
Farms, Pipes, Streams and Reforestation:
Reasoning about Structured Parallel

Processes using Types and Hylomorphisms

David Castro, Kevin Hammond, Susmit Sarkar
School of Computer Science, University of St Andrews, St Andrews, Scotland

{dc84, kh8, ss265}@st-andrews.ac.uk

Abstract
The increasing importance of parallelism has motivated the cre-
ation of better abstractions for writing parallel software, including
structured parallelism using nested algorithmic skeletons. Such ap-
proaches provide high-level abstractions that avoid common prob-
lems, such as race conditions, and often allow strong cost mod-
els to be defined. However, choosing a combination of algorithmic
skeletons that yields good parallel speedups for a program on some
specific parallel architecture remains a difficult task. In order to
achieve this, it is necessary to simultaneously reason both about the
costs of different parallel structures and about the semantic equiva-
lences between them. This paper presents a new type-based mecha-
nism that enables strong static reasoning about these properties. We
exploit well-known properties of a very general recursion pattern,
hylomorphisms, and give a denotational semantics for structured
parallel processes in terms of these hylomorphisms. Using our ap-
proach, it is possible to determine formally whether it is possible
to introduce a desired parallel structure into a program without al-
tering its functional behaviour, and also to choose a version of that
parallel structure that minimises some given cost model.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Concurrent, distributed, and parallel languages; D.1.3
[Programming Techniques]: Parallel Programming; D.3.1 [For-
mal Definitions and Theory]: Semantics

Keywords Parallelism, type-systems, hylomorphisms, term rewrit-
ing systems.

1. Introduction
Providing suitable abstractions to allow reasoning about paral-
lelism is crucial to allow safe exploitation of increasingly par-
allel hardware. To date, however, there has been only a limited
amount of work on this issue: the static analysis community has
been concerned primarily with provable safety, whereas the paral-
lelism community has been concerned primarily with practically
demonstrable performance. In order to meet both demands, it
is necessary to simultaneously consider both the functional and
the extra-functional properties of a parallel program. This paper

presents a new approach, a type-based mechanism that enables us
to reason about the safe introduction of parallelism, while also pro-
viding a good abstraction to reason about cost. This mechanism
exploits strong program structure in the form of structured parallel
processes [3], combined with properties of hylomorphisms [22].

1.1 Motivating Example
We introduce our approach using a simple example, image merge,
which merges pairs of images taken from an input stream. We start
with a simple structure, where the functionality of the program is
split into two functions: mark, which marks the pixels that are to be
merged; and merge, whichreplaces these pixels. A straightforward
implementation would use the usual map construct on lists:

imgMerge : List(Img × Img) → List Img
imgMerge = map (merge ◦ mark)

Given two well-known algorithmic skeletons, farm for parallel
replication and pipeline for parallel composition, even this simple
example presents several alternative parallelisations, including:

imgMerge1 = farm n (fun (merge ◦mark))
imgMerge2 = farm n (fun mark) ‖ farm m (fun merge)
imgMerge3 = farm n (fun merge) ‖ fun mark
. . .

where fun(f) encapsulates sequential functionality and p1 ‖ p2
represents a 2-stage parallel pipeline. All these implementations
are semantically equivalent to imgMerge: they differ only in how
the computation is performed, and thus in its performance. In
this paper, we will describe a type system that annotates top-
level types with the (parallel) structure, and will use this to au-
tomatically choose a parallelisation. For example, if we define
IM(n,m) = FARM n (FUN A) ‖ FARM m (FUN A), we could write:

imgMerge : List(Img × Img)
IM (n,m)7−−−−−−→ List Img

imgMerge = map (merge ◦ mark)

The type system will then automatically select imgMerge2. Rather
than manually changing the definition of imgMerge to a parallel
one, we can simply change the type annotation IM (n,m) and au-
tomatically introduce the corresponding parallel implementation.
The soundness of the type system provides strong static guarantees
that the resulting program is functionally equivalent to the original
form. Moreover, we can even use the type system to infer part of
this parallel structure. For example, if we define IM1(n,m) = ‖
FARM m and IM2(n,m) = min cost (‖ FARM m), then the parts
of IM1 that are denoted by will be filled with the simplest possible
(parallel) structure and the parts of IM2 that are denoted by will be
filled with the least cost (parallel) structure. This provides a power-
ful, type-level, mechanism for understanding, reasoning about, and
automating the introduction of parallelism.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/73346659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.2 Contributions
The paper makes the following main novel contributions:

• We define a denotational semantics for a set of well-known al-
gorithmic skeletons, that cover a good range of parallel pro-
grams, in terms of hylomorphisms (Section 3).

• We identify semantic equivalences of parallel processes built
using nested algorithmic skeletons as part of a type system that
allows us to rationally choose a suitable parallel structure for a
program (Section 4).

• We introduce a decision procedure for such semantic equiv-
alences, based on reintroducing intermediate data structures,
“reforestation”, rather than the more common approach of
eliminating them for efficiency reasons, “deforestation”. This
enables the type system to introduce parallelism in a semi-
automated and sound way (Section 5).

2. Type Preliminaries
Our denotational semantics is phrased in a standard categorical lan-
guage [10], with a category representing a model of computation,
the objects of that category representing types, the morphisms rep-
resenting programs, and endofunctors from the category to itself
representing type constructors. In line with common practice [34],
we will work in the category of pointed complete partial orders
(CPO). Our type language is entirely standard:

A,B ::= τ | 1 | A + B | A× B | A→ B | F A | µF
We assume no knowledge about the definition of an atomic type
(τ), but require it to have an interpretation as an object in the
category CPO, JτK ∈ CPO. For the other types, we assume a
standard domain-theoretic semantics, where types are interpreted
as pointed CPOs. The type 1 is interpreted as the unit of CPO; the
type A+B is interpreted as the separated sum of JAK and JBK; the
type A×B is interpreted as the Cartesian product of JAK and JBK;
the type A → B is interpreted as the set of continuous functions
from JAK to JBK; the type F A is interpreted as the corresponding
endofunctor applied to JAK; and the type µF is interpreted as the
fixpoint of functor JF K.

2.1 Functors
A functor is a structure-preserving mapping between categories.
We only need endofunctors on CPO , F : CPO → CPO , to rep-
resent type constructors, F : Type → Type. Bifunctors are func-
tors that are generalised to multiple arguments, and we use them
to define polymorphic data types. The functors in our language are
either standard polynomial functors with constant types, the left
section of a bifunctor, or a polymorphic type defined as the fixpoint
of some bifunctor. Bifunctors are defined using products and sums
alone. Functors are defined using a pointed notation, with the obvi-
ous semantic interpretation. If A and B are type variables, and T
is a type, we accept the following definitions:

G A B = T (bifunctor defined using sums and products)
F A = T (functor defined using sums and products)
F A = G T A (G is a bifunctor)
F A = µ(G A) (G is a bifunctor)

Example 1 (Lists). Given the bifunctor

L A B = 1 + A× B ,

the polymorphic List data type is defined by the fixpoint of L A:

List A = µ(L A).

As we will discuss in Section 3, it is well known that given a base
bifunctor F A B , the data type F A = µ(G A) is also a functor.

(· ◦ ·) : (B → C)→ (A→ B)→ A→ C
f ◦ g = λx .f (g x)

(· O ·) : (A→ C)→ (B → C)→ (A + B)→ C
(fOg) = λx .case x (λy .f y) (λy .g y)

(·+ ·) : (A→ C)→ (B → D)→ (A + B)→ (C + D)
(f + g) = (inj 1 ◦ f) O (inj 2 ◦ g)

(· M ·) : (A→ B)→ (A→ C)→ A→ (B × C)
(f M g) = λx .(f x , g x)

(· × ·) : (A→ C)→ (B → D)→ (A× B)→ (C ×D)
(f × g) = (f ◦ π1) M (g ◦ π2)

Figure 1: Primitive Combinators.

The two list constructors are defined as expected:

nil : List A
nil = inLA (inj 1 ())

cons : A→ List A→ List A
cons x l = inLA (inj 2 (x , l))

We define the usual notation for lists

[x1, x2, . . . , xn] = cons x1 (cons x2 (cons . . . (cons xn nil))).

Example 2 (Trees). The polymorphic binary tree type can be
defined in an analogous way:

T A B = 1 + A× B × B where
Tree A = µ(T A).

The two tree constructors are defined below:

empty : Tree A
empty = inT A (inj 1 ())

node : Tree A→ A→ Tree A→ Tree A
node t1 x t2 = inT A (inj 2 (x , t1, t2))

Finally, we use a syntactic notation base F in our typing rules,
base F is either the bifunctor G that is used in the definition of F ,
or else F itself.

base F =

{
G, if F A = G C A or F A = µ(G A)

F , otherwise.

2.2 Primitive Combinators
Our semantics is defined in terms of the primitive combinators
in Figure 1. For simplicity, we use a flattened form of sum and
product types, e.g. we write A1 + A2 + · · · + An rather than
A1 + (A2 + (. . .+ An)). Instead of the usual inl/inr and π1/π2,
we use the inj i, 0 < i ≤ n, introduction forms for sum types,
A1 +A2 + · · ·+An, and the projection eliminators πi, 0 < i ≤ n
for product types, A1 × A2 × · · · × An. The operator ◦ denotes
function composition, O is the usual coproduct morphism (join),
+ denotes the map on coproducts, M and × are the respective
morphisms and maps on products. Finally, for a recursive type
defined as the fixpoint of a functor, µF , the usual inF : FµF →
µF and outF : µF → FµF capture the isomorphism between
FµF and µF .

3. Structured Parallel Programs
Structured parallel approaches, such as algorithmic skeletons [3],
offer many advantages in terms of built-in safety and parallelism-
by-construction. For example, they can eliminate by design com-
mon but hard-to-debug problems including deadlock and race con-
ditions. Such problems are prevalent in typical low-level concur-
rency based designs for parallel systems, e.g. pthreads, OpenMP,
etc. Algorithmic skeletons also provide good structural cost mod-
els [14, 20]. In this paper, we will use four basic parallel skeletons,
each of which operates over a stream of input values, producing a
stream of results: task farms, pipelines, feedbacks, and divide-and-
conquer.

Task farms. The task farm skeleton, farm, applies the same op-
eration to each element of an input stream of tasks, using a fixed
number of parallel workers. The input tasks must be independent,
and the outputs can be produced in an arbitrary order1. For exam-
ple, a task farm could be used to apply some filter to an input stream
of images, in order to parallelise the filter operation.

. . . , x12, x11, x10

f

f

f

f x2, f x1, f x3, . . .

x7

x9

x8

f x5

f x6

f x4

Pipeline. The pipeline skeleton, ‖, composes two streaming com-
putations, in parallel. It can be used to parallelise two or more
stages of a computation, e.g. filtering and edge detection.

. . . , x12, x11, x10
x9

f

f x8

f x7, f x6, f x5
f x4

g

g (f x3)

g (f x2), g (f x1), . . .

Feedback. The feedback skeleton, fb, captures recursion in a
streaming computation. A feedback could be used, for example,
to repeatedly transform an image until some dynamic condition
was met.

. . . , x9, x7, f x2 f f (f x1), f x3, . . .
x6 f x5

f x4

Parallel Divide and Conquer. A divide-and-conquer skeleton,
dc, is a parallel implementation of a classical divide-and-conquer
algorithm. The parallelism arises from performing each of the re-
cursive calls in parallel.

1 Although this does complicate the semantics, it improves parallelism.

div

x

div div

x1 xn

div · · · div · · · div · · · div

x11 x1n xn1 xnn

conq · · · conq · · · conq · · · conq

· · · · · · · · · · · ·

conq conq

y11 y1n yn1 ynn

conq

y1 yn

y

3.1 Structured Parallel Processes
We define a language P of structured parallel processes, built by
composing skeletons over atomic operations.

p ∈ P ::= funT f | p1 ‖ p2 | dcn,T ,F f g | farm n p | fb p

The funT f construct lifts an atomic function to a streaming oper-
ation on a collection T . The arguments of the dc skeleton are: the
number of levels of the divide-and-conquer, n; the collection T on
which the dc skeleton works; and the functor F that describes the
divide-and-conquer call tree.

Denotational Semantics. The denotational semantics is split into
two parts: SJ·K describes the base semantics, and J·K lifts this to a
streaming form. We use a global environment for atomic function
types, ρ, and the corresponding global environment of functions, ρ̂:

ρ = {f : A→ B , . . .} ρ̂ = {Jf K ∈ JA→ BK, . . .}

SJp : T A→ T BK : JA→ BK
SJfun f K = ρ̂(f)
SJp1 ‖ p2K = SJp2K ◦ SJp1K
SJfarm n pK = SJpK
SJfb pK = iter SJpK
SJdcn,T ,F f gK = cataF (ρ̂(f)) ◦ anaF (ρ̂(g))

Jp : T A→ T BK : JT A→ T BK
JpK = mapT SJpK

An atomic function, f , is applied to all the elements of a collection
of data. A parallel pipeline, p1 ‖ p2, is the composition of two
parallel processes, p1 and p2. A task farm, farm n p, replicates a
parallel process, p, so has the same denotational semantics as p. A
feedback skeleton, fb p, applies the computation p iteratively, i.e.
trampolined, to the elements in the input collection. Its semantics
is given in terms of the function iter .

iter : (A→ A + B)→ A→ B
iter f = Y (λ g .(gOid) ◦ f)

A

x1
f x1
==⇒

F C A

y1

x2 x3

f x2
f x3
==⇒

F C (F C A)

y1

y2 y3

x4 x5 x6 x7

...
==⇒

µ(F C)

y1

y2 y3

y4 y5 y6 y7

. B

x1
f t1
==⇒

F C B

y1

x2x3f t2
f t3
==⇒

F C (F C B)

y1

y2y3

x4x5x6x7

...
==⇒

µ(F C)

y1

y2y3

y4y5y6y7

.

Figure 2: Binary Tree Anamorphism (left) and Catamorphism (right).

Finally, a dc is equivalent to folding, using f , the tree-like structure
that results from unfolding the input using g . It is defined to be the
composition of a catamorphism with an anamorphism.

cataF : (F A→ A)→ µF → A
cataF f = f ◦ F (cataF f) ◦ outF

anaF : (A→ F A)→ A→ µF
anaF g = inF ◦ F (anaF g) ◦ g

Example 3 (List catamorphism). Let L be the base bifunctor of a
polymorphic list. We define the function f to be:

f : L N N→ N
f (inj 1 ()) = 0
f (inj 2 (x ,n)) = add x n

Given an input list [x1, x2, . . . , xn], the catamorphism cataLN f
applied to this input list returns the sum of the xi:

cataL N f [x1, x2, . . . , xn] = add x1 (add x2 (· · · (add xn 0))).

Example 4 (List anamorphism). We define a function g that re-
turns () if the input n is zero, and (n,n − 1) otherwise.

g : N→ L N N
g n = if n = 0 then inj 1 () else inj 2 (n,n − 1)

The anamorphism anaLN g applied to n returns a list of numbers
descending from n to 1: anaLN g n = [n,n − 1, . . . , 2, 1].

Figure 2 shows how catamorphisms and anamorphisms work on bi-
nary trees. In the anamorphism, we start with an input value, and
apply the operation f recursively until the entire data structure is
unfolded. In the catamorphism, the operation f is applied recur-
sively until the entire structure is folded into a single value. The op-
eration mapT can be defined as a special case of a catamorphism
or anamorphism. Given a bifunctor G , a type T A = µ(G A)
is a polymorphic data type that is also a functor [10]. For all
f : A→ B , the function mapT f is the morphism T f , defined as:

mapT f = cataG A(inG B ◦G f id)
= anaG B (G f id ◦ outG A)

For uniformity, we will represent all mapT as catamorphisms.

Example 5 (mapList). Given a function f : A → B , mapList f
applies f to all the elements of the input list:

mapList f [x1, x2, . . . , xn] = [f x1, f x2, . . . , f xn]

3.2 Hylomorphisms
Hylomorphisms are a well known, and very general, recursion pat-
tern [22]. A hylomorphism can be thought of as the generalisation
of a divide-and-conquer. Intuitively, hyloF f g is a recursive algo-
rithm whose recursive call tree can be represented by µF , where
g describes how the algorithm divides the input problem into sub-
problems, and f describes how the results are combined.

hyloF : (F B → B)→ (A→ F A)→ A→ B
hyloF f g = f ◦ F (hyloF f g) ◦ g

Since outF ◦ inF = id , we can easily show that hyloF f g =
cataF f ◦ anaF g . Catamorphisms, anamorphisms and map are
just special cases of hylomorphisms.

T A = µ(F A)
mapT f = hyloF A (inF B ◦ (F f id)) outF A,

where A = dom(f) and B = codom(f)
cataF f = hyloF f outF
anaF f = hyloF inF f

Example 6 (Quicksort). Assuming a type A, and two functions,
leq, gt : A → List A → List A, that filter the elements
appropriately, we can implement naı̈ve quicksort as:

qsort : List A→ List A
qsort nil = []
qsort (cons x l) = qsort (leq x l) ++ cons x (qsort (gt x l))

We make the recursive structure explicit by using a tree. The split
function unfolds the arguments into this tree, and the join function
then flattens it.

split : List A→ Tree A
split nil = empty
split (cons x l) = node (split (leq x l)) x (split (gt x l))

join : Tree A→ List A
join empty = nil
join (node l x r) = join l ++ cons x (join r)

qsort : List A→ List A
qsort = join ◦ split

We can remove the explicit recursion from these definitions, since
split is a tree anamorphism, and join is a tree catamorphism.

split : List A→ T A (List A)
split nil = inj 1 ()
split (cons x l) = inj 2 (x , leq x l , gt x l)

join : T A (List A)→ List A
join (inj 1 ()) = nil
join (inj 2 (x , l , r)) = l ++ cons x r

qsort : List A→ List A
qsort = cataT A join ◦ anaT A split

Finally, since we have a composition of a catamorphism and an
anamorphism, we can write qsort as the equivalent hylomorphism.

qsort = hyloT A join split

The only construct that has not yet been considered is feedback.
Although the fixpoint combinator Y can be easily defined as a
hylomorphism, we take a different approach. Observe that we can
unfold the definition of iter as follows:

iter f = Y (λ g .(gOid) ◦ f) = (iter fOid) ◦ f

ρ(f) = A→ B

` f : A→ B

` e2 : B → C
` e1 : A→ B

` e2 ◦ e1 : A→ C

` e1 : F B → B
` e2 : A→ F A

` hyloF e1 e2 : A→ B

` p : T A→ T B

` parT p : T A→ T B

Figure 3: Simple types for Structured Expressions, E .

` s : A→ B
` fun s : T A→ T B

n : N ` p : T A→ T B

` farm n p : T A→ T B

` p : T A→ T (A + B)

` fb p : T A→ T B

` s1 : F B → B ` s2 : A→ F A

` dcn,F s1 s2 : T A→ T B

` p1 : T A→ T B ` p2 : T B → T C

` p1 ‖ p2 : T A→ T C

Figure 4: Simple types for Structured Parallel Processes, P .

Note that if f , g : A+B → C , the function fOg : A+B → C
can be written as the composition of idOid : C + C → C and
f + g : A+B → C +C . We use this to rewrite iter as follows:

iter f = (iter fOid) ◦ f = (idOid) ◦ (iter f + id) ◦ f

If f : A→ A+B , we define the functor (+B), with the morphism
(+ B) f = f + id , which trivially preserves identities and
composition. Since iter f = (idOid) ◦ (+B) (iter f) ◦ f , then:

iter f = hylo(+B) (idOid) f

3.3 Structured Expressions
We have now seen that the denotational semantics of all our parallel
constructs can be given in terms of hylomorphisms. This semantic
correspondence is not unexpected since it has been used to describe
the formal foundations of data-parallel algorithmic skeletons [28].
We take this correspondence one step further by using hylomor-
phisms as a unifying structure, and by then exploiting the reason-
ing power provided by the fundamental laws of hylomorphisms.
In order to define our type-based approach, we will first define a
new language, E , that combines two levels, Structured Expressions
(S), that enable us to describe a program as a composition of hy-
lomorphisms; and Structured Parallel Processes (P), that build on
S using nested algorithmic skeletons. A program in E is then ei-
ther a structured expression s ∈ S or a parallel program parT p,
where p ∈ P . Our revised syntax is shown below. Note that since a
p ∈ P can only appear under a parT construct, we no longer need
to annotate each fun and dc with the collection T of tasks.

e ∈ E ::= s | parT p
s ∈ S ::= f | e1 ◦ e2 | hyloF e1 e2
p ∈ P ::= fun s | p1 ‖ p2 | dcn,F s1 s2 | farm n p | fb p

The denotational semantics of P only changes in the rules that
mention e , and by providing a semantics for parT :

JparT pK = mapT SJpK
. . .
SJfun eK = JeK
SJdcn,F e1 e2K = hyloF Je2K Je1K
. . .

The corresponding typing rules are entirely standard (Figures 3–4).
Finally, it is convenient to define the “parallelism erasure of S”, S .
Intuitively, S contains no nested parallelism: for all s ∈ S , s ∈ S
if and only if s contains no occurrences of the parT construct. This
is equivalent to defining s in the erasure of S , S , if it is just a
composition of atomic functions and hylomorphisms:

s ∈ S ::= f | s1 ◦ s2 | hyloF s1 s2

The structure-annotated type system given in Section 4 below de-
scribes how to introduce parallelism to an s ∈ S in a sound way.

3.3.1 Soundness and Completeness.
It is straightforward to show that the type system from Figs. 3– 4
is both sound and complete wrt our denotational semantics. Our
soundness property is: ∀e ∈ E ; A,B ∈ Type, ` e : A →
B =⇒ (JeK ∈ JA → BK). The proof is by structural induction
over the terms in E , using the definitions of ` e : T from Figs. 3–
4 and J.K above. The corresponding completeness property is: ∀e ∈
E ; A,B ∈ Type, (JeK ∈ JA → BK) =⇒ ` e : A → B . The
proof is also by structural induction over the terms in E , using the
definitions of ` e : A→ B from Figs. 3– 4 and J.K above.

4. A Type System for Introducing Parallelism
In this section, we present a rigorous way to introduce parallelism
without affecting a program’s functional behaviour. We annotate
top-level program types with an abstraction of the structure of the
program, σ ∈ Σ. We define the associated type system together
with mechanisms for reasoning about these programs using this
structure. Intuitively, Σ is a “pruned” version of E that retains in-
formation about how the computation is performed, while remov-
ing as many details as possible about what is being computed.

Definition 4.1 (Families of equivalent programs). We say that an
e ∈ E is in the family of programs that are functionally equivalent
to s ∈ S, e ∈ Es , if and only if e E s , for the relation E that is
defined later in this section.

Let =ext denote extensional equality: f =ext g ⇔∀x , f x = g x .
Since this is not decidable, we use instead a decidable relation E
which implies extensional equality. Each Es is a family of pro-
grams indexed by their structure, i.e. for each family Es , there is
a function φs : Σ → Es that returns an e ∈ Es with the desired
structure. Note that not all structures σ ∈ Σ are indices of a fam-
ily Es , so φs is a partial function. Given a structure σ ∈ Σ and
a s ∈ S , we use a superscript, sσ , as notation for φs(σ). We de-
fine the structure Σ and the relation E later in this section, and the
function φs in Section 5.

Definition 4.2 (Structure-annotated arrows). Given a structure σ ∈
Σ, and an s ∈ S with type A→ B , we say that s has type A σ7−→ B ,
if s is equivalent to a parallel program with structure σ.

ρ(f) = A→ B

` f : A
A−→ B

` e1 : B
σ1−→ C

` e2 : A
σ2−→ B

` e1 ◦ e2 : A
σ1◦ σ2−−−−→ C

` e1 : F B
σ1−→ B

` e2 : A
σ2−→ F A G = base F

` hyloF e1 e2 : A
HYLOG σ1 σ2−−−−−−−−−→ B

` p : T A
σ−→ T B

F = base T

` parT p : T A
PARF σ−−−−−→ T B

Figure 5: Structure-Annotated Type System for E .

` s : A
σ−→ B

` fun s : T A
FUN σ−−−−→ T B

` s1 : F B
σ1−→ B ` s2 : A

σ2−→ F A G = base F

` dcn,F s1 s2 : T A
DCn,G σ1 σ2−−−−−−−−→ T B

n : N ` p : T A
σ−→ T B

` farm n p : T A
FARMn σ−−−−−−→ T B

` p1 : T A
σ1−→ T B ` p2 : T B

σ2−→ T C

` p1 ‖ p2 : T A
σ1 ‖ σ2−−−−−→ T C

` p : T A
σ−→ T (A + B)

` fb p : T A
FB σ−−−→ T B

Figure 6: Structure-Annotated Type System for P .

By typechecking s : A
σ7−→ B , the type system guarantees that

there is an equivalent program with structure σ, sσ ∈ Es . That is,
the structured expression s typechecks if and only if σ is an index
of the family Es . The definition of φs is actually an algorithm for
deriving a parallel program from a sequential program and a type-
level structure, i.e. φs provides a mechanism for selecting a parallel
program that is equivalent to s and has structure σ, for well-typed
programs. We state this formally in the form of our main soundness
and completeness properties later in this section.

4.1 The Structure-Annotated Type System
The program structure abstraction, σ ∈ Σ, is defined below.

σ ∈ Σ ::= σs | PARF σp

σs ∈ Σs ::= A | σ ◦ σ | HYLOF σ σ
σp ∈ Σp ::= FUN σs | DCn,F σs σs

| σp ‖ σp | FARMn σp | FB σp

Figs. 5– 6 define the annotated type system that extends our simple
type system from Figs. 3– 4, and that associates expressions e ∈ E
with structures σ ∈ Σ. As before, the global environment, ρ, maps
primitive functions to their types. The simple annotated arrow,
e : A

σ−→ B , states that e has exactly the structure σ. In order
to define A

σ7−→ B , we need to extend the type system further with
a convertibility relation.

4.1.1 Convertibility.
We extend our type system with a non-structural rule that captures
the convertibility relation, ≡, for Σ.

` e : A
σ1−→ B σ1 ≡ σ2

` e : A
σ27−→ B

≡ is defined in terms of the relations ≡s∈ Σs × Σs and ≡p∈
Σp × Σp, plus a rule that links the Σs and Σp levels, PAR-EQUIV.

σ1 ≡s σ2

σ1 ≡ σ2

σ1 ≡p σ2

PARF σ1 ≡ PARF σ2

PARF (FUN σ) ≡ MAPF σ (PAR-EQUIV)

The structures MAP and ITER are defined in Section 5, and repre-
sent the structures of the corresponding hylomorphisms. We de-
fine a number of equivalences, starting with≡p. A parallel pipeline
structure (‖) is functionally equivalent to a function composition; a
task farm FARM can be introduced for any structure; and divide-and-

conquer DC and feedback FB can be derived from hylomorphisms.

FUN σ1 ‖ FUN σ2 ≡p FUN (σ2 ◦ σ1) (PIPE-EQUIV)
DCn,F σ1 σ2 ≡p FUN (HYLOF σ1 σ2) (DC-EQUIV)

FARMn σ ≡p σ (FARM-EQUIV)
FB(FUN σ) ≡p FUN (ITER σ) (FB-EQUIV)

These equivalences, plus reflexivity, symmetry and transitivity, de-
fine an equational theory that allows conversion between different
parallel forms, as well as conversion between structured expres-
sions and parallel forms, as required by our type system. In these
equivalences, we implicitly assume the necessary well-formedness
constraints: any structure under a FUN or DC must be in Σs, and the
structure under FARM must be in Σp. Note that, thanks to the tran-
sitivity of ≡, we can use these simple equivalences to derive inter-
esting properties of our parallel structures. For example, the asso-
ciativity of parallel pipelines does not need to be defined explicitly,
since it can be derived from the associativity of composition. We
defer the definition of ≡s to Section 4.2.

Definition 4.3 (Convertibility in E). For all convertibility rules
in Σ, there is an equivalent rule in E . We define the equivalence
relation E ∈ E × E to be the relation ≡ lifted to E .

An example that illustrates this is that the PIPE-EQUIV rule corre-
sponds to the rule (fun s1 ‖ fun s2) Ep (fun (s2 ◦ s1)).

Lemma 1. Semantic equivalence. ∀e1, e2 ∈ E , e1 E e2 ⇒
Je1K =ext Je2K

Proof Sketch. Straightforward by induction on the structure of the
equivalence relation E , using the denotational semantics of P , and
the laws of hylomorphisms (Section 5).

As a consequence of Lemma 1, the E relation can be used to
define the families Es . Any extension to ≡ and E may expose
more opportunities for parallelisation in Es . There remains only the
definition of the function φs. We defer this to Section 5, together
with the decision procedure for ≡ and E .

4.1.2 Soundness and Completeness.
Since the annotated type system is a simple extension of that from
Figs 3–4 and since the convertibility rule only applies to structures,
it is trivial to show that the new type system is both sound and
complete wrt the original system, once structure is removed, since
∀e ∈ E , σ ∈ Σ, ` e : A

σ7−→ B =⇒ ` e : A → B . We
therefore omit these proofs. Our main soundness and completeness

hyloF inF outF = idµF HYLO-REFLEX

hyloF (f ◦ η) g = hyloG f (η ◦ g) ⇐ η : F → G HYLO-SHIFT

(hyloF f h1) ◦ (hyloF h2 g) ⇐ h1 ◦ h2 = id HYLO-COMPOSE

f1 ◦ (hyloF g1 g2) ◦ f2 = hyloF g ′1 g ′2 ⇐ f1 strict ∧ f1 ◦ g1 = g ′1 ◦ F f1 ∧ g2 ◦ f2 = F f2 ◦ g ′2 HYLO-FUSION

hyloF f g strict ⇐ f , g strict HYLO-STRICT

Figure 7: Hylomorphism Laws

theorems for convertibility ensure that the type system derives only
functionally equivalent parallel structures from structured expres-
sions. The proofs of these properties build on a number of details
that are introduced in Section 5.

Theorem 1. Soundness of Conversion.

∀s ∈ S , σ ∈ Σ, ` s : A
σ7−→ B ⇒ sσ ∈ Es

Proof Sketch. Since sσ is a synonym for φs(σ), sσ is in Es if φs is
defined for σ. This property follows directly from the definition of
φs(σ) (Def. 5.1) and from Thm 3 in Section 5.

A straightforward consequence of the soundness of the conversion
and of Lemma 1 is that if a structured expression typechecks with
type A

σ7−→ B , then there always exists a functionally equivalent e
whose structure is σ.

Corollary 1. ∀s ∈ S , σ ∈ Σ, ` s : A
σ7−→ B ⇒ ∃e ∈ E such

that e : A
σ−→ B and JeK =ext JsK.

Theorem 2. Completeness of Conversion.

∀s ∈ S ;σ, σ′ ∈ Σ; s : A
σ′
−→ B ∧ sσ ∈ Es ⇒ ` s : A

σ7−→ B

Proof Sketch. This follows directly from the definition of φs(σ)
(Def. 5.1) and Thm 3 in Sec. 5.

4.2 Functional Equivalence
The proofs of soundness and completeness rely on a decision pro-
cedure for ≡, as well as on the definition of the φs function for the
families Es . The definition of ≡ requires a definition of ≡s∈ Σs ×
Σs. Our ≡s adapts the well known hylomorphism laws (Fig. 7) [5,
10, 22], using restricted instances of those laws. These restrictions
serve two purposes: i) we avoid checking strictness conditions by
simply ensuring that all the functions we use are strict; ii) because
the equivalences that we can capture are very limited if we assume
no knowledge of atomic functions, due to the side conditions on the
rules, we expose extra structure in our programs.

1. We explicitly represent the inF , outF and id functions, with the
obvious denotational semantics.

2. We explicitly represent the section of a bifunctor F applied to a
structured expression s , as F s rather than F s id. This, plus the
strictness assumption, enables us to apply some limited forms
of HYLO-SHIFT and HYLO-FUSION.

3. We explicitly represent M and O (Fig. 1). Although we do
not define equivalences for these combinators, we use them to
define the ITER structure later.

s ∈ S ::= f | 〈prim〉 | e1 ◦ e2 | hyloF e1 e2
prim ::= inF | outF | id | e1 〈op〉 e2 | F e
op ::= O | M
σs ∈ Σs ::= . . . | IN | OUT | ID | σ1 〈op〉 σ2 | F σ

With these structures, we can define the special cases of HYLOF :

MAPF , CATAF , ANAF : Σ→ Σ
MAPF σ = HYLOF (IN ◦ F σ) OUT

CATAF σ = HYLOF σ OUT

ANAF σ = HYLOF IN σ
ITER σ = HYLO(+) (IDOID) σ

The typing rules are then easily extended.

` id : A
ID−→ A ` inF : F (µF)

IN−→ µF

` outF : µF
OUT−−−→ F (µF)

` e : A
σ−→ B

` F e : F A C
F σ−−→ F B C

` e1 : A
σ1−→ B ` e2 : A

σ2−→ C

` e1 M e2 : A
σ1Mσ2−−−−→ B × C

` e1 : A
σ1−→ C ` e2 : ` e2 : B

σ2−→ C

` e1Oe2 : A + B
σ1Oσ2−−−−→ C

The convertibility relation is also extended to include some equiv-
alences that are derived from the hylomorphism laws:

ID ◦ σ ≡s σ (ID-LEFT)
σ ◦ ID ≡s σ (ID-RIGHT)

OUT ◦ IN ≡s ID (OUT-IN-ID)
IN ◦ OUT ≡s ID (IN-OUT-ID)

HYLOF IN OUT ≡s ID (HYLO-ID)
F (σ1 ◦ σ2) ≡s F σ1 ◦ F σ2 (F-COMP)

HYLOF σ1 σ2 ≡s CATAF σ1 ◦ ANAF σ2 (HYLO-COMP)
CATAF (σ1 ◦ F σ2) ≡s CATAF σ1 ◦ MAPF σ2 (CATA-COMP)
ANAF (F σ1 ◦ σ2) ≡s MAPF σ1 ◦ ANAF σ2 (ANA-COMP)

ANAF (F σ1 ◦ OUT) ≡s MAPF σ1 (ANA-MAP)

We extend E in the expected way with the lifted ≡s, Es. The rule
HYLO-COMP is derived from the HYLO-COMPOSE law. The rules
CATA-COMP and ANA-COMP are derived from HYLO-FUSION. It is
easy to see how any strictness condition holds in those rules. Fi-
nally, the rule ANA-MAP is derived from the HYLO-SHIFT law. It is
used only to give a uniform representation of the MAPF structure.

5. Determining Functional Equivalence
Recall that for all s ∈ S, there is a Σ-indexed family Es . For all
well-typed structured expression s : A

σ7−→ B , σ is an index of
the family defined by s , i.e. sσ ∈ Es. The function φs : Σ → Es

is a partial function whose result is defined for any structure σ that

is an index of the family Es . Given an s : A
σ′
−→ B , both the

typechecking algorithm and the function φs need to decide whether
σ ≡ σ′. This problem has been extensively studied for bicartesian
closed categories [7, 13, 35], and it is beyond the scope of this paper

ID ◦ σ s σ (ID-CANCEL-L)
σ ◦ ID s σ (ID-CANCEL-R)

OUT ◦ IN s ID (OUT-IN-CANCEL)
F (σ1 ◦ σ2) s F σ1 ◦ F σ2 (F-SPLIT)

IN ◦ OUT s ID (IN-OUT-CANCEL)
HYLOF IN OUT s ID (HYLO-CANCEL)

F ID s ID (F-ID-CANCEL)
ANAF (F σ1 ◦ OUT) s MAPF σ1 (ANA-MAP)

HYLOF σ1 σ2 s CATAF σ1 ◦ ANAF σ2 ⇐ σ1 6= IN ∧ σ2 6= OUT (HYLO-SPLIT)
CATAF (σ1 ◦ F σ2) s CATAF σ1 ◦ MAPF σ2 ⇐ σ1 6= IN (CATA-SPLIT)
ANAF (F σ1 ◦ σ2) s MAPF σ1 ◦ ANAF σ2 ⇐ σ2 6= OUT (ANA-SPLIT)

Figure 8: Rewriting system in S

to produce a novel decision procedure for the equality of terms. We
consequently use a basic decision procedure, but one that enables
interesting parallelisations.

5.1 Reforestation.
We take the standard approach of using term rewriting systems to
decide equality in Σ (and hence E). It is well known that if a rewrit-
ing system is confluent, then two terms have the same normal form
if and only if they are equal with respect to the underlying equa-
tional theory. If we define a confluent term rewriting system with
≡ as underlying theory, we can use the syntactic equality of nor-
malised forms as our decision procedure. We present the rewriting
system in two parts. The first part is derived from orienting the rules
in ≡ so that parallelism is erased:

FARMn σp p σp

FUN σ1 ‖ FUN σ2 p FUN (σ1 ◦ σ2)
DCn,F σ1 σ2 p FUN (HYLOF σ1 σ2)
FB (FUN σ1) p FUN (ITER σ1)

PART (FUN σs) p MAPT σs

The first four rules rewrite terms in Σp to terms in Σp, and the last
rule rewrites terms in Σ to terms in Σ. We define Σs in an analogous
way to S, and erase as any normalisation procedure for a rewriting
system p:

erase : Σ→ Σs

erase σ = σ′, s.t. σ *
p σ
′ ∧ @σ′′ s.t. σ′′ p σ

′′

Lemma 2. The rewriting system p is confluent.

Proof Sketch. The rewriting system is terminating, since the num-
ber of redexes is precisely the number of parallel structures (includ-
ing PART), which is reduced following each rewriting step. It is also
easy to show that any critical pairs arising from these rules have the
same normal form. For example, a farm of a pipeline reduces to the
same expression regardless of which structure is erased first. By
Newman’s lemma [1] we can conclude that p is confluent.

Since p is confluent, we know that the result of erase is unique.
Recall that all the results that are derived from the equational
theory ≡ can be lifted to E . This implies that there is an eraseE :
E → S procedure that is equivalent to erase defined with the
rewritings lifted to E . The second step is the normalisation of σ ∈
Σs. We once again use a confluent rewriting system derived from
≡s, and define it modulo associativity of the composition ◦. The
direction of the rewriting is chosen so a “reforestation” rewriting is
performed. Hylomorphisms are first split into catamorphisms and
anamorphisms, which are then themselves split into compositions
of maps, catamorphisms and anamorphisms. We omit some trivial
cases, e.g. F σ ◦ F σ−1 ID, and prioritise the rules that deal
with ID to simplify the confluence of the rewriting system. We
only consider the inverses IN and OUT, F IN and F OUT, etc. For

uniformity reasons, ANA-MAP is applied to the anamorphisms that
perform a map computation.

Lemma 3. The term rewriting system s is confluent.

Proof Sketch. The rewriting system is terminating, since the pre-
conditions of the rules ensure that no cycles are introduced. The
rewriting system is also locally confluent. It is trivial to observe
that any critical pair arising from the ID rules have the same nor-
mal form. The critical pairs arising from rules MAP-SPLIT and
CATA/ANA-SPLIT can be reduced to the same normal form, by apply-
ing F-SPLIT and CATA/ANA-SPLIT and/or ANA-MAP in a different or-
der. For example, we can rewrite any CATAF (σ1 ◦F (σ2 ◦σ3)) *

s

CATAF σ1 ◦ MAPF σ2 ◦ MAPF σ3. Any problems that appear from
the critical pairs of the ID rules and the SPLIT rules can be solved
by forcing the ID rules to be applied first, and working modulo
associativity. As before, Newman’s lemma completes the proof.

Finally, we define the normalisation procedures for Σs and Σ.

norms σ = σ′, s.t. σ *
s σ
′ ∧ @σ′′ s.t. σ′ s σ

′′

norm = norms ◦ erase

We use a subscript, normE , to denote this normalisation procedure
lifted to E . Given that the underlying equational theory of the term
rewriting system is E , we know that: ∀e1, e2 ∈ E , (normE e1 =
normE e2)⇔ (e1 !* e2)⇔ (e1 E e2).

Theorem 3 (norm defines a decision procedure for ≡). For all
σ1, σ2 ∈ Σ, σ1 ≡ σ2 if and only if norm σ1 = norm σ2.

Proof Sketch. From the properties of p, we derive that it is always
true that σi ≡ erase σi. Since s is confluent, by the properties
of term rewriting systems, we know that erase σ1 ≡ erase σ2 if
and only if norms(erase(σ1)) = norms(erase(σ2)). We finish the
proof by combining these two facts using the transitivity of ≡ with
the definition of norm.

The fact that we can lift the results from Σ to E implies that we
can use this rewriting system not only to reason about program
equivalences, but also to define an algorithm to derive a parallel
program from some s ∈ S and a type-level parallel structure. We
sketch this algorithm as the definition of φs .

Definition 5.1 (φs). Let s ∈ S, σ1 ∈ Σs, such that ` s : A
σ1−→ B ,

and σ2 ∈ Σ. We define φs(σ2) as follows:

Let σ′i = norm σi. If σ′1 = σ′2, then:
1. Reverse the rewriting steps from σ2 to σ′2: σ′2

* σ2.
2. Obtain the proof of σ1 ≡ σ2 by using σ1 * σ′1 and (1).
3. Obtain the rewriting steps σ1 * σ2 from (2).
4. Lift the rewriting steps to E , and apply them to s: s *

E e .

EQ
∆ = {{}}
σ ∼ σ ⇒ ∆

METAr1
∆ = {{m ∼ σ}}
m ∼ σ ⇒ ∆

MAP1
σ1 ∼ σ′1 ⇒ ∆1

F σ1 ∼ F σ′1 ⇒ ∆1

MAPr2

σ1 ◦ σ2 ∼ F m2 ◦ F m3 ⇒ ∆2

∆1 = {{m1 ∼ m2 ◦m3}}
σ1 ◦ σ2 ∼ F m1 ⇒ ∆1 ⊗∆2

COMP1

σ1 ∼ σ′1 ⇒ ∆1

σ2 ∼ σ′2 ⇒ ∆2

σ1 ◦ σ2 ∼ σ′1 ◦ σ′2 ⇒ ∆1 ⊗∆2

COMPr2

σ1 ◦ σ2 ∼ σ′1 ⇒ ∆11 σ3 ∼ σ′2 ⇒ ∆12

σ2 ◦ σ3 ∼ σ′2 ⇒ ∆22 σ1 ∼ σ′1 ⇒ ∆21

σ1 ◦ σ2 ◦ σ3 ∼ σ′1 ◦ σ′2 ⇒ ∆11 ⊗∆12 ∪∆21 ⊗∆22

OP
σ1 ∼ σ′1 ⇒ ∆1 σ2 ∼ σ′2 ⇒ ∆2

σ1〈op〉σ2 ∼ σ′1〈op〉σ′2 ⇒ ∆1 ⊗∆2

HYLO1
σ1 ∼ σ′1 ⇒ ∆1 σ2 ∼ σ′2 ⇒ ∆2

HYLOF σ1 σ2 ∼ HYLOF σ
′
1 σ
′
2 ⇒ ∆1 ⊗∆2

HYLOr2
σ1 ◦ σ2 ∼ HYLOF m1 OUT ◦ HYLOF IN m2 ⇒ ∆1 σ1 ◦ σ2 ∼ HYLOF m1 OUT ⇒ ∆2 σ1 ◦ σ2 ∼ HYLOF IN m2 ⇒ ∆3

σ1 ◦ σ2 ∼ HYLOF m1 m2 ⇒ ∆1 ∪ {{m2 ∼ OUT}} ⊗∆2 ∪ {{m1 ∼ IN}} ⊗∆3

HYLOr3

σ1 ◦ σ2 ∼ HYLOF (IN ◦ F m2) OUT ◦ HYLOF IN m3 ⇒ ∆1

σ1 ◦ σ2 ∼ HYLOF (IN ◦ F m2) OUT ⇒ ∆2 ∆ = {{m1 ∼ F m2 ◦m3}}
σ1 ◦ σ2 ∼ HYLOF IN m1 ⇒ ∆⊗∆1 ∪∆⊗ {{m3 ∼ OUT}} ⊗∆2

HYLOr4
σ1 ◦ σ2 ∼ HYLOF m2 OUT ◦ HYLOF (IN ◦ F m3) OUT ⇒ ∆

σ1 ◦ σ2 ∼ HYLOF m1 OUT ⇒ {{m1 ∼ m2 ◦ F m3}} ⊗∆

HYLOr5
σ1 ◦ σ2 ∼ HYLOF m1 OUT ◦ HYLOF IN σ3 ⇒ ∆1 σ1 ◦ σ2 ∼ norm (HYLOF IN σ3)⇒ ∆2 σ3 6= OUT

σ1 ◦ σ2 ∼ HYLOF m1 σ3 ⇒ ∆1 ∪ {{m1 ∼ IN}} ⊗∆2

HYLOr6
σ1 ◦ σ2 ∼ HYLOF σ3 OUT ◦ HYLOF IN m1 ⇒ ∆1 σ1 ◦ σ2 ∼ norm (HYLOF σ3 OUT)⇒ ∆2 σ3 6= IN

σ1 ◦ σ2 ∼ HYLOF σ3 m1 ⇒ ∆1 ∪ {{m1 ∼ OUT}} ⊗∆2

HYLOr7
σ1 ◦ σ2 ∼ HYLOF (IN ◦ F m2) OUT ◦ HYLOF (IN ◦ F m3) OUT ⇒ ∆

σ1 ◦ σ2 ∼ HYLOF (IN ◦ F m1) OUT ⇒ {{m1 ∼ m2 ◦m3}} ⊗∆

Figure 9: Unification Rules.

Since the typechecking algorithm for our type system needs to
decide σ1 ≡ σ2 (e.g. using Thm. 3), steps (1) to (2) can be omitted
if we know that ` s : A

σ27−→ B (recall the proof of Thm. 1).
Conversely, if there is some s ` A

σ1−→ B , and sσ2 ∈ Es , we know
that there is a proof σ1 ≡ σ2 (step (2) in Def. 5.1), and therefore
s ` A

σ27−→ B (recall the proof of Thm. 2).

5.2 Structure Unification.
The structure-annotated types that we have presented so far require
the specification of a full structure σ ∈ Σ. However, it is sometimes
sufficient, or desirable, to specify only the relevant parts of this
structure. We allow this by introducing structure metavariables in
Σ. Selecting suitable substitutions for these metavariables can be
automated in different ways, as we will see later in this section.
Given a set of metavariables, M, we extend the syntax of Σ as
follows:

m ∈M
σs ∈ Σs ::= . . . |m

σ ∈ Σ ::= . . . |m
σp ∈ Σp ::= . . . |m

The underscore character denotes a fresh metavariable, e.g. given a
fresh metavariable m , FARMn is equivalent to FARMn m .

Definition 5.2 (Substitution Environments). A substitution envi-
ronment δ is a mapping of metavariables to structures, {m1 ∼
σ1,m2 ∼ σ2, . . .}. We use ∆ to denote sets of environments δ.

The two basic operations with substitution environments are the
application and the extension. We apply a substitution environment
δ to a structure σ, denoted by δσ, by replacing all metavariables as
defined by δ. The extension of δ1 with δ2, δ1δ2, is defined in the

expected way. If both substitution environments introduce a cycle
or conflicting metavariables, the operation fails. Finally, for sets of
substitution environments, we define the set of extensions:

∆1 ⊗∆2 = {δ1δ2 | δ1 ∈ ∆1 ∧ δ2 ∈ ∆2}

Lemma 4. For all substitutions δ, for all σ ∈ Σ, norm δσ ≡
δ(norm σ).

Proof Sketch. It is obvious that if σ1 ≡ σ2, then δσ1 ≡ δσ2,
since δ will apply the same substitution in both σ1 and σ2. Since
σ ≡ norm σ, we conclude using the reflexivity of ≡.

Note that we can no longer use the relation ≡ in our typechecking
rules, since it does not handle metavariables. Instead, we define the
relation ∼=, and define a decision procedure for it.

Definition 5.3 (Equivalence of the Unified Forms). We say that
σ1
∼= σ2 if there is at least a substitution δ that makes δσ1 ≡ δσ2.

σ1
∼= σ2

.
= ∃δ, δσ1 ≡ δσ2

The type rule for equivalence changes to use the new relation:

` e : A
σ1−→ B σ1

∼= σ2

` e : A
σ27−→ B

In order to typecheck a structured expression with a structure con-
taining metavariables, we need to: i) modify the normalisation pro-
cedure; and ii) define a unification algorithm. The normalisation
procedure is modified as follows:

1. Any erase step on a structure with meta-variables always suc-
ceeds by simply adding new meta-variables and a substitution
environment δ for those metavariables, e.g.
m1 ‖ m2 FUN (m ′2 ◦m ′1)

δ = {m1 ∼ FUN m ′1, m2 ∼ FUN m ′2}.
2. The constraints of the rules used by the normS procedure are

modified so that they are never satisfied by metavariables, e.g.
HYLOF σ1 σ2 s CATAF σ1 ◦ ANAF σ2 (HYLO-SPLIT)

⇐ σ1 6= IN ∧ σ2 6= OUT ∧ σ1 6∈ M ∧ σ2 6∈ M

Although condition 2 is not necessary, it simplifies the unification
of structures where σ1 or σ2 can be unified to IN or OUT.

Unification Rules. Since unifying two structures may lead to
different, but valid unifying substitutions, the unification rules yield
the set of all possible unifying substitutions, ∆. Disambiguating
such situations can be done using cost models, or some other
procedure. The rules for unification (Fig. 9) define a unification
modulo associativity (rule COMP2). Each rule with superscript r has
a symmetric version l. A statement σ1 ∼ σ2 ⇒ ∆ means that
structure σ1 unifies with structure σ2, under a non-empty set of
substitutions, ∆ 6= ∅. Whenever two structures do not correspond
to the same syntactic structure, the unification rules make any
valid assumption about the metavariables that would allow further
rewritings to take place.

Theorem 4 (Soundness of the Unification). For all σ1, σ2 ∈ Σ,
σ1 ∼ σ2 ⇒ ∆ =⇒ ∆ 6= ∅ ∧ ∀δ ∈ ∆, δσ1 ≡ δσ2

Theorem 5 (Completeness of the Unification). For all σ1, σ2 ∈ Σ,
and substitution δ,
δσ1 ≡ δσ2 =⇒ ∃∆ s.t. ∆ 6= ∅ ∧ σ1 ∼ σ2 ⇒ ∆

The proofs of those theorems are standard proofs by induction on
the derivations of ∼ and ≡, and by case analysis on the metavari-
ables.

Corollary 2. ∼=: σ1
∼= σ2 ⇔ norm σ1 ∼ norm σ2 ⇒ ∆, i.e. the

unification algorithm can be used as a decision procedure for ∼=.

Proof Sketch. For the proof of the ⇒ case, we know that there is
at least a δ such that δσ1 ≡ δσ2. From the properties of ≡, we
know that norm δσ1 = norm δσ2. Using Lemma 4, we derive that
δ (norm σ1) ≡ δ (norm σ2). The completeness of the unification
allows us to conclude that norm σ1 ∼ norm σ2 ⇒ ∆.
The proof of ⇐ follows from the soundness of the unification
algorithm. We know that norm σ1 ∼ norm σ2 ⇒ ∆ implies
that ∆ is non-empty, and that for all δ ∈ ∆, δ (norm σ1) ≡
δ (norm σ2). We conclude by selecting any δ from ∆, and then
using Lemma 4.

Using metavariables in structures has some implications. Given
a s ` A

σ1−→ B , and a structure σ2 containing one or more
metavariables, σ2 can no longer be used as an index for a family
Es . Since there may be alternative, but valid substitutions for the
metavariables, it follows that sσ2 ⊆ Es . Given a unification σ1 ∼
σ2 ⇒ ∆, we need to apply a δ ∈ ∆ to σ2 in order to use
it as an index, sδσ2 ∈ Es . This implies that there are many
ways to use our approach. On one hand, fixing this σ2 to be
a closed structure without any metavariables, or one that unifies
with σ1 with a unique substitution, provides a way to manually
parallelise a program. On the other hand, if σ2 is defined to be a
metavariable, then a fully automated method for selecting a parallel
structure would be needed. In between, there are a wide range of
semi-automated possibilities that can be used to reason about the
introduction of parallelism to a program. The automated selection
mechanism for a δ ∈ ∆ can easily be extended with further

parallelisation opportunities. Furthermore, it can be parameterised
by architecture-specific details, so that compiling a program for
different architectures leads to alternative parallelisations. This is,
however, beyond the scope of this paper.

Compositionality and Higher-Order Structured-Arrows. We
finish this section with a discussion of the compositionality of
our approach. Most of this paper deals with the typing rule for
structure-annotated arrows. Extending our work for a language
with definitions and with a limited-form of higher-order structured
arrows can be done using the unification rules from Fig. 9. Ap-

plying some e : A
σ′
17−→ B to a f : A

σ17−→ B → C
σ27−→ D

typechecks only if σ1 ∼ σ′1 ⇒ ∆, and the type of this would
be annotated with a structure resulting from applying any δ ∈ ∆,
f e : C

δσ27−−→ D . One advantage of this is to easily allow the spec-
ification of new structures that can be later used in our programs.
The corresponding erasure rules would then be derived automati-
cally from such a specification. We would need, however, to verify
a back-end for such a language in order to ensure that the oper-
ational semantics of the new structures are sound with respect to
the specification. Although we do not explain this idea in detail in
this paper, we will use a small example of a defined structure in
Section 6.3.

Although it seems entirely feasible to support full higher-order
structured arrows, there is the question of whether this is desirable:

what would types such as A
σ7−→ B

σ′
7−→ C or (A

σ7−→ B)
σ′
7−→

C mean? Intuitively, the first would be a parallel process with
structure σ that produces a parallel process with structure σ′, and
the second would be a parallel process with structure σ′ that takes
a parallel process with structure σ as input, and produces an output
of type C . In contrast to using functions with a type such as
X

σ17−→ Y → A
σ27−→ B , we have so far not seen the benefits of

full higher-order functions in our examples, although this is an idea
that may be worth exploring in future work.

6. Examples
Our first two examples revisit image merge from Section 1, and
quicksort from Section 3. In both cases, we show how the type sys-
tem calculates the convertibility of the structured expression to a
functionally equivalent parallel process, and how the convertibility
proof allows the structured expression to be rewritten to the de-
sired parallel process. The final two examples show how to use
types to parallelise different algorithms, described as structured ex-
pressions. These examples show how to easily introduce parallel
structure to these algorithms using our type system.

6.1 Image Merge
Recall that image merge basically composes two functions: mark
and merge. It can be directly parallelised using different combina-
tions of farms and pipelines.

IM1 (n,m) = PARL (FARM n (FUN A) ‖ FARM m (FUN A))

imageMerge : List(Img × Img)
IM1 (n,m)7−−−−−−→ List(Img × Img)

imageMerge = mapList (merge ◦ mark)

First, we use our annotated typing rules to produce a derivation tree
with the structure of the expression (Fig. 10). The key part is the
convertibility proof, that MAPL (A ◦ A) ∼= IM1 (n,m). We use the
decision procedure defined in Section 4 to decide the equivalence
of both structures. The erase step is applied as follows:

IM1 (n,m) *
MAPL (A ◦ A)

replace : Img × Img
A7−→ Img mark : Img × Img

A7−→ Img × Img

replace ◦ mark : Img × Img
A ◦ A7−−−→ Img × Img

mapList (replace ◦ mark) : List(Img × Img)
MAPL (A ◦ A)7−−−−−−−−−→ List(Img × Img) MAPL (A ◦ A) ∼= IM1 (n,m)

mapList (replace ◦ mark) : List(Img × Img)
IM1 (n,m)7−−−−−−→ List(Img × Img)

Figure 10: Typing Derivation Tree for Image Merge

The final step involves applying the decision procedure for equality
of S . Since the expressions are identical, this is a trivial step. We
can now apply this equivalence to the original expression:

mapList (merge ◦ mark) *

parList (farm n (fun mark) ‖ farm m (fun merge))

We now show an example of unification. We define IM2 n =
PARL (‖ FARM n). First, we instantiate the structure with fresh
metavariables m1 and m2. Then, we normalise the structure. We
start by applying the erase rewriting system:

MAPL (m ′2 ◦m ′1) δ = {m1 ∼ FUN m ′1, m2 ∼ FUN m ′2}

We then apply the normalisation in Σs, and the unification rules:

MAPL A◦MAPL A ∼ MAPL m ′2◦MAPL m ′1 ⇒ {{m ′1 ∼ A,m ′2 ∼ A}}

The final step is to calculate the extension of the environment δ,
and the set of environments that are obtained from the unification:

∆ = {δ} ⊗ {{m ′1 ∼ A,m ′2 ∼ A}} =
{{m1 ∼ FUN m ′1, m2 ∼ FUN m ′2,m

′
1 ∼ A,m ′2 ∼ A}}

Applying the substitution environment in ∆ to the IM2(n), we
obtain the structure PARL (FUN A ‖ FARMn (FUN A)).

Finally, we briefly discuss how to extend the environment fur-
ther using a procedure min cost. First, min attempts further rewrit-
ings to m1 and m2. To ensure termination, the process stops when-
ever the only option is to introduce a task farm to an existing task
farm structure.

δ1 = {m1 ∼ FARM n1 (FUN A), m2 ∼ FARM n2 (FUN A)}
δ2 = {m1 ∼ FUN A, m2 ∼ FARM n2 (FUN A)}
δ3 = {m1 ∼ FARM n1 (FUN A), m2 ∼ FUN A}
δ4 = {m1 ∼ FUN A, m2 ∼ FUN A}

We will show how to select one of those structures using a simple
example cost model. In future work, we will consider how to
extend and formalise this cost model. A cost model provides size
functions |σ| over structures, similar to the idea of sized types [17].
We assume that all atomic functions are annotated with their cost
models, Ac . The cost of a structure is a function that receives a size,
sz , and returns an estimation of its run-time in milliseconds.

In our example, we assume that sz = [d]1000. This represents
the size of 1000 pairs of images of d dimensions. Arithmetic op-
erations on sz are applied to the superscript. The size function of
the first stage |Ac1 | is the identity, since we are not modifying the
images. The parameters for the number of farm workers are fixed to
be those with the least cost, given some maximum number of avail-
able cores. In this example, we assume that a maximum of 24 cores
are available. For δ1, we determine that n1 = 9, n = 3 and n2 = 5.
The values of the costs on those sizes, and the overheads of farms
and pipelines (κ1 and κ2) are given below. In the following ex-
amples, we omit these numbers and just provide the estimation for
a 24-core architecture with similar overheads for farms, pipelines,

divide-and-conquer and feedback.

c1 [(2048× 2048, 2048× 2048)]n = n × 25.11ms
c2 [(2048× 2048, 2048× 2048)]n = n × 45.21ms
κ1 (9) = 29.66ms κ1 (3× 5) = 60.93ms

κ2 (9, 3× 5) = 114.4ms

cost (δ1 IM2(n)) sz

= max {c1 (
sz

n1
) + κ1(n1), c2 (

|Ac1 |(sz)

n × n2
) + κ1(n × n2)}

+ κ2(n1, n × n2) = 3145.69ms
cost (δ2 IM2(n)) sz = 25123.81ms
cost (δ3 IM2(n)) sz = 3189.60ms
cost (δ4 IM2(n)) sz = 25123.81ms

The structure that results from applying δ1 is the least cost one,
δ1(IM2(3)), with n1 = 9 and n2 = 5.

6.2 Quicksort
We will now revisit quicksort and show how it can exploit a divide-
and-conquer parallel structure.

qsorts : List(List A)→ List(List A)
qsorts = mapList (hyloF A merge div)

In order to introduce a divide-and-conquer parallel structure, the
type system needs to decide:

MAPL(HYLOF A A) ∼= PARL (DCn,F A A)

This can be achieved using a simple parallelism erasure. Consider
now a slightly more complex structure:

MAPL (HYLOF A A) ∼= PARL (FARMn ‖)

Let m1, m2 be two fresh metavariables. The parallelism erasure of
the right hand side returns the following structure and substitution:

PARL (FARM n m2 ‖ m1) * MAPL (m ′1 ◦m ′2)
δ = {m1 ∼ FUN m ′1,m2 ∼ FUN m ′2}

The normalisation procedure continues by normalising the left and
right hand sides of the equivalence following a parallelism erasure.
The left hand side is normalised by applying HYLO-SPLIT, F-SPLIT

and CATA-SPLIT:

MAPL (HYLOF A A) *
MAPL (CATAF A) ◦ MAPL (ANAF A)

The right hand side of the equivalence is normalised by applying
F-SPLIT and CATA-SPLIT:

MAPL (m ′1 ◦m ′2) * MAPL m ′1 ◦ MAPL m ′2

The decision procedure finishes by unifying both structures, and
extending the substitution δ with all possible unifications.

MAPL (CATAF A) ◦ MAPL (ANAF A) ∼ MAPL m ′1 ◦ MAPL m ′2
⇒ ∆1 = {m ′1 ∼ CATAF A,m ′2 ∼ ANAF A}

∆ = {δ} ⊗∆1

Again, by applying the only substitution in δ′ ∈ ∆, we select the
final structure:

PARL (FARMn (FUN (ANAF A)) ‖ FUN (CATAF A))

The full proof of equivalence (∼=) allows us to rewrite quicksort to
our desired parallel structure:

mapList(hyloF Amerge div) *

parList (farm n (fun (anaF A div)) ‖ fun (cataF Amerge))

We can use our cost model again, where κ3 is the overhead of
a divide-and-conquer structure. In this example, we set the size
parameter of our cost model to 1000 lists of 3,000,000 elements,
and use the following structure:

qsorts : List(List A)
min cost7−−−−−→ List(List A)

cost (PARL (DCn,F Ac1 Ac2)) sz
= max{ max

1≤i≤n
{c2 (|Ac2 |isz)

, cost (HYLOF Ac1 Ac2) (|Ac2 |nsz)
, max
1≤i≤n

{c1 (|Ac1 |i |Ac2 |nsz)}} + κ3(n) = 42602.72ms

cost (PARL (FARMn (FUN (ANAL Ac2)) ‖ (FUN (CATAL Ac1)))) sz
= 27846.13ms

cost (PARL (FARMn (FUN (HYLOF Ac1 Ac2)))) sz
= 32179.77ms
. . .

Since the most expensive part of the quicksort is the divide, and
flattening a tree is linear, the cost of adding a farm to the divide part
is less than using a divide-and-conquer skeleton for this example.

6.3 N-Body Simulation
N-Body simulations are widely used in astrophysics. They com-
prise a simulation of a dynamic system of particles, usually under
the influence of physical forces. The Barnes-Hut simulation recur-
sively divides the n bodies storing them in a Octree, or a 8-ary tree.
Each node in the tree represents a region of the space, where the
topmost node represents the whole space and the eight children the
eight octants of the space. The leaves of the tree contain the bod-
ies. Then, the cumulative mass and center of mass of each region
of the space are calculated. Finally, the algorithm calculates the net
force on each particular body by traversing the tree, and updates
its velocity and position. This process is repeated for a number of
iterations. We will here abstract most of the concrete, well known
details of the algorithm, and present its high-level structure, using
the following types and functions:

C = Q×Q
F A B = A + C × B8

G A = F Body
Octree = µG
insert : Body × Octree→ Octree

Since this algorithm also involves iterating for a fixed number
of steps, we define iteration as a hylomorphism. We assume that
the combinator + (Fig. 1) is also defined in Σs. Additionally, we
assume a primitive combinator, that tests a predicate on a value,
(· ?) : (A→ Bool)→ A→ A + A.

LOOP : Σ→ Σ
LOOP σ = HYLO(+) (IDOσ) ((A + (A M (A ◦ A))) ◦ (A ◦ A?))

loopA : (A
m7−→ A)→ A× N LOOP m7−−−−−→ A

loopA s =
hylo(A+) (id O s)

((π1 + (π1 M ((−1) ◦ π2))) ◦ ((== 0) ◦ π2)?)

This example uses some additional functions: calcMass annotates
each node with the total mass and centre of mass; dist distributes
the octree to all the bodies, so that each can independently calculate
its forces and update the velocity and position; calcForce calculates
the force of one body; and move updates the velocity and position
of the body.

calcMass : G Octree→ G Octree
dist : Octree× List Body

→ L (Octree× Body) (Octree× List Body)

The algorithm is:

nbody : List Body × N LOOP σ7−−−−−→ List Body
nbody = loop (anaL (L (move ◦ calcForce) ◦ dist)

◦((cataG (inG ◦ calcMass) ◦ cataL insert) M id))

Since the LOOP defines a fixed structure, we do not allow any
rewriting that changes this structure. However, note that our type
system still enables some interesting rewritings. In particular, the
structure of the loop body is:

σ = ANAL(L (A ◦ A) ◦ A) ◦ (CATAG(IN ◦ A) ◦ CATAL A) M ID

The normalised structure reveals more possibilities for introducing
parallelism:

σ = MAPLA ◦ MAPL A ◦ ANAL A ◦ (CATAG(IN ◦ A) ◦ CATAL A) M ID

After normalisation, this structure is equivalent to:

σ = PARL (FUN (A ◦ A)) ◦

The structure makes it clear that there are many possibilities for
parallelism using farms and pipelines. As before, parallelism can
be introduced semi-automatically using a cost model. For example,
setting the input size to 20,000 bodies:

σ = PARL (FARM n ‖) ◦
σ′ = PARL (min cost (‖)) ◦

cost (FUN Ac1 ‖ FUN Ac2) sz = 310525.67ms
cost (FARM6 (FUN Ac1) ‖ (FUN Ac2)) sz = 55755.43ms
cost (FUN Ac1 ‖ FARM1 (FUN Ac2)) sz = 310525.67ms
cost (FARM20(FUN Ac1) ‖ FARM4(FUN Ac2)) sz = 15730.46ms

6.4 Iterative Convolution
Image convolution is also widely used in image processing applica-
tions. We assume the type Img of images, the type Kern of kernels,
the functor F A B = A + B × B × B × B , and the follow-
ing functions. The split function splits an image into 4 sub-images
with overlapping borders, as required for the kernel. The combine
function concatenates the sub-images in the corresponding posi-
tions. The kern function applies a kernel to an image. Finally, the
finished function tests whether an image has the desired properties,
in which case the computation terminates. We can represent image
convolution on a list of input images as follows:

conv : Kern→ (List Img
σ7−→ List Img)

conv k =
mapList (iterImg (finished? ◦ hyloF (combine ◦ F (kern k))

(split k)))

The structure of conv is equivalent to a feedback loop, which
exposes many opportunities for parallelism. Again, we assume a
suitable cost model, and the estimations are given for 1000 images,
of size 2048×2048.
σ = PARL (FB (DCn,L,F (A ◦ F A) A ‖))

= PARL (FB (FARM n ‖ ‖))
= min cost (PARL (FB (‖)))
= . . .

cost (PARL (FB (Ac1 ‖ Ac2))) sz =∑
1≤i,|Ac1

‖Ac2
|isz>0

cost (Ac1 ‖ Ac2) (|Ac1 ‖ Ac2 |isz)

= 20923.02ms
cost (PARL (FB (FARM4 (FUN Ac1) ‖ (FUN Ac2)))) sz

= 6649.55ms
cost (PARL (FB (FUN Ac1 ‖ FARM1 (FUN Ac2)))) sz

= 20923.02ms
cost (PARL (FB (FARM14 (FUN Ac1) ‖ FARM4 (FUN Ac2)))) sz

= 2694.30ms
. . .

Collectively, our examples have demonstrated the use of our tech-
niques for all the parallel structures we have considered, showing
that we can easily and automatically introduce parallelism accord-
ing to some required structure, while maintaining the functional
equivalence with the original form.

7. Related Work
There have been some previous treatments of parallelism using
types, but these deal only with sizes and productivity. One line of
work is using sized types [17] to internalise a notion of sizes of
streaming data into a type system. This has been extended to a small
number of skeletons in the Eden language [27]. While types were
useful to prove the termination and productivity of Eden skeletons,
our own work focuses on the different, but important, properties
of semantic equivalence and cost. The expressive power of hylo-
morphisms for parallel programming was first explored by Fischer
and Gorlatch [4], who showed that a programming language based
on catamorphisms and anamorphisms is Turing-universal. The idea
of using hylomorphisms for parallel programming also appears in
Morihata’s work [24]. Morihata explores a theory for developing
parallelisation theorems based on the third homomorphism theorem
and shortcut fusion, and generalises it to hylomorphisms. In con-
trast, our work directly exploits the properties of hylomorphisms,
in order to choose a suitable parallel skeleton implementation for
hylomorphisms. Both lines of work are therefore orthogonal, and
we can potentially benefit from Morihata’s results.

Deriving parallel implementations from small, simple specifi-
cations has been widely studied. The third homomorphism theo-
rem, list homomorphisms, and the Bird-Meertens Formalism are
amongst the many techniques that have been explored [12, 15, 16,
18, 21, 23, 25, 29–31]. The third homomorphism theorem states
that if a function can be written both as a left fold and a right fold,
then it can also be evaluated in a divide-and-conquer manner [9].
This theorem has been widely used for parallelism [2, 6, 8, 11, 19,
24, 26]. The majority of this work enables suitable automation and
derivation of efficient parallel implementations. Our work differs
in that we allow part of the parallel structure to be chosen in a
semi-automated way. This adds flexibility, enabling a parallel im-
plementation to be changed quickly and easily by changing only
a single type annotation. One possible extension of our work is
to include some automatic transformations derived from the third
homomorphism theorem. By parameterising our type system over
some cost function on parallel structures, we smoothly integrate the
introduction of parallelism with the ability to reason about the run-

time behaviour of the parallel program. Skillicorn and Cai [32] have
previously shown the utility of such an integration of a cost cal-
culus with derivational software development, illustrating the ap-
proach for the Bird-Meertens theory of lists. We take this approach
one step further by using a more general equational theory based
on hylomorphisms. Moreover, our type-based approach introduces
new benefits, by providing a mechanism for specifying new paral-
lel structures whose denotational semantics can be described as a
composition of hylomorphisms.

Finally, in a practical setting, Steuwer et al [33] generate high-
performance OpenCL code from a high-level specification by ap-
plying a simple set of rewrite rules, and using Monte-Carlo search
to traverse the corresponding search space to find an implementa-
tion. Our semi-automated approach provides a way to narrow down
this search space, while using cost models to automate the rest. Our
approach is in a sense more general, since we allow our parallel
structures to be easily extended. However, we could benefit from
exploiting their work in GPU-specific rewriting rules and skeletons.

8. Conclusions
This paper has introduced a new type-based approach for repre-
senting and reasoning about the structure of parallel programs rep-
resented as algorithmic skeletons, the first ever treatment of par-
allelism at the type level that combines reasoning about program
equivalences and cost. Crucially, our type system is capable of rea-
soning about both the functional and the non-functional properties
of a parallel program. Given a cost model and the underlying equa-
tional theory, we have shown how we can take rational choices
at the type level between alternative parallel implementations by
appropriately instantiating and transforming high-level parallelism
abstractions. This avoids the usual static analysis approach that sep-
arates analysis from program. In particular, all transformations are
performed internally by the type checker and we ensure the preser-
vation of the underlying functional behaviour simply by construc-
tion. It also opens the door to further safe type-level program ma-
nipulations, for example. A key aspect of our approach is the use
of hylomorphisms, combinations of catamorphisms and anamor-
phisms (or fold/unfold operations), as a single, unifying parallel
structure. In this paper we have used hylomorphisms to capture
many common patterns of parallelism that are found in the litera-
ture, including inter alia task farms, pipelines, divide-and-conquer
and dynamic feedback. As we have shown in our examples, this sin-
gle construct is surprisingly powerful, providing a system of canon-
ical representations that is easy to understand and to transform.

A number of obvious extensions can be made to this work.
Firstly, there are a few forms of parallel pattern that we have not
yet considered: map (reduce) and fold are clearly instances of hy-
lomorphisms, but stencil and bulk synchronous parallel patterns,
for example, may require deeper thought. Secondly, more sophis-
ticated and accurate cost models are both possible and desirable,
including ones that consider e.g. the sizes of data structures. The
model we have shown here is, however, more precise and realistic
than e.g. typical PRAM models that are widely used in parallelism
theory. Thirdly and finally, we have only shown a static analysis
here. However, type-based approaches can freely admit dynamic
analyses as well. We intend to explore this in future in order to
obtain even more general and flexible analyses.

Acknowledgements
This work has been partially supported by the EU H2020 grant
“RePhrase: Refactoring Parallel Heterogeneous Resource-Aware
Applications - a Software Engineering Approach” (code 644235),
and by EPSRC grant EP/M027317/1 “C3: Scalable & Verified
Shared Memory via Consistency-directed Cache Coherence”.

References
[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge

University Press, 1998.
[2] Y.-Y. Chi and S.-C. Mu. Constructing List Homomorphisms from

Proofs. In Proc. APLIAS ’11: Asian Symposium on Programming
Languages & Systems, pages 74–88. 2011.

[3] M. I. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. Pitman, London, 1989.

[4] J. Fischer and S. Gorlatch. Turing Universality of Recursive Patterns
for Parallel Programming. Parallel Processing Letters, 12(02):229–
246, 2002.

[5] M. M. Fokkinga and E. Meijer. Program Calculation Properties of
Continuous Algebras. Technical Report, CWI, 1991.

[6] A. Geser and S. Gorlatch. Parallelizing Functional Programs by
Generalization. Journal of Functional Programming (JFP), 9(06):
649–673, 1999.

[7] N. Ghani. βη-Equality for Coproducts. In Proc. International Conf.
on Typed Lambda Calculi and Applications, pages 171–185. 1995.

[8] J. Gibbons. Computing Downwards Accumulations on Trees Quickly.
Theoretical Computer Science, 169(1):67–80, 1996.

[9] J. Gibbons. The Third Homomorphism Theorem. Journal of Func-
tional Programming (JFP), 6(4):657–665, 1996.

[10] J. Gibbons. Calculating Functional Programs. In Algebraic and
Coalgebraic Methods in the Mathematics of Program Construction,
pages 151–203. 2002.

[11] S. Gorlatch. Extracting and Implementing List Homomorphisms in
Parallel Program Development. Science of Computer Programming,
33(1):1 – 27, 1999.

[12] S. Gorlatch and C. Lengauer. Parallelization of Divide-and-Conquer
in the Bird-Meertens Formalism. Formal Aspects of Computing, 7(6):
663–682, 1995.

[13] T. Hardin. Confluence Results for the Pure Strong Categorical Logic
CCL. λ-calculi as Subsystems of CCL. Theoretical Computer Science,
65(3):291–342, 1989.

[14] Y. Hayashi and M. Cole. Static Performance Prediction of Skeletal
Parallel Programs. Parallel Algorithms and Applications, 17(1):59–
84, 2002.

[15] Z. Hu, H. Iwasaki, and M. Takechi. Formal Derivation of Efficient
Parallel Programs by Construction of List Homomorphisms. ACM
Transactions on Programming Languages and Systems (TOPLAS), 19
(3):444–461, 1997.

[16] Z. Hu, M. Takeichi, and W.-N. Chin. Parallelization in Calculational
Forms. In Proc. POPL ’98: 25th ACM Symposium on Principles of
Programming Languages, pages 316–328, 1998.

[17] J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of
Reactive Systems Using Sized Types. In Proc. POPL ’96: 23rd ACM
Symposium on Principles of Programming Languages, pages 410–
423, 1996.

[18] G. Keller and M. Chakravarty. Flattening Trees. In Proc. Euro-Par
’98: European Conference on Parallelism, pages 709–719. 1998.

[19] Y. Liu, Z. Hu, and K. Matsuzaki. Towards Systematic Parallel Pro-
gramming over Mapreduce. In Proc. Euro-Par 2011: European Con-
ference on Parallelism, pages 39–50. 2011.

[20] O. Lobachev and R. Loogen. Estimating Parallel Performance, a
Skeleton-Based Approach. In Proc. HLPA ’10: Intl workshop on High-
level Parallel Prog. and Appls., pages 25–34, 2010.

[21] K. Matsuzaki, Z. Hu, and M. Takeichi. Towards Automatic Paral-
lelization of Tree Reductions in Dynamic Programming. In Proc.
SPAA 2006: Symposium on Parallelism in Algorithms and Architec-
ture, pages 39–48, 2006.

[22] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming
with Bananas, Lenses, Envelopes and Barbed Wire. In Proc. ICFP
’91: ACM Conf. on Functional Programming, pages 124–144, 1991.

[23] J. Misra. Powerlist: A Structure for Parallel Recursion. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 16(6):
1737–1767, 1994.

[24] A. Morihata. A Short Cut to Parallelization Theorems. In Proc. ICFP
2013: 18th ACM Conf. on Functional Programming, pages 245–256,
2013.

[25] A. Morihata and K. Matsuzaki. Automatic Parallelization of Recur-
sive Functions using Quantifier Elimination. In Proc. FLOPS ’10:
Functional and Logic Programming, pages 321–336. 2010.

[26] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. Auto-
matic Inversion Generates Divide-and-Conquer Parallel Programs. In
Proc. PLDI ’07: ACM Conf. on Programming Language Design and
Implementation, pages 146–155, 2007.

[27] R. Peña and C. Segura. Sized Types for Typing Eden Skeletons.
In Proc. IFL ’01: Intl. Symposium on Implementation of Functional
Languages, pages 1–17, 2001.

[28] F. A. Rabhi and S. Gorlatch. Patterns and Skeletons for Parallel and
Distributed Computing. Springer, 2003.

[29] J. H. Reif. Synthesis of Parallel Algorithms. Morgan Kaufmann, 1993.

[30] D. B. Skillicorn. Models for Practical Parallel Computation. Interna-
tional Journal of Parallel Programming, 20(2):133–158, 1991.

[31] D. B. Skillicorn. The Bird-Meertens Formalism as a Parallel Model.
Springer, 1993.

[32] D. B. Skillicorn and W. Cai. A Cost Calculus for Parallel Functional
Programming. J. Parallel Distrib. Comput., 28(1):65–83, 1995.

[33] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. Generating
Performance Portable Code Using Rewrite Rules. In Proc ICFP 2015:
20th ACM Conf. on Functional Prog. Lang. and Comp. Arch., pages
205–217, 2015.

[34] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, Cambridge, MA, USA,
1977. ISBN 0262191474.

[35] H. Yokouchi. Church-Rosser Theorem for a Rewriting System on
Categorical Combinators. Theoretical Computer Science, 65(3):271–
290, 1989.

