
An Investigation of
.- - -:":

N ondeterminism in Functional
Programming Languages

THESIS

Submitted in fulfilment of the requirements

for the Degree of

MASTER OF SCIENCE

of Rhodes University

by

Gwyneth Clare Graham

February 1997

-

Abstract

This thesis investigates nondeterminism in functional programming languages.

- To establish a precise understanding of nondeterministic language properties,

Sondergaard and Sestoft's analysis and definitions of functional language

properties are adopted as are the characterizations of weak and strong non

determinism.

This groundwork is followed by a denotational semantic description of a

. nondeterministic language (suggested by Sondergaard and Sestoft). In this

manner, a precise characterization of the effects of strong nondeterminism is

developed.

, ..

Methods used to hide nondeterminism to in order to overcome or sidestep the

problem of strong nondeterminism in pure functional languages are defined.

These different techniques ensure that functional languages remain pure but

also include some of the advantages of nondeterminism.

Lastly, this discussion of nondeterminism is applied to the area of functional

parallel language implementation to indicate that the related problem and

the possible solutions are not purely academic. This application gives rise to

an interesting discussion on optimization of list parallelism. This technique

relies on the ability to decide when a bag may be used instead of a list.

Acknowledgments

Throughout this project my supervisor, Professor E.P. Wentworth, has pro

vided me with valuable advice and support. His insight into a wide variety of

topics resulted in stimulating conversations and debates and encouraged me

to develop a keen interest in functional programming. He deserves special

thanks for reading the draft copies of this thesis.

Graham Smith, who often acted as a sounding board, provided valuable peer

interaction and discussion. Without the technical support provided by Billy

Morgan, Shaun Bangay, Graham Smith and Greg Watkins, the type setting

of this thesis would have been an insurmountable obstacle.

I would like to thank my friends, family and the members of the Rhodes ~Ilic"

versity Computer Science Department for their continuous encouragement

and support.

11

- Contents

1 Introduction

1.1 Functional Programming Languages

1.1.1 Structure

1.1.2 Properties

1.1.3 Church-Rosser Theorem and Confluence

1.1.4 Pure and Impure Functional Languages.

1.2 Introduction to Nondeterminism

1.2.1 Strong and Weak Nondeterminism

1.2.2 Effects of Nondeterminism

1.3 Project Goals

.-- - --~

1

2

2

3

4

5

7

8

8

9

2 Nondeterministic Constructs and Strong Nondeterminism 11- -

2.1 Types of Strong Nondeterminism 11

2.1.1 Angelic Nondeterminism . 12

2.1.2

2.1.3

2.1.4

Demonic N ondeterminism

Erratic Nondeterminism .

Global versus Local Nondeterminism

2.2 Effect on Language Properties ..

2.2.1 Referential Transparency

2.2.2 Definiteness.

2.2.3 Unfoldability

2.2.4 Conflict between Unfoldability and Definiteness

2.3 Parameter Passing Techniques

2.3.1 Effect in Deterministic Languages

III

12

13

13

14

15

16

17

18

19

19

.;. r

2.3.2 Effect in Nondeterministic Languages 20

2.3.3 Relation to Conflict 21

3 Program Semantics 23

3.1 Denotational Semantics. 24

3.1.1 Simple Semantic Domains 24

3.1.2 Valuation Functions 26

3.1.3 Recursive Functions. 27

3.2 Semantics of Nondeterministic Programs 30

3.2.1 Power Domains 32
3.2.2 Types of N ondeterminism 33

3.2.3 Singular versus Plural Semantics 34

3.2.4 Strict versus N onstrict Semantics 35

3.2.5 Parameter Passing techniques 36

3.3 Implementation Issues 37'

3.4 Alternative Semantics 38

3.4.1 Partially Deterministic Languages 39

3.4.2 Hughes Natural Semantics . 39

4 Methods of Hiding N ondeterminism 41

4.1 Streams 41

4.1.1 Definition of Amb using Streams 43

4.1.2 Semantics · . 44

4.1.3 Classification 45

4.1.4 Disadvantages 45

4.2 Burton's Method · . 46

4.2.1 Definition of choice 46

4.2.2 Semantics · . 47

4.2.3 Classification 48

4.2.4 Disad vantages 49

4.3 Monads 50

4.4 Peyton Jones' Method 51

4.5 Comparison of Methods 52

IV

5 Parallel Processing and Functional Languages

5.1 Functional Parallel Processing

5.1.1 Explicit Parallelism ..

5.1.2 Implicit Parallelism ..

5.1.3 Implicit Parallelism and Annotations

5.2 List Parallelism . . .

5.2.1 List Notation

5.2.2 List Structure

5.3 Efficiency

5.3.1 Granularity .

5.3.2 Degree of Parallelism

5.4 Expressibility

6 Parallel Functional Programming with Linda

6.1 Linda

6.1.1 Tuple Space

6.1.2 Linda Constructs

6.1.3 Advantages and Criticisms.

6.2 Explicit Parallelism using Linda

6.2.1 Linda and Streams ...

6.3 Implicit Parallelism using Linda

7 Optimization of Linda Implementation

7.1 Properties of Lists and Bags

7.1.1 Boom Hierarchy

7.1.2 The Bird-Meertens Formalism

7.2 List to Bag Convertibility

7.2.1 Bag Propagation .

7.3 Bag Analysis

7.3.1 Backward Analysis

7.3.2 Abstract Domain .

7.3.3 Abstract Context Functions

7.3.4 Propagating Contexts

v

54

54

55

.--0- ."". 56

57

58

59

60

63

63

64

65

67

67.,

68

69

70

71

73 __ .

74

76

78

78

80

83

85

86

87

87

88

90

7.3.5 . Extensions to Bag Analysis

7.4 Implications of Optimization.

8 Conclusion

A Definitions from the Bird-Meertens Formalism

A.1 Notation

A.2 Function Types

A.3 Definition of Map and Reduce

A.4 Promotion Rules "

B Conversion Rule Proofs

B.1 Reduction Conversion Rule

B.2 Bag Propagation Rule through Map.

C Undecidability of the Commutivity Problem

C.1 Proof.

References

VI

93

95

98

101

101

102

102

103

104

104

105

106.,

. r06

108

- List of Figures

1.1 Two Different Reduction Sequences. 5

3.1 Properties of the Nondeterministic Language Variants. 37

4.1 Classification of Approaches to Nondeterminism. 53

6.1 System Structure for a Typical "Farm of Workers". 74

7.1 Summary of Boom Hierarchy. ,80

7.2 Abstract Context Functions. 89

7.3 Abstract Context Functions for Primitive List Functions. 94

A.l Definition of Map and Reduce.

A.2 Bird-Meertens Promotion Rules.

Vll

102

103

- Chapter 1

Introduction

Functional languages have continued to grow in popularity over the past two

decades, and advocates continue to find new applications. N ondeterminism is

an essential requirement in applications such as operating systems and is de

sirable in some forms of parallel processing. To successfully implemellt th~e"

types of applications, nondeterminism needs to be integrated into functional

languages. There have been a number of approaches but problems exist.

Nondeterministic choice can wreck some of the elegant mathematical prop

erties of the pure languages. The interaction of nondeterminism with spe-- -

cific implementation mechanisms, or nondeterminism in the presence of non

terminating computations has some non-obvious and subtle consequences.

The effects of the integration of different types of nondeterminism need to

be classified. Then the trade-offs which result in exploiting certain types of

nondeterminism in specific situations can be identified. In this manner, in

formed decisions on how to extend functional languages can be made in order

to profitably implement specific applications which require nondeterminism.

To date, the issues and approaches have not been collated and organized.

In addition, the terminology used by different authors is often inconsistent

or contradictory. This thesis draws together the disparate work, providing a

1

consistent frarriework which will assist functional language implementors.

1.1 Functional Programming Languages
r - -""

By 1989, consensus on a universal definition of functional languages had not

been reached [Hudak, 1989]. It is important for us to begin our study with

a precise description of what we understand to be functional languages.

1.1.1 Structure

The functional programming style is characterized by the lack of implicit

-state. The result is a declarative language whose underlying model of com

putation is the function [Hudak, 1989] [Hughes, 1989] [Bird, 1988]. The state

is carried explicitly in state-oriented computations by passing parameters to

the functions. As a result, an important characteristic of functional lan--

guages is the lack of assignment statements.

Functional languages do not include control structures such as while loops.

These control the sequence in which state is modified in imperative languages,

so that a precise and deterministic result is achieved. The lack of implicit_ -

state renders these constructs redundant in functional languages. However,

looping is achieved through the use of recursion [Hudak, 1989J.

Functions can be expressed in a manner which emulates the structure of

mathematical equations. A single function is defined by several separate

equations. Each equation is valid under certain circumstances according to

the rules of pattern matching.

Functions, known as higher order functions, can be passed as arguments,

stored in data structures and returned as results. This feature is profitably

used in modularization of programs to "glue" separate modules together

[Hughes, 1989].

2

Lazy evaluation is another distinguishing concept of functional languages.

This ensures that an argument is only evaluated when and if it is needed.

Lazy evaluation can be exploited in order to evaluate (finite pyrtions of)

infinite data structures [Peyton Jones, 1987] [Michaelson, 1989J.

1.1.2 Properties

Bird and Wadler state "The primary role of the programmer is to construct

a function to solve a problem. This function ... is expressed in notation

that obeys normal mathematical principles" [Bird, 1988J. To understand

this statement, consider the following mathematical equation

f(x)=x +x

The following equalities hold

f(5 + 7) (5 + 7) + (5 + 7)

12 + 12

f(12)

24

It is important to note that once a value has been bound to a variable, it

does not vary. For example x is always equal to the value of (5 + 7). Even

though the value of (5 + 7) cannot change, the expression can be replaced by

equivalent expressions during simplification.

Any subexpression may be replaced by an equivalent subexpression without

affecting the generality or properties of the function. This is loosely termed

referential transparency, and is assumed to be a property of typical mathe

matical systems.

The significance of Bird and Wadler's statement is that pure functional lan

guages exhibit these mathematical properties. The mathematical nature of

3

functional languages is exploited in formal reasoning about functional pro

grams during program optimization and verification.

It may seem intuitive to assume that the same statement holds f~.r programs

written using any programming style. However, imperative programs are

- good counter examples. Consider the following function written in C.

int Double (int x) {

}

if (globaLflag == 0) {

globaLflag = 1;

return x;

}

else

return x+x;

The value of the global variable may vary during evaluation and Double not

only depends on the global variable, but explicitly alters it. The replacement

of subexpressions with simpler equivalent sub expressions is no longer gov-_ .

erned by 'standard' mathematical rules. For example double(5) + double(5)

may evaluate to 20, but only if the flag is non-zero before the expression is

evaluated. Therefore, the language is not referentially transparent.

1.1.3 Church-Rosser Theorem and Confluence

One model of evaluation of a function proceeds by selecting and reducing

a reducible expression (redex). More than one redex may be present in a

functional expression. How does the evaluation order of the redexes effect

the result of evaluating the expression?

The expression f(5 + 7) = (5 + 7) + (5 + 7) contains two redexes. The final

4

result obtained' is independent of the eValuation sequence used, as indicated

below.

(5+7)+12 >
/(5+7) - (5+7)+(5+7)< 12+12

12+(5+7)

Figure 1.1: Two Different Reduction Sequences.

But is this one example indicative of functions in general?

According to the Church-Rosser theorem, in referentially transparent lan

guages, the same result is obtained regardless of the chosen reduction order,>

(if the evaluation process terminates). An important consequence is that

functional programmers are freed from concerns involving evaluation order

[Hudak, 1989J.

The Church-Rosser theorem also indicates that a reduction sequence known

as normal order reduction will always return a result if one exists. Lazy

evaluation is an implementation of normal order reduction and, therefore,

ensures termination whenever possible [Peyton Jones, 1987J.

1.1.4 Pure and Impure Functional Languages

It is generally agreed that the functional style is characterized by the use of

function application and composition rather than sequencing. In addition,

the presence of other constructs such as higher order functions, discussed in

section 1.1.1, are characteristic of the style. Therefore, why is it impossible

to cite a unique globally accepted definition of functional languages?

Some authors demand the absence of any primitives which result in side ef-

5

fects. This agr-ees with the above desc-ription of functional languages. The

resultant languages are referred to as pure languages. Some authors are less

demanding. They believe that functional languages should adhere to the

general functional style. However, they only discourage the use _hut do not

demand the absence of primitives which result in side effects [Hudak, 1989].

Pure languages are referentially transparent and exhibit confluence whilst

impure languages lack some, if not all, of these properties. Therefore, the

algebraic transformations of an impure program are limited. This directly

impacts on the ability to optimize and verify the code. Conversely, it is ar

gued that efficiency and even expressibility of an impure language is greater

than that of a pure language.

However, purists advocate that "purely functional languages are not only

sufficient for general computing needs but are also better because of t~ei{

purity" [Hudak, 1989]. In support of impure languages, John Hughes argues

"it is a logical impossibility to make a language more powerful by omitting

features, no matter how bad they may be" [Hughes, 1989].

We find the ability to verify and optimize code attractive, especially since- -

these techniques rely on already known and accepted mathematical princi

ples. In addition, confluence allows for elegant parallelisation of functional

languages [Peyton Jones, 1989].

For the remainder of this thesis, we adopt the purists approach. Determin

istic languages discussed in this thesis can be considered to be referentially

transparent. Unless otherwise stated, we assume a deterministic functional

language does not contain assignment statements or other constructs which

introduce side effects. In addition, the programs must exhibit the property

of confluence. Therefore, using this definition of a pure language, the output

of a pure function is solely dependent on its explicit input.

6

For the rest of this thesis, we assume all flmctionallanguages are implemented

using lazy evaluation techniques. In some cases, it is necessary to assume

the language is implemented eagerly. This will be indicated explicitly.

- 1.2 Introduction to Nondeterminism

The following two definitions of determinism will be used in this thesis .

• DEF1:- "A program is deterministic if its evaluation on the same input

always produces the same output" [Schmidt, 1988] .

• DEF2:- "Assume we are given a discrete system subject to changes,

or state transitions. If at every point of time, the system's present

state contributes an amount of information sufficient for us to deduce

its state after the next transition, then it is said to be deterministic"

[Sondergaard & Sestoft, 1992J. .

If the evaluation of a program (for a given set of input) results in a set of

possible values (DEF1 is violated), the resultant language is said to be non

deterministic.

If DEF2 is violated, the state after the next state transition cannot be pre-- .

dieted at every point in time. Again the resultant language is nondetermin

istic.

At first, the above two definitions appear to be identical. However, subtle

differences exist. DEF2 does not make any reference to the final result. If a

language is nondeterministic due to a violation of DEF2, the result may be a

single result or a set of possible results. DEF1 refers to the overall result ob

tained after the evaluation of a program. If the program is nondeterministic

(due to a violation of DEF1), more than one possible answer must exist.

7

1.2.1 Strong and Weak Noiideterminism

To fully understand the above subtleties two types of non determinism namely

strong and weak nondeterminism need to be defined.

Strong Nondeterminism:- The case where one of a possible number of

results is acceptable, and no mechanism is used to favour any particular

result, is referred to as strong nondeterminism.

Weak Nondeterminism:- The case where use of nondeterministic compo

nents of a program results in a deterministic program, is referred to

as weak nondeterminism. "That is, the final results should never de

pend on the particular choices taken by an evaluator" [Sondergaard &

Sestoft, 1992].

If DEF1 is violated, then the language is definitely strongly nondeterministic.

If DEF2 is violated, it may be that DEF1 still holds or it may be violated:,

In the former case the language is weakly nondeterministic.

1.2.2 Effects of Nondeterminism

There are definite consequences to introducing strong nondeterminism using

nondeterministic constructs. These consequences are discussed in detail in- -

section 2.2.4 once the necessary terms and constructs have been defined.

However, the problem is outlined below.

Consider the function

f(x) = x + x

If the language is referentially transparent, the following is always true.

f(some expr) some expr + some expr

2 * some expr

Assume some expr can be substituted by more than one possible value (the

language is strongly nondeterministic). The same result cannot be guaran

teed each time some expr is evaluated. Therefore, it cannot be assumed that

8

2 * some expr is always equal to some dpr + some expr. In other words, the

language is not referentially transparent (loosely defined in section 1.1. 2).

1.3 Project Goals

Nondeterminism in functional languages may limit the mathematical tractabil

ity of the language. Consequently, some algebraic transformations, required

during optimization and verification of functional programs, cannot be per

formed with confidence. If nondeterminism is not integrated into functional

languages, these languages cannot be used to implement a number of appli-

. cations which rely on nondeterminism. Hence, it appears as if the use of pure

functional languages is limited.

Our goal is to investigate the impact of nondeterminism in functional lan

guages. In particular, we wish to establish if there is a way of implementing

pure functional languages with the added advantages aft'orded by nondeter-

mmlsm.

In order to discuss the implications of nondeterminism in functional language

clearly and concisely, we introduce and use the definitions and terminology- -

suggested by Sondergaard and Sestoft [Sondergaard & Sestof, 1990]. In ad

dition, we investigate the use of denotational semantics to specify nondeter

ministic languages. This allows for precise characterization of the nature of

nondeterministic functional languages and the resultant trade-oft's of adding

strongly nondeterministic constructs.

However, understanding these consequences is not sufficient. Our next goal

is to investigate alternative methods of hiding nondeterminism which over

come or sidestep the problems outlined in section 1.2.2.

Hughes [Hughes & Moran, 1995] and Jackson and Burton [Jackson & Bur

ton, 1994] attempt to solve the problem by changing the semantics of the

9

language. This approach leads to a r~striction of the language semantics

or a restriction on the type of nondeterminism which may be present. We

investigate and compare alternative methods, which do not impose these re-

strictions.

Next, we investigate whether pure functional languages are indeed inappro

priate for the implementation of parallel systems. This serves as a good illus

tration of how to employ methods of introducing and hiding strong non de

terminism. In particular, we focus on Linda, a parallel processing paradigm,

in this discussion.

Linda consists of a set of constructs which introduce the notion of processes

and are used to extend sequential languages. Asynchronous communication

is achieved through a global state space called tuple space. We show that, if

Linda constructs are introduced explicitly into a functional language, str?.Q.g"

nondeterminism and the related complications result.

Instead of exploiting explicit parallelism, we investigate the use of Linda in

order to exploit weak nondeterminism. The Linda paradigm is used at a level

transparent to the user without sacrificing important properties of functional- -

languages. Lists are used to express parallelism - any redexes within a list

will be placed into tuple space to be evaluated in parallel.

In functional languages, the order of lists elements is important. However,

any parallel language which accesses a distributed data structure (pool of

data), may benefit from reduced synchronization constraints. In these cases,

the data may be removed from the pool in any order and the structure used

to represent these values would ideally be a bag instead of a list. For opti

mization purposes, we use the Bird-Meertens formalism to characterize when

a list may be treated as a bag. We also introduce a form of backward analysis

which can be used to detect when this form of optimization is possible.

10

- Chapter 2

Nondeterministic Constructs

and Strong N ondeterminism

McCarthy's ambiguous operator, amb, returns one of its two arguments.

El amb E2 returns either El or E2. The choice of argument is random with"

one exception, if El is undefined then the value of (El amb E2) is E2 and

vice versa [Hughes & Moran, 1995].

According to DEF1 in section l.2, the amb construct introduces nondetermin

ism since, given the same input of El and E2 , there exists a set of possible - -

results {El' Ed. This type of nondeterminism is classified as strong non

determinism. The consequences of introducing strong nondeterminism into

functional languages will be discussed in detail in the rest of this chapter.

2.1 Types of Strong Nondeterminism

The effects of nontermination on expressions which contain a nondeterminis

tic construct such as McCarthy's amb need to be considered. "The reason is

that now we have to discuss possibly nonterminating computations and the

way in which possible termination depends on the non-deterministic choices

made during the evaluation of the program" [Sondergaard & Sestoft, 1992].

11

The definition ·of amb above states that if either argument is undefined· the

alternative argument is returned as the result. If both choices are undefined,

then the result is undefined. However, there are other ways of defining ambo

Three different types of strong nondeterminism can be defined. The type

which is present within a language depends on the way in which amb is de

fined to handle nontermination.

The following expression will be used to illustrate the difference between the

three types of strong nondeterminism and the conditions under which each

exists. For the purpose of this discussion, bottom (1..) is used to represent a

nonterminating computation or undefined argument.

f(1.. amb 3) + f(2 amb 4) where f(x) = x + x (2.1)

2.1.1 Angelic Nondeterminism

McCarthy's amb can be defined such that all choices are made in favour of

termination if possible [Sondergaard & Sestoft, 1992J. This is consistent with

the definition given above and is referred to as angelic nondeterminism.

Using this method, equation 2.1 can be rewritten as f(3) + f(2 amb 4) since

termination is always favoured and (1.. amb 3) evaluates to 3.

2.1.2 Demonic Nondeterminism

amb can be defined in a slightly different way. Demonic nondeterminism

can be implemented by specifying that as soon as one of the arguments

is nonterminating, the evaluation of amb should result in nontermination.

"With demonic nondeterminism choices are made in favour of nontermination

if at all possible" [Sondergaard & Sestoft, 1992J.

Consider expression 2.1, (1.. amb 3) will always evaluate to l.. Therefore, the

example can be rewritten as f(1..) + f(2 amb 4).

12

2.1.3 Erratic Nondeterminism

It may seem more intuitive to ensure that the implementation of amb does

not favour either termination or nontermination. This is referred to as er

ratic nondeterminism. "In this kind of non determinism choices ar~ made,

- operationally speaking, by flipping a coin, which means that nothing is done

to obtain or prevent termination" [Sondergaard & Sestoft, 1992J.

If this approach is chosen (1- amb 3) may either return the value of 1- or 3.

The evaluation process does not favour either result.

2.1.4 Global versus Local Nondeterminism

Consider the expression below, and assume choices are made in favour of

termination (angelic nondeterminism).

f(O amb 1) where f(x) = if (x = 0) then f(O) else x + x (2.2)

Evaluation of the expression may be restricted to ensure each choice only

evaluates to bottom if both arguments are undefined. This method does not

consider the effects the choice has on later evaluation of the expression or

whether evaluation of the expression terminates as a whole. The resultant

nondeterminism is known as local angelic nondeterminism.

In other words, when (0 amb 1) is evaluated, either 0 or 1 is a possible result

since neither is equal to bottom (the only choice which has to be avoided if

local choices are made). Therefore, evaluation of expression 2.2, assuming

local angelic nondeterminism, might not terminate.

The choice of 1 ensures termination of the evaluation process of expression

2.2, whereas 0 leads to later nontermination. The case where the overall

termination of the evaluation of an expression is considered is referred to as

global angelic nondeterminism. Similar cases should be taken into consider-

13

ation when implementing demonic nondeterminism.

The three main types of nondeterminism plus the global variations give five

possible semantics for ambo

2.2 Effect on Language Properties

Once the method of handling nontermination has been considered, other

complications which result due to nondeterminism still need to be under

stood and handled. The following nondeterministic expression will be used

to illustrate this point.

f(2 amb 4) where f(x) = x + x (2.3)

Simple unfolding leads to (2 amb 4) + (2 amb 4). When evaluated, any of

the results listed below are possible.

2 + 2 or

2 + 4 or

4 + 2 or

4 + 4

By contrast, if (2 amb 4) is evaluated before its result is bound to x, the

possible results are

2 + 2 or

4 + 4

This contradiction indicates that, once amb is a construct of the language,

the language is no longer referentially transparent according to the definition

in section 1.1.2.

14

Sestoft and Sondergaard illustrate that the definition of referentially trans

parency is not consistent between texts [Sondergaard & Sestof, 1990]. Essen

tially, a number of different concepts are all referred to as referential trans

parency. Consequently, this leads to inconsistency in defining the effects of

nondeterminism in functional languages.

Sondergaard and Sestoft try to clarify the notion of referential transparency.

They decouple the concepts into three independent properties namely, ref

erential transparency, unfoldability, and definiteness. In the process refer

ential transparency was re-defined and simplified. In addition the emphasis

is shifted from referential transparency to the core issues of definiteness and

unfoldability.

Using these definitions as a basis, the effects of nondeterminism in functional

languages can be expressed more precisely. Therefore, we discuss Sonder

gaard and Sestoft's definitions below and adopt this terminology for the rest

of this thesis.

2.2.1 Referential Transparency

Sondergaard and Sestoft suggest the following definition for referential trans-

parency.

"An operator is referentially transparent if it preserves applica

bility of Leibniz's law, or substitutivity of identity: the principle

that any sub expression can be replaced by any other equal in

value" [Sondergaard & Sestoft, 1992].

Using the above definition it can be concluded that expression 2.3, although

perhaps not initially apparent, is referentially transparent. Although (2 amb 4)

will eventually evaluate to 4 or 2, to be strictly correct, (2 amb 4) should be

replaced by the set {2, 4} to preserve referential transparency.

15

This definition-is different to that defined in section 1.1.2. Essentiallyadif

ferent meaning of equality is used in each case. In section 1.1.2, an expression

always denotes a single value. The notation that one expression can replace

another equal in value essentially means that both expressions must denote

the same single value.

By contrast, Sondergaard and Sestoft's expreSSIOns denote sets of values.

Their replacement with an "equal" expression implies any other expression

which denotes the same set. Since an amb expression is said to equal a set

of values, the actual choice has been delayed and the effects are not charac

terized by referential transparency.

The use of this form of equality means referential transparency co-exists

with nondeterminism. However, the effects of nondeterminism have not dis

appeared. As indicated above, the emphasis has now been placed on the-

more specific notions of definiteness and unfoldability which can more pre

cisely express the effects of choosing a single value from the set of possible

values during evaluation of a nondeterministic expression.

2.2.2 Definiteness

A language is definite if a variable such as x has the same value at each

position (within a single scope) in a function [Sondergaard & Sestoft, 1992].

This property is relied on quite heavily in typical mathematical systems.

When a mathematical expression is evaluated, the value of a variable remains

constant even if it occurs more than once.

In expression 2.3, x occurs more than once, within a single scope. If x can

only equal 2 each time it occurs, or alternatively 4 at each position, the

language is definite and the possible results are

16

2 + 2 or

4 + 4

Note that if the language is indefinite, the following results are also possible

2 + 4 or

4 + 2

_2.2.3 Unfoldability

Using lambda calculus [Michaelson, 1989], a language is unfoldable if

(Ax, e)e' = [e'/x]e [Sondergaard & Sestoft, 1992]

Consider

f(2 amb 4) where f(x) = x + x

For the above expression to be unfoldable the following expression must al

ways be true

f(2 amb 4) = ((2 amb 4) + (2 amb 4))

The unfolded expression ((2 amb 4) + (2 amb 4)) evaluates to

4 + 4 or

2 + 2 or

2 + 4 or

4 + 2

The same set of results is obtainable when f(2 amb 4) is evaluated, but only

if the language is not definite, see section 2.2.2. Therefore, unfoldability

implies the language is not definite.

17

In addition, regardless of the method used to evaluate /(2 amb 4), if the

language is definite the possible results are limited to

-- - -'"

4 + 4 or

2 + 2

Therefore, definiteness implies the language is not unfoldable.

Taking both cases, we conclude that this fragment cannot be definite and

unfoldable simultaneously.

2.2.4 Conflict between Unfoldability and Definiteness

The above discussion indicates that expression 2.3 can either be definite, or

unfoldable but cannot be definite and unfoldable simultaneously.Sondgr~"

gaard and Sestoft demonstrate that this is the case for all functions which

contain nondeterministic constructs. "In the presence of non-determinism,

we cannot obtain both definiteness and unfoldability" [Sondergaard & Sestof,

1990].

This statement has important consequences. When strong nondeterminism

is introduced into functional languages through the use of nondeterministic

constructs, a choice needs to be made between unfoldability and definiteness.

Is unfoldability more important than definiteness?

Algebraic transformations based on folding and unfolding definitions are vi

tal in proving properties about functional programs and are used extensively

in compilation techniques. As a result, unfoldability is a property which

functional programmers consider important. Definiteness is considered to be

an intuitive and expected property of most systems. Therefore, there is no

easy solution to this conflict once it exists.

18

- 2.3 Parameter Passing Techniques

Functional languages often make use of lazy evaluation. Lazy evaluation

works on the principle of only evaluating an expression when the result is
.- - -~

needed or evaluation cannot be postponed any longer [Peyton Jones, 1987J

- [MacLennan, 1990].

Technically, in deterministic systems, there are at least two different lazy

parameter passing techniques namely, call-by-name and call-by-need. Since

both are lazy techniques, evaluation of the arguments is postponed until the

value is required (if at all) [Peyton Jones, 1987]. The arguments are passed

-to the function before they are evaluated and remain unevaluated until they

are needed inside the function body [Field & Harrison, 1988].

The essential difference between these techniques is only apparent when a"

variable occurs more than once in an expression. The difference is centered

around the decision of whether to re-evaluate the argument each time the

variable occurs. Call-by-name dictates that the argument is re-evaluated for

each occurrence of the variable. When call-by-need is used, once an argument

is evaluated, the value is stored for possible future use and retrieved each time _ -

it is needed [Field & Harrison, 1988] [Reade, 1991].

However, it is important to note that call-by-need is not equivalent to the

call-by-value technique, even though in both cases the value is stored after

evaluation. The call-by-value technique, also classified as eager evaluation,

'eagerly' evaluates all arguments before the function is evaluated, regardless

of whether the argument values will be used or not within the function body

[Field & Harrison, 1988] [Peyton Jones, 1987].

2.3.1 Effect in Deterministic Languages

If the language is deterministic the results of using call-by-need and call-by

name are identical. "In traditional languages, call-by-name and call-by-need

19

- behave differently if the argument express-ion produces side effects. In a func

tionallanguage there are no side effects and so these two calling mechanisms

always generate the same result" [Field & Harrison, 1988J.

It is obvious, however, that call-by-name requires a lot of unnecessary re

- evaluation of arguments. As a result, call-by-need is favoured by implemen

tors.

An independent, but often confused notion, is that of strictness. "A function

is said to be strict if the result is undefined when it is applied to an unde

fined argument, and is said to non-strict otherwise" [Field & Harrison, 1988J

·[Reade, 1991J. This can be expressed as

[Bird, 1988J [Peyton Jones, 1987J

In deterministic languages, lazy evaluation can be used to implement strict or

non-strict semantics. Eager evaluation can only be used to implement strict

semantics. This is the favoured technique if strict semantics is required since

it is more efficient than lazy evaluation.

However, the terminology tends to be used loosely in this area. "If a function

is non-strict, we say that it is lazy. Technically, this is an abuse of terminol

ogy, since lazy evaluation is an implementation technique which implements

non-strict semantics" [Peyton Jones, 1987J. It is important to note the differ

ence between these concepts, especially when dealing with nondeterminism.

2.3.2 Effect in Nondeterministic Languages

More thought needs to be given to decisions regarding parameter passing

techniques when nondeterminism is present. The difference between the call

by-name and call-by-need is no-longer restricted to an issue of efficiency. The

20

set of results obtained depends on the pa:rameter passing technique used.

As an illustration, consider the following expression

1(0 amb 1) where l(x) = x + x

- When the above function is evaluated using the call-by-name technique,

(0 amb 1) is re-evaluated each time an x is encountered. Therefore, 1(0 amb 1)

is equivalent to (0 amb 1) + (0 amb 1). In other words, the language is un

foldable.

If the call-by-need technique is used (0 amb 1) is evaluated once only, and

the result is stored for future use. Therefore, the value of x is the same at

each position. This value is determined during the initial evaluation of the

argument. Therefore, the language is definite.

2.3.3 Relation to Conflict

If definiteness is a required property of a language, then a parameter passing

technique which ensures that each occurrence of a variable is identical must

be used. Both call-by-value and call-by-need satisfy this requirement.

When the call-by-name technique is used, there are no restrictions to ensure

that all occurrences of a single variable are identical and the resultant func

tion is unfoldable.

As indicated in section 2.2.4, unfoldability and definiteness cannot exist si

multaneously in the presence of nondeterminism. Therefore, the choice of

parameter passing technique should be made with the required properties in

mind.

The above discussion is from the perspective of the implementor. In addition,

only the parameter passing techniques traditionally used in deterministic im

plementations have been discussed. In papers by Hennessy and Ashcroft

21

- [Hennesy & As-hcroft, 1977], Cling~r [Clinger, 1982J and Sestoft and Sonder

gaard [Sondergaard & Sestoft, 1992J it is indicated that the situation is even

more complex. These complexities are discussed in the following chapter.

22

- Chapter 3

Program Semantics

The discussion in chapter 2 indicates that different parameter passing tech

niques, in the presence of nondeterminism, can greatly effect the properties

of a strongly nondeterministic language.

That is, a number of different meanings (the semantics of the language) may

exist for a language with a specific syntax (grammatical structure). Different

methods can be used to formalize the semantics of a language. Operational

Semantics, Denotational Semantics, and Axiomatic Semantics [Nielson &

Nielson, 1992] are three common approaches.

A full understanding of the impact of nondeterminism relies on further is

sues namely, singular/plural semantics, nonstrict/strict functions and the

three different types of nondeterminism [Sondergaard & Sestoft, 1992].

Denotational Semantics is an effective tool for formalizing the impact differ

ent values and combinations of the above three properties have on a nonde

terministic language. Therefore, this technique and its use for formalizing

strongly nondeterministic functional languages is discussed in this chapter.

23

- 3.1 Denotational Semantics

"Denotational Semantics: Meanings are modeled by mathematical objects

that represent the effect of executing the constructs. Thus only the ,effect is

of interest, not how it is obtained" [Nielson & Nielson, 1992].

These mathematical objects are called denotations and are elements of a

semantic domain. The denotational description of a program is determined

by mapping the syntactic descriptions onto these domain elements.

3.1.1 Simple Semantic Domains

Consider the following simple language expressed using the Backus-Naur

Form (BNF). In preparation for the later introduction of Sondergaard and

Sestoft's [Sondergaard & Sestoft, 1992J language which includes a single func

tion of exactly two arguments, x and y, we begin with a simplified language

that includes x and y, but omits the function at this stage.

exp -+ int

x

y

exp + exp

constant

first variable

second variable

addition

The definition of the semantic domain is the first step to finding the meaning

(denotation) of programs expressed using this syntax. Assume a domain is

a set of elements with common properties.

A primitive semantic domain is "the set fundamental to the application being

studied. Its elements are atomic and they are used as answers or 'semantic

outputs'" [Schmidt, 1988]. In the above example, int (the set of integer val

ues) is the primitive domain since the meaning of a function can be expressed

24

in terms of its Integer value.

The terminals of a language can be mapped directly onto the primitive do

main. However, not all syntactic structures can be described using tills direct

mapping. The language also consists of complex syntactic structures, for ex

ample the addition function which takes two arguments and returns a value.

To express the meaning of these complex structures the use of a compound

domain, a domain constructed from one or more primitive domains, is re

quired. For this example, the compound domain is a function space repre

sented as A ---t B. Each function in this domain space takes a value from

domain A and returns a value in domain B. The ---t constructor creates the

compound domain from its operand domains.

The overall denotation of an expression must be in the domain int as dis-"

cussed above. Therefore, B is the set into However, each function takes two

arguments. This cannot be represented using the primitive semantic domain

into

Domain A is actually a compound domain (int x int, or int2) called a product - -

domain. In general, a product domain consists of ordered pairs constructed

from two underlying domains X and Y using the cross product constructor

x which is defined as

X x Y = { (x, y) I x E X and y E Y } (3.1)

Operations can be applied to compound domains. Two disassembly opera

tions (which return the first and second element of an ordered pair respec

tively), are applicable to the product domain. Function application on the

function space A ---t B returns the appropriate element in domain B, given

an element in domain A.

25

-

3.1.2 Valuation Functions

Valuation functions map syntactic constructs onto their denotations. "There

is one valuation function for every nonterminal in the BNF description of a

computer language" [Melton et al., 1994].

The only nonterminal in the example language IS expo The type of the

evaluation function for exp is,

E : exp --+ int 2 --+ int

This indicates that the valuation function takes a syntactic expression and a

. pair argument and maps them onto the set into The argument pair effectively

represents the current values to which x and yare bound (each from the set

int).

The valuation function for exp is described below where

n, v, u E inti w E int2

E[n]w = n

E[x]w = u where (u, v) = w

E[y]w = v where (u, v) = w

E[el + e2]w = E[el]w + E[e2]w

In this example w represents the "state" or "environment" of the expression

which is an ordered pair of values. The syntactic expressions are enclosed

by the brackets []. This ensures these expressions are not confused with the

valuation functions or semantic expressions.

Most importantly, the meaning of complex syntactic expressions is built up

from the meanings of the sub expression which constitute the complex expres

sions. This is known as compositionality and is characteristic of Denotational

Semantics.

26

Therefore, the -denotation of an expression consists of the combination of

the denotations of the subexpressions. "The domain operations which are

applied are in fact the denotations of the syntactic constructors which build

up the complex syntactic construct from its simple substructurt,;!&"-lMelton

et ai., 1994].

3.1.3 Recursive Functions

Recursive functions are fundamental to the functional style of programming.

A single two-argument function is now added to the language as well as a

conditional construct.

pgm ---+ f(x, y) == exp

exp ---+ int constant

Ix first variable
-.' Iy second variable

lexp + exp addition

lexp ---+ exp, exp conditional

If(exp, exp) function application

The recursive function may be undefined for some values of x and y. There

fore, the set int needs to be extended. A new set intl. = int U {..L} allows

for the representation of this function (other restrictions on intl. will be dis

cussed later in this chapter).

Before the valuation functions of this extended language are defined, it is nec

essary to understand the notion of least fixed points. Consider the following

recursive program described using the above BNF description.

f(x, y) == y ---+ l,j(x, y)

27

This may be re-written as

F=7F

where F = f(x, y)

7 (9) = y -* 1, 9

A function defined by the recursive program (meaning of the recursive pro

gram) is the solution for F. That is, it is a least fixed point1 of 7. Notice

that the recursive function defines more than one function, since F can be

substituted by any of the following fixed points of 7 [Manna, 1974].

91. (x, y) == y -* 1,1.. .

91 (x, y) = = y -* 1, 1

9n(x, y) == Y -* 1, n

Since more than one fixed point may exist, the least fixed point is taken to be

the function defined by the recursive program. The least fixed point "shares

its results" with all other fixed points [Nielson & Nielson, 1992]. To formalize

this notion of sharing results, an ordering ~, called a partial ordering which

is reflexive, transitive, and anti-symmetric is imposed on sets of values that

can be denoted.

Fixed point theory [Manna, 1974] [Nielson & Nielson, 1992] [Melton et al.,

1994] [Schmidt, 1988] shows that a functional such as 7 always has a unique

least fixed point since denoted values are restricted to complete partial or

derings (Cpo's) (which are referred to as domains in this context) and all

functions on these Cpo's are continuous.

The fixed points of the above recursive program are ordered as in

lX is a fixed point of r if r(x) = x

28

In fact, g1. is the least fixed point and therefore the function defined by the

recursive program J(x, y) == Y ----t 1, J(x, y).

Now consider the valuation functions of the extended example language that

assign denotations to programs and expressions. They have the types

F:pgm ----t int1.

. E:exp ----t den ----t den where den = int1. 2 ----t inti.

The semantics of the extended example language is described below where

dE den; n E int; u, v E int1.; w E int1. 2;

zi abbreviates E[ei]dw E int1.'

F[J(x, y) == e] = d(O,O)w where rec d = E[e]dw

E[n]dw = n

E[x]dw = u where (u, v) = w

E[y]dw = v where (u,v) = w

= if Zl = .lor Z2 = 1. then 1.

else Zl + Z2

E[el ----t e2, e3]dw = if Zl = 1. then 1. else if Zl =J 0

then Z2 else Z3

E[J(el, e2)]dw = d(Zl' Z2)

This denotational semantic description describes recursive programs. Every

recursive program has a "state" or "environment" represented by w = (u, v).

The state w is always initialized to (0,0). In other words, variables x and y

are bound to 0 in the initial environment. Different bindings for x and yare

created during function application. The semantics of the conditional follows

29

that of the C language. If el evaluates to' non-zero the value of e2 is chosen,

otherwise e3 is chosen.

Notice that the recursive nature of f(X, y) is captured in the s~a.ntic de

scription by the definition of dw = E[e] dw. This d is passed explicitly as

an extra argument to E and is an element of the domain den. The meaning

of the recursive program e is the least fixed point of E[e], represented by d.

For this least fixed point to exist, E[e] must be continuous on some domain.

Up until now, intl. used in the above semantic description of the example

language has been considered to be a set. However, to support the theory

required to establish the existence of d, an ordering is imposed on the set

and is referred to as a domain. This ordering is

(\fXl' X2 E intl.)

[(Xl ~ X2 <¢::=} (Xl = 1..) V (Xl = X2)J

Likewise, it is necessary to order den. The domain den is ordered pointwise

so for dl , d2 Eden

[Sondergaard & Sestoft, 1992}

It can be concluded that the semantic description for the extended language

is well defined since "for every expression e, the function E[e] is continuous

and has a least fixed-point" [Sondergaard & Sestoft, 1992J. This least fixed

point is represented by d, the denotation of the recursive program.

3.2 Semantics of Nondeterministic Programs

The example language is extended further through the introduction of the

nondeterministic construct ambo Again, the syntactic description of the lan

guage first needs to be extended and is described as

30

pgm --t f(x,y) == exp

exp --t int constant

1 x first variable

Iy second variable

lexp + exp addition

lexp amb exp nondeterministic choice

lexp --t exp, exp conditional

If(exp, exp) function application

A possible denotational semantic description (given below) of the above lan

guage is described in detail in the next sections. The consequences of chang

ing the semantics is also discussed.

Below, d Eden; n E int; u, v E P[int.d; w E P[int.d 2; Zi abbreviates

E[ei]dw E P[int.d.

F[f(x, y) == e] = d(O,O) where rec d = E[e]d

E[n]dw

E[x]dw

E[y]dw

=n

= u where (u,v) = w

= v where (u,v) = w

E[e1 + e2]dw = {if 1'1 = -1 or 1'2 = -1 then -1

else 1'1 + 1'2 h E Zl /\ 1'2 E Z2}

E[e1 amb e2]dw = Zl combine Z2

E[e1 --t e2, e3]dw = {-1 1-1 E zd
combine {r2 1 1'2 E Z2 /\ Zl \ { -1, O} i- 0}
combine {r31 1'3 E Z3/\ 0 E zd

E[f(el, e2)]dw = d(Zl' Z2)

31

3.2.1 Power Domains

The denotational description for amb indicates that its value is either equal

to the value of the first or second expression. But it would not be correct to

make a choice at this point. Therefore, these values are combinea- to form a

_ set of possible results through the use of combine which will be discussed in

more detail below.

The following recursive program2 includes the amb construct.

j(x,y) == x -+ x + x,j(l amb 2,0)

. Due to the definition of amb above, (1 amb 2) evaluates to the set of values

{1,2}. When anyone of these values is chosen and is bound to both occur

rences of x (so as to implement definiteness), the program is described by

the set of possible values {2,4}. When each occurrence of x is independentl~,

bound to the value of either 1 or 2 the program is described by the set of

possible values {2, 3, 4}. The results in each case are different, however, in

both cases a set is needed to represent the results of evaluating the above

program.

Since the value of a recursive program is now represented as a set of values,

it is no longer correct to represent the value of pgm as an element of intl.o

The values are sets of elements in intl. and the power set Pintl. contains all

possible sets of answers.

However, Pintl. needs to be ordered to ensure the theory of least fixed points

still applies since the programs are still recursively defined. Three possible

orderings on PiniJ.. are considered. These orderings result in power domains

(represented as P[intl.]) [Sondergaard & Sestoft, 1992].

2Notice the slightly convoluted syntax, due to Sestoft's restricted notation in which

the valuation function of a program always implicitly calls f with argument (0,0). In this

example, 1(0,0) must rewrite to 1((1 amb 2),0) which in turn evaluates to x + x where x

is bound to 1 amb 2

32

The crux of the difference between these orderings arises because all three

power domains do not contain all the elements of Pini.l. [Main, 1987] [Clinger,

1982] [Sondergaard & Sestoft, 1992]. That is, a power domain-is a subset

of the powerset (P[ini.l.] ~ Pini.l.). These power domains (each which is a

different subset of the power set) are defined below.

Let D be a domain, partially ordered by ::;. The relations H, Sand P ~

(P D)2 all denoted by ~, are defined by

H : A ~ B iff Va EA· :J b E B . a ::; b

S : A ~ B iff Vb E B . :Ja EA· a ::; b

P : A ~ B iff Va EA· :Jb E B . a ::; b 1\

Vb E B . :Ja EA· a ::; b

H, Sand P represent the Hoare, Smyth and Plotkin orderings respectively

[Sondergaard & Sestoft, 1992].

3.2.2 Types of Nondeterminism

As discussed in section 2.1 , different types of nondeterminism exist depend

ing on how nontermination is handled. Consider the recursive program

l(x, y) == x -t X + x, 1(0 amb 1,0)

This may be defined to always terminate (set of results is {2}) or never

terminate (set of results is {.l}). Alternatively, neither termination nor ter

mination may be favoured (set of results is {2,.l}). These scenarios give rise

to angelic nondeterminism, demonic nondeterminism and erratic non deter

minism respectively. The way in which the choice of power domain coincide

with these concepts is discussed below.

In the Hoare power domain, {.l} represents nontermination. Any other

33

nonempty set A i= {1-} represents a set ef.possible results. If A is a non empty

set then AU {1-} = A. This means that the union of two sets results in a set

of possible results where nontermination is impossible, as long as one of the

sets is not equal to {1-}.

A denotational description which uses the Hoare power domain describes a

- language which is globally angelic since nontermination is avoided if at all

possible.

In the Plotkin power domain, 1- is treated like any other element. It no

longer represents a set of values. Therefore, if 1- is present in a set, it is a

possible answer as are the other elements in the set. This means nontermina

tion may result (if 1- is chosen). This corresponds to erratic nondeterminism -

since nontermination is not favoured or avoided.

Notice the union of the sets in each case is different. This is handled in the

denotational semantics by defining combine appropriately.

3.2.3 Singular versus Plural Semantics

Recall that without nondeterminism, den = inh 2 ~ inti.' However, when

nondeterminism is present, the compound domain den is defined in terms

of the chosen power domain (which establishes the type of nondeterminism

present). In the above semantics of the extended nondeterministic example

34

language, den is defined as

Each function variable is bound to a set of possible values. This is referred

to as plural semantics. As a result the language is not definite since each

occurrence of a variable (such as x) may be bound to a different value.

However, an alternative way of defining den is

In addition, the denotational description of the function expression is defined

as

E[f(ell e2)] dw = distributed combination {d(u, v) I u E Zl and v E Z2}

Each variable is bound to a single value. This is referred to as singular

semantics. Note that the result is still a set of values and the language is

definite.

3.2.4 Strict versus N onstrict Semantics

As discussed in section 2.3.1, a function can be strict or nonstrict. A function

f in the example language is strict if the function returns 1- when either of the

arguments is 1-. The addition and conditional functions are strict functions.

If either of their arguments are undefined, the result is undefined.

The recursive function is defined as a nonstrict function in the above semantic

description. This is because the function is evaluated regardless of whether u

or v are equal to 1-. The denotational semantics in this case would normally

be implemented using lazy evaluation techniques [Sondergaard & Sestoft,

1992J.

35

However, the recursive function can be defined as a strict function instead.

This can be represented by the denotation below which would normally be

implemented using eager evaluation techniques.

_ d(u, v) = if u = {-L} or v = {-L}

then {-L} else (E[e]d(u,v)) U ({-L} n (u U v))

[Sondergaard & Sestof, 1990J.

3.2.5 Parameter Passing techniques

There are a number of choices which need to be made when defining param

eter passing techniques for nondeterministic languages. The type of nonde

terminism present may be angelic, demonic or erratic. In addition, choices

between singular and plural semantics, and strict and nonstrict functions

need to be made. '

The denotational descriptions describe global nondeterminism and a total of

twelve different combinations of choices (3 . 2 . 2) are possible. Most impor

tantly, the semantics of each combination is different [Sondergaard & Sestoft,

1992J. Clinger in his paper "Nondeterministic Call by Need is Neither Lazy

Nor by Name" also highlighted the distinctions between these different se

mantics [Clinger, 1982J.

Clinger concentrated on nonstrict (lazy) functions. He realized that because

of these different combinations, call-by-need and call-by-name are no-longer

illustrative of all possible parameter passing techniques. He suggested four of

the twelve parameter passing techniques given by Sondergaard and Sestoft.

Even though at least twelve different parameter passing techniques are possi

ble, the conflict between definiteness and unfoldability still exists in each. As

indicated in section 2.3.3, the parameter passing techniques determine which

properties are present (or vice versa). The effect on the language properties

36

of each of the -twelve parameter passing -techniques is tabulated in the· fig

ure below originally described by Sondergaard and Sestoft [Sondergaard &

Sestoft, 1992].

Definite Indefinite

Unfoldable None Those having nonstrict plural semantics

Not Unfoldable Those having singular semantics Those having strict plural semantics

Figure 3.1: Properties of the Nondeterministic Language Variants.

A language implementor accustomed to deterministic languages, may not

be aware of the large variety of parameter passing techniques possible in

nondeterministic languages. Decisions regarding the call mechanisms and

interpretation of amb have great impact on the properties of the resulting

language. If these decisions are made without full knowledge of their ~JJ;l~-'

pact, the resultant language may easily exhibit different properties to those

expected.

3.3 Implementation Issues

The need for a semantic description to specify or verify a system seems to

be evident and the insight and precision which the denotational semantic

description brings to the analysis reveals the full extent of the subtleties.

However, note that the above method cannot be used to describe locally

angelic or locally demonic systems. In order to successfully implement a

globally angelic language, all evaluation paths which leads to nontermiIia

tion must be avoided (if possible). However, the question of whether an

evaluation path leads to nontermination is undecidable.

A globally angelic implementation would need to explore all possible paths

simultaneously (or interleaved). Therefore, resources such as memory would

37

-

be in demand to search the state space to ensure termination (if possible).

Locally angelic systems are easier to implement and, therefore, may be pre

ferred.

For most language implementations, there is no direct mapping from the

semantics of a program to the implementation. It must be recognized that

semantics only capture some aspects of the implementations behaviour. That

is, the semantics is an abstraction of the implementation. Therefore, during

the mapping from a semantic description to an implementation, decisions

not described by the semantics need to be made.

For example, the issue of fairness is not described by denotational seman

tics. At one extreme, choice can be implemented so that its first argument is

always chosen. It can be argued that this is equivalent to nondeterministic

choice where the first element is always chosen "randomly".

Most people accept that for a fair implementation of nondeterministic choice

both values should be possible answers. However, there is no method of en

suring the choice is completely fair. Often both arguments are evaluated in

parallel and the first to be computed is chosen, thus biasing short computa-- -

tions.

Even though both implementations differ, they are described by the same

semantic description.

3.4 Alternative Semantics

A variation of the denotational semantics, as discussed above, results in a

number of languages with different properties. However, figure 3.1 indicates

that no mere change in the denotational semantic description, similar to those

defined in the above section, will result in a language which is unfoldable and

definite.

38

However, the idea of using and changing different semantics to overcome

the conflict of unfoldability and definiteness has been pursued. Jackson and

Burton suggest a semantics for a partially deterministic langu.ages which

is definite and unfoldable. Hughes suggests a natural semantics (a form of

- operational semantics [Nielson & Nielson, 1992]) for a unfoldable and definite

nondeterministic language.

3.4.1 Partially Deterministic Languages

Jackson and Burton argue that Sondergaard and Sestoftare using "a fairly

.general form of nondeterminism" [Jackson & Burton, 1994]. They restrict the

type of nondeterminism in their language, consequently, they are unfoldable

and definite. "The only type of nondeterminism that occurs in our language

is that the evaluation of some expressions mayor may not terminate" [Jack-.,

son & Burton, 1994]. .

The domain of the language contains singleton sets or sets consisting of two

elements. In the latter case, one of the elements is always equal to 1. which

represents nontermination.

This approach removes the ability to choose between two non-bottom values

and avoids the dilemma caused by the conflict of unfoldability and definite-

ness.

However, nondeterministic choice is central to most discussion on nondeter

minism and is also central to the discussion in this thesis. Therefore, we find

this approach too limiting.

3.4.2 Hughes Natural Semantics

Hughes suggests a natural semantics which is built on top of Launchbury's

natural semantics for laziness [Hughes & Moran, 1995]. This natural seman-

39

- tics is used to' model languages which. contain a singular amb, to provide

strong non determinism.

To achieve singularity, the language needs to be transformed il}.tQ a nor

malized form in which "all applications are of an expression to a variable"

- [Hughes & Moran, 1995] and all variable names are distinct.

For example, the following simple expression

f(O amb 1) where f(x) = x + x

is normalized as

f(x) = (let y = x in y + y)

Although the first form is not unfoldable (if singularity is assumed f(O amb 1):1=

(0 amb 1) + (0 amb 1)) the second form "protects" itself by explicitlycreatirig

a single use of x and hence only one unique (singular) value for y.

Only a limited notion of unfoldability is possible. In some circumstances the

need to remove the inconsistencies due to the conflict outweigh the added

restrictions of normalization. In addition, algebraic transformations are ap

plicable within this framework.

Future work on Hughes natural semantics will involve establishing an equa

tional theory with the objective to allow reasoning about nondeterministic

languages [Hughes & Moran, 1995]. Norvell and Hehner suggest a logical

specification and the use of bunches which allows for the transforming. of

functional programs with similar semantics to those expressed using Hughes

Natural Semantics [Norvell & Hehner, 1993].

However, it is important to note that even though inconsistencies do not

exist, a normalized language which contains nondeterminism is not pure.

40

- Chapter 4

Methods of Hiding

N ondeterminism

Both Hughes [Hughes & Moran, 1995] and Jackson and Burton [Jackson

& Burton, 1994] suggest languages in which disadvantages associated with

strong nondeterminism have been addressed. The semantics of these lan

guages are limited in respect to the type of nondeterminism or the extent of

unfoldability allowable. In this chapter methods of hiding nondeterminism

which do not alter the semantics of the basic deterministic functional lan

guage are discussed.

Two methods attempt to model the nondeterministic choice as having being

made "outside" the program, the result of which is passed in as an explicit in

put. Another method which exploits weak nondeterminism is also discussed.

All resultant languages, unlike strongly nondeterministic languages, are pure.

4.1 Streams

Input and output (I/O) is an accepted part of programming. However, the

pure nature of a language may be forfeited if I/O constructs are added to a

pure functional language.

41

-

For example, consider the pure function

f(x)=x+x

The output generated by this function is solely dependent on its i-npnt. Now

allow the user to supply a number. This is obtained from the input stream

by the function geLchar [Hudak & Sundaresh, 1988J. If this value is added

to x (rather than doubling x) the function is expressed as

f(x) = x + geLchar

The function is no longer pure as the output is not solely dependent on ex

plicit arguments to f. The result is also dependent on the value returned by

geLchar. In addition, the value of geLchar may be different each time it is

called. This complicates matters in particular when geLchar is used more

than once within a function.

Hudak [Hudak & Sundaresh, 1988J is one of many who have researched the

problem of adding I/O to pure functional languages. The ideal is to imple

ment efficient I/O whilst preserving the pure nature of functional languages

which are referentially transparent and side-effect free.

Streams is one technique1 used to implement I/O for pure languages. A

stream is a lazy list of request or response objects. A program passes a

stream of I/O requests to the operating system which are processed. The

corresponding I/O responses are passed back to the main function which

consumes these responses as explicit input. In this manner, the function acts

like a "black box" where there is a direct correspondence between the input

stream of responses and output stream of requests.

The responses are consumed lazily and requests can be output before the

lThe discussion also applies to continuations and Hudak's systems model. It has been

shown that simple translations exist between these techniques and streams [Hudak &

Sundaresh, 1988].

42

first response has been consumed. This <al1ows for the requests and responses

to be interleaved. In this manner, an I/O request may be passed to the

operating system (as output) before the I/O response (input) is consumed.

Implementation of this method relies on lazy evaluation of streaHlS.'

The consequences of adding amb directly to a pure functional language are

similar to those related to adding I/O constructs. Therefore, streams can be

used to implement" amb-like" nondeterminism in pure languages such that

functions behave as "black boxes".

In this manner, the benefits of nondeterministic choice are obtained whilst

retaining referential transparency, definiteness and unfoldability in the lan

guage.

4.1.1 Definition of Amb using Streams

The main program accepts a stream of responses as input. A list of requests

is generated as output. This list is solely dependent on the inputs. In Haskell

[Hudak et al., 1992] a program, which accepts a stream of responses and out

puts a stream of requests, is said to engage in a dialogue. This is represented __

as follows.

type Dialogue = [Response] -+ [Request]

main :: Dialogue

A request called Amb needs to be defined. This takes two arguments, the

two values to choose between. The associated response is the actual value

which has been chosen.

When a program containing an Amb request is evaluated, this request is

passed to the operating system (output of the program). The choice is made

by the operating system "outside" the program. The result is passed back

43

to the prograrri as a response object of< the response stream. The response

stream is input to the program on which the program is directly dependent.

Thus the resultant language is pure.

4.1.2 Semantics

Consider the following program written in Haskell where the!! operator

selects the ith element of a list.

main resps = [Amb 1 2, Amb 1 2,

AppendChannel "stdout" (resp!!l + resp!!l + resp!!2)]

A single response will never have more than one value and hence the pro

gram is definite. If a subsequent Amb request is identical to a previous Amb

request (as above), each request is essentially different. This difference is

conveyed by the position of the request within the request stream.

Notice that the first response is used twice and this results in singular seman

tics. To achieve plural semantics, a new response associated with an identical

request needs to be used. This is the purpose of the second response and

request in this example.

Consider the following program

main resps = [Amb 1 2,

AppendChannel "stdout" (let e = resp!!l in e + e)]

The language is unfoldable since this is equivalent to

main resps = [Amb 1 2,

AppendChannel "stdout" (resp!!l + resp!!l)]

In addition, the above program is referentially transparent in terms of Son

dergaard and Sestoft's definition.

44

4.1.3 Classification

Semantically, the program's output depends solely on the stream of inputs

and is referentially transparent, definite, and unfoldable. The resultant se

mantics is that of a deterministic program.

Operationally, the Amb request is output before the response is consumed.

This allows for the choice of one of two values, at run time, without affecting

the overall semantics of the program.

The use of responses (and the fact that each response can only have one

value) essentially normalizes the language as specified by Hughes' natural

semantics. Except a mechanism of ensuring unfoldability is not directly pro

vided by the syntax of the primitive language but is achieved through the

use of streams.

4.1.4 Disadvantages

The success of streams depends on the ability to interleave the responses and

requests. However, this can also be a disadvantage since it can easily result

in subtle bugs and deadlock [Hudak & Sundaresh, 1988J.

In addition, this method requires choice specific input to be passed to the

main function. That is, the position and value of each response within the

stream is dependent on the requests. A subfunction can accept the stream

of responses, access the required responses and return the unused tail of the

stream which can be used by the next subfunction. This has an effect of

single threading the evaluation of subfunctions. Consequently, it is difficult,

if not impossible, to write concurrent programs using this method.

45

4.2 Burton's Method

Burton defines a data type called a decision and a function called choice.

Together, these allow the functionality of amb and similar choice operators
t-" - -'"

to be emulated [Burton, 1988J. The techniques employed by the streams

- method and Burton's method are similar. The pure nature of functional

languages is preserved by passing an additional argument to the functions

which will encapsulate information regarding choices.

In contrast to the streams method, Burton's method relies on an infinite

binary tree of decisions to be passed as explicit input, initially unfixed. The

tree can be split as often as needed and the neW subtrees are passed to the

subfunctions which require decisions. Hence concurrent or parallel evaluation

of subfunctions is possible. This alternative approach is, therefore, very

attractive for implementing parallel or concurrent systems as opposed tQ,

using streams.

4.2.1 Definition of choice

A decision can have the value of one or two. Otherwise, a decision is unde

fined (..L). A tree of decisions is passed as an argument to the program since- -

the program itself cannot construct a decision.

The following syntax and axioms used to define choice, given any type alpha.

choice: decision x alpha x alpha -+ alpha

choice(one, a, b) = a

choice(two, a, b) = b

choice(..L, a, b) =..L

46

Consider the following example

E(v) = choice(v, 2, 3) + choice(v, 1,4) (4.1)

_ The decision v, passed to expression E, can be equal to one or two. If v

has never been used in a choice, it is called a free decision and is initially

unfixed. When encountering a free decision, while making a choice, the

implementation can nondeterministically select either the 2 or the 3, and

simultaneously fix the value of the decision.

Once the value of the decision v is fixed, it cannot be changed. For example,

if 2 is returned as the value of choice(v, 2, 3), v is fixed to the value of one.

Therefore, a subsequent evaluation of choice(v, 1,4) must produce 1 and the

result of expression 4.1 is 3. Conversely, the implementation might have

chosen 3 in the left expression thereby fixing v to two, and forcing the right

expression to choose 4.

4.2.2 Semantics

Notice that a pure language, extended using choice, is definite. In other- -

words, a variable will always have one and the same value (within scope). To

illustrate this consider the following expression

f(choice (v, 3,1)) where f(x) = x + x (4.2)

The possible values after evaluation are

• 3 + 3 (v = one)

• 1 + 1 (v = two)

Definiteness is not forfeited even if call-by-name evaluation techniques are

used to evaluate the above expression. All evaluation techniques give rise to

the above results. This is due to the fact that once a value has been assigned

to a decision, it cannot be changed.

47

Since the language is definite and nondeterministic languages can either be

definite or unfoldable, it may be tempting to conclude that the language

cannot be unfoldable.

However, consider expression 4.2 above. It is unfoldable since

f(choice(v, 3, 1)) = choice(v, 3,1) + choice(v, 3,1)

This is always true, regardless of the evaluation technique used. Again this

is because once v has been assigned a value, it cannot be altered.

By making the decision definite (can only have one value), the flexibility of

choice still exists but the conflict between definiteness and unfoldability has

been overcome.

Finally, using the definition of referential transparency in section 2.2.1, it can

be deduced that as long as the choice expression is replaced by an equivalent

value, the language is referentially transparent.

4.2.3 Classification

Although not vigorously proven, it can be concluded that a language ex

tended using the choice function is referentially transparent, unfoldable and

definite.

Semantically, the result of the program depends on the value of the decisions

which are passed into the program as a priori data. The program is therefore

deterministic since, for each tree of decisions passed as a parameter, only one

result is possible.

Operationally, the decisions are not fixed before the program is executed.

As a result, there is freedom to make on-the-fly choices during which time

48

the value of the decisions become fixea: These values represent the non

deterministic choices made by the choice function.

The fact that the language is semantically deterministic explains-why Son

dergaard and Sestoft's conflict does not arise.

4.2.4 Disadvantages

Since the program itself must not create its own decisions (otherwise strong

nondeterminism results), these variables must be provided as a priori data,

and passed as parameters into the computation. This requires an additional

. argument to each function.

Hughes and O'Donnell have expressed that this "plumbing" is difficult to keep

consistent and is an added inconvenience [Hughes & O'Donnell, 1989]. This>

becomes an issue particularly during algebraic transformations. Es~entia:lly,

by making the decisions definite and ensuring they are consistent, a form of

normalization is present. This is not "hardwired" into the semantics of the

language which results in both flexibility and a need for extra effort to keep

the system consistent.

A similar problem exists if the method is used in a parallel system. A single

decision may be referenced by more than one subprocess. Once the value

of the decision is fixed by one subprocess, the other subprocess must be

aware of the fact to ensure consistency within the system. Therefore, theory

governing the use of shared variables in parallel or concurrent systems must

be employed.

In addition Hughes and O'Donnell argue that functions such as choice are

not bottom-avoiding unless the decision which is passed to the operation is

unfixed. However, we believe freedom to make choices whilst retaining the

mathematical nature of pure languages far outweighs the inconvenience of

49

maintaining the tree of decisions within' an expression.

4.3 Monads

_ Monads allow for the expression of techniques using a higher level of abstrac

tion. Continuations (a method similar to streams) can be implemented using

monads. The use of monads in this manner does not decrease the disadvan

tages of single threading but Wadler claims that the advantage to using this

technique is an increase in the readability of pure languages [Wadler, 1990].

Apart from using monads to implement methods similar to streams, Wadler

suggests an interesting (but we believe limited) approach to incorporating

nondeterminism into pure languages using monads [Wadler, 1990]. This ap

proach is similar to the approach suggested by Hughes and O'Donnell [Hughes"

& O'Donnell, 1989]. '

Hughes and O'Donnell's idea is to add a set data type to a pure language.

The amb operation is implemented through set union. Other language con

structs are also described in terms of primitive set operations. The set IS

represented by one of its elements only.

Therefore, when the program terminates a single element form the set (which

represents the possible values of the program) needs to be chosen. Strong

nondeterminism is introduced at this point. Schreiner argues that this method

"hides the problem more than actually solving it" [Schreiner, 1993]. It also

differs from other methods of hiding nondeterminism discussed above which

never ultimately result in strong nondeterminism.

Even though Wadler's monads supply a method of implementing Hughes and

O'Donnell's technique, there is no way of hiding the strong nondeterminism

which results. Whether singular or plural semantics are present (language

is definite or unfoldable respectively) depends on the way the monads are

50

- defined. If monads were used to irriplem.ept Hughes and O'Donnell's method

completely, angelic nondeterminism must be ensured.

This method is not as desirable as the other methods used to hide non deter-
.-- - _ ..

minism (described above) if a pure language is desired. However, this could

- be considered to be an alternative way of representing and reasoning about

strongly nondeterministic languages.

This method is not restricted to singular semantics as is the approach using

bunches discussed in section 3.4.2. However, we believe that this technique

provides no more advantages than reasoning about strongly nondeterministic

languages using a denotational semantic description. Therefore, we will not

pursue this method further.

4.4 Peyton Jones' Method

In the above sections, methods of obtaining" amb-like" nondeterminism have

been discussed. Exploitation of weak nondeterminism needs to be considered

next. In particular the effects of weak non determinism on the properties of

pure functional languages need to be ascertained.

Pure functional languages exhibit confluence. This means the redexes of a

functional language can be evaluated in any order. This is precisely our def

inition of weak nondeterminism. Most importantly, it is possible to evaluate

redexes in parallel. Peyton Jones and Eisenbach are just two of many who

have used a method known as graph reduction to implement parallel evalu

ation of redexes [Peyton Jones, 1989] [Eisenbach & Sadler, 1988].

Weak nondeterminism can be exploited without adding any new constructs.

The only variable parameter is the order of evaluation. Therefore, semanti

cally, the language is deterministic. However, a weak form of nondeterminism

is obtained operationally.

51

- 4.5 Comparison of Methods

When amb is added to a language, the language is semantically nondeter

ministic. This results in the conflict between unfoldability and definiteness

(if the semantics or type of nondeterminism is not restricted). Semantically

_ deterministic languages are referentially transparent, unfoldable and definite.

Burton's method and streams offer a combination of the two scenarios. Oper

ationally the languages are nondeterministic but semantically they are deter

ministic. As a result, they exhibit the mathematical properties of pure func

tionallanguages and "amb-like" nondeterminism. Therefore, these methods

can be used (in certain circumstances) to introduce and handle a form of

non determinism without the problems associated with ambo

Peyton Jones' method does not offer "amb-like" or strong nondeterminism.

However, weak nondeterminism is present operationally which can be ex

ploited effectively. Semantically, the language is deterministic and exhibits

the properties of pure functional languages.

Each different method should be used in specific circumstances, depending

on the properties required for the final system. In the previous chapters, the

methods have been described (using consistent terminology) and the merits

of each have been indicated. Even though this assists the implementor in un

derstanding the impact of nondeterminism, it still may be difficult to decide

on the most appropriate method needed to implement a system.

We have developed the following table which summarizes the possible meth

ods which can be used to implement nondeterministic systems.

52

Deterministic

Nondeterministic

Operationally

Deterministic

Pure Functional
Languages

Weakly Strongly
Nondeterministic Nondeterministic

Peyton Jones'
Method

Burton's Method /
Streams

Nondeterministic
Constructs

Figure 4.1: Classification of Approaches to Nondeterminism.

This table has been organized in such a manner that the implementor need

decide on two fundamental properties of the system only. Once an imple

mentor knows whether the system should be semantically nondeterministic or

deterministic and operationally deterministic or nondeterministic, the table,

can be used to identify suitable methods for implementing the nondetermIn

istic system.

The implementor still needs to be fully aware of the ramifications of using

the method (especially if strongly nondeterministic systems are required). __

Not all methods indicated will be totally appropriate in all cases. It may

be necessary to adapt the indicated methods to suit the specific problem

(examples of this are given in chapters 6 and 7).

53

_ Chapter 5

Parallel Processing and

Functional Languages

Parallel processing encourages the use of non determinism or, in some cases,

necessitates the use of nondeterminism. In order to demonstrate how the'

theory of nondeterminism can be applied, some issues relating to parallel

functional processing are discussed.

This chapter gives an overview of parallel processing using functional lan

guages. The following two chapters highlight concepts related to the imple-- -

mentation of functional parallel systems using the Linda paradigm.

5.1 Functional Parallel Processing

"Creating a parallel program depends on finding independent computations

that can be executed simultaneously" [Scientific Computing Associates Inc.,

1993J. The approach to this may vary, especially if functional languages are

used to specify the parallel program.

The techniques of specifying parallel programs differ in terms of when in

dependent tasks are identified and expressed. A programmer may explicitly

indicate the independent tasks and the required synchronization and com-

54

- munication between these tasks. This is. ~eferred to as explicit parallelism.

On the other hand, parallelism may be identified at compile time rather than

design time. In this case, the programmer is exempt from identifying parallel
~ - --

tasks and considering the related concerns of synchronization and communi-

- cation between tasks. This approach is referred to as implicit parallelism.

A third technique requires explicit annotation of programs evaluated using

implicit parallelism. This can be considered to be a compromise between the

techniques of implicit and explicit parallelism. These three techniques are

outlined below.

5.1.1 Explicit Parallelism

This approach relies on identifying and specifying independent tasks at design

time. This requires specifying the problem in terms of a parallel algorithm

which meets the specification [Scientific Computing Associates Inc., 1993].

"The algorithm then has to be mapped onto the abstractions provided by

the programming language" [Peyton Jones, 1989]. That is, a number of tasks

(consisting of sequential activities) are identified which can be executed in

parallel. These tasks cannot Tun in isolation. Therefore, the programmer

needs to explicitly specify the "interfaces between tasks, which allow them

to synchronized and communicate without hazards" [Peyton Jones, 1989].

Constructs which can be used to describe and control communication and

synchronization between processes, are essential. These must be constructs

of the parallel language used to specify the parallel system. The type· of

constructs present in the language depend on the communication technique

employed.

The essence of explicit parallelism is the explicit specification of the paral-

55

- leI tasks and synchronization and communication between processes, by the

programmer. In addition it is the responsibility of the programmer to ensure

the system does not deadlock or provide unacceptable results. This concern

needs to be considered due to the nondeterminate nature of explicitparallel

systems [Peyton Jones, 1989].

This approach is generally favoured by imperative programmers but has been

considered by a number of functional system implementors. Examples of two

such languages which facilitate this method of parallelism (both which use

the Linda paradigm) are Lock and Jahnichen's Linda system [Lock & Jah

nichen, 1990] and Jagannathan's TS language which is an extension of scheme

[Jagannathan, 1991b].

5.1.2 Implicit Parallelism

A different approach, particularly advocated by functional programmers; is

exploitation of implicit parallelism. A programmer does not identify or spec

ify which tasks may be evaluated in parallel. As a result, the programmer

does not need to consider concepts such as communication and synchroniza

tion of tasks. Therefore, no new parallel constructs are required or added to

the functional language.

Instead, a complete "sequential" functional program is passed to the com

piler. During the compilation stage, possible parallelism is identified. As a

result subexpression constituting the program are evaluated in parallel. This

is possible since the property of confluence allows for simultaneous evaluation

of sub expressions without ill effect.

In addition, confluence ensures that implicit parallel systems are determi

nate [Peyton Jones, 1989]. Another feature of implicit parallelism is that no

special measures need to be taken by the programmer to protect shared data

access by concurrent or parallel processes since state is not explicitly altered.

56

At the implementation level, of coursE!, parts of the graph are overwritten

and locking mechanisms must prevent simultaneous updates.

Contrary to possible initial perception, even though a "sequentia1~' program

is evaluated (in parallel), some algorithms lend themselves to parallel evalu

ation more than others. Therefore, even though parallelism is not explicitly

described, a good parallel algorithm is still essential for an efficient parallel

implementation [Peyton Jones, 1989].

Peyton Jones argues that implicit parallel programming allows a programmer

. to "express the essential features of a parallel algorithm, without simultane

ously having to detail the solution to a number of lower-level problems"

[Peyton Jones, 1989].

Two examples of architectures used to evaluate functional languages in par::'

allel are GRIP [Peyton Jones, 1989] and ALICE [Eisenbach & Sadler, 1988].

Both architectures use parallel graph reduction [Peyton Jones, 1987] to detect

and control parallelism of parallel functional programs.

5.1.3 Implicit Parallelism and Annotations

Carriero and Gelernter expressed reservations about whether functional pro

gramming languages can be used successfully as parallel languages [Carriero

& Gelernter, 1989]. This concern rests on the fact that these languages rely

on the compiler and the run-time system to decide what to execute in par

allel. They argue that implicitly parallel programs, currently do not and

probably will never perform as well as explicitly parallel programs [Carriero

& Gelernter, 1989] [Kale, 1989].

In response to Carriero and Gelernter, Kale states that this problem can

be overcome by annotating functional programs [Kale, 1989]. These anno

tations are used to express additional information to assist in the efficient

57

implementation of the program in parallel. This places extra responsibility

on the programmer, which is avoided if implicit parallelism is exploited.

This approach results in a compromise between explicit and implicit paral

lelism. Explicit constructs are used to describe, define and control parallel

evaluation of the algorithm. However, the style of implicit parallelism is still

adhered to.

One possible mechanism for expressing parallelism using annotations is to

use lists to express tasks which can be evaluated in parallel. That is, all list

elements are evaluated in parallel. The list is a primary data structure of

functional languages and allows for implicit program annotation while the

functional style of programming is preserved.

5.2 List Parallelism

Bird suggests a style of functional programming which expresses programs

using the composition of a collection of higher-order functions [Bird, 1989].

Map and fold are two such higher-order functions from which all other (homo

morphic) functions can be composed. This is the basis of the Bird-Meerteri:f -

formalism which will be discussed in section 7.1.2 [Bird, 1988].

The map function, which we will express using the" *" symbol, applies a

function to each element of a list. For example

The fold function, which we will express using the "/" symbol is used to

reduce a list using the reduction operator specified. For example

Programs written using this notation manipulate lists. From the Church

Rosser theorem, it is known that redexes, including list elements, can be

58

- safely evaluated in parallel [Peyto-n JOIl~S, 1987J provided the list is finite

and all elements are well defined (we return to this point in section 5.2.2).

Therefore, the above list notation can be used to indicate which subexpres

sions to evaluate in parallel.

- 5.2.1 List Notation

The list parallelism technique described in section 5.2 always evaluates a list

in parallel if possible. Therefore, a list is no longer used purely as a data

structure. A programmer cannot specify that the list should not be evaluated

in parallel. This is a potential problem.

A solution to this problem is to use a separate list notation to specify lists

which may be evaluated in parallel, if possible. This affords more flexibility

but increases the use of annotations.

Normal list notation is used to express parallelizable lists. Every list ex

pressed using this notation is evaluated in parallel if possible.

But what is "normal list notation"? A list will be represented using the

notation reI, e2, ... , enJ. This is actually short hand for el : e2 : .. , : en : nit'

where : is the cons operator of a list. A single element can be added to an

existing list using cons. That is

An alternative notation, the append function *, exists. Using this notation,

list [el' e2, e3J can be represented as [elJ * [e2J * [e3J. This append function

can be used to join two lists such as

59

Both notations are used in the literature' and each can be written in terms

of the other. The append notation allows for the subdivision of a list into

sublists whereas cons allows for manipulation of a list through individual

elements (in a sequential manner from head to tail).

As in the literature, both append and cons are used in this thesis. The

notation is chosen to suit the nature of the discussion. It is suitable to use

cons when implementation issues are discussed. On the other hand it IS

convenient to use append when "mathematically reasoning" about lists.

The functions head and tail, are two functions used to manipulate lists. The

head function returns the first element of the list while the tail function

returns the list minus the first element.

The list notation does not need to be changed drastically to indicate lj,sts'

which must be evaluated sequentially. An annotated cons notation (: ') IS

used explicitly to construct these lists. Therefore, the listel:' e2 'e3 IS

evaluated sequentially. For the purposes of this thesis, it is sufficient to use

normal list notation and every list is evaluated in parallel if possible.

5.2.2 List Structure

When the elements of a list are evaluated in parallel, it is assumed that

the list is finite and each element is defined. However, not all lists may be

parallelized since it cannot always be assumed that these two conditions hold.

To illustrate this point, consider the following function applied to a list

(5.1)

The head function only requires the value of the first element within the list

in order to return a value. If either e2 or e3 evaluate to 1.. this is inconse

quential since these expressions are not evaluated by head.

60

If list parallelism is exploited, all list elements are evaluated, even if they

are not required by the function applied to the list (unless speculative paral

lelism is employed). If either e2 or e3 evaluate to 1.., sequential evaluation of

expression 5.1 terminates but parallel evaluation of this expression would not

terminate. This is unacceptable. Therefore, the circumstances under which

it can be safely assumed that the list is finite and each list element is defined

need to be identified.

Consider the following expression.

The length function only evaluates the structure of the list. The value of

each list element is not needed. The sum function on the other hand

needs to evaluate the structure of the list and the value of each element.

Burns classifies evaluators used to evaluate expressions according to the de

gree to which the evaluator evaluates the list [Burn, 1989J. Those evaluators __

which do not evaluate the list at all are classified as eo evaluators. el eval

uators reduce the list to weak head normal form. In WHNF, it is possible

to determine whether the list is empty or non-empty without further eval

uation. If the structure of the list needs to be evaluated (as in the length

example), the evaluator is classified as e2. Finally, evaluators which evaluate

the structure of the list and the value of each element of the list are classified

as 6 evaluators.

For example cons (:) defined as

(5.2)

where h is a list and el is a single value, requires eo evaluation of II. Evalu

ation of the sum function requires an 6 evaluator.

61

If an 6 evaluator is necessary to evaluate an expression containing a list, a

finite list in which each element is defined is required for termination of the

evaluation process. These constraints are not extra constraints placed on the

list solely due to parallel evaluation of the list. Therefore, this list may be

safely evaluated in parallel. Parallelization of a list evaluated by any other

class of evaluator may lead to inconsistencies or inefficient evaluation.

A composition of functions can be applied to a list. The context of an ex

pression can influence the optimal choice of evaluator required. The sum

_ and cons may be combined as follows

sum (e1 : h)

An ~o evaluator is required to evaluate e1 : [1. However, the sum functio~>

requires an 6 evaluator. In complex expressions, the idea is to apply the

strongest evaluator required to evaluate the whole expression. This evalua

tor should be applied as early as possible (i.e. it should be propagated as

deeply into the sub expressions as possible) without doing evaluation that

would never have been required.

For example, an ~o evaluator could be used to evaluate [1, but that would

miss the opportunity for parallel evaluation that exists. An analysis could

determine from the context that 6 evaluation of the result will eventually be

required and cannot be avoided. Therefore, by ensuring that cons requires

6 evaluation, no extra evaluation is done. However, early realization of the

need of an 6 allows for parallel evaluation of the lists and hence optimization

of the evaluation of the expression. Thus 6 is the optimal evaluator for [1 in

this context.

A form of analysis called abstract analysis can be applied to complex func

tions to ascertain the optimal evaluator for the expression in context. A list

can be safely and optimally evaluated in parallel if and only if the analysis

62

can infer that overall 6 evaluation is n~cessary.

It must be noted that the problem of determining whether an arbitrary ex

pression requires a particular evaluator is undecidable. The integrity of the

system can be ensured as long as the analysis is conservative. That is, if e3
evaluation is safe, but the analysis cannot prove this, the analysis reports

that eo or 6 evaluation is needed. This results in a decrease in potential

parallelism.

5.3 Efficiency

When list parallelism is exploited, a list is only evaluated in parallel if anal

ysis indicates that an 6 evaluator is required. This results in a conservative

approach to parallelism.

However, parallelism tends to be fine grained when list parallelism is ex

ploited. A couple of issues need to be addressed in terms of improving or

ensuring efficient implementations. These issues include the problem of con

trolling granularity and the degree of list parallelism exploited.

5.3.1 Granularity

If parallelism is too fine grained communication overheads overpower the ben

efits of parallelism. However, if the program is not sufficiently parallelized,

speedup is reduced. Therefore, granularity must be balanced to ensure max

imum speedup.

Exploitation of list parallelism allows the programmer to directly and implic

itly manipulate granularity. Consider the following example

63

Bird-Meertens formalism indicates that'

Therefore, it is possible to expand the above expression into either of the

_ three expressions below .

. The above expressions are listed in order of coarser granularity. In addition,

the larger the list, the greater the degree of parallelism. These list properties

allow the programmer to control the degree of parallelism and the granularity.

This technique relies on human intervention, which is preferred by same

implementors. However, it could be automated through the use of analysis

tools. The process of ensuring optimum granularity is a topic of on going

research, particularly run-time analysis techniques [Aharoni et al., 1992] and

is not within the scope of this project.

5.3.2 Degree of Parallelism

Granularity is not the only factor which needs to be considered in relation

to efficiency. Consider the following list operation

Each element is evaluated in parallel. Initially it appears as if maximum

parallelization exists. However, sequentialization is forced at the point of

initiating the parallel tasks and collecting the results of each task evaluation.

A similar situation was encountered by Kuchen and Gladitz while exploit

ing implicit parallelism using bags on MIMD machines [Kuchen & Gladitz,

1992].

64

A possible solution is to subdivide the list. The process of initiating the

parallel tasks and collecting the results of the sublists occurs in parallel and

less of a bottle neck exists at each" collection point" .

However, this approach incurs additional synchronization and communica

tion overheads. In addition, decisions regarding when and to which degree a

list should be divided are critical. Therefore, the complexity of this subdivi

sion could outweigh the benefits.

5.4 Expressibility

List parallelism is a form of implicit parallelism. Implicit parallelism focuses

on decomposing a single task into a number of parallel tasks whereas explicit

parallelism focuses on combining a number of independent tasks into a I~.ew'

task by executing them is parallel.

Carriero and Gelernter express the difference by considering how to paral

lelize a program which searches for an item in a database. They claim that

implicit parallelism would be used to parallelize the individual search whereas- -

explicit parallelism would be used to run many conventional searches in par

allel [Carriero & Gelernter, 1989].

Carriero and Gelernter also claim that explicit parallelism is better since a

larger number of cases can be expressed using this method alone. U nfortu

nately, it is difficult if not impossible to quantify the expressibility of explicit

parallelism versus implicit parallelism. Different examples could be devised

to express different merits for each method and both methods are advocated

[Carriero & Gelernter, 1989] [Kale, 1989]. We believe this topic could be

debated ad infinitum.

Most expressions can be expressed in terms of lists and list functions. For ex-

65

ample el +e2 can be expressed as +/[el,t2l The syntax chosen to represent a

list and the degree to which lists are indicated using the list parallelism nota

tion directly impacts on the granularity and hence efficiency of the program

evaluation. This places restrictions on the expressibility of this appwach.

However, despite this notation's limitations, it is flexible enough for our pur

poses. Sufficient parallelism can be exploited and controlled (even though

the programmer needs to be aware of efficiency issues when constructing

expressions) through the use of list parallelism.

66

- Chapter 6

Parallel Functional

Programming with Linda

As members of the Linda interest group at Rhodes University, we are in

terested in research relating to the extension and exploitation of Linda. -In

particular, we focus on determining whether Linda can be used to implement

pure parallel functional languages.

We consider possible approaches to implementing functional parallel systems

using Linda. In particular, the consequences of using each approach, in rela

tion to the effect on properties of pure functional languages, are highlighted.

6.1 Linda

The Linda paradigm is used to extend existing sequential languages to pro

duce parallel programming dialects. This is achieved by adding Linda opera

tors to these sequential languages known as base languages. Typical examples

of base languages are C, C++, and Modula-2 [Gelernter, 1988] [Carriero &

Gelernter, 1989]. The nature and functioning of these base languages are

unaffected by the introduction of Linda constructs which are orthogonal to

these languages [Carriero & Gelernter, 1989].

67

- -
A base language is used to express the sequential tasks which are composed

into a coherent parallel program through the use of Linda constructs. There

fore, Linda introduces the notion of processes and controls the synchroniza

tion, creation and communication of processes written in a base language

[Carriero & Gelernter, 1989J.

Gelernter argues that the Linda paradigm addresses some of the commonly

expressed problems of explicit parallel programming [Gelernter, 1988J [Car

riero & Gelernter, 1989J. To fully understand the potential of Linda, and the

drawbacks of the paradigm, we will briefly describe the basic concepts of the

_ Linda paradigm.

6.1.1 Tuple Space

Processes which execute in parallel need to be synchronized and exchange>

data during execution. Synchronization and communication of Li~da pro

cesses is achieved through the use of tuple space rather than message passing

or shared variables [Carriero & Gelernter, 1989J.

Tuple space is an unordered bag of data items known as tuples. Client pro-__

cesses may insert, remove and read tuples from tuples space, through the

use of the primitives provided by Linda [Rehmet, 1994] [Carriero & Gelern

ter, 1989]. Communication is achieved between two processes if one process

places a tuple into tuple space and another process removes this tuple from

tuple space (not necessarily immediately) [Carriero & Gelernter, 1989].

Once a tuple has been placed into tuple space, there is no means of identi

fying its origin nor does the sender have any knowledge of the receiver. In

addition, this tuple may be accessed by one or more processes, even after

the execution of the process which placed the tuple in tuple space is com

plete. Therefore, communication is anonymous, asynchronous and spatially

and temporally decoupled [Carriero & Gelernter, 1989J.

68

6.1.2 Linda Constructs

As indicated above, the only Linda constructs which are needed are those

which create processes, and insert or remove tuples from tuple sp~<::e. There

fore, there are only six Linda constructs in total, all of which act on tuples.

- A summary of the information on tuples and Linda constructs available in

[Rehmet, 1994], [de Heer-Menlah, 1991], [Carriero & Gelernter, 1989], [Gel

ernter, 1988], and [Scientific Computing Associates Inc., 1993] is given below.

"A Linda tuple consists of a set of typed fields, the first of which is generally

regarded as a label or logical name" [Rehmet, 1994]. An example of a tuple

-is ("Value1",30,x).

Tuples are placed into tuple space by using the out operation. If any fields

are expression, they are evaluated by the process before the tuple is placed'

into tuple space. This includes variables which are replaced by their values.

Once a tuple has been placed into tuple space, the process may continue with

further computation. In other words, the process does not block after an out

operation.

The in operation is used to retrieve tuples from tuple space. All in state

ments consist of the in operation followed by a tuple template. The tuple

which is retrieved by the in statement is the first tuple in tuple space which

matches the tuple template. If no matching tuple exists, the process which is

retrieving the tuple blocks until a matching tuple is placed into tuple space.

When a tuple template is matched against a tuple in tuple space, each field

must match exactly according to value and type [Rehmet, 1994]. Some fields

of the tuple template may be formals. These are prefixed by question marks.

In this case each field in the matching tuple, which corresponds to a formal,

may have any value but must have the same type as the formal.

69

The structure of rd statements is simihtr to that of in statements. However,

the rd operation is used to retrieve a copy of a tuple from tuple space. The

original tuple remains in tuple space and can be retrieved by further pro-

cesses.

The operations rdp and inp are similar to the rd and in operations. However,

if a matching tuple is not present in tuple space, a boolean value (false) is

returned instead of the tuple, and the process does not block.

Lastly, the eval operation is used to create a new process [Gelernter, 1988].

This operation places an active tuple, without evaluating the tuple fields,

into tuple space [Rehmet, 1994] [Gelernter, 1988]. The evaluation of the ac

tive tuple is independent and parallel to that of the process which placed it

into tuple space. After evaluation, the tuple is replaced by an ordinary data

tuple (a passive tuple) which can be retrieved from tuple space. ,

6.1.3 Advantages and Criticisms

Some commonly accepted advantages of the Linda paradigm include those

listed below

Ease of use is a direct result of exploiting tuple space, a distributed data

structure. "A distributed data structure is valuable because it ab

stracts low-level details about process synchronization and communi

cation to high-level algorithmic design issues involving data structure

access and generation" [Jagannathan, 1991a].

Orthogonality allows for the clean integration of Linda commands into a

base language. Orthogonality adds to the ease of use since the basic

functioning of a familiar base language is unaffected.

Portability of Linda across a number of different architectures alleviates

the necessity of re-writing programs for each new architecture. Linda

is portable since the programs are logically independent of the system

70

architecture. Linda software man~ges the low-level details such as the

physical location of processes and how data is moved between processes

[Scientific Computing Associates Inc., 1993].

Dynamic Load Balancing is afforded at run-time due to the asynchronous

and anonymous nature of communication between processes [de Heer

Menlah, 1991].

However, efficient implementation of Linda is potentially limited. David

son argues that tuple space is a potential bottleneck [Davidson, 1989J and

the associative matching of tuples can be expensive [de Heer-Menlah, 1991].

_De-Heer-Menlah suggests a technique, implem~nted during compilation of

Linda programs, which helps overcome these optimization problems [de Heer

Menlah, 1991].

-'

Kahn and Miller are concerned by the increased complexity involved in com-

piling and optimizing large Linda systems. They suggest the use of a number

of tuple spaces as a solution [Kahn & M.S.Miller, 1989].

Other weaknesses relate to the lack of protection in accessing tuple space and

the inability to implement garbage collection techniques [Shapiro, 1989].

6.2 Explicit Parallelism using Linda

Initially one may consider exploiting explicit parallelism which results in a

parallel language used to program parallel systems. The above discussion

suggests that Linda is an ideal paradigm for this purpose. An existing func

tional language (the base language) could be extended by explicitly adding

Linda constructs [Gelernter, 1988].

However, Lock and Jahnichen indicate that it is not as simple as it first ap

pears. "If we allow these primitives to appear in functional expressions, we

observe that the referential transparency is lost since the result of an in oper-

71

ation depends on the state of the tuplest'ate, and the out operation changes

this state" [Lock & Jahnichen, 1990].

Once again, the principle that the outputs of the function should depend

_ solely on its explicit inputs is violated. Therefore, they propose a two-tier

system. Only processes which map tuple space to tuple space may contain

Linda constructs. These upper-level functions are not referentially transpar

ent, but they encapsulate pure functional expression which in turn may not

contain any Linda constructs .

. Lock and Jahnichen's approach has the obvious disadvantage that the resul

tant language is not pure. It is only possible to rely on the mathematical

properties of the separate pure functions. Therefore, algebraic transforma

tions cannot be applied to the whole program with confidence.

It is important to note that Linda commands introduce nondeterminism into

the base language. During an in or rd operation more than one matching

tuple may exist, but only the first matching tuple may ever need to be re

trieved. Therefore, these are nondeterministic constructs very similar to the

amb construct.

In addition, not only may the choice differ during different executions, but

the tuples which exist in tuple space (when a given process reaches a specific

point) may also differ. This is because communication between processes is

asynchronous, anonymous and temporarily decoupled.

Based on Sestoft and Sondergaard's findings either unfoldability or definite

ness will be compromised when nondeterministic constructs are present in a

language. Therefore, alternative ways of exploiting Linda without introduc

ing nondeterminism or ways of hiding the resultant non determinism need to

be considered.

72

6.2.1 Linda and Streams

Since Linda is essentially a technique based on Input/Output to tuple space,

it should expected that previous work on I/O in functional languages could

be adapted to once again provide the "output depends solely un~inputs"

model. According to the table in figure 4.1, Burton's method or streams

could be used to obtained the desired results.

Streams are suited to this purpose since the number of items from which to

choose need not be specified. This allows for the arbitrary choice of a match

ing tuple from tuple space. Tuple space is used to allow separate process to

communicate [Hudak & Sundaresh, 1988].

Instead of adding Linda commands directly, requests corresponding to the

Linda commands are used. For example an In request takes a tuple template

as an argument. The resultant response is a matching tuple from tuple space.

Even though more than one tuple may match, the response is fixed to this

value and semantically, the process which issued the request is deterministic.

For this method to work successfully, each process should function as a sep

arate program and consume its own list of responses (hence communicate- -

with other processes through tuple space only). Therefore, the input to the

main function is a list of streams.

At the top level of the functional program, the independent processes will be

spawned, and each will be passed its own stream for communication with the

external tuple space. A generalization of the system structure for a typical

"farm of workers" is given below

mam .. ([[Lresp]], [Resp]) ---t ([[Lreq]], [Req])

boss .. ([Lresp], [Resp]) ---t ([Lreq], [Req])

worker .. [Lresp] ---t [Lreq]

73

main((l: ls, resp)) = let (us, vs) = baS's '(l, resps)

others = mapjn_parallel worker ls

in (us: others, vs)

The system structure is diagrammatically represented in figure 6.1 below.

t NonnalllO
Stream ~

------+-~
Worker Worker

User

Functional Program

Figure 6.1: System Structure for a Typical "Farm of Workers".

The use of streams in accessing tuple space ensures that each process IS

definite. In many cases the system is referentially transparent as a whole.

However, there are no restrictions which ensure that only programs which

are "well behaved" can be written. In these cases the integrity of the entire

system cannot be guaranteed (as in Lock and Jahnichen's approach). This

is particularly true since communication is asynchronous and temporarily

decoupled. This complicates the process of ensuring that the program as a

whole is referentially transparent, unfoldable and definite.

6.3 Implicit Parallelism using Linda

Alternatively, instead of exploiting explicit parallelism, a form of implicit

parallelism can be exploited in functional languages. This has been imple

mented successfully using parallel graph reduction techniques [Peyton Jones,

1989] [Peyton Jones, 1987] [Eisenbach & Sadler, 1988].

74

-
This technique -is attractive. As indicated by the table in figure 4.1 in chap-

ter 4, the exploitation of weak nondeterminism results in an operationally

deterministic language and semantically weakly nondeterministic language.

Ultimately, the language is still sequential (even though it is eyal1!ated in

parallel) and, therefore, is referentially transparent, unfoldable and definite.

It is therefore desirable to achieve similar results using the Linda paradigm.

This would require evaluation of sub expressions in parallel through the use

of Linda constructs at a level transparent to the user. Since the constructs

are not added directly into the language, parallelism is implicit.

In particular Linda is suitable for the implementation of list parallelism. List

elements (which are subexpressions of the functional program) are encapsu

lated into tuples. Subprocesses capable of evaluating functional expressions

retrieve tuples from tuple space and output tuples containing the result of'
- .. _.-

evaluation of the subexpression. In this manner, tuple space is used to control

the parallel evaluation of list elements (at a level transparent to the user).

This can be used to extend existing parallel implementation which rely on a

pool of tasks. All techniques and problems related to ensuring correct shar-- -

ing of data (and perhaps parallel access to a graph of the program) still need

to be considered and implemented.

75

- Chapter 7

Optimization of Linda

1m plementation

An interesting consequence of using Linda, with its very general matching

mechanism for withdrawing tuples from tuple space, is the ability. to r~la£

the order in which tuples are retrieved from tuple space. This can be advan

tageous in some circumstances and we consider this feature in conjunction

with list parallelism.

For example, consider the function search used to search a list for a spe-- -

cific unique item. A possible implementation of the search involves dividing

the list into sublists. Each sublist is searched in parallel (that is the search

function is mapped onto each of the sublists).

search L = 01'/ . search * [L1,L2, ... , Lnl

= 01'/ [search L1, search L2, . .. ,search Lnl

where L1 ... L2 is some partitioning of L

In general, the order of the list must be preserved. These demands regard

ing specific sequencing of results introduce precedence constraints. We must

wait for the result of searching sublist L1 to appear in tuple space before we

can retrieve the result of the search on sublist L2 etc. even if other subsearch

results are already available in tuple space.

76

But notice that in this example it is desirable to accept the results of each

subsearch in any order. As soon as the first true answer is obtained, the rest

of the answers may be ignored. There is no profit in waiting for the first

result if the second result is available especially if this result is the answer to

the search problem.

In general, list parallelism may be implemented more efficiently if results

could be retrieved in any order, corresponding to when the results are avail

able in tuple space. Technically, by relaxing the retrieval order, a bag of

elements is retrieved from tuple space rather than a list.

For example, assume the elements of list [el, e2, e3] are evaluated in parallel

where el evaluates to 1, and e2 and e3 evaluate to 2. The equivalent bag

is represented as II, 2, 25 and its elements may be retrieved in anJ' of ,the'

following possible orders.

• 1,2,2

• 2,1,2

• 2,2,1

If the addition operation is used to reduce the result, there are no adverse

consequences if this result is represented as a bag instead of a list. This is

because the results of reducing of a list and bag under these circumstances

are equivalent.

+/ (1,2,25 1+2+2

2+1+2

2+2+1

+/ [1,2,2]

If the difference of the list elements is required, the expected result is

-/ [1,2,2] = 1 - 2 - 2

77

However, a number of different results'are possible if the difference of the

equivalent bag is calculated instead.

-/ll,2,25 2-1-2or

2-2-1or

1-2-2

Therefore, under these circumstances it is impossible to use a bag instead of

a list without introducing nondeterminism.

We conclude that list parallelisation can be optimized by treating lists as

bags but only under certain conditions. Our focus is to characterize those

properties of lists and bags needed to facilitate the automatic detection of

opportunities for this optimization.

7.1 Properties of Lists and Bags

The first step to characterizing lists and bags requires that a mathematical

representation of these data structures is established. The Boom hierarchy,.. _

outlined below, is used to obtain this characterization. In addition, general

list and bag operations and laws governing their application are defined using

the Bird-Meertens formalism.

7.1.1 Boom Hierarchy

The Boom Hierarchy is a hierarchy of types fundamental to the Bird-Meertens

formalism, a calculus of total functions [Hoogendijk & Backhouse, 1994]

[Meertens, 1986] [Bird, 1988]. This hierarchy is used to mathematically de

scribe data structures.

The most general data structure in the Boom hierarchy is the full binary

tree. Given a set D, which does not contain the nil element, a domain of

78

binary trees containing leaves from D is formed using two constructors.

The first constructor is the embedding function. This maps a value from D

into an element of the domain of full binary trees. Effectively, t-his' creates

leaf nodes from primitive elements in D. The second constructor is the join

function which maps two full binary trees into a single full binary tree. That

is, the join constructor effectively creates the internal nodes of the tree.

The set of binary trees has all the properties of a domain (refer to section

3.1.3). In addition, the domain of binary trees generated by the embedding

. and constructor functions is an algebra.

Each further level of the Boom hierarchy is a domain based on the binary

tree. Each new level is obtained by successively placing further restrictions

on the algebra of the previous level. .

Non-full Binary trees (not every internal node has two children) form the

next level of the hierarchy. These are obtained by adding nil to the set D.

The full binary tree constructor (referred to as TREE-JOIN) is still used to

construct these non-full binary trees.

The next level of the hierarchy consists of the domain of lists. The set D

still contains nil, however an extra requirement of associativity is placed on

the join function. This distinguishes lists from trees in that the "hierarchical

depth" of trees is lost since the trees are flattened to form lists.

Bags and sets, the next levels in the hierarchy, are obtained by succes

sively introducing the requirements that join is commutative, and idempotent

[Hoogendijk & Backhouse, 1994] [Meertens, 1986]. The Boom hierarchy is

summarized in the following table.

79

Structure JOIN Constructor JOIN Properties Nil Present

Binary Tree TREE-JOIN - No

Tree TREE-JOIN - Yes -
List LIST-JOIN Associative Yes

Bag BAG-JOIN Associative, Commutative Yes

Set SET-JOIN Associative, Commutative, Yes Idempotent

Figure 7.1: Summary of Boom Hierarchy.

It is evident from the Boom hierarchy that the bag join constructor (BAG

.JOIN) and list join constructor (LIST-JOIN) differ. BAG-JOIN is more

restrictive than LIST-JOIN since it is associative and commutative rather

than just associative. This difference alone is the distinguishing factor be

tween these two data structures.

7.1.2 The Bird-Meertens Formalism

The Bird-Meertens formalism is a calculus of total functions. These func

tions can be applied to all structures in the Boom hierarchy. Bags and lists

are particularly relevant to the rest of this chapter. Therefore, only these- -

structures will be discussed further.

Firstly, we define the list and bag domains using the Bird-Meertens notation.

The basis of domain construction is still the embedding and join constructors.

We assume that the base set to which the embedding function is applied has

the type a.

The domain of lists is created using the embedding function [.J and the join

function i (LIST-JOIN in the previous section). The empty list [J is the

identity element of i.

The domain of lists of type [aJ is the algebra ([a],i, []) is an algebra gen-

80

erated under the embedding function [T: 0: -t [0:]. More specifically, the

algebra is a free monoid.

Similarly, the domain of bags is an algebra (I 0: 5, l±J, I 5) generated -uRder the

embedding function I . 5 : 0: -t I 0: 5 where l±J is the bag join constructor

and ISis the identity element of l±J. More specifically, this algebra is a free

commutative monoid [Bird, 1988].

Homomorphisms

Not only can we identify the domain of lists and bags as algebras, but other

algebras are also of interest. For example, the set of integers together with

the addition operator and the identity element 0 comprises an algebra (a free

monoid).

Consider the length function # : [0:] -t N which determines the lengthbf

a list. The following three expressions are satisfied by the length function.

Hence, # is referred to as a uniquely defined homomorphism from the monoid

([0:]'*, []) to (N, +,0) [Bird, 1988].

#[]

#[a]

#(x*y)

o
1

#x+#y

Homomorphisms capture the notion of invariance under a divide-and-conquer

or decompositional approach. The definition of the length function indicates

that # is applied to each individual list element (in isolation). The corre

sponding values in the set of natural numbers are added to produce a final

result.

However, not all functions applied to lists are homomorphisms. The func

tion which removes adjacent duplicates from a list is not a homomorphism.

Informally, this function needs to be applied to the list as a whole since

81

information about previous elements dHermine if the current element IS a

duplicate.

Bird-Meertens Definition of Map and Reduce

_ Map and reduce, informally defined in section 5.2, can be applied to the

data structures characterized by the Boom hierarchy. The Bird-Meertens

formalism allows for the formal definition of these functions.

Definitions of map and reduce over lists and bags are defined in appendix

A.3. The essential informal meaning of these definitions is characterized in

. words below.

Consider expression f * x where x is a list. If f is mapped onto:

• an empty list the result is an empty list.

• a singleton list, a singleton list which contains the result of applying

the function to the original list element is returned.

• a list consisting of a number of items, the data structure is divided

into two. The results of recursively applying the map function to each- -

portion of the data structure are concatenated to form a new list.

This explanation is similar for 9 * x where x is a bag.

Consider expression E9 / x where x is a list or bag. If the EEl operator is used

to reduce:

• an empty bag or list, the result is the identity element.

• a singleton bag or list, the value contained within the data structure is

returned.

• a bag or list consisting of a number of items, the data structure is di

vided into two. The results of recursively applying the reduce function

82

to each portion of the data structure are combined using the operator

used to reduce the bag or list.

Assume that !, 9 : a ---+ (3. Note that !* (defined in appendix A.3}is a homo

_ morphism from ([a],*, []) to ([(3]'*, []). In addition, g* is a homomorphism

from (LaS, i±J, L 5) to (L(3S, i±J, (5). That is, !* is a homomorphism on lists and

g* is a homomorphism on bags.

The operator EB / in appendix A.3 (assumed oplus is associative and com

mutative, therefore EB : a x a ---+ a) is a homomorphism from ([a],*, []) to

-(a, EB, idffi) and a homomorphism from (LaS, i±J,(5) to (a, EB, idffi). That is,

EB/ is a homomorphism on a list and bag as defined in appendix A.3.

It is important to note that EB / is a homomorphism on a list or bag only i(

the operator EB is at least as algebraically rich as the join constructor of the

data structure to which it is being applied. That is, EB/ is a homomorphism

on lists only if EB is at least associative. Similarly, EB/ is a homomorphism on

a bag only if EB is at least associative and commutative (as is the case in the

definitions in appendix A.3).

Map and reduce have been targeted in this discussion since all homomor

phisms can be represented as combinations of the map and reduce functions

[Bird, 1988J. This removes the necessity to discuss other functions which are

homomorphisms.

7.2 List to Bag Convertibility

The Bird-Meertens promotion rules (refer to appendix A.4) express the equa

tions defining !* and EB/ as identities between functions. These rules allow

for the algebraic manipulation of expressions which contain bags or lists.

However, for our purposes a further step needs to be taken. Rules need to

83

-
be defined which establish when a list dLR be converted to a bag.

If a list is replaced by a bag during optimization the function must still be

well defined. It is safe to move from the list level of the Boom hjerarchy to

the bag level if the function being applied to the list is a bag homomorphism.

In these cases the function is a homomorphism on lists as well as bags.

If the operator used for reducing the original list is associative and commu

tative, the list can be treated as a bag since the operator is also a homomor

phism on the resultant bag.

In general, to substitute one data structure (list) by another (bag) requires

moving between the levels in the Boom hierarchy. The reduction operator

applied to the data structure in the current level needs to be at least as rich

as that of the join operator of the data structure in the new level. rr:his"

ensures that the substitution of one structure by the other will be safe.

Under the above conditions, the functions are well defined during optimiza

tion. The following conversion rule indicates when (and if) it is safe to use

a bag instead of a list. This rule has been proved using the Bird-Meertens- -

promotion rules (Refer to appendix A.4 and B.1).

Conversion Rule

Assume EEl is associative and commutative and bag is the bagify function

(refer to appendix B for formal definition) which converts a list into a bag.

Then

EEl / = ffi / . bag (7.1)

The rule states that any list can be represented as a bag as long as it is

reduced by an associative and commutative operator. Otherwise, the effect

of ignoring the order of the list is not canceled.

84

7.2.1 Bag- Propagation

Most expressions consist of complex compositions of the map and reduce

operators. Once again, as in section 5.2.2 the maximum benefit will accrue

if the freedom to use a bag can be exploited as early as possibhi within the

_ expression. The propagation rules indicate how the bagify function can be

propagated through complex expressions.

The proof of propagation rule 1 is given in appendix B.2. Propagation rules

2 and 3 have not been formally proven here, but are straight forward .

. Propagation Rules

Let

be any list

EB be any associative and commutative operator

bag be the bagify function used to convert a list to a bag

e be a composite expression

I be some arbitrary function

p be some arbitrary predicate

1. bag· I * l = I * . bag l

2. bag [j iii ~ e, p i] = [j iii ~ bag e, p i]

The meaning of each of the above rules is expressed as follows

1. The list may be bagified before or after I is applied. Repeated appli

cation of this rule is expressed as bag· h * ·12 * ... In * . l = h * ·12 *
... In * . bag l where n is any natural number.

2. The bagify function may be propagated into a comprehension expres-

slOn.

85

3. Two sublists may be individually-bagified as long as the result of con

catenating these resultant sub bags is bagified.

It is important to note that if a list is bagified, lists nested within the bagified

list are unaffected. That is, the individual bag elements are not -necessarily

_ bags themselves. This is expressed as

Rule 3 initially looks incorrect. This is because list concatenation and bagify

are being applied to a bag. This rule is expressed using this notation since

a new bag structure is not implemented. A list is considered to be a bag if

. the order of the elements is not preserved. Two such lists are concatenated

using *. If the element order of a list has already been ignored, there is no

further consequence of bagifying this list and is a legal operation.

7.3 Bag Analysis

Assume we have a simple language in which all list operations are restricted

to map and reduce and the only two non-list operators are subtraction and

addition. In addition, functions which take list arguments are included in- -

the language. These functions consist of "allowable" combinations of the list

and non-list operators, constants and list variables. We would expect that

the above propagation and conversion rules would be sufficient to analyze

expression of this simple language.

Consider the function below which takes a list as an argument. EO represents

a commutative and associative operator and 8 represents a non-commutative

operator (may be associative).

AX. EO Ix - 81x

The variable x appears more than once within the function. The convertibil

ity rules above indicate that the argument bound to the first instance of x

86

can be treated as a bag. However, the second occurrence of x is reduced by a

non-commutative operator and must be treated as a list. A single argument

bound to x cannot be treated both as a list and bag. The safest choice is to

treat the argument as a list.

This situation increases the complexity of deciding on list to bag convertibil

ity. To simplify the implementation of the system, the decisions regarding

bag convertibility in this situation may be left to the programmer. These

decisions can be indicated through the use of annotations.

However, automatic analysis of the expressions would increase the usability

of the system. This requires the use of what we have termed bag analysis, a

backward analysis technique [Hughes, 1987].

7.3.1 Backward Analysis

Backward analysis is an analysis technique which calculates information from

the context of an expression. This information is used for optimization pur

poses. "The flow of information is inwards, from enclosing expressions to

enclosed sub-expressions, rather than outward as is the case in abstract in-__

terpretation" [Hughes, 1987].

In our case the information should indicate whether it is safe to treat a list

argument as a bag instead of a list within expressions. This information is

called the context.

7.3.2 Abstract Domain

Backward analysis relies on the use of domains. This ensures, via least fixed

points, that the recursive programs are well defined (assuming all functions

on the domain are continuous). Some context domains can be very complex,

particularly if they are infinite and their generality and infinite nature make

an accurate analysis undecidable.

87

To simplify the analysis, the use of a subdomain which describes the con

text sufficiently but "does not make more distinctions than necessary for the

desired analysis" is advocated [Hughes, 1987]. This subdomain is- called an

abstract domain. With a finite abstract domain, the overall analysis becomes

decidable although the results become "safe approximations". That is, the

analysis may fail to find every opportunity for transforming a list to a bag,

but those that it does detect will be accurate (or safe).

We suggest the use of an abstract domain which consists of two elements.

The one element is B (bag) and the other is L (list). A list in context L must

be evaluated as a list, otherwise it may be evaluated as a bag (the order of

the list can be ignored).

The ordering on the domain is B ::; L. If a list can be bagified (context ,Bf
it must also be safe to treat the list as a list since context L is less specific

than context B. However, the converse is not true. If a list is in the context

L, it is undecidable whether it is safe to treat the list as a bag. So, in this

context the safest choice is to evaluate the list as a list.

The element ABSENT is usually present in a context domain. This is used

to express the situation in which the list argument for which the context is

being determined, is not present within an expression. ABSENT is not an

element of the abstract domain. In creating the abstract domain, ABSENT

is mapped onto the least point in the abstract domain which approximates

it. In our case, ABSENT is mapped to B.

7.3.3 Abstract Context Functions

During the analysis of an expressions, the context is transformed. Propaga

tion rules (discussed in the section below) are used to propagate the context

through the expression. However, each time a language primitive is located,

88

-
the manner in which this affects the transformation of the context needs to

be ascertained.

Predefined abstract context functions, which correspond to th_e_ language

primitives, provide the rules for such transformations. These rules together

with the propagation rules can be used to define context functions for user

defined functions.

A function within an expression has at least one associated context function.

The number of abstract context functions associated with each function is de

pendent on the number of arguments to the function. Therefore, an abstract

context function is denoted by fin, where

f indicates the name of the associated function

indicates the fact that the function is a context function

n indicates the position of the argument for which this context function'is defined

Examples of a number of abstract context functions used for bag analysis

of our simple language are described in figure 7.2. It is assumed that EB is

any associative and commutative operator and 8 is any non-commutative

operator.

Context Function Definition

ffi/# AX ·B

8/# AX ·L

f*# AX' X

+#n AX' X
For all n

-in AX' X
For all n

Figure 7.2: Abstract Context Functions.

89

These abstract' functions are monotonic and continuous on the abstract do

mains are sufficient for our purposes.

7.3.4 Propagating Contexts

_ For the following discussion, first order functions are assumed. Given an

expression E, it is initially assumed that the context is L. This is propagated

inwards to obtain the overall context of any list arguments E might contain.

"We define a function C such that, if x is a free variable of E, then Cx[E]a

is the context propagated from E to x" [Hughes, 1987]. The context which is

·to be propagated inwards is referred to as a and must be an element of the

abstract domain. E refers to any expression through which the context is

propagated. The following rules are used to govern the process of propagating

the context inwards through E for our simple language.

1. Cx[x]a = a

Propagating a context through a simple variable (equal to the free

variable of the analysis) preserves that context.

2. Cx[E]a = B if x does not occur free in E

If x is absent from E, it is safe to assume that x can be bagified in this

subexpression.

Rule 3 describes the propagation of context through a function application.

An abstract context function, corresponding to the function and argument

position is applied to the current context for each argument. Each resul

tant context is propagated through the corresponding function argument.

The final resultant contexts are combined together (to calculate the overall

context) using the & function defined as

90

& L< B

L L L

B L B

This table implements a conservative approach. An overall bag context is

permitted only if none of the "sub" contexts are equal to L.

Example

Consider the following simple, but illustrative, function where x and yare

free list variables.

Com bi n e (x, y) = (+ / x) + (- / y J + (+ / y)

The context of free variable x is calculated as follows (refer to figure 7.2 for

definitions of all context functions).

Cx[Combine]L = Definition of Combine

Cx[(+/x) + (-/y) + (+/y)]L
= Rule 3 where + is the function

CX[+/X](+#lL) & Cx[(-/y) + (+/Y)](+#2L)

= Definition of +#n
Cx[+/x]L & Cx[(-/y) + (+/y)]L

= Rule 2

Cx[+/x]L & B

= Rule 3 where + / is the function

Cx[x](+/#L) & B

= Definition of +/#
Cx[x]B & B

= Rule 1

B&B

= Definition of &

B

91

This analysis tells us that before passing an actual argument to bind to x, it

is safe to bagify the list (when retrieved from tuple space).

Now the analysis is repeated to see whether the argument to y can be bagified.

- The context of free variable y is calculated as follows

Cy[Combine]L = Definition of Combine

Cy[(+/x) + (-/y) + (+/y)]L

= Rule 3 where + is the function

CY[+/X](+#1L) & Cy[(-/y) + (+/Y)](+#2L)

= Definition of +#n

Cy[+/x]L & Cy[(-/y) + (+/y)]L

= Rule 2

B & Cy[(-/y) + (+/y)]L

= Rule 3 where + is the function

B & Cy[-/y](+#1L) & Cy[+/y](+#2L)

= Definition of +#n

B & Cy[-/y]L & Cy[+/y]L

= Rule 3 where - / is the function

B & Cy[y](-/#L) & Cy[+/y]L

= Definition of - / #
B & Cy[y]L & Cy[+/y]L

= Rule 3 where + / is the function

B & Cy[y]L & Cy[y](+/#L)

= Definition of +/#
B & Cy[y]L & Cy[y]B

= Rule 1

B&L&B

= Definition of &

L

92

The second arg-ument of Combine must"be treated as a list since it is reduced

using an operator which is not commutative and associative in one position

(this information is captured within the abstract context functions). How

ever, the first argument can safely be treated as a bag. It can be deduced

that the context function for Combine is

Combine#l

Combine#2

AX' B

AX' L

Consider the following function which uses the function Combine, where X

. is a list variable.

Same(x) = Combine(x,x)

The context of the first (and only argument) for Same is L (as expected)

smce

Cx[Same]L = Definition of Same

Cx[Combine(x, x)]L

= Rule 3 where Combine is the function

Cx[x](Combine#lL) & Cx[x](Combine#2L)

= Definition of Combine#n

Cx[x]B & Cx[x]L

= Rule 1

B&L

= Definition of &

L

7.3.5 Extensions to Bag Analysis

The above bag analysis can only be used to analyze functions which directly

manipulate lists using map and reduce. However, a function may be defined

93

recursively in s~ch a way that the indivi8.uallist elements are directly manip

ulated. The analysis needs to be extended to handle these types of functions.

The length function is defined recursively below.

length(x) = if null x then 0 else 1 + length (tail x)

This function manipulates individual list elements. The function tail is used

to return the rest of the list minus the first element. The function null

determines if the list is empty.

We need to extend the language by adding functions which are used to isolate

and manipulate list elements. To extend the bag analysis, their corresponding

context functions are defined as

Context Function Definition

head# AX' L

tail# AX . x

: #1 AX' L

: #2 AX . X

null# AX' B

Figure 7.3: Abstract Context Functions for Primitive List Functions.

In addition, many recursive functions use if statements. The following rule

governs the process of propagating the context inwards through an if state

ment.

This is a conservative rule since if any subexpression of the if then statement

return an L context, then the whole expression returns an L context.

94

An analysis of -the length function (usiiig- fixed point iteration to determine

the context of the recursive functions) returns a context of B as expected.

However, analysis of the sum function defined recursively below returns a

context of L.

sum(x) = if null x then 0 else head x + sum (tail x)

Even though a safe result is returned, the analysis fails to recognize possible

parallelisation where the original analysis of sum expressed using + / suc

ceeds. The ability to decide on the context for the whole list is lost when

list elements are manipulated individually by head, and non-list operators.

The head function also forces a context of L. Therefore, this method of bag

analysis is not particularly successful for recursively defined functions.

Now consider an expression which contains nested lists expressed using the

high level list notation. _

f(x) = EB/[EB/x, 8/[1, 2, 3], 8/x]

Each time a new list level is entered, previous information (context) must be

ignored since each level is totally isolated form previous and future levels (as

was discussed in section 7.3.4 on propagation rules). The sublist is expressed

as individual elements joined with cons (:). The context function of this list

primitive correctly indicates that all previous context must be ignored at this

new list level. Therefore this primitive is still important even when the high

level list notation is adopted.

7.4 Implications of Optimization

The basis of the optimization technique is the decision of whether a list will

ultimately be reduced using an associative and commutative operator. The

programmer may find this relatively easy to decide. However, if the opti

mization process is automated, the compiler needs to decide if an operator

may be associative and commutative. This is undecidable in general(refer to

95

- appendix C for the outline to a proof) .. <

When the nature of a function or operator is unknown and cannot be calcu

lated, the analysis must still be safe. Although undecidable, it is still possible -- - --"

to construct a conservative algorithm which may find some cases and which

- assumes non-commutativity in all others.

If a function on a list is not a homomorphism on a bag, the list elements

may still be evaluated in parallel. However, the resultant list must be re

constructed preserving the order before the function is applied to the list. A

particular example may be the function head which returns the first element

of a list. Therefore, a programmer needs to optimize the use of associative

and commutative operators to maximize the efficiency of the system. This

can be considered to be a restriction on the expressibility of the system.

Bag analysis for high level list constructs is successful whereas analysi~· of

recursive function which manipulate the individual elements of lists is less

successful. This is because vital information regarding list structure and

context is lost if the list is "flattened" when individual list elements are ma

nipulated using non-list operators.

The implications of this observation are that the use of high level constructs

to exploit lists, using Bird-Meertens list notation, is preferable to recursive

functions which directly manipulate individual elements. This observation

further supports the choice the Bird-Meertens list notation made in section

5.2.

In the circumstances where a bag may be used instead of a list, there always

exists a node in the graph which contains an associative and commutative

reduction operator. This cancels out the effects of ignoring the order of the

list. In addition, it has been ascertained that the bag can be successfully

propagated through the subgraph between this node and the list which is

96

to be bagified. - However, it is important-to note that this subgraph is still

subject to the rules described by Sondergaard and Sestoft (refer to chapter

2).

If any new functions are inserted into this region of the graph during compi

lation and optimization of the program, it must be realized that unfoldability

of these functions cannot be assured. Consider the following expression

(7.2)

A bag may be introduced at the point where + / is used to reduce the list .

. This bag may be propagated down to I and this indicates that a bag may be

used instead of the list. Therefore the expression is now expressed as

+ / . h * ·12 * -11 * ·bag I (7.3)

At this point, expression 7.2 and 7.3 are equivalent. However, consider the

following identity function

id x = if (x = x) then x else .1

Now insert this function between is and 12 such that

+ / . h * ·id . f2 * . II * . bag I (7.4)

Initially, it appears as if this is legal since expressions 7.2 and 7.3 are equiva

lent. However, notice that expression 7.4 is no longer unfoldable. Therefore

it is not equal to the expression +/ . h * ·id· 12 *·II *·1 which has not been

optimized.

This does not mean that the technique is incorrect. However, a compiler

writer needs to be aware of these nondeterministic regions and must treat

them carefully.

97

- Chapter 8

Conclusion

-This thesis has investigated aspects of nondet~rminism in relation to pure

functional languages. In particular, we ascertained the problem related to

introducing non determinism into functional languages. In chapter 2 the es

sential notions of weak and strong nondeterminism and Sondergaard ~Il,d->

Sestoft's analysis allowed us to precisely characterize the problem as one of

a conflict between definiteness and unfoldability.

In chapter 3 three further properties of strongly nondeterministic languages

namely, strict/nonstrict functions, singular/plural semantics, and type of-

nondeterminism were identified. A denotational semantics for these strongly

nondeterministic languages was considered since this allowed for the precise

specification of how the resultant semantics relied on the combination of

the above three properties. This characterization increased the awareness of

the wide (and possibly unexpected) spectrum of available parameter passing

techniques and the consequences of employing each technique.

Methods used to hide nondeterminism were defined in chapter 4. These

methods result in pure functional languages. However, the investigation of

these techniques indicated that purity is always obtained at a price. Implicit

restrictions, similar to those imposed explicitly on languages expressed using

Hughes natural semantics, always exist.

98

We devised a classification table (figure 4.1 in chapter 4) in which all non

deterministic methods discussed are classified. This provides a mechanism

which allows implementors to identify a suitable technique of implementing

functional parallel systems. They need only consider whether the implemen

tation should result in an (operationally and semantically) deterministic or

nondeterministic system.

Implementation of a parallel system using functional languages may initially

seem impossible if a pure system is required. The main restriction is a need

for the system to be semantically deterministic The rest of this thesis fo

cused on ascertaining if functional languages are appropriate for functional

language implementation. This discussion focused on the Linda parallel pro

cessing paradigm.

The discussion in chapter 6 highlighted the strongly nondeterministic nature

of functional languages extended using Linda directly. Even a system imple

mented using an explicit parallelism technique, but which ensured semantic

nondeterminism, was shown to be unsuitable due to the inability to ensure

that a program is pure as a whole.

As an alternative to explicit parallelization, we exploited weak nondeter

minism in chapter 6 which was also indicated as a suitable method for the

implementation of pure functional parallel systems. We defined list paral

lelism, a form of implicit parallelism, which offers a method of implementing

weak nondeterminism easily tailored to exploit the properties of Linda. This

method of exploiting list parallelism can be generalized to any system iin

plemented using a distributed data structure and is not restricted to Linda

implementations.

In chapter 7 optimization techniques which involved using bags instead of

lists were used to increase opportunities for parallelism. The context in

99

which such optImizations were applied was restricted through the use of bag

analysis and conversion and propagation rules. In this manner overall deter

minism for the system was ensured even though Linda produces results in a

nondeterministic order.

Bag analysis allowed for analysis of expressions which manipulated lists using

high level list operators such as map and reduce. However, we concluded that

bag analysis is not effective for analysis of recursive programs which manip

ulate individual list elements explicitly. This further supports the adoption

of list parallelism expressed using the Bird-Meertens notation.

There are many pitfalls an implementor has to be aware of during the im

plementation of a nondeterministic (or potentially nondeterministic) system.

This thesis highlights the wealth of techniques which can be used both di

rectly and in adapted form to successfully implement applications such,as"

parallel processing systems. We have been able to show that there is a defi

nite place for functional implementations of these types of systems.

100

- Appendix A

Definitions from the

Bird-Meertens Formalism

A.I Notation

Bird uses the symbols * (list concatenation) and I±J (bag concatenation) which

correspond to LIST-JOIN and BAG-JOIN respectively.

The functions [.J and (. S are the embedding constructors for lists and bags

respectively. Therefore,

[.J a raj

(·Sa (as

The empty bag and list are represented by I Sand [1 respectively.

101

- A.2 Function Types

The functions f and 9 defined within these appendices have the following

types

f:o:-t/3

- g:o:-t/3

f* : [0:] -t [/3]

g* : Lo:S -t L/3S
E8 : 0: x 0: -t 0: (EB is assumed to be associative and commutative).

A.3 Definition of Map and Reduce

Figure A.l defines map and reduce (for both bags and lists) using Bird's

Notation [Bird, 1988].

Lists Bags

f * [] = [] g*(S=(5

Map f * [a] = [fa] 9 * laS = 19a5

f * (x-tty) = U * x)-ttU * y) 9 * (x It! y) = (g * x) It! (g * y)

$/ [] = id(fJ $/I S = id(fJ

Reduce $/ [a] = a $/IaS =a

$/ (x-tt y) = ($/ x) $ ($/ y) $/ (x It! y) = ($/ x) $ ($/ y)

Figure A.l: Definition of Map and Reduce.

102

A.4 Promotion Rules

Figure A.2 defines the promotion rules for map and reduce. The two join

rules are referred to as the map and reduce promotion rules respectively. The - - .
function K below is the constant valued function [Bird, 1988].

Rules List Bag

Empty Rules
f* ·K[J=K[J f*·KI5=KIS
ffi/· K[J = idfJ! ffi/· K I 5 = idfJ!

f * . [.J = [.J . f f*·(·5=(·5·f
One-point rules

ffi/· [.J = id ffi 1 . I . S = id

f* .. ltI =-It I· (f*)* f*·IjJI=IjJI·(f*)*
Join rules

ffi/· -It 1 = ffi/· (ffi/)* ffi/·1jJ1 = ffi/· (ffi/)*

Figure A.2: Bird-Meertens Promotion Rules.

103

- Appendix B

Conversion Rule Proofs

While the Bird-Meertens formalism is concerned with the independent rules

for lists and bags, here we examine our extensions for convertibility between

list and bag structures.

The bagify function bag, used in the proofs below, is defined as

bag = 1;;)/ . L . S *

The proofs below also rely on a general rule of map. This is the distributivity

rule and is defined (for any functions g and 1) as

B.1 Reduction Conversion Rule

ffi/ bag = definition of bag

ffi/ . 1;;)/ . L . S*
= reduce promotion

ffi / . (ffi /) * . L . S *
= distributivity of map

ffi / . (ffi / . L . S) *
= one-point rule

104

ffi I . (id) *
= ffil

B.2 Bag Propagation Rule through Map
1 * . bag = definition of bag

1* ·l±J/·(·S*
= map promotion

l±J/· (J*) * . (·5*
= distributivity of map

l±J/'(J* .(.5)*
= one point rule

luplus· ((·5· f)*

= distributivity of map

l±J/· (·5* ·1*
= distributivity of map

l±J/· (·5* ·1*
= definition of bag

bag· 1*

105

- Appendix C

Undecidability of the

Commutivity Probl~m

A function f(Dl,D 1) -+ D2 is commutative if and only if f(a,b) = f(b,a).

Can the question "Is this function commutative?" always be answered for.all

functions? If this is so, the problem (which we call the commutivity problem)

is decidable.

We prove that this problem is undecidable by giving one counter example.

C.l Proof

Consider the following function f(D 1 , Dd -+ D2

f (x, y) = if x < y then

if halt < R,X > then 1

else 0

else 1

The function halt determines if an arbitrary program R terminates given the

input X. That is, the halting problem (which is undecidable) [Harel, 1992J

has been embedded into the function f.

106

- Without loss of generality, we restrict oorselves to cases where a > b.

The function f is commutative if

f(a, b) = f(b, a) = 1 Va E Dl /\ b E D2 ,a > b

otherwise

f(a, b) = 1 oJ f(b,a) = 0 Va E Dl/\ b E D2 ,a> b

Therefore, the problem of commutivity is reduced to deciding if f(b, a) re

turns a 0 or 1.

If we assume the commutivity problem is decidable then I sComm(J) is true

when f(b,a) returns 1. Conversely IsComm(J) is false when f(b,a) returns

.0 (where I sComm is a function which can tell if a function is commutative).

Notice that the halting problem can be described in terms of I sComm and

f·

my-'talt(R,X) = if IsComm(J) then

R halts on X

else

R does not halt on X

Consequently the commutative problem is undecidable, otherwise we have

solved the halting problem (which we know is undecidable) by constructing

the function f.

107

- References

Aharoni, G., et al. 1992. A Run-time Algorithm for Managing the Granularity

of Parallel Functional Programs. Journal of Functional Programming,

2(4), 387 - 405.

Bird, R.S. 1988 (Sept.). Lectures on Constructive Functional Programming.

Lecture notes PRG-69. Oxford University Computing Laboratory.

Bird, R.S. 1989. Algebraic Identities for Program Calculation. The Compu.ter"

Journal, 32(2), 122 - 126.

Burn, G.L. 1989 (June). Overview of a Parallel Reduction Machine Project

II. Pages 385-396 of: PARE 89) Springer- Verslag LNCS No 365.

Burton, F.W. 1988. Nondeterminism with Referential Transparency in Func-- -

tional Programming languages. The Computer Journal, 31(3), 243-247.

Carriero, N., & Gelernter, D. 1989. Linda in Context. Communications of

the ACM, 32(4), 444 - 458.

Clinger, W. 1982 (August). Nondeterministic Call by Need is Niether Lazy

Nor by Name. Pages 226 - 234 of: Proc. 1982 ACM Symp. LISP and

Functional Programming.

Davidson, C. 1989. Technical Correspondence. Communications of the ACM,

32(10), 1249 - 1251.

de Heer-Menlah, F.K. 1991 (October). Analyzing Communication Flow and

Process Placement in Linda Programs on Transputers. Master's The-

108

sis TD91j17. Computer Science Department, Rhodes University, South

Africa.

Eisenbach, S., & Sadler, C. 1988. Parallel Architecture for Functional Pro-
-- - -~~

gramming. Information and Software Technology, 30(6), 355 - 364.

Field, A., & Harrison, P. 1988. Functional Programming. International Com

puter Science Series. Addison-Wesley Publishing Company.

Gelernter, D. 1988. Getting the Job Done. Byte Magazine, 13(November) ,

301 - 308.

Harel, D. 1992. Algorithmics: The Spirit of Computing. Addison-Wesley

Publishing Company Inc.

Hennesy, M.C.B, & Ashcroft, E.A. 1977. Parameter-Passing Mechanisms

and N ondeterminism. Pages 306-311 oj: Proceedings of the ninth A CM>'

Symposium on Theory of Computing.

Hoogendijk, P., & Backhouse, R. 1994. Relational Programming Laws in the

Tree, List, Bag, Set Hierarchy. Science of Computer Programming, 22,

67 - 105.

Hudak, P. 1989. Conception, Evolution, and Application of Functional Pro

gramming Lanugaes. ACM Computing Surveys, 21(3), 359 - 411.

Hudak, P., & Sundaresh, R. 1988 (December). On the Expressiveness of

Purely Functional I/O Systems. Tech. rept. YALEU jDCSjRR665. Yale

University, Department of Computer Science.

Hudak, P., et al. 1992. Report on the Programming Language Haskell. ACM

Sigplan Notices, 27(5).

Hughes, J. 1987 (March). Backward Analysis of Functional Programs. Re

search Report CSCj87 jR3. Department of Computing Science, Univer

sity of Glasgow.

109

Hughes, J. 1989. Why Functional Prctgramming Matters. The Computer

Journal, 32(2), 98 -107.

Hughes, J., & Moran, A. 1995. Making Choices Lazily. In: Functional

Programming and Computer Architecture. San Diego: ACM-Press.

Hughes, J., & O'Donnell, J. 1989. Expressing and reasoning about Non

deterministic Functional Programs. Pages 308 - 328 of: Davis, K.,

& Hughes, J (eds), Functional Programming: Proceedings of the 1989

Glasgow Workshop.

Jackson, W., & Burton, F. 1994. A Definite and Unfoldable, Partially De

terministic Language. The Computer Journal, 37(8), 711 - 714.

Jagannathan, S. 1991a. Customization of First-Class Tuple-Spaces III a

Higher-Order Language. In: Parallel Architectures and Languages Eu-

rope. Springer-Verlag LNCS 506. ,

Jagannathan, S. 1991b. Expressing Fine-Grained Parallelism Using Dis

tributed Data Structures. In: Workshop on Research Directions in

High-Level Parallel Programming Languages. LNCS, vol. 574. Springer

Verlag.

Kahn, K.M., & M.S.Miller. 1989. Technical Correspondence. Communica

tions of the ACM, 32(10), 1253 - 1255.

Kale, L.V. 1989. Technical Correspondence. Communications of the ACM,

32(10), 1252 - 1253.

Kuchen, H., & Gladitz, K. 1992. Implementing Bags on a Shared Mem

ory MIMD-Machine. In: Proceedings of the 4th INT. Workshop on the

Parallel Implementation of Functional Languages.

Lock, H., & Jahnichen, S. 1990 (Octoboer). Linda Meets Functional Pro

gramming. In: IEEE 2nd Workshop on Future Trends in Distrubuted

Computation.

110

MacLennan, B.J. 1990. Functional Programming: Practice and Theory.

Addison-Wesley Publishing Company, Inc.

Main, M.G. 1987. A Powerdomain Primer. Bulletin of the EATCS, 33, 115

- 147.

- Manna, Z. 1974. Mathematical Theory of Computation. McGraw-Hill Com

puter Science Series. McGraw-Hill book Company.

Meertens, L.G.1.T. 1986. Algorithmics - Towards Programming as a Math

ematical Activity. Pages 289 - 334 of: Proceedings CWI Symposium on

Mathematics and Computer Science.

Melton, A., et al. 1994 (June). Denotational Semantics and Domain Theory.

Lecture notes. Department of Computer Science, Michigan Technologi

cal University. Presented at WOFACS'94. Hosted by the Departments

of Mathematics and Computer Science at the University of Cape Town,

South Africa.

Michaelson, G. 1989. An Introduction to Functional Programming through

Lambda Calculus. International Computer Science Series. Addison

Wesley Publishing Company.

Nielson, H.R., & Nielson, F. 1992. Semantics with Applications: A Formal

Introduction. Wiley Professional Computing. John Wiley and Sons.

Norvell, T.S., & Hehner, C.R. 1993 (June/July). Logical Specifications for

Functional Programs. In: Mathematics of Program Constructs} Second

International Conference. Lecture Notes in Computer Science, no. 669.

Peyton Jones, S.L. 1987. The Implementation of Functional Programming

Languages. Prentice-Hall International Series in Computer Science.

Prentice-Hall International.

Peyton Jones, S.1. 1989. Parallel Implementations of Functional Program

ming Languages. The Computer Journal, 32(2), 175 -186.

111

Reade, C. 1991. Elements of Functional.programming. International Com

puter Science Series. Addison-Wesley Publishing Company.

Rehmet, C.M. 1994 (September). Remora - Implementing Adaptive Paral

lelism on a Heterogeneous Cluster of Networked Workstations.~M.Phil.

thesis, Computer Science Department, Rhodes University, South Africa.

Schmidt, D.A. 1988. Denotational Semantics: A Methodology for language

development. Wm. C. Brown Publishers.

Schreiner, W. 1993 (December). Parallel Functional Programming: An An

notated Bibliography. Tech. rept. RISC-Linz.

Scientific Computing Associates Inc. 1993. C-Linda User's Guide and Ref

erence Manual. Scientific Computing Associates Inc.

Shapiro, E. 1989. Technical Correspondence. The Communications of the.,

ACM, 32(10), 1244 - 1249.

Sondergaard, H., & Sestof, P. 1990. Referential Transparency, Definiteness

and Unfoldability. Acta Informatica, 27, 505-517.

Sondergaard, H., & Sestoft, P. 1992. Non-determinism in Functional Lan-__

guages. The Computer Journal, 35(5), 514-523.

Wadler, P. 1990. Comprehending Monads. Pages 61 - 79 of: ACM Confer

ence on Lisp and Functional Programming.

112

	GRAHAM GWYNETH C TR 97-7-001
	GRAHAM GWYNETH C TR 97-7-002
	GRAHAM GWYNETH C TR 97-7-003
	GRAHAM GWYNETH C TR 97-7-004

