions, by duplicating the translated SumEuler module m times. As the
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Figure 4.26: Prototype execution times for a program with varying sizes
of input. Our implementation appears quadratic.

translated SumEuler has 9 operations, the total number of operations
is n = m ⇥ 9. Figure 4.26 shows the average time taken of five runs, in
seconds, by our prototype on neptune. Our classifier takes a minimum of
0.35s for n = 900, with a standard deviation of 0.03s, and a maximum of
35.02s for n = 9,000, with a standard deviation of 0.58s. Our prototype
implementation appears to in quadratic time with respect to n. The total
time taken to classify each of our examples on neptune are all low, as
shown in Figure 4.1. The longest our prototype takes to classify one of
the examples in Figure 4.1 is 6.80ms.

K-Means

The goal of the K-Means problem is to partition a set of data points into
clusters [86]. Lloyd’s algorithm finds a solution by iteratively improving
upon an initial guess.
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1 nearest p c cs0@[] = True

2 nearest p c cs0@(c':cs) =

3 if (dist c p) <= (dist c' p)

4 then nearest p c cs

5 else False

6

7 f n c cs ps0@[] r = div_p r n

8 f n c cs ps0@(p:ps) r =

9 if nearest p c cs

10 then f (n+1) c cs ps (add_p r p)

11 else f n c cs ps r

12

13 step cs' cs0@[] ps = []

14 step cs' cs0@(c:cs) ps =

15 (f 0 c cs' ps (origin 0)) : step cs' cs ps

16

17 loop 0 ps cs = cs

18 loop i ps cs = loop (i-1) ps (step cs cs ps)

Here, loop manages the total number of iterations, step updates each
cluster point, f assigns points to a cluster to produce a new centroid, and
nearest determines whether a point should be assigned to a cluster.
To clarify our presentation, we omit the definitions of dist (calculates
the distance between two Cartesian points), add_p (sums two points
together), div_p (divides each part of a point by a scalar), and origin

(produces the origin coordinate).
As in our quicksort example, we inspect each function in turn, with

each function producing slices and taintedness classifications for each
argument. Slicing loop,

Se|i = {i, ī} (tainted)
Se|ps = ∆ (clean)
Se|cs = {cs, c̄s} (tainted)

loop has three operations: (i-1), (step cs cs ps), and the implicit
if-expression and equality check represented by the pattern match on i.
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All three operations are classified as obstructive since both i and cs are
classified as tainted. We therefore find nothing to refactor in loop.

Slicing step,

Se|cs’ = {cs’} (clean)
Se|cs0 = {c,cs} (clean)
Se|ps = {ps} (clean)

Since all arguments of step are classified as clean, all operations in step
are considered to be unobstructive. The origin operation takes only
a literal as argument, and the call to f is passed expressions that are
literals, variables classified as clean, or operations that are classified as
unobstructive. Since step is structurally recursive on cs0 we can apply
our refactoring defined in Section 4.5; the call to f is lifted into a map

operation:

1 step cs' cs0 ps =

2 step' cs' cs0 ps

3 (map (\c -> f 0 c cs' ps (origin 0)) cs0)

4

5 step' cs' cs0@[] ps ds0@[] = []

6 step' cs' cs0@(c:cs) ps ds0@(d:ds) =

7 d : step cs' cs ps ds

Since step’ has no further operations, we might further rewrite step
as a call to map:

1 step cs' cs0 ps =

2 map (\c -> f 0 c cs' ps (origin 0) cs0)

The programmer might also choose to inline, perhaps using the Inline
Definition refactoring, the call to step in loop on Line 18.

1 loop 0 ps cs = cs

2 loop i ps cs = loop (i-1) ps

3 (map (\c -> f 0 c cs' ps (origin 0)) cs)
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Slicing f,
Se|n = {n, n̄} (tainted)
Se|c = {c} (clean)
Se|cs = {cs} (clean)
Se|ps0 = {ps} (clean)
Se|r = {r, r̄} (tainted)

f has five operations: i) (n+1) on Line 10, ii) (add_p r p) also on
Line 10, iii) (nearest p cs) on Line 9, iv) if...then..else on
Lines 9–11, and v) div_p r n on Line 7. Since n is classified as tainted,
(n+1) is considered to be obstructive. Similarly, since r is classi-
fied as tainted, both add_p r p (div_p r n) are considered to be
obstructive. Since, both p and cs are classified as clean, (nearest
p cs) is considered to be unobstructive. Since the if-expression on Lines
9–11 has both obstructive operations and recursive calls as subexpressions
to its arguments, it must be classified as obstructive. Since f is structurally
recursive on ps0, we can apply our refactoring, so lifting (nearest p

cs) in to a map operation:

1 f n c cs ps0 r =

2 f' n c cs ps0 r (map (\p -> nearest p c cs) ps0)

3

4 f' n c cs ps0@[] r qs0@[] = div_p r n

5 f' n c cs ps0@(p:ps) r qs0@(q:qs) =

6 if q

7 then f' (n+1) c cs ps (add_p r p) qs

8 else f' n c cs ps r qs

Since p occurs on Line 6 of f’ we cannot remove ps0 as an argument to
f’. We additionally note that f is an instance of a near fold, specifically
foldl. f could instead be rewritten as a composition of an uncurried
div_p and a call to foldl, e.g.
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1 f n c cs ps0 =

2 uncurry div_p

3 (foldl (\p (r,n) ->

4 if nearest p c cs

5 then (add_p r p, n+1)

6 else (r, n)) (r,n) ps0)

Since our approach is only able to detect map operations, we cannot
rewrite f as a foldl.

Finally, we slice nearest,

Se|p = {p} (clean)
Se|c = {c} (clean)
Se|cs0 = {c’,cs} (clean)

nearest has three operations: i) (dist c p), ii) (dist c’ p), and
iii) (...<=...), all on Line 3. Since all arguments are classified as
clean, all three operations are considered to be unobstructive. Moreover,
since nearest itself is structurally inductive on cs0, we can apply our
refactoring.

1 nearest p c cs0 = nearest' p c cs0

2 (map (\c' -> dist c p <= (dist c' p)) cs0)

3

4 nearest' p c cs0@[] ds0@[] = True

5 nearest' p c cs0@(c':cs) ds0@(d:ds) =

6 if d

7 then nearest p c cs ds

8 else False

By introducing the map operation, nearest will no longer short-cut
upon failure as it did in its original definition. Similar functions, es-
pecially where the lifted operation is computationally expensive, may
present a trade-off between efficiency gains by short-cutting operation,
and performance improvements by parallelising the introduced map.
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Smith-Waterman

The Smith-Waterman algorithm compares the similarity of two strings.
The algorithm was originally designed for the comparison of nucle-
otides [108]. It has two stages: populating a matrix, and backtracking
over the matrix to find the shortest ‘distance’ between the two strings.
The code below concerns part of the matrix population stage. It traverses
the matrix m, updating each cell with the result of h, where h (implement-
ation omitted) calculates the maximum similarity score between the two
strings a and b for the current row r and column c and updates the cell
with that score.

1 tcs r c a b m =

2 if c > (length m)

3 then m

4 else tcs r (c+1) a b (h r c a b m)

5

6 trs r c a b m =

7 if r > (length m)

8 then m

9 else trs (r+1) c a b (tcs r c a b m)

10

11 traverse m a b = trs 1 1 a b m

As before, we calculate a slice for each argument to each function, classi-
fying those arguments using the slice.

tcs:

Stcs|r = {r} (clean)
Stcs|c = {c, c̄} (tainted)
Stcs|a = {a} (clean)
Stcs|b = {b} (clean)
Stcs|m = {m, m̄} (tainted)
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trs:
Strs|r = {r, r̄} (tainted)
Strs|c = {c} (clean)
Strs|a = {a} (clean)
Strs|b = {b} (clean)
Strs|m = {m, m̄} (tainted)

Using these classifications, we can classify the operations within the
recursive functions.

tcs: As both c and m are classified as tainted, all operations in tcs (i.e.
length, and the less-than and addition operators) are classified to
be obstructive.

trs: Analogous to tcs, and as both r and m are classified as tainted, all
operations in trs are classified to be obstructive.

No refactoring can be applied to the Smith-Waterman implementation.
However, the Smith-Waterman algorithm is an example of wavefront
parallelism whereby cells of the matrix are divided into groups which can
be calculated in parallel. As our classification looks only for independence
across an entire data structure, at present this would be undetected.

4.7 Summary and Discussion

Skeleton-based approaches simplify the parallelisation process by ab-
stracting over common patterns of parallelism and communication. Des-
pite the advantages of this approach, the introduction and manipulation
of skeletons, an often non-trivial task, is left to the programmer. Previ-
ous work has demonstrated that refactoring techniques can be used to
simplify the introduction and manipulation of parallelism [11, 19, 43].
Knowing where and in what order to apply these refactorings becomes
the next problem. While sequential higher-order functions, or recursion
schemes, that have some parallel equivalent, e.g. map, can be used as loci
for the potential introduction of parallelism, not all possible instances of,
e.g., map are guaranteed to be found in code.
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This chapter presents a novel program slicing-based approach to dis-
cover fully-applied application subexpressions, or operations, that may be
performed as part of a map operation. In Section 4.1, we gave an overview
of our approach using a simple Sudoku solver example. In section 4.2
we described the expression language used for our analysis, including
assumptions and properties thereof. In Section 4.3 we presented the
definitions and algorithms required to discern those operations that can
be lifted into a map operation. This included formal definitions of usage
and update for variables in our expression language (Section 4.3.1); a novel
program slicing algorithm to determine whether a variable is used and
updated in a given expression (Section 4.3.2); definitions for classifying
variables as either tainted or clean according to a slice (Section 4.3.3);
and finally, definitions for classifying operations as either obstructive or
unobstructive in Section 4.3.4, indicating whether an operation may be
lifted. Finally, in Section 4.5, we presented a composite refactoring that
may lift unobstructive operations into map operations.

4.7.1 Limitations

As the approach presented in this chapter inspects operations within
functions, functions can have largely arbitrary structures. Despite this,
the way a function recurses can potentially obfuscate how variables are
used and updated, and therefore limit the ability of our approach to
accurately detect unobstructive operations. One example of this is mutual
recursion. Consider, for example, the definition of nqueens, which
solves how n queens can be placed on a chess board of size n2 such that
no queen may take another according to the standard rules of chess.

1 nqueens nq = gen nq 0 []

2

3 gen nq n b

4 | n >= nq = [b]

5 | otherwise = genloop nq n (gennext nq [b])

6

7 genloop nq n bs0@[] = []

8 genloop nq n bs0@(b:bs) = gen nq (n+1) b ++ genloop bs
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Here, nq represents the number of queens; gennext finds the next
safe position on a board to place a queen; gen controls the number of
queens placed on each board; and genloop ensures that queens are
placed on all boards. gen and genloop are mutually recursive. Inspecting
both functions would result in (gen nq (n+1) b) in genloop (Line
8) being classified as unobstructive and subsequently lifted into a map

operation.

1 genloop nq n bs0 =

2 genloop' (map (\b -> gen nq (n+1) b) bs0)

3

4 genloop' cs0@[] = []

5 genloop' cs0@(c:cs) = c ++ genloop' cs

Conversely, consider the definition of nqueens where genloop is unfol-
ded (in the transformational sense) in gen.

1 nqueens nq = gen nq 0 [] (gennext nq [[]])

2

3 gen nq n b xs0@[] =

4 if n >= nq then [b] else []

5 gen nq n b xs0@(x:xs) =

6 gen nq (n+1) x (gennext nq [x]) ++ gen nq n b xs

Here, both n and xs0 control the recursion, and with the exception of nq,
all arguments are classified tainted. Given the slices,

Sgen|nq = {nq}
Sgen|n = {n, n̄}
Sgen|b = {b, b̄}
Sgen|xs0 = {x,xs, ¯xs0}

n, b, and xs0 are all used and updated between recursive calls. The recursive
call in the first argument of (++) in Line 4 introduces an update for those
three arguments between recursive calls. This results in all operations
being classified as obstructive. This is a correct result because the same xs0

is not traversed for all n. gen is a combination of two patterns: iteration
and map; where our approach detects only map instances. Our inability
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to discover combination patterns suggests that a prior normalisation
stage, whilst not necessary, may be potentially useful in the discovery of
potential map operations.

A related limitation arises in that, whilst data dependency information
is used to calculate the slice, the slice cannot detect patterns within those
dependencies. This means such patterns cannot be taken advantage of
to, e.g., derive groups of independent elements within the traversed data
structure. For example, consider the Smith-Waterman algorithm, which,
originally designed for the comparison of nucleotides [108], compares
the similarity of two strings. The algorithm has two stages:

1. populating a matrix, and

2. backtracking over the matrix to find the shortest ‘distance’ between
the two strings.

Consider the matrix-population stage; specifically how the matrix is
traversed as it is populated.

1 traverse m a b = trs 1 1 a b m

2

3 trs r c a b m =

4 if r > (length m)

5 then m

6 else trs (r+1) c a b (tcs r c a b m)

7

8 tcs r c a b m =

9 if c > (length m)

10 then m

11 else tcs r (c+1) a b (h r c a b m)

Here, a matrix m is traversed, updating each cell with the result of h,
where h (implementation omitted) calculates the maximum similarity
score between the two strings a and b for the current row r and column
c. m is classified tainted in both trs and tcs, and r and c are classified
tainted in trs and tcs respectively. All other variables are classified
clean. All operations in trs and tcs are therefore classified obstructive,
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Figure 4.27: Data dependencies for each cell in the Smith-Waterman
matrix.

meaning no refactoring can be applied to the Smith-Waterman imple-
mentation. However, the Smith-Waterman algorithm is an example of
wavefront parallelism whereby cells of the matrix are divided into groups
which can be calculated in parallel. In particular, the value of each cell is
dependent upon three others, as shown in Figure 4.27, and so cells can
be grouped into diagonal rows; e.g.

0

BBBBBBBBBBBBBBBBBBB@

� a c a c a c t a
� 1 2 3 4 5 6 7 8 9
a 2 3 4 5 6 7 8 9 10
g 3 4 5 6 7 8 9 10 11
c 4 5 6 7 8 9 10 11 12
a 5 6 7 8 9 10 11 12 13
c 6 7 8 9 10 11 12 13 14
a 7 8 9 10 11 12 13 14 15
c 8 9 10 11 12 13 14 15 16
a 9 10 11 12 13 14 15 16 17

1

CCCCCCCCCCCCCCCCCCCA

where colour and number indicate groups, and ‘acacacta’ and ‘agcacaca’
are the strings being compared.

Another way in which the classification is found to be conservative
is caused by the ‘Lamarckian inheritance’ of the classification of case-
declared variables. Operations over the heads of tainted list variables
may not themselves be obstructive. For example, consider f,
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1 f n xs0@[] = []

2 f n xs0@(x:xs) = g x : f n (drop n xs0)

where the operation (g x) in Line 2 can be lifted into a map operation,
and functional equivalence is maintained during refactoring to introduce
the map operation. However, as xs0 is classified tainted, (g x) will
be classified obstructive. This is a conservative result since there is no
guarantee that xs0 is updated in such a way that x is not dependent on
previous recursive calls for all function definitions.

1 f g 0 xs0 = xs0

2 f g n xs0@(x:xs) = g x : t g (n-1) (h xs0)

Here, for example, xs0 is updated in the recursive call via some function
h. Suppose that we lift (g x) in Line 2 into a map,

1 f g n xs = f' g n xs (map g xs)

2

3 f' g 0 xs0 ys0 = xs0

4 f' g n xs0@(x:xs) ys0@(y:ys) =

5 y : f' g (n-1) (h xs0) (h ys0)

where we mimic the traversal of xs0 in ys0. Should h change the values
of the elements in xs0, and by extension the values of the elements in ys0,
functional equivalence between the original and refactored definitions of
f does not hold. We conjecture, based on experimental observations, that
it is only when h changes the values of the elements in xs0 that functional
equivalence does not hold; conversely, when h only affects changes the
ordering of elements or size of xs0, functional equivalence holds.

Finally, and in Section 4.5, where we define a refactoring to introduce a
map operation, we observe that a separate refactoring is required for each
definition of map. We further conjecture that should our technique be
extended to allow arbitrary data types, and therefore arbitrary recursion
schemes, e.g. foldr, separate refactorings will be required for each
definition of each recursion scheme. This, in addition to needing to
encode the behaviour of the recursion scheme to be detected in terms of
variable usage and update, suggests the approach is relatively difficult to
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extend. Relatedly, as this approach operates over an expression language,
programs in languages such as Haskell or Erlang must be translated
to the expression language for analysis. Alternatively, the expression
language might be expanded to match the full syntax of, e.g., Haskell 98.

4.7.2 Concluding Remarks

In Chapter 3 we identified two key limitations of current approaches to
automatic pattern discovery: i) the range of functions that can be inspec-
ted; and ii) the range of patterns that can be discovered. The first, limited
range of functions, can lead to the introduction of runtime overheads, as
in list homomorphism approaches [67], or require strict assumptions on
the shape of the inspected function, as in hylomorphism approaches [30,
61]. Moreover, most current approaches inspect the function as a whole
unit. Conversely, the approach described in this chapter is capable of
both inspecting individual operations, and inspecting arbitrary recurs-
ive functions that are defined in our expression language. Inspecting
individual operations allows us to discover patterns that could possibly
have gone unnoticed by approaches that inspect the function as a whole.
The approach by Ahn and Han [2], which also uses program slicing, is
similar in this regard: they are able to find multiple pattern instances
within a single function. Unlike our approach, however, which has no
such limitation on the form of function inspected, they are only able to
inspect functions that have a specific form and are first-order. We are
therefore able to inspect a wider range of functions at the expression
level when compared with existing approaches.

Despite our approach facilitating both discovery and introduction of
patterns at the expression level and the analysis of arbitrary recursive
functions, it is still only designed to discover map instances. The ability
to discover multiple patterns is desirable since this enables both more
specific and more generic patterns to be discovered, thereby enabling more
of a program to be described in terms of recursion schemes, and thus
more chances for parallelism. Moreover, a range of patterns leads to the
greater likelihood that the behaviour of a program is more accurately
captured by its recursion schemes. This can potentially lead to wider
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opportunities for the kind of parallelism that is introduced without the
need of further analysis, e.g. because a specific skeleton implementation
requires a pattern that is not discoverable to be introduced, or the intro-
duction of runtime overheads via, e.g., a projection function for an almost
homomorphism [45].

In principle, it is possible to easily extend our approach to detect
and introduce zipWith and foldr/foldl operations. Here, zipWith
instances are a map operation that simultaneously recurses over two
lists, and foldr/foldl instances can be derived from the function that
remains from lifting unobstructive operations. Conversely, in order to
discover additional patterns, the approach will likely require different
definitions of obstructiveness in terms of usage (Definition 4.3.3) and
update (Definition 4.3.1). It follows that, in order to discover multiple
patterns, each operation must then be tested against the set of definitions
of obstructiveness. However, in the case of new and programmer-defined
patterns, the programmer must sufficiently understand and apply the
concepts described in this chapter in order to define the pattern in terms
of usage and update classifications. The programmer may even potentially
redefine usage and/or update themselves should the current definitions
prove to be too high-level to accurately describe the pattern’s behaviour.
An alternative approach to both the approach described in this chapter
and to current automatic pattern discovery techniques, that is capable
of discovering multiple kinds of patterns, but is also easily extensible,
is therefore desirable. We describe one such approach in the following
chapter.
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Chapter 5
Automatic Pattern Discovery via

Anti-Unification

In this chapter, we describe a novel approach to discover and rewrite
functions that may be expressed as a given higher-order function. This
approach is designed to address the limitations identified in Section 4.7.2;
specifically the discovery of multiple patterns. Here, we consider patterns
to be pure Haskell 98 higher-order functions that are implementations of
given recursion schemes [90]. In order to facilitate the discovery of multiple
patterns, including patterns provided by the programmer, we use anti-
unification [102, 105] to compare the structures of both the inspected
function and pattern. This comparison allows us to determine whether
the inspected function may be expressed as the pattern.

Section 5.1 gives an overview of the approach, including a simple
example to illustrate it. Section 5.2 describes the preliminaries and as-
sumptions that are required for the technique to work. Section 5.3 defines
a novel anti-unification algorithm, and Section 5.4 defines properties that
determine whether the inspected function is an instance of the given
recursion scheme using the results of the anti-unification. Section 5.4.1
describes how the inspected function is rewritten as a call to the higher-
order function. Section 5.5 describes how we implemented our approach
using the Haskell refactoring tool, HaRe. Section 5.6 describes how
the approach can be modified to discover unfold instances, where a
data structure is constructed corecursively. Finally, Section 5.8 gives an
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overview of the approach that is presented in this chapter, discussing
strengths and weaknesses, and compares the approach against the pre-
vious chapter. The content of this chapter was presented at Lambda
Days 2017, and accepted for publication in Future Generation Computer
Systems [9].

5.1 Introduction

We illustrate our approach using an example from the standard NoFib
suite of Haskell benchmarks [99], sumeuler, that calculates Euler’s
totient function for a list of integers and sums the results.

1 sumeuler :: [Int] -> Int

2 sumeuler xs = sum (map euler xs)

Here, euler is Euler’s totient function, and sum sums the values in its
argument, a list of integers. As demonstrated in Section 4.6.2, sumeuler
can be easily parallelised using, e.g., the Haskell Strategies library:

1 sumeuler :: [[Int]] -> Int

2 sumeuler xs =

3 sum (map (sum . map euler) xs

4 `using` parList rdeepseq)

The sequential definition of sumeuler may be unfolded (in the trans-
formational sense) in a number of ways. One approach is to fuse the calls
to sum and map to produce a call to a foldr.

1 sumeuler :: [Int] -> Int

2 sumeuler xs = foldr ((+) . euler) 0 xs

3 where foldr g q [] = q

4 foldr g q (w:ws) = g w (foldr g q ws)

This new definition of sumeuler can then be parallelised in an alternat-
ive way to the parallel map above, using e.g. a reduce skeleton. As before,
taking advantage of parallelism in sumeuler is therefore both simple and
potentially automatic [12, 31, 107]. However, if sumeuler was defined
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Figure 5.1: Rewriting sumeuler as an instance of foldr

without using either an explicit map or foldr, e.g. as shown below using
direct recursion, then parallelisation could be less straightforward, since
the computations that can be done in parallel may not be obvious; and
lower, or no, speedups might result.

1 sumeuler :: [Int] -> Int

2 sumeuler [] = 0

3 sumeuler (x:xs) = ((+) . euler) x (sumeuler xs)

Since this version of sumeuler is implicitly an instance of foldr, it is best
to first restructure the definition so that it explicitly calls foldr before at-
tempting parallelisation. In order to rewrite the inlined sumeuler as an
explicit foldr, however, we need to derive concrete arguments to foldr
that will yield a functionally equivalent definition. These arguments can
be derived by inspecting the inlined definition of sumeuler, as shown in
Figure 5.1. To automatically derive the arguments to foldr, we inspect the
definitions of sumeuler and foldr using anti-unification, which aims
to find the least general generalisation between two terms. In Plotkin and
Reynolds’ original work [102, 105], anti-unification was defined for totally
ordered terms, where terms consisted of variables, literals, and function
application. More recent approaches to anti-unification have applied
the technique to real programming languages such as Haskell [23, 24],
primarily for clone detection and elimination [25]. In these approaches,
anti-unification compares two terms (expressions) to find their shared
structure, producing an anti-unifier term (representing the shared struc-
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((+) . euler) x (sumeuler xs)

((+) . euler) x (sumeuler xs)

((+) . euler) x sumeuler xs

((+) .) euler

(+) (.)

g x (foldr g z xs)

g x (foldr g z xs)

g x (foldr g z) xs

foldr g z

foldr g

Figure 5.2: ASTs for the (:) clause of sumeuler (left) and foldr (right);
shared structure in black, differing structure in green and red.

ture), plus two sets of substitutions that enable the original term to be
reconstructed from the anti-unifier. For example, anti-unifying the []

clause of sumeuler with foldr compares the syntactically unequal 0
and z expressions, producing the anti-unifier, h:

1 h g z [] = z

Where the anti-unified structures diverge, a variable, referred to as a hedge
variable, is introduced in the anti-unifier that can be substituted for the
original term. Substitutions, s, have the form (ti 7! tj), where the ti, tj are
terms. Substitutions are applied to terms, written using postfix notation,
e.g. t s, and can be composed like functions. An applied substitution
replaces all instances of ti with tj in t. For example, the substitutions for
the [] clause of sumeuler are:

s1 = (z 7! 0)

and the substitutions for the [] clause of foldr are #, i.e. the identity
operator for substitutions. Anti-unifying the respective (:) clauses of
sumeuler and foldr produces the anti-unifier:

1 h g z (x:xs) = g x (a xs)

where a is a free variable. As shown in Figure 5.2, the structures of
the two clauses are very similar, consisting primarily of application ex-
pressions. Differences can be found at the leaves of foldr, highlighted
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in both dark green and red in Figure 5.2. Since x and xs are in the
same relative positions, they feature in h. As ((+) . euler) 6=
g (highlighted in dark green), g is used to represent the function ap-
plied to two arguments in h. Finally, since the recursive call prefixes
sumeuler and (foldr g z) (highlighted in red) are not syntactically
equal, the variable a is used in their place in h. This produces the substi-
tutions: (g 7! ((+) . euler)) and (a 7! sumeuler) for sumeuler,
and: (a 7! (foldr g z)) for foldr. As shown in Figure 5.2, the struc-
tures of the two cons (:) clauses are very similar, consisting primarily of
application expressions. Differences can be found at the leaves of foldr,
with corresponding differences highlighted in both green and red across
functions in Figure 5.2. Since x and xs are in the same relative positions,
they feature in h. As ((+) . euler) is not syntactically equal to g

(highlighted in green), g is used to represent the function applied to two
arguments in h. Finally, since sumeuler is not syntactically equal to
foldr g z (highlighted in red), the variable a is used in their place in
h. This produces the substitutions:

s2
1 = (g 7! ((+) . euler)) � (a 7! sumeuler)

s2
2 = (a 7! foldr g z)

for sumeuler and foldr, respectively. Finally, since it is possible to
reconstruct the original terms by applying the relevant substitutions to
an anti-unifier, when given the anti-unifier h

1 h g z [] = z

2 h g z (x:xs) = g x (a xs)

we can, in principle, rewrite sumeuler and foldr in terms of h using
substitutions as arguments:

1 sumeuler xs = h ((+) . euler) 0 xs

2

3 foldr g z xs = h g z xs

Furthermore, because foldr is equivalent to h, we conclude that sumeuler
must be an instance of foldr and can be rewritten in terms of h, it must
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be the case that sumeuler can be rewritten in terms of foldr. The
substitutions for sumeuler inferred as part of anti-unification are valid
as arguments to foldr, allowing sumeuler to be rewritten:

1 sumeuler xs = foldr ((+) . euler) 0 xs

Parallelism can now be introduced using a parallel implementation of
foldr, either manually or using a refactoring/rewriting tool (e.g. [17,
22]). Alternatively, the foldr operation can be split into its map and
foldr (sum) components, perhaps by using the laws of hylomorphisms
as in [31], producing:

1 sumeuler xs = foldr (+) 0 (map euler xs)

which is equivalent to our original definition of sumeuler:

1 sumeuler xs = sum (map euler xs)

This can then be parallelised using the parallel map that we originally
showed.

The below sections give an overview of our approach. Figure 5.3
provides a key to our notation. Some function f that matches a pattern,
p, in the set of patterns, P , is rewritten to a new function, f’, that calls
p and that is functionally equivalent to f. Our approach determines
whether f is an instance of p, and if so, derives the arguments that are
needed to make f and f’ functionally equivalent. This is achieved in
two main stages:

1. anti-unifying f and p to derive argument candidates; and

2. using the result of the anti-unification to determine if f is an in-
stance of p, and if so, validating the argument candidates.

Our approach compares two functions, and given a finite set of P , can be
applied repeatedly to discover a set of potential rewrites. When multiple
rewrites are valid, we take the first, although other selection methods are
also valid.
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P = Set of pattern implementations
f = Function to be transformed
p = A function in P
h = Result of the anti-unification of f and p
f’ = f rewritten as an instance of p
ai = Argument of f or p being recursed over

vai = Variable declared in ai
t, ti = Terms for anti-unification

s,si = Substitutions for anti-unification
# = The identity substitution
a = Hedge variables, found only in h

Figure 5.3: Key to terms and notation.

5.2 Preliminaries and Assumptions

We illustrate our approach using the Programatica AST representation
of the Haskell 98 standard [104]. Programatica is used as a basis for the
Haskell refactorer, HaRe, which we extend to implement our approach.
We discuss our implementation in Section 5.5. Programatica represents
a Haskell AST using a collection of 20 Haskell data types, comprising
a total of 110 constructors [18]. These types are parameterised by the
location of the syntactic elements they represent, and in the case of
variables and constructors, where they are declared. For example, the
expression 42 is represented in Programatica by (Exp (HsLit loc

(HsInt 42))). Here, HsLit indicates that 42 is an expression; HsInt
indicates that it is an integer; and loc represents its location in the
source code. We refer to the representation of Haskell expressions in
Programatica as terms; i.e. given some expression e and some term t, we
say that t is the Programatica representation of e (denoted JeK= t). In the
above example, J42K = (Exp (HsLit loc (HsInt 42))); i.e. (Exp
(HsLit loc (HsInt 42))) is the term that represents the expression
42. There is a one-to-one mapping between expressions and terms. In
the Programatica tool set, terms are values of the HsExpI type. We make
the distinction between expressions and terms since terms can be easily
generalised over using their constructors, as we do in Section 5.3.

Although in principle we anti-unify the Haskell functions f and p, we
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do so in a structured way that we define in Section 5.3. Beyond this, we
do not need to consider (the representations of) arbitrary Haskell declara-
tions or modules since we only anti-unify terms that form the right-hand
side of like-equations in f and p. Since location information will mean
that any two compared terms will always be unequal, we discard location
information. Finally, and to simplify our presentation, we will omit the
outer Exp constructor, the common Hs prefix of constructors, and any
explicit specification of literal terms (e.g. integer or string). For example,
(Exp (HsLit loc (HsInt 42))) is instead recorded as (Lit 42).
Where variables and constructors are both represented as identifiers, we
will instead record these using Var and Con, respectively. For example,
the term of the variable expression x is (Var x), and the term of the
cons operator expression, (:), is (Con (:)). While our approach works
for all terms, here we only need to explicitly refer to: Var (representing
variables), Lit (representing literals), and App (representing application
expressions). All other terms fall under the generic constructor C, and
lists of terms (e.g. [t1, . . . , tn]) that used as arguments to C to repres-
ent lists and tuples. Other common expressions found in functional
languages, such as lambdas, fall under the general case since they are
both unlikely to appear in recursion scheme implementations, and are
otherwise safe to anti-unify due to the assumptions below.

5.2.1 Assumptions

In order to determine whether f is an instance of p, we will assume:

1. that variables are unique in f and p;

2. that no variables are free in p, and that all variables in p are declared
as arguments to p;

3. that f and p recurse on the same type (denoted t);

4. that f and p only pattern match on the argument that is being
traversed (denoted ai, where ai is the ith argument to f and/or p);
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5. that for every clause that matches a constructor of t in p, there is a
corresponding clause that matches the same constructor in f, and
vice versa; and

6. that no parameter to ai (denoted vai) occurs as part of any binding
in an as-pattern, let-expression, or where-block.

Clauses in p are always anti-unified with like clauses in f, according to
the constructor of t matched for that clause, C. ai then acts as ‘common
ground’ between f and p; i.e. both functions declare the parameters of
the constructor in ai as arguments. This enables a check to ensure that the
inferred substitutions are sensible (Definition 5.4.6). It is therefore useful
to know which vai in f correspond to which vai in p. Despite this, since
variables in f and p are assumed to be unique, it follows that no variable
term in f will ever be syntactically equal to any variable term in p. We
instead consider vai with the same position in f and p to be equivalent.

Definition 5.2.1 (Shared Argument Equivalence). Given the argument of
type t that is pattern matched in both f and p, ai, where in f, ai = (D v1 . . . vn),
and in p, ai = (D w1 . . . wn), we say that each vi is equivalent to each wi

(denoted vi ⌘ wi); i.e. 8i 2 [1,n], vi ⌘ wi. Given two arbitrary vai in f and p,
vfai

and vpai , we denote their equivalence by vfai
⌘ vpai .

In sumeuler and foldr from Section 5.1, for example, x and xs are
vai in sumeuler, and w and ws are similarly vai in foldr. Here, both
x⌘ w and xs⌘ ws hold, since x and w are the first arguments to their
respective cons operations, and xs and ws are the second arguments.

Traditional anti-unification algorithms use syntactic equality to relate
two terms, t1 and t2, their anti-unifier, t, and the substitutions s1 and s2.
To take advantage of argument equivalence we must use a weaker form
of syntactic equality. First, we define the binary relation ⇠ over terms, a
form of alpha equivalence.

Definition 5.2.2 (Alpha Equivalent Terms). Given two variables, vfai
and

vpai , we say that the term representations of vfai
and vpai are equivalent (denoted

Jvfai
K⇠ JvpaiK) when:

vfai
⌘ vpai

Var vfai
⇠ Var vpai
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We then replace syntactic equality with a weaker form of equivalence
using Definition 5.2.2.

Definition 5.2.3 (Syntactic Equivalence). We define syntactic equivalence to
be a binary relation over two terms, t1 and t2, denoted t1 ⇠= t2, where ⇠= is the
reflexive structural closure of ⇠.

For example, (Lit 42) ⇠= (Lit 42) holds; t1 ⇠= t2 holds for all t1 =

(C t11 . . . tn) and t2 = (C t21 . . . t2n) when 8i 2 [1,n], t1i ⇠= t2i; and finally,
(Var vfai

)⇠= (Var vpai) holds only when vfai
⌘ vpai is true. We note that for

all other variables, v,w, (Var v)⇠= (Varw) does not hold.
Where t is a product type, e.g. as in zipWith, we permit pattern

matching on all arguments that represent the data structure(s) being
traversed. All other arguments must be declared as simple variables. For
example, given:

1 f1 a b c [] [] = []

2

3 f2 0 (b',b'') c [] = []

f1 is permitted, but f2 is not.
As-patterns, let-expressions, and where-blocks all enable occur-

rences of some vai to be aliased, or obfuscated, and thereby potentially
obstruct argument derivation. Since our analysis inspects the syntax of f
and p, such patterns and expressions can obfuscate the exact structure of
f; i.e. lift potentially important information out of the main body of f
and p. For example, given the definition,

1 f3 [] = []

2 f3 (x:xs) = g1 x : f3 xs where g1 = g2 xs

the fact that xs is passed to g2 is obfuscated by the where-block, and
could lead to an incorrect rewriting of f3 as, e.g., a map. These syntactic
constructs could be removed (semi-)automatically prior to analysis.

We do not restrict the type of recursion; general recursive forms
are allowed, for example. Partial definitions are also allowed. For ex-
ample, both zipWith and zipWith1 are valid as implementations of
the general zipWith recursion scheme:
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1 zipWith g [] [] = []

2 zipWith g (x:xs) (y:ys) = g x y : zipWith xs ys

3

4 zipWith1 g1 g2 g3 [] [] = []

5 zipWith1 g1 g2 g3 (x:xs) [] = g1 x : zipWith1 xs []

6 zipWith1 g1 g2 g3 [] (y:ys) =

7 g2 y : zipWith1 [] ys

8 zipWith1 g1 g2 g3 (x:xs) (y:ys) =

9 g3 x y : zipWith1 xs ys

This permits more implementations of a given scheme, and so increases
the likelihood of discovering an instance of a scheme in f.

Finally, and since our approach effectively requires that f has a similar
syntactic structure to p as a result of the anti-unification, we permit any
valid and finite normalisation procedure that rewrites some arbitrary f0

to f, such that f0 is functionally equivalent to f. Normalisation can be used,
e.g., to ensure that any of the above assumptions are met. For example,
consider assumption 6: as-patterns and definitions in let-expressions
and where-blocks can be inlined (or unfolded in the transformational
sense). For example, the where-block definition of g1 in f3 can be
unfolded to produce:

1 f3 [] = []

2 f3 (x:xs) = g2 xs x : f3 xs

Alternatively, normalisation procedures can be used to reshape [11] func-
tions into a form to allow, or simplify, the discovery of recursion schemes.
For example, the definition,

1 f4 xs0 = case xs0 of

2 [] -> 0

3 (x:xs) -> x + f xs

can be rewritten to lift the case-split into a pattern match, allowing the
function to be anti-unified against a foldr:

1 f4 [] = 0

2 f4 (x:xs) = x + f xs
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3

4 foldr g z [] = z

5 foldr g z (x:xs) = g x (foldr g z xs)

More ambitious normalisation procedures may split a function, e.g. f5:

1 f5 [] z = g2 z

2 f5 (x:xs) z = f5 xs (g1 x z)

which can be can considered a near fold. Here, we can lift out the
application of g2 in the base case, and therefore expose a foldl instance:

1 f5 xs z = g2 (f5' xs z)

2

3 f5' [] z = z

4 f5' (x:xs) z = f5' xs (g1 x z)

Splitting of functions in this way is allowed provided that any such
splitting is finite and reduces the size of the split function. For example, some
f0 cannot be split into the composition of f0’ and f0”, where f0’ or
f0” is functionally equivalent to the identity operation. In line with the
intention for f to be anti-unified against a set of recursion schemes, we
do not require the normalisation procedure to be confluent.

The normalisations discussed above can be performed automatically,
semi-automatically via a refactoring process, or manually. A manual
approach is not desirable, since it is prone to the introduction of errors,
but is primarily used in the below chapter due to time constraints. A list
of normalisations that we applied to our examples is given in Section 5.7.1.
We conjecture that a small group of common normalisations, e.g. lifting
as-patterns, alpha-renaming for uniqueness, and splitting or joining
clauses, could facilitate normalisation for a significant range of functions.
Implementation of these normalisations is left to future work.

5.3 Argument Derivation via Anti-Unification

In order to derive arguments to express f as an instance of p, we must
anti-unify f and p. We define anti-unification for two levels: i) at the
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term level for two arbitrary terms; and ii) at the function level where we
anti-unify f and p. At the term level, the anti-unification of two terms,
t1 and t2, (denoted t1 , t2) we obtain the triple (t ⇥ s1 ⇥ s2), where t
is the anti-unifier with respect to the substitutions s1 and s2. At the
function level, the anti-unification of f and p produces a list of triples
that represents the results of anti-unification for each pair of clauses in f

and p.
We define a substitution to be a function that takes a variable, x, and

returns a term, t2. When applied to a term, t1, a substitution returns t1

but with all occurrences of x replaced by t2.

Definition 5.3.1 (Substitution). Given two terms, t1,t2, and a variable name,
x, that occurs in t1, substituting x for t2 in t1 replaces all occurrences of (Var x)
in t1 with t2. This substitution is denoted (x 7! t2); and the application of
substitutions to terms is denoted t1 (x 7! t2), where (x 7! t2) is applied to t1.
We use s to refer to substitutions; e.g. s = (x 7! t2).

Here, we update the classical definition of substitution [105] to account for
the Programatica representation. Substitutions are denoted as substitut-
ing a variable name for some term. When applied to a term, a substitution
replaces all variable terms that are parameterised by the given variable name
with another term. For example, the result of the substitution s applied
the term t, t s, is:

t = Var g

s = (g 7! (App (App (Var .) (Var +)) (Var euler)))

t s = (App (App (Var .) (Var +)) (Var euler))

Here, g is substituted for a term representing the expression ((+) .

euler), from sumeuler. While the name of the variable being substi-
tuted is given in s, it is the variable term parameterised by g, i.e. (Var g),
in t that is substituted. We call the variables in substitutions that are
substituted for terms hedge variables. Uniqueness of variables means that
all occurrences of a hedge variable in a term can be substituted safely.

Definition 5.3.2 (Identity Substitution). The identity substitution, denoted #,
is defined such that for all terms t, t = t #.
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Substitutions can be composed using an n-ary relation such that compos-
ition forms a rose tree of substitutions.

Definition 5.3.3 (Substitution Composition). For all terms t0, . . . , tn, and
for all substitutions s1, . . . ,sn, where t0 = (C t1 . . . tn), there exists some sub-
stitution s0 = Ls1, . . . ,sn M such that t0 s0 = (C (t1 s1) . . . (tn sn)). Similarly,
where t0 = [t1, . . . , tn], there exists some substitution s0 = Ls1, . . . ,sn M such
that t0 s0 = [(t1 s1), . . . , (tn sn)].

For the function f , defined

f v11 . . . v1n = e1

...

f v21 . . . v2n = en

and for the substitutions s1, . . . ,sn, there exists some substitution

s0 = Ls1, . . . ,sn M

such that J f Ks0 is defined:

f v11 . . . v1n = e01
...

f v21 . . . v2n = e0n

where
8i 2 [1,n], Je0iK= JeiKsi

Composed substitutions are ordered, such that when applied to some term
t0, the first composed substitution is applied to the first direct subterm
to t0, the second composed substitution is applied to the second direct
subterm, and so on. Each composed substitution is only applied to its
corresponding direct subterm in t0, and does not interfere with any other
subterm of t0. For example, the expression (g x x) is represented by
the term t0,

t0 = App (App (Var g) (Var x)) (Var x)

and given the substitution, s0,

s0 = LL (g 7! Var euler), # M, (x 7! Var p) M
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when we apply s0 to t0, the resulting term is:

t0 s0 = App (App (Var euler) (Var x)) (Var p)

A composition of substitutions may be applied to either f or p, where
each substitution applies to the right-hand side of each equation in order.
We will refer to such compositions by sf and sp. For example, given the
function sum,

1 sum [] = []

2 sum (x:xs) = x + (sum xs)

and the substitution sf = Ls1,s2 M, applying sf to sum, applies s1 to the
term representation of [], i.e. the right-hand side of the first equation,
and s2 to the term representation of (x + (sum xs)), i.e. the right-
hand side of the second equation.

Anti-unification computes the anti-unifier of two terms. In the literat-
ure, all hedge variables are fresh. Conversely, and since we aim to rewrite
f in terms of p, we can use the variables declared in p as hedge variables.
This allows us to easily derive expressions that can be passed to p in f.
We refer to the set of hedge variables from p by Vp. All hedge variables
not in Vp are fresh hedge variables, which we denote by a.

Another difference to traditional anti-unification algorithms can be
found the concept of unobstructive recursive prefixes. As we are anti-
unifying two different recursive functions, by definition they will diverge
in at least one respect: their recursive calls. We extend this notion to
recursive prefixes, where a recursive prefix is a variable expression com-
prising the name of the function, i.e. f or p, or an application expression
that applies f or p to one or more expressions. For example, given the
definition of foldr,

1 foldr g z [] = z

2 foldr g z (x:xs) = g x (foldr g z xs)

the recursive call, (foldr g z xs), has four recursive prefixes, in-
cluding: i) (foldr g z xs); ii) (foldr g z); iii) (foldr g); and
iv) foldr. It is useful to further extend the notion of recursive prefixes
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with the concept of unobstructiveness. We define an unobstructive recursive
prefix to be a recursive prefix for which the values of its arguments do not
change. In the above example, all recursive prefixes, with the exception of
(foldr g z xs), are unobstructive.

Definition 5.3.4 (Unobstructive Recursive Prefix). Given a recursive func-
tion f ,

f v1 . . . vn = e

for all recursive calls in e,
f e1 . . . en

we say that a recursive prefix is either:

1. the direct subexpression f e1 . . . em, where 1  m  n; or

2. the expression f itself.

We say that a recursive prefix is unobstructive when 8i 2 [1,m], ei = vi.
An expression, e0 is denoted as being an unobstructive recursive prefix by
membership of the set of unobstructive recursive prefixes for f ; i.e. e0 2R f .

To help ensure that as many instances of some scheme are found, we will
also assume the existence of the identity operator, which is defined in
Haskell as id.

Definition 5.3.5 (The Identity Operation). We define id to be the lambda
expression (\x -> x) such that for all terms, t, (App (Var id )(t))⇠= t.

Our anti-unification algorithm calculates the anti-unifier t and substitu-
tions s1 and s2 for the terms t1 and t2, such that t1 ⇠= t s1 and t2 ⇠= t s2

hold, denoted:
t1 , t2 = t ⇥ s1 ⇥ s2

Our rules in Figure 5.4 define how to infer t, s1, and s2 from t1 and t2.
Rules have the form,

p
"

t1

t2

#
⇠= (t)

"
s1

s2

#
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eq

t1 ⇠= t2
t1
t2

�
⇠= (t2)


#
#

�

var

v 6= p


t1
Var v

�
⇠= (Var v)


(v 7! t1)

#

�

id

u 6= p v1
ai
⌘ v2

ai
Var vfai
App (Var u) (Var vpai)

�
⇠= (App (Var u) (Var vpai))


L (u 7! id), # M

#

�

rp

t2 2Rp
t1
t2

�
⇠= (Var a)


(a 7! t1)
(a 7! t2)

�

const

8i 2 [1,n],


t1i
t2i

�
⇠= (ti)


s1i
s2i

�


C t11 . . . t1n
C t21 . . . t2n

�
⇠= (C t1 . . . tn)


Ls11, . . . ,s1n M
Ls21, . . . ,s2n M

�

list

8i 2 [1,n],


t1i
t2i

�
⇠= (ti)


s1i
s2i

�


[t11, . . . , t1n]
[t21, . . . , t2n]

�
⇠= ([t1, . . . , tn])


Ls11, . . . ,s1n M
Ls21, . . . ,s2n M

�

otherwise 
t1
t2

�
⇠= (Var a)


(a 7! t1)
(a 7! t2)

�

Figure 5.4: Inference rules to calculate the anti-unifier t for the terms t1
and t2.

where p denotes any additional assumptions necessary for t1 ⇠= t s1 and
t2 ⇠= t s2 to hold. We use matrix notation as shorthand for the two
equations; i.e.

"
t1

t2

#
⇠= (t)

"
s1

s2

#
= t1 ⇠= t s1 ^ t2 ⇠= t s2

When t1 and t2 are the same, i.e. t1 ⇠= t2, eq holds. For all other cases
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when t2 is a variable term, and is not (Var p), t2 is used as the hedge
variable in t (var). When t2 is an application term applying some function
u to a vai , and t2 is a variable term that is equivalent to the vai in t2, then
the application term is used in t, and u is substituted for id in s1 (id).
When t2 is an unobstructive recursive prefix of p, rp holds. const states
that when t1 and t2 are terms with the same constructor, C, then t is
a term with constructor C and its direct subterms are the anti-unifiers
of each of the respective direct subterms in t1 and t2. list is similar to
const, but satisfies when the t1 and t2 are lists of terms, where t1 and t2

are the same length. In all other cases, otherwise holds. For example,
the terms, t1 and t2,

t1 = App (Var e) (Lit 42)

t2 = App (Var g) (Lit 108)

both apply some function to some literal, and have the anti-unifier and
substitutions:

t = (App (Var g) (Var a))

s1 = L (g 7! (Var e)), (a 7! (Lit 42)) M
s2 = L #, (a 7! (Lit 108)) M

Here, s1 and s2 are compositions reflecting the two arguments to App

(const). Since the first argument in both t1 and t2 are variable terms, but
with different names, t2 is chosen as the anti-unifier with the substitution
for s1 replacing g with e, and the identity substitution for s2 (var).
Conversely, the second argument differs in t1 and t2, and since (Lit

108) is not an identifier, a fresh hedge variable, a, is used for t, with the
corresponding substitutions replacing (Var a) in (Lit 42) and (Lit

108) for t1 and t2, respectively (otherwise).
As we are interested in finding instances of a pattern in a function,

it is convenient to relax the least general property found in traditional
anti-unification algorithms. Specifically, the rp rule in Figure 5.4 can
result in an anti-unifier that is not the least general generalisation of
two terms. To illustrate this, consider the example of elem anti-unified
against a foldr, where
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1 elem a [] = False

2 elem a (x:xs) =

3 (\y ys -> if a == y then True else ys)

4 x (elem a xs)

5

6 foldr g z [] = z

7 foldr g z (x:xs) = g x (foldr g z xs)

Here, the anti-unification of the recursive calls in the cons-clauses pro-
duces the term:

App (Var a) (Var xs)

since (foldr g z) is an unobstructive recursive prefix. In this case, the
rp rule applies instead of const. const would otherwise apply since
both (foldr g z) and (elem a) are application expressions, and
would produce a less general generalisation than the result of applying
the rp rule. Intuitively, the least general generalisation is the term t that
shares the closest structure to t1 and t2, and requires the least number
of substitutions in s1 and s2. In the above example, the least general
generalisation for the recursive call is:

App (App (Var a) (Var z)) (Var xs)

The ‘shortcuts’ produced by application of the rp rule are useful. Unob-
structive recursive prefixes are uninteresting, aside from their relative
location, since they produce no valid argument candidates in sf (Sec-
tion 5.4). Moreover, without the rp rule, extra work would be necessary
to derive and/or choose between argument candidates.

Theorem 5.1 (Soundness of Anti-Unification Algorithm). Given the terms
t1 and t2, we can find t, s1, and s2, such that t1 ⇠= t s1 and t2 ⇠= t s2 hold.

We give the proof for the above soundness property in Appendix B.
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Having defined anti-unification for terms, we can now define it for f
and p. Given the functions f and p,

f v11 . . . v1m = ef1 pw11 . . . w1l = ep1
...

...

f vn1 . . . vnm = efn pwn1 . . . wnl = epn

where vij and wij are arguments to f and p, respectively, and we define
the anti-unification of f and p, denoted h, to be the list:

h=
⇥
Jef1 K, Jep1 K, . . . ,JefnK, JepnK

⇤

where each element, 8i 2 [1,n], ehi , in h corresponds to the anti-unification
of the ith clauses in f and p; and elements are the triple (ti ⇥ s1i ⇥ s2i).
The substitutions for each element in h can be composed, and we refer
to the composition of substitutions for f as sf, and the composition of
substitutions for p as sp; i.e.

sf = Ls11, . . . ,s1n M
sp = Ls21, . . . ,s2n M

h is, in principle, equivalent to a function with n equations and where:
i) the anti-unifier term in each element represents the right-hand side
of its respective equation; and ii) the set of all hedge variables are the
parameters to the function. For example, the functions f and p,

1 f x = x + 42

2 g y = y + 108

when anti-unified, produce:

h= [(App (App (Var +) (Var y)) (Var z))

⇥ LL #, (y 7! (Var x)) M, (z 7! (Id 42)) M⇥ LL #, # M, (z 7! (Id 108)) M]

Here, h can be represented as:

1 h y z = y + z

2
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3 f x = h x 42

4

5 g y = h y 102

where, h is the anti-unifier, and the substitutions are represented using
standard function application. To simplify our presentation, in examples
we confuse h for its equivalent function definition.

5.4 Deriving Pattern Arguments

Given the anti-unifier h of f and p, with substitutions sf and sp respect-
ively, we next derive the arguments to p that are needed to rewrite f as
an instance of p. Our anti-unification algorithm is designed such that
s1 provides candidate arguments. These candidates are considered valid
when they adhere to three properties:

1. that p and h are equivalent (Definition 5.4.2);

2. that there does not exist a (sub-)substitution in sf or sp where a vai

occurs as either a hedge variable or as a term (Definition 5.4.4); and

3. that all substitutions in sf substituting for the same hedge variable
that is derived from p must substitute for the same term (Defini-
tion 5.4.6).

Equivalence of Pattern and Anti-Unifier Recall that we aim to rewrite
f in terms of p. As stated in Section 5.3, the syntactic equivalence
properties of the produced anti-unifier allow f to be rewritten as a
call to the function representation of h. Furthermore, by equational
reasoning [101], if p and h are equivalent, then f can be rewritten to
replace the call to h with a call to p; i.e. f is an instance of p. Since
anti-unification will always produce an anti-unifier and substitutions
between any two arbitrary terms, the production of an anti-unifier cannot
be used as a test of equivalence. We instead define an equivalence relation
between p, h, sf, and sp. In order to do this, we first define equivalence
between two terms t2 and t and substitutions s1 and s2 with respect to t1.
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Definition 5.4.1 (Equivalence of Terms with Substitutions). Given the
terms, t, t1, t2, and the substitutions s1 and s2, such that

"
t1

t2

#
⇠= (t)

"
s1

s2

#

we say that t2 and t are equivalent with respect to s1, s2, and t1, (denoted
t2 ⌘t1 t ⇥ s1 ⇥ s2) when:

eq

t2 ⇠= t
t2 ⌘t1 t ⇥ # ⇥ #

hedge

v 6= p v 2 Vp
(Var v)⌘t1 (Var v)⇥ (v 7! t1)⇥ #

fresh

t1 2Rf t2 2Rp a 62 Vp
t2 ⌘t1 (Var a) ⇥ (a 7! t1)⇥ (a 7! t2)

const

8i 2 [1,n], t2i ⌘t1 ti ⇥ s1i ⇥ s2i

(C t21 . . . t2n)⌘t1 (C t1 . . . tn)⇥ Ls11, . . . ,s1n M⇥ Ls21, . . . ,s2n M

list

8i 2 [1,n], t2i ⌘t1 ti ⇥ s1i ⇥ s2i

[t21, . . . , t2n]⌘t1 [t1, . . . , tn]⇥ Ls11, . . . ,s1n M⇥ Ls21, . . . ,s2n M

Here, eq states that when t2 and t are the same, and when s1 and s2 are
both #, then t2 and t are equivalent with respect to s1 and s2. When t2 and
t are both variable terms, t2 and t are equivalent when the variables have
the same name and when the the variable is a hedge variable derived
from p (hedge). Similarly, when t2 and t are both fresh hedge variables,
a, then both terms substituted for a must be unobstructive recursive
prefixes in their respective functions (fresh). Finally, const and list

state that terms consisting only of subterms are equivalent when all
respective subterms are equivalent. The definition of equivalence for p
and h then follows naturally.

Definition 5.4.2 (Equivalence of Pattern and Anti-Unifier). Given two
functions f and p, and the result of their anti-unification, h, containing the
substitutions sf and sp, we say that p and h are equivalent when for all clauses
in p, epi , and elements in h, ehi = (ti ⇥ s1i ⇥ s2i), Jepi K⌘t1i ehi .
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Absence of Shared Arguments in Substitutions As stated in Sec-
tion 5.2, the variables, vai , that are declared in ai are shared between
f and p. As such, if f is an instance of p, vai must be used in f in
an equivalent way to their use in p; i.e. their relative locations in the
structure of f and p must be the same. For example, in sumeuler and
foldr,

1 sumeuler [] = 0

2 sumeuler (x:xs) = ((+) . euler) x (sumeuler xs)

3

4 foldr g z [] = z

5 foldr g z (w:ws) = g w (foldr g z ws)

the heads of the matched lists, x in sumeuler and w in foldr, are both
passed as the first argument to some function, g; and the tails of the
matched lists, xs and ws respectively, are passed as the last argument
to the recursive calls in f and p. While the equivalence of pattern and
anti-unifier (Definition 5.4.2) ensures the structural equivalence of p and
h, it does not inspect hedge variables derived from p. Our anti-unification
rules in Figure 5.4 means that no vai will occur as either a hedge variable
or as a subterm in either sf or sp when all equivalent vai have the same
relative positions in f and p. Conversely, the occurrence of some vai in sf

or sp indicates that not all equivalent vai have the same relative positions
in f and p.

Definition 5.4.3 (Variable Occurrence in Terms). For all variables v, and
for all terms, t, we say that v occurs in t (denoted v ⌧ t) when t = (Var v) or
when there exists a subterm, ti, in t such that ti = (Var v).

Definition 5.4.4 (Shared Argument Absence). Given the functions f and p,
and their anti-unification h, containing the substitutions sf and sp, we say that
no vai occurs in sf or sp (denoted vai 62 Lsf,sp M) when, for all vai :

v 6⇠= vai (Var vai) 6⌧ t
vai 62 (v 7! t)

8i 2 [1,n], vai 62 si

vai 62 Ls1, . . . ,sn M
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Substitution Uniqueness Substitution composition (Definition 5.3.3)
ensures that the same hedge variable can be used to substitute for differ-
ent terms without the problem of substitution interference. For example,
consider some f that is anti-unified against scanl:

1 f a [] = [a]

2 f a (x:xs) = (+) a x : f ((-) a x) xs

3

4 scanl g z [] = [z]

5 scanl g z (x:xs) = g z x : scanl g (g z x) xs

Here, the result of the anti-unification of the two cons-clauses will include
substitutions where g is substituted for both (+) and (-) in sf. In
scanl, however, g is the same in both instances. We therefore also
require that all substitutions that substitute for the same hedge variable
in sf are substituted for the same term.

Definition 5.4.5 (Substitution Flattening). For all substitutions, s, we say
the flattening of s (denoted bsc) is the list of substitutions, where:

b(v 7! t)c= [(v 7! t)] bLs1, . . . ,sn Mc= bs1c+ · · ·+ bsnc

Here, + appends two lists, and [a] denotes the singleton list.

A list of substitutions cannot be applied to a term, allowing us to safely
expose any potential substitution interference across f.

Definition 5.4.6 (Substitution Uniqueness). Given the functions f and p,
and their anti-unification h. Given that sf is the composition of substitutions in
h for the clauses of f. We say that substitutions are unique in sf when for all
hedge variables, v 2 Vp, and for all pairs of substitutions in bsfc, (v 7! t1) and
(v 7! t2), t1 = t2 holds.

Sufficiency of Validity Properties Given f, p, h, sf and sp, the above
three properties are sufficient to determine whether the candidate argu-
ments in sf are valid. Equivalence of p and h (Definition 5.4.2) ensures
that for all clauses in p and h, the terms for that clause, t2 and t, are
syntactically equivalent (Definition 5.2.3). Hedge variable terms have
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additional information in their respective substitutions, s1 and s2. There
are two cases: fresh hedge variables, a, and hedge variables derived from
p, v. For a, Definition 5.4.2 requires that both terms, t1 and t2, substituted
for a are unobstructive recursive prefixes (Definition 5.3.4). No other
terms are allowed. For v, two cases are possible: v = vai and otherwise.
All equivalent vai in f and p must have the same relative locations to
ensure that ai is traversed in the same way, and that no free variables oc-
cur in any argument candidate expression. The rules in Figure 5.4 mean
that the identity substitution is derived for all equivalent vai in the same
relative position in f and p. For the case when a vai is not anti-unified
with its equivalent, Shared Argument Absence (Definition 5.4.4) requires
that no vai occurs in any substitution and so will fail in this case. For
all other v, Definition 5.4.2 requires that v will be in scope, due to the
assumption that all variables that occur in p are in scope and are declared
as parameters of p. Any updates to the value of v must be reflected in
p, e.g. such as in foldl and scanl. Finally, and since each argument
may be instantiated only once for each call to p, Substitution Uniqueness
(Definition 5.4.6) ensures that for all substitutions that substitute for the
same hedge variable, the substituted terms are the same.

5.4.1 Deriving Arguments from Substitutions

Given that f, p, and their anti-unification, h, adhere to Definition 5.4.2
(Equivalence of Pattern and Anti-Unifier), Definition 5.4.4 (Shared Ar-
gument Absence), and Definition 5.4.6 (Substitution Uniqueness), the
arguments for p can be directly obtained from sf. For sumeuler, given
s1 for the [] clause:

s1 = (z 7! (Lit 0))

and s1 for the (:) clause:

s1 = LL (g 7! (App (App (Var .) (Var +)) (Var euler))), # M,
L (a 7! (Var sumeuler)), # MM

((+) . euler) is passed as g; 0 is passed as z; and ai (i.e. (x:xs))
is passed as itself due to Shared Argument Absence and Argument
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Equivalence properties. Substitutions with fresh hedge variables are
discarded. We can now refactor f in terms of p using the derived
arguments above, to give:

1 sumeuler xs = foldr ((+) . euler) 0 xs

Which, as before, can be rewritten to give our original definition:

1 sumeuler xs = foldr (+) 0 (map euler xs)

5.5 Implementation

We have implemented our approach as an extension to the Haskell
refactoring tool, HaRe. In this section we give an overview of our imple-
mentation, highlighting differences from the description of our approach.

Our prototype extends version 0.6 of HaRe [21], which requires GHC
version 6.12.1, and it was developed in a Debian 6.0.10 virtual machine
using Virtual Box 5.0.32. While newer versions of HaRe are available,
0.6 is the latest version prior to the rewrite which saw the selection of
available refactorings reduce from 53 refactorings to six refactorings. This
was to use GHC’s internal AST representation, which was not available
at the time of Brown’s thesis. Brown’s clone detection and elimination
implementation in HaRe [23], which uses anti-unification to detect clones,
was also removed in versions 0.7 onwards. We chose to extend version
0.6 because of the wider selection of existing refactorings, which can
potentially be used during normalisation, and although ultimately un-
used, because we considered using Brown’s anti-unification algorithm. It
should be possible to update our prototype implementation for use with
later versions of HaRe, but we defer this to future work.

At the core of our prototype is the top-level function, auFPair, which
serves as an implementation of our approach. Our prototype then fea-
tures a a wrapper refactoring, Anti-Unify Module that enables the pro-
grammer to invoke pattern discovery, given a pattern module, i.e. a
Haskell module of declarations to be used as p. Additional refactorings
with default pattern modules are provided for map, fold, zipWith, and
scanl recursion schemes.
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Our implementation reflects the anti-unification algorithm in Sec-
tion 5.3, verification checks in Section 5.4, argument inference and rewrit-
ing as described in Section 5.4.1, and includes some simple normalisations.
As implemented, normalisation validates the format of arguments, i.e. all
but the last argument patterns matched are variables, and variables, ai,
consists of a single-depth pattern match. Infix applications, infix patterns,
and left-section expressions are rewritten to equivalent prefix expressions
or patterns. f and p are checked for having the correct number of clauses,
and the clauses are in the same relative order according to matched
constructor. Finally, vai are renamed to their respective de Bruijn indices
in both f and p. For example, isums, is normalised to:

1 isums b [] = []

2 isums b ((:) h t) =

3 ((:) (((+) h) b)) ((isums (((+) h) b)) t)

Note that additional brackets have been introduced to highlight applica-
tion (sub)expressions. Here, our implemented normalisation stage checks
that b, h, and t are variables, and that the list constructors are the last
passed argument to isums. The infix applications of (+) and (:) have
been transformed into prefix forms. The normalisation stage will also
check that both [] and (:) constructors are matched in exactly one
clause, wherever p is some pattern in P defined over a single list.

We make an additional assumption for convenience of implementation
when t is a product type. All arguments that are recursed over must be
tupled. For example, both the traversed lists in the standard zipWith

definition from the Haskell prelude:

1 zipWith g [] [] = []

2 zipWith g (x:xs) (y:ys) = g x y : zipWith g xs ys

can be tupled, perhaps using the Curry/Uncurry Arguments refactoring in
HaRe, such that ai is a single argument:

1 zipWith g ([],[]) = []

2 zipWith g ((x:xs),(y:ys)) = g x y : zipWith g (xs,ys)
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5.6 Finding unfold

Thus far, we have looked exclusively at schemes which can be expressed
in terms of fold. Schemes with other structures may require different
handling. In this section, we consider unfold [47]. The unfold corecurs-
ively generates a data structure, t, from a seed value. An unfold that
generates a cons-list, for example, can be defined:

1 unfold :: (a -> Either [b] (b,a)) -> a -> [b]

2 unfold g x = case g x of

3 Left zs -> zs

4 Right (y,x') -> y : unfold g x'

where g is a function that takes a seed value, x, and generates the
components necessary for the list to be constructed. The structure of the
unfold then arranges these components into constructors of t. As with
its categorical dual, fold, the unfold family of recursion schemes can
be generated for arbitrary data types [47].

Consider a simple quicksort example, quicksort can be defined as a
composition of join and split, qs:

1 qs xs = join (split xs)

2 where

3 join Empty = []

4 join (Node x l r) = l ++ (x : r)

5

6 split [] = Empty

7 split (x:xs) = Node x

8 (split (filter (=< x) xs))

9 (split (filter (> x) xs))

Here, split takes a cons-list as its argument, and generates a tree. split
cannot be defined as a fold as the tail of the input list is changed with
each recursive call (which folds do not allow). Instead of viewing split

as a fold over a cons-list, we can instead view it as an unfold creating
a binary tree, redefining split,

128



5.6. Finding unfold

1 split :: Ord a => [a] -> Tree a

2 split xs = unfold g xs

3 where

4 g [] = Nothing

5 g (x:xs) =

6 Just (x, (filter (<= x) xs), (filter (> x) xs))

Our approach will not discover the unfold in this split definition for
two reasons:

1. split and unfold will not be deemed equivalent (Definition 5.4.2),
and

2. our discovery approach does not inspect functions that are called
in the body of f or p.

In order to solve the first problem, we refactor the original definition of
split to introduce an intermediate function, g’:

1 split :: Ord a => [a] -> Tree a

2 split xs =

3 case g' xs of

4 Nothing -> Empty

5 Just (x, lxs, rxs) ->

6 Node x (split lxs) (split rxs)

7 where

8 g' [] = Nothing

9 g' (x:xs) =

10 Just (x, (filter (<= x) xs), (filter (> x) xs))

Here, we have lifted the pattern match over the input list into a function
which returns a Maybe constructor corresponding to the constructor that
was originally produced. Here, Nothing is mapped to Empty (since
Empty has no arguments) and Just is mapped to Node. We use Maybe
for convenience and familiarity for descriptive purposes; we could altern-
atively define, and mechanically derive, a data type with constructors,
C1 and C2 that serve the same purpose. Introduction of g’ separates
the generation of the parts needed to ultimately construct the tree, from
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the mechanics of corecursive generation. Similarly, we conjecture that
g’ can be generated automatically using equational reasoning to match
constructors and arguments.

Despite the relative structures of split and unfold now being equi-
valent, our approach still cannot discover the arguments for unfold to
rewrite split. Our approach inspects individual pairs of functions, and
does not inspect functions called within either f or p. This affects split
and unfold because Section 5.2 requires that all case-expressions be
lifted out as functions. Following this requirement, split and unfold

are redefined as:

1 unfold :: (a -> Maybe (b,a,a)) -> a -> Tree b

2 unfold g x = unfold' g (g x)

3 where

4 unfold' g Nothing = Empty

5 unfold' g (Just (z,x',x'')) =

6 Node z (unfold g x') (unfold g x'')

7

8 split :: Ord a => [a] -> Tree a

9 split xs = split' (g' xs)

10 where

11 g' [] = Nothing

12 g' (x:xs) =

13 Just (x, (filter (<= x) xs), (filter (> x) xs))

14

15 split' Nothing = Empty

16 split' (Just (x, lxs, rxs)) =

17 Node x (split lxs) (split rxs)

After this change, our HOF discovery approach will inspect only the
single clauses of unfold and split but not the auxiliary functions
split’ and unfold’. Since all introduced hedge variables are assumed
to substitute for recursive prefixes, split will never be rewritten in
terms of unfold because unfold’ is not a variable passed to unfold.
In order to discover unfold, we modify our approach to consider and
inspect mutually recursive definitions.
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5.6.1 Assumptions

All the assumptions from Section 5.2 still hold. Additionally, we assume
that an unfold consists of a single clause that calls an auxiliary function.
The unfold and its auxiliary function are mutually recursive. The common
ground, ai, in an unfold definition will always be a single variable, vai .
The auxiliary function is passed all arguments, apart from vai , which is
passed as an argument to some fixpoint function, g. For example

1 unfold :: (a -> Maybe (b,a,a)) -> a -> Tree b

2 unfold g x = unfold' g (g x)

3 where

4 unfold' g Nothing = Empty

5 unfold' g (Just (z,x',x'')) =

6 Node z (unfold g x') (unfold g x'')

Intuitively, we extract a function that pattern matches over a type, whose
clauses we can then compare. f should be normalised to this form,
perhaps by applying a series of refactorings.

To simplify our proof of concept implementation of unfold-discovery,
we denote the auxiliary function of f, to be f’, and assume that f’ is
defined in the where-block of f.

5.6.2 Method and Implementation

Both f and unfold are first normalised, and then anti-unified as before.
The definition of a recursive prefix is extended to include calls to mutually
recursive functions. For example, split and unfold above are anti-
unified, producing:

1 h g x = a (g x)

with substitutions:

s1
1 = L (a 7! split’), (g 7! g’) M

s1
2 = (a 7! unfold’ g)

Here the fresh hedge variable, a, is introduced to account for the unob-
structive recursive prefixes (unfold’ g) and split’.
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Assuming that the requirements described in Section 5.4 hold for
f, unfold, h, s1, and s2, then the auxiliary function declarations, f’
and p’, can be found, normalised, and anti-unified. Anti-unification of
split’ and unfold’ produces:

1 h' g Nothing = Empty

2 h' g (Just (z,x',x'')) = Node z (a1 x') (a2 x'')

with the substitutions:

s1
1 = #

s2
1 = LL (z 7! x),L (a1 7! split’), (x’ 7! lxs) MM,

L (a2 7! split’), (x” 7! rxs) MM
s1

2 = #

s2
2 = L (a1 7! unfold’ g), (a2 7! unfold’ g) M

As before, assuming that the requirements described in Section 5.4 hold
for f’ and p’, we extend the substitution uniqueness requirement (Defin-
ition 5.4.6) across both sets of substitutions. unfold arguments for f
are then inferred. Substitutions for f’ and p’ are ignored, since argu-
ments to unfold cannot affect unfold’. In addition to the assurances
described in Section 5.4, and the extension of duplicate substitutions,
the assumption that arguments to p’ consist only of arguments passed
to unfold and the result of the application of g to vai , mean that no
additional arguments should be inferred from auxiliary substitutions.
Returning to the split example, in the auxiliary function substitutions,
all hedge variables are either fresh, or are vai-equivalent functions and are
ignored. Conversely, in the set of substitutions for split and unfold,
we infer g. This enables us to rewrite split as:

1 split x = unfold g' x

2 where

3 g' [] = Nothing

4 g' (x:xs) =

5 Just (x, (filter (<= x) xs), (filter (> x) xs))
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5.7 Examples

In this section, we demonstrate our approach using the five parallel
benchmarks described in Section 4.6.2, a collection of examples from
the Haskell Prelude, and examples derived from Cook’s and Kannan’s
theses [41, 74]. Each example function is applied to our prototype, which
we describe in Section 5.5. In our examples, we sought to discover in-
stances of map, foldr, foldl, scanl, and zipWith schemes. We give a
summary of the number of scheme instances found in Figure 5.5, includ-
ing the average time taken by our prototype (and standard deviations) in
seconds. In Section 5.7.6, we compare our anti-unification approach with
our slicing approach to pattern discovery, introduced in Chapter 4.

5.7.1 Normalisations Enacted

The source code of all examples has been normalised to facilitate the
use of our prototype, where normalisation processes include: flipping
argument ordering, removing parallel constructs and duplicate sequential
code, and inlining existing schemes. We normalise the sequential version
of each example when it is present, and the parallel version that gives
best speedups when a sequential version is not available. Normalisations
include:

• We have inlined explicit calls to map, foldr, foldl, scanl, and
zipWith.

• We do not inline specialised patterns, e.g. sum, in parallel; instead,
these are demonstrated in the Data.List set of examples.

• We have removed parallel constructs, duplicate definitions, and
monadic code.

• We have removed main definitions.

• We have rewritten calls to repeat to replicate, in order to
ensure correct pattern matching when passed to, e.g., zipWith
pattern instances.

133



5. Automatic Pattern Discovery via Anti-Unification

Example Funs Map Fold Scan Zip None Time SD

Data.List 34 4 17 1 2 10 1.55 0.02
Cook 25 5 16 1 0 3 1.33 0.04
Kannan 22 1 8 1 0 12 1.04 0.02

ListAux 12 1 2 0 2 7 0.74 0.01
Queens 7 1 2 0 0 4 0.62 0.01
MatMult 6 2 1 0 0 3 0.59 0.02
nbody 7 1 1 0 0 5 0.71 0.05
sudoku1 1 1 0 0 0 0 0.13 0.00
Sudoku 38 10 7 0 5 16 1.75 0.04
SumEuler 7 0 2 0 0 5 0.27 0.01
SumEulerPrimes 11 1 3 0 0 7 0.81 0.04

Figure 5.5: Examples run through prototype implementation. Times
are given in seconds and are an average of five runs. Unfold tests are
separate.

• We have tupled arguments where a function traverses multiple data
structures.

5.7.2 Experimental Setup

Since our prototype requires GHC 6.12.1 and has been developed using
a virtual machine, ananke, running Debian 6, all reported times are the
average of five runs on this virtual machine. ananke was created using
Parallels Desktop version 11.2.2 with performance settings set to favour
the virtual machine and the Adaptive Hypervisor enabled. It has been
allocated two 3.4GHz processors, and 1GB of memory. ananke is running
on a standard desktop machine, jupiter, a 3.4GHz Intel Core i7 machine
with 4 physical cores (8 with hyperthreading enabled) and 32GB of RAM,
running macOS 10.12.5.

5.7.3 Parallel Benchmarks

We demonstrate our approach using the five parallel benchmarks presen-
ted in Section 5.7.3: sudoku, sumeuler, queens, nbody, and matmult.
We have applied our prototype to the normalised code in each example,
and where multiple implementations of the same example are present,
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we applied our prototype to the sequential version, if present, or the nor-
malised functions that provide best speedups. For the below examples,
our anti-unification is approach is able to discover the same map instances
as our slicing approach in Chapter 4 when the same function has equi-
valent normalisations for both slicing and anti-unification approaches.
Alternative approaches may yield different results. Such results could
also potentially disagree; e.g. if a map instance is normalised such that
our slicing approach discovers the map but our anti-unification approach
discovers a foldr.

Sudoku

The sudoku benchmark consists of nine Haskell files that comprise a
sequential implementation and various parallelisations. The sequential
implementation comprises the module Sudoku (150 lines) that contains
functions to solve individual puzzles, and the file sudoku1.hs (16 lines)
that contains one function that reads in a list of puzzles and solves them
by applying solve. The normalised implementation of sudoku1.hs
comprises a single function, i.e.

1 sudoku [] = []

2 sudoku (p:ps) = solve p : sudoku ps

that we know to be a map instance. The normalised implementation
of Sudoku comprises a total of 38 functions, of which there are ten
map instances, seven fold instances, no scan instances, five zipWith
instances, and 16 non-recursive functions that are not an instance of a
pattern in P .

Sumeuler

The sumeuler benchmark consists of three Haskell files: ListAux (41
lines), SumEulerPrimes (36 lines), and SumEuler (290 lines). The
normalised version of ListAux comprises 12 functions, of which there
are two fold instances, two zipWith instances, a map instance, no
scan instances, and seven non-recursive functions that are not pattern
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instances. The normalised SumEuler comprises seven functions, of
which two are fold instances,

1 sumEuler [] = 0

2 sumEuler (x:xs) = ((+) . euler) x (sumEuler xs)

3

4 euler1 n [] = []

5 euler1 n (x:xs) = (\x z -> if relprime n x

6 then x:z

7 else z) x (euler1 n xs)

The remaining five functions are all non-recursive and therefore not
pattern instances. The normalised SumEulerPrimes comprises 11 func-
tions, of which three functions are fold instances, one function is a map
instance, and seven functions are not pattern instances. Six of these seven
functions are non-recursive. The remaining function, primesIn, is an
interesting case:

1 primesIn :: [Int] -> Int -> [Int]

2 primesIn ps@(p:rest) n

3 | p > n = []

4 | n `mod` p == 0 = p:primesIn ps (n `div` p)

5 | otherwise = primesIn rest n

primesIn traverses an infinite list. Whilst it can be normalised such that
it matches the second clause of foldr, since no behaviour is defined for
the empty-list case, however, primesIn will not be rewritten.

N-Queens

The queens benchmark consists of a single module, Main (42 lines), that
we will rename to Queens for the sake of clarity. The normalised Queens

is based on the sequential version in the Imaginary set of the NoFib suite,
and comprises seven functions, of which two are fold instances, one
function is a map instance, and four functions are not pattern instances.
Three of these four functions are not recursive; the remaining function,
gen,
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1 gen nq 0 = [[]]

2 gen nq n = gen1 nq (gen (n-1))

could be rewritten such that n is a Nat:

1 gen nq Z = [[]]

2 gen nq (S n) = gen1 nq (gen n)

and could then be successfully rewritten as a foldr over Nat by our
prototype:

1 gen nq n = foldrNat (gen nq) [[]] n

2

3 foldrNat g z Z = []

4 foldrNat g z (S n) = g (foldrNat g z n)

Another interesting function in Queens is safe; originally defined:

1 safe x d [] = True

2 safe x d (q:l) =

3 (x /= q)

4 && (x /= q+d)

5 && (x /= q-d)

6 && (safe x (d+1) l)

safe is considered a near fold. Since d is updated between recursive
calls, our prototype implementation will not rewrite safe as a foldl.
This is a correct result since a foldl that traverses the list will produce
different results to the original definition. In order to transform this near
fold into a foldl, we can move d into the initial value, by tupling True
and d. d can then be updated via the fixpoint function. Finally, the value
of d is discarded in favour of the boolean result.
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1 safe x d qs = snd $ safe1 x (d,True) qs

2

3 safe1 x z [] = z

4 safe1 x z (q:qs) =

5 safe1 x ((\(d,z) q ->

6 (d+1,

7 (x /= q) && (x /= q+d)

8 && (x /= q-d) && z)) z q) qs

The introduced safe1 can then be rewritten as a foldl instance by our
prototype.

1 safe1 x z qs =

2 foldl (\(d,z) q ->

3 (d+1, (x /= q) && (x /= q+d)

4 && (x /= q-d) && z) z qs

Since implicit fold instances may be near fold instances similar to safe,
it may therefore be worth investigating this as a pattern or a normalisation
stage.

N-Body

The nbody benchmark consists of two Haskell files: Future (16 lines)
and nbody.hs (135 lies). Future comprises only custom implementa-
tions of strategies, and so we do not consider this module. Conversely,
the normalised version of nbody comprises a total of seven functions, of
which one is a map instance, one is a fold instance, and five functions
are non-recursive and so are not an instance of any pattern. Both map

and foldr instances are straightforward.

Matrix Multiplication

The matmult benchmark consists of two modules: ListAux (41 lines)
and MatMult (246 lines). Both sumeuler and matmult share ListAux,
and so we use the same normalisation here. MatMult features a lot of
duplication, due to multiple parallelisations of a sequential implementa-
tion of matrix multiplication. The normalised sequential implementation
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in MatMult comprises six functions, of which two are map instances,
one is an instance of foldl, and three are non-recursive function defini-
tions. Where both map implementations are straightforward, the impli-
cit foldl, addProd, is strict in its accumulative argument (using the
BangPatterns GHC extension).

1 addProd (v:vs) (w:ws) !acc =

2 addProd vs ws (acc + v*w)

3 addProd _ _ !n = n

Since addProd is a foldl over two lists, we tuple the two lists, make
the accumulator, acc, the first argument to addProd, and lift the infix
operators into a function. Since the second clause uses the wildcard
pattern to return n for all combinations of patterns other than when
both lists are cons, we are able to expand this clause into all remaining
combinations of patterns.

1 addProd acc ([],[]) = acc

2 addProd acc ((v:vs),[]) = acc

3 addProd acc ([],(w:ws)) = acc

4 addProd acc ((v:vs),(w:ws)) =

5 addProd ((\z x y -> z + x * y) acc v w) (vs,ws)

In the resulting normalisation above the accumulator argument is no
longer strict, which may have an effect on performance. One alternative
is to maintain strictness via a higher-order function that supports it, e.g.
foldl’.

5.7.4 Other Examples

Our other examples include 26 functions from the Haskell Prelude
Data.List library, and two sets of examples from Cook’s and Kan-
nan’s theses [41, 74]. All of Cook’s examples are used as examples,
but only a representative subset of Kannan’s examples are used. Kan-
nan’s examples that are not used, include examples which are similar
to examples we have used, or are similar to Cook’s examples. As
before, these examples may not all benefit from parallelisation, but
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serve as a demonstration of our approach. All our normalised example
code can be found at http://adb23.host.cs.st-andrews.ac.uk/
thesis-au-examples.zip.

The 26 functions from the Haskell Prelude are a representative subset
of the functions in the library; the remaining functions in Data.List

are similar to those below. The functions include: and, append, foldl,
foldr, init, intersperse, last, length, map, maximum, or, scanl,
replicate, reverse, subsequences, transpose, heads, tails,
prependToAll, sum, splitAt, elem, filter, zip, zipwith, unzip.
Normalisation produces a total of 34 functions. Of these, 17 are fold

instances, four are map instances, two are zip instances, one is a scan
instance, and ten functions are not instances of any pattern in P . Of the
AB: n examples in Data.List that are also explored in Section 4.6.3,
our anti-unification approach is able to discover the same map instances
as our slicing approach in Chapter 4 when the function has equivalent
normalisations. Of the ten functions that are not pattern instances, seven
are non-recursive functions produced as part of the normalisation pro-
cess to transform near fold functions into proper fold instances. Two
interesting cases remain: i) init and its helper function, init’, and
ii) transpose.

1 init (x:xs) = init' x xs

2

3 init' _ [] = []

4 init' y (z:zs) = y : init' z zs

Here, init is a non-recursive function that passes the head and tail of
its input list separately to init’. The helper function, init’, prepends
the previous element, y, in the list to the result of the recursive call. In
the recursive call, the current element, z, is passed to update y, and zs

is passed as the second argument. Since z is passed as an argument to
the recursive call, and that argument is not treated as an accumulator
argument, as in e.g. foldl, our prototype concludes that init’ is
neither a foldr nor a foldl instance.

In the Data.List library, transpose is defined:
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1 transpose [] = []

2 transpose ([] : xss) = transpose xss

3 transpose ((x:xs) : xss) =

4 (x : (heads xss)) : transpose (xs : (tails xss))

Here, transpose is not an example of structural recursion [68] since xss
is not passed to the recursive call on Line 4. This is instead an example of
strong induction [37], since the arguments to the recursive calls in Lines 2
and 4 are strictly smaller than the input list. The definitions of all patterns
in P are structurally recursive, and so no patterns are discovered. Given
a pattern definition that is strongly inductive, and that when anti-unified
with some valid normalisation of transpose produces an anti-unifier
and substitutions that satisfy the conditions in Section 5.4, our prototype
would be able to rewrite transpose as an instance of that pattern.

The second set of examples are derived from Cook’s thesis [41]. These
examples include: calculating the squares of a two-dimensional list of
numbers, calculating the sum of a two-dimensional list of numbers,
isums, calculating the subset of a list, matrix multiplication, merge sort,
and reversing a list. Contrary to other examples, we have normalised each
function multiple times to maximise the number of patterns found. The
result of this normalisation comprises 25 functions, of which 16 are fold
instances, five are map instances, one function is a scan instance, and
three functions are not pattern instances. As before, all three functions
that are not pattern instances, are non-recursive functions. Our prototype
is able to find all the patterns that Cook found using his approach.

The third and final set of examples are similarly derived from Kan-
nan’s thesis [74]. We have normalised five examples, a representative
subset of Kannan’s examples, and applied our prototype to these normal-
isations. The result of the normalisation process is 22 functions, of which
there are eight fold instances, one map instance, one scan instance,
and 12 functions that are not pattern instances. In contrast to Cook’s
examples, Kannan’s examples feature functions that are combinations of
patterns. For example, the maximum prefix sum, defined:

1 mps1 [] = 0

2 mps1 (x:xs) = mps2 xs x
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3

4 mps2 [] v = v

5 mps2 (x:xs) v =

6 max v (max (x+v) (mps2 xs (x+v)))

Here, mps2 is a combination of a scanl and a foldr; e.g.

1 mps2 v xs = mps2Fold (mps2Scan v xs)

2

3 mps2Scan v [] = [v]

4 mps2Scan v (x:xs) = (x+v) : mps2Scan (x+v) xs

5

6 mps2Fold v [] = v

7 mps2Fold v (x:xs) = f x (mps2Fold v xs)

8 where f x zs = max v (max x zs)

Here, mps2Scan, produces a list of prefix sums that are then folded
over by mp2Fold that picks the element that represents the maximum.
Our prototype was unable to discover the separate scanl and foldr

instances of mps2Scan and mps2Fold, respectively. It is instead reliant
on either the normalisation process splitting the original definition of
mps2, or the provision of a pattern that represents the combination of a
scanl and a foldl such that an anti-unifier and substitutions produced
pass the requirements in Section 5.4.

For each of the above examples and parallel benchmarks, we have
timed our prototype. Times for each example are presented in Figure 5.5,
and are an average of five runs on ananke. Times have been derived using
the Debian 6 time package (version 1.7-24), taking the elapsed, wall-clock
value. Using the Anti-Unify Module refactoring, all patterns in Appendix C
have been applied to all functions in the respective example modules,
providing an upper bound of analysis time. We found that all examples
took less than two seconds to analyse. Sudoku took the longest time
to analyse at 1.75s, with a standard deviation, s, of 0.04s. Conversely,
sudoku1.hs took the shortest time to analyse at 0.13s (s = 0.0045s).
Parallel and sequential runtimes for these parallel benchmarks are the
same as those given in Section 4.6.2.
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Figure 5.6: Prototype execution time for a program with varying sizes
of input. This suggests that our implementation runs in linear time.
Includes runs with initial module analysis operations automatically run
by HaRe upon loading a fresh module. As a result, average runtimes are
higher than in Figure 5.7.

As a synthetic benchmark, we have also applied our prototype to
programs with varying input sizes, measured in the number of functions,
by duplicating append n times. Figure 5.6 shows the average time
taken of five runs, in seconds, by our prototype on ananke. It takes a
minimum of 0.26s (s = 0.0084s) with 5 functions, and a maximum of
359.70s (s = 178.69s) for 9,000 functions. Standard error and distributions
increase dramatically for inputs of greater than 1,000 functions. This is
a result of HaRe parsing and analysing new files before it applies the
refactoring. This analysis occurs every first run; Figure 5.7 shows the
average time taken by our prototype with the first run removed. Here,
we observe a minimum of 0.26s (s = 0.0084s) with 5 functions, and a
maximum of 279.79s (s = 1.73s) for 9,000 functions. ananke runs out of
memory for 10,000 functions and above. Times and memory footprint are
likely to have been inflated by the output to stdout; all print statements
were left in to ensure all examples are evaluated to normal form. Our
prototype runs in linear time, with respect to the number of compared
functions.
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Figure 5.7: Prototype execution time for a program with varying sizes of
input. Initial runs removed. This suggests that our implementation runs
in linear time.
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Figure 5.8: Prototype execution time for a program with varying sizes of
input, measured in number of clauses. This suggests that our implement-
ation runs in exponential time.

As a second synthetic benchmark, we have applied our prototype to
two functions with varying numbers of clauses, by duplicating the second
clauses of append and foldr, respectively. Figures 5.8 and 5.9 show the
average time taken of five runs, in seconds, by our prototype on ananke.
Figure 5.9 is the result of the first run removed. Once again, the analysis
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Figure 5.9: Prototype execution time for a program with varying sizes
of input, measured in number of clauses. Initial runs removed. This
suggests that our implementation runs in exponential time.

in each first run significantly increases variation in runtimes. We get an
average of 0.10s (s = 0.00s) for a six-clause function, and an average of
236.26s (s = 3.08s) for a 10,001 clause function (with first runs removed).
This suggests that our algorithm runs in exponential time, with respect to
the number of clauses in both compared functions. Whilst our algorithm
appears to run in exponential time, the exponential coefficient appears
to be very small (7.30 ⇥ 10�4), and has an asymptote at approximately
18,000 clauses.

5.7.5 Finding unfold Patterns

All examples presented in the above sections have focussed on the dis-
covery of patterns that can be represented as instances of a fold. In
Section 5.6, we proposed an extension to our approach to allow the dis-
covery of other structures, using the example of the unfold pattern. Our
extension allowed the discovery of a specific unfold pattern:

1 unfold f x = unfold' f (f x)

2 where

3 unfold' f C1 = []

4 unfold' f (C2 y ys) = y : (unfold f ys)
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We have tested this pattern on three relatively simple examples: i) unfold
itself, ii) a function that produces a co-recursive list of square numbers,
and iii) replicate from the Haskell Prelude. Applying our exten-
ded approach to unfold successfully rewrites unfold as a call to the
unfold definition used as a pattern. We use the following definition to
co-recursively produce a list of square numbers,

1 sqs n x = sqs' n (sq n x)

2 where

3 sq n x x < n = C2 (x * x) (x+1)

4 otherwise = C1

5

6 sqs' n C1 = []

7 sqs' n (C2 y z) = y : sqs n z

Our prototype successfully rewrites sqs as a call to unfold where f is
sqs’, and x is x. The final example is taken from the Haskell Prelude.
While we normalised replicate to

1 replicate n x = replicate1 x [1..5]

2

3 replicate1 y [] = []

4 replicate1 y (x:xs) = const y x : (replicate1 y xs)

in Data.List, we might alternatively rewrite it as the co-recursive
definition:

1 replicate a n = replicate' a (a n)

2 where

3 replicate' a Z = []

4 replicate' a (S m) = a : replicate a m

Here, n has been converted to a natural number representation. Unlike
sqs, replicate and replicate’ do not apply any intermediate func-
tion (i.e. f in unfold or sq in sqs). Our prototype will therefore not
rewrite replicate as an instance of unfold. To solve this, we might
introduce a function that translates the natural number to the type that
has C1 and C2 as constructors. This could be derived by equational
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reasoning, by comparing pattern matches over n and x, and using the
substitutions from anti-unifying the right-hand sides of the equations of
replicate’ and unfold’.

5.7.6 Comparison with Slicing Approach

The approaches introduced in Chapter 4 and in this chapter aim to dis-
cover recursion schemes in explicitly recursive functions. The approach
in Chapter 4 uses program slicing as its core technology, where this chapter
uses anti-unification. The program slicing approach directly inspects the
properties of operations in functions, whereas with the anti-unification
approach, those properties are implicit in the HOFs in P . To extend the
slicing approach, the programmer must express the desired recursion
scheme in terms of how variables are used and updated between recurs-
ive calls. Conversely, the anti-unification approach can be extended by
introducing a new HOF implementation. The anti-unification approach
does, however, ‘pattern match’ whole functions, often requiring extensive
rewriting of the original code. Conversely, the slicing approach inspects
individual operations within functions and so requires much less normal-
isation, if any at all. Finally, the slicing approach is unlikely to misclassify
operations due to the order in which arguments are passed to operations,
unlike the anti-unification approach, as seen with squares, rowsmult,
and length above.

Both approaches have been applied to five parallel benchmarks, and
we can discover all map operations and pattern instances in P using our
prototype implementations. However, the anti-unification approach can
inherently discover a wider range of patterns than the slicing approach.
Both approaches have prototype implementations, and synthetic bench-
marks suggest that our slicing approach runs in quadratic time with
respect to the number of operations, and our anti-unification approach
runs in exponential time with respect to the number of function clauses
but runs in linear time with respect to the number of functions. There-
fore, we can conclude that, for functions with relatively few clauses, the
anti-unification approach is quicker than the slicing approach.
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5.8 Summary and Discussion

Recursion schemes define specific ways of traversing data structures,
and allow properties to be stated, proved, and used [90]. In functional
languages, recursion schemes can be implemented as HOFs, and so they
can be used to reason about a program’s behaviour. For example, a
function expressed solely as a foldr over an inductive data-type will
always terminate [1]. Alternatively, recursion schemes can be used as
loci for potential parallelism, where map, foldr, etc. are replaced with
equivalent parallel skeletons [19, 31, 107]. Not all possible instances of
recursion schemes are guaranteed to be found in code, however. Pro-
grammers may define functions as explicitly recursive functions where
a recursion scheme may be used. Moreover, when a programmer does
define a function as an instance of a recursion scheme, there is no guaran-
tee that the scheme used best expresses the type of traversal; e.g. using a
foldr when a map could also have been used. It follows that a program
with more explicit recursion schemes can be better reasoned about in
terms of its behaviour, and has more components that can be used in
deriving a parallel version of that program.

This chapter presents a methodology to automatically detect and
introduce recursion schemes, implemented as HOFs, in Haskell 98 code.
The presented approach determines whether a function is expressible as
some other function, i.e. an instance of a scheme. While we assume that
the scheme implementation is provided, it can, in principle, be generated
automatically; e.g. as in the derivable Functor class. In Section 5.5,
we described a prototype implementation of our approach, where we
extended the Haskell refactoring tool, HaRe. Given the assumptions in
Section 5.2, the inspected function is anti-unified against a pattern using
the algorithm defined in Section 5.3. The results of the anti-unification
process are then evaluated to determine whether the inspected function is
an instance of the pattern (Section 5.4), and if so, to rewrite the function as
a call to the pattern (Section 5.4.1). This approach has been developed and
tested for the fold family of recursion schemes, where a data structure
is traversed recursively. In Section 5.6, we describe modifications to the
approach to enable detection of unfold recursion schemes, where a data
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structure is constructed corecursively [100].
In both the traversal and construction cases, the approach that has

been presented requires that the inspected function is structurally similar
to the pattern that it is being compared to. As a result, the ordering
of expressions that are passed to functions, such as fixpoint functions,
can result in misclassification. For example, squares, rowsmult, and
length will not be rewritten as calls to foldr.

1 squares [] = []

2 squares (h:t) = h * h : squares t

3

4 rowsmult cols [] = []

5 rowsmult cols (r:rs) =

6 rowmult r cols : rowsmult cols rs

7

8 length [] = 0

9 length (x:xs) = 1 + length xs

10

11 foldr g z [] = z

12 foldr g z (x:xs) = g x (foldr g z xs)

In squares, the head of the list, h, appears twice as an argument to
(*). Conversely, in length, the head of the list, x, does not appear at
all. In rowsmult the head of the list, r, is passed once to the fixpoint
function, romult, but is the first passed argument, whereas the head
of the list in foldr is the last passed argument. Refactorings may be
used to (semi-)automatically avoid argument ordering misclassification in
addition to ensuring other assumptions on the inspected function are met.
For example, lambda lifting may be applied in squares to ensure h is
used only once, and again in rowsmult to effectively reorder parameters
passed to romult. Similarly, lambda lifting could be used to introduce a
lambda that throws its argument away in order to ensure that x is used
in length, without changing the behaviour of the function.

Another, more interesting, result of the structural similarity implicit
requirement is that near patterns cannot be found. For example, a function
that inserts an element into an ordered list,
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1 insert :: Ord a => a -> [a] -> [a]

2 insert x [] = [x]

3 insert x (y:ys) = if x < y

4 then x : y : ys

5 else y : insert x ys

can be defined using a foldr, but requires additional structure; e.g.:

1 insert :: Ord a => a -> [a] ->[a]

2 insert x ys = let Left r = foldl (g x) (Right []) ys

3 in r

4 where

5 g x (Left ys) y = Left (ys ++ [y])

6 g x (Right ys) y = if x < y

7 then Left (ys ++ [x,y])

8 else Right (ys ++ [y])

Here, the initial value uses the Either type to encode additional inform-
ation, i.e. whether x has been inserted to the resulting list. The final
result must be extracted from the result of the fold, performed here in
Lines 2 and 3. We conjecture that the foldr in insert could be found
by clever rewriting of the original definition, but this approach is not
ideal since this relies on an external normalisation process; instead the
detection of near patterns is deferred to future work.

The modifications that have been made to detect unfold could po-
tentially be used to discover composite patterns, e.g. the well-known
map-reduce pattern, or to detect recursion schemes in mutually recursive
functions. Additionally, the approach presented does not attempt dis-
covery of recursion schemes in impure, or monadic, functions since side
effects may obscure dependencies, e.g. reading from a file. Further work
on the normalisation stage could provide solutions to these problems.
Finally, improved normalisation can be used in conjunction with HOF
synthesis to produce a range of different, but functionally equivalent,
definitions to further improve the chance of discovering a given recursion
scheme.
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Chapter 6
Conclusions and Future Work

In this thesis, we have introduced two novel approaches to automatic
pattern discovery for functional languages with the goal of identifying
easily parallelisable recursion schemes. This thesis builds upon existing
pattern-based and refactoring approaches to parallelism. Our approaches
rewrite explicitly recursive functions as instances of recursion schemes
that can be used as loci of potential parallelism.

6.1 Main Achievements

In Chapter 4, we introduce a novel program slicing approach to pattern
discovery. Whilst this approach has been defined for a small expression
language, it is representative of common functional syntactic elements,
and it can be easily compiled to, e.g. Core Haskell, or extended with
other syntactic elements. Similarly, whilst the approach is defined for
cons-lists, it can be easily extended to support arbitrary data types. Since
our approach makes no other assumptions, and it inspects individual op-
erations within pure explicitly recursive functions, we are able to analyse a
wider range of functions than existing techniques. Program calculational
approaches require that the entire inspected function is an instance of the
desired pattern, and also often require multiple function definitions that
traverse data-structures of specific types to derive a divide-and-conquer
pattern. Cook’s higher-order unification approach similarly requires that
the entire inspected function is an instance of a pattern, and is further
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restricted since the approach requires that the inspected function has
a very similar structure to the pattern being searched for. By inferring
whether variables are used or updated between successive recursive calls,
our approach can work on the expression-, or operation-level as opposed
to the function-level. We infer this by defining a novel program slicing
algorithm in Section 4.3.2. The greater granularity of our analysis can
potentially lead to the discovery of more pattern instances in the same
program than these coarse-grained approaches, or discover patterns with
potentially less preliminary transformation to facilitate analysis. Kannan
similarly avoids this limitation by applying distillation prior to pattern
discovery [74]. This normalisation stage enables the analysis of functions
that could not otherwise be analysed. Unfortunately, since distillation
is a deforestation technique, it can remove potential pattern instances in
the source code. Consequently, the use of distillation prior to pattern
discovery can reduce the scope for parallelisation in the transformed
code [36, 41]. Conversely, our slicing approach does not perform any
deforestation and so will not remove loci of potential parallelism. Instead,
our approach is able to analyse these functions without normalisation.
The approach in [17] also avoids the function-level limitation through the
use of a heuristic-based inspection of code. Unfortunately, this approach
is limited by the heuristics made available to the approach, and is difficult
to extend to other languages. Conversely, our approach is, in principle,
language independent for languages where side-effects and state are
explicit. Ahn and Han’s program slicing approach [2] is similar to our
own approach, but it requires that inspected functions have a particular
structure, and that the language is first-order. Conversely, our approach
supports both higher-order languages and arbitrary function definitions.

In Chapter 5, we introduce a novel anti-unification approach to pat-
tern discovery, including a novel anti-unification algorithm in Section 5.3.
While this is not the first pattern discovery approach that uses anti-
unification (i.e. [45]), our approach requires fewer input functions (two
instead of four), and can discover a wider range of patterns. Program
calculational approaches typically look for a single, general pattern; i.e.
homomorphisms or hylomorphisms. Conversely, our approach is user-
extensible; i.e. it can discover patterns provided by the programmer. This
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is possible because we compare the structure of the inspected function
and a given pattern. Consequently, our comparison and verification
approach in Section 5.4 are generic for all function pairs. Moreover, and
unlike higher-order unification, we use first-order anti-unification, which
will always produce an anti-unifier for any two functions. These patterns
can traverse or construct data-structures of arbitrary types. This includes
product types that require simultaneous induction, such as zipWith,
and corecursive traversals, such as unfold. Neither of these patterns
can be discovered by the approaches introduced by Cook [41] or Kan-
nan [74], the two existing approaches which can discover the widest
range of patterns. Ahn and Han’s program slicing approach [2] is able to
discover zipWith patterns, but cannot discover unfold instances. Nor
are any of these approaches user-extensible. Although the approaches by
Castro [30] and Chin [36] to discover hylomorphisms in code are inher-
ently able to discover both fold and unfold instances, these approaches
can only discover the more general hylomorphism pattern. Conversely,
our approach can discover useful specialisations, such as map and scanl.

Although both automatic pattern discovery approaches that are in-
troduced in this thesis have been designed to be used to discover loci
of potential parallelism, these approaches only aim to discover and in-
troduce pattern instances, not to parallelise them. Parallelisation can
instead be performed using other techniques, e.g. [107, 30]. Not introdu-
cing parallelism immediately has the advantage of exposing information
about how the program behaves. The behavioural information encoded
by recursion schemes [90] can be used in other domains. For example,
the discovery of folds, or specialisations thereof, can facilitate termination
checking, the verification of compilers [89], and potentially help the pro-
grammer write proofs, particularly in languages such as Agda or Idris.
More general program transformations can also benefit, as can compila-
tion, optimisation, and deforestation techniques. Any transformation or
static analysis technique that require understanding how data-structures
are manipulated throughout the program can benefit from automatic
pattern discovery approaches, and the patterns they expose.
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6.1.1 Comparison of Approaches

Despite the aim of both above approaches being pattern discovery, their
methods and results differ. As part of our evaluation, we applied both
slicing and anti-unification approaches to each of the five parallel bench-
marks, as well as a subset of the standard Data.List Haskell Prelude
module. Aside from the slicing approach only seeking to discover map
instances, both approaches are dependent on a normalisation or trans-
lation phase prior to analysis that can affect which patterns are found.
Moreover, approaches can either discover the same or different map in-
stances depending on the choice of translation and normalisations; which
we explore further below.

In our Data.List subset, we applied both approaches to 18 func-
tions. Our anti-unification approach was applied to a larger subset,
totalling 34 functions, with the intention to evaluate the wider range of
patterns discoverable by this approach. Within the subset of 18 functions
analysed by both approaches, our slicing approach discovered five unob-
structive operations in five recursive functions, but our anti-unification
approach discovered only three map instances. Both slicing and anti-
unification approaches discover the map instance in the standard Prelude
map function. The map instances discovered in heads and tails by our
anti-unification approach are not found by our slicing approach since a
second case expression is used in order to find the head or tail of the
inner list; e.g.

1 heads :: [[a]] -> [a]

2 heads xss0 =

3 case xss0 of

4 [] -> []

5 (xs:xss) -> case xs of

6 [] -> []

7 (y:ys) -> y : (heads xss)

Hypothetically, had the standard head function been called on xs, both
approaches would discover the map instance. Similarly, our slicing ap-
proach discovers unobstructive operations in init, intersperse, and
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last since all three functions have a null check on the tail of the traversed
list in order to compensate for the restrictions of the expression language.
For example, given the definition of last,

1 last xs0 =

2 case xs0 of

3 [] -> []

4 (x:xs) -> if null xs

5 then x

6 else last xs

The operation (null xs) is classified as unobstructive since xs0 is used
but not updated, and so xs is considered to be clean. In principle, this
result allows (null xs) to be lifted into a map operation, producing
a list of boolean values such that only the last element of the list is
True, given a map definition whose fixpoint function can inspect the
tail of the list. Conversely, given the normalised last definition for our
anti-unification approach,

1 last (x:xs) = last' x xs

2

3 last' z [] = z

4 last' z (x:xs) = last' (flip const z x) xs

the helper function, last’, is found to be an instance of foldr. Hy-
pothetically, had last’ been passed to our slicing approach, no unob-
structive operations would be found due to z being both used and updated.
The final function our slicing approach identifies as containing an un-
obstructive operation is max due to a ‘mistranslation’, i.e. an incorrect
definition.

1 max xs0 =

2 case xs0 of

3 [] -> []

4 (x:xs) -> max' xs x

5

6
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7 max' ys0 z =

8 case ys0 of

9 [] -> z

10 (y:ys) -> if gt y ys0

11 then max' ys y

12 else max' ys z

Here, gt in the helper function is correctly classified as unobstructive
despite receiving the wrong argument, ys0. Similarly, given the correct
arguments, y and z, gt is correctly classified as obstructive. Since the
normalised definition analysed by our anti-unification approach does not
contain this error, it is correctly identified as containing a foldr instance.

The differences in results for our parallel benchmarks between the
two approaches are for similar reasons. For Sudoku, our slicing approach
discovers four potential map operations, including the sudoku function
from Section 4.1. For the equivalent normalised functions, our anti-
unification approach discovers the same map instances; the remaining
map instance is identified as a zipWith instance, a pattern which can be
thought of as a map over two lists.

The SumEuler benchmark is comprised of three modules: ListAux,
SumEuler, and SumEulerPrimes. Our slicing approach discovers three
unobstructive operations in three functions defined in ListAux. The
translated ListAux includes a definition of replicate that was not
normalised for the anti-unification approach since it is normalised in the
Data.List example subset. Here, the anti-unification approach discov-
ers the same map instance. The other two functions that are discovered
to contain mappable operations by our slicing algorithm, takeEach
and splitIntoN, are both found to contain zipWith instances by our
anti-unification approach after normalisation. The SumEuler module
contains three functions that our slicing approach finds to contain func-
tions with mappable operations. The first, sumeuler is identified as
a foldr instance by our anti-unification algorithm, as in Section 5.1.
The foldr fixpoint function contains both (+) and euler operations,
whereas the map fixpoint function produced by the slicing approach con-
tains only the euler operation. The remaining two functions identified
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as containing map instances by our slicing algorithm were not included in
our normalised code that we analysed by our anti-unification algorithm
as we chose not to normalise duplicate code (Section 5.7.1). Manual
inspection suggests that sumEuler_JFP, which traverses a chunked list
of inputs, would be identified as a map instance. The original definition
of splitIntoChunks contains two nested list comprehensions, which
are equivalent to two map operations that we know to be discoverable
from our Data.List examples. Finally, our slicing approach identifies
three functions in SumEulerPrimes that have operations which can be
lifted into map operations. Two of these functions, phiOpt and pair,
operate over tuples. As our expression language does not currently
support tuples, fst and snd functions are used to access the first and
second elements respectively. It is these operations that are classified as
unobstructive by our approach. The equivalent normalisations used for
our anti-unification approach result in a single function, which is identi-
fied to be a foldl instance, capturing the more general behaviour of the
functions. Our anti-unification approach discovers the map instance in
the third function, primeList.

Our slicing approach identifies two functions in the N Queens bench-
mark that contain mappable operations: safe and genloop. Our anti-
unification approach discovers the same map in genloop, but rewrites
safe as a foldl instead. This foldl captures the more general be-
haviour of safe, whereas the map produced by our slicing approach
captures only one of the logical comparisons. We discussed the case of
safe in greater detail in Section 5.7.3.

The Matrix Multiplication parallel benchmark comprises two mod-
ules: ListAux, and MatMult. ListAux is the same module used for
the SumEuler benchmark, which we discussed above. MatMult contains
two functions that are discovered to contain map instances by our sli-
cing approach. Our anti-unification approach discovers the same map

instances in the equivalent normalisations.
Finally, the N-Body benchmark contains a single function which is

identified to contain a map instance by our slicing approach. As in
the SumEuler benchmark, this function is not normalised in our anti-
unification examples due to our normalisation approach (Section 5.7.1).
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However, the function identified as a map is, in the original code, an
explicit map operation. We know from the Data.List examples that
our anti-unification approach can (re)discover unfolded map operations.

From the above comparison, it is obvious how normalisation and
translation affects the result of both approaches. Translation is primarily
affected by the restrictive nature of the expression language our slicing
approach uses to analyse functions. We see from the heads and tales

examples from Data.List that this can result in no map operation being
discovered since our slicing approach does not consider the syntactic
structure of the whole function. Our anti-unification approach, which
specifically does inspect the syntactic structure of functions, is reliant
on more extensive normalisations. According to these normalisations,
the anti-unification approach can discover the same map instances as
our slicing approach, but can also potentially discover a wider range of
pattern instances for the same program.

The approaches presented in the theses of Cook and Kannan are
similar to the anti-unification approach presented in this thesis. In or-
der to compare our anti-unification approach with their techniques, we
applied our approach to examples taken from their theses. We looked
at all of Cook’s examples, for which we took the decision to normalise
a single function multiple times in order to demonstrate that we can
find potentially multiple patterns for a single function. In all of Cooks’
examples our approach is able to discover the same map, foldr, foldl,
and scan patterns. Our approach also discovers additional foldr in-
stances. This is in part due to all map instances being normalised as
foldr instances. Further additional foldr instances are discovered in
mmult and mergesort examples as we apply our approach to functions
that Cook did not. These include dist and dotproduct in mmult,
and merge in mergesort. All three functions are instances of foldr
over two lists, and act as examples of simultaneous induction that Cook’s
approach cannot inspect [41].

We applied our approach to a representative subset of Kannan’s
examples. The subset does not include: his problem cases, his Fibonacci
Series sum, or his Sum Squares of List examples. The Sum Squares of
List example is equivalent to our sumeuler example, where euler is
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replaced with a square operation. Similarly, his Fibonacci Series Sum
is another simple foldr case akin to his Dot Product or Power Tree
examples, both of which we have applied our approach to. Kannan’s
problem cases include: Maximum Segment Sum, Reverse List, Flatten
Binary Tree, and Insertion Sort. The original code for all four examples
use some combination of map, inits, max, tails, and the append
operation (++), all of which we have demonstrated to be discoverable
in our Data.List examples. We also demonstrated that we are able to
discover one unfold instance in Insertion Sort in Section 5.7.5. For the
remaining examples, we have normalised both the original programs,
and where possible, the distilled programs. This demonstrates that
it is possible to combine our approach with a deforestation technique
if so desired. As Kannan directly introduces skeletons into the code,
we assume, derived from his own definitions, that farmB is a map,
offlineParMapRedr is a combination of a map and a foldr, and
accumulate is a combination of a scan and a foldr.

In Kannan’s Matrix Multiplication example, we discover two foldr

instances that correspond to Kannan’s two discovered map instances, and
a foldl that corresponds to the map-reduce’s foldr instance. We derive
a leftwards-fold due to the structure of the function inspected, but the
reduce skeleton implies that either a leftwards- or rightwards-fold can be
used. The discovery of foldr instances instead of map instances is valid,
but produces a less specialised result. A similar lack of specialisation
is found in Kannan’s Totient example, where our approach discovers
the foldr instance but does not discover a combination of a map and a
foldr due to less vigorous normalisation. Our anti-unification approach
discovers the same foldr and scan instances discovered by Kannan
in all other examples; a total of one scan instance and three foldr

instances. In Kannan’s Maximum Prefix Sum example, our approach
finds an additional foldr and an unfold instance from the distilled
definitions.

The above comparisons demonstrate that our approach can potentially
discover more patterns than Cook’s approach, including instances of sim-
ultaneous induction and unfold patterns. Kannan’s approach benefits
from a more aggressive normalisation approach in some examples, but
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our anti-unification approach is capable of discovering either the same or
equivalent pattern instances in the same functions, as well as additional
unfold operations.

6.1.2 Limitations

Both of the approaches presented in this thesis have a number of limit-
ations, which we describe in this section. One limitation that is shared
by both approaches is that they require purity; we are unable to (safely)
analyse and rewrite effectful code. This can present problems when
effectful code is still parallelisable; e.g. a map operation that accesses
independent elements of a file or shared data structure. While both ap-
proaches can, in principle, be adapted to work with languages other than
Haskell, our approaches have not yet been tested with other languages,
including ones with implicit effects such as C/C++. We speculate that
adapting to other pure functional languages should not be difficult, but
adapting our approach to impure functional languages, such as OCaml or
Erlang, imperative languages, or effect-oriented languages would require
significantly more work since side-effects can obfuscate both changes
to state and dependencies. It may be possible, e.g. as in the polyhedral
model, to increase the granularity of information to inspect how data
structures, and potentially effectful state, are accessed. Alternatively,
dynamic analyses could be used to gather this information. The ability
to handle effectful programs will allow application of our approaches to
a wider range of programs, and thereby facilitate and further automate
the parallelisation of these programs.

Limitations of the Slicing Approach

The primary limitation of the slicing approach that we have shown here
is that it can only discover and introduce map operations over cons-lists.
In principle, with an additional refactoring, it is possible to introduce
zipWith pattern instances to functions that exhibit simultaneous in-
duction. Similarly, since the refactoring that we defined in Section 4.5
introduces map operations only in structurally recursive functions, the
helper function that is also introduced may be considered to be a fold.

160



6.1. Main Achievements

However, and unlike the introduced map operation, neither the fixpoint
function nor the initial value of the implicit fold instance is discovered,
and it would require additional work to infer them, perhaps in a similar
approach to argument inference in the anti-unification approach.

Expanding the approach to other patterns and types has three re-
quirements: i) defining the concept of update for each type, ii) defining
the pattern in terms of usage and update of function arguments between
successive recursive calls, and iii) defining pattern-specific refactorings.
Currently, our approach permits only three types: booleans, integers,
and cons-lists. Consequently, all programs and all types, e.g. binary trees,
must be converted to these three types in order for our analysis to succeed.
This limitation may be avoided by extending the expression language to
allow arbitrary types and constructors. It would then be necessary to
redefine usage and update. A generic definition could be provided, and
it could then be augmented by specialisations for certain types. This
would allow functions that traverse arbitrary data-structures without first
converting to lists, and it would therefore simplify the application of our
approach to a wider range of programs. Since our approach is defined to
discover map operations, we have necessarily defined (un)obstructiveness
in such a way that the combination of variables that are used and up-
dated reflects the property of the map pattern. It follows that to discover
additional patterns, each pattern must be expressed as a combination
of usage and update categorisations of variables. This may not even be
possible for all patterns. Finally, we observe that the result of the slice
and analysis merely detects the computations that can be performed as
part of a fixpoint function that is passed to a pattern. It relies upon a
refactoring to use this information and rewrite the inspected function
according to whichever pattern is being detected. It follows that for each
pattern that our slicing approach is able to detect, a refactoring must
also be defined to introduce that pattern. This may be non-trivial, in
particular, e.g., for programmers working with a custom skeleton that
wish to detect and introduce that pattern automatically.

The slicing approach is also limited in its present form since the
definitions of usage and update are relatively coarse. The Smith-Waterman
Example in Section 4.6.3 suggests that a finer understanding of how each
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element in the list is used and updated may provide greater insight as to
which operations are performed independently of other elements. For
example, inferring how elements in a data structure are accessed between
recursive calls could expose groups of accesses that are independent of all
other accesses over successive recursive calls. Finer-grained definitions of
usage and update would enable the discovery of a wider range of patterns,
and thus more opportunities for parallelism. It could also facilitate
expanding the approach to other schemes and effectful code.

Limitations of the Anti-Unification Approach

The first and most major limitation of the anti-unification approach is that
it relies heavily upon the normalisation process to successfully discover
instances of recursion schemes. This assumes that any normalisation
process is sound, and that it is able to discover definitions that are
structurally similar to a given recursion scheme. This is compounded
further by the inflexibility of our current approach to argument inference.
For example, given the function squares,

1 squares [] = []

2 squares (x:xs) = x*x : squares xs

our approach will not discover the obvious map instance, since x is used
twice as an argument to (*). A more flexible approach to argument
inference would reduce the dependence on normalisation, albeit not elim-
inate it. Extending equivalence checking with equational reasoning could
reduce this dependence further. Reducing the need for normalisation
would also simplify the discovery of multiple schemes in a single inspec-
ted function, e.g. discovering both map and foldr, but also combinations
of schemes, e.g. the map-reduce pattern.

Another source of inflexibility is that whilst we are able to discover
arbitrary schemes that are expressible as an instance of foldr, our ap-
proach may not easily discover schemes with different structures. As
demonstrated in Section 5.6, our approach could be used as the basis
of a more general analysis and pattern discovery technique. Similarly,
addressing this limitation could facilitate the discovery of schemes with
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arbitrary structures. The ability to detect patterns with arbitrary struc-
tures would allow the detection of a wider range of schemes, and so
ensure that as many loci, or components, are available for parallelisation.

Finally, one minor limitation is that our current prototype implement-
ation is built as an extension of old software. This limits ease of use and
distribution. It should, however, be straightforward to reimplement our
prototype using the latest version of HaRe, which itself uses GHC’s AST.

6.2 Future Work

The work presented in this thesis can be carried forward in a number
of directions in order to overcome the limitations described above. We
could improve the slicing approach by extending our expression lan-
guage and definitions to support arbitrary types. We could then expand
the range of schemes that are discoverable using this approach. Both
expansions would allow the slicing approach to be applied to a wider
range of programs, and expose more loci of potential parallelism. We
also intend to explore approaches that infer how elements are accessed
in data-structures that are traversed by inspected functions, perhaps
by an extension of our definitions of usage and update. To address the
difficulty of encoding new schemes in terms of usage and update, thus
enabling their discovery as part of our slicing approach, we intend to
investigate how schemes might be encoded automatically. This would
allow programmers to extend our approach with custom skeletons and
their equivalent recursion schemes.

To improve our anti-unification approach, we intend to address its
dependence on normalisation. We intend to incorporate equational reas-
oning techniques in order to improve argument derivation, and testing
the equivalence of anti-unifier and a given recursion scheme. This will fa-
cilitate the application of our approach to larger and real-world programs,
and likely result in the discovery of more recursion scheme instances. Re-
latedly, we intend to extend our approach to work with recursion schemes
with arbitrary structures. We could first improve detection of unfold
patterns. This will allow the discovery of a wider range of patterns, e.g.

163



6. Conclusions and Future Work

hylomorphisms. Finally, we intend to investigate how implementations
of recursion schemes could be generated automatically. Since recursion
schemes can be implemented in multiple ways, this could increase the
chances that a scheme is found. Automatic pattern generation could also
mean that implementations would not need to be provided.

We intend to test both approaches against larger and real-world
programs. This will provide a better understanding of the limitations of
our approaches, and potentially indicate how they might be improved.
Similarly, and since both approaches are, in principle, language agnostic,
we intend to adapt and apply our techniques to languages other than
Haskell. Finally, but importantly, we could first apply our approaches to
impure functional languages, e.g. Erlang. This would allow us to extend
both approaches to inspect impure code, and so increase the range of
functions to which they can be applied. This would also facilitate the
application of our approaches to imperative languages such as C++ and
Java.

6.3 Concluding Remarks

This thesis has introduced two novel approaches to automatic pattern
discovery for pure functional languages. Our program slicing approach
is, in principle, able to analyse a wider range of pure explicitly recursive
functions than current approaches. Similarly, our anti-unification approach
is able to discover a wider range of patterns, including custom patterns
provided by the programmer, in pure explicitly recursive functions than
current approaches. The discovery of more pattern instances, and a
wider variety of patterns, facilitates the introduction of parallelism by
exposing more opportunities for parallelism and by further automating
the process. Consequently, it is now possible to automatically parallelise
more functional programs with a wider range of parallel structures.
This allows programmers to take advantage of now-ubiquitous parallel
hardware in a simple and safe way, and improve the performance of their
programs with minimal effort.
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Appendix A
Proof for Soundness of Slicing

Algorithm

Lemma A.1. For all programs, p, and their respective program environments,
Gp; for all fixpoint expressions, e, in p where,

e = fix (l ( f , x1, . . . , xn) ! e0)

and for all variables x, such that x = xµ where µ 2 [1,n], we can derive the slice
of e with criterion x, Se|x, by

Gp, f , x,µ ` e : Se|x

using the inference rules in Figure 4.4. Similarly, for all subexpressions, h,d, of
e, (i.e. 8h, h ⌧ e and 8d, d ⌧ e) we obtain the slice of h, Sh|x, by

Gp, f , x,µ ` h : Sh|x

and the slice of d by
Gp, f , x,µ ` d : Sd|x

Given both Sh|x and Sd|x, when d ⌧ h, it follows that

8y, y 2 Sd|x implies that y 2 Sh|x

Proof Sketch. The proof is by structural induction on h.
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Case 1. h = y, given that y /

⇤
p x.

Since y /

⇤
p x, the inference rule var1 applies and so, Sy|x = {y}.

Since y is a variable, from the definition of subexpression (Definition 4.2.2)
we know that d = h = y.
Consequently, Sd|x = Sy|x.
It follows trivially that y is in the slice of both d and h since d = h = y
and Sd|x = Sh|x = Sy|x.

Case 2. h = const z zs, given that h ⌘ x; i.e. that z /p x, zs /p x, and z 6= zs.

Since h ⌘ x, the inference rule lst2 applies and so, Sh|x = {x,z,zs}.
From the definition of subexpression (Definition 4.2.2), there are three
subcases.

Case 2.1. When d = h.
This case is analogous to Case 1.

Case 2.2. When d = z.
Since d = z, and since we know that z /⇤p x by Definition 4.2.3, the infer-
ence rule var1 applies and so, Sz|x = {z}.
It follows trivially that both z 2 Sz|x and z 2 Sd|x.

Case 2.3. When d = zs.
This case is analogous to Case 2.2.

Case 3. h = const e1 e2, given that h 6⌘ x.

Since h 6⌘ x, the inference rule lst3 applies and so, Sh|x = S1 [ S2.
From the definition of subexpression (Definition 4.2.2), there are three
subcases.

Case 3.1. When d = h.
This case is analogous to Case 1.
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Case 3.2. When d = e1.
The induction hypothesis (IH) is y 2 Se1|x.
Given Gp, f , x,µ ` e1 : Se1|x, Gp, f , x,µ ` e2 : Se2|x, and IH, it follows trivially
from Sh|x = S1 [ S2 that y 2 Sh|x.

Case 3.3. When d = e2.
The case is analogous to Case 3.2.

Case 4. h = case ys of nilt ! e1, const z zs ! e2.
This case is analogous to Case 3.

Case 5. h = f (e1, . . . , en).

The inference rule rec-app applies and so, Sh|x =
S

j2[1,n] Sj.
From the definition of subexpression (Definition 4.2.2), there are n sub-
cases; i.e. d = ej. Since rec-app defines a special case for eµ, these subcases
can be divided into two groups: where j 6= µ and j = µ.

Case 5.1. Where j 6= µ.
This case is similar to Case 3.2.
The induction hypothesis is y 2 Sej|x.
Given the slice for each ej, Sej|x = Sj, according to rec-app; since Sh|x =
S

j2[1,n] Sj; and from the induction hypothesis we know that Sµ = ∆; it
follows trivially that y 2 Sh|x.

Case 5.2. Where j = µ.
The rec-app inference rule defines four special cases for ej, consequently
there are four subcases.

Case 5.2.1. Where eµ /
⇤
p x.

From the rec-app inference rule, Sµ = ∆.
It follows trivially that since Sd|x = Sµ = ∆, y 2 ∆ implies that y 2 Sh|x.

Case 5.2.2. Where eµ ⌘ x.
This case is analogous to Case 5.2.1.

167



A. Proof for Soundness of Slicing Algorithm

Case 5.2.3. Where eµ = const ek el, given that el ⌘ x and that there are no
subexpressions, e0k, of ek that are either reachable from x or a recursive
call (i.e. ¬(9e0k, e0k ⌧ ek ^ (e0k /

⇤
p x _ e0k = f (e0k1, . . . , e0kn)))).

This case is analogous to Case 5.2.1.

Case 5.2.4. Otherwise, where ¬(eµ /
⇤
p x) ^ (eµ 6⌘ x) ^ ¬(eµ = const ek el ^

el ⌘ x ^ ¬(9e0k, e0k ⌧ ek ^ (e0k /
⇤
p x _ e0k = f (e0k1, . . . , e0kn))).

This case is similar to Case 3.2.
The induction hypothesis is y 2 Sµ. Given the slice for eµ, Seµ|x, from
rec-app we know that Sd|x = Sµ = {x} [ Seµ|x.
Since we know that Sh|x =

S
j2[1,n] Sj; and from the induction hypothesis

we know that y 2 Sµ; it follows trivially that y 2 Sh|x.

Case 6. h = e0 (e1, . . . , en), where e0 6= f .

This case is similar to Case 3.
Since e0 6= f , the inference rule app applies and so, Sh|x =

Sn
j=0 Sej|x.

From the definition of subexpression (Definition 4.2.2), there are n + 2
subcases; i.e. d = h and 8j 2 [0,n], d = ej. As before, we group the latter
n + 1 subcases into a single subcase.

Case 6.1. Where d = h.
This case is analogous to Case 1.

Case 6.2. Where 8j 2 [0,n], d = ej.
This case is similar to Case 5.1.
The induction hypothesis is y 2 Sej|x.
It follows trivially that since Sh|x =

Sn
j=0 Sej|x, and given the induction

hypothesis, y 2 Sh|x.
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Case 7. h = l (a1, . . . , an) ! e1.

From the fun inference rule we know that Sh|x = Se1|x.
From the definition of subexpression (Definition 4.2.2), there are two
subcases.

Case 7.1. When d = h.
This case is analogous to Case 1.

Case 7.2. When d = e1.
The induction hypothesis is y 2 Se1|x.
Given the slice of e1, Se1|x, given the induction hypothesis, and since we
know that Sh|x = Se1|x, it follows trivially that Sh|x = Sd|x = Se1|x.
Consequently, y 2 Sh|x.

Case 8. h = fix e1.

This case is analogous to Case 7.

Corollary A.1. It immediately follows from Lemma A.1 that 8y, y 2 Sh|x

implies that y 2 Se|x.
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Lemma A.2. For all programs, p, and their respective program environments,
Gp; for all fixpoint expressions, e, in p where,

e = fix (l ( f , x1, . . . , xn) ! d)

Definition 4.3.2 produces the variable usage escaped e, e# = (e \# x). For clarity,
we will use # to denote the subexpression corresponding to the same subexpression
in e#. For example, in

e# = fix (l ( f , x1, . . . , xn) ! d#)

d# is corresponds to d in e.

For all subexpressions, h, to e and all subexpressions, d, to e# (i.e. 8h, h ⌧ e and
8d, d ⌧ e#), given that h and d are corresponding subexpressions in e and e#

respectively (i.e. d = h#), and given the slices of h and d,

Gp, f , x,µ ` h : Sh|x (A.1)

Gp, f , x,µ ` d : Sd|x (A.2)

it follows that
Sh|x = Sd|x

Proof Sketch. The proof is by case analysis on h.

Recall that the definition of variable usage escapement (Definition 4.3.2)
substitutes occurrences of x and expressions that are syntactically equi-
valent to x in e for the variable #, representing an empty expression and
considered to be syntactically equivalent to x (i.e. # ⌘ x). Definition 4.3.2
targets such substitutable expressions only in recursive calls, specifically
the µth argument, eµ. Consequently, there are four cases.

Case 1. h = f (e1, . . . , en) and eµ = x, given that 8j 2 ([1,µ)[ (µ,n]), Sej|x =

Se#
j |x.

Since h is a recursive call, the rec-app inference rule applies and so we
know that, Seµ|x = Sµ = ∆.
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From the definition of variable usage escapement (Definition 4.3.2), we
know that e#

µ = #.
Since d is a recursive call and e#

µ = #, the rec-app inference rule applies
and so we know that, Se#

µ|x = Sµ = ∆.
Since both h and d are recursive calls, it follows from the rec-app rule
that Sh|x =

S
j2[1,n] Sj and Sd|x =

S
j2[1,n] Sj where Sj = Se#

j |x and where
Sµ = ∆.
Since 8j 2 ([1,µ) [ (µ,n]), Sej|x = Se#

j |x holds, and that ∆ = ∆, it follows
trivially that Sh|x = Sd|x.

Case 2. h = f (e1, . . . , en) and eµ ⌘ x, given that 8j 2 ([1,µ)[ (µ,n]), Sej|x =

Se#
j |x.

This case is analogous to Case 1.

Case 3. h = f (e1, . . . , en) and eµ = const ek el , given that el ⌘ x^¬(9e0k, e0k ⌧
ek ^ (e0k /

⇤
p x _ e0k = f (e0k1, . . . , e0kn))) and 8j 2 ([1,µ) [ (µ,n]), Sej|x = Se#

j |x.

This case is analogous to Case 1.

Case 4. Otherwise.

From Definition 4.3.2 we know that h = d, and the result follows trivially.

Corollary A.2. It immediately follows from Lemma A.2 that Se|x = Se#|x.
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Theorem A.1 (Soundness of Slicing Algorithm). For all programs, p, and
their respective program environments, Gp; for all fixpoint expressions, e, in p
where,

e = fix (l ( f , x1, . . . , xn) ! e0)

and for all variables x, such that x = xµ where µ 2 [1,n], we can derive the slice
of e with criterion x, Se|x, by

Gp, f , x,µ ` e : Se|x

It follows that
8y, y 2 Se|x implies that y ⇠x e

where y ⇠x e denotes that y is either used or updated in e according to
Definitions 4.3.3 and 4.3.1, respectively.

Proof Sketch. The proof is by case analysis on y.

We must show that if y ⇠x e, i.e. if y is either used or updated in e, then y
is in the slice of e, Se|x. From Definitions 4.3.1 and 4.3.3, there are three
possible cases. We must also show that if y is neither used nor updated in
e then y is not in Se|x.

Case 1. y /

+
p x; i.e. (y /

⇤
p x) ^ (y 6= x).

From the definition of usage, in order for y ⇠x x to hold, we must show
that both y /

⇤
p x and y ⌧ (e \# x) hold.

Since y /

+
p e, it follows trivially that y /

⇤
p x.

Let e# = (e \# x), we must show that y 2 Se|x implies that y ⌧ e#.
When y is an expression, we know that the slice, Gp, f , x,µ ` y : Sy|x, pro-
duced by the var1 inference rule is Sy|x = {y}. Consequently, y 2 Sy|x.
If y 2 Sy|x and y ⌧ e#, we know that y 2 Se#|x by Lemma A.1.
If y 2 Se|x, we know that y 2 Se#|x by Lemma A.2.
Consequently, y 2 Se|x implies that y ⌧ e#.
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Case 2. y = x.

From the definition of usage, there are two subcases.

Case 2.1. When x ⌧ e#, given that e# = (e \# x).

This case is analogous to Case 1.

Case 2.2. When 9h, (h ⌧ e#) ^ h ⌘ x, given that e# = (e \# x).

This case is similar to Case 1, except that the lst2 inference rule applies
instead of var1.

Case 3. y = x̄.

From the definition of update (Definition 4.3.1), x̄ ⇠x x holds when there
exists an expression h such that h ⌧ e and h = f (e1, . . . , en), where ¬(eµ /

⇤
p

x)^ (eµ 6⌘ x)^¬(el ⌘ x ^¬(9e0k, e0k ⌧ ek ^ (e0k /
⇤
p x _ e0k = f (e0k1, . . . , e0kn)))).

Since x̄ 2 Sh|x, and from the rec-app inference rule, we know that x̄ 2 Sh|x

when ¬(eµ /

⇤
p x) ^ (eµ 6⌘ x) ^ ¬(el ⌘ x ^ ¬(9e0k, e0k ⌧ ek ^ (e0k /

⇤
p x _ e0k =

f (e0k1, . . . , e0kn)))) holds.
By Lemma A.1, we know that when h ⌧ e and x̄ 2 Sh|x, x̄ 2 Se|x.
Consequently, x̄ 2 Se|x implies that x̄ ⇠x e.

Case 4. ¬(y ⇠x e).

By inspection, the rules that introduce elements into the slice are var1,
lst2, and rec-app.

It follows from the conditions of var1, that y /

⇤
p x and therefore that y is

used in e by definition.

It follows from the conditions of lst2, that 9h, h ⌧ e and h = const z zs
and that h ⌘ x, therefore x, z, and zs are all used in e by definition.
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If follows from the conditions of rec-app, that 9h, h ⌧ e and h = f (e1, . . . , en)

and ¬(eµ /

⇤
p x) ^ (eµ 6⌘ x) ^ ¬((eµ = const ek el ^ el ⌘ x ^ ¬(9e0k, e0k ⌧

ek ^ (e0k /
⇤
p x _ e0k = f (e0k1, . . . , e0kn)), therefore x̄ is updated in e by defini-

tion.
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Appendix B
Proof for Soundness of

Anti-Unification Algorithm

Theorem B.1 (Soundness of Anti-Unification Algorithm). Given the terms
t1 and t2, we can find t, s1, and s2, such that t1 ⇠= t s1 and t2 ⇠= t s2.

Proof Sketch. Given the terms t, t1, t2, and substitutions, s1 and s2. The
proof is by case analysis on t1 and t2.

Case t1 ⇠= t2:

By application of eq with t = t2 and s1 = s2 = #, we must show that
t1 ⇠= t2 # and t2 ⇠= t2 #.

By Definition 5.3.2 and reflexivity, both t1 ⇠= t2 and t2 ⇠= t2 hold.

Case t2 = (Var v) ^ (v 6= p):

By application of var when t = (Var v), s1 = Svt1, and s2 = #, we must
show that t1 ⇠= (Var v) (Svt1) and (Var v)⇠= (Var v) # hold.

By Definition 5.3.1 and reflexivity, t1 ⇠= t1 holds.

By Definition 5.3.2 and reflexivity, (Var v)⇠= (Var v) holds.
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Case t1 = (Var vfai
)^ t2 = (App (Var u) (Var vpai))^ (u 6= p)^ (vfai

⌘ vpai):

By application of id where

t = (App (Var u) (Var vpai
))

s1 = LSvid, # M
s2 = #

we must show that:

(Var vfai
)⇠= (App (Var u) (Var vpai

)) LSuid, # M (1)

(App (Var u) (Var vpai
))⇠= (App (Var u) (Var vpai

)) # (2)

For (1):
By Definition 5.3.3, (Var vfai

)⇠= (App (Var u)Suid (Var vpai) #).
By Definition 5.3.1 and Definition 5.3.2,
(Var vfai

)⇠= (App (Var id) (Var vpai)).
By Definition 5.3.5 and reflexivity, (Var vfai

)⇠= (Var vpai) holds.

For (2):
By Definition 5.3.2 and reflexivity,
(App (Var u) (Var vpai))

⇠= (App (Var u) (Var vpai)) holds.

Case t2 2Rp:

By application of rp where t = (Var a), s1 = Sat1, and s2 = Sat2, we
must show that both t1 ⇠= (Var a)Sat1 and t2 ⇠= (Var a)Sat2 hold.

By Definition 5.3.1 and reflexivity, both t1 ⇠= t1 and t2 ⇠= t2 hold.

Case t1 = (C t11 . . . t1n) ^ t2 = (C t21 . . . t2n) ^
8i 2 [1,n], (t1i ⇠= ti s1i) ^ (t2i ⇠= ti s2i):
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By application of const where

t = (C t1 . . . tn)

s1 = Ls11, . . . ,s1n M
s2 = Ls21, . . . ,s2n M

we must show that:

(C t11 . . . t1n)⇠= (C t1 . . . tn) Ls1i, . . . ,s1n M
(C t21 . . . t2n)⇠= (C t1 . . . tn) Ls2i, . . . ,s2n M

By Definition 5.3.3, (C t11 . . . t1n)⇠= (C (t1 s11) . . . (tn s1n))

and (C t21 . . . t2n)⇠= (C (t1 s21) . . . (tn s2n)).
By assumption, substitutivity and reflexivity,
both (C t11 . . . t1n) ⇠= (C t11 . . . t1n) and (C t21 . . . t2n) ⇠= (C t21 . . . t2n)

hold.

Case t1 = [t11, . . . , t1n]^ t2 = [t21, . . . , t2n]^
8i 2 [1,n], t1i ⇠= ti s1i ^ t2i ⇠= ti s2i:

By application of list where

t = [t1, . . . , tn]

s1 = Ls11, . . . ,s1n M
s2 = Ls21, . . . ,s2n M

we must show that:

([ t11 . . . t1n])⇠= ([t1 . . . tn]) Ls1i, . . . ,s1n M
([t21 . . . t2n])⇠= ([t1 . . . tn]) Ls2i, . . . ,s2n M

By Definition 5.3.3, ([t11 . . . t1n])⇠= ([(t1 s11) . . . (tn s1n)])

and ([t21 . . . t2n])⇠= ([(t1 s21) . . . (tn s2n)]).
By assumption, substitutivity and reflexivity,
both ([t11 . . . t1n]) ⇠= ([t11 . . . t1n]) and ([t21 . . . t2n]) ⇠= ([t21 . . . t2n])

hold.

177



B. Proof for Soundness of Anti-Unification Algorithm

Otherwise:

By application of otherwise where t = (Var a), s1 = Sat1,
and s2 = Sat2, we must show that both t1 ⇠= (Var a)Sat1 and t2 ⇠=
(Var a)Sat2 hold.

By Definition 5.3.1 and reflexivity, both t1 ⇠= t1 and t2 ⇠= t2 hold.
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Appendix C
Patterns Used in the Anti-Unify

Module Refactoring

1 map f [] = []

2 map f (x:xs) = f x : map f xs

3

4 fold z f [] = z

5 fold z f (x:xs) = f x (fold z f xs)

6

7 foldl f z [] = z

8 foldl f z (x:xs) = foldl f (f z x) xs

9

10 foldlFlip f z [] = z

11 foldlFlip f z (x:xs) = foldlFlip f (f x z) xs

12

13 foldr2 f z ([],[]) = z

14 foldr2 f z ((x:xs),(y:ys)) = f x y (foldr2 z (xs,ys))

15

16 foldl2 f z ([],[]) = z

17 foldl2 f z ((x:xs),(y:ys)) =

18 foldl2 f (f z x y) (xs,ys)

19

20 data BTree a = L a | B (BTree a) (BTree a)

21
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C. Patterns Used in the Anti-Unify Module Refactoring

22 foldBTree f g (L a) = g a

23 foldBTree f g (B l r) =

24 f (foldBTree f g l) (foldBTree f g r)

25

26 data CTree a = E | C a (CTree a) (CTree a)

27

28 fold2CTree f g h z (E,E) = z

29 fold2CTree f g h z ((C x xl xr),E) =

30 h x (fold2CTree f g h z (xl,E))

31 (fold2CTree f g h z (xr,E))

32 fold2CTree f g h z (E,(C y yl yr)) =

33 g y (fold2CTree f g h z (E,yl))

34 (fold2CTree f g h z (E,yr))

35 fold2CTree f g h z ((C x xl xr),(C y yl yr)) =

36 f x y (fold2CTree f g h z (xl,yl))

37 (fold2CTree f g h z (xr,yr))

38

39 scanl f z [] = [z]

40 scanl f z (x:xs) = f x z : scanl f (f x z) xs

41

42 zip ([],[]) = []

43 zip ((x:xs),(y:ys)) = (x,y) : zip (xs,ys)

44

45 zipWith f ([],[]) = []

46 zipWith f ((x:xs),(y:ys)) =

47 f x y : (zipWith f (xs,ys))
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