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Abstract
This thesis deals with the important problem of parallelising sequential
code. Despite the importance of parallelism in modern computing, writ-
ing parallel software still relies on many low-level and often error-prone
approaches. These low-level approaches can lead to serious execution prob-
lems such as deadlocks and race conditions. Due to the non-deterministic
behaviour of most parallel programs, testing parallel software can be both
tedious and time-consuming. A way of providing guarantees of correctness
for parallel programs would therefore provide significant benefit. Moreover,
even if we ignore the problem of correctness, achiving good speedups is
not straightforward, since this generally involves rewriting a program to
consider a (possibly large) number of alternative parallelisations.

This thesis argues that new languages and frameworks are needed. These
language and frameworks must not only support high-level parallel pro-
gramming constructs, but must also provide predictable cost models for
these parallel constructs. Moreover, they need to be built around solid,
well-understood theories that ensure that: (a) changes to the source code
will not change the functional behaviour of a program, and (b) the speedup
obtained by doing the necessary changes is predictable. Algorithmic skele-
tons are parametric implementations of common patterns of parallelism that
provide good abstractions for creating new high-level languages, and also
support frameworks for parallel computing that satisfy the correctness and
predictability requirements that we require.

This thesis presents a new type-based framework based on the connec-
tion between structured parallelism and structured patterns of recursion,
that provides parallel structures as type abstractions that can be used to
statically parallelise a program. Specifically, this thesis exploits hylomor-
phisms as a single, unifying construct to represent the functional behaviour
of parallel programs, and to perform correct code rewritings between alter-
native parallel implementations, represented as algorithmic skeletons. This
thesis also defines a mechanism for deriving cost models for parallel con-
structs from a queue-based operational semantics. In this way, we can pro-
vide strong static guarantees about the correctness of a parallel program,
while simultaneously achieving predictable speedups.
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Chapter 1

Introduction

This thesis deals with the important problem of writing efficient and correct
parallel software. Parallel programming has become increasingly important.
Parallel hardware is now ubiquitous, and there are major questions that
need to be solved to ease the task of developing parallel software. On one
hand, there is the problem of performance, i.e. writing parallel software that
achieves good speedups. On the other hand, there is the problem of cor-
rectness, i.e. ensuring that a parallel program produces the correct results.
The former has been addressed mostly by the high performance comput-
ing community, while the latter has been addressed mostly by the static
analysis community. However, there has been little research on providing a
general framework for achieving both of these simultaneously.

This thesis presents a novel framework, Structured Arrows (StA), which
allows reasoning simultaneously about both correctness and performance of
parallel programs. We developed the StA framework for a purely functional
language that can be described as a subset of Haskell [Jon03], and it is based
on well-understood theories of patterns of parallelism and patterns of recur-
sion, specifically algorithmic skeletons [Col89] and hylomorphisms [MFP91].
StA provides a mechanism for: (a) reasoning about the sound introduction
of parallelism to sequential functions; and (b) statically predicting the run-
time performance of alternative parallelisations of functions.

1



2 CHAPTER 1. INTRODUCTION

1.1 The Importance of Parallel
Programming

Software systems require ever increasing amounts of computing power. Single-
processor systems are no longer able to cope with these growing demands.
Less than two decades ago, we witnessed that clock-speeds have stalled, and
a trend towards increasingly parallel architectures has started. Almost ev-
ery hardware system nowadays is either a multicore, or incorporates highly
parallel processing units such as Graphic Processing Units (GPUs). Par-
allel hardware is now no longer constrained to very specific fields, such as
supercomputers or high-performance computing.

The shift in hardware systems has also brought a shift in the way that
software systems are developed. Developers can no longer rely on increasing
clock speeds to make their programs run faster, and learn new models,
languages and frameworks. This requires a different mind-set. Developers
have been used to writing highly optimised code for single-processor, single-
core architectures. Consequently, the source code that is written is often
inherently sequential, and hard to parallelise. In contrast to sequential
programming, writing an optimised parallel application requires focusing
on different aspects of the program structure, from the early stages of the
software development process.

1.1.1 Challenges of Parallel Programming

Writing parallel applications is an inherently hard task that requires to
focus on many low-level implementation details. Concurrency techniques
are prevalent. Concurrency theories address the problem of decomposing a
program into several components. These components can be run in parallel
to speed up the program’s run-time, provided that these components are
order-independent. Concurrency techniques are, therefore, potential par-
allelism enablers. However, the order-independence of the components is
not complete: components need to communicate and synchronise in order
to solve the common goal. Communication and synchronisation errors lead
to important problems such as deadlocks and race conditions. Detecting
such problems, or debugging them, has become the subject of much re-
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search [FKNS14, NY16, LZC+02]. However, even when a parallel program
is correct, achieving good speedups is not easy.

Developers must perform a number of steps in order to parallelise a
program. As a minimum, they need to

1. identify the different components that can be parallelised; and

2. choose which components to run in parallel, to achieve good speedups.

This means that developers must think not only about the correctness of
their implementations, but also about how to decompose a program into
multiple order-independent components, and simultaneously how to run
in parallel those components that would improve the application’s perfor-
mance.

1.1.2 Models of Parallelism and Concurrency

In order to ease the task of writing parallel software, new models of par-
allel computing have been created, as well as programming languages and
libraries, some of which have been adopted by industry (see, for example,
the survey by Diaz et al. [DMCN12]). The main idea behind most of these
models is to raise the level of abstraction. This is the same idea that un-
derlies any successful attempt at tackling a problem that is too large, and
that contains too many dimensions.

An example of model of parallelism is the fork-join model. Fork-join
parallelism focuses on the control flow of the program, abstracting away
the communication details. Examples include the Cilk programming lan-
guage [BJK+96], which included the spawn and sync primitives1.

Another example is the concept of futures and promises. The key idea
is to decouple a value (future) from a computation (promise). The com-
putation can then be parallelised, and the value later “demanded” where
needed. An example of programming with futures in Haskell [Jon03, Hut16]
is Glasgow Parallel Haskell, with the par and pseq constructs [THLJ98].

In contrast, message passing models of concurrency are aimed at de-
scribing the interactions between components as messages exchanged be-
tween them. They abstract away the specific low-level details involved in

1This was later removed, leaving just spawn.
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the actual communication. Creating a component, and sending/receiving
messages are generally considered primitives. Process calculi are examples
of this. Some of these process calculi are Hoare’s CSP [Hoa78], or Milner’s
π-calculus [Mil99]. Another example is the Actor Model, which originated
in 1973 [HBS73] and that has influenced the creation of a number of pro-
gramming languages and libraries, such as Erlang [CT09, AV90].

All of these approaches provide a simpler way of writing parallel soft-
ware, but they still require programmers to focus on low-level details, and
achieving good speedups can still be hard. The underlying problem is that
the two questions that a developer must answer to parallelise a program
still need to be answered for each parallel program: i.e. the components
still need to be identified; and some of them parallelised, ensuring that the
resulting program is both correct and efficient. One potential solution to
those questions comes from the field of structured parallelism, which con-
sists on programming parallel applications by combining implementations
of common patterns of parallel computation [Pel98, RG03]. This thesis uses
structured parallelism via algorithmic skeletons [Col89] as a means to avoid
these problems.

1.2 Structured Parallelism

Algorithmic skeletons [Col89] are parametric implementations of common
patterns of parallel programming. Using a pattern/skeleton approach, the
programmer can design and implement a parallel program in a top-down
manner. For example, the programmer could first identify the parallel pat-
terns that occur in a particular piece of software, then select the patterns
that potentially lead to the best speedups, and finally select a suitable im-
plementation for those patterns, as a composition of one or more algorithmic
skeletons. In other words, algorithmic skeletons focus on the structure of
the computation. Moving from a lower-level send/receive approach to a
higher-level structured approach has been compared to moving away from
goto statements into more structured forms of recursion [Gor04]. From the
functional programming perspective, an algorithmic skeleton is a higher-
order function that receives the components of the algorithmic skeleton,
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and implements some pattern of parallelism. There are many examples of
algorithmic skeleton libraries, frameworks and languages [GzVL10].

Examples of algorithmic skeleton frameworks include:

1. FastFlow [ADK+11] is a skeletal parallel programming library for
C++ that is targeted to the development of streaming computations.

2. eSkel [BCGH05] is a library for structured parallelism for C, and im-
plemented in C+MPI.

3. The Skel [EBDH12] library provides an implementation of common
algorithmic skeletons in the Erlang programming language.

An example algorithmic skeleton is the task farm skeleton, which cap-
tures a pattern that is also known as master-slave parallelism. The task-
farm pattern captures worker replication, where a task farm takes a worker,
and replicates it a number of times. An input collection of tasks is then dis-
tributed between the workers, and each of the workers operates on different
tasks independently. An example of a skeletal program using a task farm,
in a Haskell-like language is:

-- run :: Skel a b -> a -> b

-- fun :: (a -> b) -> Skel a b

-- farm :: Int -> Skel a b -> Skel a b

-- filterImage :: Image -> Image

parallelFilter :: Skel [Image] [Image]
parallelFilter = farm 3 (fun filterImage)

output :: [Image]
output = run skel_fun images

In this code, the type Skel a b represents a structured parallel program
that receives inputs of type a, and returns outputs of type b. The worker
function filterImage is replicated 3 times by task farm 3. This parallel
program is run on the inputs contained in images. The construct fun is an
algorithmic skeleton that lifts a function to the algorithmic skeleton level.
The code above is functionally equivalent to a usual map operation:
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input

worker_fun

worker_fun

worker_fun

output

Figure 1.1: Task Farm

sequentialFilter :: [Image] -> [Image]
sequentialFilter = map filterImage

Algorithmic skeletons can be nested and composed in many ways, each of
which represents a different parallelisation. In this thesis, the term parallel
structure is used to refer to arbitrary nestings of algorithmic skeletons.

1.3 Structured Recursion

The previous section presented structured parallelism using algorithmic
skeletons. Algorithmic skeletons provide a good high-level framework for
writing parallel software, but they do not provide a mechanism for de-
composing a program into components. This decomposition must usu-
ally be done manually by the developers. However, algorithmic skeletons
have been linked to different recursion patterns in a number of different
ways [RG03, Ski93b, SFLD15, Col93]. The connection between algorithmic
skeletons and recursion patterns provides a mechanism for decomposing a
program into components that can then be run in parallel, once a suitable
parallel structure has been determined.

Recursion patterns, also known as Recursion Schemes [MFP91], capture
common ways of writing recursive functions. Moving from goto statements
towards structured loops is a major step towards more structured forms of
iteration. A higher-level approach is the use of explicitly recursive functions
instead of iteration, since they allow functions to be implemented as a list of
equations. The use of recursion patterns represents the next step towards
raising the level of abstraction in programs, by abandoning the idea of
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using direct recursive calls in favour of calls to higher-order functions that
implement some pattern of recursion. That is, abstraction is improved by
moving from explicit to implicit recursion.

This style of programming recursive functions was pioneered by Richard
Bird [Bir88] and Lambert Meertens [Mee86]. It has been promoted by
several authors, such as Bird and Wadler [BW88], Gibbons [Gib02a], and
Cunha [Cun05]. However, this style of programming is still not widely
used. Barwell’s forthcoming thesis [Bar17] considers the problem of identi-
fying patterns of recursion in arbitrary Haskell code, in order to introduce
parallelism.

Simple examples of recursion patterns include the map and fold func-
tions in functional languages. For example, in Haskell, map can be defined
as follows:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

A parallel map can be implemented by using a task farm, by replicating a
worker function f, carefully distributing the “tasks” in the input list, and
finally collecting the results. This connection will be exploited in depth in
this thesis.

The mathematical properties of recursion patterns provide a way to
rewrite, or refactor a program into an extensionally equal form. A well-
known example of this is the map-fusion rule:

map f (map g xs) = map (f.g) xs

Two functions are extensionally equal if, when given the same input, they
both produce the same result. The terms functionally/extensionally equiv-
alent are used in this thesis as synonyms of extensionally equal. The term
program structure is then used to refer to the combination of algorithmic
skeletons and recursion schemes that are used (or that could be used) to
implement a program. In this thesis, the main goal is to simultaneously:
(a) explore how to change a program structure, in order to increase or intro-
duce parallelism to it; and (b) statically predict the run-time performance
of alternative program structures.
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1.4 Structured Recursion and Structured
Parallelism

This thesis builds on the connection between structured parallelism, in terms
of combinations of algorithmic skeletons [Col89], and structured recursion,
as combinations of recursion schemes [MFP91]. Several authors have pro-
posed a change in programming techniques in favour of more structured
approaches [Col04, RG03, Gor04, BW88, CPP06]. They advocate a shift
from less structured programming, towards the usage of more structured
programming constructs.

In the functional programming community, this “more structured ap-
proach” is represented by the point-free style of programming [BW88, CPP06].
This style of programming consists of programming without using variables,
and creating complex functions by combining simpler functions using a num-
ber of primitive combinators. In the point-free style of programming, the
data-flow of a program is made explicit. The most basic operation in the
point-free style is function composition. For example, the following func-
tions in Haskell are equivalent. One is programmed using a pointed style,
the other using the composition operator, ‘.’:

-- (f . g) x = f (g x)

pointed x = f (g x)
pointFree = f . g

The pointed version uses the variable x explicitly. In contrast, the function
pointFree is built using the composition operator. Recursion in the point-
free style is generally implemented by using common patterns of recursion,
or recursion schemes [MFP91]. Abandoning explicit recursion in favour of
using recursion schemes has been compared to moving from goto statements
to structured iteration in imperative programming.

In the parallel programming community, the definition of algorithmic
skeletons [Col89] represented a major milestone towards a more structured
approach of parallel programming. Algorithmic skeletons are, when de-
scribed from a functional programming perspective, higher-order functions
that implement some common pattern of parallelism. Cole argues that
structured parallel programming in terms of algorithmic skeletons will sim-
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plify programming, enhance portability, improve performance, and offer
scope for optimisations [Col04]. Algorithmic skeletons are not the only form
of structured parallelism. Evaluation strategies are functions in Haskell that
describe how the output of a function is computed [THLJ98]. These func-
tions can be combined, using higher-order functions, to describe complex
patterns of parallelism.

Gorlatch, in his paper “Send-Receive Considered Harmful” [Gor04], ar-
gues against the usage of send/receive operations, in favour ofMPI collective
operations, in an analogy to Dijkstra’s famous “goto considered harmful”.
Gorlatch’s argument is that the usage of low-level send/receive operations
in MPI [GLS99] programs leads to code with a more complex, error prone
communication structure. In contrast, Gorlatch points out the simplicity
and compositionality of collective operations. These MPI collective opera-
tions are equivalent to algorithmic skeletons.

Several authors have pointed out, and even exploited the correspon-
dence between common patterns of recursion, and common patterns of
parallelism, such as [RG03, Ski93b, SFLD15, HTC98, SHMB05]. These
authors all build on the results of the functional programming community
to (semi-) automate the parallelisation of functions. These approaches show
the feasibility of the approach, and represent important steps towards the
automatic parallelisation of functions. However, they are either targeted at
some specific architecture, and therefore not general, or do not consider the
issue of statically reasoning about the performance of their parallel code.
Our previous work [CHS16, CHSA17] builds on this connection between
patterns of recursion and parallelism. We provide a general framework, in
which programmers can reason simultaneously about program rewritings
and performance.

1.5 Cost Models for Parallel Constructs

Even using a parallel skeleton library, and having some mechanism for auto-
matically rewriting a program structure into functionally equivalent forms,
it is still necessary to decide which is the best possible way to parallelise a
program. In this thesis, cost models are used to achieve this decision.
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A cost model is a static estimation of the run-time performance of a pro-
gram, based on the characteristics of the program, the architecture where
it is going to be run, and possibly some dynamic information, that may
be obtained via profiling. The regular structure of algorithmic skeletons
makes it possible to define predictable cost models. An early example of
this is Skillicorn’s cost calculus [SC95]. Brown et al. [BDH+13] define a
number of cost models to direct refactorings of parallel Erlang programs.
Hammond et al. [HBS16] derive a number of cost models for common algo-
rithmic skeletons from their implementation on x86-64 architectures that
include micro-architectural details that model the relaxed memory consis-
tency approach taken by modern CPU architectures.

The focus of this thesis is on statically predicting how to parallelise a
program. Therefore, the cost models that are used in this thesis need to
be derived from a predictable implementation of the parallel constructs.
The definition of predictable is, however, quite vague. In this thesis, our
notion of predictability is that the operational semantics of the algorithmic
skeletons must allow the automatic derivation of cost equations. A number
of examples are then run to gain evidence that the operational semantics
accurately captures sufficient information to make realistic predictions of
the overall performance of the program.

1.6 Aim of the Thesis

Automatically parallelising sequential functions has many challenges, since
achieving good speedups depends on many factors: architecture-dependent
parameters, task-sizes, communication and synchronisation times, memory
accesses, etc. In order to automatically parallelise a program, all these fac-
tors need to be taken into account. However, considering them all might
be computationally more expensive than simply profiling alternative par-
allelisations of a program. The problem is that the goal of “achieving the
best possible speedups” is simply too large to be tackled in general. A more
reasonable goal is “achieving provably optimal speedups using some paral-
lel programming model”. The problem is then moved to using or defining
a suitable model of parallel programming and demonstrating that the least
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cost solution is chosen using some well-defined cost model. Within that
model, one should be able to define new parallel structures, and derive cost
equations from them. If the model is reasonably accurate, a program should
achieve real speedups that are close to the predicted ones. Therefore, a pro-
gram that is proved to be optimal in the cost model is likely to be close to
the real optimal program.

The second problem is rewriting the structure of a program. Predicting
speedups is powerful, but only when coupled with a mechanism for system-
atically exploring the space of functionally equivalent program structures.
Without such a mechanism, a programmer needs to manually change the
structure of a program in order to generate the alternative parallelisations.
In our opinion, the problem of systematically exploring the functionally
equivalent structures should be restricted to structured parallel programs,
which use a known set of algorithmic skeletons. Even in this case, it is
impossible to explore all of the alternative implementations for a complex
program, since this would lead to a very large search space. In order to solve
this problem, a characterisation of what kind of automatic parallelisations
can be explored, and a mechanism for doing so are needed.

Finally, any mechanism for automatically rewriting a program must en-
sure that the resulting program is functionally equivalent to the original one.
Without strong static guarantees that the parallel program is functionally
equivalent to the original program, programs that either deadlock or that
give inconsistent results might be generated or an incorrect parallelisation
could be produced.

To summarise, the task of parallelising programs would be greatly sim-
plified by having a common framework that combines: (a) a predictable
model of parallel structures from which cost models can be derived; and
(b) a sound mechanism for systematically exploring the space of function-
ally equivalent parallel programs, up to a certain point. State-of-the-art
approaches either tackle the former problem, or the latter, but not both.
Current techniques either: a) require the programmer to guide each step of
the tool, b) do not consider the extensionality of the parallel structures, or
c) are targeted at some specific architecture, and so are not fully general.
These techniques are reviewed in detail in Chapter 2
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This thesis takes a type-based approach, and is the first known attempt
at representing the potential parallelisation of a program as a type. Type-
systems offer many advantages for statically enforcing properties on pro-
grams. For example, in the field of behavioural types [ABB+16], types are
used to enforce that components of communication-centric software com-
municate according to given protocol specifications. Statically enforcing
properties of communicating systems has also been studied by Brady in
the context of the dependently-typed language Idris [Bra17, Bra13]. Type
systems are not just useful for enforcing functional properties of programs,
but also of non-functional properties, such as cost [Vas08].

The aim of this thesis is to develop novel state-of-the-art mechanisms for
reasoning simultaneously about run-time performance of parallel programs,
and correctness of program transformations transformations. Additionally,
a mechanism for systematically exploring (a subset of) the space of func-
tionally equivalent parallel implementations must be provided. This thesis
represents the first attempt to develop a general type-based framework for
parallel programming in which a programmer would write a program once,
and then parallelise their program by providing a minimal amount of type
annotations to instantiating different parameters in the framework.

A good general framework needs to address the following questions:

• How can a program structure be extracted, i.e. how can a program be
split into the different components that can be parallelised?

• What are all the different ways in which a program structure can be
rewritten into functionally equivalent parallel forms?

• How can a program’s run-time behaviour be statically predicted, based
on its parallel structure?

In order to answer the first and the second questions, this thesis presents
a novel type-based framework, Structure-annotated Arrows2, StA or Struc-
tured Arrows, which annotate function types with an abstraction of the un-
derlying function structure. The type-system that is presented in this thesis
describes how to extract a program structure, and annotates function types

2Arrows in this thesis are ‘function types’. They should not be confused with Hughes’
arrows [Hug00].
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with the corresponding structure. A novelty of this type-based framework
is that it uses a common recursion pattern, hylomorphisms, as a single uni-
fying construct to guide the rewritings that can be applied to a program.
Any attempt to rewrite a program starts by converting its structure into
a canonical form as a composition of hylomorphisms. This type-system is
then extended to deal not only with patterns of recursion, but also with
arbitrary recursive functions. This extension is built on top of combinatory
logic, exploiting the close correspondence between λ-calculus and combi-
natory logic [Bar84]. By tying the combinators to hylomorphisms, a full
framework that can extract a program structure from explicitly recursive
function has been developed.

These program structures can be used to guide any possible rewritings
to the underlying function, thus answering the second question: What are
all the different ways in which a program structure can be rewritten into
functionally equivalent parallel forms?. The system is proven sound, and
the space of functionally equivalent programs is characterised by a set of
properties that was used to prove the system complete.

Finally, to answer the third question, How can a program’s run-time be-
haviour be statically predicted, based on its parallel structure?, a mechanism
for specifying the operational semantics of parallel structures has been de-
veloped. This mechanism consists of a simple but predictable queue-based
language that comprises a number of processes that communicate by writing
elements to shared queues. The operational semantics of a number of rep-
resentative algorithmic skeletons can be specified in this language, and cost
models can be automatically derived from these skeletons. These cost mod-
els can be shown to be accurate with respect to the underlying operational
model, and therefore can be used to generate provably optimal programs,
with respect to this model.

A theoretical framework for structured parallel programming that al-
lows reasoning simultaneously about correct program transformations and
performance has been developed. Its expressive power has been illustrated
by a number of examples. The examples are used as common benchmarks
of parallel programming, and the framework shows that it is able to capture
many of their common good parallelisations. A prototype type-checking al-
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gorithm has been developed for the Structured Arrows framework, which is
available at https://bitbucket.org/david_castro/skel. A number of
examples have been compiled using the queue-based operational semantics.
The cost models were compared to the real speedups on a 24-core and a
64-core system, both of which use a x86-64 architecture. Our results show
not only a theoretical improvement to the state-of-the-art, but additionally
provide preliminary results on how to turn this approach into a practical
toolset.

1.7 Contributions

1.7.1 Main Contributions

The main novel contributions of this thesis are illustrated in Figure 1.2 on
page 14. Specifically:
• Structured Arrows (StA) (Chapter 3). We have developed a novel type

and effect system that annotates function types of a point-free program-
ming language with the underlying program structure, which can be used to
reason simultaneously about equivalent, alternative implementations and
their cost on different architectures [CHS16]. Inspired by the notion of
behavioural types [ABB+16], i.e. using types to represent how is a compu-
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tation performed, this type system is the first known attempt at capturing
the parallel structure program as a type. We prove soundness and com-
pleteness against a set of program equivalences derived from the laws of
hylomorphisms, and the framework is illustrated by a number of common
benchmarks for parallel programming systems. Finally, this thesis discusses
the generality of the StA framework, which is not necessarily constrained
to parallelising functions, and which has the potential of being used for
studying general program optimisation.

• A denotational semantics for common algorithmic skeletons in terms of
hylomorphisms (Chapter 3). By using the hylomorphism recursion pattern
as a general unifying construct, the functional behaviour of different parallel
programs can be compared by simply reducing the problem to comparing
that they have the same canonical representation. Moreover, the alternative
parallelisations of a program can be explored by systematically applying any
possible rewriting, starting from its canonical representation. Although
the relation between hylomorphisms and algorithmic skeletons has been
previously noted, this is the first attempt at using it systematically.

• An operational semantics of common algorithmic skeletons, in terms of
a simple but predictable queue-based language, with a precise and well-known
operational semantics (Chapter 4). This queue-based language is designed
so that synchronisation and communication between different components of
algorithmic skeletons can be specified and reasoned about. The operational
semantics of the algorithmic skeletons is shown to be sound with respect to
the denotational semantics. This operational semantics is used to compile
several examples, which are run on 24 and 64-core systems with x86-64
architectures, achieving speedups of up to 20 and 56 respectively.

• A systematic mechanism for deriving cost models from the operational
semantics of algorithmic skeletons (Chapter 4). Essentially, this means that
whenever a specification of the operational semantics of a parallel structure
is available, the following are derived for free: (a) a translation scheme that
can be used to compile a structured parallel program to low-level predictable
code, and (b) cost models that can be used to statically predict the run-
time behaviour of a program. The usage of these cost models is illustrated
by comparing real vs. predicted speedups for a number of examples. This
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shows that the cost models derived from the operational semantics predict
a tight lower bound on the speedups, and therefore that a provably optimal
program is likely to represent a good parallelisation.
• An extension of the Structured Arrows framework to deal not just with

point-free programs, but also with pointed programs that are written using
explicit recursion (Chapter 5). The extension of this framework consists on
a type and effect system that annotates the types of let definitions with the
underlying structure. This is done by building on well-known translations
between λ-terms and combinatory logic, or applicative expressions, and the
translation between applicative expressions and hylomorphisms. The former
can be described in a compositional way, which is a requirement for using a
type-based approach; and the latter can be done by applying a number of
rewritings to the applicative expression in a systematic way, until it is in a
“hylomorphism form”. As usual, the soundness of the approach is proven,
and a number of examples are provided to illustrate the usefulness of the
transformations.

1.7.2 Minor Contributions

In addition, this thesis makes the following minor contributions:
• A decision procedure for the functional equivalence of alternative par-

allel implementation (Chapter 3). The decision procedure is developed and
illustrated within the Structured Arrow framework. It boils down to rewrit-
ing any two parallel programs into some canonical representation by: (a)
removing any parallel construct by replacing it with a sequential equivalent;
(b) extracting a program structure from the resulting program in terms of
hylomorphisms; and finally (c) rewriting the hylomorphism structure into a
canonical representation. For obvious reasons, this decision procedure can-
not be complete, but by extending the normalisation procedure, a larger
class of programs can be compared. The decision procedure is illustrated
by showing several fully worked examples.
•A prototype implementation of the Structured Arrows framework (Chap-

ter 4 and Chapter 5). The StA framework is prototyped, both the type-
and-effect system for the point-free language of hylomorphisms, but also
the extension that incorporates pointed programs. This implementation
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illustrates how these approaches can be applied to real programming lan-
guages, and also show that formalising this framework as a type-and-effect
system has, as a side benefit, that most of the techniques described can
be implemented as simple extensions of standard type-checking, inference
and unification techniques. The prototype implementation is available at
https://bitbucket.org/david_castro/skel/.

1.8 Thesis Outline

• Chapter 2 presents an overview of structured approaches to both paral-
lelism and recursion. The necessary background is provided to understand
these theories, and a survey is given of a number of relevant algorithmic
skeleton frameworks and recursion scheme libraries and frameworks. A
survey of cost models for structured parallelism, or different models of par-
allelism is also provided. Finally, state-of-the-art approaches on using re-
cursion patterns for parallelism are also surveyed, e.g. the Bird-Meertens
formalism as a parallel programming framework, Skillicorn’s cost calculus
and automatic parallelism based on the Third List Homomorphism theorem.
Finally, the work presented in this thesis is situated in the larger context.
• Chapter 3 presents the Structured Arrow type-based framework for

structured parallelism. The type-based framework consists of a type-and-
effect system for a functional point-free language, Hylo. A Hylo expression
represents the functionality of a program, while a structured arrow is used
to introduce a parallel structure. The benefits of this separation are ex-
plored. The main benefits are: (a) a programmer can focus first on an
initial sequential implementation, and later use the types to reason about
how to parallelise it; (b) parallel structure can be changed by swapping
type annotations. Proofs of soundness and completeness are presented, and
a number of examples are shown that illustrate the technique with common
benchmarks. The discussion of a prototype implementation is presented.
• Chapter 4 contains a possible back-end for this system, based on a

queue-based operational semantics of algorithmic skeletons. Cost equations
for these skeletons are derived systematically from their operational seman-
tics. These cost models are then passed as input to the StA framework, and
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used to parallelise a number of programs. This illustrates the generality of
the approach, since these parallel structures are simply parameters of the
type-based framework. Together, Chapters 3 and 4 describe a full frame-
work that provides a mechanism for deriving parallel implementations from
high-level specifications of a program’s parallel structure and functional-
ity. The approach is evaluated by comparing real and predicted speedups
for several examples, showing that we can predict tight lower bounds on
speedups.
• Chapter 5 describes an extension of the StA framework that is built

on top of a relation that extracts program structures from functions defined
in a subset of Haskell, HH. This is based on the close connection between
combinatory logic and λ-calculus, which provides a mechanism for annotat-
ing expressions in HH with a “structure” in terms of applicative expressions,
which are expressions that are built on top of combinatory logic. A set
of simple transformations derives hylomorphisms from these applicative ex-
pressions. This is a novel usage of combinatory logic, which is aimed at
performing source-to-source transformations, instead of using it for compi-
lation. The expected soundness proof is provided for the novel relation, and
it is illustrated by a number of common parallel programming examples.
• Finally, Chapter 6 concludes the thesis, summarises the key results,

points out achievements and limitations, and suggests how it could be im-
proved thereafter.

1.9 Publications

The work that is described in this thesis has formed the subject of a number
of papers.

• David Castro and Kevin Hammond. Skeletor: A DSL for Describing
Type-based Specifications of Parallel Skeletons. In Proc. Workshop on
High-Level Programming for Heterogeneous and Hierarchical Parallel
Systems (HLPGPU 2014), 2014.

The main idea behind this thesis was first explored in this paper, where
a formalisation in a dependently typed language was presented. In this
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paper, the work is presented as an embedded DSL in a dependently
typed language. The dependently typed approach, although useful
and interesting, was quickly abandoned due to the lack of flexibility
of the approach.

• David Castro, Kevin Hammond, and Susmit Sarkar. Farms, Pipes,
Streams and Reforestation: Reasoning About Structured Parallel Pro-
cesses using Types and Hylomorphisms. In Proceedings of ICFP 2016:
ACM International Conference on Functional Programming, pages 4–
17, Nara, Japan, September 2016.

Most of the work in Chapter 3 is based on this paper. The paper omits
some standard technical development which is provided in this thesis
in full detail. Additionally, the results presented in that paper are
discussed in more depth in Chapter 3. The term Structured Arrows
for the type-based framework that is described in this paper is coined
in this paper.

• David Castro, Kevin Hammond, Susmit Sarkar, and Yasir Alguwaifli.
Automatically deriving Cost Models for Structured Parallel Processes
using Hylomorphisms. Future Generation Computer Systems, 2017.

Most of the work in Chapter 4 is based on this paper. In the paper,
the mechanism for deriving automatically cost models from the oper-
ational semantics is sketched superficially. More details are provided
in Chapter 4 of this thesis. The results are also described in more
depth in this chapter.

• Adam D Barwell, Christopher Brown, David Castro, and Kevin Ham-
mond. Towards Semi-Automatic Data-Type Translation for Paral-
lelism in Erlang. In Proceedings of the 15th International Workshop
on Erlang, pages 60–61, Nara,Japan, 2016. ACM.

This extended abstract outlines a novel set of refactorings for datatype
translation in the Erlang programming language. The collaboration
on Barwell’s work led to some of the discussion for future work and
extending the Structured Arrow framework with further rewritings.



Chapter 2

Structured Approaches to
Parallelism and Recursion

This thesis builds on the connection between structured parallelism and
structured recursion, as was stated in Chapter 1. This Chapter provides an
overview of the common techniques in structured parallelism (Section 2.2)
and recursion (Section 2.3), contains a survey of state-of-the-art techniques
in structured parallelism frameworks (Section 2.4), and presents a compari-
son of the characteristics of current state-of-the-art approaches, and situates
the work developed for this thesis in the larger context.

2.1 Classes of Architectures

Unstructured techniques of parallelism consist of implementing parallel pro-
grams by using some suitable model of concurrency, in which programmers
need to specify the individual components of their parallel program, and
have a direct control over how communication between components hap-
pens. Traditionally, a suitable model of concurrency is chosen based on the
characteristics of the target architecture.

In 1966, Michael Flynn proposed a taxonomy of computer architec-
tures [Fly72], which was used to explain the different kinds of parallelism
available depending on the characteristics of the underlying architecture.
The original taxonomy comprises four classifications that are shown in in
Figure 2.1a on page 23. In Flynn’s original taxonomy, a sequential computer

21
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architecture is called SISD, i.e. a computer architecture in which a single
instruction stream operates on a single data stream. A SIMD architecture
exploits multiple data streams against a single instruction stream. Graphics
Processing Units (GPUs) are examples of SIMD architectures. They exploit
the natural parallelism that arises from performing an operation on differ-
ent, independent data points. The MISD class of architectures exploits the
parallelism of performing multiple, independent instruction streams on a
single data stream. However, this architecture is not very common. Finally,
MIMD architectures can operate multiple instruction streams, possibly on
different data streams. This is the class of architectures of modern (possible
heterogeneous) multi-processor and multi-core machines.

The MIMD class of architectures is too general. Johnson completes
Flynn’s taxonomy with a further classification of MIMD architectures, based
on the memory structure of the architecture and how communication/syn-
chronisation is done in such architectures [Joh88]. Figure 2.1b on page 23
presents Johnson’s taxonomy, which consists of four different classes of
MIMD architectures. The class of GMSV systems are classical shared-
memory multiprocessors. There are not many examples of GMMP systems,
and the few that exist are experimental. The class of DMSV architectures
correspond to distributed shared memory systems. Finally, the class of
DMMP architectures correspond to distributed-memory systems.

Classes of Parallelism and Concurrency

The Flynn-Johnson taxonomy illustrates one of the main difficulties of par-
allel programming. Generally, different parallel programming models and
techniques are better suited for programming different classes of architec-
tures. A common classification of different parallel programming models
differentiates data parallelism from task parallelism.

Data parallelism In this form of parallelism, functions are applied in
parallel to different, independent parts of the input data. In data paral-
lelism, the input to parallel programs must be distributed across different
components that operate on the data in parallel. Data parallelism is avail-
able in both MIMD and SIMD architectures. SIMD architectures naturally
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support data parallelism, by applying the same instruction stream on mul-
tiple data streams in parallel. An example of data parallel programming
environments is the CUDA programming model [Coo12]. From a func-
tional programming perspective, data parallelism arises, for example, from
instances of map functions. A representative example of data parallelism in
the functional paradigm is Data Parallel Haskell [CLPJ+07].

Task parallelism This is a form of parallelism in which tasks are dis-
tributed across multiple processing units of some hardware architecture.
Task parallelism is therefore better suited for MIMD architectures. Tra-
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ditional approaches to task parallelism involve using different concurrency
mechanisms, again depending on the underlying architecture. For shared-
memory parallel programming, for example, a common approach is the
OpenMP API extension for C/C++ and Fortran languages [DM98]. In
OpenMP, a parallel program is implemented by using a number of direc-
tives and pragmas for thread creation, specifying parallel regions, barriers
for synchronisation, etc. Communication between the different threads or
processes of a parallel application is implicit, and relies on the usage of
variables that point to shared memory locations. By default, variables are
shared, and programmers must declare which variables are private.

A common approach for programming distributed-memory systems is
the Message Passing Interface (MPI), a parallel programming library avail-
able for C/C++ and Fortran [GLS99]. Parallel programs in MPI, in contrast
to OpenMP, are programmed by explicitly defining how the communication
between components happens. This communication is implemented by us-
ing a number of functions, which range from point-to-point communication
functions, such as MPI_Send, to collective functions, MPI_Reduce.

For hybrid systems that combine shared-memory with distributed-memory
architectures, such as clusters of SMP nodes, a combination of MPI+OpenMP
can be used [RHJ09]. This approach would use message passing to explic-
itly specify the communication between SMP nodes, and rely on shared
variables for the parallelisation of the specific tasks performed at each SMP
node.

The OpenMP and MPI libraries correspond to the fork-join andmessage-
passing models of concurrency. In general, in the fork-join model of con-
currency, a programmer focuses on specifying the control flow of a parallel
program. On the contrary, in the message-passing model of concurrency,
a programmer focuses on specifying not only the different components of a
parallel program, but also their specific interactions in terms of the messages
exchanged between them. Examples of the fork-join model of parallelism
also include the Cilk language [BJK+96], or the .NET Task Parallel Li-
brary [LSB09]. Other examples of the message passing model include the
Erlang programming language [AV90, CT09] or the Go programming lan-
guage [Tea].
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2.2 Structured Parallel Programming

This section presents the notion of structured parallel programming, focus-
ing on structured parallelism in terms of algorithmic skeletons. An approach
to parallel programming can be considered structured if it provides abstrac-
tions to the programmer that correspond to common patterns of parallelism.

Structured parallel approaches, such as algorithmic skeletons [Col89],
offer many advantages in terms of built-in safety and parallelism by con-
struction. They can eliminate by design common but hard-to-debug prob-
lems including deadlock and race conditions. As discussed in the previous
section, such problems are prevalent in typical low-level concurrency based
designs for parallel systems. A survey of different key algorithmic skeleton
approaches is provided later in Section 2.4.

2.2.1 Functional Parallel Programming

Higher-Order Functions are important to functional programming languages.
The ability to use and define new HOFs, when coupled with a model of
parallel programming, provides the necessary components for a structured
approach to parallelism. An example of this is GpH and Haskell’s evaluation
strategies [THLJ98]. The idea of evaluation strategies is to fully separate
the implementation of an algorithm from behavioural code, i.e. code that
represents how the output is computed. The key ingredients of evaluation
strategies are the par and pseq constructs1:

1 par :: a → b → b

2 pseq :: a → b → b

3

4 type Strategy a = a → ()
5

6 using :: a → Strategy a → a

7 x ‘using‘ s = s x ‘pseq‘ x

1Originally, Trinder et al. [THLJ98] use seq instead of pseq. Later, a seq function
was introduced in the Glasgow Haskell Compiler that does not guarantee that the argu-
ments are evaluated in sequence, which is a requirement for evaluation strategies. To solve
this problem, an additional pseq function was introduced to GHC [MML+10, MPJS09].
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Briefly, par and pseq are used to control how evaluation happens. The ex-
pression par x y “marks” the first argument x as potentially parallelisable
by adding it to a spark queue, and returns the second argument y. GHC’s
run-time system will select some of the sparks, and run them in parallel.
The expression pseq x y evaluates the first argument x to weak head nor-
mal form, and then returns the second argument y. Note that not every
call to par will result in a computation being performed in parallel, since
this is decided by GHC’s runtime system. Combinations of par and pseq
can be used to define complex patterns of parallelism, known as strategies.
Below we show an example of evaluation strategy:

1 parList :: Strategy a -> Strategy [a]
2 parList strat [] = ()
3 parList strat (x:xs) = strat x ‘par‘ parList strat xs

The strategy parList applied to a strategy strat takes a list as input, and
triggers the evaluation of each of the elements in parallel, using the strategy
strat.

The Par monad [MNPJ11] is a monad for deterministic parallelism that
provides more low-level control to programmers on how parallelism hap-
pens. The Par monad is built on top of the fork-join model of parallelism,
and provides control over the necessary side effects that are required to
parallelise a program. In this monad, computations of type Par a are com-
putations that return a value of type a. The word deterministic means that
any computation in the Par monad will return the same value, indepen-
dently of the evaluation order. Therefore, a function runPar can be safely
provided:

1 runPar :: Par a → a

The Par monad is implemented on top of the IO monad. Therefore, runPar
must be implemented using the function unsafePerformIO. Despite the low-
level structure exposed by the basic operations of the Par monad, higher-
level structures can be defined thanks to the usage of Haskell’s type classes
and HOFs [MNPJ11].

The Eden programming language [BLOMPM96] is a dialect of Haskell
that is aimed at writing parallel and concurrent software. It provides a
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construct, process for explicit process creation, and the operator # for
process instantiations.

1 process :: (Trans a, Trans b) ⇒ (a → b) → Process a b

2 ( # ) :: (Trans a, Trans b) ⇒ Process a b → a → b

Processes communicate using unidirectional communication channels, so
the values used by processes must be transmissible. This is handled by the
Trans type class.

The advantages of the purely functional programming paradigm for par-
allel computing are very important for finding a model of parallel compu-
tation that scales to larger problems [HM00]. Purity ensures that compu-
tations that are run in parallel do not interfere with each others results.
Therefore, pure computations can be run in parallel. Although the Par
monad does expose side-effecting computations to the programmer, they
do so in a controlled way. This controlled way ensures that computations
are deterministic, i.e. side effects do not affect the result of the parallel
computations. The existence of higher-order functions provides a tool for
defining higher-level structures that can be used to simplify the development
of parallel programs.

However, these solutions rely on particular low-level models of parallel
computing: e.g. futures with par and pseq in GpH, process in Eden, or
fork in the Par monad. They all rely on built-in support from the run-time
system.

2.2.2 Dataflow Languages

In dataflow languages, programs are specified in terms of how data flows
through the instructions. In LUSTRE [CPHP87], for example, a program
comprises a series of node definitions. Nodes are implemented as sets of
equations, and are connected to form larger programs. Lucid [AW77] is an-
other example of synchronous dataflow language, where variables represent
streams of values that are modified using transformers and filters.

In the functional programming community, the language pH [NAA+95]
is an extension of Haskell for parallel computing, that is highly related to
dataflow languages. The key characteristic of pH is that its expressions are
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reduced using lenient evaluation. Lenient evaluation is a non-strict evalua-
tion order that lies somewhere between lazy and eager evaluation [Tra88],
in which the evaluation of the expressions is delayed until their input data
is available, but not necessarily any longer. Roughly, lenient evaluation
exposes a large amount of fine-grained parallelism, since as soon as some
expression has its inputs available, it can be evaluated in parallel to other
independent expressions.

The main problem with dataflow languages is precisely that they expose
too fine-grained parallelism to achieve good speedups.

2.2.3 Coordination Languages

Coordination languages [GC92] follow a model of computation in which the
computation model is separated from the coordination model. The compu-
tation model is used to represent sequential components of a program, and
the coordination model is used to create computation activities, and provide
a mechanism for them to communicate. Most of the coordination languages
offer low-level primitives for the coordination model. These low-level primi-
tives can be combined into higher-level constructs. However, providing this
low-level control over how the computation units communicate makes it
possible to write incorrect programs that deadlock or have race conditions.

An example of coordination language is the SCL language [DGTY95].
In SCL, coordination is implemented using HOFs that are split into three
categories: configuration, elementary and computational skeletons. Con-
figuration skeletons provide a mechanism for specifying data alignment,
elementary skeletons are basic data-parallel operations, and computational
skeletons abstract common parallel control-flow patterns.

However, the concept of coordination languages is highly related to the
algorithmic skeleton approach to structured parallelism. In fact, many of the
coordination structures in SCL can be found in other skeletal approaches.
In a sense, coordination languages use, or provide mechanisms for defining
algorithmic skeletons [Col89, Col04].
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2.2.4 Type-Based Parallel Programming

A type system comprises a set of rules that assign a property, a type, to the
syntactic constructs of a languages. These properties, types, can be checked
statically, dynamically or a combination of both [Pie02]. Types are generally
related to correctness or consistency properties, “well-typed programs do
not go wrong”, but they can also be used to check non-functional properties
(see, e.g. Vasconcelos thesis on statically checking the space cost of programs
using sized types. [Vas08]).

Type systems and type-based approaches have been used for parallel
computing. By using types to ensure correctness properties or guide the
parallelisation process, types add some form of structure on top of paralleli-
sation techniques. For example, sized-types have been used to reason about
termination and productivity of parallel programs [PnS05, PnS01] written
in Eden. In this line of work, types are used to ensure two important prop-
erties of parallel programs, termination and productivity, but the question
of how to parallelise sequential implementations, or statically predicting the
run-time performance of parallel programs was not addressed.

Few type-based approaches have been applied to parallelise programs.
Xu et al. [XKCH03] developed and formalised the PType system, the first
ever type system that is used to guide the parallelisation of sequential imple-
mentations. However, PType is just used to determine the parallelisability of
recursive functions. The parallelisation is done in terms of parallel skeletons
that correspond to list/tree homomorphisms. The PType system offers little
control to the programmer on how parallelisation is done. The PType sys-
tem does not provide abstractions for selecting alternative parallelisations
of list/tree homomorphisms, or reasoning about the cost of the resulting
parallel programs.

Brown [Bro13, Bro14, Bro17] follows a type-oriented approach to par-
allelism in the Partitioned Global Address Space memory model of par-
allelism. The PGAS model assumes a global memory address space that
is partitioned into different portions. The different portions are local to
different processing element, thus exploiting locality of reference. Brown’s
approach is to rely exclusively on type annotations to determine how the
data is allocated, partitioned and distributed. Brown’s approach uses type
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annotations to tune parallel programs in the PGAS model, but does not
use types to explore alternative parallel structures. In Brown’s approach,
whenever type annotations are not provided, the type system selects de-
fault values and proceeds as usual, and does not provide cost models for
estimating the run-time performance of the alternative parallelisations.

2.2.5 Algorithmic Skeletons

Algorithmic skeletons offer many advantages, such as correctness and pre-
dictability, since the communication and computation structure of algo-
rithmic skeletons is generally known statically. Good structural cost mod-
els that predict the run-time performance of skeletal programs have been
previously studied [HM00, HC02, LL10]. A number of common skeletal
approaches are surveyed later in Section 2.4. In this section, a brief back-
ground on algorithmic skeletons is provided. The notation for algorithmic
skeletons that is used in this chapter is roughly the one used in the rest of
this thesis. The following distinct terminology is used:

1. Pattern or parallel pattern: a common form of parallelism, or a com-
mon way of implementing the computation and communication struc-
ture of a number of parallel programs.

2. Skeleton, algorithmic skeleton or parallel skeleton: a particular imple-
mentation of a common pattern of parallelism.

3. Skeletal program: a parallel program implemented as a composition
of algorithmic skeletons.

4. Worker : the components of skeletal programs. Workers are small
skeletal programs, used in the implementation of a larger skeletal pro-
gram.

5. Task: an independent unit of computation. Tasks are distributed to
the different workers of a skeletal program, according to its parallel
structure.

In this section, a brief overview of a small but representative [DT13] set of
task-parallel skeletons is provided. The syntax used to represent algorithmic
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Figure 2.2: Common Algorithmic Skeletons
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div
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Figure 2.3: Divide and Conquer Skeleton

skeletons and skeletal programs is the one that will be used throughout this
thesis.

Task Farm Skeleton

A common pattern of parallel computation is the task farm pattern, also
known as master-slave or master-worker. In this pattern, a worker is repli-
cated n times, each of which operating in parallel over independent tasks.
Task independence is crucial; if tasks are not independent, the result of a
worker might affect the result of another worker, and therefore leading to
unpredictability and inconsistencies in the result.

The implementation details of task-farms vary between different skele-
ton implementations. A common example of skeleton implementation relies
on a master process that is in charge of: (a) creating the worker processes,
slave; (b) distributing the tasks between the workers; and (c) collecting the
results. Another example, in FastFlow [ADK+11], uses two different pro-
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cesses for task distribution and collection. In FastFlow, a task farm skeleton
is a streaming skeleton that receives a stream of independent input tasks,
and returns a stream of output tasks. Roughly, a task farm in Fastflow com-
prises: a) an emitter process that receives the input tasks, and distributes
them to the different workers; b) a number of workers that perform some
computation on the tasks, and send the results to a collector process; and,
c) a collector process returns a stream of output tasks, possibly performing
some computation, e.g. reordering them to match the order in which they
were received by the emitter.

In this thesis, we use the queue-based task-farm implementation illus-
trated by Figure 2.2a on page 31, which is based on [HBS16]. In this im-
plementation, the master worker enqueues tasks into a shared queue, from
which all the workers read the tasks. The workers then enqueue the results
in the output queue. The resulting tasks do not necessarily respect the
ordering of the input, and this must be handled by the master worker.

An example of usage of the task-farm skeleton is an image stream pro-
cessing program, that applies a series of filters to all the elements of an input
stream of images, followed by an edge detection algorithm. In a Haskell-like
functional language, this program would be:

process :: Stream Img -> Stream Img
process (img : imgs)

= edge (filter2 (filter1 img)) : process imgs

This program can be parallelised using a task-farm skeleton, for example,
as follows:

-- fun :: (a -> b) -> Stream a -> Stream b

-- farm :: Int -> (Stream a -> Stream b) -> Stream a -> Stream b

process’ :: Img -> Img
process’ img = edge (filter2 (filter1 img))

process :: Stream Img -> Stream Img
process = farm 5 (fun process’)
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The fun construct lifts functions into workers: process’ is a function,
fun process’ is a worker that computes process’. The construct farm 5
replicates 5 times the worker fun process’. More examples of task farms
can be found in a number of papers on algorithmic skeletons, e.g. [ADK+11,
BDH+13].

Pipeline Skeleton

The notion of pipelines is common from low-level hardware architectures, to
high-level parallel programming. A pipeline is series of processing elements,
where the output of one element is the input of the next one. In the parallel
programming community, each of these processing elements is a worker of
a parallel process.

The synchronisation details between the different stages of a pipeline
depend again on the particular implementation of a pipeline skeleton. A
common approach (e.g. Fastflow [ADK+11]) uses an intermediate buffer
between the stages of a parallel pipeline. In [HBS16], an intermediate queue
is used, used concurrently by the first and second workers. This is illustrated
in Figure 2.2b on page 31. For each input, the stages in a pipeline are
activated sequentially, as the tasks flow through the pipeline. However,
both stages of the pipeline can perform their operations in parallel to the
different inputs.

An example of parallel pipeline is an image stream processing application
that applies a series of filters, followed by an edge detection algorithm, to
each element of an input stream of images:

process :: Stream Img -> Stream Img
process = fun filter1 ‖ fun filter2 ‖ fun edge

In this example, process proceeds as follows:

1. The first worker, fun filter1 takes an image from the input stream
of images, applies filter1 to it, and puts the result into an interme-
diate queue.

2. The second worker, fun filter2 takes an image from the intermedi-
ate buffer, and applies filter2 to it, placing it in another intermediate
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queue. The first worker, fun filter1, can take in parallel the next
image from the input stream and process it.

3. The third worker, fun edge takes the output of fun filter2 and ap-
plies function edge to it. In parallel, fun filter1 and fun filter2
can proceed with their respective inputs.

Note that the definition of the intermediate queues is crucial to the parallel
application. The usage of bounded queues would require for the first stages
of the parallel application to wait until there is free space on it, while the
usage of unbounded queues could result on large amounts of tasks being
stored in the intermediate buffers. However, these details can be dealt
with by the programmer by selecting a suitable implementation of parallel
pipelines, but the low-level details of this are delegated to the skeleton
implementation.

Algorithmic skeletons can be nested. Suppose the fun edge worker run-
time dominates. In order to speed up the parallel application, a task farm
could be applied to this stage, resulting in the following skeletal program:

process :: Stream Img -> Stream Img
process = fun filter1 ‖ fun filter2 ‖ farm 4 (fun edge)

Feedback Skeleton

Some applications perform the same operation iteratively, until some dy-
namic condition is met. Iteration is captured by the feedback pattern.
Essentially, a feedback loop allows the output of a parallel program to be
passed to an earlier stage as an input. This pattern allows decoupling the
body of an iterative computation from the iteration condition. As a result,
each iteration can be performed in parallel for different inputs.

In a queue-based model, an implementation of the feedback pattern as
an algorithmic skeleton is realised as a connection from the output queue
of a parallel structure to the input queue of the stage where the iteration
happens. Consider the earlier image stream processing skeletal program:

process :: Stream Img -> Stream Img
process = fun filter1 ‖ fun filter2 ‖ farm 4 (fun edge)
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Suppose that the function applied by the second stage, filter2, iteratively
applies a filter, until the image meets some dynamic condition. This is a
common case, for example, in many iterative methods for image deblur-
ring [NPP04, NCT99, BLM90]. The program could be further parallelised
by applying a farm with a feedback loop. Suppose that filter2’ repre-
sents a single iteration of filter2, together with a tag that indicates if
the dynamic condition is met by the output or not. The program could be
parallelised as follows:

process :: Stream Img -> Stream Img
process = fb (fun filter2’)

In this example, the construct fb inspects the tag of the output of filter2’,
and enqueues the element back to the input, or to the output queue, depend-
ing on whether the need of further processing. To parallelise this function,
a task farm can be used:

process :: Stream Img -> Stream Img
process = fb (farm 3 (fun filter2’))

Note that even if the farm returns the results in order, since each image in
the input stream will require a different number of iterations, the output of
fb does not necessarily respect the order of the input. This, as in the task
farm case, needs to be handled by the master process/thread.

Parallel Divide and Conquer Skeleton

A common pattern of computation is the divide and conquer pattern. In
this pattern, a program takes an input, divides it into different sub-input,
and proceeds recursively in each sub-input until a base case is reached.
When the base case is reached, an operation is performed to it. When the
computation is performed to the sub-inputs, the outputs are then combined
into a single output. There are many ways of implementing divide and
conquer algorithmic skeletons. Danelutto and Torquati [DT13] show how it
can be implemented in terms of pipelines and feedback loops. In his thesis,
Christoph Herrmann presents a hierarchy of divide and conquer functional
skeletons that have efficient C+MPI implementations [Her00]. An imple-
mentation used in [CHSA17] uses intermediate queues to communicate be-
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tween the different divide and combine stages, as shown in Figure 2.3 on
page 32.

2.2.6 Advantages of Structured Parallel
Programming

Message passing and shared variable concurrency methods contain many
potential sources of errors, some of which are non-obvious. A comprehensive
and systematic exploration of common errors in OpenMP was done by Süß
and Leopold [SL08]. Süß and Leopold classified programming mistakes into
two categories: correctness mistakes, such as accessing a shared variable that
is not protected, and performance mistakes, such as unnecessarily protecting
a region that does not need to be protected. Correctness mistakes may lead
to race conditions, where a parallel program will return inconsistent results,
depending on the execution order, or deadlocks, where a program will block
indefinitely.

In the message passing approach, similar kinds of problems may appear.
Consider the following fragment of C+MPI program:

MPI_Comm_rank (comm , & my_rank );
if ( my_rank == 0) {

MPI_Send (sendbuf , count , MPI_INT
, 1, tag , comm );

MPI_Recv (recvbuf , count , MPI_INT
, 1, tag , comm , &status );

} else if ( my_rank == 1) {
MPI_Send (sendbuf , count , MPI_INT

, 0, tag , comm );
MPI_Recv (recvbuf , count , MPI_INT

, 0, tag , comm , &status );
}

In this code, there are two threads running in parallel, one running the
fragment of code under my_rank == 0, and another thread running the
fragment under my_rank == 1. Both threads will send a message to each
other, and then receive a message from the other thread. A naïve program-
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mer might think that MPI_Send is a non-blocking operation. This is the
case in many MPI implementations, where the code above will work with no
problems. However, if this code is ported to an architecture where the imple-
mentation of the MPI_Send operation is blocks until a matching MPI_Recv
is executed, then the above code will deadlock. Detecting deadlocks in
message-passing approaches is a major and challenging problem that has
been subject of much research, e.g. [LZC+02, NY16, FKNS14, LMM+15].

The source of most of those problems is the too fine-grained control that
is provided by concurrency approaches over how a program is parallelised.
This similar to Gorlatch’s argument in his paper Send-receive Considered
Harmful [Gor04]. A programmer must always take low-level decisions on
how/when are the threads created, how do they communicate, what is pro-
tected by a lock, etc.

Algorithmic skeletons [Col89], as implementations of patterns of par-
allelism, already handle implicitly low-level thread/process creation, syn-
chronisation and communication details. Algorithmic skeletons allow the
programmer to focus on the high-level structure of the parallel computa-
tion. Algorithmic skeleton implementations handle. Provided that their
implementation is correct, the usage of algorithmic skeletons remove by
construction deadlocks and race conditions.

2.3 Structured Recursion

This section presents a brief overview on recursion patterns, or recursion
schemes, from a functional programming perspective. The presentation in
this section is based on [MFP91].

2.3.1 A Categorical Interpretation

The basic types and primitive operations used throughout this thesis are
derived from a standard categorical interpretation. A brief overview of this
is provided in this section. A more in-depth introduction to the category
theory background can be found in any introductory book, such as [Awo10].
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A category C consists of:

• a collection of objects, ob(C);

• a collection of morphisms, hom(C), also known as arrows or maps;
and,

• an operation, ◦, called the composition of morphisms.

Objects are generally written A,B, . . .. If an object A is in a category
C, the notation used is A ∈ ob(C), or A ∈ C. Morphisms are generally
written f, g, . . .. Each morphism f has a source object A, and a target object
B. The notation used for stating that “f is a morphism from A to B” is
f : A → B. The collection of morphisms from A to B in some category C
is written homC(A,B), or hom(A,B) whenever there is no ambiguity about
the category of objects A and B. The collection of morphisms from A to
B, hom(A,B) is called the hom-class of all morphisms from A to B. The
composition operator, ◦, is a binary operation hom(A,B) × hom(B,C) →
hom(A,C), that takes a morphism from A to B and a morphism from B to
C to another morphism from A to C. The composition operator in C must
satisfy some properties for C to be a category:

• associativity, if f : A → B, g : B → C and h : A → C, then
f ◦ (g ◦ h) = (f ◦ g) ◦ h; and

• identity, for every object A, there is a morphism idA : A → A such
that for all f : A→ B and g : C → A, f ◦ idA = f and idA ◦ g = g.

A common category for studying the semantics of non-strict functional pro-
gramming languages is the category of pointed complete partial orders, and
continuous functions (CPO) (see e.g. [Mit96]). A complete partial order is
a set, D, together with a relation v ⊆ D × D that is reflexive, transitive
and antisymmetric, such that each chain has a least upper bound in D.
In the category CPO, objects are CPOs, and morphisms are continuous
functions [Sto77]. The categorical semantics of a programming language
interprets types as objects, and functions as morphisms. In this categorical
interpretation, the partial order x v y denotes that x is less defined than y,
or that x is an approximation of y. The basic types and combinators that
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A,B, . . . ::= T | A→ B | A × · · ·× B

| A + · · ·+ B | F A · · ·B | µF

Figure 2.4: Basic categorical types.

are going to be used throughout this thesis are derived from this categorical
interpretation, and will be introduced later in this section.

Functors Functors are used to model type constructors. In the categorical
interpretation, a functor F is a mapping between categories C and D that

• associates objects from one category, X ∈ C, to objects of the other
category F X ∈ D; and

• associates each morphism f : X → Y in C to a morphism F f :
F X → F Y in D, such that:

– F idX = idF X for all object X, i.e. F preserves the identities;
and,

– F (f ◦ g) = F f ◦F g for all morphisms f and g, i.e. F preserves
compositions.

A functor F : C → C between a category C and itself is called an endofunc-
tor. In functional programming languages, the morphism F f is generally
written map f . The notions of functors can be generalised to multiple argu-
ments. For example, a bi-functor is a mapping that takes two categories C1

and C2 into a category D. In general, a multi-functor is a mapping from n

categories.

2.3.2 Basic Types and Combinators

Types Figure 2.4 on page 40 shows our basic types and combinators.
They have a standard categorical interpretation. The type T denotes a
primitive type. The type A→ B is interpreted as the domain of continuous
functions from A to B, the type A×B is a tuple of objects A and B, and
is interpreted as the cartesian product of A and B. The type A+B is
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interpreted as the separated sum of A and B. The type A+B is similar to
the usual Either A B type in Haskell. Here, product and sum types are
generalised to n arguments. The type F A · · ·B is the n-functor F applied
to types A · · ·B. Finally, the type µF is the fixpoint of functor F , and
is used to model recursive datatypes. Note that we make no distinction
between greatest or least fixpoint, since in the category CPO data and co-
data coincide.

n-functors Functors of n arguments are defined using a pointed notation,
or by sectioning another functor. The expression ΛV1 · · ·Vn.A denotes a
functor that takes V1 · · ·Vn parameters, and returns a new type A. Here, the
notation A denotes a subset of the types A, where there are no arrows of the
form B → C for any B and C, thus only allowing regular functors [Mee96].

F ::= ΛV1 · · ·Vn. A | F A1 · · ·An

A,B, . . . ::= T | V | A × · · ·× B | A + · · ·+ B

| F A · · ·B | µF

An example of functor in Haskell is the type of trees of some type A, i.e.
Tree A. The type µF is a recursive type, and denotes the least fixpoint of
some functor F . Listing 2.1 presents a recursive datatype in Haskell, List,
a possible definition of the µ type, and a functor L.

Listing 2.1 Haskell List type and base functor
1 data List = Nil | Cons Int List
2

3 data µ f = In (f (µ f))
4 data L a = N | C Int a

The type List can be defined as the least fixpoint µ L. For example, the
list of elements [1,2] can be represented in the following two ways:

Cons 1 (Cons 2 Nil) :: List
In (C 1 (In (C 2 (In N)))) :: µ L
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pi ∈ P ::= πji | injji | &i | Oi | inF | outF

Figure 2.5: Primitive Operations

Primitive Combinators The primitive product and coproduct opera-
tions are treated in a slightly non-standard way in this thesis. Figure 2.5 on
page 42 summarises the basic product and coproduct operations. Note that
product and coproduct operations are generalised to more than two argu-
ments. The superscript j on πji and injji , in Figure 2.5, denotes the number
of components of the product/coproduct types, and it will be omitted when-
ever there is no ambiguity. A standard treatment of product types is defined
as the cartesian product, and requires the definition of tuple projections

π1 (x1, x2) = x1

π2 (x1, x2) = x2

and the split function:

(f M g) x = (f x, g x).

The split function is defined in terms of the tuple constructor. Here, the tu-
ple constructor is denoted by &, and the split function is defined as follows:

&i x1 · · ·xi = (x1, . . . , xi) (Mi f1 · · · fi) x = &i (f1 x) · · · (fi x).

The standard treatment of coproducts is by defining them as a disjoint
union, together with two kinds of operations: coproduct injections, and the
either combinator. The primitive injji denotes the injection into a separated
sum of j types. It is the constructor of an either type of j elements. Again,
whenever there is no ambiguity, the superscript j will be omitted. The
either combinator, Oi “pattern-matches” an input either type, selects the
appropriate function, and applies it to the input:

(Oi f1 · · · fi) (injj x) = fj x

Finally, the operations inF : F (µF ) → µF and outF : µF → F (µF )
capture the isomorphism between F (µF ) and µF . These functions will take
different interpretations in Chapter 3 and Chapter 5, i.e. the initial algebras
are interpreted differently. However, since initial algebras are equivalent,
this distinction does not affect the results of this thesis.
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2.3.1 Example | Lists. Given the bifunctor

L A B = 1 + A×B,

the polymorphic List data type is defined by the fixpoint of L A:

List A = µ(L A).

The two list constructors are defined as expected:

nil : List A
nil = inLA (inj1 ())

cons : A→ List A→ List A
cons x l = inLA (inj2 (x, l))

The usual notation for lists is used

[x1, x2, . . . , xn] = cons x1 (cons x2 (cons . . . (cons xn nil))).

2.3.2 Example | Trees. The polymorphic binary tree type can be defined in
an analogous way:

T A B = 1 + A×B ×B where
Tree A = µ(T A).

The two tree constructors are defined below:

empty : Tree A
empty = inT A (inj1 ())

node : Tree A→ A→ Tree A→ Tree A
node t1 x t2 = inT A (inj2 (x, t1, t2))

2.3.3 Recursion Patterns

Recursion schemes are defined in terms of the basic types and combina-
tors in Figures 2.4 and 2.5, presented in previous sections. The recursion
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schemes used in this thesis are catamorphisms, anamorphisms and hylo-
morphisms. A catamorphism is a recursive function that uses primitive
recursion to consume an input data type, e.g. adding all the elements of a
list of integers. An anamorphism is the dual function, that takes an input
value and generates an output data type, e.g. generating a list of numbers
from zero up to some value. A hylomorphism is a divide and conquer recur-
sive function, where the divide part can be split into an anamorphism, and
the combine part into a catamorphism. The map function for polymorphic
recursive datatypes can be defined in terms of catamorphisms.

F-Algebras(Coalgebras) Given a functor F , an F -algebra is a pair
(A, f), where A is an object, and f is a morphism f : F A → A. For
example, in the context of the basic types and combinators, consider the
following functor L:

L X = 1 + Int×X

This functor takes a type, e.g. A, to the type 1 + Int × A. An L-algebra
in the context of types is a pair of a type A, and a function f : L A → A.
Consider the following function:

sum : L Int→ Int
sum (inj1 ()) = 0
sum (inj2 (i, j)) = i+ j

The pair (Int, sum) is an L-algebra.
The dual concept is that of a coalgebra. Given a functorG, aG-coalgebra

is a pair (B, g), where B is an object, and g is a morphism g : B → G B.
An example in terms of types and functions, consider again the functor L.
The pair (Int, next) is an L-coalgebra, where the function next is defined
below:

next : Int→ L Int
next n = if n = 0 then inj1 ()

else inj2 (n, n− 1)

Homomorphisms A homomorphism between algebras (A, f) and (B, g)
is a function h : A→ B such that

h ◦ f = g ◦ F h.
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Dually, a homomorphism between coalgebras (A, f) and (B, g) is a function
h : A→ B such that

F h ◦ f = g ◦ h.

Initial(Final) (Co-)Algebra An F -algebra (A, f) is initial if, for any F -
algebra (B, g), there is a unique homomorphism from (A, f) to (B, g). There
may be more than one initial algebra, but they are all equivalent, since there
must be a unique homomorphism between them. An F -coalgebra (A, f) is
terminal if there is a unique homomorphism from any other F -coalgebra
(A, g) to (A, f). In the types and basic combinators defined in Figures 2.4
and 2.5, the pair (µF, inF ) is an initial F -algebra:

inF : FµF → µF.

Dually, the pair (µF, outF ) is a terminal coalgebra, where

outF : µF → FµF.

Note that there is no distinction between “greatest” or “least” fixpoint. In
the semantic model of CPO, datatypes (i.e. those formed from initial alge-
bras) and co-datatypes (i.e. those built from terminal co-algebras) coincide,
this is a property called algebraic compactness, and makes it possible to com-
bine datatypes and co-datatypes, with some limitations that are discussed
in Chapter 3. This implies that inF and outF are inverses:

inF ◦ outF = id outF ◦ inF = id.

Catamorphisms Given the initial F -algebra (µF, inF ), there is a unique
homomorphism to any other F -algebra (B, g). By the definition of homo-
morphisms, this implies that there must be a function h : µF → B such
that

h ◦ inF = g ◦ F h,

and this function h must be unique. This h is a catamorphism:

cataF g = h

where h ◦ inF = g ◦ F h
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cataL sum (inL (inj2 (3, inL (inj2 (2, inL (inj1 ()))))))
= { By the definition of cataL }

(sum ◦ L (cataL sum) ◦ outL)
(inL (inj2 (3, inL (inj2 (2, inL (inj1 ()))))))

= { inL and outL are inverses }
(sum ◦ L (cataL sum)) (inj2 (3, inL (inj2 (2, inL (inj1 ())))))

= { Definition of L functor }
sum (inj2 (3, cataL sum (inL (inj2 (2, inL (inj1 ()))))))

= { Repeatedly applying cataL }
sum (inj2 (3, sum (inj2 (2, sum (inj1 ())))))

= { By the definition of sum }
sum (inj2 (3, sum (inj2 (2, 0))))

= { By the definition of sum }
sum (inj2 (3, 2))

= { By the definition of sum }
5

Figure 2.6: Example of application of cataL sum to the list [2, 3].

Since inF and outF are inverses, this can be simplified to the following
expression:

cataF g = h

where h = g ◦ F h ◦ outF

Essentially, cataF g is a recursive function that takes a recursive datatype,
µF , and returns a value of type B. This is done by first applying the
outF operation, and then applying cataF g to the recursive positions of the
resulting F µF . This will turn F µF to F B. This output of type F B is
the passed to g, that returns the final value of type B. For example, recall
the function sum:

sum : L Int→ Int
sum (inj1 ()) = 0
sum (inj2 (i, j)) = i+ j

The catamorphism cataL sum takes a value of type µL, i.e. a list of integers,
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and returns the value that results of adding all of them. For example, the
list [3, 2] is represented in terms of the initial L-algebra as follows:

[3, 2] = inL (inj2 (3, inL (inj2 (2, inL (inj1 ())))))

Applying cataL sum to this list proceeds as we show in Figure 2.6.

Polymorphic datatypes As was previously stated, the following defini-
tion of F is also a functor:

F A = µ(G A)

This is a well-known fact (see e.g. [Gib02b]) that can be shown by defining
the function F f for any given function f : A → B. This function F f

is going to be called mapF f , which is more common in the functional
programming community. Given a function f : A→ B,

F f = mapF f = cataG A (inG ◦ G f id)

In order to show that mapF f defines a functor, it must respect identities

mapF id = cataG A (inG ◦ G id id) = cataG A inG = id,

and compositions,

mapF (f ◦ g) = cataG A (inG ◦ G (f ◦ g) id)
= cataG A (inG ◦ G f id ◦ G g id)
= cataG B (inG ◦ G f id) ◦ cataG A (inG ◦ G g id)
= mapF f ◦ mapF g

Anamorphisms Given the terminal F -coalgebra (µF, outF ), there is a
unique homomorphism from any other F -coalgebra (A, f). By the definition
of homomorphisms, that implies that there must be a function h : A→ µF

such that
F h ◦ f = outF ◦ h,

and this function h must be unique. This h is an anamorphism:

anaF f = h

where F h ◦ f = outF ◦ h.
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Again, this can be simplified, since inF ◦ outF = id:

anaF f = h

where h = inF ◦ F h ◦ f.

As an example of anamorphism, recall the function next:

next : Int→ L Int
next n = if n = 0 then inj1 ()

else inj2 (n, n− 1)

The anamorphism anaL next takes an integer i as input, and generates a
list of all numbers from i to 0. Note that if i < 0, this function would
generate an infinite list.

2.3.4 Hylomorphisms

Hylomorphisms [MFP91] capture a generalisation of divide and conquer al-
gorithms. Intuitively, hyloF f g is a recursive algorithm whose recursive
call tree can be represented by the datatype µF , where g describes how
the algorithm divides the input problem into sub-problems, and f describes
how the results are combined.

hyloF : (F B → B)→ (A→ F A)→ A→ B

hyloF f g = h

where h = f ◦ F h ◦ g

In this definition, the “divide” function g is applied, and the result is re-
turned in the structure F . The hylomorphism is applied recursively to
the sub-inputs in F , and the result is combined by the “combine” function
f . From this definition, it is clear that instantiating f as inF results in
an anamorphism, while instantiating g as outF results in a catamorphism.
Catamorphisms, anamorphisms, and map recursion schemes are therefore
particular instances of hylomorphisms.

mapT f = hyloF A (inF B ◦ (F f id)) outF A
where A = dom(f) and B = codom(f)
and T A = µ(F A)

cataF f = hyloF f outF
anaF f = hyloF inF f
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2.3.3 Example | Factorial. We show below the definition of a partial factorial
function using explicit recursion:

fact : Int→ Int
fact n = if n = 0

then 1
else n× fact (n− 1)

The equivalent definition, as a hylomorphism, is as follows:

L A = 1 + Int× A

split : Int→ L Int
split n = if n = 0

then inj1 ()
else inj2 (n, n− 1)

join : L Int→ Int
join (inj1 ()) = 1
join (inj2 (n,m)) = n×m

fact = hyloL join split

The definition of recursive functions as a hylomorphisms makes explicit their
recursive call-tree. In this example, it is a list of numbers from n to 0. This
list of is also produced in the definition with explicit recursion, but it will
be stored in the stack, as arguments to × and the recursive calls to fact.

2.3.4 Example | Quicksort. We assume a type A, and two functions:

leq, gt : A→ List A→ List A,

The naïve quicksort implementation using explicit recursion is as follows:

qsort : List A→ List A
qsort nil = []
qsort (cons x l) = qsort (leq x l) ++ cons x (qsort (gt x l))
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The following is an implementation of quicksort as a hylomorphism:

T A B = 1 + A×B ×B
split : List A→ T A (List A)
split nil = inj1 ()
split (cons x l) = inj2 (x, leq x l, gt x l)

join : T A (List A)→ List A
join (inj1 ()) = nil
join (inj2 (x, l, r)) = l ++ cons x r

qsort = hyloT A join split

The recursive call-tree of quicksort is a binary tree. Note that the full call
tree is never produced, and is only produced as required. The recursive
calls to quicksort will happen in the B positions of the T bifunctor, sequen-
tially: first the left sublist will be sorted, and then the second sublist. This
behaviour is almost exactly the same as the explicit recursive function. The
only difference is that the intermediate results of split will be stored in a
datatype T A (List A). In contrast, the intermediate results of qsort will
be stored in the stack, as arguments to ++ and the recursive calls to qsort.

There are other kinds of recursion schemes, some of which subsume
hylomorphisms [MFP91, HWG15, Hin10]. However, for the purposes of this
thesis, hylomorphisms are general enough, as will be described in Chapter 3.

2.3.5 Program Calculation Approaches

Program calculation techniques and recursion patterns have been success-
fully studied in a number of different domains. The framework DrHylo [CPP05,
Cun05] implements a translation scheme from typing judgements to a point-
free representation of the corresponding point-wise program, based on [HIT96]
and [Cun05]. In their framework, a pointed to point-free program transfor-
mation is explored, and program transformations/optimisations are studied
within the point-free framework of DrHylo. Bahr and Hutton [BH15] show
how to derive compilers from simple, compositional definitions of the high-
level semantics of a programming language. Hackett and Hutton [HH15]
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developed a reusable version of the well-known worker-wrapper transforma-
tion [GH09] that can be instantiated by a number of recursion operators.
They also develop their own version of the improvement theory for reason-
ing about the efficiency of the optimised programs, which does not rely on
an operational semantics.

Program Calculation Techniques and Parallelism Program calcu-
lation techniques have also played an important role in structured paral-
lelism. The third homomorphism theorem, list homomorphisms, and the
Bird-Meertens Formalism are amongst the many techniques that have been
explored for calculating parallel programs [GL95, HIT97, HTC98, KC98,
MHT06b, Mis94, MM10, Rei93, Ski93b, Ski91]. For example, the third ho-
momorphism theorem states that if a function can be written as both a
left fold and a right fold, then it can also be evaluated in a divide-and-
conquer manner [Gib96b]. This theorem has many potential applications
for automatic parallelism [CM11, GG99, Gib96a, Gor99, LHM11, Mor13,
MMM+07]. Some of these approaches will be discussed again in the next
section, in the context of algorithmic skeletons. Work on the third list ho-
momorphism theorem focuses on applying particular non-trivial rewritings.
The work presented in this thesis has a slightly different focus: it is aimed at
defining a general framework for encoding a number of different rewritings,
not at performing a particular program transformation rule.

Pointed to point-free transformations and hylomorphism derivation tech-
niques [HIT96] are related to a field known in the structured parallelism
community as pattern discovery. Bozo et al. [BFH+14] find instances of
map and fold in Erlang programs, as potential sources of parallelism. Bar-
well’s thesis [Bar17] explores this issue in more depth, using a technique
called antiunification for finding instances of recursion patterns in recursive
functions.

Kannan and Hamilton [KH17] describe a technique for deriving paral-
lel implementations using algorithmic skeletons, using a technique called
distillation. Distillation is a program transformation technique similar to
deforestation for reducing the amount of intermediate data structures in a
computation. Kannan and Hamilton use distillation [Ham07] to first opti-
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mise the intermediate data structures, and then use an encoding technique
for merging the input of a program into a single input of a data type that
matches the structure of the program. Kannan and Hamilton take the
reverse approach to the one described in this paper. They first optimise
a program using distillation [Ham07], and then they parallelise it using a
datatype that captures the program structure. In our approach, we first de-
compose a program into all individual pieces using reforestation, and then
study how these pieces can be recombined and parallelised. While both
approaches expose many opportunities for parallelism, our approach allows
programmers to explore many alternative parallelisations in terms of differ-
ent combinations of algorithmic skeletons.

2.4 Algorithmic Skeleton Frameworks

There are many different algorithmic skeleton implementations, frameworks
and languages. Some of them are targeted at different architectures, some
focus on data parallelism, while others focus on task parallelism, or com-
bined data and task parallelism. This section provides a brief overview of
a number of current algorithmic skeleton frameworks, based on [GzVL10],
and extended with recent approaches. Finally, these frameworks are com-
pared based on their usage of the connection between algorithmic skeletons
and patterns of recursion, on their support for code rewriting and perfor-
mance analysis, and on whether they support some degree of automatic
parallelisation.

The algorithmic skeleton frameworks that are presented in this section
are categorised w.r.t. the following four characteristics:

1. Abstraction: is the skeleton framework high-level, or requires program-
mers to supply low-level details, e.g. selecting a scheduling policy for
task farms.

2. Predictability: is there any support for static prediction of the run-
time performance of programs? Is the underlying model predictable?

3. Flexibility: does the framework provide support for defining new algo-
rithmic skeletons? Are the new skeletons defined as combinations of
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simpler skeletons? Can the programmer define their operational be-
haviour? How easy is it to change the parallel structure of a program?

4. Generality: how general are the skeletons provided by the skeletal
library? What is the most general recursion pattern that the skeletons
provided can capture? Does the framework target a single architecture
or multiple architectures?

Most of approaches trade a high-level of abstraction for predictability, with
the exception of the OSL library, since the skeletons are built on top of the
BSP model. Many skeletal approaches are very general, since they can be
applied to a wide range of problems and multiple target architectures. How-
ever, most of the approaches are not very flexible, since they do not provide
mechanisms for code rewriting, or allow the specification of new skeleton in
terms of other simpler skeletons, but they do not provide abstractions to
specify their operational behaviour.

2.4.1 The Need for a General Framework

Table 2.1 on page 56 contains a summary of the comparison of the algorith-
mic skeleton frameworks discussed in this section. The comparison takes
into account a number of characteristics that are derived from the connec-
tion between algorithmic skeletons and recursion patterns, and cost models.
These characteristics are the following:

Parallel Behaviour refers to whether the algorithmic skeleton frame-
work provides abstractions for defining/implementing the operational be-
haviour of new basic skeletons. This does not take into account whether
the framework is extensible or by defining more complex structures by nest-
ing simpler skeletons. If an algorithmic skeleton framework relies on a di-
rect low-level mechanism, such as C+MPI for implementing the parallel
behaviour of algorithmic skeletons, then the parallel behaviour of skeletons
in that framework is considered built-in.

Functional Behaviour specifies whether the algorithmic skeleton frame-
work allows the specification of the functional behaviour of new algorithmic
skeletons.
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Cost Models refers to the existence of static performance analysis tools
or techniques for this specific framework, and whether they are formally
derived from the operational behaviour of the corresponding algorithmic
skeletons.

Almost all frameworks for algorithmic skeletons in Table 2.1 rely on
a built-in parallel behaviour of the algorithmic skeletons. Most of these
approaches rely on a fixed set of algorithmic skeletons, implemented as a
library using a low-level technique, such as C+MPI. Some of the algorithmic
skeleton frameworks compile instances of high level patterns of recursion
to low level code, such as SkelML, Parallel SML or the Lift data-parallel
language. The Skipper framework separates the definition of the functional
behaviour of an algorithmic skeleton from its operational behaviour, which
is described as Process Network Templates [SG02]. However, Skipper still
uses a limited pre-fixed set of skeletons.

A similar situation happens with respect to the functional behaviour of
algorithmic skeletons. Many of the approaches rely implicitly on the func-
tional behaviour of algorithmic skeletons, and do not allow the definition of
new skeletons in terms of patterns of recursion. Many of them use a fixed
set of algorithmic skeletons, and rely on this functional behaviour implicitly
for automating code transformations. An example of exception of this is
the AS framework [MMT15], which allows the extension of new algorith-
mic skeletons, as long as they correspond to map and reduce patterns of
recursion.

An exception is the Eden functional programming language. As a par-
allel functional programming language, new HOFs that implement patterns
of parallelism can be defined. The functionality of the new skeletons are
then defined by Eden expressions, and the parallel behaviour is specified in
terms of the spawn function.

Finally, many algorithmic skeleton frameworks provide some form of
cost models, or static performance prediction for parallel programs within
the framework. However, those cost models are derived by measurement
and approximation, and they need to be developed and tested for each new
parallel structure that is introduced to the language. Exceptions of this
are the OSL framework and Lithium. In the OSL framework, the usage of
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the BSP model makes it possible to derive cost models for new algorithmic
skeletons within this model. For the Lithium framework, an operational
semantics of algorithmic skeletons was developed [AD07]. This operational
semantics is aimed at reasoning about different aspects of skeletal programs,
derived both from the functional and parallel behaviour of programs. This
operational semantics provides, therefore, a mechanism that can be used
for reasoning about performance of parallel programs.

The need for a general framework. None of the existing frameworks
provides, at the same time, abstractions for:

1. specifying the functional behaviour of parallel programs, i.e. the de-
notational semantics;

2. specifying the parallel behaviour of parallel programs, proving that it
is consistent with the functional behaviour, i.e. an operational seman-
tics;

3. formally deriving cost models from the operational semantics.

The closest to providing all is Lithium, by using the operational semantics
of skeletons defined in [AD07], as a labelled state-transition system. How-
ever, combining both the functional and parallel behaviour makes it more
complicated to reason about code rewritings than relying on a specification
of the functional behaviour in terms of well-known patterns of recursion,
while keeping the parallel behaviour at a high-level that makes it difficult
to reason about performance in terms of low-level characteristics of parallel
programs. The frameworks that operate by compiling HOFs to low-level
parallel code do so without providing any abstraction for the programmer
to control the resulting parallel code, and use automatic optimisation mech-
anisms.

eSkel

The Edinburgh Skeleton Library (eSkel) [BCGH05, Col04] is a library
aimed at structured parallel programming that offers a range of algorithmic
skeletons, implemented in terms of C+MPI, including farms and pipelines.
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Parallel
Behaviour

Functional
Behaviour

Cost
Models

StA queue-based hylomorphisms yes

AS task graphs map/reduce yes

FastFlow built-in implicit yes

HDC built-in d&c no

P3L built-in implicit yes

SkeTo built-in list/tree/matrix
homomorphisms yes

SkelML built-in map/fold yes

Parallel SML built-in map/fold yes

eSkel built-in implicit no

OSL parallel vectors map/reduce/zip/. . . yes

SCL built-in implicit no

Eden spawn function Eden exprs. no

Lithium/Muskel built-in implicit yes

Skipper Process Network
Templates built-in yes

Quaff built-in implicit yes

FAN built-in map/reduce/scan yes

RPL built-in implicit yes

Lift built-in map/reduce no

PType built-in list/tree
homomorphisms no

Table 2.1: Algorithmic Skeleton Approaches to Parallelism
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Skeletons in eSkel can be transient, i.e. instantiated and then destroyed for
each use, or persistent, i.e. the skeleton is instantiated once and reused mul-
tiple times. The skeletons in eSkel accept implicit interaction modes, defined
by the nesting of algorithmic skeletons, or explicit interaction modes, where
the standard flow of data defined by a skeleton can be modified. The library
eSkel is aimed at writing parallel software by using high-level constructs,
but it is not aimed at providing automatic support for code rewriting. The
eSkel library provides high-level constructs for parallel programming. How-
ever, each skeleton has a single implementation. Although it is possible
to port these constructs for other architectures, or using alternative imple-
mentations, it is not very general or flexible. Finally, eSkel was built with
the purpose of making parallel programming easier by providing high-level
constructs, but deriving accurate cost models for these constructs was not
in their original goals.

FastFlow

FastFlow [ADK+11, ADKT13] is a framework for C++ developed at the
University of Pisa, aimed at developing skeletal programs, and originally
focused on stream-based parallel computations. The FastFlow library pro-
vides the usual farm and pipeline skeletons, as well as feedback loops, and
more complex structures that can be implemented in terms of the basic
skeletons, such as a divide and conquer skeleton. Skeletons in FastFlow are
highly configurable. Task farms are one example of this, since farm instances
can use multiple different scheduling strategies. Another example is the pos-
sibility to control (i.e. pin) threads to cores within the FastFlow framework,
and not just relying on GCC intrinsic operations. Tools for refactoring
FastFlow programs into more efficient forms were developed as part of the
ParaPhrase project [HAB+11]. One important novelty of FastFlow is the
development of a RISC approach to parallel programming: complex algo-
rithmic skeletons can be defined by using a number of small, basic parallel
skeletons/components within the FastFlow framework [DT13].

The SPar language [GDTF17] is a DSL for annotating C++ programs
with parallel annotations. The SPar annotations allow programmers to
separate different stages in the computation, specify regions that are par-
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allelised with streaming skeletons, and the degree of parallelism within a
region. The toolset for the SPar language can be used to generate FastFlow
code from annotated programs.

The RISC approach provides flexibility to the library, although pro-
grammers choose alternative implementations for the skeletons. FastFlow
provides high-level constructs, but allow controlling low-level details. Cost
models can be easily defined for FastFlow, but the low-level details make it
difficult to make these cost models fully general. Summarising, FastFlow is
very flexible, but not as high-level or general as other approaches.

OSL

The Orléans Skeleton Library is a library for skeletal programming in C++,
build on top of MPI [JL11b]. OSL is based on the Bulk Synchronous par-
allel model [Val89, Val90], a parallel model that is characterised by be-
ing very predictable, due to the very regular computation, communication
and synchronisation structure. A formal semantics has been developed for
OSL [JL11a] in the Coq theorem prover [BC13], and it can be used to verify
the correctness of parallel programs in the OSL library [JL12]. The OSL
library is very high-level, and the usage of the BSP model makes it po-
tentially very predictable, as the StA framework developed for this thesis.
However, it is not as flexible or general, since skeletons are constrained to
a specific model of parallelism.

SCL

The Structured Coordination Language [DFH+93, DGTY95] is one of the
first languages for structured parallelism, and it is designed as a DSL for
parallelism that needs to be integrated in a host language. SCL offers
a number of data parallel skeletons such as map, scan and fold, as well
as task parallel skeletons such as task farms. In the context of SCL, a
number of program transformations were studied that allow applying a set of
rules systematically to derive alternative parallelisations for a given parallel
program. SCL is a very flexible framework, since it consists of a DSL whose
constructs can accept multiple implementations.
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HDC

The HDC language [Her00, HL00] is a language aimed at implementing
parallel divide-and-conquer applications using a skeletal approach. It pro-
vides a hierarchy of parallel divide and conquer implementations, ranging
from the more general versions, to more specific divide and conquer imple-
mentations with efficient implementations. The sizes of the sub-tasks and
architecture-dependent parameters such as the number of processors are
taken into account by the HDC compiler to generate parallel code.

Eden

Eden [BLOMPM96] is a parallel dialect of Haskell. Parallel programs are
implementing by explicitly specifying a number of processes that commu-
nicate implicitly using unidirectional channels. Eden, as a functional lan-
guage, has built-in support for algorithmic skeletons, which can be imple-
mented as higher-order functions that implement different parallel strate-
gies. In the context of Eden, Hammond et al. [HBL03] explored the use
of meta-programming, paired with cost models, to automatically generate
Eden skeleton instantiations that minimize the cost. However, they do not
consider structural rewritings that change the parallel structure of a pro-
gram.

Lithium and Muskel

Lithium [ADT03] and Muskel [DD06] are structured parallel programming
frameworks in Java that provides nestable skeletons as Java libraries. A
formal semantics of Lithium was developed [ADT03] that describes both
the functional and parallel behaviour of Lithium programs as a labelled
state transition system. Lithium supports parallel program optimisation by
using a number of skeleton rewriting techniques [ADT03].

Skipper

Skipper [SGD99, SG02] is a skeletal programming framework aimed at de-
veloping parallel computer vision applications. Functions in skipper are
implemented by using a purely functional specification of the algorithm, in



60 CHAPTER 2. STRUCT. APPROACHES TO PAR. AND REC.

which parallelism is specified by calls to specific algorithmic skeletons. The
basic sequential components of skipper applications are C functions. Skip-
per functions are compiled to a process graph, which is then mapped to a
target architecture by using a third party application [Sor94].

P3L

P3L is a skeletal programming language that provides a number of basic
algorithmic skeletons as language constructs [BDO+95]. It is described as a
parallel coordination language, where the basic components are sequential
C functions that are coordinated using a number of algorithmic skeletons.
The parallel programs are compiled using a template meta-programming
approach, where algorithmic skeletons are expanded and optimised for some
target architectures, and a performance model is used to guide the program
transformations [BCD+97].

Quaff

Quaff is a skeleton-based programming library for C++, implemented us-
ing C++ template meta-programming techniques for code generation and
optimisation, in a similar way to [BDO+95] and [HBL03]. A formal se-
mantics of skeletons as process networks in CSP was defined by Falcou and
Sérot [FS08], and used to generate C+MPI code from Quaff programs, via
a CSP process network.

SkeTo

SkeTo [MIEH06] (Skeletons in Tokyo) is a constructive parallel program-
ming library, based on the theory of constructive algorithmics [Bir89]. Con-
structive algorithmics is a field in which some calculus for program transfor-
mation is used to derive efficient programs from simple specifications. An
example of this is the Bird theory of lists [Bir87]. Different skeletons for ma-
nipulating variable-length lists [TI09], trees [MHT06a] and matrices [KI08]
have been developed in the context of the SkeTo library. Accurate cost
models for efficient implementations of tree skeletons on distributed mem-
ory systems were developed in the context of the SkeTo library [Mat17].
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The work developed in the context of this library is highly related to the
work developed in this thesis, with a few important differences. First, the
work in this thesis provides a formalism for both describing the operational
semantics and the functional behaviour of algorithmic skeletons, while in
the SkeTo library, for each newly defined skeleton, an implementation and
cost models must be defined. Skeletons in SkeTo can achieve, therefore,
better performance, while the skeletons defined in this thesis are coupled
with cost models for free, i.e. they are predictable. Secondly, the particular
model for describing the operational semantics of algorithmic skeletons in
this thesis is not fixed and, therefore, Structured Arrows could be used as a
front-end for writing structured parallel programs that use SkeTo skeletons.

Skeleton Parallelising Compilers

SkelML [Bra94] is a parallelising compiler for Standard ML [Mil97] that
focuses on finding calls to higher-order functions in ML programs. The
parallelising compiler would replace particular instances of HOFs with their
parallel versions to achieve speedups. The usage of cost models is discussed.
A more general presentation of this is the work of Michaelson et al. [MIK97]
and further developed by Scaife et al. [SHMB05]. In this work, the suggested
approach consists not only on finding instances of HoFs, but also on using
a proved version of HoF transformations for parallelising programs written
in terms of explicit instances of maps and folds.

Refactoring Pattern Language

Janjic et al. [JBM+16] define a high-level DSL, the Refactoring Pattern
Language (RPL), which is aimed at representing the parallel structure of
a program, and capturing its execution time. This DSL is a powerful tool,
since it allows suitable parallelisations to be found for a given program,
and then to apply them to a real C++ program. There are a number of
differences between the approach that is described here and RPL. First, our
type-based approach does not need to realise parallelisations as refactoring
rules: parallel structures are tied to programs in a systematic way by each
syntactic construct. The advantage of our approach is that we can use
type information to automatically generate parallel code at compile-time.
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The corresponding disadvantage is lack of flexibility: the RPL approach
can be combined with a number of refactorings that can take into account
the user input in a more interactive way. The second important difference
is that we use hylomorphisms as a unifying construct. This enables us to
use the rich theory of hylomorphisms for parallelism. Moreover, we base
our approach on a decision procedure that is derived from an equational
theory that is both sound and complete w.r.t. the rules of the underlying
equational theory, and we use a standard type unification algorithm to
instantiate parallel structures from sequential code. Finally, our parallel
structures and cost models are not built-in, but are derived in a systematic
way from an underlying cost model and operational semantics.

Glasgow’s Adaptive Skeleton Framework

The Adaptive Skeleton framework [MMT16], developed at the University of
Glasgow, provides a number of adaptive skeletons. Adaptive skeletons are
algorithmic skeleton implementations that perform dynamic scheduling de-
cisions and transformations to the parallel structure of a program, to adapt
to changing inputs. Adaptive skeletons aim to provide portable performance
across different architectures, thanks to their novel dynamic scheduling and
transformations. In that sense, the AS framework is very general. How-
ever, they lack flexibility, since each new skeleton must be implemented to
carefully fit their approach.

Lift

The Lift framework [SFLD15, SRD17] provides a mechanism to generate
high-performance OpenCL code from a high-level specification by applying
a set of rewrite rules, and using Monte-Carlo search to traverse the corre-
sponding search space to find an implementation. The set of rules combine
well-known rewriting rules for map/reduce programs, together with GPU-
specific rewritings aimed at generating efficient low-level code. Since their
approach applies specifically to GPU programming, we could benefit from
exploiting Steuwer et al.’s work in GPU-specific rewriting rules and skele-
tons to extend the StA framework.



2.4. ALGORITHMIC SKELETON FRAMEWORKS 63

PType

The PType [XKCH03] is a type-based skeletal programming framework,
where the type system provides a set of rules to detect the parallelisability of
functions. PType requires an implementation of the different skeletons that
can be used to parallelise different patterns of recursion. PType [XKCH03]
is in a sense more general than StA, since they are able to parallelise more
expressive recursive functions, such as functions defined using mutual re-
cursion. The parallel implementations are left abstract and chosen in com-
pilation time. However, their approach lacks flexibility, since skeletons need
to be implemented using a low-level technique, and it is difficult to add new
implementations for new parallel structures and support more architectures.

Structured Arrows

The StA framework that we developed for this thesis is a type-based frame-
work that fully separates the specification of the functionality of a program,
and its possible parallelisations. StA comprises two different languages: one
for specifying the functional behaviour of a program, and another for spec-
ifying the parallel behaviour of new parallel structures. The language for
specifying the functional behaviour is a purely functional language that is
a subset of Haskell, which does not allow mutual or nested recursion. StA
builds on the connection between algorithmic skeletons and patterns of re-
cursion. The parallel implementations can be selected and fine-tuned by the
programmer adding type annotations to the functions that need to be par-
allelised. The StA framework provides also a lower-level language for speci-
fying the operational behaviour of new parallel structures. Cost models can
be systematically derived from the operational specifications. However, the
programmer must manually prove the correspondence between any newly
defined parallel structures and the corresponding pattern of recursion.

2.4.2 Cost Models for Algorithmic Skeletons

The usage of cost models for statically predicting the performance of parallel
programs is very powerful. This allows programmers to predict the run-time
performance of their programs on different inputs without having to run
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them. Since profiling a parallel program can be time consuming and hard,
a static prediction of the run-time behaviour of a program can ease the
task of developing parallel software, since the least efficient parallelisations
can be discarded without needing to run them. A number of models of
parallel programming have been developed, aimed at predicting the run-
time performance of the parallel programs defined within their particular
model. A brief overview of representative cost models, both for structured
and unstructured parallelism is discussed below.

Parallel Abstract Machines and other Models of Parallelism

PRAM The Parallel Random Access Machine is an abstract machine
designed to model the performance of parallel algorithms [FW78]. The
PRAM model focused mainly on MIMD machines, but its application was
studied to other architectures, such as SIMD. The PRAM model makes a
number of simplifications and assumptions that have an important effect in
the real run-time of parallel applications, such as an unbounded number of
processors in the machine, or not considering resource contention.

NESL Blelloch and Greiner have demonstrated provable time and space
bounds for nested data parallel computations in NESL [Ble95]. NESL is
a parallel programming language that heavily influenced other more recent
approaches to data parallelism, such as Data Parallel Haskell [CLPJ+07].
Despite providing provable time and space cost models, NESL, is specifically
designed for nested data parallelism, and is not directly applicable to task
parallelism. Moreover, nested data parallelism is handled by applying a
flattening transformation that converts it to flat data parallelism. This
may lead to an increase of the space complexity of algorithms, and is a
potential source of inefficiency [SBHG08].

BSP The Bulk Synchronous Parallel abstract computer serves a similar
purpose to the PRAM model [Val90, Val89]. Contrary to the PRAM model,
in the BSP model the communication and synchronisation between compo-
nents of a parallel application is taken into account. In the BSP model,
computation takes place as a sequence of supersteps. A superstep consists
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on a sequence of three different phases. First, a number of independent
parallel processes perform some local computation in parallel, by using lo-
cal data. Then, these processes communicate to each other, sharing their
local data with the other processes. Finally, the processes wait in a syn-
chronisation point to ensure that all communication has taken place, before
continuing. BSP algorithms have, therefore, a very regular computation and
communication structure that can be exploited to predict the run-time per-
formance of parallel programs. The use of the BSP model for determining
worst-case execution times of parallel programs has been explored [GGL12].
Although the BSP model has been explored in the context of algorithmic
skeletons [JL11a], this work is limited to data-parallel skeletons. Extending
it to task-parallel skeletons is not straightforward. For example, defining
what is a superstep in a stream-based parallel program implemented in
terms of farms and pipelines is not clear, since local computation and com-
munication happens in an interleaved way.

Synchronous Data Flow Languages Synchronous data flow languages
provide constructs that are highly related to streaming algorithmic skele-
tons. Examples of this are Lucid [AW77] and LUSTRE [CPHP87]. These
languages define a set of constructs that operate on streams, and have
a natural notion of clocks [CP96, CDE+06], that has been formalised as
a clock calculus [CP95]. Most recently, two different teams have used a
specialisation of the clock calculus to infer rates in data flow programs:
Rate Types [BL14] to infer maximum throughput; and Data Flow Fu-
sion [LCKR13], infer costs to guide a stream fusion procedure.

Cost Models for Algorithmic Skeletons

Algorithmic skeletons have a clear computation and communication struc-
ture. This clear structure makes them predictable, when compared to un-
structured parallel programming approaches.

A notable example of cost models for algorithmic skeletons was devel-
oped by Skillicorn et al. [SC95]. They use a cost calculus for optimising par-
allel implementations developed in Bird’s theory of lists [Ski93b]. The most
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important advantage of this work is that it is applicable to any skeleton-
based approach that is derived from Bird’s theory of lists.

Many alternative cost models for algorithmic skeleton frameworks have
been studied [Ham99]. The usefulness of cost modelling has been con-
vincingly demonstrated more recently by using both static analysis [HC02]
and dynamic profiling [LL10] More recently, Matsuzaki [Mat17] has demon-
strated this by not only defining efficient tree skeletons on distributed mem-
ory systems, but also deriving accurate cost models for them.

Armih et al. [AMT11] develop cost models for algorithmic skeletons
on heterogeneous architectures that take into account important low-level
information about the underlying architecture, such as cache sizes.

Cost models have been used for deriving efficient parallel programs from
specifications [Ski93a], or guiding software refactorings that improve the
program’s efficiency [BDH+13].

All the current approaches in cost models for algorithmic skeletons are
either derived manually, obtained through approximation and measurement,
or ignore important low-level information about synchronisation and com-
munication. None of the state-of-the-art approaches derive accurate cost
models from an operational semantics, while also taking into account low-
level communication and synchronisation details. Outside the algorithmic
skeleton community, the BSP model is the closest to achieving this. How-
ever, the BSP model requires programmers to focus on low-level implemen-
tation details. The operational semantics of algorithmic skeletons devel-
oped in the context of the StA framework tackle this problem by providing
a mechanism for both: (a) deriving systematically cost models from the op-
erational semantics of parallel structures; and (b) taking low-level commu-
nication and synchronisation into account for the cost models of the derived
algorithmic skeletons. However, some of the work on cost modelling for al-
gorithmic skeletons is orthogonal to the one defined in this thesis, and can
be used to further refine the approach described in this thesis, e.g. taking
cache sizes into account [AMT11].
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2.4.3 Algorithmic Skeletons and Recursion Patterns

The expressive power of hylomorphisms for parallel programming was first
explored by Fischer and Gorlatch [FG02], who showed that a programming
language based on catamorphisms and anamorphisms is Turing-universal.
The idea of using hylomorphisms for parallel programming also appears
in Morihata’s work [Mor13]. Morihata explores a theory for developing
parallelisation theorems based on the third homomorphism theorem and
shortcut fusion, and generalises it to hylomorphisms. The third homo-
morphism theorem, list homomorphisms, and the Bird-Meertens Formalism
are amongst the many techniques that have been explored [GL95, HIT97,
HTC98, KC98, MHT06b, Mis94, MM10, Rei93, Ski93b, Ski91]. The third
homomorphism theorem states that if a function can be written as both
a left fold and a right fold, then it can also be evaluated in a divide-and-
conquer manner [Gib96b]. This theorem has been widely used for paral-
lelism [CM11, GG99, Gib96a, Gor99, LHM11, Mor13, MMM+07]. Steuwer
et al. [SFLD15, SRD17] generate high-performance OpenCL code from a
high-level specification by applying a set of rewrite rules, and using Monte-
Carlo search to traverse the corresponding search space to find an imple-
mentation.

The integration between cost calculus and code rewriting using equa-
tional reasoning has been explored by Skillicorn and Cai [SC95]. In this
work, a cost calculus for a skeletal language derived from Bird-Meertens
theory of lists is derived, and used to guide code rewritings so that the cost
of the resulting parallel programs is reduced. This idea is also explored
by the FAN framework [AGLP01]. In this framework, the functional be-
haviour of a number of algorithmic skeletons is used to derive a number
of semantically correct rewriting rules for program transformation which,
when coupled with cost models can be used to guide the selection of a
combination of algorithmic skeletons that minimise the cost of a given par-
allel program. Finally, Janjic et al. [JBM+16] define a high-level DSL, the
Refactoring Pattern Language (RPL), that aims to represent the parallel
structure of a program, and capture its execution time. This DSL is a pow-
erful tool, since it allows suitable parallelisations to be found for a given
program, and then to apply them to a real C++ program.
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Current state-of-the-art approaches, however, either rely on a built-in
set of algorithmic skeletons, built-in cost models or do not allow the speci-
fication of the operational behaviour of parallel structures. There is a need
for new general framework that combines both the ability to reason about
program transformations, and execution times of parallel programs that
take into account low-level communication and synchronisation times.

2.5 Summary

The current approaches to structured parallelism do not provide a general
framework for parallel programming that combines the ability to reason
about the correctness of program transformations, together with the abil-
ity to reason about the run-time performance of parallel programs. The
few approaches that do so are either not general, i.e. they are targeted at
a specific kind of problems or architectures, or not flexible, i.e. they can-
not be easily extended with new parallel structures, or alternative parallel
implementations for the supported parallel structures.

The Structured Arrows (StA) developed in this thesis is a novel skeletal
programming framework aimed at being extensible with new parallel struc-
tures that have associated cost models. The structures and cost models are
exposed as type abstractions, which enables a program to be implemented
once, and then parallelised by adding the associated type annotations. The
StA framework combines two formalisms: a queue-based operational seman-
tics, and hylomorphisms. A parallel structure specified in the queue-based
model must be proven equivalent to the corresponding hylomorphism. How-
ever, when this is done, a simple type annotation can be used to replace
a program structure to use the newly defined structure. The queue-based
model is simple and predictable. The next chapter introduces the core part
of the StA framework: the type-and-effect system and the notion of struc-
tured arrows.



Chapter 3

Structured Arrows: A Type
System for Parallelism

This chapter contains a formal description of the main part of this thesis:
the novel skeletal programming type-based framework, Structured Arrows
(StA). StA aims to provide a general framework for parallel programming
that allows simultaneously reasoning about:

1. code rewritings that introduce/change parallelism to a program; and

2. run-time performance of alternative parallelisations of a program.

This chapter presents the core language, a point-free, purely functional
language with hylomorphisms; and its typing system, which is the one
that guides the introduction of parallelism to sequential functions. A pro-
totype implementation of this framework, and extensions, is available in
https://bitbucket.org/david_castro/skel.

3.1 Overview

The main idea behind this framework is to separate the specification of
the functionality of a program from the possible parallelisations. At the
value level, the language Hylo of structured expressions is used to specify the
functionality of programs. There is no parallelism at this level. At the type-
level, a type-and-effect system is provided that annotates function types,
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arrows, with arbitrary program structures. During type-checking, function
definitions are annotated with the underlying structure of the program, and
checked against the structure annotations. This is illustrated by Figure 3.1
on page 71. At the value level, structured expressions in Hylo describe the
functionality of a program as a composition of hylomorphisms. At the type
level, the type A σ7−→ B represents the type of a function from A to B (A→
B), that can be parallelised according to the structure σ. This structure
σ is an abstraction that captures the composition of hylomorphisms and
algorithm skeletons that can be used to parallelise e. Structures σ do not
need to be fully specified, and can contain holes that can be automatically
instantiated by minimising the cost of the resulting expression.

To illustrate this, consider the function image merge below:

imgMerge : List (Img× Img)→ List Img
imgMerge = map (merge ◦ mark)

This function takes a list of pairs of images as input, and returns a list of
images that result from merging the pairs of input images. The images are
merged in two stages. First, a function mark marks the pixels from both
images that need to be merged, according to some dynamic condition on
the images. Then, the function merge computes the resulting image from
the marked pixels. The body of imgMerge is a structured expression in the
language Hylo. The type annotation is a regular function type List(Img ×
Img) → List Img.

In the StA framework, parallelising this function can be done by pro-
viding a suitable type annotation. StA introduces a new form of structure-
annotated arrows, or structured arrows. A structured arrow is a function
type A σ7−→ B, that is annotated with a target parallel structure σ. For ex-
ample, a programmer might specify that imgMerge can be parallelised using
a parallel pipeline, by instantiating σ = _ ‖ _. This structure uses ‖ to
represent parallel pipelines, and underscore to represent holes.

imgMerge : List (Img× Img) _‖_7−−→ List Img

A code-generation stage would need to instantiate these holes with sub-
expressions from the body of imgMerge, for example:

fun mark ‖ fun mark
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e

σ

Γ ` e : A σ7−→ B
e ∼= p p

Figure 3.1: Structured Arrows: well-typed structured expressions (e) against
a target (parallel) structure (σ) can be rewritten turned into functionally
equivalent parallel programs (p) according to the specified structure.

The type-checking algorithm determines whether it is possible to instanti-
ate the structure with sub-expressions from imgMerge, and then the code-
generation selects an arbitrary instantiation from the set of possibilities.

In the StA framework, the structures σ can be parameterised with run-
time information that can be used to statically predict the speedups of
alternative parallelisations. The type-checking algorithm can use cost mod-
els to predict statically how to instantiate any holes so that the cost of the
overall structure is minimised. In the StA framework, cost models can be
interpreted as functions from structures to run-time predictions.

cost : Σ→ Integer

Given a suitable cost model, the type of imgMerge would change to:

imgMerge : List (Img× Img) min cost (_‖_)7−−−−−−−−−→ List Img

The novel contributions of this chapter are:

• A denotational semantics for common algorithmic skeletons in terms
of hylomorphisms (Section 3.2).

• Structure-annotated Arrows (StA). A novel type and effect system
that annotates function types of a point-free programming language
with the underlying program structure. This structure can be used to
reason simultaneously about equivalent, alternative implementations
and their cost on different architectures (Section 3.3).
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• A reforestation procedure for deciding semantic equivalences between
alternative parallel programs. This decision procedure is based on
reintroducing intermediate data structures, “reforestation”, rather than
the more common approach of eliminating them for efficiency reasons,
“deforestation”. This enables the type system to introduce parallelism
in a semi-automated and sound way (Section 3.4)

3.2 Structured Parallel Programs

Before introducing the StA framework, we present a skeletal Domain Specific
Language, similar to that in [JBM+16]. The denotational semantics of this
language is explained in terms of hylomorphisms, and this will motivate the
definition of the structured expressions of the language Hylo, in the next
Section 3.3.

3.2.1 Structured Parallel Processes

We define a language P of structured parallel processes, built by composing
skeletons over atomic operations.

p ∈ P ::= funT f | p1 ‖ p2 | dcn,T,F f g | farm n p | fb p

The funT f construct lifts an atomic function to a streaming operation on a
collection T . The arguments of the dc skeleton are: the number of levels of
the divide-and-conquer, n; the collection T on which the dc skeleton works;
and the functor F that describes the divide-and-conquer call tree.

Denotational Semantics. The denotational semantics is split into two
parts: SJ·K describes the base semantics, and J·K lifts this to a streaming
form. We use a global environment for atomic function types, ρ, and the
corresponding global environment of functions, ρ̂:

ρ = {f : A→ B, . . .} ρ̂ = {[[f ]] ∈ [[A→ B]], . . .}



3.2. STRUCTURED PARALLEL PROGRAMS 73

SJp : T A→ T BK : [[A→ B]]
SJfun f K = ρ̂(f )
SJp1 ‖ p2K = SJp2K ◦ SJp1K
SJfarm n pK = SJpK
SJfb pK = iter SJpK
SJdcn,T,F f gK = cataF (ρ̂(f )) ◦ anaF (ρ̂(g))

Jp : T A→ T BK : [[T A→ T B]]
JpK = mapT SJpK

An atomic function, f , is applied to all the elements of a collection of data.
A parallel pipeline, p1 ‖ p2, is the composition of two parallel processes,
p1 and p2. A task farm, farm n p, replicates a parallel process, p, so has
the same denotational semantics as p. A feedback skeleton, fb p, applies
the computation p iteratively, i.e. trampolined, to the elements in the input
collection. Its semantics is given in terms of the function iter .

iter : (A→ A+B)→ A→ B

iter f = Y (λ g.(gOid) ◦ f )

Finally, a dc is equivalent to folding, using f , the tree-like structure that
results from unfolding the input using g. It is defined to be the composition
of a catamorphism with an anamorphism.

cataF : (F A→ A)→ µF → A

cataF f = f ◦ F (cataF f ) ◦ outF

anaF : (A→ F A)→ A→ µF

anaF g = inF ◦ F (anaF g) ◦ g

3.2.1 Example | List catamorphism. Let L be the base bifunctor of a poly-
morphic list. We define the function f to be:

f : L N N→ N
f (inj1 ()) = 0
f (inj2 (x , n)) = add x n
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ρ(f ) = A→ B

f : A→ B

e2 : B → C
e1 : A→ B

e2 ◦ e1 : A→ C

e1 : F B → B
e2 : A→ F A

hyloF e1 e2 : A→ B

p : T A→ T B
parT p : T A→ T B

Figure 3.2: Simple types for Structured Expressions, E .

s : A→ B
fun s : T A→ T B

n : N p : T A→ T B

farm n p : T A→ T B

p : T A→ T (A+B)
fb p : T A→ T B

s1 : F B → B s2 : A→ F A
dcn,F s1 s2 : T A→ T B

p1 : T A→ T B p2 : T B → T C
p1 ‖ p2 : T A→ T C

Figure 3.3: Simple types for Structured Parallel Processes, P.

Given an input list [x1, x2, . . . , xn], the catamorphism cataL N f applied to
this input list returns the sum of the xi:

cataL N f [x1, x2, . . . , xn] = add x1 (add x2 (· · · (add xn 0))).

3.2.2 Example | List anamorphism. We define a function g that returns ()
if the input n is zero, and (n, n − 1) otherwise.

g : N→ L N N
g n = if n = 0 then inj1 () else inj2 (n, n − 1)

The anamorphism anaL N g applied to n returns a list of numbers descending
from n to 1: anaL N g n = [n, n − 1, . . . , 2, 1].

Figure 3.4 shows how catamorphisms and anamorphisms work on binary
trees. In the anamorphism, we start with an input value, and apply the
operation f recursively until the entire data structure is unfolded. In the
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A

x1
f x1==⇒

F C A

y1

x2 x3

f x2
f x3==⇒

F C (F C A)

y1

y2 y3

x4 x5 x6 x7

...==⇒

µ(F C )

y1

y2 y3

y4 y5 y6 y7

. . .. . .. . .. . .. . .. . .. . .. . .

B

x1
f t1==⇒

F C B

y1

x2x3
f t2
f t3==⇒

F C (F C B)
y1

y2y3

x4x5x6x7

...==⇒

µ(F C )
y1

y2y3

y4y5y6y7

. . .. . .. . .. . .. . .. . .. . .. . .

Figure 3.4: Binary Tree Anamorphism (above) and Catamorphism (below).

catamorphism, the operation f is applied recursively until the entire struc-
ture is folded into a single value. The operation mapT can be defined as
a special case of a catamorphism or anamorphism. Given a bifunctor G,
a type T A = µ(G A) is a polymorphic data type that is also a func-
tor [Gib02a]. For all f : A→ B, the function mapT f is the morphism T f ,
defined as:

mapT f = cataGA(inGB ◦G f id)
= anaGB(G f id ◦ outGA)

For uniformity, we will represent all mapT as catamorphisms.

3.2.3 Example | mapList. Given a function f : A → B, mapList f applies f to
all the elements of the input list:

mapList f [x1, x2, . . . , xn] = [f x1, f x2, . . . , f xn]

3.2.2 Hylomorphisms

Recall from Chapter 2 that Hylomorphisms are a well known recursion pat-
tern [MFP91], that generalise the common notion of a divide-and-conquer
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algorithm. Intuitively, hyloF f g is a recursive algorithm whose recursive
call tree can be represented by µF , where g describes how the algorithm di-
vides the input problem into sub-problems, and f describes how the results
are combined.

hyloF : (F B → B)→ (A→ F A)→ A→ B

hyloF f g = f ◦ F (hyloF f g) ◦ g

Since outF ◦ inF = id, we can show that

hyloF f g = cataF f ◦ anaF g.

This is done by equational reasoning:

cataF f ◦ anaF g
= f ◦ F (cataF f ) ◦ outF ◦ inF ◦ F (anaF g) ◦ g
= f ◦ F (cataF f ) ◦ id ◦ F (anaF g) ◦ g
= f ◦ F (cataF f ) ◦ F (anaF g) ◦ g
= f ◦ F (cataF f ◦ anaF g) ◦ g

As was shown in Chapter 2, catamorphisms, anamorphisms and map are
special cases of hylomorphisms. This can be shown using the facts that
cataF inF = id and anaF outF = id. Using bifunctors again, we can
conclude that mapT , anaF and cataF can all be defined in terms of this
single construct. Given a bifunctor F ,

T A = µ(F A)
mapT f = hyloF A (inF B ◦ (F f id)) outF A,

where A = dom(f ) and B = codom(f )
cataF f = hyloF f outF
anaF f = hyloF inF f

Since the semantics of parallel constructs was defined in terms of mapF ,
cataF , anaF and iter , we also need to define iter in terms of hylo to be able
to boil down all of our parallel constructs to hylomorphisms. Although the
fixpoint combinator Y can be defined as a hylomorphism, we take a different
approach. Observe that we can unfold the definition of iter as follows:

iter f = Y (λ g.(gOid) ◦ f ) = (iter fOid) ◦ f
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Note that if f , g : A + B → C , the function fOg : A + B → C can be
written as the composition of idOid : C + C → C and f + g : A+B →
C + C . We use this to rewrite iter as follows:

iter f = (iter fOid) ◦ f = (idOid) ◦ (iter f + id) ◦ f

If f : A → A + B, we define the functor (+B), with the (+ B) f = f +
id, which preserves identities and composition. Since iter f = (idOid) ◦
(+B) (iter f ) ◦ f , then:

iter f = hylo(+B) (idOid) f

3.2.3 Structured Expressions

We have now seen that the denotational semantics of all our parallel con-
structs can be given in terms of hylomorphisms. This semantic correspon-
dence is not unexpected since it has been used to describe the formal foun-
dations of data-parallel algorithmic skeletons [RG03]. We take this corre-
spondence one step further by using hylomorphisms as a unifying structure,
and by then exploiting the reasoning power provided by the fundamental
laws of hylomorphisms. In order to define our type-based approach, we
will first define a new language, E , that combines two levels, Structured
Expressions (S), that enable us to describe a program as a composition of
hylomorphisms; and Structured Parallel Processes (P), that build on S us-
ing nested algorithmic skeletons. A program in E is then either a structured
expression s ∈ S or a parallel program parT p, where p ∈ P. Our revised
syntax is shown below. Note that since a p ∈ P can only appear under
a parT construct, we no longer need to annotate each fun and dc with the
collection T of tasks.

e ∈ E ::= s | parT p
s ∈ S ::= f | e1 ◦ e2 | hyloF e1 e2

p ∈ P ::= fun s | p1 ‖ p2 | dcn,F s1 s2 | farm n p | fb p
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The denotational semantics of P only changes in the rules that mention e,
and by providing a semantics for parT :

[[parT p]] = mapT SJpK
. . .

SJfun eK = [[e]]
SJdcn,F e1 e2K = hyloF [[e2]] [[e1]]
. . .

The corresponding typing rules are entirely standard (Figures 3.2–3.3). Fi-
nally, it is convenient to define the “parallelism erasure of S”, S . Intuitively,
S contains no nested parallelism: for all s ∈ S , s ∈ S if and only if s contains
no occurrences of the parT construct. In other words, s ∈ S if it is defined
only in terms of composition, atomic functions and hylomorphisms:

s ∈ S ::= f | s1 ◦ s2 | hyloF s1 s2

The structure-annotated type system given in Section 3.3 below describes
how to introduce parallelism to an s ∈ S in a sound way.

Soundness and Completeness

It is straightforward to show that the type system from Figs. 3.2– 3.3 is
both sound and complete wrt our denotational semantics. Our soundness
property is: ∀e ∈ E ; A,B ∈ Type, ` e : A → B =⇒ ([[e]] ∈ [[A →
B]]). The proof is by structural induction over the terms in E , using the
definitions of ` e : T from Figs. 3.2–3.3 and [[.]] above. The corresponding
completeness property is: ∀e ∈ E ; A,B ∈ Type, ([[e]] ∈ [[A → B]]) =⇒ `
e : A → B. The proof is also by structural induction over the terms in E ,
using the definitions of ` e : A→ B from Figs. 3.2–3.3 and [[.]] above.

3.3 A Type System for Introducing
Parallelism

In this section, we present a rigorous way to introduce parallelism without
affecting a program’s functional behaviour. We annotate top-level program
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ρ(f ) = A→ B
f : A a−→ B

e1 : B σ1−→ C e2 : A σ2−→ B
e1 ◦ e2 : A σ1◦σ2−−−→ C

e1 : F B σ1−→ B
e2 : A σ2−→ F A G = base F
hyloF e1 e2 : A hyloG σ1 σ2−−−−−−−−→ B

p : T A σ−→ T B F = base T
parT p : T A parF σ−−−−−→ T B

(a) Structure-Annotated Type System for E .

s : A σ−→ B
fun s : T A fun σ−−−−→ T B

s1 : F B σ1−→ B s2 : A σ2−→ F A G = base F

dcn,F s1 s2 : T A dcn,G σ1 σ2−−−−−−−→ T B

n : N p : T A σ−→ T B
farm n p : T A farmn σ−−−−−−→ T B

p1 : T A σ1−→ T B p2 : T B σ2−→ T C

p1 ‖ p2 : T A σ1 ‖ σ2−−−−→ T C

p : T A σ−→ T (A + B)
fb p : T A fb σ−−−→ T B

(b) Structure-Annotated Type System for P.

Figure 3.5: Structured Arrows



80 CHAPTER 3. STRUCTURED ARROWS

types with an abstraction of the structure of the program, σ ∈ Σ. We define
the associated type system together with mechanisms for reasoning about
these programs using this structure. Intuitively, Σ is a “pruned” version of
E that retains information about how the computation is performed, while
removing as many details as possible about what is being computed.

3.3.1 Definition | Families of equivalent programs. We say that an e ∈ E
is in the family of programs that are functionally equivalent to s ∈ S, e ∈ Es,
if and only if e E s, for the relation E that is defined later in this section.

Let =ext denote extensional equality: f =ext g ⇔ ∀x , f x = g x . Since
this is not decidable, we use instead a decidable relation E which implies
extensional equality. Each Es is a family of programs indexed by their
structure, i.e. for each family Es, there is a function φs : Σ → Es that
returns an e ∈ Es with the desired structure. Note that not all structures
σ ∈ Σ are indices of a family Es, so φs is a partial function. Given a
structure σ ∈ Σ and a s ∈ S , we use a superscript, sσ, as notation for φs(σ).
We define the structure Σ and the relation E later in this section, and the
function φs in Section 3.4.

3.3.2 Definition | Structure-annotated arrows. Given a structure σ ∈ Σ,
and an s ∈ S with type A → B, we say that s has type A σ7−→ B, if s is
equivalent to a parallel program with structure σ.

By typechecking s : A σ7−→ B, the type system guarantees that there is an
equivalent program with structure σ, sσ ∈ Es. That is, the structured
expression s typechecks if and only if σ is an index of the family Es. The
definition of φs is actually an algorithm for deriving a parallel program
from a sequential program and a type-level structure, i.e. φs provides a
mechanism for selecting a parallel program that is equivalent to s and has
structure σ, for well-typed programs. We state this formally in the form of
our main soundness and completeness properties later in this section.
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3.3.1 The Structure-Annotated Type System

The program structure abstraction, σ ∈ Σ, is defined below.

σ ∈ Σ ::= σs | parF σp

σs ∈ Σs ::= a | σ ◦ σ | hyloF σ σ

σp ∈ Σp ::= fun σs | dcn,F σs σs

| σp ‖ σp | farmn σp | fb σp

Figs. 3.5a– 3.5b define the annotated type system that extends our type
system from Figs. 3.2– 3.3, and that associates expressions e ∈ E with
structures σ ∈ Σ. As before, the global environment, ρ, maps primitive
functions to their types. The annotated arrow, e : A σ−→ B, states that e
has exactly the structure σ. In order to define A σ7−→ B, we need to extend
the type system further with a convertibility relation.

Convertibility

We extend our type system with a non-structural rule that captures the
convertibility relation, ≡, for Σ.

e : A σ1−→ B σ1 ≡ σ2

e : A σ27−→ B
The relation ≡ is defined in terms of the relations ≡s∈ Σs × Σs and ≡p∈
Σp × Σp, plus a rule that links the Σs and Σp levels, par-equiv.

σ1 ≡s σ2
σ1 ≡ σ2

σ1 ≡p σ2
parF σ1 ≡ parF σ2

parF (fun σ) ≡ mapF σ (par-equiv)

The structures map and iter are defined in Section 3.4, and represent the
structures of the hylomorphism representations of map and iter. We define a
number of equivalences, starting with ≡p. A parallel pipeline structure (‖)
is functionally equivalent to a function composition; a task farm farm can
be introduced for any structure; and divide-and-conquer dc and feedback
fb can be derived from hylomorphisms.

fun σ1 ‖ fun σ2 ≡p fun (σ2 ◦ σ1) (pipe-equiv)
dcn,F σ1 σ2 ≡p fun (hyloF σ1 σ2) (dc-equiv)

farmn σ ≡p σ (farm-equiv)
fb(fun σ) ≡p fun (iter σ) (fb-equiv)
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These equivalences, plus reflexivity, symmetry and transitivity, define an
equational theory that allows conversion between different parallel forms,
as well as conversion between structured expressions and parallel forms, as
required by our type system. In these equivalences, we implicitly assume
the necessary well-formedness constraints: any structure under a fun or dc
must be in Σs, and the structure under farm must be in Σp. Note that,
thanks to the transitivity of ≡, we can use these equivalences to derive inter-
esting properties of our parallel structures. For example, the associativity
of parallel pipelines does not need to be defined explicitly, since it can be
derived from the associativity of composition. We defer the definition of ≡s

to Section 3.3.2.

3.3.3 Definition | Convertibility in E. For all convertibility rules in Σ, there
is an equivalent rule in E . We define the equivalence relation E ∈ E ×E to
be the relation ≡ lifted to E .

An example that illustrates this is that the pipe-equiv rule corresponds to
the rule (fun s1 ‖ fun s2) Ep (fun (s2 ◦ s1)).

3.3.1 Lemma Semantic equivalence.

∀e1, e2 ∈ E , e1 E e2 ⇒ [[e1]] =ext [[e2]]

Proof Straightforward by induction on the structure of the equivalence re-
lation E , using the denotational semantics of P, and the laws of hylomor-
phisms (Section 3.4). �

As a consequence of Lemma 3.3.1, the E relation can be used to define the
families Es. Any extension to ≡ and E may expose more opportunities for
parallelisation in Es. There remains only the definition of the function φs.
We defer this to Section 3.4, together with the decision procedure for ≡ and
E .

Soundness and Completeness

Since the annotated type system is an extension of that from Figs 3.2–3.3
and since the convertibility rule only applies to structures, it is trivial to
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hyloF inF outF = idµF Hylo-Reflex

hyloF (f ◦ η) g = hyloG f (η ◦ g)
⇐ η : F → G Hylo-Shift

(hyloF f h1) ◦ (hyloF h2 g)
⇐ h1 ◦ h2 = id Hylo-Compose

f1 ◦ (hyloF g1 g2) ◦ f2 = hyloF g′1 g′2 Hylo-Fusion
⇐ f1 strict ∧ f1 ◦ g1 = g′1 ◦ F f1 ∧ g2 ◦ f2 = F f2 ◦ g′2

hyloF f g strict
⇐ f , g strict Hylo-Strict

Figure 3.6: Hylomorphism Laws

show that the new type system is both sound and complete wrt the orig-
inal system, once structure is removed, since ∀e ∈ E , σ ∈ Σ, e : A σ7−→
B =⇒ e : A → B. We therefore omit these proofs. Our main soundness
and completeness theorems for convertibility ensure that the type system
derives only functionally equivalent parallel structures from structured ex-
pressions. The proofs of these properties build on a number of details that
are introduced in Section 3.4.

3.3.1 Theorem Soundness of Conversion.

∀s ∈ S , σ ∈ Σ, s : A σ7−→ B ⇒ sσ ∈ Es

Proof Since sσ is a synonym for φs(σ), sσ is in Es if φs is defined for σ. This
property follows directly from the definition of φs(σ) (Def. 3.4.1) and from
Thm 3.4.1 in Section 3.4. �

A consequence of the soundness of the conversion and of Lemma 3.3.1 is
that if a structured expression typechecks with type A σ7−→ B, then there
always exists a functionally equivalent e whose structure is σ.

3.3.1 Corollary ∀s ∈ S , σ ∈ Σ, s : A σ7−→ B ⇒ ∃e ∈ E such that e : A σ−→ B
and [[e]] =ext [[s]].
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3.3.2 Theorem Completeness of Conversion.

∀s ∈ S ;σ, σ′ ∈ Σ; s : A σ′
−→ B ∧ sσ ∈ Es ⇒ s : A σ7−→ B

Proof This follows directly from the definition of φs(σ) (Def. 3.4.1) and
Thm 3.4.1 in Sec. 3.4. �

Remark Note that the rules presented in Figure 3.5 could be implemented
as a deep-embedded EDSL in a dependently typed language. This was our
original approach in [CH14]. However, the possibility of non-termination
makes reasoning about the semantics of these programs quite a hard task.
We chose to first prototype these ideas as a standalone DSL, implemented
in Haskell, but it would be interesting to implement these ideas as a depen-
dently typed, deeply embedded EDSL. An important challenge would be
to implement the typechecking algorithm, and the rewriting system in Sec-
tion 3.4. In a dependently typed programming, it may be worth exploring
whether some of the algebraic properties that are used for proving equiv-
alences can be captured by an algebraic structure in Slama and Brady’s
hierarchy of provers [SB17].

3.3.2 Functional Equivalence

The proofs of soundness and completeness rely on a decision procedure for
≡, as well as on the definition of the φs function for the families Es. The
definition of ≡ requires a definition of ≡s∈ Σs × Σs. Our ≡s adapts the
well known hylomorphism laws (Fig. 3.6) [FM91, Gib02a, MFP91], using
restricted instances of those laws. These restrictions serve two purposes: i)
we avoid checking strictness conditions by ensuring that all the functions
we use are strict; ii) because the equivalences that we can capture are very
limited if we assume no knowledge of atomic functions, due to the side
conditions on the rules, we expose extra structure in our programs.

1. We explicitly represent the inF , outF and id functions.

2. We explicitly represent the section of a bifunctor F applied to a struc-
tured expression s, as F s rather than F s id. This, plus the strictness
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assumption, enables us to apply some limited forms of Hylo-Shift
and Hylo-Fusion.

3. We explicitly represent M and O. Although we do not define equiva-
lences for these combinators, we use them to define the iter structure
later.

s ∈ S ::= f | 〈prim〉 | e1 ◦ e2 | hyloF e1 e2

prim ::= inF | outF | id | e1 〈op〉 e2 | F e
op ::= O | M
σs ∈ Σs ::= . . . | in | out | id | σ1 〈op〉 σ2 | F σ

With these structures, we can define the special cases of hyloF :

mapF , cataF ,anaF : Σ→ Σ
mapF σ = hyloF (in ◦ F σ) out
cataF σ = hyloF σ out
anaF σ = hyloF in σ

iter σ = hylo(+) (idOid) σ

The typing rules are then extended.

id : A id−→ A inF : F(µF) in−→ µF

outF : µF out−−−→ F(µF)

e : A σ−→ B
F e : F A C F σ−−→ F B C

e1 : A σ1−→ B e2 : A σ2−→ C
e1 M e2 : A σ1Mσ2−−−→ B × C

e1 : A σ1−→ Ce2 : e2 : B σ2−→ C
e1Oe2 : A + B σ1Oσ2−−−→ C
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The convertibility relation is also extended to include some equivalences
that are derived from the hylomorphism laws:

id ◦ σ ≡s σ (id-left)
σ ◦ id ≡s σ (id-right)

out ◦ in ≡s id (out-in-id)
in ◦ out ≡s id (in-out-id)

hyloF in out ≡s id (hylo-id)
F (σ1 ◦ σ2) ≡s F σ1 ◦ F σ2 (f-comp)

hyloF σ1 σ2 ≡s cataF σ1 ◦ anaF σ2 (hylo-comp)
cataF (σ1 ◦ F σ2) ≡s cataF σ1 ◦ mapF σ2 (cata-comp)
anaF (F σ1 ◦ σ2) ≡s mapF σ1 ◦ anaF σ2 (ana-comp)

anaF (F σ1 ◦ out) ≡s mapF σ1 (ana-map)

We extend E in the expected way with the lifted ≡s, Es. The rule hylo-comp
is derived from the Hylo-Compose law. The rules cata-comp and ana-comp
are derived from Hylo-Fusion. Since we force all atomic functions to be
strict on their arguments, the strictness conditions hold in those rules. Fi-
nally, the rule ana-map is derived from the Hylo-Shift law. It is used only
to give a uniform representation of the mapF structure. Note that the typing
system describes when an expression is well-typed, using this equivalence
relation. For a decision procedure, used to implement the typechecking
algorithm, we refer to Section 3.4.

3.4 Determining Functional Equivalence

Recall that for all s ∈ S, there is a Σ-indexed family Es. For all well-typed
structured expression s : A σ7−→ B, σ is an index of the family defined
by s, i.e. sσ ∈ Es. The function φs : Σ → Es is a partial function whose
result is defined for any structure σ that is an index of the family Es. Given
an s : A σ′

−→ B, both the typechecking algorithm and the function φs need
to decide whether σ ≡ σ′. This problem has been extensively studied for
bicartesian closed categories [Har89, Yok89, Gha95], and it is beyond the
scope of this thesis to produce a novel decision procedure for the equality
of terms. We consequently use a simple decision procedure, but one that
enables interesting parallelisations.
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id ◦ σ  s σ (id-cancel-l)
σ ◦ id  s σ (id-cancel-r)
σ ◦ σ−1  s id (inverses-cancel)

F (σ1 ◦ σ2)  s F σ1 ◦ F σ2 (f-split)
hyloF in out  s id (hylo-cancel)

F id  s id (f-id-cancel)
anaF (F σ1 ◦ out)  s mapF σ1 (ana-map)

hyloF σ1 σ2  s cataF σ1 ◦ anaF σ2
⇐ σ1 6= in ∧ σ2 6= out (hylo-split)

cataF (σ1 ◦ F σ2)  s cataF σ1 ◦ mapF σ2
⇐ σ1 6= in (cata-split)

anaF (F σ1 ◦ σ2)  s mapF σ1 ◦ anaF σ2
⇐ σ2 6= out (ana-split)

Figure 3.7: Rewriting system in S

3.4.1 Reforestation

We take the standard approach of using term rewriting systems to decide
equality in Σ (and hence E). It is well known that if a rewriting system is
confluent, then two terms have the same normal form if and only if they
are equal with respect to the underlying equational theory. If we define a
confluent term rewriting system with ≡ as underlying theory, we can use
the syntactic equality of normalised forms as our decision procedure. We
present the rewriting system in two parts. The first part is derived from
orienting the rules in ≡ so that parallelism is erased:

farmn σp  p σp

fun σ1 ‖ fun σ2  p fun (σ1 ◦ σ2)
dcn,F σ1 σ2  p fun (hyloF σ1 σ2)
fb (fun σ1)  p fun (iter σ1)

parT (fun σs)  p mapT σs

The first four rules rewrite terms in Σp to terms in Σp, and the last rule
rewrites terms in Σ to terms in Σ. We define Σs in an analogous way to S,
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and erase as any normalisation procedure for a rewriting system  p:

erase : Σ→ Σs

erase σ = σ′, s.t. σ  *
p σ
′ ∧ @σ′′ s.t. σ′′  p σ

′′

3.4.1 Lemma The rewriting system  p is confluent.

Proof The rewriting system is terminating, since the number of redexes
is precisely the number of parallel structures (including parT ), which is
reduced following each rewriting step. It is also easy to show that any critical
pairs arising from these rules have the same normal form (Appendix A). For
example, a farm of a pipeline reduces to the same expression regardless of
which structure is erased first. By Newman’s lemma [BN98] we can conclude
that  p is confluent. �

Since  p is confluent, we know that the result of erase is unique. Recall
that all the results that are derived from the equational theory ≡ can be
lifted to E . This implies that there is an eraseE : E → S procedure that is
equivalent to erase defined with the rewritings lifted to E . The second step
is the normalisation of σ ∈ Σs. We once again use a confluent rewriting sys-
tem derived from ≡s, and define it modulo associativity of the composition
◦. The rewriting system is shown in Figure 3.7 on page 87. The direction
of the rewriting is chosen so a “reforestation” rewriting is performed. Hy-
lomorphisms are first split into catamorphisms and anamorphisms, which
are themselves split into compositions of maps, catamorphisms and anamor-
phisms. We omit some trivial cases, e.g. F σ◦F σ−1  id, and prioritise the
rules that deal with id to simplify the confluence of the rewriting system.
We define σ−1 as follows:

(in)−1 = out
(out)−1 = in
(F σ)−1 = F σ−1

(mapF σ)−1 = mapF σ−1

The rule inverses-cancel only applies for the structures σ that have an in-
verse σ−1. For uniformity reasons, ana-map is applied to the anamorphisms
that perform a map computation.
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3.4.2 Lemma The term rewriting system  s is confluent.

Proof The rewriting system is terminating, since the preconditions of the
rules ensure that no cycles are introduced. The rewriting system is also
locally confluent. It is trivial to observe that the terms of any critical
pair arising from the id rules have the same normal form. The critical
pairs arising from rules map-split and cata/ana-split can be reduced to
the same normal form, by applying f-split and cata/ana-split and/or
ana-map in a different order. For example, we can rewrite any cataF (σ1 ◦
F (σ2 ◦ σ3)) *

s cataF σ1 ◦ mapF σ2 ◦ mapF σ3. Any problems that appear
from the critical pairs of the id rules and the split rules can be solved by
forcing the id rules to be applied first, and working modulo associativity.
See Appendix A for details. As before, Newman’s lemma completes the
proof.

Finally, we define the normalisation procedures for Σs and Σ.

norms σ = σ′, s.t. σ  *
s σ
′ ∧ @σ′′ s.t. σ′  s σ

′′

norm = norms ◦ erase
We use a subscript, normE , to denote this normalisation procedure lifted
to E . Given that the underlying equational theory of the term rewriting
system is E , we know that: ∀e1, e2 ∈ E , (normE e1 = normE e2) ⇔ (e1 !*

e2)⇔ (e1 E e2).

3.4.1 Theorem | norm defines a decision procedure for ≡.
For all σ1, σ2 ∈ Σ, σ1 ≡ σ2 if and only if norm σ1 = norm σ2.

Proof From the properties of  p, we derive that it is always true that
σi ≡ erase σi. Since  s is confluent, by the properties of term rewriting
systems, we know that erase σ1 ≡ erase σ2 if and only if norms(erase(σ1)) =
norms(erase(σ2)). We finish the proof by combining these two facts using
the transitivity of ≡ with the definition of norm. �

The fact that we can lift the results from Σ to E implies that we can use this
rewriting system not only to reason about program equivalences, but also
to define an algorithm to derive a parallel program from some s ∈ S and a
type-level parallel structure. We sketch this algorithm as the definition of
φs.
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eq
∆ = {{}}
σ ∼ σ ⇒ ∆ metar

1
∆ = {{m ∼ σ}}

m ∼ σ ⇒ ∆

map1
σ1 ∼ σ′1 ⇒ ∆1

F σ1 ∼ F σ′1 ⇒ ∆1
mapr

2

σ1 ◦ σ2 ∼ F m2 ◦ F m3 ⇒ ∆2
∆1 = {{m1 ∼ m2 ◦m3}}
σ1 ◦ σ2 ∼ F m1 ⇒ ∆1 ⊗∆2

comp1

σ1 ∼ σ′1 ⇒ ∆1
σ2 ∼ σ′2 ⇒ ∆2

σ1 ◦ σ2 ∼ σ′1 ◦ σ′2 ⇒ ∆1 ⊗∆2

compr
2

σ1 ◦ σ2 ∼ σ′1 ⇒ ∆11 σ3 ∼ σ′2 ⇒ ∆12
σ2 ◦ σ3 ∼ σ′2 ⇒ ∆22 σ1 ∼ σ′1 ⇒ ∆21

σ1 ◦ σ2 ◦ σ3 ∼ σ′1 ◦ σ′2 ⇒ ∆11 ⊗∆12 ∪∆21 ⊗∆22

op
σ1 ∼ σ′1 ⇒ ∆1 σ2 ∼ σ′2 ⇒ ∆2

σ1〈op〉σ2 ∼ σ′1〈op〉σ′2 ⇒ ∆1 ⊗∆2

Figure 3.8: Unification rules (1) for metavariables, functors, composition
and primitive operations.

3.4.1 Definition | φs. Let s ∈ S, σ1 ∈ Σs, such that s : A σ1−→ B, and σ2 ∈ Σ.
We define φs(σ2) as follows:

Let σ′i = norm σi. If σ′1 = σ′2, then:

1. Reverse the rewriting steps from σ2 to σ′2: σ′2  * σ2.

2. Obtain the proof of σ1 ≡ σ2 by using σ1  * σ′1 and (1).

3. Obtain the rewriting steps σ1  * σ2 from (2).

4. Lift the rewriting steps to E , and apply them to s: s  *
E e.

Since the typechecking algorithm for our type system needs to decide σ1 ≡
σ2 (e.g. using Thm. 3.4.1), steps (1) to (2) can be omitted if we know that
s : A σ27−→ B (recall the proof of Thm. 3.3.1). Conversely, if there is some
sA σ1−→ B, and sσ2 ∈ Es, we know that there is a proof σ1 ≡ σ2 (step (2) in
Def. 3.4.1), and therefore sA σ27−→ B (recall the proof of Thm. 3.3.2).
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hylo1
σ1 ∼ σ′1 ⇒ ∆1 σ2 ∼ σ′2 ⇒ ∆2

hyloF σ1 σ2 ∼ hyloF σ′1 σ
′
2 ⇒ ∆1 ⊗∆2

hylor
2

σ1 ◦ σ2 ∼ hyloF m1 out ◦ hyloF in m2 ⇒ ∆1
σ1 ◦ σ2 ∼ hyloF m1 out⇒ ∆2
σ1 ◦ σ2 ∼ hyloF in m2 ⇒ ∆3

σ1 ◦ σ2 ∼ hyloF m1 m2
⇒ ∆1 ∪ {{m2 ∼ out}} ⊗∆2 ∪ {{m1 ∼ in}} ⊗∆3

hylor
3

σ1 ◦ σ2 ∼ hyloF (in ◦ F m2) out ◦ hyloF in m3 ⇒ ∆1
σ1 ◦ σ2 ∼ hyloF (in ◦ F m2) out⇒ ∆2

∆ = {{m1 ∼ F m2 ◦m3}}
σ1 ◦ σ2 ∼ hyloF in m1
⇒ ∆⊗∆1 ∪∆⊗ {{m3 ∼ out}} ⊗∆2

hylor
4
σ1 ◦ σ2 ∼ hyloF m2 out ◦ hyloF (in ◦ F m3) out⇒ ∆
σ1 ◦ σ2 ∼ hyloF m1 out⇒ {{m1 ∼ m2 ◦ F m3}} ⊗∆

hylor
5

σ1 ◦ σ2 ∼ hyloF m1 out ◦ hyloF in σ3 ⇒ ∆1
σ1 ◦ σ2 ∼ norm (hyloF in σ3)⇒ ∆2

σ3 6= out
σ1 ◦ σ2 ∼ hyloF m1 σ3
⇒ ∆1 ∪ {{m1 ∼ in}} ⊗∆2

hylor
6

σ1 ◦ σ2 ∼ hyloF σ3 out ◦ hyloF in m1 ⇒ ∆1
σ1 ◦ σ2 ∼ norm (hyloF σ3 out)⇒ ∆2 σ3 6= in

σ1 ◦ σ2 ∼ hyloF σ3 m1 ⇒ ∆1 ∪ {{m1 ∼ out}} ⊗∆2

hylor
7
σ1 ◦ σ2 ∼ hyloF (in ◦ F m2) out ◦ hyloF (in ◦ F m3) out⇒ ∆
σ1 ◦ σ2 ∼ hyloF (in ◦ F m1) out⇒ {{m1 ∼ m2 ◦m3}} ⊗∆

Figure 3.9: Unification rules (2) for hylomorphisms with metavariables.

3.4.2 Structure Unification

The structure-annotated types that we have presented so far require the
specification of a full structure σ ∈ Σ. However, it is sometimes sufficient, or
desirable, to specify only the relevant parts of this structure. We allow this
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by introducing structure metavariables in Σ. Selecting suitable substitutions
for these metavariables can be automated in different ways, as we will see
later in this section. Given a set of metavariables,M, we extend the syntax
of Σ as follows:

m ∈M
σs ∈ Σs ::= . . . | m

σ ∈ Σ ::= . . . | m
σp ∈ Σp ::= . . . | m

The underscore character denotes a fresh metavariable, e.g. given a fresh
metavariable m, farmn _ is equivalent to farmn m.

3.4.2 Definition | Substitution Environments. A substitution environment
δ is a mapping of metavariables to structures, {m1 ∼ σ1,m2 ∼ σ2, . . .}. We
use ∆ to denote sets of environments δ.

The two basic operations with substitution environments are the application
and the extension. We apply a substitution environment δ to a structure σ,
denoted by δσ, by replacing all metavariables as defined by δ. The extension
of δ1 with δ2, δ1δ2, is defined in the expected way. If both substitution
environments introduce a cycle or conflicting metavariables, the operation
fails. Finally, for sets of substitution environments, we define the set of
extensions:

∆1 ⊗∆2 = {δ1δ2 | δ1 ∈ ∆1 ∧ δ2 ∈ ∆2}

3.4.3 Lemma For all substitutions δ, for all σ ∈ Σ, norm δσ ≡ δ(norm σ).

Proof If σ1 ≡ σ2, then δσ1 ≡ δσ2, since δ will apply the same substitution
in both σ1 and σ2. We know that ∀σ, σ ≡ norm σ. We use these two facts
to conclude:

σ ≡ norm σ

⇒ δσ ≡ δ(norm σ)
⇒ norm δσ ≡ δ(norm σ) �

Note that we can no longer use the relation ≡ in our typechecking rules,
since it does not handle metavariables. Instead, we define the relation ∼=,
and define a decision procedure for it.
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3.4.3 Definition | Equivalence of the Unified Forms. We say that σ1 ∼= σ2

if there is at least a substitution δ that makes δσ1 ≡ δσ2.

σ1 ∼= σ2
.= ∃δ, δσ1 ≡ δσ2

The type rule for equivalence changes to use the new relation:

e : A σ1−→ B σ1 ∼= σ2

e : A σ27−→ B

In order to typecheck a structured expression with a structure containing
metavariables, we need to: i) modify the normalisation procedure; and ii)
define a unification algorithm. The normalisation procedure is modified as
follows:

1. Any erase step on a structure with meta-variables always succeeds by
adding new meta-variables and a substitution environment δ for those
metavariables, e.g.

m1 ‖ m2  fun (m′2 ◦m′1)

δ = {m1 ∼ fun m′1, m2 ∼ fun m′2}.

2. The constraints of the rules used by the normS procedure are modified
so that they are never satisfied by metavariables, e.g.

hyloF σ1 σ2  s cataF σ1 ◦ anaF σ2 (hylo-split)

⇐ σ1 6= in ∧ σ2 6= out ∧ σ1 6∈ M ∧ σ2 6∈ M

Although condition 2 is not necessary, it simplifies the unification of struc-
tures where σ1 or σ2 can be unified to in or out.

Unification Rules. Since unifying two structures may lead to different,
but valid unifying substitutions, the unification rules yield the set of all
possible unifying substitutions, ∆. Disambiguating such situations can be
done using cost models, or some other procedure. The rules presented in
Figures 3.8–3.9 on pages 90 and 91 define unification of terms written as
compositions of hylomorphisms, modulo associativity (rule comp2). Each
rule with superscript r has a symmetric version l. A statement σ1 ∼ σ2 ⇒ ∆
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means that structure σ1 unifies with structure σ2, under a non-empty set of
substitutions, ∆ 6= ∅.

The intuition behind those rules is that, whenever two structures do not
correspond to the same syntactic structure, the unification rules make any
valid assumption about the metavariables that would allow further rewrit-
ings to take place. For example, rule hylor3, on page 91 states that whenever
we are unifying a composition of two structures, σ1 ◦ σ2 with a hylomor-
phism with a metavariable, hyloF in m1, we know that m1 must unify to
F m2 ◦ m3, since this is the only way to split the hylomorphism into a
composition.

3.4.2 Theorem | Soundness of the Unification.
For all σ1, σ2 ∈ Σ,

σ1 ∼ σ2 ⇒ ∆ =⇒ ∆ 6= ∅ ∧ ∀δ ∈ ∆, δσ1 ≡ δσ2

3.4.3 Theorem | Completeness of the Unification.
For all σ1, σ2 ∈ Σ, and substitution δ,

δσ1 ≡ δσ2 =⇒ ∃∆ s.t. ∆ 6= ∅ ∧ σ1 ∼ σ2 ⇒ ∆

The proofs of those theorems are standard proofs by induction on the deriva-
tions of ∼ and ≡, and by case analysis on the metavariables.

3.4.1 Corollary ∼=: σ1 ∼= σ2 ⇔ norm σ1 ∼ norm σ2 ⇒ ∆, i.e. the unification
algorithm can be used as a decision procedure for ∼=.

Proof For the proof of the ⇒ case, we know that there is at least a δ such
that δσ1 ≡ δσ2. From the properties of ≡, we know that norm δσ1 =
norm δσ2. Using Lemma 3.4.3, we derive that δ (norm σ1) ≡ δ (norm σ2).
The completeness of the unification allows us to conclude that norm σ1 ∼
norm σ2 ⇒ ∆.
The proof of⇐ follows from the soundness of the unification algorithm. We
know that norm σ1 ∼ norm σ2 ⇒ ∆ implies that ∆ is non-empty, and that
for all δ ∈ ∆, δ (norm σ1) ≡ δ (norm σ2). We conclude by selecting any δ
from ∆, and then using Lemma 3.4.3. �

Using metavariables in structures has some implications. Given a sA σ1−→ B,
and a structure σ2 containing one or more metavariables, σ2 can no longer
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be used as an index for a family Es. Since there may be alternative, but
valid substitutions for the metavariables, it follows that sσ2 ⊆ Es. Given a
unification σ1 ∼ σ2 ⇒ ∆, we need to apply a δ ∈ ∆ to σ2 in order to use
it as an index, sδσ2 ∈ Es. This implies that there are many ways to use
our approach. On one hand, fixing this σ2 to be a closed structure without
any metavariables, or one that unifies with σ1 with a unique substitution,
provides a way to manually parallelise a program. On the other hand, if σ2

is defined to be a metavariable, then a fully automated method for selecting
a parallel structure would be needed. In between, there are a wide range
of semi-automated possibilities that can be used to reason about the intro-
duction of parallelism to a program. The automated selection mechanism
for a δ ∈ ∆ can be extended with further parallelisation opportunities. Fur-
thermore, it can be parameterised by architecture-specific details, so that
compiling a program for different architectures leads to alternative paral-
lelisations. This is, however, beyond the scope of this thesis.

Compositionality and Higher-Order Structured-Arrows. We finish
this section with a discussion of the compositionality of our approach. Most
of this thesis deals with the typing rules for structure-annotated arrows.
Extending our work for a language with definitions and with a limited-form
of higher-order structured arrows can be done using the unification rules
from Fig. 3.8–3.9. Applying some e : A σ′

17−→ B to a f : A σ17−→ B → C σ27−→ D
typechecks only if σ1 ∼ σ′1 ⇒ ∆, and the type of this would be annotated
with a structure resulting from applying any δ ∈ ∆, f e : C δσ27−−→ D. One
advantage of this is to allow the specification of new structures that can be
later used in our programs. The corresponding erasure rules would then be
derived automatically from such a specification. We would need, however, to
verify a back-end for such a language in order to ensure that the operational
semantics of the new structures are sound with respect to the specification.
Although we do not explain this idea in detail in this chapter, we will use
a small example of a defined structure in Section 3.5.3.

Although it seems entirely feasible to support full higher-order struc-
tured arrows, there is the question of whether this is desirable: what would
types such as A σ7−→ B σ′

7−→ C or (A σ7−→ B) σ′
7−→ C mean? Intuitively, the
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first would be a parallel process with structure σ that produces a parallel
process with structure σ′, and the second would be a parallel process with
structure σ′ that takes a parallel process with structure σ as input, and
produces an output of type C . In contrast to using functions with a type
such as X σ17−→ Y → A σ27−→ B, we have so far not seen the benefits of full
higher-order functions in our examples, although this is an idea that may
be worth exploring in future work.

3.5 Examples

Our first two examples revisit image merge from Section 3.1, and quicksort
from Section 3.2. In both cases, we show how the type system calculates the
convertibility of the structured expression to a functionally equivalent paral-
lel process, and how the convertibility proof allows the structured expression
to be rewritten to the desired parallel process. The final two examples show
how to use types to parallelise different algorithms, described as structured
expressions. These examples show how to introduce parallel structure to
these algorithms using our type system.

3.5.1 Image Merge

Recall that image merge composes two functions: mark and merge. It can
be directly parallelised using different combinations of farms and pipelines.

im1 (n,m) = parL (farm n (fun a) ‖ farm m (fun a))

imageMerge : List(Img× Img) im1 (n,m)7−−−−−−→ List(Img× Img)
imageMerge = mapList (merge ◦ mark)

First, we use our annotated typing rules to produce a derivation tree with
the structure of the expression (Fig. 3.10 on page 97). The key part is
the convertibility proof, that mapL (a ◦ a) ∼= im1 (n,m). We use the
decision procedure defined in Section 3.3 to decide the equivalence of both
structures. The erase step is applied as follows:

im1 (n,m)  * mapL (a ◦ a)
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The final step involves applying the decision procedure for equality of S .
Since the expressions are identical, this is a trivial step. We can now apply
this equivalence to the original expression:

mapList (merge ◦ mark) *

parList (farm n (fun mark) ‖ farm m (fun merge))

We now show an example of unification. We define im2 n = parL (_ ‖
farm n _). First, we instantiate the structure with fresh metavariables m1

and m2. Then, we normalise the structure. We start by applying the erase
rewriting system:

mapL (m′2 ◦m′1) δ = {m1 ∼ fun m′1, m2 ∼ fun m′2}

We then apply the normalisation in Σs, and the unification rules:

mapL a ◦ mapL a ∼ mapL m′2 ◦ mapL m′1 ⇒ {{m′1 ∼ a,m′2 ∼ a}}

The final step is to calculate the extension of the environment δ, and the
set of environments that are obtained from the unification:

∆ = {δ} ⊗ {{m′1 ∼ a,m′2 ∼ a}} =
{{m1 ∼ fun m′1, m2 ∼ fun m′2,m′1 ∼ a,m′2 ∼ a}}

Applying the substitution environment in ∆ to the im2(n), we obtain the
structure parL (fun a ‖ farmn (fun a)).

Finally, we briefly discuss how to extend the environment further using
a procedure min cost. First, min attempts further rewritings to m1 and
m2. To ensure termination, the process stops whenever the only option is
to introduce a task farm to an existing task farm structure.

δ1 = {m1 ∼ farm n1 (fun a), m2 ∼ farm n2 (fun a)}
δ2 = {m1 ∼ fun a, m2 ∼ farm n2 (fun a)}
δ3 = {m1 ∼ farm n1 (fun a), m2 ∼ fun a}
δ4 = {m1 ∼ fun a, m2 ∼ fun a}

We will show how to select one of those structures using a simple example
cost model. In future work, we will consider how to extend and formalise this
cost model. A cost model provides size functions |σ| over structures, similar
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to the idea of sized types [HPS96]. We assume that all atomic functions
are annotated with their cost models, ac. The cost of a structure is a
function that receives a size, sz , and returns an estimation of its run-time
in milliseconds.

In our example, we assume that sz = [d]1000. This represents the size of
1000 pairs of images of d dimensions. The size function of the first stage
|ac1| is the identity, since we are not modifying the images. The parameters
for the number of farm workers are fixed to be those with the least cost,
given some number of available cores. We assume that a maximum of 24
cores are available for this example. For δ1, we determine that n1 = 9, n = 3
and n2 = 5. The values of the costs on those sizes, and the overheads of
farms and pipelines (κ1 and κ2) are given below.

c1 [(2048× 2048, 2048× 2048)]n = n × 25.11ms
c2 [(2048× 2048, 2048× 2048)]n = n × 45.21ms
κ1 (9) = 29.66ms κ1 (3× 5) = 60.93ms

κ2 (9, 3× 5) = 114.4ms

cost (δ1im2(n)) sz

= max {c1 (
sz
n1

) + κ1(n1), c2 (
|ac1|(sz)
n × n2

) + κ1(n × n2)}

+ κ2(n1, n × n2) = 3145.69ms
cost (δ2im2(n)) sz = 25123.81ms
cost (δ3im2(n)) sz = 3189.60ms
cost (δ4im2(n)) sz = 25123.81ms

The structure that results from applying δ1 is the least cost one, δ1(im2(3)),
with n1 = 9 and n2 = 5.

3.5.2 Quicksort

We will now revisit quicksort and show how it can exploit a divide-and-
conquer parallel structure.

qsort : List(List A)→ List(List A)
qsort = mapList (hyloF A merge div)
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In order to introduce a divide-and-conquer parallel structure, the type sys-
tem needs to decide:

mapL(hyloF a a) ∼= parL (dcn,F a a)

This can be achieved using a simple parallelism erasure. Consider now a
slightly more complex structure:

mapL (hyloF a a) ∼= parL (farmn _ ‖ _)

Let m1, m2 be two fresh metavariables. The parallelism erasure of the right
hand side returns the following structure and substitution:

parL (farm n m2 ‖ m1)  * mapL (m′1 ◦m′2)
δ = {m1 ∼ fun m′1,m2 ∼ fun m′2}

The normalisation procedure continues by normalising the left and right
hand sides of the equivalence following a parallelism erasure. The left hand
side is normalised by applying hylo-split, f-split and cata-split:

mapL (hyloF a a) * mapL (cataF a) ◦ mapL (anaF a)

The right hand side of the equivalence is normalised by applying f-split
and cata-split:

mapL (m′1 ◦m′2) * mapL m′1 ◦ mapL m′2

The decision procedure finishes by unifying both structures, and extending
the substitution δ with all possible unifications.

mapL (cataF a) ◦ mapL (anaF a) ∼ mapL m′1 ◦ mapL m′2
⇒ ∆1 = {m′1 ∼ cataF a,m′2 ∼ anaF a}

∆ = {δ} ⊗∆1

Again, by applying the only substitution in δ′ ∈ ∆, we select the final
structure:

parL (farmn (fun (anaF a)) ‖ fun (cataF a))
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The full proof of equivalence (∼=) allows us to rewrite quicksort to our desired
parallel structure:

mapList(hyloF Amerge div) *

parList (farm n (fun (anaF A div)) ‖ fun (cataF Amerge))

We can use our cost model again, where κ3 is the overhead of a divide-and-
conquer structure. In this example, we set the size parameter of our cost
model to 1000 lists of 3,000,000 elements, and use the following structure:

qsort : List(List A) min cost _7−−−−−−−→ List(List A)

cost (parL (dcn,F ac1 ac2)) sz
= max{max

1≤i≤n
{c2 (|ac2|isz)

, cost (hyloF ac1 ac2) (|ac2|nsz)
, max

1≤i≤n
{c1 (|ac1|i |ac2|nsz)}} + κ3(n) = 42602.72ms

cost (parL (farmn (fun (anaL ac2)) ‖ (fun (cataL ac1)))) sz
= 27846.13ms

cost (parL (farmn (fun (hyloF ac1 ac2)))) sz
= 32179.77ms
. . .

Since the most expensive part of the quicksort is the divide, and flattening
a tree is linear, the cost of adding a farm to the divide part is less than
using a divide-and-conquer skeleton for this example.

3.5.3 N-Body Simulation

N-Body simulations are widely used in astrophysics. They comprise a sim-
ulation of a dynamic system of particles, usually under the influence of
physical forces. The Barnes-Hut simulation recursively divides the n bodies
storing them in an Octree, or an 8-ary tree. Each node in the tree repre-
sents a region of the space, where the topmost node represents the whole
space and the eight children the eight octants of the space. The leaves of
the tree contain the bodies. Then, the cumulative mass and centre of mass
of each region of the space are calculated. Finally, the algorithm calculates
the net force on each particular body by traversing the tree, and updates its
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velocity and position. This process is repeated for a number of iterations.
We will here abstract most of the concrete, well known details of the al-
gorithm, and present its high-level structure, using the following types and
functions:

C = Q×Q
F A B = A + C × B8

G A = F Body
Octree = µG
insert : Body× Octree→ Octree

Since this algorithm also involves iterating for a fixed number of steps, we
define iteration as a hylomorphism. We assume that the combinator +
(Section 2.3.2 on page 40) is also defined in Σs. Additionally, we assume
a primitive combinator, that tests a predicate on a value, (· ?) : (A →
Bool)→ A→ A + A.

loop : Σ→ Σ
loop σ = hylo(+) (idOσ) ((a + (a M (a ◦ a))) ◦ (a ◦ a?))

loopA : (A m7−→ A)→ A× N loop m7−−−−−→ A
loopA s =

hylo(A+) (id O s)
((π1 + (π1 M ((−1) ◦ π2))) ◦ ((== 0) ◦ π2)?)

This example uses some additional functions: calcMass annotates each
node with the total mass and centre of mass; dist distributes the octree to
all the bodies, to allow independent calculations, calcForce calculates the
force of one body; and move updates the velocity and position of the body.

calcMass : G Octree→ G Octree
dist : Octree× List Body

→ L (Octree× Body) (Octree× List Body)

The algorithm is:
nbody : List Body× N loop σ7−−−−−→ List Body
nbody = loop (anaL (L (move ◦ calcForce) ◦ dist)

◦((cataG (inG ◦ calcMass) ◦ cataL insert) M id))
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Since the loop defines a fixed structure, we do not allow any rewriting that
changes this structure. However, note that our type system still enables
some interesting rewritings. In particular, the structure of the loop body is:

σ = anaL(L (a ◦ a) ◦ a) ◦ (cataG(in ◦ a) ◦ cataL a) M id

The normalised structure reveals more opportunities for parallelism intro-
duction:

σ = mapLa ◦ mapL a ◦ anaL a ◦ (cataG(in ◦ a) ◦ cataL a) M id

After normalisation, this structure is equivalent to:

σ = parL (fun (a ◦ a)) ◦ _

The structure makes it clear that there are many possibilities for parallelism
using farms and pipelines. As before, parallelism can be introduced semi-
automatically using a cost model. For example, setting the input size to
20,000 bodies:

σ = parL (farm n _ ‖ _) ◦ _
σ′ = parL (min cost (_ ‖ _)) ◦ _

cost (fun ac1 ‖ fun ac2) sz = 310525.67ms
cost (farm6 (fun ac1) ‖ (fun ac2)) sz = 55755.43ms
cost (fun ac1 ‖ farm1 (fun ac2)) sz = 310525.67ms
cost (farm20(fun ac1) ‖ farm4(fun ac2)) sz = 15730.46ms

3.5.4 Iterative Convolution

Image convolution is also widely used in image processing applications.
We assume the type Img of images, the type Kern of kernels, the func-
tor F A B = A + B ×B ×B ×B, and the following functions. The split
function splits an image into four sub-images with overlapping borders, as
required for the kernel. The combine function concatenates the sub-images
in the corresponding positions. The kern function applies a kernel to an im-
age. Finally, the finished function tests whether an image has the desired
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properties, in which case the computation terminates. We can represent
image convolution on a list of input images as follows:

conv : Kern→ (List Img σ7−→ List Img)
conv k =
mapList (iterImg (finished? ◦ hyloF (combine ◦ F (kern k))

(split k)))

The structure of conv is equivalent to a feedback loop, which exposes many
opportunities for parallelism. Again, we assume a suitable cost model. Our
estimates are given for 1000 images, of size 2048×2048.

σ = parL (fb (dcn,L,F (a ◦ F a) a ‖ _))
= parL (fb ( farm n _ ‖ _ ‖ _))
= min cost (parL (fb (_ ‖ _)))
= . . .

cost (parL (fb (ac1 ‖ ac2))) sz =∑
1≤i,|ac1‖ac2 |isz>0

cost (ac1 ‖ ac2) (|ac1 ‖ ac2|isz)

= 20923.02ms
cost (parL (fb (farm4 (fun ac1) ‖ (fun ac2)))) sz

= 6649.55ms
cost (parL (fb (fun ac1 ‖ farm1 (fun ac2)))) sz

= 20923.02ms
cost (parL (fb (farm14 (fun ac1) ‖ farm4 (fun ac2)))) sz

= 2694.30ms
. . .

Collectively, our examples have demonstrated the use of our techniques for
all the parallel structures we have considered, showing that we can auto-
matically introduce parallelism according to some required structure, while
maintaining functional equivalence with the original form.

3.6 Discussion

This chapter introduced the core part of the Structured Arrows (StA) frame-
work, with the structure-annotated arrows as the key part: σ7−→. Although
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a set of parallel constructs, i.e. the language P, was considered, any other
set of algorithmic skeletons could have been considered, as long as their
denotational semantics can be defined in terms of hylomorphisms. This
would imply that a parallelism erasure rewriting could be done. The set of
algorithmic skeletons considered in this chapter is therefore not a limitation.

The StA framework uses the first known type-based representation of the
parallel structure of a program. The first-ever type-based approach to par-
allelism [XKCH03] focuses on detecting the parallelisability of functions,
which are then transformed by using a calculational approach. However,
they do not annotate their types with the specific parallel structures that
can be used to parallelise a program. Previous uses of types for parallelism
have focused on proving particular properties of the underlying program,
e.g. productivity [PnS01, PnS05]. In StA, type-annotations are skeletal pro-
grams that omit most of the implementation details that are irrelevant for
the parallelisation of the underlying function. When coupled with cost in-
formation, most of these structures can be inferred from the underlying
structure in a sound way.

Finally, although we defined the StA framework to tackle the problem
of writing parallel programs, we should note that it is general enough to in-
vestigate generic program optimisations and transformations. One example
of this, outside the scope of the context of parallelism, would be to replace
specific instances of catamorphisms, e.g. catamorphisms on lists of some
known size, by efficient low-level computation structures, such as loops for
traversing an array containing the elements of this list. This usage of the
StA framework would be completely orthogonal to the aims and objectives
of this thesis.





Chapter 4

Operational Semantics

Chapter 3 presented the StA framework, which provides a new type-and-
effect system that allows programmers to annotate function types with the
intended parallelisation of functions. However, the StA framework does not
provide a way to reason about the cost of alternative parallelisations, or
to define the operational behaviour of parallel structures. This chapter ad-
dresses these limitations by introducing a new operational semantics for
algorithmic skeletons. The operational semantics is designed to serve two
purposes: a) to reason about the correctness of algorithmic skeleton imple-
mentations; and, b) to reason statically about the performance of alternative
parallelisations.

4.1 An Operational Semantics for Queues

The main objective of the operational semantics of algorithmic skeletons
is that it must be predictable. By predictable, we mean that, under the
necessary assumptions, it must be possible to estimate execution times of
parallel programs using this operational semantics. The model that was
chosen for this purpose was a queue-based model that consists on three
primitives: a) enqueue, a thread-safe enqueue operation; b) dequeue, a
thread-safe dequeue operation; and, c) eval, a primitive that evaluates a
pure function on its inputs. The intuition behind the queue-based model
is to represent parallel patterns as computations on independent tasks that
are stored in thread-safe shared queues for communication. The idea is
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to model a parallel program as a set of workers operating in parallel, and
communicating through these intermediate buffers.

The skeleton semantics (Sec. 4.2) is built on a small-step trace-based
operational semantics for the queues that are used to link these skeletons.
Each step in the queue semantics will describe a state transition within a
simple parallel process abstraction. We first give a number of definitions.

State A state comprises a tuple of three main structures, W ×Q× S:

• an environment of worker definitions, W , which is a mapping from
worker identifiers to worker loop definitions, i.e. to the code that is
run by each worker of the parallel process;

• an environment of worker states, S, which represents the instruction
that is currently being executed by the worker; and,

• a queue environment, Q, which represents the buffers that link the
workers.

We will assume that the worker environment, W , is fixed. The rules in our
operational semantics therefore have the form:

(Q,S) α−→ (Q′,S ′)

They are given in terms of a labelled state transition system. The labels
are the actions α ::= gwq | ew(f, x) | pw(x, q), which respectively get an
input from a queue, evaluate a function f on an input x, or put a result on
a queue. Actions are performed on specific queues q, and are tagged with
the worker, w, that performs the action.

Queue Environments A queue environment is a mapping from queue
identifiers to sequences of values.

Q =


q0 7→ 〈x0, x1, . . .〉
. . .

qn 7→ 〈. . .〉
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Queue Operations We assume the usual thread-safe enqueue and de-
queue operations.

enqueue (Q[q 7→ vs], x, q) → Q[q 7→ 〈x | vs〉]
dequeue (Q[q 7→ 〈vs | x〉], q) → Q[q 7→ vs], x

We overload the notation for enqueue/dequeue operations to also work on
sums and products. Enqueuing a product type value into a “product queue”
results in a pairwise enqueue on each sub-queue. Enqueuing a sum type
value into a “sum queue” yields a single enqueue operation, on the corre-
sponding queue. We use Q to refer to these queue structures, and q to refer
to queue identifiers.

Q ::= q | q1 × · · · × qn | q1 + · · ·+ qn

We interpret the enqueue operation on products of queues as a sequence of
simple enqueue operations:

enqueue (Q, q1 × · · · × qn, (x1, . . . , xn))
= enqueue (enqueue (. . . enqueue (Q, q1, x1) . . .) , qn, xn)

An enqueue on a sum of queues is an enqueue on the corresponding queue.
For example, if 0 ≤ i ≤ n:

enqueue (Q, q1 + · · ·+ qn, inj1 x) = enqueue (Q, qi, x)

Dequeue operations work similarly. We interpret the dequeue operation on
products of queues as a sequence of simple dequeue operations:

dequeue (Q, q1 × · · · × qn) = (dequeue (Q, q1) , . . . , dequeue (Q, q1))

A dequeue operation on a sum of queues dequeues an element from the first
non-empty queue. For example, if 0 ≤ i ≤ n, and for all j, 0 ≤ j < i,
Q[qj 7→ 〈〉], and Q[qi 7→ 〈vs|x〉], then:

dequeue (Q, q1 + · · ·+ qn) = inji (dequeue (Q, qi))

This is an arbitrary choice. Any alternative ordering (e.g. round-robin) is
equally acceptable. However, this decision would need to be re-considered
carefully if a parallel structure uses dequeue operations on sums of queues.
So far, none of our structures require such operations. In the operational
semantics, each action will represent an enqueue or dequeue operation on a
single queue. So dequeuing from a tuple of n queues will result in n dequeue
actions.
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Workers In each iteration, a worker first performs a sequence of dequeues,
then performs its local computation, f , and finally performs a sequence of
enqueue operations. We represent this as:

W =


· · ·

w 7→ worker (Qi, f, Qo)
· · ·


where Qi and Qo are the input and output queue structures. The example
below shows the state of a worker that is in the process of dequeuing from
a tuple of queue identifiers, and that has already dequeued n elements from
the first n queues:

S =


· · ·

w 7→ (x1, . . . , xn, dequeue (qn+1) , . . . , dequeue (qm))
· · ·


Generally, a worker state can be either a sequence (or sum) of dequeue or
enqueue operations, or an eval operation. Let v be a value:

st ::= inSt | outSt | eval (x)
inSt ::= v | dequeue (q) | (inSt, . . . , inSt)
outSt ::= v | enqueue (q, x) | outSt; . . . ; outSt

The definition of st represents worker states, where inSt is a worker in a
state performing dequeue operations, outSt is the state of a worker per-
forming enqueue operations, and eval (x) is a worker performing a pure
computation on x.

The transition rules for each worker in the queue-based operational se-
mantics are given in Figure 4.1. Note that we overload enqueue/dequeue
operations to also deal with sums and products. We also assume that en-
queues on simple queues are trivial. The full operational semantics non-
deterministically chooses any possible transition in any worker w in the
worker environment:

(Q, st) αw

−→ (Q′, st′)
(Q,S[w 7→ st]) αw

−→ (Q′,S[w 7→ st′])
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dequeue (Q, qn+1)→ (Q′, v)

(Q, (v1, . . . , vn, dequeue (qn+1) , . . .)) gwqn+1−−−−→ (Q′, (v1, . . . , vn, v, . . .))

dequeue (Q, qn+1)→ (Q′, v)

(Q, (v1, . . . , vn, dequeue (qn+1))) gwqn+1−−−−→ (Q′, eval (v1, . . . , vn, v))

enqueue (Q, q1, x1)→ Q′

(Q, enqueue (q1, x1) ; . . .) pwq1−−→ (Q′, . . .)

enqueue (Q, q, x)→ Q′ W [w 7→ worker (Qi, f, Qo)]

(Q, enqueue (q, x)) pwq−−→ (Q′, dequeue (Qi, x))

[[f ]](x) = y W [w 7→ worker (Qi, f, Qo)]

(Q, eval (x)) ew(x)−−−→ (Q, enqueue (Qo, y))

Figure 4.1: Transition Rules for queue operations.

4.1.1 Definition | Ready and Idle State. A worker

w 7→ worker (Qi, f, Qo)

is in a ready state if it is at the beginning of its worker loop. A worker is
idle if it is ready and there are no inputs in its input queue structure Qi

4.1.2 Definition | Initial and Final State. A parallel process is initial if all
its workers are ready and all the queues except the input queue are empty.
A parallel process is final if all its workers are idle.

Parallel Process A parallel process is P is a program state that com-
prises a collection of workers and queues, where there are two distinct
queues, an input and output queues, qi and qo, satisfying that for all se-
quence of inputs xs, final state P ′ and trace, if

P [qi ← xs] α1,α2,···−−−−→ P ′[qo 7→ ys],
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then there exists a function f such that

∀x, x ∈ xs⇔ f x ∈ ys.

In other words, ys is equal to (a permutation of) map〈〉 f xs. For simplicity,
we write the following for running a parallel process:

[[P ]] = λxs.ys

where P [qi ← xs] α1,α2,···−−−−→ P ′[qo 7→ ys]

Due to the non-determinism in the operational semantics, note that [[P ]]
is not a function: for the same input, there are multiple possible outputs.
However, since we require parallel processes to return a permutation of
map〈〉 f , for some f , then we impose the restriction that any trace in [[P ]]
must write the results in the output queue in order. This allows us to
formulate the key requirement for any newly defined parallel structure: a
parallel process P is any program state such that [[P ]] = map〈〉 f , for some
function f .

4.2 Queue-Based Skeleton Semantics

The queue-based language that we described in the previous section is pow-
erful enough to describe the operational semantics of a number of common
patterns of parallel computation. Recall the full syntax of parallel processes
described in Section 3.2.3 on page 77.

e ∈ E ::= s | parT p
s ∈ S ::= f | e1 ◦ e2 | hyloF e1 e2

p ∈ P ::= fun s | p1 ‖ p2 | dcn,F s1 s2 | farm n p | fb p

This section defines a translation from any p ∈ P to the queue-based model
described in the previous section. The translation is denoted by:

runskelT p.

The skeletons in p ∈ P work on arbitrary collections of data T , i.e. they
take a collection of input tasks T A and produce a collection of outputs
T B. In order to define their operational semantics, we need to show how
to process an arbitrary collection T A in the queue-based model.
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4.2.1 Streaming Arbitrary Tree-Like Types

We take an approach similar to the notion of containers [AAG03], a math-
ematical formalisation that separate the contents of a datatype from its
shape. Note that sequences of values 〈A〉 can be interpreted as lists, de-
fined as the fixpoint of the corresponding list base functor L, as defined in
Chapter 2:

L A B = 1 + A×B
〈A〉 = µ(L A)

Denotationally, the operations dequeue (q) and enqueue (x, q) can be de-
fined in terms of the following functions:

enqueueL : A× 〈A〉 → 〈A〉
enqueueL (x, l) = cataL addX

where addX (inj1 ()) = 〈x〉
addX l = inL l

dequeueL : 〈A〉 → L A 〈A〉
dequeueL = outL

It should be clear that those functions describe the required queue opera-
tions, which can be used to implement the behaviour of the enqueue (x, q)
and dequeue (q). This implies that these sequences of values, 〈A〉, can be
treated as functors, with all the necessary properties.

map〈〉 : (A→ B)→ 〈A〉 → 〈B〉

We assume that, for a collection of data T , there are two functions

streamT : T A→ T N× 〈A〉
unstreamT : T N× 〈A〉 → T A

that are inverses,
streamT ◦ unstreamT = id (4.1)

unstreamT ◦ streamT = id (4.2)

with the following properties:

streamT ◦ mapT = (id× map〈〉) ◦ streamT (4.3)
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unstreamT ◦ (id× map〈〉) = mapT ◦ unstreamT (4.4)

Given any functor T A = µ(F A), then these two properties imply that a
functor T ′,

T ′ A = T N× 〈A〉,

is isomorphic to T A, where streamT and unstreamT are the natural trans-
formations between T and T ′. The main idea behind these definitions to
stream the tasks in a collection T , while keeping its structure, T N. The nat-
ural numbers in the structure T N are the indices of the values in 〈A〉. Note
that if a particular traversal on T A was assumed, e.g. in-order or post-order
traversals, then it would suffice to keep a structure T 1. However, keeping
the indices of the values makes it possible to get the tasks of T A in any
arbitrary order. Assuming the operations streamT and unstreamT with the
required properties, then it is clear how to implement a parallel process that
works with any arbitrary collection of data T .

4.2.1 Lemma For all parallel process p : T A→ T B and function f : A→ B,
if

[[runskelT p]] = mapTf,

then

[[runskelT p]] = unstreamT ◦ id× [[runskel〈〉 p]] ◦ streamT

.

Proof We know that there is some f such that

[[runskelT p]] = mapTf (4.5)

We want to show that

unstreamT ◦ id× [[runskel〈〉 p]] ◦ streamT = mapTf

By equational reasoning,

unstreamT ◦ id× [[runskel〈〉 p]] ◦ streamT

= unstreamT ◦ id× map〈〉f ◦ streamT {by Eqn. 4.5}

= mapTf ◦ unstreamT ◦ streamT {by Eqn. 4.4}

= mapTf {by Eqn. 4.2, and id cancels}
�
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Lemma 4.2.1 reduces the correctness of arbitrary skeletons, to the correct-
ness on streaming skeletons, i.e. it suffices to show that

[[runskel〈〉 p]] = map〈〉f.

In the rest of this chapter, skeletons are assumed to work on queues, since
we have shown how to extend them to work on arbitrary tree-like container
types.

Remark An implementation of unstreamT and streamT can potentially
optimise the structure T N in a number of ways. For example, a main thread
may generate it while streaming the values contained inside to the parallel
skeleton, and use this same value at the end of the parallel computation. If
the order in which the results are produced is irrelevant, then it can even
be omitted.

4.2.2 Queue-Based Parallel Structures

In this section, an operational semantics is defined for the parallel structures
in Section 3.2 on page 72. Given any p ∈ P, the queue-based interpretation
runskel〈〉 p is defined. The approach that we follow is to define, for each
parallel construct, an equivalent combinator in the queue-based model that
produces an equivalent empty parallel process in the queue-based model P ,
i.e. runskel〈〉 p = P . The notion of soundness will be established in terms
of runskel〈〉 . For each newly defined parallel construct, P we require that
[[P ]] = map〈〉 f , for some function f .

Parallel Composition of Processes The queue-based interpretation,
runskelT p will be defined in terms of a single construct: the parallel com-
position of processes. We define the parallel composition of processes as the
union of their queues and workers, redefining any clashing worker identifier
if needed, i.e. a union of queues, and a disjoint union of workers. If two
queues are joined, their corresponding elements are concatenated.

(W1,Q1,S1) ‖ (W2,Q2,S2) = (W1 ]W2,Q1 ∪Q2,S1 ] S2)
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Worker We lift sequential functions into workers with input and output
queue structures. The new worker is ready.

qfun(f)(Q0, Q1) =
W = [w 7→ worker (Q0, f, Q1)] ,Q = Q0 ∪Q1,S = [w 7→ dequeue (Q0)]

4.2.2 Lemma [[qfun(f)(qi, qo)]] = [[fun f ]]

Proof Recall that [[qfun(f)(qi, qo)]] is notation for

[[P ]] = λxs.ys

where P [qi ← xs] α1,α2,···−−−−→ P ′[qo 7→ ys]

For workers, since there is only a worker (qi, f, qo), the rules of the opera-
tional semantics in Figure 4.1 only allow to produce one trace that results
of repeatedly selecting the actions for dequeuing, performing local com-
putation, enqueuing: gwqi, ew, pwqo. This has as a consequence that the
output queue of the corresponding final state will contain map〈〉 f xs, for
any sequence xs in the input queue. �

Task farm A task farm replicates a structure n times:

qfarm(n,P)(Q0, Q1) =
n times︷ ︸︸ ︷

P(Q0, Q1) ‖ . . . ‖ P(Q0, Q1)

4.2.3 Lemma If
[[P ]](qi, qo) = map〈〉 f,

then
[[qfarm(n,P)(qi, qo)]] = map〈〉 f.

Proof This proof, and the subsequent proofs assume that dequeue () and
enqueue () are thread-safe. Note that qfarm(n,P)(qi, qo) is the replication,
in parallel, of P n times, sharing the input and output queues. We can
manually “rename” the queues and workers in P to create the equivalent
resulting structure:

n times︷ ︸︸ ︷
P1(qi, qo) ‖ . . . ‖ Pn(qi, qo) .
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Since all queues in Pi and Pj, for i 6= j are distinct, with the exception of
qi and qo, then any trace taking qfarm(n,P)(qi, qo)[xs← xs] as initial state
can safely interleave all the actions of P1 · · · Pn, with the exception of the
actions affecting the input and output queues. That means that each trace
on Pi will produce map〈〉 f xi, where xs = interleave1(x1, . . . , xn). Therefore,

ys = interleave2(map〈〉 f x1, . . . ,map〈〉 f xn) = map〈〉 f interleave2(x1, . . . , xn).

Any trace producing the outputs in order will, therefore, produce

ys = map〈〉 f xs. �

Parallel pipeline A parallel pipeline is the parallel composition of two
structures, linked by an intermediate queue. Let q be a fresh queue identi-
fier:

qpipe(P1,P2)(Q0, Q1) = P1(Q0, q) ‖ P2(q,Q1)

4.2.4 Lemma If
[[P1]](qi, q) = map〈〉 g,

and
[[P2]](q, qo) = map〈〉 f,

then
[[qpipe(P1,P2)(qi, qo)]] = map〈〉 (f ◦ g).

Proof Straightforward, since

[[P1]](qi, q) = map〈〉 g and [[P1]](qi, q) = map〈〉 g,

and we are assuming thread-safe queue operations. Since the only con-
tention is in queue q, and any operations in q are thread-safe, q must respect
the FIFO order. Therefore, [[qpipe(P1,P2)(qi, qo)]] must be

map〈〉 f ◦ map〈〉 g = map〈〉 (f ◦ g). �
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Feedback loop A feedback loop is created by inspecting the tag in the
output tasks, and placing them back in the input queue depending on the
value of this tag:

qfb(P)(Q0, Q1) = P(Q0, Q0 +Q1)

4.2.5 Lemma If
[[P(qi, qo)]] = map〈〉 f

and
f : A→ A+B,

then
[[qfb(P)(qi, qo)]] = map〈〉 (iter(+B) f).

Proof Since
qfb(P)(qi, qo) = P(qi, qi + qo),

then
[[qfb(P)(qi, qo)]] = [[P(qi, qi + qo)]].

We start the proof on a singleton queue:

[[P(qi, qi + qo)]]〈x〉.

Since [[P(qi, qo)]] = map〈〉 f , there will be an action enqueue (f x, qi + qo).
If f x = inj2 y, this will result in enqueue (y, qo). If f x = inj1 y, this
will result in enqueue (y, qi). An enqueue operation on the input queue will
result again in an initial state, so this sequence of actions will continue until
the result is of the form inj2 z. This is exactly the semantics of iter+B f .
For queues with more than one element, note that [[P(qi, qo)]] = map〈〉 f
implies that each input is treated independently by P , and that changing
qo for qi + qo will only affect the enqueue () operations. This implies that
the result of applying

[[P(qi, qi + qo)]]

will return (a permutation of)

map〈〉 (iter(+B) f). �
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Parallelising Arbitrary Hylomorphisms We describe now how to par-
allelise an arbitrary hylomorphism using a divide-and-conquer skeleton. We
will first describe a series of simple semantics-preserving transformations
for any hylomorphism. The idea is that if the anamorphism part of a hy-
lomorphism needs to split an input value into at most n sub-values, then
we will create n + 1 queues, the first of which will send the corresponding
input to the “combine” worker, and the remaining n of which will send the
subdivided inputs to the subsequent divide stages. If an input cannot be
divided any further, then a synchronisation token, 1, will be sent. Given a
functor F described as a combination of sums, products and constants,

F A = T,

where A is nested at most n times within a product in T , we define the
functor DF as

DF B = (1 + T [1/A])×
n times︷ ︸︸ ︷

(B × · · · ×B) .

If we can convert any hylomorphism to this new structure, then we can use
its regular structure to create a regular “divide-and-conquer graph” with
the following communication structure:

1. The divide worker will communicate a value of type 1 +T [1/A] to the
corresponding combine worker, and values of type B to the subsequent
divide workers.

• A value of type 1 + T [1/A] contains the “non-recursive” part of
T , plus a unit to indicate that the input could not be divided
any further.

• A combine worker can use a value of this type to decide how to
recombine the n values of type B that has been received from
the previous stages of the divide-and-conquer skeleton.

2. A divide worker takes an element of type 1 + A. If it is 1, then
it transmits inj1 () to all its output queues. This indicates to the
subsequent workers that there is no more work to be done. If a divide
worker receives a value of type A, it divides the input value, splits the
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recursive and non-recursive parts of T , and sends the corresponding
elements to the output queues.

3. A combine worker that receives an element of type 1 from the corre-
sponding divide worker will discard all values received from the pre-
vious level, and send 1 to the combine worker of the next level. If it
receives an element of type T [1/A], it will need to recombine the cor-
responding value of type F A from the inputs, and apply the combine
function to it.

We need a way to change a hylomorphism from an F structure to DF . This
is using the following functions:

div : 1 + F A→ DF (1 + A) comb : DF (1 + A)→ 1 + F A.

The div function separates the occurrences of values of type A in some
structure F A into the corresponding T [1/A] and n-tuple of 1 +A, and the
function comb recomposes a structure F A from the structure of DF . If div
receives inj1 (), then it returns a n+ 1 tuple of inj1 (). The comb function
returns inj1 () if the first component of the tuple DF (1 + A) is inj1 ().
Note that the types F and DF are not isomorphic, since the function comb
is partial. However, the following properties do hold:

comb ◦ div = id
div ◦ (1 + F f) = DF (1 + f) ◦ div.

Using these properties, we can show that the following condition holds for
any functor F :

1 + hyloF g h

=
1 + g ◦ F (hyloF g h) ◦ h

=
(1 + g) ◦ (1 + F (hyloF g h)) ◦ (1 + h)

=
((1 + g) ◦ comb ◦ div) ◦ (1 + F (hyloF g h)) ◦ (1 + h)

=
((1 + g) ◦ comb) ◦ DF (1 + hyloF g h) ◦ (div ◦ (1 + h))

=
hyloDF

((1 + g) ◦ comb) (div ◦ (1 + h))
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D1(F, h)

D2(F, h) D2(F, h)

· · · · · · · · ·

C2(F, g) C2(F, g)

C1(F, h)

q1 q2

q′1 q′2

q0

Figure 4.2: Divide-and-conquer skeleton: the qi are the queues; circles rep-
resent the workers.

Using this, we can convert to a hylomorphism so that it has a regular,
balanced call-tree. In this balanced call tree, values of unit type, (), are
used for synchronisation. For all hyloF g h : A → B, given any x : B,
then

xOid ◦ (hyloDF
((1 + g) ◦ comb) (div ◦ (1 + h))) ◦ inj2

=
xOid ◦ (1 + hyloF g h) ◦ inj2

=
(x ◦ 1)O(id ◦ hyloF g h) ◦ inj2

=
id ◦ hyloF g h

=
hyloF g h

This shows that the first level of a divide-and-conquer must wrap the input
in inj2, and the last level of a divide-and-conquer must unwrap the result
using xOid, for any arbitrary x : B. We define these as:

D1(F, h) = div ◦ inj2 ◦ h C2(F, g) = (1 + g) ◦ comb
D2(F, h) = div ◦ (1 + h) C1(F, g) = (xOid) ◦ (1 + g) ◦ comb

Although the structure DF may appear to be complicated, it neatly fits our
queue-based model, in that we can create queues that send/receive values
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of types (1 +T [1/A]) and 1 +A, and can create workers that split/combine
values of these types, as shown in Figure 4.2. Values of type 1 are used to
synchronise the different divide and combine workers, so that the different
levels of a divide-and-conquer skeleton can operate on different inputs in
parallel. We define this as:

qdc(n, F, g, h)(Q0, Q1) = qdc′(hyloFg h, n, F, g, h, C1, D1)(Q0, Q1)

qdc′(f, 0, F, g, h, c, d)(Q0, Q1) = qfun(f)(Q0, Q1)
qdc′(f, n, F, g, h, c, d)(Q0, Q1) =

qfun(d(F, h))(Q0, q0 × q1 × · · · × qn)
‖ qdc′(1 + hyloFg h, n− 1, F, g, h, C2,D2)(q1, q

′
1)

‖ . . .
‖ qdc′(1 + hyloFg h, n− 1, F, g, h, C2,D2)(qn, q′n)
‖ qfun(c(F, g))(q0 × q′1 × · · · × q′n, Q1)

4.2.6 Lemma

[[qdc′(1 + hyloF g h, n, F, g, h, C2,D2)(qi, qo)]] = map〈〉 (1 + hyloF g h)

Proof We follow an argument similar to qfb. It is easy to show that for each
dequeue (qi) there will be exactly one enqueue (qo). This is proven by induc-
tion on n. The base case is defined by a qfun, for which it trivially holds.
Assuming the induction hypothesis, it holds for qdc′ applied to n− 1. For
each dequeue (qi), there is exactly one enqueue (q0 × · · · qn), which in turn
implies there is exactly one enqueue (q0), . . . , enqueue (qn). By the induc-
tion hypothesis, we know that each dequeue (qk) will be followed by exactly
one enqueue (q′k), except for q0. Since there will be exactly one enqueue (q0),
and exactly one enqueue (qk) for 1 ≤ k ≤ n, we know that there will be
exactly one dequeue (q0, q

′
1, . . . , q

′
n). Since the last stage is another qfun,

this implies that for each dequeue (qi) there can be only one enqueue (qo).
This shows that [[qdc(1 + hyloF g h, n, F, g, h, C2,D2)(qi, qo)]] must be some
map〈〉 f . In order to show that this f corresponds to hyloF g h, we take a
singleton queue 〈x〉, and reason by induction on n.

Case n = 0

[[qdc′(1+hyloF g h, 0, F, g, h, C2,D2)(qi, qo)]] = [[qfun(1+hyloF g h)(qi, qo)]].
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This is the base case, which trivially holds, since qfun(f) is equivalent to
map〈〉 f .

Case n = m+ 1

qdc′(f,m+ 1, F, g, h, C2,D2)(Q0, Q1) =
qfun(d(F, h))(Q0, q0 × q1 × · · · × qn)
‖ qdc′(1 + hyloFg h,m, F, g, h, C2,D2)(q1, q

′
1)

‖ . . .
‖ qdc′(1 + hyloFg h,m, F, g, h, C2,D2)(qn, q′n)
‖ qfun(c(F, g))(q0 × q′1 × · · · × q′n, Q1).

By the induction hypothesis, we know that this is equivalent to:

qdc′(f,m+ 1, F, g, h, C2,D2)(Q0, Q1) =
qfun(D2(F, h))(Q0, q0 × q1 × · · · × qn)
‖ qfun(1 + hyloFg h)(q1, q

′
1)

‖ . . .
‖ qfun(1 + hyloFg h)(qn, q′n)
‖ qfun(C2(F, g))(q0 × q′1 × · · · × q′n, Q1).

By unfolding the definitions of D2 and C2, we can conclude that this is
equivalent to:

(1 + g) ◦ comb ◦ id× (1 + hyloFg h)× · · · × (1 + hyloFg h) ◦ div ◦ (1 + h).

This corresponds to

(1 + g) ◦ comb ◦DF (1 + hyloFg h) ◦ div ◦ (1 + h),

and we have show that this is the same as

1 + hyloF g h. �

4.2.1 Corollary

[[qdc(n, F, g, h)(qi, qo)]] = map〈〉 (hyloF g h)

Proof Follows directly from Lemma 4.2.6, since the outermost level of qdc
wraps the whole expression with C1 and D1, which turn 1 + hyloF g h into
hyloF g h, as is required. �
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Soundness The soundness of the operational semantics with respect to
the denotational semantics can be reduced to correctly connecting the queues
of the algorithmic skeletons, as has been shown in Lemmas 4.2.3, 4.2.4, 4.2.5
and Corollary 4.2.1.

4.3 Predicting Parallel Performance

We will now formally derive a set of cost equations from the operational se-
mantics in a systematic way. These cost equations can then be used by our
type-system to derive cost-models for the high-level parallel structures. This
gives two main benefits: i) the cost models are sound w.r.t. the operational
semantics by construction; and ii) this provides a way to automatically de-
rive cost equations for newly defined parallel structures. In this chapter, we
are mainly interested in predicting realistic lower bounds on the execution
times of parallel programs. While the more usual worst-case predictions
might be useful for safety reasons, they would not provide sufficient infor-
mation to enable us to choose the best parallel implementation. Moreover,
when “initialisation” and “finalisation” times are taken into account, the
worst-case parallel execution time will generally be very similar to the se-
quential case, and so provide very little insight into parallel performance.
The amortised average case timings that we use here are much more useful
for predicting the actual parallel performance of the system.

4.3.1 Costs and Sizes

The sequential components of the algorithmic skeletons are given as suit-
ably lifted functions. Before we can define their cost models, we must first
explain how we derive cost models for hylomorphisms. Vasconcelos [Vas08]
showed how to use sized types [HPS96] for developing an accurate space
cost analysis. Sized types have also been used for estimating upper bounds
of execution times of parallel functional programs [LH96]. Brady and Ham-
mond [BH05] use dependent types to capture size indices of terms, predi-
cates on sizes, and predicate transformers, which they use for program re-
source analysis. The success of using sized types for cost analysis motivated
our approach. We exploit this previous research on sized types [Vas08], as
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well as previous research on cost equations [San95]. A cost equation for a
function f : A→ B provides an estimate of the execution time of f given
an input of a given size.

costf : sizeA → time

To obtain the inputs for these cost equations, we use a variant of the usual
notion of sized types [HPS96]. The only difference is that, since we are
interested in amortised costs, we use average sizes rather than upper or
lower bounds. The notion of average size is dependent on each problem,
so rather than defining a generic calculation, we require specific definitions
for each function and type constructor. Suitable definitions include, e.g. the
average depth of a tree, the average number of elements in a structure etc.

Type Constructors These are either constant types C, or recursive types
defined as the fixpoint of some base functor µF .

Sizes and Size Constraints We reuse the idea of stages [BGR08]. Es-
sentially, sizes are either size variables or sums of sizes, and size constraints
are inequalities on sizes. We write Ai | C for a sized type A with size i and
constraint C.

Sized types We require the polynomial (bi-) functors to be annotated
with size expressions for each alternative (given as a sum-type). For exam-
ple, the base bifunctor of a binary tree can be annotated as follows:

F 0∨1+i+j A B = 1 + A×Bi ×Bj

The size expression 0∨1+ i+j states that functor F either has size 0, i.e. it
contains no elements of type A; or it has size 1+ i+j, i.e. it has one element
of type A, plus the sizes of the elements of type B, one of size i and the
other of size j. Note that there are alternative definitions for the size of a
functor F , e.g: F 1∨max(i,j) A B = 1+A×Bi×Bj. In a more general sense, a
sized-type is a type constructor that is annotated with size information, e.g.
Inti, Listj+k A, . . .. The inF and outF functions for a sized base functor of
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a recursive type must have the following type and constraints:

inF : F jµF → µiF | i = j

outF : µiF → F jµF | i = j

That is, we require that the sizes of the base functor represent the same
information as the sizes of the recursive type. Finally, we will use |A| to
denote all the nested size information and size constraints in a type A.
This is useful for defining cost models that require access to nested size
information.

Deriving Recurrences from Hylomorphisms We now show how we
use sized types to derive recurrences. Essentially, we will define a cost equa-
tion for each syntactic construct, that takes some cost equation parameters
and produces another cost equation. Although the cost of a function is not,
in general, compositional, since it may depend on previous computations as
well as on other properties of the input data, we will here take a compo-
sitional approach under the assumption that only the sizes will affect the
execution times. This is a valid way to obtain amortised costs.

The cost equations for each primitive operation are assumed to be a
constant value that depends on the target architecture. This must be pro-
vided as a parameter. The cost equations of atomic functions must also be
provided as a parameter. The cost of a function composition is the sum of
the run-times of each stage, plus some architecture-dependent overhead.

For recursive functions that are defined as hylomorphisms, we generate
recurrence relations, as with Barbosa et al. [BCP05]. In a similar sense to
Sands’ work [San95], the cost equations that are explained in this section
can be thought of as functions that we are integrating into the type-system.
For example, assuming that we have the following sized-type for quicksort:

merge : T 0∨1+i+jA (List A) → Listk A | k = 0 ∨ k = i+ 1 + j

split : Listn A → T 0∨1+r+sA (List A) | n = 0 ∨ n = 1 + r + s

qs : Listi A → Listj A | i = j

qs = hyloT merge split

Given suitable cost equations for split and merge, costsplit, costmerge, then
there are two cases. Either n = 0, in which case t = 0, so we assume some
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time costsplit(0) + costmerge(0), or n = 1 + r + s, in which case:

costqs = costsplit(1 + r + s) + costmerge(r + 1 + s)+
costqs(r) + costqs(s)

To complete the cost equation, we need now to relate r and s with the
input size n. By assuming that these sizes correspond to a balanced com-
putation, we can then automatically calculate an amortised cost. Taking
more extreme cases into account would, of course, require further program-
mer input.

costqs(n) =
costsplit(1 + r + s) + costmerge(r + 1 + s) + costqs(r) + costqs(s)
where r = (n− 1)/2 and s = (n− 1)/2

We simplify this internally to generate the desired recurrence relation:

costqs(0) = costsplit(0) + costmerge(0)
costqs(n) = costsplit(n) + costmerge(n) + 2× costqs((n− 1)/2)

4.3.2 Costing Traces of Parallel Processes

We now describe a systematic way to derive cost equations. We start with
a structure C, with some initial empty Pi and cost ci. Taking suitably
sound simplifications and approximations of time(α1, . . .), we then derive
an “amortised cost equation” costC such that for all input l with sized-type
〈A〉i and trace,

C(P1, . . . ,Pn)(qin 7→ l, qout 7→ 〈〉)
α1,...−−−→ C(P1, . . . ,Pn)(qin 7→ 〈〉, qout 7→ l′),

then

i× costC(c1, . . . , cn) |A| ≈ time(α1, . . .).

We differentiate three phases in the execution of a parallel process: an
initialisation phase, a steady state, and a final flushing phase. For example,
a pipeline of two atomic functions, w1 ‖ w2, reaches a steady state after
executing the initialisation phase of w1. At this point, w2 can run in parallel
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with w1:

q0 7→ 〈x1, x2, . . .〉,
q1 7→ 〈〉,
q2 7→ 〈〉

 ,
 w1 7→ worker (q0, f, q1)
w2 7→ worker (q1, g, q2)




gw1q0, ew1x1, pw1q1−−−−−−−−−−−−→

q0 7→ 〈x2, . . . 〉,
q1 7→ 〈f x1〉,
q2 7→ 〈〉

 ,
 w1 7→ worker (q0, f, q1)
w2 7→ worker (q1, g, q2)




We capture these ideas in the definitions below.

4.3.1 Definition | Steady State. A parallel process P is in a steady state,
steady(P), if for all w ∈ P, ¬idle(w).

4.3.2 Definition | Initialisation Phase. The initialisation phase for a paral-
lel process initial(P1) is the shortest sequence of a1, a2, . . . , an, such that
if P1

a1,a2,...,an−−−−−−→ P2, then steady(P).

4.3.3 Definition | Flushing Phase. The flushing phase for a parallel process
P1 is the sequence of a1, a2, . . . , an, such that for all i ∈ [1 . . . n] and for all
w ∈ P1, ai 6= dequeue (qin )w, and if P1

a1,a2,...,an−−−−−−→ P2, then final(P2).

Total Cost and Amortised Cost: Given some initial P and final P ′,
where P α1,...,αn−−−−→ P ′, the total cost of a parallel computation is

time(α1, . . . , αn).

The cost of each action depends on the worker environment. We calculate
the queue contention on each queue by counting the number of workers
in which a queue appears in W , similarly to [HBS16]. Then, the cost of
the gw and pw operations is adjusted according to the corresponding over-
head. If we split the trace into P init−−→ P1

steady−−−−→ P2
flush−−−→ P ′, where

init = α1, . . . , αi, steady = αi, . . . , αj, flush = αj, . . . , αn such that
initial(P), steady(P1), and final(P ′) then the total time is:

time(α1, . . . , αn) = time(init) + time(steady) + time(flush)



4.3. PREDICTING PARALLEL PERFORMANCE 129

cost(fun σn,m) = Tenqueue(n) + cost i+ Tdequeue(m)
where |σ| = i→ j |C

cost(farm n σi,o) = cost(σi×n,o×n)
n

cost(σi,j1 ‖ σ
k,l
2 ) = max

{
cost(σi,j+k1 ), cost(σj+k,l2 )

}
cost(fb σn,m) = if (|σ| = 0)

then cost(σn+m,m)
else cost(σn+m,m)

+ cost(fb (resize(σn,m, |σ|)))

cost(dcn,F σ1 σ2) = max


cost(D(F, σ2)),
cost(dcn−1,F σ1 σ2),
cost(C(F, σ1))


Figure 4.3: Cost equations.

We can systematically derive cost models for time(init) and time(flush)
using the method shown below.

4.3.3 Deriving Cost Equations from the Operational
Semantics

We now show how to systematically derive the cost equations in Figure 4.3
from the operational semantics for skeletons. We base our approach on
symbolic execution. The following assumptions are used to automatically
derive amortised cost equations for parallel structures.

1. The queues contain enough elements for each dequeue to succeed.

2. Each time an element is removed from a queue, we will return a size
that is extracted from its type.

3. Evaluating a function on a size immediately returns the size of the
output type of that function, plus the set of constraints that relate
the input and output sizes.

4. An enqueue operation always succeeds, and has no effect on the queues.



130 CHAPTER 4. OPERATIONAL SEMANTICS

5. Any substructure (e.g. a farm worker) produces a trace that can be
safely interleaved with the trace that is produced by other substruc-
tures (i.e. without modifying the result of the overall computation),
and that has a known cost.

Note that assumption 1 holds only for a steady structure, so these cost
equations would not be useful for estimating run-times of a computation
where time(init) and/or time(flush) dominate.

Worker cost A worker, w, computing f : Ai → Bj | C in environment
W [w 7→ worker (qi, f, qo)] produces the “symbolic trace”:

gwqi, ew |Ai|, pwqo.

Assuming there exists some trace α1, . . . , αn that can be safely interleaved
with this trace, we want to know the cost of the actions in α1, . . . , gwqi, . . .,
ew i, . . . , pwqo, . . . , αn. Here, the cost of gwqi will depend on any other action
that is happening in parallel. The only actions that can affect the cost of
a queue operation are other queue operations that are acting on the same
queue. If n is the number of workers wget ∈ W such that wget 6= wi and the
number of workers operating on qo is m, then if we assume that the cost of
the enqueue and dequeue operations is as described by [HBS16], then the
cost is:

time(gwqi, ew i, pwqo) = Tenqueue(n) + costf (i) + Tdequeue(m)

We associate this cost with the corresponding high-level structure, so that
it can be used by the type-checking algorithm:

cost(funσ) = Tenqueue(n) + cost(σ) + Tdequeue(m)

The parameters n, m and cost(σ) can be instantiated from the context,
and added to the structure σ by the type-checking algorithm. We write
σn,m for a structure with n contending workers in the input queue, and
with m contending workers in the output queue. Note that the real cost,
understood as an equation from an input size to an execution time, would
be cost(funσn,m)(T i j) = i × (Tenqueue(n) + costσ(j) + Tdequeue(m)), if
we assume that T contains i elements of size j. Since we can annotate
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structures, σ, with sizes, we can abuse our notation for extracting sizes of
types, |σ|, and “overload” the meaning of cost to take a structure and yield
an amortised cost.

Farm cost A farm, C(Q0, Q1) ‖ · · · ‖ C(Q0, Q1), consists of a number of
parallel processes that are joined using the parallel composition operator,
and that share input and output queues. Since we symbolically evaluate
the enqueue and dequeue operations, we can take n arbitrary traces, one for
each farm worker:

C(Q0, Q1) α1
1,α

1
2,...−−−−→ P ′, . . . , C(Q0, Q1) αn

1 ,α
n
2 ,...−−−−−→ P ′

Each trace has cost ci, . . . , cn. To obtain amortised costs, we assume that
each of these values is equal to some average cost c. Because we assume
that these actions can be safely interleaved, and because the cost of the
workers already considers the queue contention, we only need to calculate
the maximum cost of any worker, assuming that each sub-trace can be
performed in parallel:

time(αia, α
j
b, . . .) = max


time(α1

1, α
1
2, . . .),

time(. . .),
time(αn1 , αn2 , . . .)

 = max {c1, . . . , cn} = c

Note that if each P produces k outputs, then qfarm(n,P) produces k × n
outputs. In order to obtain an amortised cost from costing such traces, we
need to divide the total cost by n.

cost(farm n σ) = cost(σ)
n

Note that, although this cost is clearly correct, the main point is that it
was systematically derived from the simple queue-based model. It is thus
sound by construction, and so no longer needs to be a parameter of the type
system.

Parallel pipeline A pipeline, C1(Q0, q) ‖ C2(q,Q1), consists of two par-
allel processes that are joined using the parallel composition operator, and
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connected using an intermediate queue q. Again, we take a similar reasoning
process:

C1(Q0, q)
α1

1,α
1
2,...−−−−→ P1 C2(q,Q1) α2

1,α
2
2,...−−−−→ P2

Assume costs c1,and c2 for each process:

time(αia, α
j
b, . . .) = max

 time(α1
1, α

1
2, . . .),

time(α2
1, α

2
2, . . .)

 = max {c1, c2}

Note that, in order to accurately lift these costs to the high-level structures,
we need to consider the size of the output of α1

i , not the size of the α2
j

input. We do this by writing resize(σ2, |σ1|), meaning that the input of σ2

is altered to have the size of the output size in |σ1|. We can do this safely
since the type-checking algorithm can ensure that sizes meet the necessary
constraints. Finally, we associate the cost with the corresponding high-level
structure:

cost(σ1 ‖ σ2) = max {cost(σ1), cost(resize(σ2, |σ1|))}

Feedback loop A feedback loop requires us to take into consideration
that an element may be written back to the input queue, C1(Q0, Q0 +Q1).
The structure C must compute some function f , and we require it to have
type:

F n∨0 A = An +B, s.t. f : Ai → F Aj | j < i.

Since we require j to be strictly smaller than i, we can estimate the number
of steps that are required until i = 0 to be n, i.e. the average number of
times an element will need to be put back into the input queue. Basically,
a trace C1(Q0, Q0 +Q1) α1

1,α
1
2,...−−−−→ P1 will need to be taken n times to ensure

that, on average, at least one element is enqueued into output queue Q1.

C1(Q0, Q0 +Q1) α1
1,α

1
2,...−−−−→ P1

...−→ Pn

Since this parameter can be estimated from the sized types, we can again
assume that a structure σ is parameterised on it, and can use this in the
high-level cost models. Again, we need to use resize to generate the ap-
propriate cost equation:

cost(fb σ) = if (|σ| = 0)
then cost(σ)
else cost(σ) + cost(fb (resize(σ, σ)))
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Divide-and-Conquer The divide-and-conquer skeleton requires a little
more work, since we first need to transform the structure so that it matches
the skeleton. Since this transformation can be done in a fairly standard
way, we initially focus on the cost of the divide-and-conquer skeleton:

qdc′(0, F, g, h)(Q0, Q1) = qfun(1 + hyloFg h)(Q0, Q1)
qdc′(n, F, g, h)(Q0, Q1) = qfun(D2(F, h))(Q0, q0 × q1 × · · · × qm)

‖ qdc′(n− 1, F, g, h)(q1, q
′
1)

‖ . . .
‖ qdc′(n− 1, F, g, h)(qm, q′m)
‖ qfun(C2(F, g))(q0 × q′1 × · · · × q′m, Q1)

Since we define this skeleton inductively for some “depth” n, we start with
the base case (depth 0), which is equivalent to the cost of an atomic function:

cost(dc0,F σ1 σ2) = cost(fun (hyloF σ1 σ2))

For the recursive case, we assume 2 + m traces, one for each “recursive”
case, plus the trace of the divide and the trace of the combine parts. Again,
we assume that the traces can be safely interleaved, so we can calculate the
cost of the total trace as:

time(α1, . . .) = max



time(αdiv, . . .),
time(αqdc, . . .),
time(. . .),
time(αqdc, . . .),
time(αconq, . . .)


= max


time(αdiv, . . .),
time(αqdc, . . .),
time(αconq, . . .)



We can then associate this cost equation with the costs of the high-level
structures by substituting the cost of the relevant trace. Note that the
elements in the queues decrease in size for each level that we descend into the
divide-and-conquer structure. Assuming that the structures are annotated
with sizes, we need to update the sizes accordingly in the recursive call to the
cost of a divide-and-conquer structure, and in the combine part. Although
we can once again use resize, we assume that the actual sizes have been
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correctly updated in the dc structure:

cost(dcn,F σ1 σ2) = max


cost(D(F, σ2)),
cost(dcn−1,F σ1 σ2),
cost(C(F, σ1))



4.4 Real vs. Predicted Speedups

In order to validate our results, we have run a number of examples to com-
pare the actual speedups against those that are predicted. In Section 4.3.3
we have shown that most of the cost equations can be derived in a system-
atic way from the operational semantics. These cost equations provide an
estimation of the impact of the parallel overhead on the run-times. This
section shows how this overhead affects the real run-times, and compare it
with the predicted speedups for some of our parallel structures. We use two
different real multicore machines: titanic, a 800MHz 24-core, AMD Opteron
6176, running Centos Linux 2.6.18-274.e15; and lovelace, a 1.4GHz 64-core,
AMD Opteron 6376, running GNU/Linux 2.6.32-279.22.1.e16. All speedups
shown here were calculated as the mean of ten executions.

Matrix Multiplication

Figure 4.4 shows the real vs. predicted speedups for task farms, using a
simple matrix multiplication. The matrix multiplication implementation is
a divide-and-conquer, and the parallel structure used exploits the reforesta-
tion of the matrix multiplication algorithm. The input pair of matrices is
subdivided until they are smaller than N/24×N/24. These small matrices
are then passed to a task farm, which multiplies them in parallel, and the
results are finally recombined. We can see in Figure 4.4 on page 135 that
the cost models accurately predict a lower bound on the speedups.

Image Merge

Figure 4.5 on page 136 shows the speedups for the image merge example,
parallelised as a farm of a pipeline. Since the worker of the task farm is a
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Figure 4.4: Speedup (solid lines) vs prediction (dashed lines). Matrix Mul-
tiplication of matrices of sizes N×N (titanic).

parallel pipeline, we use a maximum of 12 workers to use the 24 cores of
titanic. Note that overhead of adding more workers greatly increases with
this parallel structure. This is due to the small cost of the computation
done at each of the pipeline stages.

Image Convolution

Figure 4.6 on page 137 shows the speedups for the image convolution ex-
ample. This was originally described as a similar structured expression to
image merge, as the composition of two functions, read and process, but
the cost models predict a different optimal parallel structure, a pipeline of
two farms. Figure 4.6 shows the real vs. predicted speedups of this parallel
structure, with different number of workers in each of the pipeline stages.
Note that the cost models (dashed) accurately predict a tight lower bound
on the speedups.
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Figure 4.5: Speedup (solid lines) vs prediction (dashed lines). Image Merge,
500 input tasks (titanic).

Comparing Functionally Equivalent Parallelisations

Finally, Figures 4.7 and 4.8 on pages 138 and 139 compare different parallel
structures in the form of farms and pipelines for the image convolution
example. These parallel structures are:

• A single task farm.

• A task farm of a parallel pipeline.

• A pipeline of two task farms.

• A task farm, where each worker is a parallel pipeline with a sequential
computation in the first stage, and another task farm in the second
stage.
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Figure 4.6: Speedup (solid lines) vs prediction (dashed lines). Image Con-
volution, 500 input tasks (titanic).

Note that for comparing the pipeline of two farms, the first stage has a fixed
number of workers: 6 on titanic, 12 on lovelace. This implies that running
this parallel structure on less than 6 (or 12) cores yields no speedups, and
even a slowdown. Note that the cost models produce a tight prediction on
both titanic and lovelace. This suggests that the predictability of the cost
models scales up to 64 cores. In lovelace, the speedups drop significantly
when using 56 to 62 cores, but they get significantly higher when using the
full 64 cores. We currently do not have an explanation for this behaviour,
but we speculate that it might be related to the frequency scaling. Although
further experiments are needed to determine the cause of this behaviour,
these issues are not crucial for the cost models that were presented in this
chapter, since they rarely happen in our examples.

These examples collectively confirm the experimental results that we
showed in [HBS16], and show that our cost models are able to correctly
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Figure 4.7: Speedup (solid lines) vs predicted (dashed lines). Different
Parallel Structures for Image Convolution, 500 Images 1024 * 1024: titanic

capture queue contentions. We are thus able to predict a safe, tight upper
bound of execution times.

4.5 Discussion

Speedups

The speedups that we showed are meant to illustrate the predictability
and scalabiliy of the underlying queue-based model. Although the exam-
ples were run in 64 and 24-core machines, there could be some benefit in
using this approach on a machine with less cores (e.g. 4). In this case,
instead of trying complex nestings of parallel structures, the StA framework
could be used to decide where to parallelise a program, and automatically
rewrite it to avoid potential errors in the parallelisation process. However,



4.5. DISCUSSION 139

1 4 8 16 24 32 40 48 56 64

14
8

12
16
20
24
28
32
36
40
44
48
52
56

Cores

Sp
ee
du

p
farm_ _

farm_(_ ‖ farm4 _)
farm_ (_ ‖ _)

farm12 _ ‖ farm_ _

Figure 4.8: Speedup (solid lines) vs predicted (dashed lines). Different
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more experiments would be required to determine whether this is useful (i.e.
achieves good speedups) on regular machines with less resources.

Expressiveness

In this chapter, a new operational semantics in terms of queue and thread
safe queue operations was presented. The queue-based model is general
enough to define more complex skeletons. We illustrate this by sketching
how a possible Bulk Synchronous Parallel skeleton. A skeleton following
the BSP model must be a sequence of supersteps. We can use iteration for
this:

bsp(n, f, g)(Qi, Qo)
= superstep(n, f, g)(Qi, Qi +Qo)

The superstep skeleton needs to enqueue values back in Qi for n itera-
tions. The queues Qi and Qo must be tuples of queues, each corresponding
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to a processing unit:

Qi = qi1 × · · · × qim
Qo = qo1 × · · · × qom
superstep(n, f, g)(Qi, Qi +Qo)
= qfun(f)(qi1, q′i1) ‖ · · · ‖ qfun(f)(qim, q′im)
‖ qfun(g′)(q0, q

′
i1 × · · · × q′im, q0 ×Qi +Qo)

This skeleton uses an additional queue, q0, to indicate when the superstep
has finished. It originally contains the value n, and is decreased after each
superstep. The stage that computes qfun(g′) is in charge of the synchro-
nisation. If the value in q0 is zero, the result is produced to the output
Qo. Otherwise, the operation g is applied to the values in the intermediate
queues q′k, and feeds them back to the input queue. Since there is only one
worker in charge of distributing the data to the different Qi, this acts as a
synchronisation stage of the superstep.

Cost Models

The cost models that are derived in this work are reasonably accurate, but
simple. Our approach for deriving the cost of hylomorphisms is based on
deriving recurrence equations. An alternative that is worth exploring is by
Hope and Hutton [HH06]. Hope and hutton define a technique for reasoning
about the space behaviour of hylomorphisms, based on a series of program
transformations that convert the original hylomorphism into a stack-based
abstract machine. It would be interesting to study whether this approach
can be applied to improve time analysis as well.

Summary The simplicity of the queue-based model makes it sufficiently
predictable, so cost models can be defined easily. The main novelty of
this semantics is that it provides both a mechanism for compiling high-
level skeletal programs to low-level parallel programs in terms of shared
queue operations. This queue-based model is also powerful enough to define
more complex and general skeletons. Finally, cost models were derived in a
systematic way from this operational semantics. This close correspondence
between the operational semantics and the cost models has, as advantages,
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that the cost models are sound by construction, and that an automatic
mechanism can be derived. A programmer using this queue-based model to
define the operational semantics of new skeletons can derive, for free, both:
a compilation process to low-level code, and cost equations that statically
predict its run-time behaviour.





Chapter 5

SKI-ing Skeletons:
Parallelising Explicit Recursive
Functions using Applicative
Expressions

I have now presented the full StA framework: Chapter 3 presented a type-
and-effect system for a point-free purely functional language with hylomor-
phisms that can be used to parallelise sequential implementations, and
Chapter 4 provides a mechanism for reasoning about the operational be-
haviour of different parallel structures, including correctness and execution
times. However, the StA framework requires programmers to write their im-
plementations in a point-free style, that is still far from a real programming
language such as Haskell.

This chapter presents the purely functional language HH, and an exten-
sion of its typing system with Structured Arrows. HH is a subset of Haskell,
similar to GHC’s core language, with a rank-1 polymorphic type system,
where recursion is restricted to “regular” recursive functions, i.e. no mutual
or nested recursion is allowed. The current prototype implementation in
https://bitbucket.org/david_castro/skel can be found under the di-
rectory ApplicativeSkel, and provides an implementation of the core part of
the technique, which extracts hylomorphisms out of explicit recursive func-
tions. This extension is a step towards applying the StA framework to a

143
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real functional programming language.

5.1 Parallelising HH Functions

Listing 5.1 on page 145 contains an example of a Discrete Fourier Transform
algorithm, the Cooley-Tukey Fast Fourier Transform algorithm [CT65] im-
plementation in HH. The implementation of fft is equivalent to a Haskell 98
implementation, with the difference that the variables bound by the let-in
expression must be ordered. For example, in Listing 5.1 on page 145, vari-
able n must be defined in Line 6, since it is used in the definition of ws in
Line 7. In Haskell, however, the order in which those definitions appear
could be reversed. The full assumptions and differences between HH and
Haskell are detailed later in this section.

There are many sources of parallelism in Listing 5.1. For example, the
map function in Line 5, and the zipWith functions in Lines 8, 9 and 10.
There is, however, another possible source of parallelism that arises from
the recursive calls to fft in Lines 7 and 8. It is not straightforward to take
the recursive structure of fft into account for parallelising it. However, if
we can rewrite the function fft in Hylo, then it can be parallelised using
structured arrows;

5.1.1 Example | Parallel FFT. A Cooley-Tukey algorithm implementation in
Hylo can be parallelised in a number of alternative ways, as shown below:

hyloT fftc fftd

∼= dcn,T fftc fftd

∼= reducen,T fftc ◦ anaT fftd

∼= . . .

All of the parallelisations in Example 5.1.1 can be derived from a Cooley-
Tukey algorithm implementation as a hylomorphism, hyloT fftc fftd. By
using the technique described in this chapter, similar parallel implementa-
tions can be derived automatically from the sequential implementation in
Listing 5.1.
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Listing 5.1 Cooley-Tukey FFT in HH
1 fft : List Complex → List Complex
2 fft = λ xs.
3 case xs of
4 [x] → [x]
5 xs →
6 let n = length xs
7 ws = map (w n) (fromto 0 (minus n 1))
8 xs’ = halves xs
9 evens’ = fft (π1 xs’)

10 odds’ = zipwith mult ws (fft (π2 xs’))
11 in concat (zipwith plus evens’ odds’)
12 (zipwith minus evens’ odds’)

Listing 5.2 Cooley-Tukey FFT in Hylo
1 T A B C = A + C × (B × C)
2
3 out_fft : List Complex → Complex + List Complex
4 out_fft = λ xs.
5 case xs of
6 [x] → inj1 x
7 xs → inj2 xs
8
9 fftd : List Complex → T Complex (List Complex) (List Complex)

10 fftd = (+2 id (M2 (π1 ◦ π1) (M2 π2 (π1 ◦ π2))
11 ◦ ×2 halves
12 (λ n.map (w n) (fromTo 0 (minus n 1)))
13 ◦ M2 id length)) ◦ out_fft
14
15 fftc : T Complex (List Complex) (List Complex) → List Complex
16 fftc = O2 (λ x. [x]) (uconcat
17 ◦ ×2 (uzipWith plus) (uzipWith minus)
18 ◦ ×2 id (uzipWith mult))
19
20 hfft : List Complex → List Complex
21 hfft = hyloT fftc fftd
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The function hfft in Listing 5.2 on page 145 presents one possible im-
plementation of Listing 5.1 in Hylo. This implementation requires three
components: (i) the functor T that represents the structure of the recursion,
(ii) the “divide” function fftd that divides the inputs into the structure T,
and (iii) the “combine” function fftc that takes an input with structure T
and returns the output list. The parallelisations shown in Example 5.1.1
can be derived using the technique described in Chapter 3. However, it
requires the code in Listing 5.1 to be converted to Listing 5.2.

5.1.1 Translating between HH and Hylo

The aim of this chapter is developing a novel technique for parallelising HH
functions, by associating expressions in the language HH to Hylo, via com-
binatory logic. Converting from a point-wise to a point-free representation
using hylomorphisms has been previously studied [CPP05, Cun05]. The tool
DrHylo [CPP06] implements a translation scheme from typing judgements to
a point-free representation of the corresponding point-wise program, based
on [HIT96] and [Cun05].

The alternative proposed in this chapter is based on the close relation
between λ-calculus and combinatory logic [Sch24, Cur30]. Thanks to this
close correspondence, combinatory logic can be used as a “bridge” between a
point-wise and point-free representations which is better suited for finding
parallel structures. DrHylo relies on a particular interpretation of typing
contexts, together with syntactic restrictions on recursive functions, which
can be removed by using combinatory logic. The main differences between
DrHylo and the applicative approach are:

1. Parts of the typing context can be “ignored” for the point-wise to
point-free transformations. This makes it possible to translate to
point-free style only the relevant parts of a function definition, leav-
ing the variables that are irrelevant to introduce/change the parallel
structure of a program.

2. DrHylo interprets the variables in the context as tuples. This inter-
pretation is not necessary using applicative structures, and whenever
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a composition of functions is required, an uncurrying transformation
can be performed.

3. There is a single syntactic construct associated with application, and
it does not rely on exponentials. This simplifies the reverse trans-
lation. Exponentials arise naturally from applying the uncurrying
transformation to the identity combinator, and they can be avoided
by applying a systematic transformation. Avoiding exponentials can
be useful to fully determine the functions that are being applied at
each stage of the parallel computation.

4. The restriction on recursive functions is placed on the equivalent
point-free representations, and not in the syntactic construct for re-
cursive definitions. This restriction will be enforced only where paral-
lelism is required. This adds some flexibility on the kind of recursive
functions that can be treated.

5.1.2 Stages of the Translation

The different parts of the translation between HH and Hylo are:

1. Relate the HH expressions to applicative expressions, which are ex-
pressions derived from combinatory logic. This relation provides a
mechanism for doing the conversion in a bidirectional way.

2. Two inference algorithms based on the relation between HH and ap-
plicative expressions: (a) an algorithm that infers an associated ap-
plicative expression from a HH expression in a context, and (b) an
algorithm that infers a HH expression from an applicative expression.
By using these inference algorithms, all rewritings done at the ap-
plicative level can be applied to the HH level.

3. Relate applicative expressions to Hylo. Relating an applicative expres-
sion to Hylo is a systematic process.

These different steps in the relation between HH and Hylo are illustrated on
a simplification of the FFT example in Listing 5.1. The working example
is shown in Example 5.1.2.
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5.1.2 Example | A Working FFT example in HH. The example that is go-
ing to be used throughout this chapter will be deriving a parallel implemen-
tation of the simplified FFT implementation below. In this example, a
reducek skeleton is specified. However, this parallel structure could be
automatically derived from the fft implementation.

fft : List Complex → List Complex
∼ reducek _ ◦ _

fft = λ xs. case xs of
[x] → [x]
xs → let n = length xs

xs’ = halves xs
in comb ( genWs n) (fft (π1 xs’))

(fft (π1 xs’))

In this example, the comb function performs all the zipWith and append
operations in Lines 10, 11 and 12 of Listing 5.1, and genWs performs the
map operation done in Line 7 of Listing 5.1. Before explaining the first
stage of the translation, an explanation of the HH language and applicative
expressions is provided.

5.2 The HH and Applicative Languages

5.2.1 The HH Language

The language HH (see Figure 5.2 on page 150) is a non-strict functional lan-
guage that can be described as a subset of Haskell 98, with some differences.
A program in HH is a sequence of datatype and function definitions, where
there is no mutual recursion. Unlike in Haskell, a function or datatype can
only be used if it has been previously defined. The type of function defini-
tions must be declared before the body of the definition. The HH expressions
are variables, primitive tuple and either type operations, λ-abstractions, ap-
plication of, let-in expressions and case expressions. To illustrate a few
of the differences between Haskell and HH, consider the code listings in
Figure 5.1 on page 149. First, in HH type signatures are described with a
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Listing 5.3 Cooley-Tukey FFT in HH
1 fft : [Complex] → [Complex]
2 fft = λ xs.
3 case xs of
4 [x] → [x]
5 xs →
6 let n = length xs
7 ws = map (w n) (fromto 0 (minus n 1))
8 xs’ = halves xs
9 evens’ = fft (π1 xs’)

10 odds’ = zipwith mult ws (fft (π2 xs’))
11 in concat (zipwith plus evens’ odds’)
12 (zipwith minus evens’ odds’)

Listing 5.4 Cooley-Tukey FFT in Haskell
1 fft :: [Complex] -> [Complex]
2 fft [x] = [x]
3 fft xs = zipWith (+) evens’ odds’ ++ zipWith (-) evens’ odds’
4 where
5 (evens, odds) = halves xs
6 evens’ = fft evens
7 odds’ = zipWith (*) ws (fft odds)
8 ws = map (w n) (fromTo 0 (minus n 1))
9 n = length xs

Figure 5.1: Comparison between implementations of Cooley-Tukey FFT in
HH and Haskell

single colon, instead of Haskell’s double colon. In HH, functions by pattern
matching must be defined using λ-expressions and case-expressions, unlike
in Haskell, where functions can be defined directly by pattern matching, and
let expressions and λ-abstractions can use pattern matching (irrefutable
patterns). There is no where clause in HH, and the definitions must be
introduced in order, while in Haskell there are where clauses. Note that
that the code in HH could be directly implemented in Haskell, subject to
relatively minor syntactic changes (e.g. changing : to :: in type signatures.
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〈prog〉 ::= 〈def 〉 ‘;’ 〈prog〉
| 〈def 〉

〈def 〉 ::= ‘data’ 〈uvar〉 〈uvars〉 ‘=’ 〈data-alts〉
| 〈var〉 ‘:’ 〈type-scheme〉
| 〈var〉 ‘=’ 〈expr〉

〈data-alts〉 ::= 〈data-alt〉 ‘|’ 〈data-alts〉
| 〈data-alt〉

〈data-alt〉 ::= 〈uvar〉 〈types〉

〈type-scheme〉 ::= ∀ 〈uvars〉‘.’〈type〉
| 〈type〉

〈types〉 ::= 〈type〉 〈types〉
| 〈type〉

〈type〉 ::= 〈uvar〉
| 〈type〉 ‘→’ 〈type〉
| 〈type〉 ‘+’ 〈type〉
| 〈type〉 ‘×’ 〈type〉
| 〈var〉 〈types〉

〈expr〉 ::= 〈var〉
| 〈prim〉
| ‘λ’〈vars〉‘.’〈expr〉
| 〈expr〉 〈expr〉
| ‘let’ 〈bndrs〉 ‘in’ 〈expr〉
| ‘case’ 〈expr〉 ‘of’ ‘{’ 〈alts〉 ‘}’

〈bndrs〉 ::= 〈bndr〉 ‘;’ 〈bndrs〉
| 〈bndr〉

〈bndr〉 ::= 〈uvar〉 ‘=’ 〈expr〉

〈alts〉 ::= 〈alt〉 ‘;’ 〈alts〉
| 〈alt〉

〈alt〉 ::= 〈pat〉 ‘→’ 〈expr〉

〈pat〉 ::= 〈var〉
| 〈uvar〉 〈pats〉

〈pats〉 ::= 〈pat〉 〈pats〉
| 〈pat〉

Figure 5.2: HH Syntax
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5.2.2 Algebraic Data Types

The HH language supports the definition of algebraic datatypes. An alge-
braic datatype is defined as an upper case variable, possibly followed by
a number of upper case variables, and finally by a number of alternatives,
separated by the ‘|’ character. Each of the alternatives is defined by a
constructor applied to a number of types.

5.2.1 Example | The List Datatype in HH. The list datatype is defined as
an empty list, Nil, or a cons-cell with an element of type A as the head of
the list, followed by a tail of type List A.

data List A = Nil
| Cons A (List A)

5.2.2 Example | The Binary Tree Datatype in HH. The tree datatype is
defined in an analogous way.

data Tree A = Leaf
| Node A (Tree A) (Tree A)

5.2.3 Syntax of HH

The syntax of HH (see5.2) is a subset of Haskell, with some minor syntactic
differences. These are:

1. Type annotations are specified using single colon, :, instead of double
colon ::.

2. Type annotations must be provided for top-level definitions.

3. Code blocks and definitions are always separated by a separator char-
acter. In the case of data alternatives, it is |. Case blocks, let-in
definitions and top-level definitions are separated by a semicolon, ;.
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4. Either types are named +, and tuple types by ×. For example, a
3-tuple that contains types A, B and C is represented as A× B× C1.

HH Type System

The type system of HH is a predicative rank-1 polymorphic type system [Pie02].

Rank-1 In a polymorphic type system, some types will depend on type
variables. This is specified with the ∀ construct. Consider, for example, the
type of the length function for lists. This type accepts lists that contain
elements of any type, so the type annotation is parameterised by a type
variable A.

length : ∀ A. List A → Int

Rank-1 restricts the position of the quantifiers to the outermost level of
the type. In general, for any fixed k, a rank-k polymorphic type system
restricts the position of the quantifiers to the left of less than k arrows. A
rank-n or higher-rank type system is one in which quantifiers may occur in
unrestricted positions.

5.2.3 Example | A Rank-2 Type. In this example, the position of ∀ appears
to the left of one arrow, here marked with the superscript ‘∗’, →∗, so this
type would not be valid in a rank-1 polymorphic type system, but it is a
valid rank-2, or higher-rank type.

f : (∀ A. (A→ A)→ A→ List A︸ ︷︷ ︸
scope of A

) →∗ List Int

Predicative Types parameterised by type variables are called type schemas.
In a predicative type system, type variables cannot be instantiated by type
schemas.

1For presentation purposes, some symbols and keywords are “prettified” in this doc-
ument. In a real implementation, the symbol ‘*’ will be used instead of ‘×’, and the
keyword forall will be used instead of the symbol ∀.



5.2. THE HH AND APPLICATIVE LANGUAGES 153

Kinds Kinds can be thought of as the types of the types. They are used
to statically check that a type is well-formed.

〈kind〉 ::= ‘Type’
| 〈kind〉 ‘→ ’ 〈kind〉

The kind ‘Type’ is the kind of the types. Any primitive, constant type
has this kind. For example, the fact that “Int is a type” can be stated as
Int : Type. Functions, products, either types have kind ‘Type’.

Type constructors have kind ‘→’. Type constructors take a kind as an
argument, and produce a kind as a result. For example, the type constructor
List has kind Type→ Type. The type constructor List applied to the type
Int is a type, List Int : Type. However, the type constructor List :
Type → Type, applied to the type constructor Tree : Type → Type is not
“well kinded”. Every type in the language HH is kind-checked with kind
Type. A kind environment is used for kind-checking purposes. A well-
kinded data definition data T A1 · · ·An = · · · extends the environment
with T : K1 → · · ·Kn → Type, where Ki are the kinds inferred for the
typesAi in the definition of T . The kind inference rules for HH types and
data definitions are entirely standard.

Inference Rules

The set of rules that define the HH type system is given in Figure 5.3
on page 154. These rules are entirely standard for a predicative rank-1
polymorphic type system, and they have the standard soundness property.
As usual, the soundness property of this type system is the formalisation
of the notion that no type error can happen in run-time. In Section 5.3,
these inference rules will be modified slightly so that they can be used to
statically check whether a program can be parallelised according to some
given parallel structure, and they can be used to systematically explore the
space of all possible alternative parallel implementations for a given function
in HH.
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Gen
Γ `M : T A 6∈ fv(T )

Γ `M : ∀A. T

Spec
Γ `M : ∀A.T 1

Γ `M : T 1[T 2/A]

Var Γ, x : T ` x : T

Abs
Γ, x : T 1 `M : T 2

Γ ` λx.M : T1 → T2

App
Γ `M : T1 → T2 Γ ` N : T 1

Γ `M N : T 2

Case

Γ `M : T 1
Γ `a p1 → N1 : T1 → T2

· · ·
Γ `a pk → Nk : T1 → T2

Γ ` case M of {p1 → N1; · · · ; pk → Nk} : T 2

Let
Γ, x : T 1 `M : T 1 Γ, x : T 1 ` N : T 2

Γ ` let x = M in N : T 2

Alt
Γ,Γ′ ` N : T 2 Γ `p p : T 1; Γ′

Γ `a p→ N : T1 → T2

VPat Γ `p x : T 1; [x : T 1]

CPat

Γ ` C : T11 → · · · → T1m → T2
Γ `p p1 : T 11; Γ1 · · · Γ `p pm : T 1m; Γm

Γ `p C p1 · · · pm : T 2; Γ1, . . . ,Γm

Figure 5.3: Typechecking HH Expressions.

5.2.4 Applicative Structures

The technique that is described in this chapter relies on combinatory logic,
instead of the more common approach of using supercombinators [Hug82].
The reason for this is that, while supercombinators are good for compiling,
for finding specific instances of common point-free primitives (e.g. function
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composition) is simpler when working with a small, fixed set of combinators.
Applicative operators have been used for concurrency and parallelism

before. Marlow et al. [MBCP14] define Haxl, a concurrency abstraction
built on top of Haskell Applicative Functors, that allow implicit concur-
rency to be extracted from Monad and Applicative instances. Unlike their
approach, which is based on the implicit parallelism of the <*> applica-
tive operator, our approach uses applicative structures to discover potential
instances of parallel patterns.

Combinatory Logic

Combinatory logic [Sch24, Cur30] was originally defined as a notation for
mathematical logic, and it was later used as a model of computation [Bar84].
Combinatory logic is based on the notion of combinators: higher-order func-
tions that are defined in terms of function application, and other previously
defined combinators. Common examples of combinators are the S, K and I
combinators:

S f g x = f x (g x) K x y = x I x = x

The S combinator is a generalised form of application, where S f g x applies
f to g, after passing x to f and g. The K combinator is the constant
combinator. The constant combinator K applied to some x, K x, is a function
which always returns x, given any input. Finally, the I combinator is the
identity combinator, which always returns the same input unaltered. Note
that some combinators could be implemented in terms of other combinators.
For example, the I combinator is extensionally equal to S K K and S K S.

Function composition Two additional combinators, B and C, originally
introduced by Schönfinkel [Sch24] and rediscovered by Haskell Curry [Cur30],
capture different notions of function composition. The C combinator can be
thought of as a “swap function”, that exchanges the order of the arguments
that are passed to f . The argument to C f x is passed to f , which is then
applied to x:

C f x y = f y x
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f ◦ g = λx.f (g x) = [x](f (g x))

= S (Kf) (S (Kg) I) = S (Kf) g

Figure 5.4: Function composition, represented using the S and K combina-
tors, derived using bracket abstraction.

Cf x = S f (K x)

It is possible to define C in terms of S and K as well. The resulting expression
is, however, more complex than that of the B combinator, and it is not of
interest for the purposes of this chapter.

The B combinator is equivalent to the usual notion of function compo-
sition, and the technique on this chapter relies on finding instances of this
combinator in the source code.

f ◦ g = B f g = λx.f (g x)

Since it can be defined using S and K combinators (see Figure 5.4 on
page 156), the technique that we describe in this chapter relies on find-
ing the following instances of the S and K combinators.

B = S (KS) K

B f g = S (KS) K f g = (KS f) (K f) g = S (K f) g

To associate terms in HH, we will rely on standard techniques for trans-
lating λ-expressions to combinator expressions. An algorithm for translating
from λ-expressions to combinatory logic is generally known as abstraction
elimination [Bar84]. One of the possibilities for performing abstraction
elimination is through bracket abstraction, which is a process that takes
a variable x, an expression E, and produces an expression, [x].E that is
extensionally equal to λx.E. An example of this is Turner’s bracket ab-
straction [Tur79]:

[x]x = I
[x]y = K y
[x](E1 E2) = S [x]E1 [x]E2
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Applicative Expressions

Generally, combinator expressions are built by using only a set of prede-
fined combinators and application. Expressions that share this pattern are
generally called applicative, and this has been captured by the Haskell Ap-
plicative type class. In this chapter, the term ‘applicative expressions’ is
used to refer to terms defined using the specific syntax in Definition 5.2.1.

Syntax of Applicative Expressions

The syntax of applicative expressions, with atomic termsM, and primitive
operations P , is defined as follows.

5.2.1 Definition | Syntax of Applicative Expressions.

M ∈M p ∈ P

ai ∈ AM ::= [M ] | p | 〈〉n | @n
m a1 · · · am

Applicative expressions are parameterised by the domainM. If M is some
term in domainM, then [M ] is an atomic expression. If p is in the domain
of primitive operations, p ∈ P , then p is an applicative expression. The
applicative expression 〈〉n is equivalent to n applications of the K combinator,

i.e. 〈x〉n =
n times︷ ︸︸ ︷

K (. . . (K x)). In other words, 〈〉n is the composition of n K
combinators. If n = 0, then 〈〉0 = I. Finally, the combinator @n

m a1 · · · am
is the application of m terms, in a context of n elements, and is similar to
the Φn

m defined by Curry et al. [CFC58]. Applying a @n
m combinator to n

inputs is equivalent to applying the n inputs to the a1···m terms, and then
applying the resulting a2···m to the resulting a1. Since we require @n

m to be
fully applied, the subscript is generally omitted.

@0 (@n a1 · · · am) x1 · · ·xn
= @0 a1 x1 · · ·xn (@0 a2 x1 · · ·xn) · · · (@0 am x1 · · ·xn)

The @ applicative structure can be defined in terms of S and K. We show
below the case for @n

2 , since @n
m can be defined by nesting @n

2 :

@n =

I if n = 0

S ◦ (S (K @n−1)) if n > 0
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5.2.1 Lemma λx1 · · · xn.M N ≈ @n (λx1 · · · xn.M) (λx1 · · · xn.N)

Proof By induction on n.

Case n = 0.

M N = @0 M N = I M N = M N.

Case n = m+ 1.

λx x1 · · · xm.M N

≈ { Induction Hypothesis }

λx.@m(λx1 · · · xm.M) (λx1 · · · xm.N)

≈ { Apply Bracket Abstraction }

[x].@m(λx x1 · · · xm.M) (λx x1 · · · xm.N)

≈ { Unfold Bracket Abstraction }

S(S(K @m)(λx x1 · · · xm.M)) (λx x1 · · · xm.N)

≈ { Fold Function Composition }

(S ◦ (S(K @m)))(λx x1 · · · xm.M) (λx x1 · · · xm.N)

≈ { Fold Definition of @ }

@m+1(λx x1 · · · xm.M) (λx x1 · · · xm.N)

�

Notation and Assumptions

The work in this chapter uses the following notation and assumptions. The
usual juxtaposition, a1 a2, is used instead of explicitly writing @0 a1 a2.
Recall that the composition of n K combinators is written 〈〉n. Applying n
K combinators to an expression, 〈〉n a, is written 〈a〉n. The notation 〈a〉im
stands for @i

m+1 〈a〉i. Since the combinators @ are required to be fully
applied, the subscript is omitted.

〈a〉i a1 · · · am = @i 〈a〉i a1 · · · am



5.2. THE HH AND APPLICATIVE LANGUAGES 159

The composition operation is defined in terms of @ and 〈〉1:

a ◦ b = 〈a〉1 b

The work in this chapter is developed modulo associativity of ◦:

a ◦ b ◦ c = a ◦ (b ◦ c) = (a ◦ b) ◦ c

= 〈〈a〉1 b〉1 c = 〈a〉1 (〈b〉1 c)

The following notation is used for sum and product types. Recall that &n is
a n-tuple constructor, i.e. &n x1 · · · xn is a tuple of n elements, (x1, . . . , xn).
The usual product morphism is defined as follows:

Mn a1 · · · an = 〈&n〉1n a1 · · · an

The expression Mn a1 · · · an is a function that takes one argument, and
returns the n-tuple that results from applying the ai to the input:

(Mn a1 · · · an) x = (a1 x, . . . , an x)

The product functor is defined in terms of the product morphism and pro-
jection operations.

×n a1 · · · an =Mn (a1 ◦ π1) · · · (a1 ◦ πn)

The expression (×n a1 · · · an) is a function that, when applied to a tuple
(x1, . . . , xn), it returns the tuple (a1 x1, . . . , an xn). Finally, the sum functor
is defined in an analogous way to the product functor:

+n a1 · · · an = On (inj1 ◦ a1) · · · (injn ◦ an)

The expression (+n a1 · · · an) is a function that takes some inji x, for
i ∈ [1 · · ·n], and returns inji (ai x).

Remark By using a Church-encoding of sums and products, primitive op-
erations could be entirely represented using applicative expressions:

&i = @i+1 |i0 |0i · · · |i−1
1 Oi = @i+1 |i0 |0i · · · |i−1

1

πji = @1 I |ij−i injji = @j+1 |ij−i |0j
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However, this representation adds no benefit for the purpose of parallelising
patterns of recursion. In order to reason about patterns of recursion and
parallelism, the usual product and sum combinators, Mi and Oi, expose more
structure than directly working with the church encoding of those primitive
types. In the rest of this chapter, tuple constructors, projections, sum
injections and either combinators will be considered primitive operations,
as shown in Figure 2.5 on page 42.

5.3 Structure Checking Relation

This section contains a description of the translation from HH to AHH, i.e.
applicative structures that embed HH terms as atomic expressions. Recall
the code of the FFT working example in Example 5.1.2:

fft : List Complex → List Complex
∼ reducek _ ◦ _

fft = λ xs. case xs of
[x] → [x]
xs → let n = length xs

xs’ = halves xs
in comb (genWs n) (fft (π1 xs’))

(fft (π1 xs’))

The type of the fft function is annotated with the structure reducek _◦_.
This structure contains two holes, represented with the underscore charac-
ter, _. Chapter 3 describes a normalisation process that takes a parallel
structure, and turns it into a composition of hylomorphisms, which can then
be compared with the program structure. The normalised parallel structure
for this example is shown below:

reducek _ ◦ _ * cata_ _ ◦ _.

This implies that the “program structure” must be equivalent to the com-
position of a catamorphism and some other function. In order to check this
equivalence, a structure must be extracted from fft, normalised and then
compared with the target structure. Extracting the structure from fft is
done in two stages:
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fft ∼ Dfft Γ (@1 (〈O2〉1 (〈Cons〉2 |10 〈Nil〉2)
(@2 (@3 (〈comb〉4 (〈genWs〉4 |21)

(〈fft〉4 (〈π1〉4 |30))
(〈fft〉4 (〈π2〉4 |30)))

(〈halves〉3 |11))
(〈length〉2 |10)))

(〈out([x], xs)〉1 I))

(a) The fft (Example 5.1.2, page 148) associated structure.

fft ∼ Dfft Γ (O2 (〈Cons〉1 I 〈Nil〉1)
(〈comb〉1 (genWs ◦ π1) (fft ◦ π2,1) (fft ◦ π2,2)
◦ M2 π2 (halves ◦ π1) ◦ M2 I length)

◦ out([xs], xs))

(b) Simplified fft associated structure.

1. Obtain an implementation of fft in the A language of applicative
expressions: fft ∼ a. The applicative expression a is known as the
associated structure of fft.

2. Find a hylomorphism, or composition of hylomorphisms, in the struc-
ture of fft. This may require rewriting the structure a into an equiv-
alent a′. The equivalent implementation of a′ as a composition of
hylomorphisms, h, is captured by relation: a′ l h .

Building this technique on applicative expressions has several advantages.
First, applicative expressions are abstractions built on top of a well-known
theory, combinatory logic, and this has the crucial advantage that the results
available for combinatory logic can be reused and extended for rewriting and
obtaining a structure from a function. This is illustrated by the definition
of the technique for extracting hylomorphisms from applicative structures,
in Section 5.5.

This section focuses on the first stage, and presents the novel associated
structure relation (Definition 5.3.1), that associates HH expressions with
semantically equivalent applicative expressions. This relation contains, as
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novel features:

1. A compositional approach to point-free program transformations that
uses a single construct for representing application. This contrasts
the more common usage of exponentials to translate an application
of two terms in a context. Exponentials will arise naturally from an
uncurrying transformation of the application construct @.

2. A new structure, called D, for representing definitions. This structure
is used to focus the point-free transformation on the relevant parts of
the program, by ignoring variables that are irrelevant to the paralleli-
sation of a function.

The associated structure of the FFT example above is shown in Figure 5.5a
on page 161. There are two elements that deserve commenting in this
structure. First, it is built entirely using the application construct, @, the
constant construct, 〈〉i, primitive operations, πi and O, and free variables.
These constructs are derived from combinatory logic, as was shown in Sec-
tion 5.2, so the properties derived from combinatory logic can be applied to
systematically simplify it to the structure Figure 5.5b (see Section 5.5).

Extracting a hylomorphism from the simplified structure in Figure 5.5b
is shown in Section 5.5. This section contains a presentation on how to
derive the structure in Figure 5.5a from the code in Example 5.1.2, by
using the associated structure relation.

5.3.1 Associated Applicative Structures

5.3.1 Definition | Associated Structure Relation. A term M “has associ-
ated structure” a in context Γ = [x1, . . . , xn],

Γ `M ∼ a

a is a combinator expression such that a Γ ≈M , where Γ = x1 · · · xn.

5.3.2 Definition | Structure-Annotated Types. A type a ∼ A is a “struc-
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ture annotated type” such that for any term M and context Γ,

Γ `M : a ∼ A ⇔ Γ `M ∼ a ∧ Γ `M : A.

The type system in Figure 5.3 on page 154 can be extended to anno-
tate types with associated structures, by using the Associated Structure
Relation. The full rules for the Associated Structure Relation are given in
Figure 5.7 on page 171.

Variables

Consider typechecking a variable in a context:

Γ, x : A ` x : A

Generally, the notation used for stating that a variable x occurs in an en-
vironment Γ with type A is Γ, x : A. However, if Γ is defined as an ordered
sequence of pairs variable-type, then variable x can occur in any position k,
1 ≤ k ≤ n, inside Γ = x1 : T1, . . . , xn : Tn.

x1 : T 1, . . . xk−1 : T k−1, x : A, xk : T k, . . . xn : Tn ` x : A

The associated structure of variables can be obtained from the context,
using bracket abstraction:

[x1]. . . . [xk−1]. [x]. [xk]. . . . [xn]. x

Assuming that none of the xi, with i > k, are equal to x, the following
simplification is applied.

[x1]. . . . [xk−1]. [x].
n−k times︷ ︸︸ ︷

K (. . . (K x) . . .)
= [x1]. . . . [xk−1]. [x]. 〈x〉n−k = [x1]. . . . [xk−1]. 〈〉n−k

Finally, since none of the remaining xi occur free in the RHS of the equation,
the remaining square abstractions can be simplified to k− 1 applications to
the K combinator.

[x1]. . . . [xk−1]. [x]. [xk]. . . . [xn]. x = 〈〈〉n−k〉k−1
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[x].E1 E2 = @1 ([x].E1) ([x].E2)

Γ ` E1 : A→ B Γ ` E2 : A
Γ ` E1 E2 : B

Figure 5.6: Relation between bracket abstraction and application typecheck-
ing.

The following notation is used:

|k−1
n−k = 〈〈〉n−k〉k−1

The structure-annotated inference rule for variables is show below. The
notation Γ(x) = k, n is used o represent that variable x is in Γ in position
k of a context of size n.

Var
Γ(x) = k, n

Γ ` x ∼ |k−1
n−k

Abstraction

Abstraction is handled by introducing variables in the context. Figure 5.6
illustrates this. By introducing variable x in the context Γ, the application
of E1 to E2 can be translated to an instance of @1. Introducing a variable
in a context is handled by the rule for lambda abstraction. The rule is:

Abs
Γ, x `M ∼ a
Γ ` λx.M ∼ a

Application

The HH application is translated to application nodes @i, where i is the
size of the context in which the application occurs. Recall that M ∼ a in
context Γ means that a Γ ≈M . Using bracket abstraction, the application
M N in context Γ can be rewritten as follows:

M N = (λΓ.M N) Γ

By using the property of applicative application, this is rewritten to:

M N = (λΓ.M N) Γ = (@i (λΓ.M) (λΓ.N)) Γ
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The final rule is, therefore:

App
Γ `M ∼ a1 Γ ` N ∼ a2 n = |Γ|

Γ `M N ∼ @n a1 a2

Case Expressions

The only combinator that deals with “alternatives” is the either combinator
in P , Oi. Case expressions must therefore use this combinator. However,
pattern matching alternatives use algebraic datatypes. For example,

data Tree a = Leaf | Node a (Tree a) (Tree a)
...
... case t of {

; Node a (Node b c) d -> f a b c d
; Node a Leaf b -> g a b
; Leaf -> z
}

...

These alternatives need to be converted to a sum type so that they can be
handled by the Oi construct. This is done by the out function. The out
function converts a list of possibly nested pattern matching alternatives into
a list of alternatives of an equivalent either type.

out (p1, . . . , pk) =



λx.case x of

p1 → inj1 TP[[p1]]

· · ·

pk → injk TP[[pk]]

The translation TP[[p]] stands for “tuple pattern”, and is a tuple of all vari-
ables bound by pattern p1.

TP[[x]] = x

TP[[C p1 · · · pn]] = (TP[[p1]], · · · , TP[[pn]])

In the example above,

out (Node a (Node b c) d, Node a Leaf , Leaf) =
λ x. case x of {
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; Node a (Node b c) d -> inj1 (a,(b,c),d)
; Node a Leaf b -> inj2 (a,b)
; Leaf -> inj3 ()

}
...

Note that the out function is a closed term. This implies that square
abstraction can be used in any applicative expression that embeds the out
function as atomic structure. Using this out function, the original case
expression is equivalent to:

case t of {
; Node a (Node b c) d -> f a b c d
; Node a Leaf b -> g a b
; Leaf -> z
}
≈ (O3 f’ g’ z’)

(out(Node a (Node b c) d, Node a Leaf, Leaf) t)

In the above example, the functions f’ and g’ are used instead of f and g.
These functions roughly correspond to the uncurrying of f and g:

f’ = 〈f〉1 π1 (π1 ◦ π2) (π2 ◦ π2) π3

g’ = 〈g〉1 π1 π2

z’ = 〈z〉1

This translation is captured by the ‘Case’ rule below.

Case

Γ `M ∼ aMT n = |Γ|
Γ `a p1 → N1 ∼ a1 · · · Γ `a pk → Nk ∼ ak

Γ ` case M of {p1 → N1; · · · ; pk → Nk}
∼ 〈Ok〉n a1 · · · ak (〈{out(p1, . . . , pk)}〉n aM)

The case rule uses a different rule for case alternatives. The rules `a as-
sociate a case alternative p→N , with an applicative structure that takes a
tuple with all variables bound by the pattern p, and returns N :

Alt
Γ, x ` N [p ↓ x] ∼ a x 6∈ Γ ∧ x 6∈ fv(N)

Γ `a p→ N ∼ a
Pattern-variable substitution is denoted by N [p ↓ x], and corresponds to
applying a substitution that turns any variable in p by a projection from
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the tuple TP[[p]] in term N .

[x ↓ y] = [y/x]
[C p1 · · · pn ↓ y] = [p1 ↓ π1 y] ∪ · · · ∪ [pn ↓ πn y]

5.3.1 Lemma | Empty Pattern Substitution. For all pattern p, the substi-
tution [p ↓ TP[[p]]] is equivalent to an empty substitution. I.e.

[p ↓ TP[[p]]] = [].

Proof By induction on p,
Case | p = x. [x ↓ TP[[x]]] = [x ↓ x] = [x/x] = []
Case | p = C p1 · · · pn.

[C p1 · · · pn ↓ TP[[C p1 · · · pn]]] {definition of TP}
= [C p1 · · · pn ↓ (TP[[p1]], · · · , TP[[pn]])] {definition of ↓}

= [p1/TP[[p1]]] ∪ · · · ∪ [pn/TP[[pn]]] {induction hypothesis}
= [] ∪ · · · ∪ [] = []

5.3.2 Lemma | Pattern η-equivalence. For all expression M , variable x and
pattern p,

M = (λx,M [p ↓ x]) TP[[p]].

Proof

(λx,M [p ↓ x]) TP[[p]]
= {β-reduction}

M [p ↓ TP[[p]]]
= {Lemma 5.3.1}
M �

Let-in Expressions

A let-in expression is semantically equivalent to a λ-abstraction followed by
an application:

let x = M in N ≈ (λx.N) M
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One possible way to assign a combinator structure to a let-in expression
is, therefore, to use a structure equivalent to an abstraction followed by an
application.

Let
Γ, x ` N ∼ a1 Γ `M ∼ a2

Γ ` let x = M in N ∼ @n a1 a2

For treating recursive definitions, this structure can use the Y fixpoint com-
binator:

Let-rec
Γ, x ` N ∼ a1 Γ, x `M ∼ a2

Γ ` let x = M in N ∼ @n a1 (〈Y〉n a2)
This approach has a shortcoming: it does not differentiate any arguments
to M from variables that are already in the context. This makes makes it
difficult to reason about the parallelisation of let-in expressions. Parallelis-
ing M requires knowing how M handles its input, not how the variables in
the context are used. For example, consider a list sorting function, where
the comparison operator is in the context:

let cmp = λx.λy.Min
let sort = λx.case . . . filter (le cmp h) t . . .

The whole structure for this expression would be @n a1 a2, where a1 would
be the structure of sort, and a2 the structure of cmp. Moreover, the struc-
ture for the filter subexpression, inside a1, would have the following shape:

@n |ij (@n |kl |rs |uv) |xy

This contains too much information: the precise location in the context
of every single definition and variable used in this expression. This makes
handling these cases cumbersome. For parallelising function definitions, it
is enough to know how it handles its inputs, leaving the other definitions as
free variables:

〈filter〉n (〈le cmp〉n |uv) |xy
In the above structure, it is clear that the inputs |uv and |xy are passed to
filter, le and cmp.

To simplify the treatment of let-in definitions, we define the new struc-
ture D. Dx Γ a denotes the definition of x, in a context Γ, with structure a,
where the variables in Γ may be used as free variables by a. For structure
checking definitions, the context Γ is split in two parts: ∆; Γ. The vari-
ables in ∆ are not going to be used to obtain a point-free representation
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of a program, i.e. they do not affect the potential parallelisations of the
definition.

Let
∆; Γ, x ` N ∼ a1 ∆ ++ Γ, x; [] `M ∼ a′2 a2 = Dx Γ a′2

∆; Γ ` let x = M in N ∼ @n a1 a2

5.3.3 Definition | Recursive Definitions. The structure Dx Γ a represents a
definition, in context Γ, with structure a. This structure is equivalent to:

Dx Γ a def= [Γ] (Y ([x] a)).

Note that if x 6∈ fv(a), then

Dx Γ a = [Γ]a.

The rules for variables need to be updated due to this new environment
∆. The rest of the associated structure rules remain the same. For variables
in Γ, the rule does not change:

Var
Γ(x) = k, n

∆; Γ ` x ∼ |k−1
n−k

The rule for variables occurring in ∆ is as follows:

GVar
x 6∈ Γ n = |Γ|

∆, x; Γ ` x ∼ 〈x〉n

User defined data constructors, and any function that is assumed will be
introduced to ∆.

Inferring Structure-Annotated Types The compositional rules of the
associated structure relation presented in this section can be implemented
as a modification of a type-checking algorithm. The changes required to
merge the typing rules in Figure 5.3 with the rules in Figure 5.7 mainly
consist on taking into account the split context. This implies that infer-
ring the associated applicative structures can be done during type-checking
with little overhead. The properties of applicative expressions, derived from
combinatory logic, can be applied to rewrite programs in HH, by using their
associated structures. However, for this approach to work, there are two
major requirements:
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1. there must be formal guarantees that HH expressions and their asso-
ciated structures are semantically equivalent; and,

2. it must be possible to do a reverse translation from applicative struc-
tures to HH.

The proof of soundness and the reverse translation are discussed in the next
section.

5.4 Properties of the Associated
Applicative Structure Relation

The associated structure relation provides a mechanism to derive that the
code shown in Example 5.1.2 on page 148 has the associated structure shown
in Figure 5.5a on page 161. Before simplifying and extracting a hylomor-
phism structure from Figure 5.5a on page 161, there must be strong static
guarantees that this structure is semantically equivalent to the original HH
term. For all expression M , if it has structure a in context ∆; Γ, then a
must be “functionally equivalent”M . For example, given a context Γ = [y],
and f, g ∈ ∆, and

∆; Γ ` λx. f (g x) y ∼ 〈f〉2 (〈g〉2 |10) |01,

the applicative expression 〈f〉2 (〈g〉2 |10) |01 must be functionally equivalent
to λx. f (g x) y in Γ. One approach is to derive the original term from
〈f〉2 (〈g〉2 |10) |01, by using a small set of well-known rules: η and β conversion.
The structure 〈f〉2 (〈g〉2 |10) |01 can be η-expanded using two fresh variables
y1, y2:

λy1 y2. (〈f〉2 (〈g〉2 |10) |01) y1 y2

The body of the abstraction can be β-reduced according to the semantics
of applicative expressions.

λy1 y2. (〈f〉1 (〈g〉1 (|10 y1)) (|01 y1)) y2

 λy1 y2. (〈f〉1 (〈g〉1 |00) 〈y1〉1) y2

 λy1 y2. 〈f〉0 (〈g〉0 (|00 y2)) (〈y1〉1 y2)
 λy1 y2. f (g y2) 〈y1〉0

 λy1 y2. f (g y2) y1
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GVar
x 6∈ Γ n = |Γ|

∆, x; Γ ` x ∼ 〈x〉n Var
Γ(x) = k, n

∆; Γ ` x ∼ |k−1
n−k

Abs
∆; Γ, x `M ∼ a
∆; Γ ` λx.M ∼ a

App
∆; Γ `M ∼ a1 ∆; Γ ` N ∼ a2 n = |Γ|

∆; Γ `M N ∼ @n a1 a2

Case

∆; Γ `M ∼ aMT n = |Γ|
∆; Γ `a p1 → N1 ∼ a1 · · · ∆; Γ `a pk → Nk ∼ ak

∆; Γ ` case M of {p1 → N1; · · · ; pk → Nk}
∼ 〈Ok〉n a1 · · · ak (〈{out(p1, . . . , pk)}〉n aM)

Alt
Γ, x ` N [p ↓ x] ∼ a x 6∈ Γ ∧ x 6∈ fv(N)

Γ `a p→ N ∼ a

Let
∆; Γ, x ` N ∼ a1 ∆ ++ Γ, x; [] `M ∼ a′2 a2 = Dx Γ a′2

∆; Γ ` let x = M in N ∼ @n a1 a2

(a) Structure-checking Rules.

[x ↓ y] = [y/x]
[C p1 · · · pn ↓ y] = [p1 ↓ π1 y] ∪ · · · ∪ [pn ↓ πn y]

(b) Variable-pattern substitution.

out (p1, . . . , pk) =


λx.case x of

p1 → inj1 TP[[p1]]
· · ·
pk → injk TP[[pk]]

TP[[x]] = x
TP[[C p1 · · · pn]] = (TP[[p1]], . . . , TP[[pn]])

(c) The out Function.

Figure 5.7: Associated Structure Relation.
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Applying α-renaming produces λy x. f (g x) y, which is the original term.
This is the approach that is followed for proving that HH expressions are
semantically equivalent to their associated applicative structures. This ap-
proach has, as a side benefit, the definition of] a “reverse translation” that
can be used to recover a λ-expression from an applicative expression.

5.4.1 Semantic Equivalence of λ-expressions

The meaning of being “functionally equivalent” that is used in this section
is derived from the notion of βη-equality [Gha95], with an additional rule:
the case-case rule. This rule is considered separately for simplicity, but
can be derived using βη-equality.

5.4.1 Definition | case-case rule.

case (case N of {p1 → C1 N1; · · · pk → Ck Nk}) of
{C1 v1 →M1; · · ·Ck vk →Mk}

= case N of {p1 → (λv1.M1) N1; · · · pk → (λvk.Mk) Nk}

This rule states that a case statement applied to the result of another case
statement can be flattened into a single case statement. Note that the
primitive either combinator, O, is equivalent to a case statement on a sum-
type. This implies that case-case can be used to relate the primitive either
combinator with case statements.

5.4.2 Definition | βη-equality of expressions. The notation

M ≈ N

is used to represent that terms M and N are equal up to α/β/η-conversion,
and the case-case rule.

In other words, two terms M and N are equivalent, M ≈ N , if M and
N can be rewritten to the same form, by using only β, η and case-case
equivalences. Since applicative expressions can be represented in the HH
language itself, the same symbol ≈ will be uses to state the equivalences of
HH terms and applicative structures as well.
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5.4.2 Soundness

A simplified form of reverse translation from applicative expressions to λ-
expressions is defined for each syntactic construct following a set of rules.
The reason for defining this reverse translation is verifying that the as-
sociated structures are semantically equivalent to the corresponding HH
expressions. The translation proceeds as follows:

1. If the structure represents a function taking n arguments, i.e. it is of
the form @n, the structure is η-expanded with λy1 · · · yn, where all yi
are free.

2. Any structure applied to a sufficient number of arguments is β-reduced.

3. Nested case expressions, or nested case and either combinator expres-
sions are merged using case-case.

This is equivalent to first applying the translation in Definition 5.4.3 on
page 173, followed by a number of β-reductions. The resulting term is,
therefore semantically equivalent to the original term, up to βη equal-
ity.

5.4.3 Definition | Reverse Translation. The reverse translation of an applica-
tive structure to a λ-expression is defined recursively:

λ[[@n a1 a2 · · · ak]] def= λy.λ[[a1]] y (λ[[a2]] y) · · · (λ[[ak]] y) (5.1)

where y = y1 · · · yn

λ[[〈〉n]] def= λx x1 · · ·xn.x (5.2)

λ[[Dx Γ a]] def= λΓ.Y(λx.λ[[a]]) (5.3)

λ[[P ]] def= P (5.4)

λ[[[M ]]] def= M (5.5)

The soundness of the associated structure relation is defined in terms of
Definition 5.4.3. The soundness property states that if any two HH and
applicative expressions, M and a, are associated in context Γ, this implies
that both λΓ.M and a are equivalent. Or, in other words a applied to the
variables in Γ would yield a term that is equivalent to M .
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5.4.1 Theorem | Soundness of Associated Structure Relation.
For all context ∆; Γ, λ-expression M , and applicative structure a; if M has
structure a, then theM and a are equivalent modulo β, η and α equivalence.

∆; Γ `M ∼ a =⇒ λΓ.M ≈ λ[[a]].

Proof Sketch. By induction on the structure of the derivation ∆; Γ ` M ∼ a,
and applying α/β/η and case-case equivalences between λΓ.M and λ[[a]]. The
full proof can be found in Appendix B.

M1 M2

a1 a2

∆; Γ `M1 ∼ ? ∆; Γ ` ? ∼ a2

a1  a2

M1[a2/a2]

Figure 5.8: Structure Rewriting: A λ-expression M1 can be rewritten to
M2, if M1 has structure a1, M2 has structure a2, and a1 can be rewritten
to a2. This rewriting can be automated by solving the structure-inference
problem for M1, and the term-inference problem for a2. The soundness of
associated structures ensures that M1 and M2 are semantically equivalent,
provided that the rewriting of a1 into a2 preserves the semantics.

5.4.3 Structure Rewriting

Note that the structure annotation rules in Figure 5.7 on page 171 are
syntax-directed, which implies that rewriting M into a and viceversa can
be reduced to an inference problem. Given ∆; Γ andM , solving the inference
problem

∆; Γ `M ∼ ?,

results in the associated structure a. If a is shown to be equivalent to a′,
denoted by a ∼= a′, then, using the same context ∆; Γ, solving the inference
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problem
∆; Γ ` ? ∼ a′,

provides a term M ′ that has associated structure a′ in the context ∆; Γ.
Note that given the inference rules in Figure 5.7a on page 171, there may
be many M ′ for a given a′. To illustrate this, consider the following let
and λ expressions: let x = M in N (λ x. N) M If Γ, x ` N ∼ a2,
Γ ` M ∼ a1, and x 6∈ M , then both of those expressions have structure
@n a1 a2. To solve these ambiguities, the Let and Case rules are prioritised,
and the App rule is applied only if Let and Case fail. However, note that
this choice is arbitrary, and any other would be equally valid, but would
yield different, but equivalent HH terms for the same applicative structure.

Inferring HH expressions Some of the rewritings that will be applied
to applicative structures in Section 5.5 yield valid applicative structures
that have no associated HH expression. An example of this is the following
rewriting:

@i+1 〈a〉1 〈b〉1  〈@i a b〉1

Both terms are still semantically equivalent. If they are applied to i + 1
elements, they return the same result:

@i+1 〈a〉1 〈b〉1 x x1 · · ·xi = a x1 · · ·xi(b x1 · · ·xi) = 〈@i a b〉1 x x1 · · ·xi

However, the term 〈@i a b〉1 does not have a direct HH associated expres-
sion, by using only the structure checking rules in Figure 5.7. Section 5.5
discuss how to rewrite any term that does not match the applicative struc-
ture rules, so that a HH expression can always be found. However, for the
sake of completeness, the following rule is introduced:

∆; Γ1 `M ∼ a i = |a| = |Γ1|
∆; Γ1,Γ2 `M Γ2 ∼ a

This rule states that if there are more elements in the context than required
by applicative structure a, the HH expression is obtained using only the
necessary elements from the context. Note that the opposite rule is not
required. Whenever there are not enough elements in the context, these
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can be generated using the Abs rule of Figure 5.7. As an example, consider
again the term 〈@i a b〉1, in some context Γ. This term is notation for

@0 〈〉1 (@i a b)

Since this structure is an application that requires 0 elements from the
context, the two sub-problems are generated:

∆; [] ` ?1 ∼ 〈〉1 ∆; [] ` ?2 ∼ (@i a b)

Assume that the term M is inferred for @i a b. The term 〈〉1 requires two
elements in the context, so they are introduced using Abs twice:

∆; [x, y] ` ?1 ∼ 〈〉1 x, y free
∆; [] ` λxy.?1 ∼ 〈〉1

Since 〈〉1 = |01, the Var rule is applied:

∆; [x, y] ` x ∼ 〈〉1 x, y free
∆; [] ` λxy.x ∼ 〈〉1

The resulting term is (λxy.x) M Γ, which can be beta reduced to (λy.M) Γ.
A final remark is that this term is correct, provided that y does not occur
free in M . If y does not occur free in M , then the resulting term has the
expected behaviour: it “drops” the first argument, and applies the rest of
the elements in Γ to M . Since y was generated for applying the Abs rule,
the inference algorithm ensures that y is a fresh free variable.

Since it is possible to convert between HH terms and A terms, then it is
possible to rewrite HH terms according to rewritings defined at the A level.
The notationM1[a2/a1] is introduced to denote the rewriting ofM1 to some
M2 with associated structure a2, provided that the associated structure of
M1 is equivalent to a2.

5.4.4 Definition | Structure Rewriting. Given a context ∆; Γ, rewriting a
term M1 with structure a1 to a term with structure a2, denoted

M1[a2/a1],

is defined as: (1) solving the structure-inference problem ∆; Γ ` M ∼ ?,



5.5. CONVERTING A TO HYLO 177

(2) rewriting a1 to a2, and finally (3) solving the term-inference problem
∆; Γ ` ? ∼ a2, as illustrated in Figure 5.8 on page 174.

Remark The reverse translation used for the proof of soundness provides
another mechanism for recovering λ-expressions from applicative expres-
sions where the context is unknown. This mechanism consists of applying
the reverse translation, followed by any possible βη and case-case reduc-
tions. For any applicative structure a, the equivalent λ-term arising from
structure a is known as λ[[a]]βη. However, note that it is not necessarily true
that

∆; Γ ` λ[[a]]βη ∼ a.

The reason for this is that the structure a may be derived from terms that
contain βη-redexes, which λ[[a]]βη will optimise away. For example, consider
the following expression and associated structure:

λx.(λy.y x) f ∼ @1 (@2 |10 |01) 〈f〉1.

The equivalent λ-expression of the associated structure is:

λ[[@1 (@2 |10 |01) 〈f〉1]]βη
≈ { By (5.1) }

λx1.(λy1 y2.((λa1 a2.a2) y1 y2) ((λb1 b2.b1) y1 y2)) x1 ((λz1.f) x1)

≈ { By β-reduction, until β-normal form. }

f

It is clear that the associated structure of f is different from the associated
structure of λx.(λy.y x) f , i.e. ∆; Γ 6` f ∼ @1 (@2 |10 |01) 〈f〉1.

5.5 Converting A to Hylo
This section presents a mechanism for extracting hylomorphisms from defi-
nition structures D. In the applicative form, a hylomorphism structure can
be derived, provided that the applicative expression is in the right form.
This form is what we call a flat representation. Intuitively, a flat applica-
tive structure is one that corresponds to a function with no let-in definitions
and lambda-abstractions. This implies that all subexpressions occur at the
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same “level”, i.e. under application nodes within the same context size n,
@n. An example of flat structure and hylomorphism extraction is shown
below. Consider the quicksort function definition in with the quicksort
function in Listing 5.5. The associated structure of the qsort function is
shown below:

D Γ (〈O2〉2 〈Nil〉3

(〈app〉3 (〈qsort〉3 . . .) (〈Cons〉3 (〈π1〉3 |20) (〈qsort〉3 . . .)))
(〈outL〉2 |10)

We omit the substructures corresponding to le d x xs and gt d x xs
since they will not affect the hylomorphism derivation. Note that in a
flat structure, all 〈a〉i nodes occur at the same level i, with the exception of
the case branches, that add an element to the context, and therefore occur
at level i+ 1.

This structure can be translated to a hylomorphism by choosing as the
divide function one that replaces any “either” node by a map node on sum
types, and any application node that does not correspond to the recursive
call by a tupling operation. The recursive calls are dropped, since they are
going to be handled by the hylomorphism. In the quicksort case, the divide
function corresponds to the following structure:

qdiv = (〈+2〉2 〈&0〉3

(〈&2〉3 (〈&2〉3 . . .) (〈&2〉3 (〈π1〉3 |20) (〈&2〉3 . . .)))
(〈outL〉2 |10)

This structure represents a function that first does pattern matching ac-
cording to the original function definition, in this case represented by outL,
and then creates a tuple that contains the arguments for the recursive calls.
Note that the subexpression 〈π1〉3 |20 is left unmodified in the divide func-
tion. The reason for this is purely arbitrary: any application of a primitive
function to an expression is left unmodified in the divide part. However, a
structure 〈 M1 〉3 |20 = |20 would have been equally valid, provided that the
“combine” part applies π1 to this.

The combine part is obtained by applying uncurried versions of the
functions that were replaced by the tuple constructor, &i, in the divide
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Listing 5.5 HH Quicksort
1 qsort : Ord a → [a] → [a]
2 qsort = λ d xs.
3 case xs of {
4 Nil -> Nil;
5 (Cons x xs) -> app
6 (qsort d (le d x xs))
7 (Cons x (qsort d (gt d x xs))) }

function:
qcomb = O2 〈Nil〉1

(〈app〉1 π1 (〈Cons〉1 π2,1 π2,2))

Finally, a traversal on the divide function can be used to obtain the cor-
responding functor. Occurrences of + correspond to a sum type, and oc-
currences of the recursive call are replaced by a type variable A, and for
each other subexpression in the resulting structure, an extra type variable is
added to the functor argument list. In the case of the quicksort, this results
in the bi-functor:

T B A = 1 + A× (B × A)

This results in the expected hylomorphism, which can be parallelised using
the StA framework:

hyloT A qcomb qdiv

We write lx for this translation, where the subscript x is the recursive
call. However, note that the structures generated by this transformation
only derive high-level hylomorphism definitions. To expose more structure,
it will be convenient to expose function compositions. Recall that the B
combinator is a ◦ b = 〈a〉1 b. The following transformation lifts occurrences
of 〈〉1 to expose (some) function compositions:

〈a〉i 〈b〉j 〈c〉k ≈ 〈〈a〉i−min i j k 〈b〉j−min i j k 〈c〉k−min i j k〉min i j k

This transformation is applied to the resulting hylomorphism to expose
function compositions. When this results in a composition of map oper-
ations, these will be used as potential instantiations of pipeline skeletons.
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For example, suppose that after a number of transformations the following
code is derived:

〈mapT 〉1 (@2 ( @2 〈f〉2 〈g〉1) |10)

By lifting applications of the const function, we end up with the following:

〈mapT (〈〈f〉1 g〉1 I)〉1 = 〈mapT (f ◦ g)〉1

This structure can be parallelised using a combination of farms and pipelines,
as we showed in Chapter 3. It remains, however, how the instances of mapT
are derived.

5.5.1 Deriving Hylomorphisms

A proposition of the form Dx Γ a lx h states that the definition x is equiva-
lent to the composition of hylomorphisms h. The relation lx assumes that
that the structure a is in a precise shape, and it is defined in three parts.
The recursive structure of the hylomorphism, i.e. the functor F that defines
the structure of the hylomorphism, is derived by using the φ relation that
is shown in Figure 5.9a. The superscript of the φ relation is used to ensure
that the structure is in this precise shape, called flat, i.e. that no elements
are introduced to the context, except by the either combinator. It is also
important to note that the sums and products of (multi-) functors are used,
here represented by ×̂ and +̂. These operations are different to the standard
definitions in the literature. Given two multifunctors F and G:

F = ΛA1 · · ·An B, T1

G = ΛC1 · · ·Cm D, T2

F ×̂G = ΛA1 · · ·An C1 · · ·Cm B, F A1 · · ·AnB ×G C1 · · ·Cm B

The intuition behind these definitions is that the arguments Ai and Cj will
correspond to the non-recursive parts of the function definition, and the last
argument, B in F and D in G represent the recursive calls.

Extracting the divide and combine parts from a definition follow the
same pattern, and it is shown in Figures 5.9b and 5.9c. Note, however, that
the rules for extracting a divide function from an applicative structure derive
functions that may take multiple arguments. In the quicksort example, this
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function has type:

qdiv : Ord A→ List A→ F A (Ord A, List A)

An uncurrying transformation rewrites div to the necessary shape. We
write U for the uncurrying transformation, and it is explained in Section 5.5.2.

U2 qdiv : Ord A× List A→ F A (Ord A, List A)

Together, the rules in Figure 5.9, and the uncurrying transformation
allow us to define the hylomorphism extraction rule.

5.5.1 Definition | Hylomorphism Equivalent. We say that a definition Dx Γ a
has a hylomorphism equivalent hyloF b c, written

D Γ a lx hyloF b c,

if φx(a, F ), [] ` a ↓nx b, a ↑nx c′ and c = U|a|, where the subscript |a| is the
number of arguments that receives the definition x.

Note that due to the uncurrying transformation, if a definition Dx Γ da

has a hylomorphism equivalent h, then they curried/uncurried versions are
equivalent:

Un (Dx Γ a) ≈ h ∧ Dx Γ a ≈ Cn h

The rules in Figure 5.9, however, are not powerful enough to handle the
FFT working example in Example 5.1.2 on page 148:

fft : List Complex → List Complex
∼ reducek _ ◦ _

fft = λ xs. case xs of
[x] → [x]
xs → let n = length xs

xs’ = halves xs
in comb (genWs n) (fft (π1 xs’))

(fft (π1 xs’))

Note that on its applicative structure, shown in Figure 5.5a on page 161,
the following pattern occurs:

@n (@n+1 . . .) a
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These structures arise from the structures of let-in expressions, and they
need to be treated before deriving the hylomorphism equivalent. This, how-
ever, can be handled by extending the hylomorphism equivalent rules, and
the currying/uncurrying transformation.

5.5.2 Currying-Uncurrying

Currying and uncurrying are well-known transformations that consist on
converting a function that takes an input tuple with n arguments into a
higher-order function that takes n arguments, and viceversa:

curryn : ((A1, . . . , An)→ B)→ A1 → · · · → An → B

curryn f = λx1 · · ·xn.f (x1, . . . , xn)

uncurryn : (A1 → · · · → An → B)→ (A1, . . . , An)→ B

uncurryn f = λx.f (π1 x) · · · (πn x)

The currying and uncurrying transformations can be derived from their
applicative structures:

curryn f ∼ 〈f〉n (〈&n〉n |0n−1 · · · |n−1
0 )

uncurryn f ∼ 〈f〉1 π1 · · · πn

It is easy to show using equational reasoning that curry/uncurry structures
are indeed inverses:

5.5.1 Lemma | Curry/Uncurry inverses. The associated structures of Ui and
Ci are mutual inverses:

Ui (Ci a) ≈ a Ci (Ui a) ≈ a.

Currying and uncurrying transformations have useful properties on ap-
plicative structures. Since applicative structures are functions that pass
a context, or extract elements from the context, currying and uncurrying
transformations can be defined in a compositional way for each syntactic
construct in A.

5.5.2 Definition | (Un-)Currying Transformation. Given the structures a,
a1, . . . , aj, and natural number n such that n ≤ i, the currying/uncurrying
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x 6∈ a a 6≈ 〈a′〉n
φnx(a,ΛAB,A)

x 6∈ an n ∈ [1 . . . j]
φnx(〈x〉n a1 · · · aj,ΛAB,B)

x ∈ am m ∈ [1 . . . j] φnx(a1, F1) · · · φnx(aj, Fj)
φnx(〈a〉n a1 · · · aj, F1×̂ · · · ×̂Fj)

x 6∈ aj+1 x ∈ am m ∈ [1..j] φn+1
x (a1, F1) · · · φn+1

x (aj, Fj)
φnx(〈Oj〉n a1 · · · aj aj+1, F1+̂ · · · +̂Fj)

(a) Deriving the structure of the hylomorphism.

x 6∈ a a 6≈ 〈a′〉n
a ↑nx a

x 6∈ an n ∈ [1 . . . j]
〈x〉n a1 · · · aj ↑nx 〈&j〉n a1 · · · aj

x ∈ am m ∈ [1 . . . j] a1 ↑nx b1 · · · aj ↑nx bj
〈a〉n a1 · · · aj ↑nx 〈&〉n b1 · · · bj

x 6∈ aj+1 x ∈ am m ∈ [1..j] a1 ↑n+1
x b1 · · · aj ↑n+1

x bj
〈Oj〉n a1 · · · aj aj+1 ↑nx 〈+j〉n b1 · · · bj aj+1

(b) Deriving the divide part of a hylomorphism.

x 6∈ a a 6≈ 〈a′〉n
m ` a ↓nx πm

x 6∈ an n ∈ [1 . . . j]
m ` 〈x〉n a1 · · · aj ↓nx πm

x ∈ am m ∈ [1 . . . j] 1,m ` a1 ↓nx b1 · · · j,m ` aj ↓nx bj
m ` 〈a〉n a1 · · · aj ↓nx 〈a〉n b1 · · · bj

x 6∈ aj+1 x ∈ ar r ∈ [1..j] m ` a1 ↓n+1
x b1 · · · m ` aj ↓n+1

x bj
m ` 〈Oj〉n a1 · · · aj aj+1 ↓nx 〈Oj〉n b1 · · · bj

(c) Deriving the combine part of a hylomorphism.

Figure 5.9: Hylomorphism-derivation Rules.
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transformations are defined by repeatedly applying the following properties:

Un (〈a〉i a1 · · · aj) ≈ 〈a〉i−n+1 (Un a1) · · · (Un aj)

Cn (〈a〉i−n+1 a1 · · · aj) ≈ 〈a〉i (Cn a1) · · · (Cn aj)

Finally, uncurrying variables is done by replacing them by the equivalent
tuple-projections. Given natural numbers n, i and j, if n = i+ j + 1, then:

Un |ij ≈ πi+1 |ij ≈ Cn πi+1

As examples of this transformation, consider first the variable case. The
associated structure of a variable that occurs in a context with four elements
is |21, with an uncurried version π3:

|21 x y z t = 〈〈〉1〉2 x y z t = 〈〈〉1〉1 y z t = 〈〈〉1〉0 z t = 〈z〉1 t = 〈z〉0 = z

π3 (x, y, z, t) = z

For an application node, in a context of for elements, U4 would rewrite the
following expressions to their uncurried equivalents:

U4 (@4 |21 |03 |12) = @1 π3 π1 π2

It is easy to check that both expressions are equivalent. Given a sequence
of variables x = x1 x2 x3 x4,

@0 (@4 |21 |03 |12) x = @0 (|21 x) (|03 x) (|12 x) = x3 x1 x1

@0 (@1 π3 π1 π2) x = x3 x1 x1

The uncurrying transformation applied to the associated structures of
case expressions need to be treated slightly differently. The reason for this
is that the Oi combinator introduces one variable in the context, with the
result of the pattern matching on a value of primitive sum type. Given two
structures a and b, the uncurrying transformation would proceed as follows:

U2 (〈O2〉2 a b c) = 〈O2〉1 (U2 da) (U b) (U c).

However, this would leave in the branches of this expression two substruc-
tures that correspond to functions of (at least) two arguments: the input to
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the combinator, and the result of the “out” function c. As a special case of
the uncurrying transformation, either combinators are treated as follows:

Un 〈Oi〉j a1 · · · ai b
= 〈〈Oi〉j−n (Un+1 a1) · · · (Un+1 ai)〉1 (distrin ◦ (π1 × · · · × πn × Un b))

Note that the whole branches of the either combinator are wrapped un-
der a const combinator and that the resulting either combinator is 〈O〉j−n.
The reason for this is that the environment is extended using the distrib
function, so the first argument can be safely dropped. This has more oppor-
tunities of exposing function compositions. We will see this in the quicksort
example, and later in the final FFT example.

The function distrin takes a tuple of n+ 1 elements as input, where the
last element is of sum type, with i branches, and distributes the product
over the sum, as indicated by the type:

distrij : A1×· · ·×Aj×(B1+· · ·+Bi)→ A1×· · ·×Aj×B1+· · ·+A1×· · ·×Aj×Bi.

As an example of the uncurrying transformation, consider again the
quicksort example. Since quicksort takes two arguments, the Ord dictionary
for comparing elements of the list, and the input list, we will apply U2. The
top-level structure is:

U2 (〈O2〉2 anil acons (〈outL〉2 |10))
 〈O2 (U3 anil) (U3 acons)〉1 (distr2

2 ◦ (π1 × π2 × 〈outL〉1 π2))
 O2 anil′ acons′ ◦ (distr2

2 ◦ (π1 × π2 × 〈outL〉1 π2))

The substructure qnil is uncurried as follows, into qnil’:

U3 〈&0〉3  〈&0〉1

The substructure qcons is uncurried to qcons’ as is shown below:

U3 (〈&2〉3 (〈&2〉3 . . .) (〈&2〉3 (〈π1〉3 |20) (〈&2〉3 . . .)))
 〈&2〉1 (〈&2〉1 . . .) (〈&2〉1 (〈π1〉1 π3) (〈&2〉1 . . .))
 M2 (M2 . . .) (M2 (π1 ◦ π3) (M2 . . .))

The final structure using the curried and uncurried versions of the divide and
combine functions is a valid Hylo structure, and can therefore be parallelised
using the rules of the StA framework that were defined in Chapter 3.
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5.5.3 Flattening Transformation

As we mentioned previously in this section, these transformations are not
enough to handle many cases, as it was illustrated by the case of the Cooley-
Tukey FFT algorithm. The structures that cannot be handled have the
following shape:

@i (@i+1 a1 · · · an) b.

A pre-processing step is carried to these structures to ensure that they are
in the correct shape. We quickly cover these transformations as rewriting
steps. Note that in order to reverse these translations, we must keep a list
of all the rewriting steps done to a substructure.

Applicative Eta-expansion. The equivalent to eta-expansion can be
performed to applicative expressions as we explain below. Particularly,
whenever an expression such as

(λx1 · · ·xn.M) N

is used, an applicative structure of the form @i (@i+n . . .) . . . will be gen-
erated. However, note that since abstraction is not used in applicative
expressions, any @i can be safely expanded to @i+k provided that the inner
variables are modified. The transformation proceeds as follows:

@i a1 · · · an  @i+k (〈〈〉k〉i a1) · · · (〈〈〉k〉i an) |ik−1 · · · |i+k−1
0

Note that the expression 〈〈〉k〉i can be “pushed down” in the structure of ai.
When an 〈〉i is found, it is converted to 〈〉i+k. For variables, |nm such that
n + m = i − 1, they are converted to |nm+k. This transformation is applied
systematically until all structures have the shape

@i (@i+n . . .) a1 · · · an

Const-Lifting and Structure-Swapping So far, we have assumed that
〈〈〉i〉j a can be applied to arbitrary structures. The relation that defines
this transformation is shown in Figure 5.10, and shows precisely to which
structures it can be applied. In this figure a ⇑nm b states that b ≈ 〈〈〉m〉n a,
and adds the necessary conditions where this can be applied. Note that if a
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i+ j + 1 = n

|ij ⇑nm |ij+m
n ≤ i ≤ m

〈a〉i ⇑nm 〈a〉n−i+m

a1 ⇑nm a′1 · · · ai ⇑nm a′i
@n a1 · · · ai ⇑nm @n+m a′1 · · · a′i

Figure 5.10: Const-lifting relation.

structure is equivalent to some 〈〈〉j〉i a, then it implies that it will take the
first i arguments, and then ignore the rest j arguments. This fact can be
used to define a structure swapping transformation. Given the structures a,
b1, b2 and c, if b1 ⇑ij b2, then

@i(@i+j a b1) c  @ia c b2.

This can be generalised to multiple arguments to @ and 〈a〉i structures.
This rewriting provides us with a mechanism to lift structures to group
them in levels that do not depend on each other (e.g. c and b2 in the
example above).

Function inlining. Sometimes, the recursive calls will not occur fully
applied in the definition of a function. Take for example the quicksort
definition below.

qsort : Ord a → [a] → [a]
qsort = λ d xs.

let qd = qsort d
in case xs of {

Nil -> Nil;
(Cons x xs) -> app

(qd (le d x xs))
(Cons x (qd (gt d x xs))) }

In this definition, the recursive call occurs partially applied. These cases
cannot be treated easily with the hylomorphism derivation rules that we
defined. However, note that these cases will result in a structure of the
following form:

@2 a (〈qd〉2 |01).
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In these cases, however, note that 〈qd〉2 can be inlined further down, in an
expression equivalent to:

qsort : Ord a → [a] → [a]
qsort = λ d xs.

let qd_arg = d
...

Where qd is replaced by qsort qd_arg in the remaining expression. Note
that although keeping the let definition and the argument is unnecessary in
this case, this is not true for the general case, since some useful computa-
tion might be done to the partially applied argument. This transformation
can be described in the applicative framework as follows. If b ⇑in b′, and
c[n 7→ a] replaces the structure where variable n occurs by structure a,
with the necessary applications of the const combinator in order to keep
the application context sizes consistent.

@i b (〈x〉i a1 · · · an) @i((〈〈〉n〉i b)[i+ 1 7→ 〈x〉i+n |in−1 · · · |i+n−1
0 ]) a1 · · · an

Collectively, these transformations perform a flattening transformation
that broadens the scope of the hylomorphism derivation mechanism. The
following rules for deriving divide and combine functions for hylomorphisms
apply to cases where the structures are not flat:

x 6∈ as ∀s ∈ [1 · · ·m] x ∈ br
b1 ↑i+nx b′1 · · · bn ↑i+nx b′n

@i (〈a〉i+n a1 · · · am) b1 · · · bn ↑ix 〈&n〉i |0i−1 · · · |i−1
0 b′1 · · · b′n

x ∈ as ∃s ∈ [1 · · ·m] x 6∈ br ∀r ∈ [1 · · ·n]
a1 ↑i+nx a′1 · · · am ↑i+nx a′m

@i (〈a〉i+n a1 · · · am) b1 · · · bn ↑x @i (〈&m〉i+n a′1 · · · a′m) b1 · · · bn

x 6∈ as ∀s ∈ [1 · · ·m] x ∈ br
1, c ` b1 ↓i+nx b′1 · · · n, c ` bn ↓i+nx b′n

c ` @i (〈a〉j+n a1 · · · am) b1 · · · bn ↓ix Uj+n (〈a〉j+n a1 · · · am)

x ∈ as ∃s ∈ [1 · · ·m] x 6∈ br ∀r ∈ [1 · · ·n]
1, c ` a1 ↓i+nx a′1 · · · 1, c ` am ↑x a′m

c ` @i (〈a〉j+n a1 · · · am) b1 · · · bn ↓ix 〈a〉1 π1 · · · πm
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The next section shows examples of how the result of applying these
rules on the examples that were used in Chapter 3. We will show that,
by using this extension of the structure-annotated arrows with applicative
structures, parallel structures can be safely introduced to programs written
in HH.

5.6 Examples

This section illustrates the extension of the StA framework with applica-
tive structures and HH expression, by using a number of examples. The
first example is the Cooley-Tukey FFT algorithm. Then, we will review the
examples shown in Chapter 3, and show how their implementation in HH
lead to similar parallelisations. Since we have already illustrated how these
examples can be parallelised in the StA framework, when implemented di-
rectly as hylomorphisms, we will just show the derived hylo structures for
them. Note that re-running these experiments would require a full back-
end for HH, which is not yet implemented. The examples shown below are
implementations using code that tries to mimic idiomatic Haskell code.

Cooley-Tukey FFT Algorithm

We review now the Cooley-Tukey FFT algorithm. Recall that the imple-
mentation in HH is as follows:

fft : List Complex → List Complex
∼ reducek _ ◦ _

fft = λ xs. case xs of
[x] → [x]
xs → let n = length xs

xs’ = halves xs
in comb (genWs n) (fft (π1 xs’))

(fft (π1 xs’))
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The fft associated structure is shown below:

fft ∼ Dfft Γ (@1 (〈O2〉1 (〈Cons〉2 |10 〈Nil〉2)
(@2 (@3 (〈comb〉4 (〈genWs〉4 |21)

(〈fft〉4 (〈π1〉4 |30))
(〈fft〉4 (〈π2〉4 |30)))

(〈halves〉3 |11))
(〈length〉2 |10)))

(〈out([x], xs)〉1 I))

Note that all calls to fft occur fully applied, under a context of size four.
This implies that the extended rules for hylomorphism derivation can be
applied. First, the hylomorphism structure derivation generates the functor
that represents the structure of the hylomorphism:

φ(Dfft . . . , F = ΛA B C, A+B × C × C)

The type-checking algorithm can derive that this structure must be sec-
tioned with the types

F (List Complex) (List Complex)

for generating the hylomorphism structure. This corresponds to the types of
the non-recursive parts of the function definition, namely [x] and genWs n.
Then, the divide part of the hylomorphism is derived. The derived structure
is as follows:

Dfft ↑fft∼ @1 (〈+2〉1 (〈Cons〉2 |10 〈Nil〉2)
(@2 (@3 (〈&3〉4 (〈genWs〉4 |21)

(〈π1〉4 |30)
(〈π2〉4 |30))

(〈halves〉3 |11))
(〈length〉2 |10)))

out([x], xs)

Since this structure takes only one argument, it does not need to be further
uncurried. However, the flattening transformations can be performed to
expose further structure in this. Since all application nodes are of the form
@i (@i+1 . . .) . . ., and the recursive calls occur at the same level, no structure
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reordering is necessary. However, a cons-lifting, and systematic uncurrying
exposes function compositions, as we show below:

Dfft ↑fft∼ +2 (〈Cons〉1 I 〈Nil〉1)
( ( (M3 (genWs ◦ π1)

(π1 ◦ π2)
(π2 ◦ π2))

◦ (M2 π2 (halves ◦ π1)))
(I× (length ◦ π2)))

◦out([x], xs)
Finally, the combine part is derived by the ↓fft rules. The following struc-
ture is generated:

Dfft ↓fft O2 I (〈comb〉1 π1 π2 π3)

Note that the types of these functions, named fftdiv and fftcomb, are as
follows:

fftdiv : List Complex
→ F (List Complex) (List Complex) (List Complex)

fftcomb : F (List Complex) (List Complex) (List Complex)
→ List Complex

However, since the function genWs is applied to a tuple component that is
generated in the divide function, it can also be applied in the combine part.
In that case, the structures would be as follows:

Dfft ↑fft∼ +2 (〈Cons〉1 I 〈Nil〉1)
( ( (M3 (π1)

(π1 ◦ π2)
(π2 ◦ π2))

◦ (M2 π2 (halves ◦ π1)))
(I× (length ◦ π2)))

◦ out([x], xs)

Dfft ↓fft O2 I (〈comb〉1 (genWs ◦ π1) π2 π3)

Note that these alternative structures can be obtained by applying equa-
tional reasoning, since genWs occurs in a function composition that is ap-
plied to a tuple component that corresponds to a non-recursive argument.
In these cases, the types would change as follows:
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fftdiv : List Complex
→ F Int (List Complex) (List Complex)

fftcomb : F Int (List Complex) (List Complex)
→ List Complex

This, however, does not have a great impact in the parallelisation of this
function. Most of the work is done in the combine part, and this means
that it can be parallelised using a reduce structure. The derived structure,

hyloF (ListComplex) (ListComplex) fftcomb ((F genWs id) ◦ fftdiv)

unifies with reducek _ ◦ _, by instantiating the first hole to:

fftcomb,

and the second hole to an anamorphism

anaF (ListComplex) (ListComplex) ((F genWs id) ◦ fftdiv).

Image Merge

The image merge example composes two functions, mark ad merge. The
function mark computes a threshold in the original pair of images. This
threshold is used by the merge function to perform the actual merging of
the pair of images.

imgMerge : List (Img × Img) → List Img
∼ parL (_ ‖ farm n _)

imgMerge = map (λ x, let m = mark x in merge m x)

The structure annotation of imgMerge specifies that this function is to be
parallelised with a combination of farms and pipelines. The functions map,
mark and merge must be in the global environment ∆ when typechecking
this definition. The associated structure of this functions is shown below:

DimgMerge Γ (〈map〉0 (@2 (merge |10 |01) (〈mark〉1 |00)))

Since imgMerge does not occur in the body of the applicative structure, the
only hylomorphism is the map function used in this definition. Since map is
in the global environment, it can be inlined:

mapL (Img×Img) (@2 (merge |10 |01) (〈mark〉1 |00))
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Finally, an uncurrying transformation exposes the function compositions:

mapL (Img×Img) ((〈merge〉1 π2 π1) ◦ (I× mark)))

Note that this structure is equivalent to the one shown in Section 3.5 on
page 96. This structure unifies with the desired parallel structure, with a
number of alternative structures that can be disambiguated, given suitable
cost models.

δ1 = { m1 ∼ farm n1 (fun (〈merge〉1 π2 π1)),
m2 ∼ farm n2 (fun (I× mark))}

δ2 = { m1 ∼ fun (〈merge〉1 π2 π1),
m2 ∼ farm n2 (fun (I× mark))}

δ3 = { m1 ∼ farm n1 (fun (〈merge〉1 π2 π1)),
m2 ∼ fun (I× mark)}

δ4 = { m1 ∼ fun (〈merge〉1 π2 π1),
m2 ∼ fun (I× mark)}

Quicksort

The quicksort example in Section 3.5 on page 96 assumed a fixed type A,
together with functions for filtering the elements of the list as required. The
quicksort example that we show here takes as an argument the Ord instance
dictionary for type a.

qsort : Ord a → [a] → [a]
qsort = λ d xs.

case xs of {
Nil -> Nil;
(Cons x xs) -> app

(qsort d (le d x xs))
(Cons x (qsort d (gt d x xs))) }
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The associated structure of quicksort is:

Dqsort Γ (〈O2〉2 〈Nil〉3

(〈app〉3

(〈qsort〉3 |02 (〈le〉3 |02 (〈π1〉3 |20)(〈π2〉3 |20)))
(〈Cons〉3 (〈π1〉3 |20)

(〈qsort〉3 |02 (〈gt〉3 |02 (〈π1〉3 |20)(〈π2〉3 |20)))))
(〈outL〉2 |10)

The hylomorphism derivation, plus the systematic uncurrying of the re-
sulting structures to expose function compositions produces the following
hylomorphism.

T B A = 1 + A× (B × A)

hyloT A (O 〈Nil〉1 (〈app〉1 π1 (〈Cons〉1 π2 π3)))
(+2 M0 (M2 (M2 π1 (〈le〉1 π1 (π1 ◦ π3)(π1 ◦ π3)))

(M2 (π1 ◦ π3)
(M2 π1 (〈gt〉1 π1 (π1 ◦ π3)(π2 ◦ π3)))))

◦(distr2
2 ◦ (π1 × π2 × 〈outL〉1 π2)))

The alternative representation of quicksort as a hylomorphism makes it
possible to parallelise it using the rules of the StA framework. For example,
in order to parallelise it using a divide and conquer skeleton, the following
rule can be applied.

mapL(hyloF a a) ∼= parL (dcn,F a a)

It suffices to annotate the type with the corresponding structure as we show
below:

map qsort : Ord a → List (List a) → List (List a)
∼ parL (dcn,F a a)

Barnes-Hut N-Body Simulation

N-Body simulations are widely used in astrophysics. They comprise a sim-
ulation of a dynamic system of particles, usually under the influence of
physical forces. The Barnes-Hut simulation recursively divides the n bodies



5.6. EXAMPLES 195

storing them in an Octree, where each node in the tree represents a region
of the space. The topmost node represents the whole space and the eight
children, the octants. The leaves of the tree contain the bodies. The algo-
rithm continues by calculating the cumulative mass and centre of mass of
each region of the space. Finally, the algorithm calculates the net force on
each particular body by traversing the tree, and updates its velocity and
position. This process is repeated for a number of iterations. The high-level
implementation details of Barnes-Hut in the language HH is shown below:

buildTree : Area → List Particle → Tree

calcForces : Tree → List Particle → List Force
calcForces t ps = map (calc t) ps

move : List Particle → List Force → List Particle
move ps fs =

case (ps, fs) of {
(Nil, fs) → Nil
(ps, Nil) → Nil
(Cons x xs, Cons f fs) → Cons (moveP x f) (move xs fs)

}

step : List Particle → List Particle
step ps = let tree = buildTree initArea ps

in let fs = calcForces tree ps
in move ps fs

nbody : Int → List Particle → List Particle
nbody n ps = case n <= 0 of {

True → ps ;
False → nbody (n-1) (step ps)

}

We focus on the structure of step and move, since they illustrate how
finding hylomorphisms can be used to parallelise this code. The associated
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structure of move is show below:

Dmove Γ ((〈O3〉1 〈Nil〉2

〈Nil〉2

(〈Cons〉2 (〈moveP〉1 (〈π1 ◦ π1〉2 |10)(〈π1 ◦ π2〉2 |10))
(〈move〉2 (〈π2 ◦ π1〉2 |10)(〈π2 ◦ π2〉2 |10))))

mout)

This structure is flattened after doing a const-lifting. Note that all the
substructures occur under 〈〉1. This means that the argument is discarded
by all substructures, except for mout.

Dmove Γ ((O3 〈Nil〉1

〈Nil〉1

(〈Cons〉1 (〈moveP〉1 (π1 ◦ π1)(π1 ◦ π2))
(〈move〉1 (π2 ◦ π1)(π2 ◦ π2))))

◦ mout)

The divide and combine functions that are extracted from this structure are
shown below:

movediv ((+3 M0

M0

(M2 (M2 (π1 ◦ π1)(π1 ◦ π2))
(M2 (π2 ◦ π1)(π2 ◦ π2))))

◦ mout)

movecomb (O3 〈Nil〉1

〈Nil〉1

(〈Cons〉1 (〈moveP〉1 (π1 ◦ π1)(π2 ◦ π1))
π2))

The structure of the move hylomorphism corresponds almost exactly to the
list base functor,

ΛB A, 1 + 1 +B × A,

With minimal rewriting for merging branches that result in the same value,
the move function can be turned into an anamorphism that is semantically
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equivalent to a zip, followed by a map that applies a function equivalent to
the structure that is equivalent to uncurrying the moveP function:

〈moveP〉1 π1 π2

Note that the function move is applied in function step to the result of
calcForces, which is another map. This means that the StA framework
can derive a suitable parallelisation for the step function, in terms of farms
and pipelines:

step : List Particle → List Particle ∼ _ ‖ _

Iterative Convolution

Finally, we briefly discuss the parallelisation of an algorithm for iterative
convolution. This algorithm applies a convolution algorithm to a list of
images. Each convolution, implemented by function iterconv, consists of
applying a kernel to an image in a divide and conquer way. This is done
until a dynamic condition is met, which is tested by function finished.

kern : Kern → Img → Img
kern k i = case split i of {

Left x → apply k x ;
Right (x1, x2, x3, x4) → combine (kern k x1)

(kern k x2)
(kern k x3)
(kern k x4)

}

iterconv : Kern → Img → Img
iterconv k x = case (finished x) of {

True → x ;
False → conv k (kern k x)

}

conv : Kern → List Img → List Img
conv k = map (iterconv k)
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The function kern can be parallelised using any parallel structure that is
equivalent to hylomorphism with a quad-tree structure:

kern : Kern → Img → Img ∼ hylo _ _

The function conv is a map, which means that it can be parallelised using
a task farm. However, if we want to expose more parallelism, we need to
split the function iterconv into smaller components. The structure that is
derived for iterconv is the one that is shown below:

Diterconv Γ (〈O2〉2 |11 (〈conv〉3 |02 (〈kern〉3 |02 |11)) (〈outBool〉2 (〈finished〉2 |11)))

The divide structure that is extracted from this is the following:

(+2 π2 (M2 π1 (M2 π1 π2))) ◦ distr2
2 (M3 π1 π2 (outBool ◦ finished ◦ π2))

This structure has type

Kern× Img→ Img + Kern× Img,

and corresponds to the anamorphism part of an iter structure, provided
that the branches are reversed both in the out function and case statement.
After rewriting the function as required, the function conv can be paral-
lelised using a task farm and feedback loops, as was shown in Section 3.5
on page 96:

conv : Kern → List Img → List Img ∼ farm (fb _)

5.7 Discussion

This chapter has presented a techique for annotating types of a functional
language, HH, with structures that can be used for reasoning about the
introduction of parallelism. This language is a subset of Haskell 98, and
illustrates how this technique can be applied to a real functional language.
This technique relies on combinatory logic, as a bridge between a pointed
functional language and algorithmic skeletons. This mechanism allows us to
rewrite programs in HH, according to rules defined at the Hylo and applica-
tive levels. Moreover, the connection between algorithmic skeletons and
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combinatory logic is a novel feature of the technique that was described in
this chapter, and it is worth exploring further. For example, a representa-
tion of algorithmic skeletons directly as applicative expressions can be used
to find similar structures in programs. A technique that is worth explor-
ing for this is described is antiunification, a technique explored in Barwell’s
forthcoming thesis [Bar17].





Chapter 6

Conclusions and Future Work

The main goal of this thesis was to develop novel state-of-the-art mecha-
nisms for reasoning simultaneously about the run-time performance of, and
the functional equivalences between parallel programs. These mechanisms
are aimed at systematically exploring the space of functionally equivalent
parallel implementations. They provide a general framework for parallel
programming in which a programmer can write a program once, and then
parallelise it by providing type annotations that are parameterised by cost
information. To achieve this goal, three main techniques were used:

Functional programming. The absence of side effects has allowed Struc-
tured Arrows to exploit equational reasoning in a way that would be much
more restricted in the presence of unrestricted side effects.

Hylomorphisms. Hylomorphisms have been used to capture the semantics
of parallel programs using a single unifying construct. A canonical repre-
sentation of programs as a composition of hylomorphisms has been used to
systematically explore the space of equivalent parallel implementations.

Type Systems. Types provided a suitable framework to encode the static
analyses that has been developed for this thesis. The compositional ap-
proach that was described throughout this thesis has allowed the Structured
Arrows framework to be realised as an extension of standard type checking,
inference and unification algorithms.

This thesis has focused on answering three main questions:

201
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1) How can a program structure be extracted? Extracting a program struc-
ture means identifying the different components of a program that can be
parallelised.

2) What are all the different ways in which a program structure can be
rewritten into functionally equivalent forms? Systematically exploring how
a program structure can be rewritten provides a mechanism to explore the
space of all possible parallel implementations of a program.

3) How can a program’s run-time behaviour be statically predicted, based
on its structure? Statically predicting the run-time behaviour of alterna-
tive implementations provides a mechanism for selecting a suitable parallel
implementation for a program.

Collectively answering these three questions has brought several contri-
butions in the field of structured parallelism, by opening the way to a new
automatic parallelisation process, guided by type annotations that are used
to reason about structured parallel processes. The answer to these questions
provided a novel type-based framework, Structured Arrows, that serves the
purpose of statically reasoning about how to parallelise a program by: (a)
reasoning about how a program can be parallelised; and (b) statically pre-
dicting what parallel implementation will achieve the best possible speedups.
This framework provides strong static guarantees that a parallel structure
introduced to a program does not change its functional behaviour. More-
over, as part of the Structured Arrows framework, a procedure for deciding
semantic equivalences of parallel programs has been developed, as well as a
systematic process to explore all possible alternative parallel implementa-
tions of a program. Program structures have been coupled with cost models
that are formally derived from their operational semantics. By combining
the rewritings for program structures with these cost models, the StA frame-
work can be used to derive provably optimal parallel programs, within the
model of the operational semantics of the queue-based language in which
algorithmic skeletons are defined. This framework, therefore, satisfies the
goal of finding a common, general framework for reasoning simultaneously
about program rewritings and performance.
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How can a program structure be extracted?

Chapter 3 presents a new type-based framework, Structured Arrows, that
consists of a type-and-effect system for a point-free functional programming
language with hylomorphisms, Hylo. The program structure is extracted as
an abstraction of the program’s AST, and consists of a composition of func-
tions, where recursion is represented by the type of the underlying hylomor-
phism. The type-annotations are extended with common algorithmic skele-
tons, which can then be used to specify in the function types the intended
parallel strategy for the respective functions. These type-annotations cor-
rectly split the different components of the underlying function that can be
parallelised.

Chapter 5 described an extension of the Structured Arrows framework
that extends the expression language to the purely functional language HH.
The language HH is a subset of the Haskell programming language. The ex-
tension to the type-system of HH extracts the underlying program structure
as a hylomorphism. To achieve this, it uses the connection between combi-
natory logic and λ-calculus. The extended StA framework uses a mechanism
for coverting between point-free programs in applicative form and Hylo.

The use of hylomorphisms in both Chapters 3 and 5 provides, therefore,
a mechanism for extracting a program structure, i.e. a decomposition of the
input program into the different components that can be parallelised.

What are all the different ways in which a program structure
can be rewritten into functionally equivalent forms?

Chapter 3 formally defined a set of equivalences between programs in Hylo,
and a decision procedure based on this set of equivalences. The differ-
ent program structures in Hylo can be compared by rewriting them into
a canonical representation. The same process can be followed in reverse
order, and therefore used to explore all possible ways in which a function
can be rewritten, up to the set of equivalences considered. This is explored
by the unification algorithm in Chapter 3, which considers program struc-
tures with holes that need to be inferred, i.e. parts of the structure that are
not specified. The unification algorithm takes a program structure, and a
target structure with holes, and returns the set of all possible ways of instan-
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tiating the holes of the target structure, so that the resulting structure is
equivalent to the program structure. By extending the number of program
equivalences, a larger set of alternative functionally equivalent parallel pro-
grams can be compared. The extension of the Structured Arrow framework
in Chapter 5 extends the equivalences considered to pointed programs in
the programming language HH.

Essentially, the canonical representation of Hylo provides both a way to
compare the functionality of different parallel programs, but also to system-
atically explore all possible alternative parallelisations of a program, up to
the set of equivalences considered.

How can a program’s run-time behaviour be statically predicted?

Chapter 4 presented an operational semantics for a set of algorithmic skele-
tons. This operational semantics is defined in terms of a queue-based lan-
guage that consists of three primitives: enqueue, dequeue and eval. The
parallel composition of workers defined in terms of these three primitives
can be used to define a number of common algorithmic skeletons. The
main novelty of this operational semantics is that it provides at the same
time both a translation scheme to generate low-level skeletal code, and a
mechanism for systematically deriving cost models from the operational se-
mantics. These cost models can therefore be used to generate provably
optimal parallel programs. This approach is extensible: new parallel struc-
tures can be defined, and considering more complex cost models can be
done by underlying queue-based language.

6.1 Contributions of this Thesis

As we mentioned in the Chapter 1, this thesis has made the following main
contributions.

1. Structure-Annotated Arrows (StA).

The novel Structured Arrows type-based framework has been developed
for this thesis (Chapter 3). This framework is a type-and-effect system
that annotates function types of a point-free programming language with
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hylomorphisms, Hylo, with the underlying program structure. The program
structure was defined as the combination of hylomorphisms and algorithmic
skeletons that are used in the implementation of a function. This abstrac-
tion of the program structure can be used to reason about possible ways
of rewriting between functionally equivalent forms. The soundness of the
approach has been proved, and its usage illustrated with a number of ex-
amples. Throughout the rest of the thesis, in Chapter 4 and Chapter 5, the
framework of Structured Arrows was extended with: (a) an operational se-
mantics of common representative algorithmic skeletons; and (b) a broader,
more expressive expression language. These extensions are discussed later
in this section, since they are contributions on their own. However, the
extensibility of the Structured Arrows framework is illustrated thanks to
those extensions.

As discussed at the end of Chapter 3, this type-and-effect system can
be considered a form of behavioural types, and its usage is not restricted to
algorithmic skeletons. StA can potentially be used for more general program
optimisations, such as substituting particular instances of hylomorphisms
by optimised low-level implementations, or synthesizing hardware.

The StA framework uses the first known representation of the parallel
structure of a program as a type. Thanks to this type-based approach, most
of the techniques described in this thesis were implemented as extensions of
standard type checking, inference and unification techniques.

The main novelty of StA is the full separation between the notions of
what is a program computing, and how is a program performing the com-
putation. There is a major advantage in doing so, since programmers can
then focus on each of these concerns separately. Moreover, the mechanisms
for reasoning about how to parallelise a program consider, simultaneously,
cost and correctness. This implies that the Structured Arrows framework
can potentially lead to the automatic provably optimal parallelisation of
functions.
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2. A denotational semantics for common algorithmic skeletons in
terms of hylomorphisms.

Chapter 3 presented a denotational semantics of common algorithmic skele-
tons in terms of a single unifying construct: hylomorphisms. Although
hylomorphisms have been previously used to explain the semantics of cer-
tain algorithmic skeletons, as has been discussed in Chapter 2, this is the
first attempt at using them as a single, unifying construct. Using hylo-
morphisms as a single, unifying construct reduces the problem of rewriting
a parallel program into a different parallel form, to applying well-known
and well-understood hylomorphism laws. Common approaches in rewriting
algorithmic skeletons generally use ad-hoc rewriting rules that are derived
implicitly from the semantics of the algorithmic skeletons. A common ex-
ample is considering explicitly the pipeline associativity as a rewriting rule.
In the Structured Arrows framework, thanks to the definition of pipelines as
the composition of two hylomorphisms, pipeline associativity is no longer re-
quired: this property is derived from the denotational semantics of pipelines
for free.

The novelty of considering hylomorphisms as a single unifying construct
opens many possibilities for reasoning about functional equivalences of par-
allel programs. The definition of a decision procedure for the functional
equivalence of alternative parallel implementation, discussed later in this
section, was possible thanks to defining a canonical representation of pro-
grams in terms of hylomorphisms. Essentially, when reasoning about seman-
tic equivalences of alternative parallelisations, one only needs to answer the
question: what is the (composition of) hylomorphisms that represents this
program?

3. An operational semantics of common algorithmic skeletons, in
terms of a small and predictable queue-based language, with a
precise and well-known operational semantics.

In Chapter 4, a novel operational semantics of common, representative al-
gorithmic skeletons is defined, in terms of a queue-based language. This
queue-based language contains three primitives: enqueue, dequeue, and
eval. These primitives are used to describe workers of a parallel process,
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which run in a loop a sequence of dequeue operations, followed by an eval
operation, and finally a sequence of enqueue operations. These workers are
composed in parallel, and by carefully connecting their shared queues, the
semantics of different algorithmic skeletons can be defined.

This operational semantics provides a mechanism to generate predictable
machine code from a high-level implementation, provided that the enqueue,
dequeue and eval operations can be implemented in the target architecture,
satisfying the necessary assumptions. This is illustrated in Chapter 4 using
a number of examples.

Finally, the main novelty of the operational semantics is that it ties
program structures with cost models. The operational semantics in terms
of the queue-based language provides a way to reason about soundness and
performance of algorithmic skeletons. Cost equations can be derived system-
atically from their operational behaviour. This means that the operational
semantics can, for free, generate cost models that will then be used by the
StA framework.

4. A systematic mechanism for deriving cost models from the
operational semantics of algorithmic skeletons.

As was previously discussed, that the operational semantics of algorithmic
skeletons was defined so that it has a predictable run-time. See Contribu-
tion 3 for more details. This predictability is what makes it possible to
derive cost equations directly from the operational semantics. This is illus-
trated in Chapter 4 with a number of common, representative algorithmic
skeletons.

Basically, from a specification of the operational semantics of an algo-
rithmic skeleton, we can derive (almost) for free: (a) a translation scheme
that can be used to compile a structured parallel program to low-level pre-
dictable code, and (b) cost models that can be used to statically predict
the run-time behaviour of a program. This is very powerful, since it im-
plies that whenever a parallel structure is defined in this language, a cost
equation will be derived that is tied to its operational semantics.

Finally, the use of these cost equations within the Structured Arrows
framework was discussed. The type-based approach made it possible to es-
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timate the input and output size tasks by implementing a variant of sized
types. This was applied to a number of examples, to compare real vs pre-
dicted speedups of parallel programs within this framework, providing evi-
dence that the resulting parallel implementations was predictable.

In summary, the main novelty of this systematic process for deriving cost
models from an operational semantics is that it provides a way to derive
provably optimal parallel implementations, with respect to the operational
semantics. This is ensured thanks to the fact that the cost models are
abstractions of the operational semantics. Since the operational semantics
is also used to generate low-level parallel code, we can ensure that the cost
models accurately capture the cost of parallel programs within this model.

5. An extension of the Structured Arrows framework to deal not
just with point-free programs, but also with pointed programs
that are written using explicit recursion.

Chapter 5 presented a relation between terms in a functional language, the
subset of Haskell here called HH, and their possible parallelisations using
algorithmic skeletons. This relation exploits and extends the Structured
Arrows framework. In order to relate arbitrary terms in HH with its paral-
lelisations, first a hylomorphism structure is extracted from programs. This
is done by exploiting the well-known correspondence between λ-calculus and
combinatory logic. A λ-term can be converted to combinatory logic using
a compositional approach. A different notion of applicative terms is de-
fined in Chapter 5, that correspond to a point-free representation of terms
in HH derived from combinatory logic. A series of systematic rewritings is
applied to applicative terms in order to derive the hylomorphism structure.
This contribution illustrates how the Structured Arrows framework can be
applied to a real functional language such as Haskell.

The main novelty of this extension is, therefore, the usage of combinatory
logic to find program structures. This connection between combinatory logic
and hylomorphisms represents a technique for finding parallel structures in
arbitrary HH terms. Moreover, the usage of combinatory logic opens the
possibility of using well-understood techniques in the field of applicative
expressions to do program rewritings. As a final remark, the translation
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between HH terms and Hylo was done in a very easy way, as an extension of
a standard type-checking algorithm, thanks to the use of combinatory logic
as an intermediate step.

6. A novel decision procedure for the functional equivalence of
alternative parallel implementation.

The main novelty of this decision procedure is the usage of hylomorphisms
to find a canonical representation of programs. This canonical represen-
tation consists on a “reforestation” process that splits a program into the
smallest possible components, which can later be reassembled into different
parallel structures. This decision procedure was presented in Section 3.4
on page 86, and it provides a mechanism for deciding whether to differ-
ent parallel programs are functionally equivalent. Extending the semantic
equivalences that we considered broadens the amount of parallel programs
that can be compared. This decision procedure also opens up the possibility
of verifying parallel programs, by adapting it to different parallel program-
ming frameworks. The verification of parallel programs would then proceed
by first rewriting a parallel program into a canonical representation, and
then comparing the canonical representation with a reference sequential
implementation.

7. A prototype implementation of the Structured Arrows
framework.

We provide a prototype implementation of the type-system described in
Chapter 3 and Chapter 4, which can be found at
https://bitbucket.org/david_castro/skel. These prototypes shows
that the approach that has defined in this thesis can be easily implemented
as a functional language, and opens many possibilities, such as: (a) building
a full compiler for structured parallel programs; (b) using the Structured Ar-
rows framework as a rewriting engine for parallelism; and (c) studying more
general optimisations and program rewritings within the Structured Arrows
framework. The novelty of this prototype implementation is, therefore, that
it illustrates how the Structured Arrows framework can be implemented as
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part of a real functional language, by a set of modifications to the type
system.

6.2 Limitations

Most of the limitations of this work are imposed by the theoretical frame-
works that have been used for structured parallelism, for the operational
semantics of parallel skeletons, and for structured patterns of recursion.
Many of these limitations can be tackled by extending the approach with
the results of more general theoretical frameworks. The following limita-
tions are worth mentioning:

• No side effects. The assumption of a pure functional setting means that
functions are not allowed side effects. This limitation, however, is beneficial
since it is what allows the Structured Arrows framework to use extensively
equational reasoning to rewrite a program into an equivalent parallel struc-
ture. The usage of equational reasoning would be greatly limited by allowing
the usage of impure functions.

• We did not consider more complex algorithmic skeletons. Complex algo-
rithmic skeletons, such as algorithmic skeletons that capture the Bulk Syn-
chronous Parallel model, have not yet been fully considered. Section 4.5 on
page 138 sketches how a Bulk Synchronous Parallel skeleton could be imple-
mented in a queue-based model. However, there are other parallel patterns
that are yet to be considered, such as stencil computations, gather-scatter,
etc. Since the Structured Arrows framework was designed to be easily exten-
sible, this is not a major limitation. We conjecture that such skeletons will
easily fit within our general scheme. The algorithmic skeletons that were
chosen for this thesis were selected from a list of common representative
skeletons [DT13] that capture a wide variety of parallel algorithms.

• We did not consider more complex patterns of recursion. Hylomorphisms
are Turing universal, as discussed in Chapter 2. However, they do not
capture patterns of recursion such as mutually recursive functions or nested
recursion. This means that the recursive functions that were captured by
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the languages in Chapter 5 and Chapter 3 could not be defined using mutual
or nested recursion, and these functions need to be rewritten so that they
could be captured by a hylomorphism.

• We did not consider more complex back-ends. The operational semantics
in Chapter 4 is deliberately simple enough to make it predictable. This
implies that many issues, such as bounded queues were not considered in
this thesis, since they would complicate predicting the run-time behaviour
of programs.

• The cost models rely on many assumptions. Low-level details such as
memory accesses were not taken into account for generating the cost equa-
tions. These assumptions were crucial for making the computation of the
static run-time estimations feasible, although they add potential sources of
imprecision.

6.3 Further Work

Based on the limitations, and the current trends in parallel programming
languages, frameworks and theories, there are several ways in which this
thesis can be improved.

Combine the static approach with dynamic approaches.

The Structured Arrows framework relies completely on a static approach.
This, however, requires a full knowledge of the sizes of the inputs for a
program, and this approach would not work whenever a high variability
in the inputs is expected. Several dynamic approaches can be applied to
solve the problem of parallelising irregular applications. Examples of this
include the use of adaptive skeletons [MMT16, BK95], or the use of advanced
scheduling algorithms [JH10].

The static approach can determine when a dynamic approach is preferred
to a rigid, fixed parallel structure. This would require extending the sized
types approach used to estimate task sizes to incorporate information about
the range of expected sizes, or a distribution of expected task sizes. The cost
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equations derived from the operational semantics would need then to take
into account this variability in a systematic way.

If those problems were solved, then a whole new range of dynamic ap-
proaches would become available to the Structured Arrows framework.

Allow certain kinds of side effects for writing parallel programs.

The idea of allowing uncontrolled side effects when writing a parallel appli-
cation would remove the possibility of using equational reasoning for code
rewriting. However, there are certain approaches, such as deterministic par-
allelism [MNPJ11, KRBJ12] that allow this limitation to be relaxed slightly,
provided that a parallel program can be proven to be deterministic, i.e. that
it returns the same result regardless of the execution order of the parallel
components. Some side effects could be potentially allowed, if they are
shown not to affect the overall result of the program.

This extension would require studying the interactions between side ef-
fects and hylomorphisms, and might limit slightly the kind of equational
reasoning that can be performed to parallelise programs. However, this
would open the possibility to extend the StA framework to (certain kinds
of) imperative programs.

Use more complex, more general recursion patterns.

Hylomorphisms were used in this thesis as a general unifying construct
to compare alternative parallelisations of functions, and to explore how to
automatically parallelise sequential functions that can be represented as a
composition of hylomorphisms.

There are more general recursion patterns that can be used for the same
purpose, which would open the possibility of exploring e.g. mutually re-
cursive definitions or nested recursion. These recursion patterns include
paramorphisms, mutumorphisms, or even adjoint folds [Hin10] and conju-
gate hylomorphisms [HWG15].
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Introduce more complex skeletons in the Structured Arrows
framework.

Although the set of algorithmic skeletons that were considered in this thesis
were a representative set, that is suitable for parallelising a wide range of ap-
plications [DT13], it would be interesting to consider more complex patterns
of recursion, such as a Bulk Synchronous Parallel skeleton [Val90]. These
algorithmic skeletons could help speed up further some parallel applications
developed in the Structured Arrows framework.

Study the relation between Structured Arrows and other, more
common forms of behavioural types, such as session types.

The work described in this thesis was inspired by the field of behavioural
types [ABB+16]. Studying the interactions between the StA framework and
other approaches in behavioural types could bring the benefits of applying
the results developed in the context of behavioural types to the Structured
Arrows framework. For example, the representation of algorithmic skeletons
in terms of session types [HVK98] could be helpful to provide a mechanism
for defining further algorithmic skeletons in the Structured Arrows frame-
work. Moreover, we could add much more reasoning power to StA if we
could annotate sequential implementations with session types. The main
challenge would be to determine the possible ways in which a sequential
implemntation could be realised as a parallel program that follows the given
protocol description.

Extend the queue-based language with more complex, low-level
information.

The queue-based language of Chapter 4 can be extended with further low-
level information that can be used to better predict the run-time perfor-
mance of parallel programs. For example, implementating algorithmic skele-
tons does not necessarily require the use of unbounded queues for commu-
nication. Actually, it is probably worth to use bounded queues, and tem-
porarily halting the execution of workers writing to full queues, until the
consumers of this queue have removed some of the tasks that are contained
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in it. These features, however, would complicate the cost models, and is-
sues such as a back-pressure algorithm [NU09] would need to be considered
carefully.

An additional feature that may be worth extending is memory access.
Although workers compute pure functions, there is a “hidden contention”
between the different workers of a parallel program: memory accesses. In
memory-intensive computations, this might have an important effect on the
total run-times of parallel applications, and it is therefore a problem worth
looking into.

Consider heterogeneous architectures.

In this thesis, we assume a queue-based model. This queue-based model
can be realised in multiple architectures, so in that sense the approach of
Structured Arrows is architecture-independent. However, this model relies
on the assumption that the architecture in which the queue-based model
is realised is not heterogeneous. Considering a heterogeneous architecture
would require not only modelling the parallel composition of the workers,
but also modelling the mapping of workers to the different execution units
of the target hardware architecture. It would not, however represent a
fundamental change to the techniques that are described in this thesis.

Statically predicting energy consumption

The cost models that are derived in Chapter 4 are concerned only with
execution times. However, statically predicting the energy consumption
of programs in energy-bound devices is gradually capturing more atten-
tion [LGG13, KE15, GGP+15, LGK+15, GKCE17]. Since the StA frame-
work accepts any alternative model for the operational semantics and cost
models of the parallel constructs, it would not represent a major change to
the StA framework to consider energy consumption as well as time, and it
would increase its reasoning power about non-functional properties.
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6.4 Summary

To conclude, this thesis has tackled the problem of reasoning simultaneously
about: (a) the safe parallelisation of sequential functions; and, (b) the run-
time performance of parallel programs. By achieving the goals of this thesis,
a new general type-based framework for parallel programming has been
developed, Structured Arrows (StA). This framework represents a significant
step towards the automatic and provably optimal parallelisation by inserting
the appropriate type annotations to programs. Structure and functionality
are completely separated in the Structured Arrows framework. The code for
a parallel program is written just once in the Structured Arrows framework,
and cost and type annotations determine how it is parallelised. Parallel
structure becomes a first-class construct that can be applied to different
functions. This greatly eases the task of developing a parallel program, since
it completely separates the major questions of writing parallel software:
what is the program computing, and how is it doing it.





Appendix A

Reforestation Confluence

This appendix shows the core part of the proof that the rewriting systems
 p and  s are confluent. We name the rewriting rules using the name of
the equivalence rules from which they are derived. For example, farm-equiv
is used for the rewriting farmn σ  σ.

A.0.1 Lemma Both sides of all critical pairs of  p can reduce to the same form.

Proof We show for each pair of rules all possible structures that yield a
critical pair, and give a justification when there is none.
Case farm-equiv, pipe-equiv. σ = farmn (fun σ1 ‖ fun σ2).

Case 1. By pipe-equiv, σ  farmn (fun (σ2 ◦ σ1)). By applying
farm-equiv, σ reduces to fun (σ2 ◦ σ2)

Case 2. By farm-equiv, σ  (fun σ1 ‖ fun σ2). By pipe-equiv, σ
reduces to fun (σ2 ◦ σ2).

Case farm-equiv, dc-equiv. σ = farmn (dcm,F σ1 σ2).

Case 1. By applying first farm-equiv and then dc-equiv,

farmn (dcm,F σ1 σ2) dcm,F σ1 σ2  fun (hyloF σ1 σ2).

Case 2.By applying first dc-equiv and then farm-equiv,

farmn (dcm,F σ1 σ2) farmn (fun (hyloF σ1 σ2))
 fun (hyloF σ1 σ2).
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Case farm-equiv, fb-equiv. σ = farmn (fb (fun σ))

Case 1. farm-equiv, then fb-equiv.

farmn (fb (fun σ)) fb (fun σ) fun (hylo(+B) (idOid) σ)

Case 2. fb-equiv, then farm-equiv.

farmn (fb (fun σ)) farmn (fun (hylo(+B) (idOid) σ))
 fun (hylo(+B) (idOid) σ)

Case farm-equiv, with a parT structure. There are no critical pairs, since
a farmn is in Σp, and parT in Σ. If σ = parT (farmn (fun σ)), then the
only possible order is farm-equiv, and then the par-map rule.

Case pipe-equiv, and dc-equiv. There are no critical pairs, since pipe-equiv
requires both sides to be a fun, which implies that dc-equiv must always
be applied first.

Case pipe-equiv, and fb-equiv. There are no critical pairs, since pipe-equiv
requires both sides to be a fun, which implies that fb-equiv must always
be applied first.

Case pipe-equiv, with a parT structure. The rule for parT requires a fun,
so there are no critical pairs.

Case dc-equiv and fb-equiv. There are no critical pairs, since fb-equiv
requires its structure to be a fun, which implies that dc-equiv must always
be applied first.

Case dc-equiv and parT . There are no critical pairs, since the rule for
parT requires a fun, so dc-equiv must be applied first.
Case fb-equiv and parT . There are no critical pairs, since the rule for parT

requires a fun, so fb-equiv must be applied first. �
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A.0.2 Lemma All critical pairs that arise from the rules  s can reduce to the
same form.

Proof The proof follows the same structure as the one for  p.

Case id-cancel-l and id-cancel-r. σ1 = id◦ id and σ2 = id◦σ◦ id. Trivial.
σ1  * id and σ2  * σ.

Case id-cancel-l/r and inverses-cancel. σ1 = id ◦ σ ◦ σ−1 and σ2 =
σ ◦ σ−1 ◦ id. Trivial. σ1  * id and σ2  * id, either by first applying
id-cancel and then inverses-cancel or the other way around.

Case id-cancel-l/r and hylo-cancel. σ1 = id ◦ hyloF in out and σ2 =
hyloF in out ◦ id. Trivial. σ1  * id and σ2  * id.

Case id-cancel-l/r and f-cancel. We do not show the symmetric case.
Trivial. σ1 = id ◦ F id reduces to id.
Case id-cancel-l/r and f-split.

Case 1. σ1 = F (id ◦ σ) and σ2 = F (σ ◦ id). We solve σ1, the other
case is symmetric. By applying f-split, then f-id-cancel-cancel,
then id-cancel-l, we get F (id ◦ σ) F id ◦F σ  id ◦F σ  F σ.
By applying id-cancel-l, we get F (id ◦ σ) F σ.

Case 2. σ1 = id ◦ F (σ ◦ σ′) and σ2 = F (σ ◦ σ′) ◦ id. Trivial.
σ1  F σ ◦ F σ′ and σ2  F σ ◦ F σ′.

Case id-cancel-l/r and ana-map. Trivial. σ1 = anaF (F (id ◦ σ) ◦ out),
σ2 = anaF (F (σ ◦F) ◦out), σ3 = id ◦anaF (F σ ◦out), σ4 = anaF (F σ ◦
out) ◦ id. All of these trivially reduce to mapF σ.

Case id-cancel-l/r and hylo-split. Trivial. For simplicity, we don not
show the symmetric cases. σ1 = hyloF (id ◦ σ) σ′, σ2 = hyloF σ (id ◦ σ′)
and σ3 = id ◦ hyloF σ σ′. All of these reduce to hyloF σ σ′.
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Case id-cancel-l/r and cata-split. Trivial. Same as hylo-split.

Case id-cancel-l/r and ana-split. Trivial. Same as hylo-split.

Cases arising from inverses-cancel. Trivial, similar to the id-cancel-l/r
cases. The only exception is the critical pair arising from f-split, σ =
F (σ ◦ σ−1). By inverses-cancel, this reduces to id. By f-split, we have
to use the rule that F σ ◦ F σ−1  id. Since F σ and F σ−1 are inverses,
this reduces to id.

Case f-split and ana-map. σ = anaF (F (σ1 ◦ σ2) ◦ out).

By f-split, σ  anaF (F σ1 ◦F σ2 ◦ out). We proceed by ana-split
and ana-map: anaF (F σ1 ◦ F σ2 ◦ out)  mapF σ1 ◦ anaF (F σ2 ◦
out) mapF σ1 ◦ mapF σ2.

By ana-map, σ  mapF (σ1 ◦ σ2). We proceed by cata-split,
mapF (σ1 ◦ σ2) mapF σ1 ◦ mapF σ2.

Case f-split and cata-split. σ = cataF (σ1 ◦ F (σ2 ◦ σ3)).

By f-split, σ  cataF (σ1 ◦F σ2 ◦F σ3). We proceed by cata-split:
cataF (σ1 ◦ F σ2 ◦ F σ3)  cataF (σ1 ◦ F σ2) ◦ mapFσ3. If σ1 = in,
then we have finished with mapF σ2 ◦ mapFσ3, otherwise we perform
another cata-split cataF σ1 ◦ mapF σ2 ◦ mapFσ3.

By cata-split, σ  cataF σ1 ◦ mapF (σ2 ◦ σ3). This implies that
σ1 cannot be in. We finish by applying f-split and cata-split.
mapF (σ2 ◦ σ3) mapF σ2 ◦ mapF σ3

Case f-split and ana-split. σ = anaF (F (σ2 ◦ σ3) ◦ σ1).

By f-split, σ  anaF (F σ2 ◦ F σ3 ◦ σ1). We proceed by ana-split:
σ  * mapF σ2 ◦ mapFσ3 ◦ anaF σ1.

By ana-split, σ  mapF (σ2◦σ3)◦anaF σ1. By applying f-split and
cata-split. mapF (σ2 ◦σ3)◦anaF σ1  mapF σ2 ◦mapF σ3 ◦anaF σ1.
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Case f-split and hylo-split. The critical pairs are obtained from σ =
hyloF (σ1 ◦ F (σ2 ◦ σ3)) σ4 and σ′ = hyloF σ1 (F (σ2 ◦ σ3) ◦ σ4). We only
show the case for σ, since σ′ can be derived in an analogous way.

By first f-split and then hylo-split, σ  hyloF (σ1 ◦ F σ2 ◦
F σ3) σ4  cataF (σ1 ◦ F σ2 ◦ F σ3) ◦ anaF σ4

By first hylo-split and then f-split, σ  cataF (σ1 ◦ F (σ2 ◦ σ3)) ◦
anaF σ4  cataF (σ1 ◦ F σ2 ◦ F σ3) ◦ anaF σ4.

Cases arising from hylo-cancel. Trivial due to the preconditions of the
rules hylo-split, cata-split and ana-split.

Case f-id-cancel and ana-map. σ = anaF (F id ◦ out)

By f-id-cancel , anaF (F id◦out) anaF out. Then, by hylo-cancel,
anaF out id.

By ana-map, anaF (F id ◦ out)  mapF id. mapF is a synonym
to a hylomorphism, so mapF id is the following term: mapF id =
hyloF (in◦F id) out. By f-id-cancel, following by id-cancel-l and
hylo-cancel, mapF ID  id.

Case f-id-cancel and cata-split. σ = cataF (σ1 ◦ F id)

By f-id-cancel, σ  cataF σ1

By cata-split, σ  cataF σ1 ◦ mapF id. By f-id-cancel, following
by id-cancel-r and hylo-cancel, cataF σ1 ◦ mapF id * cataF σ1.

Case f-id-cancel and ana-split. σ = anaF (F id ◦ σ1)

By f-id-cancel, σ  anaF σ1

By ana-split, σ  mapF id ◦ anaF σ1. By f-id-cancel, following by
id-cancel-l and hylo-cancel, mapF id ◦ anaF σ1  * anaF σ1.

Case ana-map. No critical pairs. The only possibility would be hylo/cata/ana-split.
However, the preconditions of the rules, specifically σ1 6= in in hylo-split/cata-split
and σ2 6= out in ana-split prevent their application.
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Case hylo-split and cata-split. No critical pairs, due to the preconditions
if the rules σ1 6= in.

Case hylo-split and ana-split. No critical pairs, due to the preconditions
if the rules σ2 6= out.

Case cata-split and ana-split. No critical pairs.
�



Appendix B

Soundness of the
Structure-Checking Relation

This is a proof of Theorem 5.4.1 on page 174. By induction on the structure
of the derivation ∆; Γn `M ∼ a.

Case | GVar: M = x. The premise is ∆; Γn ` x ∼ 〈[x]〉n. The goal is
λΓ.x ≈ λ[[〈[x]〉n]]. By unfolding λ[[·]],

λ[[〈[x]〉n]] = λy1 · · · yn.x

By α-renaming yi to Γ,

λ[[〈[x]〉n]] ≈α λΓ.x

Case | LVar: M = x.
The premise is Γn ` x ∼ 〈I〉i+j+1 |ij. The goal is λΓ.x =α λ[[〈〉i+j+1 |ij]].
The initial assumption implies that Γn(x) = Ak, which in turn implies
k ≤ n and that i = k − 1 and j = n− k. By expanding λ[[〈〉i+j+1 |ij]]:

λ[[〈〉i+j+1 |ij]]
= λ[[〈〈〉j〉i0]]
= λy1 · · · yi.λ[[〈〈〉j〉00]]
= λy1 · · · yi.λ[[〈〉j]]
= λy1 · · · yi yi+1.λ[[〈[yi+1]〉j0]]
= λy1 · · · yi yi+1 yi+2 · · · yi+1+j.λ[[〈[yi+1]〉00]]
= λy1 · · · yi yi+1 yi+2 · · · yi+1+j.λ[[[yi+1]]]
= λy1 · · · yi yi+1 yi+2 · · · yi+1+j.yi+1

223
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RELATION

Note that i+ 1 + j = (k − 1) + 1 + (n− k) = n. By expanding Γ,

Γ = [x1 : A1 · · ·xi : Ai, x : A, z1 : B1 · · · zjBj].

The variables y1 · · · yi are α-renamed to xi, yi+1 to x, and yi+2 · · · yn to
z1 · · · zj:

λ[[〈〉i+j+1 |ij]] = λy1 · · · yi yi+1 yi+2 · · · yn.yi+1

≈α λx1 · · · xi x z1 · · · zn.x = λΓ.x

Case | Abs: M = λx.N .
The premise is Γn ` λx.N ∼ a. The goal is λ[[a]] ≈ λΓ λx.N . If Γn `
λx.N ∼ a, then Γn, x : A ` N ∼ a. By the induction hypothesis, λ[[a]] ≈
λΓ, x : A.N = λΓ x.N = λΓ.λx.N

Case | App: M = N1 N2.
The premise is Γn ` N1 N2 ∼ @n a1 a2. The goal is λ[[@n a1 a2]] =
λΓ.N1 N2. By reducing λ[[@n a1 a2]],

λ[[@n a1 a2]]
= λx1 · · ·xn.λ[[@0 (a1 [x1] · · · [xn]) (a1 [x1] · · · [xn])]]
= λx1 · · ·xn.λ[[a1 [x1] · · · [xn] (a2 [x1] · · · [xn])]]
= λx1 · · ·xn.λ[[a1 [x1] · · · [xn]]] λ[[a2 [x1] · · · [xn]]]
= λx1 · · ·xn.(λ[[a1]] x1 · · ·xn) (λ[[a2]] x1 · · ·xn)

The assumption Γn ` N1 N2 ∼ @n a1 a2 implies Γn ` N1 ∼ a1 and
Γn ` N2 ∼ a2. By the induction hypothesis,

λ[[@n a1 a2]]
≈ λx1 · · ·xn.((λΓ.N1) x1 · · ·xn) ((λΓ.N2) x1 · · ·xn)

Since none of the xi occur free in Ni, by α-renaming x1 · · ·xn:

λ[[@n a1 a2]]
≈α λΓ.((λΓ.N1) Γ) ((λΓ.N2) Γ)

Finally, by η-reduction:

λ[[@n a1 a2]]
≈ λx1 · · ·xn.((λΓ.N1) x1 · · ·xn) ((λΓ.N2) x1 · · ·xn)
≈α λΓ.((λΓ.N1) Γ) ((λΓ.N2) Γ)
≈η λΓ.N1 N2
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Case | Case: M = case M of {p1 → N1; . . . ; pk → Nk}.
The premise is

Γn ` case M of {p1 → N1; · · · ; pk → Nk}
∼ 〈Ok〉nk+1 a1 · · · ak (〈[out(p1 · · · pk)]〉n1 aM).

The goal is

λ[[〈Ok〉nk+1 a1 · · · ak (〈[out(p1 · · · pk)]〉n1 aM)]]
≈ λΓ.case M of {p1 → N1; . . . ; pk → Nk}.

By the definition of λ[[·]], the LHS of the goal is simplified to:

λ[[〈Ok〉nk+1 a1 · · · ak (〈[out(p1 · · · pk)]〉n1 aM)]]
= (λx1 · · ·xn.λ[[〈Ok〉0k+1 (a1 [x1] · · · [xn]) · · · (ak [x1] · · · [xn])

(〈[out(p1 · · · pk)]〉01 (aM [x1] · · · [xn]))]]
≈β (λx1 · · ·xn. (λ[[a1]] x1 · · · xnO · · ·Oλ[[ak]] x1 · · ·xn)

(out(p1 · · · pk) (λ[[aM ]] x1 · · ·xn))

By unfolding out and β-reducing the resulting λ,

≈β (λx1 · · ·xn. (λ[[a1]] x1 · · ·xnO · · ·Oλ[[ak]] x1 · · ·xn)
case (λ[[aM ]] x1 · · ·xn) of{

p1 → inj1 TP[[p1]];
· · · ;
pk → inj1 TP[[p1]]}


By unfolding O, and doing a case-case merge:

≈case−case (λx1 · · ·xn. case (λ[[aM ]] x1 · · ·xn) of{
p1 → λ[[a1]] x1 · · ·xn TP[[p1]];
· · · ;
pk → λ[[ak]] x1 · · ·xn TP[[pk]]}

By applying the Case inference rule to the premise, the following deriva-
tions are obtained:

Γn `M ∼ aM
Γn, x : T ′ ` Ni[pi ↓ x] ∼ ai
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By applying the induction hypothesis,

≈ λx1 · · ·xn. case ((λΓ.M) x1 · · ·xn) of{
p1 → (λΓ x.N1[p1 ↓ x]) x1 · · ·xn TP[[p1]];
· · · ;
pk → (λΓ x.Nk[pk ↓ x]) x1 · · · xn TP[[pk]]}

By first α-renaming the xi to Γ, and then η-reducing,

≈αη (λΓ. case M of{
p1 → (λx.N1[p1 ↓ x]) TP[[p1]];
· · · ;
pk → (λx.Nk[pk ↓ x]) TP[[pk]]}

Finally, by Lemma 5.3.1:

≈β λΓ. case M of{ p1 → N1; · · · ; pk → Nk}

Case | Let: M = let x = M in N .
The premise is

∆; Γn ` let x = M in N : @n a2 (Dnx Γ a1) ∼ B

The goal is

λ[[@n a2 (Dnx Γ a1)]] ≈ λΓ.let x = M in N.

The goal can be rewritten to:

λ[[@n a2 (Dnx Γ a1)]] ≈ λx1 · · ·xn.λ[[a2]] x1 · · ·xn (λ[[Dnx Γ a1]] x1 · · ·xn)

The Let rule implies that:

∆,Γ, x : A; [] `M : a1 ∼ A ∆; Γn, x : A ` N : a2 ∼ B.

By the induction hypothesis,

λ[[Dnx Γ a1]] ≈ λΓ.Y (λx.λ[[a1]]) ≈ λΓ.Y (λx.M) λ[[a2]] ≈ λΓ x.N.

This can be used to further rewrite the goal. Followed by α renaming and
η-reduction,

λ[[@n a2 (Dnx Γ a1)]] ≈ . . . ≈αη λΓ.(λx.N)(Y (λx.M))
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Since let x = M in N ≈ N [M/x] ≈ (λx.N) M ,

λ[[@n a2 (Dnx Γ a1)]] ≈ . . . ≈ λΓ.let x = Y (λx.M) in N

Both x must be the same, since they both come from the premise. The
semantics of a recursive let-in definition let x = M is defined as Y (λx.M).
Also, if x 6∈ fv(M), then Y (λx.M) ≈M . This finishes the proof:

λ[[@n a2 (Dnx Γ a1)]] ≈ . . . ≈ λΓ.let x = M in N

�
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