
TOWARD OPTIMISED SKELETONS FOR

HETEROGENEOUS PARALLEL

ARCHITECTURE WITH PERFORMANCE

COST MODEL

By

Khari A. Armih

Submitted for the Degree of

Doctor of Philosophy

at Heriot-Watt University

on Completion of Research in the

School of Mathematical and Computer Sciences

July, 2013

The copyright in this thesis is owned by the author. Any quotation from the thesis
or use of any of the information contained in it must acknowledge this thesis as the
source of the quotation or information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ROS: The Research Output Service. Heriot-Watt University Edinburgh

https://core.ac.uk/display/77035468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that the work presented in this the-

sis was carried out by myself at Heriot-Watt University,

Edinburgh, except where due acknowledgement is made,

and has not been submitted for any other degree.

Khari A. Armih (Candidate)

Greg Michaelson, Phil Trinder (Supervisors)

(Date)

ii

Abstract

High performance architectures are increasingly heterogeneous with shared and

distributed memory components, and accelerators like GPUs. Programming such

architectures is complicated and performance portability is a major issue as the

architectures evolve. This thesis explores the potential for algorithmic skeletons

integrating a dynamically parametrised static cost model, to deliver portable

performance for mostly regular data parallel programs on heterogeneous archi-

tectures.

The first contribution of this thesis is to address the challenges of program-

ming heterogeneous architectures by providing two skeleton-based programming

libraries: i.e. HWSkel for heterogeneous multicore clusters and GPU-HWSkel

that enables GPUs to be exploited as general purpose multi-processor devices.

Both libraries provide heterogeneous data parallel algorithmic skeletons including

hMap, hMapAll, hReduce, hMapReduce, and hMapReduceAll.

The second contribution is the development of cost models for workload dis-

tribution. First, we construct an architectural cost model (CM1) to optimise

overall processing time for HWSkel heterogeneous skeletons on a heterogeneous

system composed of networks of arbitrary numbers of nodes, each with an ar-

bitrary number of cores sharing arbitrary amounts of memory. The cost model

characterises the components of the architecture by the number of cores, clock

speed, and crucially the size of the L2 cache. Second, we extend the HWSkel cost

model (CM1) to account for GPU performance. The extended cost model (CM2)

is used in the GPU-HWSkel library to automatically find a good distribution

for both a single heterogeneous multicore/GPU node, and clusters of heteroge-

neous multicore/GPU nodes. Experiments are carried out on three heterogeneous

multicore clusters, four heterogeneous multicore/GPU clusters, and three single

heterogeneous multicore/GPU nodes. The results of experimental evaluations for

four data parallel benchmarks, i.e. sumEuler, Image matching, Fibonacci, and

Matrix Multiplication, show that our combined heterogeneous skeletons and cost

models can make good use of resources in heterogeneous systems. Moreover using

cores together with a GPU in the same host can deliver good performance either

on a single node or on multiple node architectures.

Acknowledgements

My praises to God for giving me the good health, the strength of determina-
tion and support to finish my work successfully.

I would like to thank my supervisor Professor Greg Michaelson, not only for
his suggestions, but also for his friendship and his encouragement. His faith in
me has been essential to overcome the hardest moments.

A special thank goes to my second supervisor Professor Phil Trinder for his help-
ful remarks regarding every aspect of my work.

Many thanks to the Libyan higher education sector for offering me this schol-
arship.

I am very grateful to the people I have been in contact with in Edinburgh and
my country. These include my office mates and my close friend Gamal Alusta.

And last but not least, to my parents, my wife and my son for their affectionate
support, encouragement and understating over the years.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Contributions . 4

1.2.1 Contribution Summary . 4

1.2.2 Addressing the Challenges for Heterogeneous Hardware Pro-

gramming . 6

1.2.3 Developing Performance Cost Models for Heterogeneous

Skeletons . 11

1.3 Roadmap of The Thesis . 14

1.4 Publications . 16

2 Background 17

2.1 Parallel Computing . 17

2.2 Short Survey of Parallel Architectures 18

2.2.1 Distributed Memory Architectures 19

2.2.2 Shared Memory Architectures 20

v

Contents

2.2.3 GPU Architectures . 22

2.2.4 Heterogeneous Parallel Architectures 24

2.3 Parallel Programming Models . 25

2.3.1 Distributed Memory Programming Models 25

2.3.2 Shared Memory Programming Models 27

2.3.3 GPU Programming . 29

2.3.4 Hybrid Programming Models 35

2.4 High Level Parallel Programming Approaches 35

2.4.1 Skeleton Programming . 37

2.4.2 A Survey of Structured Parallel Programming Frameworks 40

2.4.2.1 Distributed Computing Environment 40

2.4.2.2 Multi-Core Computer Architectures 47

2.4.2.3 Heterogeneous Environments 50

2.4.2.4 Skeletal -based GPU Programming 53

2.5 Discussion . 57

3 The HWSkel Library 61

3.1 C skeleton-based Library . 61

3.1.1 Design Summary . 62

3.1.2 Cole’s Manifesto . 63

3.1.3 Host Language . 64

3.2 Algorithmic Skeletons in HWSkel 65

vi

Contents

3.2.1 Data Communication . 66

3.2.2 Initialisation and Termination 66

3.2.2.1 InitHWSkel() . 66

3.2.2.2 TerminateHWSkel() 67

3.2.3 The hMap Skeleton . 67

3.2.4 The hMapAll Skeleton . 70

3.2.5 The hReduce Skeleton . 74

3.2.6 The hMapReduce Skeleton 77

3.2.7 The hMapReduceAll Skeleton 79

3.3 Summary . 82

4 The HWSkel Cost Model (CM1) 84

4.1 High-Level Parallel Cost Models 85

4.1.1 The Family of PRAM Models 86

4.1.2 BSP and Variants . 87

4.1.3 The LogP Model Family 90

4.1.4 HiHCoHP . 96

4.1.5 DRUM . 97

4.1.6 Skeletons . 98

4.1.6.1 Darlington’s group 99

4.1.6.2 BSP -based Approaches 99

4.1.6.3 P3L . 100

vii

Contents

4.1.6.4 HOPP . 101

4.1.6.5 SkelML . 102

4.2 Resource Metrics for Parallel Cost Models 102

4.3 Design Ethos . 104

4.4 The CM1 Cost Model . 106

4.5 Using CM1 in the HWSkel Library 109

4.6 HWSkel Evaluation . 112

4.6.1 Benchmarks . 112

4.6.1.1 sum-Euler . 112

4.6.1.2 Image Matching 114

4.6.2 Performance Evaluation 117

4.6.2.1 Platform . 118

4.6.2.2 Homogeneous Architectures 119

4.6.2.3 Heterogeneous Architectures 120

4.6.3 Alternative Cost Models 127

4.7 Summary . 129

5 GPU-HWSkel Library 130

5.1 GPU-HWSkel: A CUDA-Based Skeleton Library 130

5.1.1 GPU-HWSkel Implementation Principles 131

5.1.2 GPU-HWSkel Characteristics 133

5.2 Implementing GPU-HWSkel . 134

viii

Contents

5.3 User Functions . 136

5.4 Skeletons in GPU-HWSkel . 137

5.5 Summary . 139

6 A GPU Workload Distribution Cost Model (CM2) 141

6.1 Related Work . 142

6.2 Discussion . 144

6.3 The CM2 Cost Model . 146

6.3.1 Single-Node Cost Model 147

6.3.2 Multi-Node Cost Model 149

6.4 GPU-HWSkel Evaluation . 151

6.4.1 Benchmarks . 151

6.4.1.1 Matrix Multiplication 151

6.4.1.2 Fibonacci Program 153

6.4.2 Platform . 154

6.4.3 Performance Evaluation 156

6.4.3.1 Single Multicore/GPU Node Results 156

6.4.3.2 Clusters of Multicore/GPU Nodes Results 166

6.5 Summary . 168

7 Conclusion 170

7.1 Introduction . 170

7.2 Contributions of Thesis . 171

ix

Contents

7.3 Limitations and Future Work . 174

7.3.1 Distributed Data Structures 174

7.3.2 Exploring Multiple GPUs 174

7.3.3 New Skeletons . 175

7.3.4 Automatic Configuration 176

7.3.5 New Model Parameters . 176

7.3.6 New Platforms . 176

A The HWSkel Library 178

A.1 hMap Skeleton . 178

A.1.1 hMap . 178

A.1.2 hMap Single-Core . 180

A.1.3 hMap Multi-Core . 180

A.2 hMapAll Skeleton . 181

A.2.1 hMapAll . 181

A.2.2 hMap Single-Core . 183

A.2.3 hMap Multi-Core . 183

A.3 hReduce Skeleton . 184

A.3.1 hReduce . 184

A.3.2 hReduce Single-Core . 186

A.3.3 hReduce Multi-Core . 186

A.4 hMapReduce Skeleton . 187

x

Contents

A.4.1 hMapReduce . 187

A.4.2 hMapReduce Single-Core 189

A.4.3 hMapReduce Multi-Core 189

B The CM1 Cost Model 191

B.1 The CM1 Code . 191

B.2 getNodeInfo() . 192

B.3 getClusterInfo() . 193

C The GPU-HWSkel Library 195

C.1 hMap Skeleton . 195

C.1.1 hMap . 195

C.1.2 hMap Single-Core . 197

C.1.3 hMap Multi-Core . 197

D The CM2 Cost Model 199

D.1 getNodeInfo() . 199

D.2 getClusterInfo() . 200

D.3 GPU Information . 202

D.4 Single-Node Cost Model . 203

D.5 Multi-Node Cost Model . 204

Bibliography 205

xi

List of Tables

1 Algorithmic skeleton frameworks characteristics 59

2 Resource metrics for parallel computation. 104

3 Input Images for Image Matching Application. 118

4 Experimental Architectures. 119

5 Experimental and Predicted Maximum Speedup (Het.Arch1). . . 126

6 Experimental and Predicted Maximum Speedup (Het.Arch2). . . 126

7 Experimental and Predicted Maximum Speedup (Het.Arch3). . . 127

8 Experimental Architectures. 155

9 1 Core hMap Runtimes (linux lab). 158

10 1 Core hMap Runtimes (lxphd). 159

11 Multiple Core hMap Runtimes (lxpara). 160

xii

List of Figures

1 Structure of a Shared Memory Multiprocessor 19

2 Structure of a Distributed Memory Multiprocessor 19

3 Simple Model of a GPU Architecture 23

4 CUDA Architecture [1] . 33

5 Parallel Taxonomy of HWSkel and GPU-HWSkel Frameworks . . 60

6 The Computation Scheme for hMapReduce Skeleton 79

7 The Computation Scheme for hMapReduceAll Skeleton 82

8 Using Cost Model (CM1) in HWSkel for Load Distribution 110

9 Flowchart of Sequential Image Matching Algorithm 115

10 Comparing hMapReduce(sum-Euler) and hMapReduceAll(Image

Matching) with OpenMP on Shared-Memory Architectures (lxpara).121

11 hMapReduce sum-Euler & hMapReduceAll image-matching Speedup

with/without Cost Model on (Het.Arch1) 122

xiii

List of Figures

12 hMapReduce sum-Euler & hMapReduceAll image-matching Speedup

with/without Cost Model on (Het.Arch2) 123

13 hMapReduce sum-Euler & hMapReduceAll image-matching Speedup

with/without Cost Model on (Het.Arch3) 125

14 hMapReduce sum-Euler & hMapReduceAll image-matching Speedup

with Alternative Cost Models on (Het.Arch1) 128

15 Automatic-Implementation Selection Plan. 132

16 Underlying Hardware of GPU-HWSkel Programming Model . . . 134

17 Programming Model of GPU-HWSkel 136

18 hMap Fibonacci & hMap Matrix Multiplication Absolute Speedup

on (linux lab) . 162

19 hMap Fibonacci & hMap Matrix Multiplication Absolute Speedup

on (lxphd) . 163

20 hMap Fibonacci & hMap Matrix Multiplication Absolute Speedup

on (lxpara) . 164

21 Speedups for the hMap Skeleton on a Heterogeneous Cluster . . . 167

22 Multi-GPU Support in GPU-HWSkel 175

xiv

Listings

3.1 InitHWSkel Code. 67

3.2 A hMap example that calculate the element-wise square. 71

3.3 A hMapAll example that finds the frequency of array elements. . 73

3.4 A hReduce example that applies reduction computation by using

+ as operator. 76

3.5 A hMapReduce example that compute the dot product. 80

4.1 Code for sumTotient function. 113

4.2 Code for euler function. 113

4.3 Main program for sum-Euler. 114

4.4 Code for plus function. 114

4.5 Main program for image matching. 116

5.1 MAP User Function. 137

5.2 Macro expansion. 137

5.3 An Example of using hMap and hReduce skeletons with User Func-

tions. 138

xv

Listings

6.1 Code for Fibonacci function. 153

6.2 Main program for hMap Fibonacci. 154

A.1 hMap Skeleton Code. 178

A.2 hMap SingleCore Skeleton Code. 180

A.3 hMapMultiCore Skeleton Code. 180

A.4 hMap Skeleton Code. 181

A.5 hMapAll SingleCore Skeleton Code. 183

A.6 hMapAll MultiCore Skeleton Code. 183

A.7 hReduce Skeleton Code. 184

A.8 hReduce SingleCore Skeleton Code. 186

A.9 hReduce MultiCore Skeleton Code. 186

A.10 hMapReduce Skeleton Code. 187

A.11 hMapReduce SingleCore Skeleton Code. 189

A.12 hMapReduce MultiCore Skeleton Code. 190

B.1 The CM1 cost model. 191

B.2 Function for get node specifications. 192

B.3 Function for get cluster specifications. 193

C.1 hMap Skeleton Code. 195

C.2 hMap SingleCore Skeleton Code. 197

C.3 hMapMultiCore Skeleton Code. 197

D.1 Node Information. 199

D.2 Cluster Information. 200

xvi

Listings

D.3 GPU Information. 202

D.4 Function for get node specifications. 203

D.5 Function for get cluster specifications. 204

xvii

Chapter 1

Introduction

1.1 Motivation

In recent decades a large variety of parallel system architectures have been in-

troduced to the market. With the advent of multicore systems, parallelism has

become mainstream. In terms of memory architectures, a cluster of multicore

nodes can be classified as a combination of distributed and shared-memory paral-

lel architectures. Such a parallel architecture is intended to increase performance

by providing two levels of parallelism, one at the top level between the nodes and

the second within each node in the cluster. However, in spite of the undoubted

ability to increase the processing power of multicore clusters by upgrading their

nodes or adding new nodes, this increase in processing power often results in

heterogeneous environments due to the variety in the capabilities of the newly

added or upgraded nodes.

1

Chapter 1. Introduction

Another promising parallel architecture is the Graphics Processing Unit (GPU) [2,

3]. An architecture that comprises manycores and GPUs is a highly efficient

platform for both graphics and general-purpose parallel computing because it

offers extensive resources such as high memory bandwidth and massive paral-

lelism. This increases the degree of heterogeneity in clusters, as each node in

the heterogeneous cluster may comprise a multicore and GPU elements. Such

heterogeneous parallel architectures challenge the parallel language community

to develop portable and efficient parallel programming models and languages.

Initially hybrid parallel programming models were introduced to exploit the

strengths of such architectures. Much research [4, 5, 6, 7] has aimed to combine

a distributed-memory programming model, such as message passing, between

cluster nodes with a shared-memory programming model on each node. For het-

erogeneous multicore systems there are a number of General-Purpose Graphical

Processing Unit (GPGPU) programming frameworks [8, 9, 10, 1] concerned with

using only GPU, but not much work has been done to utilise both the Central

Processing Unit (CPU) and GPU [11].

Algorithmic skeleton [12] reduces the complexity of programming hybrid and

heterogeneous parallel architectures. Much work has been done in the area of

skeletal programming [13, 14, 15] for distributed systems, but few skeleton frame-

works [16, 17] have been proposed for heterogeneous parallel platforms.

2

Chapter 1. Introduction

The main goal of this thesis is to provide a high-level heterogeneous program-

ming model that can hide from programmers the low-level details that are com-

monly encountered on heterogeneous parallel architectures. Thus programmers

can concentrate on application-specific issues only. We propose to provide appli-

cation developers with heterogeneous algorithmic skeletons that capture common

parallel patterns of computation and communication, and use them to develop

parallel applications on hybrid and heterogeneous architecture in a sequential

manner. These heterogeneous skeletons are able to expose the underlying hard-

ware and provide a suitable parallel programming model. The parallel imple-

mentation of these heterogeneous skeletons conceals almost all of the underlying

hardware details and coordination activities i.e. communication, synchronisation,

and load distribution. Moreover, these heterogeneous parallel skeletons provide

even more flexibility by supporting various parallel architectures such as single-

and multicore, multi-node, and integrated multicore/GPU parallel architectures.

Another contribution of this work is to propose and develop a performance

cost model for workload distribution to achieve a good performance on a het-

erogeneous parallel architecture, by providing an efficient static load-balancing

strategy. The proposed cost model is integrated in our heterogeneous skeletons

to automatically guide the distribution of workload, which minimises the task of

workload distribution for the skeleton programmer.

In this thesis, we present our methodology of designing and implementing

3

Chapter 1. Introduction

the HWSkel library for heterogeneous multicore clusters, and its extension GPU-

HWSkel for heterogeneous multicore/GPU clusters to provide the necessary porta-

bility, using a hybrid programming model that employs Message Passing Interface

(MPI) [18] for message passing, OpenMP[19] for multicore CPUs, and CUDA [1]

for GPU programming. Our framework is written in C language due to the

popularity of system level imperative languages in the parallel domain.

1.2 Research Contributions

The methodology proposed in this thesis is centred on providing a high-level

skeleton-based programming framework, to simplify and improve the performance

of data parallel programs on either heterogeneous multicore or multicore/GPU

architectures.

1.2.1 Contribution Summary

The main contributions of this thesis can be summarised as follows:

- We provide surveys of parallel computing. First we survey parallel architec-

tures and their programming models. Next we survey skeletal approaches,

and GPU skeleton libraries and languages. Finally we survey performances

cost models of parallel computing.

- We have designed a skeleton-based library called HWSkel for heterogeneous

parallel hardware, in particular, for heterogeneous multicore clusters [20].

4

Chapter 1. Introduction

The library is implemented using a hybrid MPI/OpenMP programming

model, where MPI is used as message passing between cluster nodes, and

OpenMP is a shared memory programming model on each node. The

HWSkel library provides a set of heterogeneous skeletons for data parallel

computations i.e. hMap, hMapAll, hReduce, hMapReduce, hMapReduceAll.

- We develop a new architectural cost model (CM1) for load balance on

heterogeneous multicore architectures [20]. The cost model characterises

components of the architecture by the number of cores, clock speed, and

crucially the size of the L2 cache. We demonstrate that the cost model

can be exploited by skeletons to improve load balancing on heterogeneous

multicore architectures. The heterogeneous skeleton model facilitates per-

formance portability, using the architectural cost model to automatically

balance load across heterogeneous components of the heterogeneous multi-

core cluster.

- We extend the HWSkel library with a CUDA-based skeleton library called

GPU-HWSkel, which enable GPUs to be exploited as general purpose multi-

processor devices in heterogeneous multicore/GPU architectures. GPU-

HWSkel uses a heterogeneous parallel programming model that employs

MPI and OpenMP for CPU programming, and CUDA for GPU program-

ming. The GPU-HWSkel library implements the same set of heterogeneous

skeletons provided by the HWSkel libray to program parallel heterogeneous

5

Chapter 1. Introduction

multicore/GPU systems including both single- and multicore CPU, and

GPU architectures.

- We construct a new cost model (CM2) based on the CM1 cost model to

account for GPU performance, and we integrate this cost model into our

heterogeneous skeleton to implicitly predict the costs of parallel applica-

tions. The new cost model is used to automatically find a good distribution

for both a single heterogeneous multicore/GPU node, and clusters of het-

erogeneous multicore/GPU nodes. It is viewed as two-phase: the Single-

Node phase guides workload distribution across CPU core and GPU using

the performance ratio between the CPU and GPU in a multicore/GPU

computing node; and the Multi-Node phase balances the distribution of

workload among the nodes of a heterogeneous multicore/GPU cluster.

The following two sections outline the thesis contributions in more detail.

1.2.2 Addressing the Challenges for Heterogeneous Hard-

ware Programming

In a homogeneous parallel architecture, developing parallel applications is a very

complex process, where developers are required to explicitly manage all paral-

lel coordination activities including the distribution, synchronisation, and com-

munications patterns. Therefore, heterogeneous parallel architectures introduce

6

Chapter 1. Introduction

even more parallel activities, which further increase the complexity of develop-

ing parallel applications. The complexity of programming heterogeneous parallel

architectures encompasses three challenges: i) Programmability, the program-

ming effort required to write and modify parallel programs for heterogeneous

systems; ii) Portability, the requirement that parallel programs written for het-

erogeneous systems should be portable across all the hardware that forms the

heterogeneous system; iii) Performance, finding the optimal load distribution

ratio across the heterogeneous processing elements to improve the performance

of parallel programs on the heterogeneous parallel platform.

In this section, we discuss the programmability and portability challenges,

while the performance challenge is discussed in section 1.2.3.

Programmability. To exploit the strengths and improve the performance of

a heterogeneous parallel system, a hybrid programming model is needed to

provide different parallel programming models for different parallel archi-

tectures that might be part of the heterogeneous parallel system.

A hybrid programming model is a combination of two or more different

programming models. For example, hybrid parallel programs for a hetero-

geneous multicore cluster require at least two programming models, the

message passing model to communicate between the nodes, and the shared-

memory programming model for multicore processing. A common example

of this hybrid approach is the combination of MPI [21] as the message

7

Chapter 1. Introduction

passing model and OpenMP [19] for the shared-memory model. Further-

more, in a heterogeneous multicore/GPU cluster, we need another parallel

programming model for GPU programming besides the distributed- and

shared-memory programming models.

Despite these capabilities of a hybrid parallel programming model to im-

prove the performance of software applications run on different heteroge-

neous parallel architectures, hybrid programming adds more complexity to

parallel programming development. Usually developing one level of par-

allelism requires more effort than developing a sequential application as

the applications developer is asked to explicitly handle all parallel activi-

ties such as data partitioning, communications, and synchronisation. For

instance developing a parallel application using the MPI library requires

considerable restructuring of the sequential program. So adding another

level of parallelism to the same application will increase the level of com-

plexity of developing such application due the management of the inter-

action between these two levels. In addition, using two or more different

programming models in the same application require application developers

to spend much time on extending their knowledge of writing and developing

parallel applications.

Portability. Since programming a heterogeneous parallel architecture requires

a hybrid programming model to provide various parallel implementations

8

Chapter 1. Introduction

for each parallel hardware unit in the system, hybrid programs which use

such a hybrid model should be executable on each parallel hardware unit

in the system independently.

This requires writing portable parallel program using a hybrid program-

ming model that is smart enough to expose the underlying hardware and

allows for a suitable parallel implementations in a transparent way. Writing

such portable parallel programs which can be executed on a wide range of

parallel systems (i.e. distributed- or shared-memory architecture) results

in increasing of the degree of the complexity of using hybrid programming

models.

The key idea of this work is to move the responsibility for dealing with the

above challenges away from application developers by providing them with a

high-level machine independent approach that is able to implicitly manage these

challenges to simplify programming heterogeneous parallel architectures.

One promising approach to achieve our goal is to use high-level parallel het-

erogeneous skeletons that abstract away all parallel activities to reduce the com-

plexity encountered in developing parallel applications. Skeletons are high-level

abstractions that support widely used parallel programming patterns, where the

control and the communications of parallel patterns are encapsulated in these

abstractions. So skeletons are intended to simplify parallel programming by con-

cealing all details required in parallel activities from applications developers and

9

Chapter 1. Introduction

allowing the developers to concentrate on high-level aspects of the parallel algo-

rithm.

Due to the complexity of a hybrid programming model, skeletal programming

can have a considerable impact by hiding the interactions between all the dif-

ferent individual parallel programming models. Moreover, parallel applications

developers no longer need to learn any other parallel languages, and can write

parallel programs just as they write sequential programs.

According to the above considerations, we have developed a new skeletons

library named HWSkel that supports data parallel skeletons such as hMap, hRe-

duce, hMapReduce, and hMapReduceAll on heterogeneous multicore clusters. The

HWSkel framework is provided as a library of C functions which achieves par-

allelisation using MPI [21] and OpenMP [19]. HWSkel has been designed to

implement a hybrid programming model by combining MPI as the distributed

programming model with OpenMP for the shared programming model. More-

over, since our heterogeneous skeletons need to be invoked within an MPI initial-

isation, the HWSkel library provides wrapper functions (e.g InitHWSkel() and

TerminateHWSkel()) for some MPI routines to keep the user away from using

unfamiliar library functions within the skeletal programs.

An extension of the HWSkel library called GPU-HWSkel is presented in the

10

Chapter 1. Introduction

thesis to provide the developers with heterogeneous skeletons for parallel pro-

gramming on more heterogeneous architectures, in particular, heterogeneous mul-

ticore/GPU clusters. The GPU-HWSkel library is implemented by a hybrid pro-

gramming model comprising different programming models, including MPI and

OpenMP for distributed- and shared-memory models, and uses the CUDA pro-

gramming model to make a GPGPU accessible on NVIDIA GPUs. The library

provides a portable parallel programming environment for a wide range of parallel

architectures. GPU-HWSkel implements the same set of data-parallel skeletons

that are provided by the base library. Our framework provides programmers with

simple user functions, using macros to create CUDA kernel code for a GPU as

well as C-like functions. These user functions can be passed as arguments to the

skeletons.

1.2.3 Developing Performance Cost Models for Heteroge-

neous Skeletons

In general, parallel computational cost models are used in designing and optimis-

ing parallel algorithms and applications. They help the applications developers

in understanding all important aspects of the underlying architecture without

knowing unnecessary details. However, these computational models can play an

important role in predicting the performance of a given parallel program on a

11

Chapter 1. Introduction

given parallel machine. In this section, we will discuss the performance chal-

lenges that are introduced by programming heterogeneous parallel architectures,

proposing a performance cost model as a solution to overcome this challenge.

The level of complexity of designing and implementing efficient parallel al-

gorithms for heterogeneous parallel platforms (i.e. a heterogeneous multicore

cluster) is related to the degree of system heterogeneity. The diversity of the

underlying hardware in heterogeneous systems has a remarkable impact on the

performance of parallel algorithms. Thus, the performance of parallel algorithms

depends on the ways of exploiting the distinct architectural characteristics of

each target architecture, which is difficult on heterogeneous architectures, but

manageable on homogeneous architectures.

So the challenge is how to design parallel algorithms that take into consider-

ation this diversity of the underlying hardware to obtain a good performance of

heterogeneous parallel systems. One way to overcome this challenge is to use a

parallel computational cost model to guide the design of parallel algorithms and

predict their performances on heterogeneous architectures. To predict the per-

formance of a target architecture, performance cost models need to characterise

the target architecture, by using performance parameters.

Our goal is, therefore, to provide a performance cost model to guide our het-

erogeneous skeletons to obtain a good performance on the target heterogeneous

parallel systems. At the same time, we want to integrate this cost model into our

heterogeneous skeleton to implicitly predict the costs of parallel applications. In

12

Chapter 1. Introduction

other words, we seek to provide the programmer with high-level machine indepen-

dent and simple heterogeneous skeletons which allow for performance portability

by using a performance cost model that provides cost estimations on a broad

range of heterogeneous architectures.

We propose two performance cost models for two different heterogeneous par-

allel systems:

Heterogeneous multicore Cluster: We propose a static architectural per-

formance cost model to guide our heterogeneous skeletons for workload

distribution on a heterogeneous system composed of networks of arbitrary

numbers of nodes, each with an arbitrary number of cores sharing arbitrary

amounts of memory. The cost model supports performance portability by

providing cost estimation on a broad range of heterogeneous multicore plat-

forms. The proposed performance cost model is used to transparently and

statically determine the data-chunk size according to the number of cores,

clock speed and crucially the L2 cache size for each node over the hetero-

geneous cluster.

Heterogeneous multicore/GPU Cluster: We present another performance

cost model that is based on the above-mentioned performance cost model to

account for the GPU as an independent processing element and automat-

ically find optimal distributions in heterogeneous multicore/GPU systems.

13

Chapter 1. Introduction

The model is viewed as a two-phase cost model since the underlying tar-

get hardware consists of two levels of heterogeneous hardware architectures.

i) Single-Node Phase, to guide the workload distribution across the CPU

cores and GPU device inside each node in the integrated multicore/GPU

system; ii) Multi-Node Phase, to balance the workload amongst the

nodes in the cluster.

1.3 Roadmap of The Thesis

This work is divided into two main parts. The first part concerns the proposed

methodology for the design and implementation of our skeleton-based framework

(Chapters 3, 5), and the second part deals with providing an efficient cost mod-

els to improve the performance of our heterogeneous skeletons on heterogeneous

parallel architectures(Chapters 4, 6). The thesis is structured as follows:

Chapter 2 gives a survey of parallel computing. We first describe the parallel

hardware architectures, giving an overview of the available parallel architec-

tures in Section 2.2. We then give an overview of existing common parallel

programming models, describing the use of these programming models for

available parallel architectures in Section 2.3. Finally, we present the con-

cept of using skeleton programming in parallel and distributed computing,

and give an in-depth description of existing skeleton-based frameworks in

Section 2.4.

14

Chapter 1. Introduction

Chapter 3 presents a C skeleton-based library (HWSkel). We describe and

discuss the parallel implementation of the heterogeneous skeleton in the

HWSkel library in Section 3.1. We also present a description for each skele-

ton and its interface in the current HWSkel prototype in Section 3.2.

Chapter 4 describes our proposed architecture-aware cost model for hetero-

geneous multicore clusters. The chapter starts by providing a survey of

cost models in parallel computing in Section 4.1. We discuss some resource

metrics that are visible in all parallel computational models in Section 4.2

Section 4.3 presents the design ethos of CM1 cost model. We then discuss

our approach to developing a cost model to optimise overall processing time

in Section 4.4. We discuss how to integrate the cost model into our het-

erogeneous skeletons to improve their parallel performance in Section 4.5.

We finish the chapter by discussing experimental results to evaluate the

effect of the cost model on the performance of our heterogeneous skeletons

in Section 4.6.

Chapter 5 introduces our extended GPU-HWSkel library. The chapter starts

by introducing GPU programming, giving an overview of the available

parallel models for GPGPU computing in Section 2.3.3. First we survey

GPU skeletal approaches, and GPU skeleton libraries and languages in

Section 2.4.2.4. Next we describe the design and implementation of the

GPU-HWSkel library in Section 5.1.

15

Chapter 1. Introduction

Chapter 6 presents the extended cost model that is integrated into the GPU-

HWSkel library. We survey work on cost models for multicore/GPU systems

in Section 6.1. We discuss our approach in Section 6.2. Next we present

the extension of our multi-processor/multicore model to multicore/GPU in

Section 6.3. The chapter is concluded by investigating the ability of our

cost model to improve the performance of our heterogeneous skeleton in

different heterogeneous environments in Section 6.4.

Chapter 7 concludes giving a summary of the work and outlining directions

for future work. It also discuss the limitations of this work.

1.4 Publications

The work reported in this thesis led to the following publications:

• K. Armih, G. Michaelson and P. Trinder, Cache Size in a Cost Model for

Heterogeneous Skeletons, Proceedings of HLPP 2011 : 5th ACM SIGPLAN

Workshop on High-Level Parallel Programming and Applications, Tokyo,

September 2011.

• K. Armih, G. Michaelson and P. Trinder, Heterogeneous Skeletons for

CPU/GPU Systems with Cost Model, Submitted to HLPP 2013: Interna-

tional Symposium on High-level Parallel Programming and Applications,

Paris, July 2013.

16

Chapter 2

Background

This chapter provides a survey of parallel computing. The focus of this chapter

is on parallel architectures and their programming models. The chapter opens

with a description of parallel hardware architectures and subsequent sections

give an overview of common parallel programming models, describing the use

of these programming models on the available parallel architectures. Next the

chapter provides a survey of algorithmic skeleton frameworks, giving an in-depth

description of the current skeleton frameworks. Finally, the chapter closes with

discussion of open problems that summaries the contributions of this thesis.

2.1 Parallel Computing

Simply put, parallel computing is solving big computational problems using mul-

tiple processing elements simultaneously rather than using a single processing

17

Chapter 2. Background

unit.

The main target of parallel computing is to solve large problems that do not

fit in one CPU’s memory space, and to achieve good performance on parallel

systems by reducing the execution time. To accomplish these targets, a com-

putational problem is decomposed into independent sub-problems that can be

executed simultaneously using parallel systems.

Parallel systems can be a single computer with multiple processors, multiple

computers connected through a local network, or a multicore system that has two

or more cores in one single package.

2.2 Short Survey of Parallel Architectures

Parallel computing systems comprise multiple processing elements connected to

each other through an interconnection network plus the software needed to make

the processing elements work together [22].

The most common way to classify parallel system architectures is Flynn’s

taxonomy [23]. His classification is based upon the number of instruction streams

and data streams available in the architecture.

However, we here classify the parallel system architectures according to the

way each processing element in the system accesses the memory.

18

Chapter 2. Background

2.2.1 Distributed Memory Architectures

Each processing element in a distributed memory system has its own address

space and communicates with others by message passing.

• Multiprocessor Architectures

A multiprocessor is a parallel computing system that consists of multiple

processing elements connected to each other through an interconnection net-

work. These systems support either shared memory or distributed memory.

Figure 1 and Figure 2 show the structure of both shared memory multipro-

cessors and distributed memory multiprocessors [24].

Figure 1: Structure of a Shared Memory
Multiprocessor

Figure 2: Structure of a Distributed
Memory Multiprocessor

• Clusters

A cluster is a distributed memory system that consists of several standalone

computers connected to each other by a local area communication network.

A Beowulf cluster [25, 26] is a widely used multi-computer architecture,

composed of off-the-shelf compute nodes connected by fast Ethernet or some

19

Chapter 2. Background

other network. A common Beowulf system is built out of standard PCs

that run free software, such as the Linux operating system, Parallel Virtual

Machine (PVM) [27] and MPI [21]. Therefore, such systems can provide

cost-effective way to gain fast and reliable services.

• Grid

A grid [28] is a distributed memory system composed of many supercomput-

ing sites connected by the Internet into a single system to provides consider-

able computational resources (such as I/O capacity, memory, or computing

power) to a range of high performance applications. Applications in such

an integration of computers benefit from a uniform and simplified access to

the available resources. A grid can be viewed as a high-performance parallel

system since it provides multiple levels of parallelism.

2.2.2 Shared Memory Architectures

In shared memory architectures, all processing elements share a single address

space and communicate with each other by writing and reading shared memory

locations.

• Symmetric Multiprocessors

A Shared Memory Multiprocessor (SMP)[22] is a shared memory system

which consists of multiple processors connected to each other through an

interconnection network, where all processors share the main memory and

20

Chapter 2. Background

have equal access time to all memory locations. In a SMP system each

processor has its own cache memory as shown in Figure 1. In terms of the

programming model, SMP systems are the easiest parallel systems because

there is no need to explicitly distribute the data amongst the processors.

• Multi-Core Architectures

A multicore architecture (or Chip Multiprocessor(CMP)) is a special kind

of shared memory multiprocessor system which consists of two or more in-

dependent computational cores. These cores are embedded into a single

chip processor [29]. Each core has a small private L1 cache and shares L2

cache and global memory with other cores. The common model of mul-

ticore is dual-core (e.g. Intel’s Core 2 Duo [30], AMD Athlon X2 6400+

dual-core [31]) which contains two cores in a single die. The other models

such as quad-core (e.g. Intel Xeon Processor E5410 [32]), eight-core (e.g.

Intel 8-core Nehalem-EX [33]) models come as forms of multiple single-die

of dual-core models, and the 48-core Intel SCC processor [34] that consists

of 24 tiles of dual-core each.

In contrast with symmetric multiprocessor(SMP), multicore is more effi-

cient due to reduced memory bandwidth bottlenecks and communication

complexity. Since the cores in a multicore systems are closely tied together,

the system can take advantage of fast on-chip communication and higher

bandwidth among the cores.

21

Chapter 2. Background

2.2.3 GPU Architectures

GPU is a special processor used to manipulate computer graphics. Recently,

GPUs have shown great computational capabilities over the CPU [35].

In contrast, CPUs consist of few computational cores that are designed to sup-

port a wide range of applications. This limit of the number of cores restricts the

number of data elements that can be processed concurrently. On the other hand,

GPUs consist of hundreds of small cores which yields massive parallel processing

capabilities; this increases the number of data elements that can be processed

simultaneously. Due to the natural parallel architecture of GPUs, GPGPU have

became the most efficient, cost-effective platform in parallel computing. Archi-

tecturally, a GPU is used as a co-processor to accelerate the CPU for GPGPU

by executing the serial part of the program on the CPU and the parallel part on

the GPU [36, 35].

In this thesis we focus on NVIDIA architectures. NVIDIA GPUs [37] have a

number of multiprocessors, which can be executed in parallel. There are a variety

of NVIDIA GPUs of different architectures. For example, the NVIDIA Tesla GPU

[38] consist of a number of multiprocessors constructed from 8 scalar processors,

where the multiprocessor in the NVIDIA Fermi GPU has two groups of 16 scalar

processors. Figure 3 shows a simple view of the NVIDIA GPUs architecture

model. NVIDIA GPUs are based on an array of Streaming Multiprocessors (SMs).

Each multiprocessor consist of a number of Scalar Processor(SP) cores. A small

22

Chapter 2. Background

SPn

SP3

SP5

SPn-1

SP6

SP4

SP2SP1

Shared Memory

Host

Global Memory

Multiprocessor 1 Multiprocessor NMultiprocessor 2 Multiprocessor 3

Device

.
.
.

.

.

SPn

SP3

SP5

SPn-1

SP6

SP4

SP2SP1

Shared Memory

.

.
.
.

SPn

SP3

SP5

SPn-1

SP6

SP4

SP2SP1

Shared Memory

.

.
.
.

SPn

SP3

SP5

SPn-1

SP6

SP4

SP2SP1

Shared Memory

.

.
.
.

SPn

SP3

SP5

SPn-1

SP6

SP4

SP2SP1

Shared Memory

.

.
.
.

Figure 3: Simple Model of a GPU Architecture

local memory (e.g. 16KB) (referred to as shared memory) is integrated into

each multiprocessor to be shared by all SP cores. All streaming multiprocessors

are connected to large global memory(DRAM). The CPU has access(read/write)

to various types of memories on the GPU namely global, constant and texture

memory.

Furthermore, like the classical Single Instruction Multiple Data (SIMD) pro-

cessors, all SP cores in the same multiprocessor execute in SIMT (Single Instruc-

tion, Multiple Thread) fashion, where each core can execute a sequential thread.

23

Chapter 2. Background

2.2.4 Heterogeneous Parallel Architectures

Heterogeneous or hybrid systems are high-speed parallel computing systems that

consist of several nodes with separate address spaces(multicore cluster), where

each node contains multiple processing elements that shared the same memory

address.

Heterogeneous systems can take different architectural forms. They can be a

small cluster of multicore (e.g dual-core) PCs or a large cluster of SMP nodes.

A good example of cluster of SMP is the Earth Simulator system, which consists

of 640 processor nodes (SMP nodes) that are connected through a high-speed

network, where each node comprises 8 vector processors [39, 40].

Furthermore, with the advent of the graphics processing unit (GPU), gen-

eral purpose computing on GPU (GPGPU)[2] has become popular in the parallel

community and more complex heterogeneous systems i.e. multicore/GPU ar-

chitecture are introduced. Most personal computers consist of a GPU that is

connected to multicores via a PCI Express connection, which offers multi-level of

hardware parallelism.

Currently, the High-Performance Computing (HPC) community tries to in-

crease the number of processing elements to provide a high performance capability

by using heterogeneous computing system architectures that are constructed from

both CPUs and GPUs (e.g. heterogeneous integrated multicore/GPU cluster).

24

Chapter 2. Background

2.3 Parallel Programming Models

Parallel programming models present an abstract view of the underlying hard-

ware. There are several different parallel programming models for different par-

allel architectures. These models can be implemented either in multiprocessor

architectures as distributed memory programming models or in multicore ar-

chitectures as shared memory programming models. Therefore the choice of a

suitable parallel programming model depends on the underlying hardware of the

system. Moreover, various parallel programming APIs for both distributed and

shared memory parallel programming models have been introduced, to ease build-

ing efficient parallel applications [19, 18].

2.3.1 Distributed Memory Programming Models

The main distributed memory programming model is the message passing pro-

gramming model, which is implemented on multiprocessor architectures where

the underlying hardware is composed of a collection of processing elements [41].

The message passing model is based on a set of processes that use local memory,

and communicate with each other by explicitly sending and receiving messages.

The shortcoming of the message passing model is that the programmer is re-

quired to explicitly implement some tasks of parallelisation such as inter-process

communication and synchronisation, and data partitioning and distribution.

However, the message passing model is widely used in parallel programming

25

Chapter 2. Background

due to several advantages. First, it supports Multiple Instruction Multiple Data

(MIMD) architectures such as clusters, and also it can be implemented on SMP

systems by using shared variables as message buffers. Second, the programmer

has full control of data locality [41, 42]. The most common realisations of the

message passing model are MPI [18], PVM [27], and Unified Parallel C(UPC) [43].

The Distributed Shared Memory (DSM) model [44] is another example of

a distributed memory programming model. The basic idea of a DSM system

is to implement a shared memory programming model on distributed memory

systems. Since shared memory programming provides a straightforward way of

programming and portability, DSM is intended to take full advantage of the

shared memory programming model capabilities to achieve good scalability and

performance on distributed memory architectures.

There are several DSM implementations[44, 45] including IVY, Midway, Clouds,

and Munin.

• MPI

MPI [21] is an API (Application Programming Interface) for the distributed

memory message passing programming model. It provides the user inter-

face and functionality for message passing capabilities. MPI is a library,

not a language, that provides language bindings for C, C++, and Fortran.

The MPI standard includes subroutines that provide a message passing

26

Chapter 2. Background

environment for distributed memory architectures, and even shared mem-

ory systems. It delivers good portability, since it provides high flexibility

of implementation on a broad variety of architecture. Moreover, the MPI

implementation was designed to support heterogeneity, which means that

MPI has the ability to function on heterogeneous architectures.

Unfortunately, MPI has a number of disadvantages [21, 18, 46]. The main

disadvantages are related to low-level communication, where sending and

receiving data between processors can often create a large overhead, which

has to be minimised. For example, the granularity often has to be large,

since the fine grain granularity can create a large quantity of communica-

tions. And also dynamic load balancing is often difficult. Furthermore,

creating and developing parallel programming based on MPI requires much

effort, since the developer must take the responsibility of creating the code

that will be executed by each processor.

2.3.2 Shared Memory Programming Models

Shared memory, or multi-threaded programming models are supported on shared

memory multiprocessor architectures described in Section 2.2.2, where the under-

lying hardware has multiple processing elements, which access the same shared

memory. A shared memory program is executed by independent threads that

access the same shared address space. Shared memory models employ shared

27

Chapter 2. Background

variables for communication and synchronisation between threads. Quinn [42]

says that a common approach to a shared memory model is fork/join parallelism,

where the program starts with one thread to execute the sequential part of the

algorithm and then creates a team of threads to execute the parallel part. At the

end of the parallel part all threads are destroyed and the program returns to a

single thread. One of the important capabilities of the shared memory model is

the ability to support incremental parallelisation. There are several realisations of

shared memory programming models such as POSIX Threads [47], OpenMP [19],

GpH [48, 49], Intel TBB [50], and FastFlow [51].

• OpenMP

OpenMP is a shared-memory application programming interface(API) that

is suitable for implementation on shared memory multiprocessor architec-

tures. It gives the programmer a simple and flexible interface to parallelise

sequential applications. In order to take full advantage of shared mem-

ory programming model capabilities, OpenMP was designed to support

fork/join parallelism. Moreover, OpenMP was created to support incre-

mental parallelisation to achieve good performance [19].

OpenMP consists of a set of compiler directives and runtime library func-

tions to identify parallel regions in Fortran, C, or C++ programs. The

directives were provided to control parallelism; therefore the programmer

can tell the compiler which parts of existing code will be run in parallel

28

Chapter 2. Background

and how to distribute the tasks among the threads using these directives.

OpenMP has become widely used in shared memory programming due to

the simplicity of use. All the details of parallel programming are up to the

compiler, and also it is well-structured for parallel programming.

• Pthreads

Pthreads or Portable Operating System Interface for Unix (POSIX) Threads

is an API for creating and manipulating threads. It was created to support

shared memory programming models. The Pthreads standard is defined

as a library of C programming language types, functions and constants to

create, manipulate and manage threads [47]. For parallelising a sequential

application using the Pthreads standard, the programmer is required to ex-

plicitly create, manipulate and manage threads. In contrast with OpenMP,

using Pthreads is much more complicated, and the parallel code looks very

different from the original sequential code.

2.3.3 GPU Programming

GPUs were designed as specialised processors to accelerate graphics processing.

Recently, however, the architectures that comprise multicores and GPUs have

become ubiquitous and cost effective platforms for both graphics and general-

purpose parallel computing, as they offer extensive resources such as high memory

bandwidth and massive parallelism [3]. Compared to a CPU, the performance

29

Chapter 2. Background

of a GPU comes from creating a large number of lightweight GPU threads with

negligible overheads, where in the general purpose multicore the number of cores

limits the number of data elements that can be processed simultaneously.

With the programmability available on the GPU, a new technique called

GPGPU (General Purpose computation on GPU) has been developed [2, 3].

GPGPU allows the use of a GPU to perform computing tasks that are usu-

ally performed by a traditional CPU. Many parallel applications have achieved

significant speedups with GPGPU implementations on a GPU over the CPU [52].

However, GPGPU architectures can deliver high performance only to data par-

allel programs that have no inter-thread communication, so programs that incur

frequent synchronisation during execution time have serious performance penal-

ties.

All GPU programs follows a (SIMD) programming style, where many elements

are processed in parallel using the same program. The NVIDIA GPU model [3]

is SIMT (Single Instruction Stream, Multiple Threads), where the GPU program

consists of sequence of code execution units called kernels. Each kernel is exe-

cuted simultaneously on all SMs, and finishes before the next kernel begins by

using implicit barrier synchronisation between kernels. These kernels comprise

a number of lightweight GPU threads that are grouped in independent blocks;

each thread is executed by a single processor and cannot communicate with any

other.

30

Chapter 2. Background

Today’s GPUs enable non-graphics programmers to exploit the parallel com-

puting capabilities of a GPU using data parallelism. Consequently, a number of

data-parallel programming languages [1, 53, 8, 9, 10] have been proposed for us-

ing GPUs for GPGPU by providing all the means of a data parallel programming

model.

In this chapter we focus on the C-like CUDA language [1] introduced by

NVIDIA that supports a general purpose multi-threaded SIMD model for GPGPU

programming. Other programming languages that support GPGPU program-

ming include Sh[53], which was proposed as a high-level shading language and

implemented as C++ library on both GPU and CPU.

Brook[8] is high-level programming environment that views the GPU as a

stream co-processor. Brook is implemented in C by providing data parallel oper-

ations for GPGPU programming; these operations are organised as a collection

of kernels. A kernel is a call to a parallel function that takes one or more streams

as input and produce one or more streams. In Brook, programmers are required

to divide the program into kernels and handle GPU resources.

Similar to Brook, Microsoft Research introduced an advanced system called

Accelerator[9], which provides a high-level programming model of GPU program-

ming, but instead of the programmers dividing the program into kernels, Acceler-

ator automatically divides the computation into pixel shaders. Accelerator uses

the C# library to provide high-level data parallel array operations; the array

operation sequences is transparently compiled to GPU kernels.

31

Chapter 2. Background

The Khronos group developed an open low-level standard called Open Com-

puting language (OpenCL) [54, 10] for GPGPU programming by providing a high-

level programming framework that supports various computing devices, enabling

the programmers to exploit the parallelism of heterogeneous systems. OpenCL

offers a unified way to achieve a high degree of software portability. Therefore

it can enable programmers to write code not only for GPUs, but for CPUs and

other compute devices. OpenCL is based on C for writing computing kernels.

The current specification supports both data and task-based parallel program-

ming models.

Some companies also provide programming frameworks for their own GPUs

such as ATI Stream[55] for AMD GPUs.

• CUDA Programming Model

CUDA (Compute Unified Device Architecture) [1, 3] is a popular parallel

programming model that support parallel programming on GPUs. In par-

ticular, CUDA simplifies the parallel applications development on NVIDIA

GPUs by providing a data parallel programming model that views the GPU

as a parallel computing co-processor that can execute a large number of

threads simultaneously.

Like OpenCL[56], CUDA provides a set of extensions and a runtime library

for C, but in the latest version of CUDA, a big subset of C++ is included,

which makes CUDA programming much easier than OpenCL programming.

32

Chapter 2. Background

CUDA parallel systems consist of two components, the host (i.e. CPU),

and the GPU. The GPU is organised as a grid of thread blocks as shown

in Figure 4. A thread block can be executed on only one multiprocessor

Figure 4: CUDA Architecture [1]

(SM), but one or more thread blocks can be executed simultaneously by a

single SM in the CUDA-supported GPU device. A thread block is a set of

threads that work together by sharing the data and they can synchronise

with each other via barriers. The maximum number of threads inside each

thread block is up to 1024 depending on the GPU computing capability.

A CUDA program is a single file of mixed source code for both CPU and

33

Chapter 2. Background

GPU implementations. The program is compiled by the NVIDIA C Com-

piler (NVCC) to separates the two codes. The host code represents the

sequential phases (with little or no parallelism) that consist of one or more

sequential threads, which are executed on the CPU. On the other hand, the

parallel phases are executed on the GPU as device code that consists of a

set of parallel kernel functions. Each kernel function executes a sequential

program on a bunch of lightweight parallel threads that are organised in the

form of a grid of thread blocks, where the number of threads inside each

thread block and the number of thread blocks are specified within each ker-

nel. In the CUDA model, the kernel function is executed in SIMD style.

Since the CPU and GPU have separate memory address spaces, memory

management such as transfer data between the CPU and the GPU have to

be done explicitly using the CUDA-provided API functions.

The execution of a CUDA program starts on the CPU. Once the kernel

function is invoked, the flow of the execution is moved to the device GPU,

and then a bunch of lightweight parallel threads are generated and grouped

as a grid while the data is transferred between the CPU and the GPU.

After all threads of the running kernel complete their execution, the running

thread grid is terminated and the flow of execution is moved back to the

CPU. Since the CUDA program might have more than one kernel, the flow

of program execution will keep switching between the CPU and the GPU

depending on how many kernels are left in the running program.

34

Chapter 2. Background

2.3.4 Hybrid Programming Models

A hybrid programming model is a combination of different parallel programming

models. This programming model can be used to take full advantage of the het-

erogeneous parallel architecture described in Section 2.2.4, where the underlying

hardware consists of several nodes with separate address spaces (cluster), and

each node contains a different number of multiple processing elements that share

the same memory address space.

A common example of this combination is a hybrid programming model that

uses shared- and distributed-memory parallel programming models[57]. This

combination uses both a message passing model (MPI) and shared-memory model

(OpenMP) or Pthreads; OpenMP is used to exploit the multicore per node while

MPI is used to communicate between the nodes.

Another heterogeneous programming model is that based on CPU and GPU

programming to provide support on heterogeneous CPU/GPU architectures. This

heterogeneous programming model will be discussed in more detail in Chapter 5.

2.4 High Level Parallel Programming Approaches

Parallel architectures offer impressive computational capabilities compared to se-

quential architectures. Unfortunately, writing programs for those parallel archi-

tectures introduces much programming complexities to the programmers. Sub-

sequently, the complexity of parallel programming causes programmers to focus

35

Chapter 2. Background

on the low-level parallel activities instead of concentrating on application-specific

issues. The low-level parallel activities encompass all low-level details that are in-

volved in the parallel application development process, where the nature of these

activities differs from one parallel architecture to another. This includes activities

such as: problem distribution, communication and synchronisation, data packing

and unpacking, and load balancing.

Therefore, providing high-level parallel abstractions to enable programmers

to ignore all these low-level implementation details during the development of

any parallel programs is required to reduce the complexity of parallel program-

ming [12, 58].

Design patterns are a valuable way to reduce the complexity of parallel pro-

gramming [59]. Such high-level parallel abstractions are intended to capture com-

mon parallel patterns by hiding most of the low-level details from programmers,

and can used as fundamental building blocks in parallel programs.

Several approaches have been introduced for raising the level of abstraction in

parallel programming. These high-level abstraction-based approaches have been

developed as:

• New Languages: A number of approaches such as llc [60] and P3L [61]

have built a new language from scratch to raise the level of abstraction.

This new language is based on an existing programming language as the

host language. Parallel abstractions are provided through the language

36

Chapter 2. Background

syntax. The only drawback to this approach is that programmers need to

learn a new language.

• Parallel Compilers: Providing a parallel compiler from existing language

is another approach to high-level parallel programming such as Skil [62] and

HDC [63]. A parallel compiler is used to compile the sequential program

that contains high-level parallel constructs.

• Library of Parallel Constructs: A common high-level parallel program-

ming approach such as Skel [64], Muesli [65], and Muskel [66] to extend

an existing language with predefined parallel library constructs. From the

viewpoint of the application programmer, this approach is much easier than

other approaches.

2.4.1 Skeleton Programming

Structured parallel programming (or algorithmic skeletons) was first introduced

by Cole in [12]. Conceptually, skeletons are designed to capture the common

algorithmic parallel patterns of computation and communication, and are used

to develop parallel applications. Therefore, the programmer can build parallel

programs by using these parallel skeletons in a sequential manner, and also more

complex programs by nesting the basic skeletons together.

Skeletons can also be treated as generic program components that implement

37

Chapter 2. Background

parallel patterns of computation; therefore they can be reused to develop differ-

ent applications. In the parallel computing domain, the development of parallel

programs is a hard and long process, therefore using a particular skeleton in de-

veloping several applications can offer the great advantage of investing more time

in concentrating on application-specific issues.

According to the parallel patterns that are implemented by skeletons, parallel

skeletons can be split into two classes: i) Data parallel skeletons which capture

the patterns of data parallel computations, where structured data are partitioned

among processing elements and computations are performed simultaneously on

different parts of data structures. This includes map, reduce, etc [67]; ii) Task

parallel skeletons that capture the parallelism from executing several unrelated

tasks. This includes pipe, farm, etc. Skeletons in both classes can be integrated

to provide more flexibility in developing complex applications [68].

Algorithmic skeletons can be provided to the user either as language constructs

or as parallel library constructs. Four manifesto principles are presented in [64]

and its extension in [69] to provide guidance to the future design of skeletal

programming frameworks:

1. propagate the concept with minimal conceptual disruption, skele-

tons have to be provided within existing programming languages without

adding any new syntax.

2. integrate ad-hoc parallelism, skeletons must be constructed in a way

38

Chapter 2. Background

that allow the users to integrate the skeletons to capture the parallel pat-

terns that are not supported by the available skeletons.

3. accommodate diversity, in constructing skeletons we have to ensure a

balance between the need of abstraction for simplicity and the for realistic

flexibility.

4. show the pay-back, we should be able to show that skeletal programs can

be easily executed on new architectures.

5. support code reuse, that is skeletons can be used with no modification

and minimum of effort.

6. handle heterogeneity, skeletons should be implemented in a way that

skeleton-based programs can be executed on heterogeneous architectures.

7. handle dynamicity, skeletons should be able to handle dynamic situa-

tions, such as load balancing strategies.

Much work has been done in the area of skeletal programming under various

names, and for different parallel architectures. Good general surveys of early

research are given in [13, 14], and more recent detailed ones in [15, 70].

39

Chapter 2. Background

2.4.2 A Survey of Structured Parallel Programming Frame-

works

Several implementations of structured parallel programming are available for the

parallel community. They use different host languages and provide different sets

of parallel constructs.

Since the organisation of parallelism in skeletal programming is up to the

skeleton implementation, so algorithmic skeletons can be classified by their im-

plementations on supported underlying hardware either as distributed- or shared

memory architecture. This section surveys the major work done on structured

parallel programming based on their implementations.

Note that all frameworks, and their constructs and skeletons names, are writ-

ten as they have been by the original authors.

2.4.2.1 Distributed Computing Environment

Most of the high-level parallel programming approaches have been proposed

for distributed computing architectures such as Clusters and Grids. These ap-

proaches have been developed either as new languages based on skeleton con-

structs or as parallel library constructs in well-known sequential languages such

as C/C++ and Java.

Most of the approaches, if not all, provide support for both task-parallel and

data-parallel skeletons.

40

Chapter 2. Background

P3L Language

P3L [61, 71] is structured high-level parallel programming language based on

skeleton constructs. It uses the C language as host language along with a

template-based compiler to implement P3L applications.

P3L provides the user with a set of parallel constructs that abstract the com-

mon forms of data and task parallelism. Skeletons in P3L include the sequential,

farm and pipeline skeletons for task parallel implementations and, three skeletons

for data parallelism namely map, reduce and comp[67].

Parallel implementation in P3L is based on implementation templates that

are part of the P3L compiler, these templates have corresponding parallel con-

structs in P3L programs. Each construct in P3L has a number of templates

that are implemented for different architectures. The P3L compiler uses these

implementation templates to generate the final code.

A performance cost model is used by the compiler to guide the resource al-

location process for each template to ensure optimisation for a given parallel

architecture.

Skil

Skil[62] is an imperative language that uses algorithmic skeleton for parallel im-

plementations. Some functional features such as higher-order functions, function

currying, and polymorphic types which enable skeletons to be reused to solve

related problems, are provided to integrate the skeletons into Skil. A subset of

41

Chapter 2. Background

the C language is employed as the basis of Skil to provide these features.

Skil provides a number of skeletons for data parallelism which work on the

homogeneous data structure “distributed array”. These skeletons include array-

map, array-fold, array-gen-mult, array-permute-rows and other process parallel

skeletons such as array-create, array-destroy, and array-copy skeletons. A new

enhancement is presented in [72] to enable the algorithm skeletons to work on

dynamic distributed data structures.

Skil comes with its own compilers. The function of this compiler is to process

a Skil program with the provided skeletons by translating all high-order functions

that implement parallel code into C target code.

HDC

HDC [63] is a functional language that uses a subset of the Haskell language as its

host language. It use a higher-order functional programming style to implement

skeleton programming. A compiler is provided for HDC.

HDC is designed for the parallelisation of the divide and conquer paradigm.

Within HDC, skeletons for divide and conquer have different implementations,

starting with general divide-and-conquer (dcA), fixed recursion depth (dcB), con-

stant division degree (dcC), multiple block recursion (dcD), element-wise opera-

tions (dcE) and correspondent communication (dcF).

A HDC source program is processed by the compiler and translated into C

code, where the code contains calls to MPI routines that handle communications

42

Chapter 2. Background

and memory management.

Muesli

Herbert Kuchen has provided algorithm skeletons[65] in the form of the C++

Muesli library that is implemented on the top of MPI. It takes advantage of

polymorphism, higher order function and partial application concepts that exist

in C++ to implement the skeletons.

This library offers data parallel and task parallel skeletons that can be nested

[68] according to P3L’s two tier[73] approach. Muesli provides parallel Skeletons

for task parallel computations such as: Pipeline, Farm, DivideAndConquer, and

BranchAndBound; where data parallelism is based on a distributed data structure

for arrays, matrices, and sparse matrices to support data parallel skeletons such

as: fold, map, and zip.

An optimisation technique is introduced in [74] for data parallel skeletons such

as map and fold, where sequences of communication skeletons are combined to

improve the performance of the skeleton implementation.

Lithium

Lithium [75] is a fully nestable algorithmic skeleton library based on Java. It

exploits a macro data flow execution model to implement skeleton programs.

Skeletons in Lithium support both data and task parallelism, including a

pipe skeleton, farm skeleton, iterative skeletons (Loop and While), data parallel

43

Chapter 2. Background

skeletons (Map and DivideConquer), and a conditional skeleton(If).

In the macro data flow model, the skeleton program is compiled into a data

flow graph, where each node in the graph represents a sequential portion of code;

therefore, each processing element can compute any one of these nodes.

An optimisation technique is presented in[76] to improve the performance of

Lithium implementations in grid environments. This technique is integrated into

the data flow model to ensure load-balancing, reduce the communication time,

and hiding remote call latency by overlapping communications and computations.

eSkel

eSkel(Edinburgh Skeleton Library) is a library of C functions running on the

top of MPI. The initial prototype was introduced in [64] with four principles of

skeleton design guidance. In the second version of eSkel two fundamental concepts

of skeleton definition were introduced[77, 78]: (i) nesting-mode where skeleton

nesting can be transient or persistent; (ii) interaction-mode where the skeletons

can interact implicitly or explicitly.

eSkel adopts the Single Program Multiple Data (SPMD) distributed model

from MPI for its implementations, and all its skeleton operations are working

within the MPI environment.

The eSkel library offers data parallel and task parallel skeletons for distributed

environments such as clusters and grids. This includes skeletons such as Pipeline,

Deal, Farm, HaloSwap and Butterfly. Besides, eSkel provides a data model(eDM)

44

Chapter 2. Background

for communicated data within the MPI environment.

Muskel

Muskel[66] is a full Java library for skeletal parallel programming. It provides

nestable skeletons for distributed-memory environments such as clusters and

grids.

Muskel provides a subset of parallel skeletons for both data and task parallel

computations including farm, pipeline, and map skeletons.

Muskel is different to other skeleton implementation libraries apart from Lithium

[75], where it takes advantage of macro data-flow technology to implement the

algorithm skeletons instead of relying on the templates. This technology gives the

users good flexibility in using the predefined skeletons or defining new skeletons

for parallel computation patterns that are not covered by the existing skeletons.

In the current Muskel version[79], annotations and AOP (Aspect-Oriented

Programming) techniques are introduced to abstract non-functional features of

parallel programs such as security issues, source-to-source program optimisation

rules, and data management (e.g. load-balancing).

SkeTo

SkeTo [80] is a C++ library that supports distributed parallel computations in

a sequential way. This library uses MPI to achieve parallel distributed computa-

tions on distributed memory architectures.

45

Chapter 2. Background

SkeTo employs the theory of constructive algorithmic [81] to define its algo-

rithm skeletons, where the computation structure is defined in terms of its data

structure. Therefore, it provides constructive skeletons for data structures such

as lists, trees, and matrices instead of providing parallel computation skeletons.

Each of these skeletons is composed of three basic parallel skeletons namely map,

reduce and scan. SkeTo uses a meta mechanism to define new skeletons, where

a new skeleton can be constructed from the basic skeletons or the skeletons that

have been built upon the basic skeletons.

SkeTo implemented a fusion transformation technique [82] with OpenC++ to

improve skeleton performance. This technique is used to optimise the combina-

tions of skeletons by eliminating any intermediate data structure that is generated

between skeleton calls and reducing the overhead of the skeleton calls. In the new

version of SkeTo[83] the fusion transformation technique is implemented in C++

using an expression template technique.

Calcium

Calcium [84] is a Java library for parallel skeletons, which uses the ProActive en-

vironment [85] to achieve parallelism on parallel distributed architectures. ProAc-

tive is Java middleware which is used for parallel distributed programming.

Calcium provides basic parallel skeletons for both task and data parallelism.

Skeletons in Calcium can be nested and applied to complex problems that require

nestable skeleton patterns. The Calcium library contains SEQ, FARM, PIPE, IF,

46

Chapter 2. Background

FOR, WHILE, MAP, FORKE, and D&C skeletons[15].

The general idea of parallelism in Calcium is to store all tasks supplied by the

programmers in a task pool. Tasks are then computed according to the skeleton

instructions, and returned to the task pool again after completed.

QUAFF

QUAFF [86] is a C++ skeleton-based parallel programming library. It aims to re-

duce run-time overhead by using template-based meta-programming techniques.

The QUAFF library provides a number of nestable skeletons beside the con-

structs that allow these skeletons to be composed conditionally or sequentially

in programs. Skeletons in the QUAFF library include a pipeline skeleton, farm

skeleton for data parallelism, pardo skeleton, and scm skeleton which stand for

the split-compute-merge model.

The implementation mechanism of QUAFF is to translate the C++ templates

into new C+MPI code, which can be compiled and executed at run-time.

2.4.2.2 Multi-Core Computer Architectures

Since algorithmic skeletons were first introduced by Cole in [12], most structured

parallel frameworks were proposed for distributed-memory environments such as

clusters and grids (see section 2.4.2.1).

With the advent of multicore processor technology, several appropriate frame-

works have been proposed recently.

47

Chapter 2. Background

To our knowledge, there are few frameworks that are introduced as a skele-

ton library to be implemented on shared-memory environments (in particular for

multicore systems), this including Skandium [87] and FastFlow [51]. There are

other non-skeleton frameworks such as TBB [50] that provide high level abstrac-

tions for low-level parallel activities in the same way as the algorithmic skeleton

frameworks.

It is worthwhile to give a brief description of these non-skeleton frameworks.

In the following section, we provide detailed description of available frameworks

for multicore architectures.

All of the mentioned skeleton libraries address parallel or distributed systems

and were not developed for use in grid systems.

Skandium

One of the recent skeleton libraries that supports shared-memory architectures

(Multi-core system) is Skandium [87]. Skandium is a full Java library of shared

memory algorithm skeletons. It is a complete re-implementation of the Calcium

library described in Section 2.4.2.1.

Skandium is designed to exploit the strength of multicore systems by providing

nestable skeletons for data and task parallelism. It contains all the algorithmic

skeletons that exist in the Calcium library.

Skandium works using the Fork/Join framework in Java to achieve parallelism

in shared memory environments, where all the operational details of the program

48

Chapter 2. Background

flow such as split, fork and join are implicitly defined in skeleton composition.

FastFlow

FastFlow [51, 88] is high-level parallel programming framework that target multi-

core platforms. FastFlow is designed as a stack of layers, where the lowest layer

provides very efficient lock-free synchronisation, the middle layer deals with the

communication mechanisms, and finally the top layer provides as programming

primitives.

FastFlow uses self-offloading technique to give the user an easy way to intro-

duce the parallelism by offloading the kernels onto number of threads running

on a multi-core CPU. Moreover, it allows users to move or copy parts of sequen-

tial codes into the body of C++ methods, for parallel execution in a FastFlow

skeleton.

FastFlow provides programmers with a set of high-level parallel abstractions

(algorithmic skeletons) as C++ template library. These abstractions include

farm, farm-with-feedback (i.e. Divide&Conquer) and pipeline patterns.

TBB

Intel Threading Building Blocks (TBB)[50] is a commercial C++ library for

shared-memory architecture. It is designed to be implemented on a multicore

system by providing high level abstractions for parallel patterns.

Intel TBB supports data- and task parallel computations. It offers various

49

Chapter 2. Background

templates for parallel programming such as parallel for, parallel reduce, paral-

lel scan, and parallel pipeline. These templates can be nested to build a large

parallel components.

Additionally, Intel TBB provides concurrent data structures (containers) such

as concurrent hash map, concurrent queue, and concurrent vector, beside a num-

ber of synchronisation primitives for multi-thread access.

TBB employs a work stealing technique to increase core utilisation which in

turn improves the performance of the library implementations.

BlockLib

BlockLib[89] is a library of parallel generic building blocks for the IBM Cell

processor that is used for gaming and high-performance computing.

BlockLib provides skeletons as compiled code and macros with the use of the

C preprocessor and compiler. The library consists of data parallel skeletons such

as map, reduce, scan, and map-with-overlap.

At the implementation level, memory management is controlled by using some

functionality of the NestStep runtime system; and the synchronisation is con-

trolled via the Cell signal [90].

2.4.2.3 Heterogeneous Environments

As we mentioned earlier, most of the algorithmic skeleton frameworks are intro-

duced to take advantage of distributed-memory computing architectures where

50

Chapter 2. Background

each node in the system has a single-core CPU.

However, heterogeneous algorithmic skeletons are intended to efficiently take

advantage of systems that comprise multicore CPU nodes. These heterogeneous

skeletons are based on both distributed- and shared-memory programming models

to support the heterogeneous environment.

In this section, we provide a brief description of algorithmic skeletons frame-

work for heterogeneous platforms.

Extension of Muesli

An extension of the Muesli library described in Section 2.4.2.1 is presented in [16]

for multicore computer architectures. It combines OpenMP and MPI to efficiently

exploit multicore clusters, where the parallelism within each node is achieved via

OpenMP.

The new version includes all the distributed data structures(arrays, matrices)

and their supported skeletons(fold, map, scan, zip).

Therefore, the enhanced version of the Muesli library provides more flexibility

and implementations by supporting both multi-node, single-core and multicore

architectures.

SkeTo

SkeTo described in Section 2.4.2.1 is a parallel skeletons library which was origi-

nally proposed for distributed environments. A new implementation of SkeTo is

51

Chapter 2. Background

presented in [17] to support multicore clusters environments.

The new implementation provides new parallel skeletons such as generate,

map, and reduce for distributed matrices in the SkeTo skeleton library.

To ensure load-balancing between nodes and cores, a two-stage dynamic task

scheduling strategy is employed with the new skeletons. Task scheduling among

cores is implemented by dividing the task into smaller tasks using the size of the

L1 cache,and then applying the task-steal strategy for task allocation. Between

the nodes the task is divided according to the size of the L2 cache by using a

master-worker model.

nmcmuskel

nmcmuskel (or networked multicore muskel) [91] is a new version of the Muskel

framework described in Section 2.4.2.1. The new version provides a set of parallel

skeletons for implementation on multicore clusters. nmcmuskel implements the

same set of parallel skeletons as the muskel library.

llc Language

llc [60, 92] is a high-level parallel language that offers parallel algorithmic skele-

tons for writing parallel programs. Parallel skeletons are provided using OpenMP

directives in the language syntax along with a source to source compiler. llc uses

C as the target language.

52

Chapter 2. Background

llc provides support for algorithmic skeletons that can be executed on dis-

tributed or shared memory architectures. The available skeletons in llc include a

forall skeleton, parallel sections, task farms and pipelines.

In the llc language, parallelism is achieved using MPI on both distributed and

shared memory architectures. Thus, llc programs are written in C with use of

llc parallel constructs, and then the compiler translates the code to C with MPI

calls.

A new methodology in [93] takes advantage of the llc compiler to generate

hybrid MPI/OpenMP code for multicore architectures, where OpenMP is used

inside each node in the cluster and MPI controls the communications between

these nodes.

2.4.2.4 Skeletal-based GPU Programming

A number of data parallel programming languages have been introduced for

GPGPU programming. CUDA, and OpenCL are widely used as discussed in

the previous sections. To gain performance most GPGPU languages, including

both CUDA and OpenCL, are low level and lack high level abstractions to im-

prove programmability.

A number of approaches have been proposed to improve and ease GPU pro-

gramming. For example, a compiler framework by Baskaran et al.[94] has been

introduced for automatic transformation of sequential input programs into effi-

cient parallel CUDA programs. Another compiler framework by Seyong et al.[95]

53

Chapter 2. Background

aims to translate standard OpenMP applications into CUDA-based GPGPU ap-

plications to offer an easier programming model for GPGPU computing.

Eventually, the skeleton parallel programming approach, which has been shown

to deliver significant high performance on general-purpose CPU architectures, fills

the gap and abstracts the GPU infrastructure from the purpose of the program.

With the advent of the CUDA programming model and the OpenCL standard,

much research [96, 97, 98, 99, 11] has been done in the area of GPU skeletal-based

programming. Even more, using parallel skeleton algorithmic for both CPU and

GPU can provide multiple implementations on heterogeneous multicore/GPU

systems. In the following sub-sections, we provide a brief description of existing

parallel algorithmic skeleton frameworks that target GPU computing.

Thrust

Thrust[96] is an open source C++ library that uses CUDA on NVIDIA GPU

architectures. It is based on the Standard Template Library (STL) to provide

vector type (generic containers) for memory management in both the host CPU

and the device GPU.

Thrust provides a high-level parallel programming environment through a

collection of high-level data-parallel primitives such as scan, sort, and reduce.

Even more, in the Thrust library, a complex algorithm can be implemented by

composing the provided parallel primitives together.

54

Chapter 2. Background

CUDPP

CUDPP[97] is a library of high-level primitives similar to skeletons. It is imple-

mented in C/C++ using CUDA on NVIDIA GPU architectures. CUDPP offers

data-parallel primitives such as parallel scan, parallel sort, and parallel reduction.

These primitives can be used as building blocks for a wide variety of data-parallel

algorithms, and also can be used as standalone calls on the GPU.

SkePU

SkePU[98, 100] is a C++ template library which offers a set of data-parallel

skeletons for GPU computing. The SkePU library is built on top of CUDA and the

OpenCL standard to provide single- and multi-GPU programming environment to

non-graphics developers. The library also supports multicore CPUs programming

by using OpenMP.

SkePU provides flexible memory management by using a vector data container

that implements the lazy memory copying technique to avoid unnecessary mem-

ory transfer. The set of data-parallel skeletons implemented in SkePU library

includes the basic data-parallel Map, Reduce and Scan skeletons, and other vari-

ants of the map skeleton such as MapOverlap and MapArray.

SkePU uses preprocessor macros to provides user-defined functions that can

be used with skeletons; these functions are implemented as structs with member

functions for CUDA and CPU and strings for OpenCL.

55

Chapter 2. Background

SkelCL

SkelCL [99] is a skeleton library for high-level GPU programming. Like SkePU,

SkelCL is implemented using the OpenCL standard to ensure hardware portabil-

ity for a wide range of heterogeneous systems. SkelCL offers support for programs

on multiple devices, in particular for multi-GPUs.

Currently, the library provides a set of basic data-parallel skeletons including

Map, Zip, Reduce, and Scan. Beside these algorithmic skeletons, it provides

an abstract vector data type for memory management such as transferring data

between multiple compute devices (CPU and GPU). All the skeletons in SkelCL

use this vector as input and output in their implementations.

Qilin

Qilin [11] is a high-level parallel programming model that provides an API that

implements common data-parallel operations to exploit hardware parallelism avail-

able on heterogeneous architectures. The Qilin API built on top of C/C++ with

the use of Intel Thread Building Blocks [50] for CPU programming and NVIDIA

CUDA [1] for GPU programming. Both TBB and CUDA codes are generated

during compilation using the Qilin compiler and then the final native machine

code is generated using the system compiler. Current implementation of Qilin

provides two C++ templates (QArray, QarrayList) for parallel computations.

QArray represents a multidimensional array of a generic type, while QarrayList

56

Chapter 2. Background

represents a list of QArray objects.

Muesli

An extension of the Muesli library (described in sections 2.4.2.1, 2.4.2.3) is pre-

sented in [101] to provides algorithmic skeletons for GPU implementations. The

extension library provides support to a variety of parallel architectures including

multi-core, multi-GPU, and GPU clusters [102]. It uses MPI for distributed mem-

ory architectures, OpenMP for multi-core, and CUDA for GPU programming.

FastFlow

FastFlow has indirect support for GPU implementations through GPU-enable

linear algebra libraries [103]. A Heterogeneous streaming pipline implementation

using the FastFlow library for large scale computational problem is provided

to support parallel implementations on multi-core CPUs and multi-GPUs in a

cluster environment.

2.5 Discussion

Table 1 summaries the characteristics of well-known parallel skeletal-based frame-

works and their implementations. One can see that there is not much research

in the area of heterogeneous parallel skeletons that target heterogeneous parallel

57

Chapter 2. Background

architectures such as heterogeneous multicore cluster and heterogeneous mul-

ticore/GPU cluster. The development of skeleton-based parallel programming

libraries, which will be presented in the following chapter, has been inspired by a

number of similar frameworks outlined in Section 2.4.2.3 to provide heterogeneous

skeletons for heterogeneous parallel architectures.

However, the implementation philosophy of our libraries differ from these

frameworks in that the skeletons can be executed on a variety of parallel archi-

tectures (See figure 5) in a transparent way. This means the programmer does

not need to choose the appropriate skeleton for the target hardware; instead the

skeleton automatically implements a suitable model for the specific heterogeneous

multicore cluster architecture.

Another difference is that the target hardware of approach is a heterogeneous

parallel system composed of a number of nodes either with different processing

capability or with an integrated multicore/GPU architecture. Thus, performance

cost models (presented in Chapter 4 and 6) are integrated into our heteroge-

neous skeletons to balance workload distribution to improve the performance on

heterogeneous architectures.

58

Chapter 2. Background

H
o
st

E
x
e
c
u
ti
o
n

G
P
U

M
u
lt
i-

F
ra

m
e
w
o
rk

L
a
n
g
u
a
g
e

E
n
v
ir
o
n
m
e
n
t

Im
p
le
m
e
n
ta

ti
o
n

G
P
U

sk
e
le
to

n
se
t

P
3L

C
D

is
tr

ib
u

te
d

N
O

N
O

fa
rm

,
p

ip
el

in
e,

se
q
,

m
a
p

,
re

d
u

ce
,

co
m

p

S
k
il

C
su

b
se

t
D

is
tr

ib
u

te
d

N
O

N
O

ar
ra

y
-p

er
m

u
te

-r
ow

s,
ar

ra
y
-f

o
ld

,
a
rr

ay
-g

en
-m

u
lt

,
ar

ra
y
-m

ap
,

ar
ra

y
-g

en
-m

u
lt

,
a
rr

ay
-p

er
m

u
te

-r
ow

s

H
D

C
H

as
ke

ll
D

is
tr

ib
u

te
d

N
O

N
O

d
cA

,
d

cB
,

d
cC

,
d

cD
,

d
cE

,d
cF

M
u

es
li

C
+

+
D

is
tr

ib
u

te
d

&
C

U
D

A
Y

E
S

P
ip

el
in

e,
F

ar
m

,
D

iv
id

eA
n

d
C

o
n

q
u

er
,

m
u

lt
ic

or
e/

G
P

U
B

ra
n

ch
A

n
d

B
ou

n
d

,
fo

ld
,

m
a
p

,z
ip

L
it

h
iu

m
J
av

a
D

is
tr

ib
u

te
d

N
O

N
O

p
ip

e,
fa

rm
,

lo
op

,
w

h
il

e,
m

a
p

,
D

iv
id

eC
o
n

q
u

er
,

if

eS
ke

l
C

D
is

tr
ib

u
te

d
N

O
N

O
P

ip
el

in
e,

D
ea

l,
F

ar
m

,
H

a
lo

S
w

a
p

,
B

u
tt

er
fl

y

M
u

sk
el

J
av

a
D

is
tr

ib
u

te
d

N
O

N
O

fa
rm

,
p

ip
el

in
e,

m
a
p

S
ke

T
o

C
+

+
D

is
tr

ib
u

te
d

&
N

O
N

O
m

ap
,

re
d

u
ce

,
sc

a
n

H
et

.m
u

lt
ic

or
e

C
al

ci
u

m
J
av

a
D

is
tr

ib
u

te
d

N
O

N
O

S
E

Q
,

F
A

R
M

,
P

IP
E

,
IF

,
F

O
R

,
W

H
IL

E
,

M
A

P
,F

O
R

K
E

,D
&

C

Q
U

A
F

F
C

+
+

D
is

tr
ib

u
te

d
N

O
N

O
p

ip
el

in
e,

fa
rm

,
p

a
rd

o
,

sc
m

S
ka

n
d

iu
m

J
av

a
M

u
lt

i-
C

or
e

N
O

N
O

S
E

Q
,

F
A

R
M

,
P

IP
E

,
IF

,
F

O
R

,
W

H
IL

E
,

M
A

P
,F

O
R

K
E

,D
&

C

F
as

tF
lo

w
C

+
+

M
u

lt
i-

C
or

e
N

O
N

O
fa

rm
,

fa
rm

-w
it

h
-f

ee
d

b
a
ck

,
p

ip
el

in
e

T
B

B
C

+
+

M
u

lt
i-

C
or

e
N

O
N

O
p

ar
al

le
l

fo
r,

p
ar

al
le

l
re

d
u

ce
,

p
a
ra

ll
el

sc
a
n

,
p

ar
al

le
l

p
ip

el
in

e

B
lo

ck
L

ib
C

IB
M

C
el

l
p

ro
ce

ss
or

N
O

N
O

m
ap

,
re

d
u

ce
,

sc
a
n

,
m

a
p

w
it

h
ov

er
la

p

n
m
c m

u
sk

el
J
av

a
H

et
.m

u
lt

ic
or

e
N

O
N

O
fa

rm
,

p
ip

el
in

e,
m

a
p

ll
c

C
H

et
.m

u
lt

ic
or

e
N

O
N

O
fo

ra
ll

,
fa

rm
,

p
ip

el
in

e

T
h

ru
st

C
+

+
G

P
U

C
U

D
A

N
O

S
ca

n
,

S
o
rt

,
R

ed
u

ce

C
U

P
P

C
/C

+
+

G
P

U
C

U
D

A
N

O
S

ca
n

,
S

o
rt

,
R

ed
u

ce

S
ke

P
U

C
+

+
C

P
U

/G
P

U
C

U
D

A
/O

p
en

C
L

Y
E

S
m

ap
,

re
d

u
ce

,
M

a
p

R
ed

u
ce

,
M

a
p

A
rr

ay
,

M
ap

O
ve

rl
a
p

S
ke

lC
L

C
+

+
G

P
U

O
p

en
C

L
Y

E
S

M
ap

,
Z

ip
,

R
ed

u
ce

,
S

ca
n

Q
il

in
C

/C
+

+
G

P
U

C
U

D
A

N
O

Q
A

rr
ay

,
Q

a
rr

ay
L

is
t

T
ab

le
1:

A
lg

or
it

h
m

ic
sk

el
et

on
fr

am
ew

or
k
s

ch
ar

ac
te

ri
st

ic
s

59

Chapter 2. Background

P
ar

al
le

l C
o

m
p

u
ti

n
g

S
ke

le
to

n
P

ro
g

ra
m

m
in

g

D
is

t.
M

em

G
P

U
s

S
ha

re
d.

M
em

H
et

.D
is

t/
S

ha
re

d

H
et

.C
P

U
/G

P
U

P
ro

g
ra

m
m

in
g

M
o

d
el

s

D
is

t.
M

em

G
P

U
s

S
ha

re
d.

M
em

H
et

.D
is

t/
S

ha
re

d

H
et

.C
P

U
/G

P
U

P
ar

al
le

l
A

rc
h

it
ec

tu
re

s

D
is

t.
M

em

G
P

U
s

S
ha

re
d.

M
em

H
et

.D
is

t/
S

ha
re

d

H
et

.C
P

U
/G

P
U

➢
G

P
U

-H
W

S
k

e
l

➢
C

M
2

➢
H

W
S

k
e

l
➢

C
M

1

e
.g

.
B

e
o

w
u

lf
 C

lu
st

er

e.
g

. I
n

te
l X

eo
n

E
54

1
0

e.
g

.
N

V
ID

IA
 T

e
sl

a

e.
g

. M
u

lt
i-

co
re

C
lu

st
er

e
.g

. C
P

U
/G

P
U

C

lu
st

er

e.
g

.
M

P
I

e.
g

.
O

p
e

n
M

P

e.
g

. C
U

D
A

e
.g

. H
yb

ri
d

M

P
I/O

p
en

M
P

e.
g

. H
yb

ri
d

O
p

e
n

M
P

/C
U

D
A

e
.g

.
 P

3L
, S

ki
l,

eS

ke
l

e.
g

. S
ka

n
d

iu
m

,
F

as
tF

lo
w

e.
g

. S
ke

P
U

,
S

ke
lC

L

F
ig

u
re

5:
P

ar
al

le
l

T
ax

on
om

y
of

H
W

S
ke

l
an

d
G

P
U

-H
W

S
ke

l
F

ra
m

ew
or

k
s

60

Chapter 3

The HWSkel Library

This chapter presents a C based-skeleton library that uses MPI and OpenMP

to achieve parallelism on heterogeneous multicore cluster. The chapter starts by

providing a justification for using C as the target language, and also the choice of

MPI and OpenMP for parallel implementations in Section 3.1. Next we provide

a description of each skeleton in the current HWSkel prototype in Section 3.2.

3.1 C skeleton-based Library

In this section we first discus the design of the HWSkel library and its parallel

implementations. We then show how to take advantage of MPI and OpenMP

to achieve parallelism on both distributed and shared memory architectures in

heterogeneous multicore systems.

61

Chapter 3. The HWSkel Library

3.1.1 Design Summary

Our design goals are as follows. We aim to provide a high-level heterogeneous

programming model that can hide many low-level details that are commonly

encountered in any parallel application on heterogeneous parallel architectures.

Thus programmers need only concentrate on the key application-specific issues.

The skeletons in HWSkel are implemented using a hybrid OpenMP/MPI

model. As discussed in Section 1.2.2, our framework enables the programmer

to develop parallel programs in the C language in a sequential manner, where the

skeleton call appears as a normal function call in the program.

This design is adaptable and hence HWSkel skeletons can be used for distributed-

memory systems, shared-memory systems or both systems together as heteroge-

neous multicore systems. For instance, if the underlying system is distributed

memory, the distributed parallel programming model will be automatically adopted.

The HWSkel library has the following characteristics:

1. The recent trend of designing algorithm skeletons is to present them as li-

braries to avoid adding any new syntax. Therefore, HWSkel is provided as

a library for C that works using MPI and OpenMP to achieve the paralleli-

sation on heterogeneous multicore systems.

2. The HWSkel library provides simple heterogeneous parallel skeletons for

data parallelism for heterogeneous multicore clusters.

3. HWSkel supports parallelism on heterogeneous multicore architectures, and

62

Chapter 3. The HWSkel Library

flexible parallelism on both shared and distributed memory architectures.

4. Lower-level details of parallel programming are concealed from the users

by our skeleton. Furthermore, the interaction between MPI and OpenMP

introduces new communication such as data flow between these models, and

this communication is implicitly defined by skeleton composition. Hence

skeleton can be used to develop parallel programs in a sequential fashion.

5. To ensure a good load balance we integrate an effective cost model (CM1)

for data-load distribution into our system as discussed in Chapter 4. The

cost model uses specific hardware properties to distribute work between

processors.

3.1.2 Cole’s Manifesto

In our framework we have adopted Cole’s four manifesto principles[64] as a guide

to design the HWSkel library. In this section, we show how the characteristics of

our skeletons satisfy these principles.

4 Propagate The Concept with Minimal Conceptual Disruption.

To satisfy this principle HWSkel is provided as a library of C functions on

top of MPI and OpenMP to avoid the introduction of any new syntax.

4 Integrate ad-hoc Parallelism. Since HWSkel runs on top of most popu-

lar parallel programming models such as MPI and OpenMP, the integration

with ad-hoc parallelism is facilitated at this level.

63

Chapter 3. The HWSkel Library

4 Accommodate Diversity. HWSkel skeletons cannot be directly nested.

However, in our library, heterogeneity is realised internally by the layered

composition of architecture specific skeleton components so we anticipate

that it should be straight forward to expose this to programmers. Thus we

satisfy the requirement for diversity.

4 Show the payback. To show the payback we build our skeletons around

the idea of supporting different architectures. Since we have used two dif-

ferent parallel programming models in the same skeleton, skeletal programs

can be executed on different architectures.

3.1.3 Host Language

From a programmer’s perspective, providing parallel skeletons as high-level li-

braries in an existing language is more common than the new language approach.

This is due to programmer reluctance to learn a new programming language.

Thus we introduce our approach as a high-level library of parallel algorithmic

skeletons, which can be used by C programmers in as normal function call in the

program. Our library is written in C due to the popularity of imperative lan-

guages in the parallel domain. In addition C has the following important features

that make it a good candidate host language for algorithmic skeletons.

• Higher-order functions: typically algorithmic skeletons are offered to

programmers as higher-order functions, due to their natural properties [104]

64

Chapter 3. The HWSkel Library

that make them highly abstract, where the details of a problem are passed

as arguments. Thus, skeletons can easily be implemented in C since it sup-

ports function pointers as function parameters. Thus skeletons can imitate

higher-order functions by accessing arbitrary argument functions. However,

this does not support function arguments as closures.

• Ability to write polymorphic functions: since the idea of the algo-

rithmic skeleton approach is to encapsulate common parallel patterns into

polymorphic higher-order functions [105], therefore, generic skeletons can

be provided in C by using void pointers.

3.2 Algorithmic Skeletons in HWSkel

This section presents the current prototype of the HWSkel library that includes

heterogeneous algorithmic skeletons for data parallel computations. We provide

a brief description and definition for each heterogeneous skeleton in the HWSkel

library. Note that all the definitions of the skeletons are written in BMF [106].

The current HWSkel library defines some widely used skeletons to provide a

baseline for comparison with other people’s work. The skeletons include hMap,

hMapAll, hReduce, hMapReduce, and hMapReduceAll for data parallelisation,

which are based on distributed data structures.

65

Chapter 3. The HWSkel Library

3.2.1 Data Communication

All our data-parallel skeletons work on homogeneous data structures (mostly

arrays), so dealing with heterogeneous data structures has to be in a high level

way by mapping them to homogeneous data structures. This is done by means

of the ArrayList, where each element contains a buffer of char data type and the

length of the buffer. So the data structures need to be packed into this ArrayList

before the distribution process and then unpacked on each processor.

3.2.2 Initialisation and Termination

Since the implementations of the HWSkel communication system uses MPI at

the top level, the skeletons must be invoked after the initialisation of the MPI

environment. For this reason we defined two wrapper functions to initiate and

terminate the MPI environment. In principle, these could be added automatically

by a pre-processor.

3.2.2.1 InitHWSkel()

The skeletons that are defined in the HWSkel library must be called after InitH-

WSkel. InitHWSkel initialises the MPI environment and the global ArrayList

currentCluster that contains all the architectural information that is needed

in the CM1 cost model as discussed in Section 4.4. It calls the getClusterInfo()

function that does dynamic parametrisation of the static cost model (CM1), as

discussed in Section 4.5.

66

Chapter 3. The HWSkel Library

1 void InitHWSkel (int argc , char ∗∗ argv)
2 {
3 //− MPI I n i t i a l i s a t i o n
4 MPI Init (&argc , &argv) ;
5 MPI Comm rank (MPICOMMWORLD, &id) ;
6 MPI Comm size (MPICOMMWORLD, &np) ;
7
8 //− ge t c l u s t e r s p e c i f i c a t i o n s
9 cu r r en tC lu s t e r = GetClus te r In fo () ;

10 }

Listing 3.1: InitHWSkel Code.

The prototype for the InitHWSkel is:

void* InitHWSkel(int argc,char **argv)

Listing 3.1 shows C code of InitHWSkel C code. A complete code for the get-

ClusterInfo() function can be found in Appendix B.3.

3.2.2.2 TerminateHWSkel()

The TerminateHWSkel function is called to terminate a computation based on

skeletons.

The prototype for the TerminateHWSkel is:

void* TerminateHWSkel()

3.2.3 The hMap Skeleton

The HWSkel library provides a heterogeneous map skeleton called hMap. hMap

is equivalent to the classical map skeleton for data-parallel computations, where

a single function is applied to different data elements of input data structures

(usually an array). To achieve parallelism, a collection of input data structures

67

Chapter 3. The HWSkel Library

are distributed amongst a group of processing elements; then the map function

is applied to each data element in parallel and then the results are collected.

hMap is implemented using a Single-Program-Multiple-Data programming

model, where the input data structures and the results are contained in a sin-

gle node (usually the node with rank 0). Since the underlying target hardware

consists of two levels of parallel hardware architecture, hMap first partitions and

distributes the input data structures amongst the nodes, and then partitions the

local data amongst the CPU cores in each node in the system. After the map

function is executed by each processing element the local results are collected in

each node, and then all results are gathered by the master node.

hMap BMF Definition

The hMap skeleton applies function f to each element in array a[].

hMap(f, a[]) = [f(a[0]), f(a[1]),, f(a[n− 1])] (1)

hMap Interface:

The prototype for hMap is:

void* hMap(void* dataList,int size,enum DataType dType,

void* mapFunc, enum DataType rType);

where

dataList Specifies the starting address of the data.

68

Chapter 3. The HWSkel Library

size Indicates the length of the data.

dType Denotes the datatype of input data.

mapFunc Specifies the map function.

rType Denotes the datatype of the output data.

hMap Algorithm:

Algorithm 1 displays the implementation of the SPMD model in the hMap skele-

ton. Complete code for hMap can be found in Appendix C.1.

Algorithm 1 hMap skeleton implementation

1: BEGIN
2: → master node:
3: for every nodei do in parallel
4: Send chunks-list[i]
5: end for
6: → worker node:
7: for every corei do in parallel
8: assign core-local-list from node-chunks-list[i]
9: end for

10: → each core:
11: for every core-local-list[i] do in parallel
12: core-local-results[i] = map(f , core-local-list[i])
13: end for
14: → worker node:
15: for every corei do in parallel
16: concatenate (core-local-results[i], node-results[i])
17: end for
18: → master node:
19: for every nodei do in parallel
20: concatenate (node-results[i], global-results[i])
21: end for
22: END

69

Chapter 3. The HWSkel Library

hMap Example

An example of using hMap to calculate the element-wise square is shown in

Listing 3.2

3.2.4 The hMapAll Skeleton

The hMapAll Skeleton is similar to hMap, but all input data is sent to each

processing element in the system, and then each gets its own portion.

hMapAll BMF Definition

The hMapAll skeleton applies function f to each element in array a[] against the

whole a[].

hMapAll(f, a[]) = [f(a[0], a[]), f(a[1], a[]),, f(a[n− 1], a[])] (2)

hMapAll Interface:

The prototype for hMapAll is:

void* hMapAll(void* dataList,int size,enum DataType dType,

void* mapFunc, enum DataType rType);

where

dataList Specifies the starting address of the data.

size Indicates the length of the data.

dType Denotes the datatype of input data.

70

Chapter 3. The HWSkel Library

1
2 #include ”HwSkel . h”
3
4 int square (int a)
5 {
6 return a ∗ a ;
7 }
8
9 int main (int argc , char ∗∗ argv)

10 {
11 int l en ;
12 int ∗ input ;
13 int ∗output ;
14
15 //− s k e l e t on i n i t i a l i z a t i o n
16 InitHwSkel (argc , argv) ;
17
18 i f (StartNode)
19 {
20 s s c an f (argv [1] , ”%d”,& len) ;
21
22 //− a l l o c a t e memory fo r an array
23 input = mal loc (l en ∗ s izeof (int)) ;
24
25 //− f i l l the array
26 int i ;
27 for (i =0; i<l en ; i++)
28 input [i] = i ;
29 }
30
31 //− c a l l hMap s k e l e t on
32 output = hMap(input , length , INT , square) ;
33
34 i f (StartNode)
35 {
36 for (i =0; i<l en ; i++)
37 p r i n t f (” p a r a l l e l r e s u l t = %d \n” , output [i]) ;
38 }
39
40 //− s k e l e t on terminat ion
41 TerminateHwSkel () ;
42
43 return 0 ;
44 }

Listing 3.2: A hMap example that calculate the element-wise square.

71

Chapter 3. The HWSkel Library

mapFunc Specifies the map function.

rType Denotes the datatype of the output data.

hMapAll Algorithm:

Algorithm 2 displays the implementation the SPMD model in hMapAll. Complete

code for hMapAll can be found in Appendix A.2.

Algorithm 2 hMapAll skeleton implementation

1: BEGIN
2: → master node:
3: for every nodei do in parallel
4: Send input-data
5: end for
6: → worker node:
7: for every corei do in parallel
8: assign core-local-list from input-data
9: end for

10: → each core:
11: for every core-local-list[i] do in parallel
12: core-local-results[i] = map(f , core-local-list[i], input-data)
13: end for
14: → worker node:
15: for every corei do in parallel
16: concatenate (core-local-results[i], node-results[i])
17: end for
18: → master node:
19: for every nodei do in parallel
20: concatenate (node-results[i], global-results[i])
21: end for
22: END

hMapAll Example

Listing 3.3 shows an example of hMapAll that find the frequency of array ele-

ments.

72

Chapter 3. The HWSkel Library

1 #include ”HwSkel . h”
2
3 int f r equency (int a , int ∗ arr , int l en)
4 {
5 int i , f r e q = 0 ;
6 for (i =0; i<l en ; i++)
7 i f (a == arr [i])
8 f r e q++;
9 return f r e q ;

10 }
11
12 int main (int argc , char ∗∗ argv)
13 {
14 int l en ;
15 int ∗ input , ∗output ;
16
17 //− s k e l e t on i n i t i a l i z a t i o n
18 Init HwSkel (argc , argv) ;
19
20 i f (StartNode)
21 {
22 s s c an f (argv [1] , ”%d”,& len) ;
23
24 //− a l l o c a t e memory fo r an array
25 input = mal loc (l en ∗ s izeof (int)) ;
26
27 //− f i l l the array
28 int i ;
29 for (i =0; i<l en ; i++)
30 input [i] = rand () % 100 ;
31 }
32
33 //− c a l l hMapAll s k e l e t on
34 output = hMapAll (input , length , INT , f requency) ;
35
36 i f (StartNode)
37 {
38 for (i =0; i<l en ; i++)
39 p r i n t f (” p a r a l l e l r e s u l t = %d \n” , output [i]) ;
40 }
41
42 //− s k e l e t on terminat ion
43 Terminate HwSkel () ;
44 return 0 ;
45 }

Listing 3.3: A hMapAll example that finds the frequency of array elements.

73

Chapter 3. The HWSkel Library

3.2.5 The hReduce Skeleton

The hReduce skeleton represents the reduce function, where all elements in input

data structures (usually arrays) are “summed-up” using an associative binary

function. As in hMap the input data structures are partitioned and distributed

to all nodes in the system, and then the local input data for each node is split

amongst the cores. Finally the reduce function firstly merges all the local inter-

mediate results, and then perform the reduction on the global results.

hReduce BMF Definition

The hReduce function converts an array of numbers to a single value using an

associative binary operator ⊕.

hReduce(⊕, a[]) = a[0]⊕ a[1]⊕⊕ a[n− 1] (3)

hReduce Interface:

The prototype for the hMapReduce skeleton is:

void* hReduce(void* dataList,int size,enum DataType dType,

void* reduceFunc, enum DataType rType);

where

dataList Specifies the starting address of the data.

size Indicates the length of the data.

dType Denotes the datatype of input data.

74

Chapter 3. The HWSkel Library

reduceFunc Specifies the reduction function.

rType Denotes the datatype of the output data.

hReduce Algorithm:

Algorithm 3 display the implementation of the SPMD model in hReduce. Com-

plete code for hReduce can be found in Appendix A.3.

Algorithm 3 hReduce skeleton implementation

1: BEGIN
2: → master node:
3: for every nodei do in parallel
4: Send chunks-list[i]
5: end for
6: → worker node:
7: for every corei do in parallel
8: assign core-local-list From node-chunks-list[i]
9: end for

10: → each core:
11: for every core-local-list do in parallel
12: core-result = merge(⊕ , core-local-list)
13: end for
14: → worker node:
15: for every corei do in parallel
16: node-result = merge (⊕, core-results[i])
17: end for
18: → master node:
19: for every nodei do in parallel
20: result = merge (⊕, node-results[i])
21: end for
22: END

hReduce Example

Listing 3.4 shows an example of hReduce, which applies reduction computation

by using + as operator.

75

Chapter 3. The HWSkel Library

1
2 #include ”HwSkel . h”
3
4 int plus (int a , int b)
5 {
6 return a + b ;
7 }
8
9 int main (int argc , char ∗∗ argv)

10 {
11 int l en ;
12 int ∗ input ;
13 int ∗output ;
14
15 //− s k e l e t on i n i t i a l i z a t i o n
16 Init HwSkel (argc , argv) ;
17
18 i f (StartNode)
19 {
20 s s c an f (argv [1] , ”%d”,& len) ;
21
22 //− a l l o c a t e memory fo r an array
23 input = mal loc (l en ∗ s izeof (int)) ;
24
25 //− f i l l the array
26 int i ;
27 for (i =0; i<l en ; i++)
28 input [i] = i ;
29 }
30
31 //− c a l l hReduce s k e l e t on
32 output = hReduce (input , length , INT , p lus) ;
33
34 i f (StartNode)
35 {
36 p r i n t f (” p a r a l l e l r e s u l t = %d \n” , output) ;
37 }
38
39 //− s k e l e t on terminat ion
40 Terminate HwSkel () ;
41
42 return 0 ;
43 }

Listing 3.4: A hReduce example that applies reduction computation by using +
as operator.

76

Chapter 3. The HWSkel Library

3.2.6 The hMapReduce Skeleton

The hMapReduce skeleton is built from the basic data parallel skeletons: map,

reduce, and split. The underlying conceptual model is similar to Google’s MapRe-

duce [107] but the target architectures are heterogeneous multicore clusters. The

computation in the hMapReduce skeleton is expressed as two functions: a map

function that processes the input data and generates an array of intermediate

results, and a reduce function that merges all the intermediate results into a

single result. Here the map function generates a local array of intermediate re-

sults within each multicore node, the reduce function firstly merges all the local

intermediate results, and then perform the reduction on the global results.

hMapReduce BMF Definition

Simply, the hMapReduce skeleton is a generalisation of the map skeleton including

the reduce skeleton.

hMapReduce(f,⊕, a[]) = reduce(⊕,map(f, a[])) (4)

So from the equations (1), (3), and (4) we can rewrite the hMapReduce skeleton

as follows:

hMapReduce(f,⊕, a[]) = f(a[0])⊕ f(a[1])⊕ ...⊕ f(a[n− 1]) (5)

77

Chapter 3. The HWSkel Library

where a[] is an array of elements, f is a function applied to each element in a[],

and ⊕ is an associative operation.

The hMapReduce Interface:

The prototype for hMapReduce is:

void* hMapReduce(void* dataList,int size,enum DataType dType,

void* mapFunc, enum DataType rType, void* reduceFunc);

where

dataList Specifies the starting address of the data.

size Indicates the length of the data.

dType Denotes the datatype of the input data.

mapFunc Specifies the map function.

rType Denotes the datatype of the output data.

reduceFunc Specifies the reduction function.

hMapReduce Algorithm:

Figure 6 shows the computation scheme for the hMapReduce skeleton. The skele-

ton employs a SPMD programming model that is inherited from MPI, the top

level of the implementation of the hMapReduce skeleton. Complete code for

hMapReduce can be found in Appendix A.4.

78

Chapter 3. The HWSkel Library

Worker(1):
 map(f)
 reduce(local results)

 Master:
 Split(input data)
 Send(chunks)

Input Data

Worker(2):
 map(f)
 reduce(local results)

Worker(n):
 map(f)
 reduce(local results)

.

Master: reduce(global results)

Output

Figure 6: The Computation Scheme for hMapReduce Skeleton

hMapReduce Example

Listing 3.5 shows an example of hMapReduce that computes the vector dot prod-

uct.

3.2.7 The hMapReduceAll Skeleton

The hMapReduceAll skeleton is similar hMapReduce described above, but all

input data is sent to each processing element in the system, and then each pro-

cessing element splits the data to get its own portion. Thus, both the input data

and the portion of the input data in each node can be used together by the map

function to perform its computation.

79

Chapter 3. The HWSkel Library

1
2 #include ”HwSkel . h”
3
4 int square (int a)
5 {
6 return a ∗ a ;
7 }
8
9 int plus (int a , int b)

10 {
11 return a + b ;
12 }
13
14 int main (int argc , char ∗∗ argv)
15 {
16 int l en ;
17 int ∗ input , ∗output ;
18
19 //− s k e l e t on i n i t i a l i z a t i o n
20 Init HwSkel (argc , argv) ;
21
22 i f (StartNode)
23 {
24 s s c an f (argv [1] , ”%d”,& len) ;
25
26 //− a l l o c a t e memory fo r an array
27 input = mal loc (l en ∗ s izeof (int)) ;
28
29 //− f i l l the array
30 int i ;
31 for (i =0; i<l en ; i++)
32 input [i] = i ;
33 }
34
35 //− c a l l hMapReduce s k e l e t on
36 output = hMapReduce (input , length , INT , square , INT , p lus) ;
37
38 i f (StartNode)
39 {
40 p r i n t f (” p a r a l l e l r e s u l t = %d \n” , output) ;
41 }
42 //− s k e l e t on terminat ion
43 Terminate HwSkel () ;
44 return 0 ;
45 }

Listing 3.5: A hMapReduce example that compute the dot product.

80

Chapter 3. The HWSkel Library

hMapReduceAll BMF Definition

hMapReduceAll(f,⊕, a[]) = f(a[0], a[])⊕ f(a[1], a[])⊕ ...⊕ f(a[n− 1], a[]) (6)

where a[] is an array of elements, f is a function applied to each element in a[]

against the all elements in a[], and ⊕ is an associative operation.

The hMapReduceAll Interface:

The hMapReduceAll skeleton has the same for prototype as hMapReduce, but the

implementation is different:

void* hMapReduce(void* dataList,int size,enum DataType dType,

void* mapFunc, enum DataType rType, void* reduceFunc);

where

dataList Specifies the starting address of the data.

size Indicates the length of the data.

dType Denotes the datatype of the input data.

mapFunc Specifies the map function.

rType Denotes the datatype of the output data.

reduceFunc Specifies the reduction function.

hMapReduceAll Algorithm:

Figure 7 shows the computation scheme for hMapReduceAll.

81

Chapter 3. The HWSkel Library

Worker(1):
 split(input data)
 map(f)
 reduce(local results)

Master: Send(all input data)

Input Data

Worker(2):
 split(input data)
 map(f)
 reduce(local results)

Worker(n):
 split(input data)
 map(f)
 reduce(local results)

.

Master: reduce(global results)

Output

Figure 7: The Computation Scheme for hMapReduceAll Skeleton

3.3 Summary

In this chapter, we have presented a new skeleton-based programming library

called HWSkel for heterogeneous systems, in particular, heterogeneous multicore

cluster architectures.

The library is implemented in C on top of MPI as a distributed-memory pro-

gramming model and OpenMP for shared-memory parallelism. This means that

the heterogeneous skeletons can take straightforward advantage of their underly-

ing hybrid programming model to execute on either distributed-memory systems,

shared-memory systems or distributed-shared memory architecture.

In particular, the HWSkel framework provides a set of heterogeneous skeletons

82

Chapter 3. The HWSkel Library

for data-parallel computations i.e. hMap, hMapAll, hReduce, hMapReduce, and

hMapReduceAll. Moreover, since our skeletons need to be invoked within an MPI

initialisation, the HWSkel library provides wrapper functions (e.g InitHWSkel

and TerminateHWSkel) for some MPI routines to keep the programmer away

from using a new programming language within the skeletal programs .

83

Chapter 4

The HWSkel Cost Model (CM1)

This chapter presents a performance cost model (CM1) for data parallelism on

heterogeneous multicore cluster architectures. The aim of CM1 is to provide

a cost estimation of a given problem on a given machine by using a number of

hardware properties, for use it in our heterogeneous skeletons presented in Section

3.2. We start by providing a survey of several important parallel cost models in

Section 4.1 and then discuss the resource metrics of some current cost models in

Section 4.2 . In sections 4.3 and 4.4 we introduce our new architecture-aware cost

model and then illustrate its use in the HWSkel library in Section 4.5. Finally, we

discuss experimental results to evaluate the effectiveness of our new cost model in

the performance of the HWSkel heterogeneous skeletons with both data parallel

benchmark and a non-trivial image analysis application in Section 4.6 .

84

Chapter 4. The HWSkel Cost Model (CM1)

4.1 High-Level Parallel Cost Models

Models of parallel computation play an important role in designing and optimising

parallel algorithms and applications. These models assist the developer in under-

standing all important aspects of the underlying architecture without knowing

unnecessary details. Moreover, parallel computational models are used to predict

the performance of a given parallel program on a given parallel machine.

The common way of predicting the performance of parallel program is to

derive a symbolic mathematical formula that describes the execution time of that

program. This formula has a set of parameters which usually include the size of

program, number of processors, and other hardware and algorithm characteristics

that affect the execution time of the program. These parameters can be given by

a programmer, benchmarking, or profiling tools.

Skeleton-based and similarly structured frameworks have employed these par-

allel computational models to predict the performance of the parallel algorithms

in the early stages of the design process. Consequently, these computational

models can assist and guide scheduling algorithmic skeletons on a wide variety of

architectures.

Several parallel computational models have been developed for parallel dis-

tributed systems to guide parallel algorithm designers. Good general surveys of

early research are given in [108, 109, 110, 13] and a more recent survey is given

in [111].

85

Chapter 4. The HWSkel Cost Model (CM1)

In this section, we survey several well-known parallel cost models that have

been proposed for parallel and distributed environments as well as algorithmic

skeletons.

4.1.1 The Family of PRAM Models

The most widely-used cost model in parallel computing is the Parallel Random

Access Machine (PRAM) model[112]. The PRAM model is based on the RAM

model[113] of sequential computation. The model consists of a global shared

memory and a set of sequential processors that operate synchronously. The model

makes the assumption that at each synchronous step, each processor can access

any memory location in one unit time regardless of the memory location. The

PRAM model provides a useful guide for parallel algorithm designers and thereby

allows them to ignore all the architecture details of the underlying hardware and

concentrate on application-specic issues.

Despite the useful basis provided by the PRAM model for parallel algorithm

design, it can not reflect all the costs of a real parallel machine. This results

in non-portable programs due to a number of assumptions made by the model

by ignoring the cost of some parallel activities such as synchronisation, memory

contention, and communication latency or bandwidth.

Therefore, several realistic variants of PRAM-based models have been intro-

duced to make PRAM more practical. These variants attempt to account for

the cost issues of real parallel machines. For example, models such as Block

86

Chapter 4. The HWSkel Cost Model (CM1)

PRAM(BPRAM)[114], Local-Memory PRAM(LPRAM)[115], and Asynchronous

PRAMs[116] seek to include the latency cost with the standard PRAM model.

Another PRAM variant are asynchronous PRAMs that add some degree of

asynchrony into the basic PRAM model in order to ease the restriction on pro-

cessors synchronisation. These models differ in the way of the processors are

synchronised. They include the Asynchronous Parallel Random Access Machine

model(APRAM)[117] that addresses the synchronisation assumption of the basic

PRAM model to allow asynchronous execution, and the Hierarchical PRAM(H-

PRAM) model[118], which use the PRAM model as a sub-model, consists of a

collection of synchronous PRAMs that operate asynchronously from each other.

Another asynchronous model by Gibbons et al. [119] allows the processors to run

in an asynchronous manner.

The CRCW PRAM model [120] and the QRQW PRAM model [121, 122]

account for memory locations contention, where the read and write to shared

memory locations are done concurrently.

4.1.2 BSP and Variants

The Bulk Synchronous Parallel (BSP) model [123, 124] is a parallel computa-

tion model that provide a simple way of writing parallel programs for a wide-

range (architecture-independent) of parallel architectures by offering a bridging

model that links software and architecture. Also it provides a straightforward way

87

Chapter 4. The HWSkel Cost Model (CM1)

for realistic performance prediction for application design on a variety of differ-

ent parallel architectures including distributed-memory systems, shared-memory

multiprocessors, and networks of workstations. Practically, the BSP model aims

to provide a bridge model between the software and hardware.

The BSP model consist of a collection of processors that communicate using

message passing. The computations in the BSP model are formulated as a series

of supersteps. Conceptually, each superstep is divided into three stages. In the

first stage, all processors concurrently compute using only local data. In the

second stage, processors exchange messages with each other. In the third stage,

all of the processors execute a barrier synchronisation, after they finished sending

and receiving messages.

Compared with the PRAM model described in Section 4.1.1, the BSP model

is more realistic, since it accounts for two cost issues of the real parallel machines,

namely communication cost and memory latency cost.

Since BSP programs are based on sequential supersteps, the model provides

a very straightforward approach to cost estimation by firstly, calculating the cost

of each superstep, and secondly, calculating the cost of the whole BSP program

by summing the cost of the supersteps. The cost of each superstep in a BSP

program is given by:

Tsuperstep = w + hg + l

88

Chapter 4. The HWSkel Cost Model (CM1)

where w reflects the cost of the longest running local computation in any of the

processors, l is a constant cost (the cost of the barrier synchronisation) that

depends on the performance of the underlying hardware, h is the number of mes-

sages sent or received per processor and g captures the measurement of the ability

of the communication network to deliver these messages. A number of parallel

implementations have been proposed using the BSP model; see, for example,

[125, 126, 127, 128].

A number of variants of BSP have been proposed. We briefly describe some

here.

D-BSP: The Decomposable-BSP model[129] is a variant that allows subma-

chine synchronisation. In the D-BSP model, the processors are grouped into

several sub-machines that can synchronised independently, and each sub-

machine Mi implements the BSP model using its own parameters(pi, li, gi).

E-BSP: The Extended BSP or E-BSP model [130] deals with locality and unbal-

anced communication. The E-BSP model targets communication patterns

where the amount of data sent and received by each processor is different.

Thus, E-BSP views each communication superstep as an (M,k1,k2)-relation

instead of h-relation, where each processor sends at most k1 messages, re-

ceives at most k2 messages and the total of messages being routed does not

exceed M.

89

Chapter 4. The HWSkel Cost Model (CM1)

MultiBSP: A recent extension to the BSP model is the MultiBSP model[131]

for computation on modern architectures, in particular multicore architec-

tures with memory/cache hierarchies. It uses four parameters to capture the

characteristics of a multicore machine, namely, processor numbers, memo-

ry/cache sizes, communication cost, and synchronisation cost. MultiBSP is

a hierarchical model that is based on a tree structure of nested components

with an arbitrary number of levels. At each level, the model’s parame-

ters are assessed to allow all processors to execute independently until they

reach barrier, and than they can all exchange information with the memory

of that level.

4.1.3 The LogP Model Family

LogP[132, 133] is an architecture-independent parallel computation model for de-

signing and analysing parallel algorithms. It is a model for distributed-memory

multiprocessors where processors communicate using message passing. LogP pro-

vides a good balance between abstraction and simplicity by using a few param-

eters to characterise the parallel computers and enabling the user to ignore all

unnecessary details.

Like the BSP model, LogP is more realistic, since both models try to capture

the communication latency and bandwidth through parameters [134], and also

both models allow the processors to work in a completely asynchronous manner.

Nevertheless, the LogP model gives a more realistic picture than BSP, since LogP

90

Chapter 4. The HWSkel Cost Model (CM1)

has more control over the machine resources by capturing the communication

overhead. Furthermore, LogP can be used in parallel systems that are constructed

from a collection of complete computers connected by a communication network.

Conceptually, the LogP model consists of a collection of sequential processors

interacting through a communication network by exchanging messages, where

each processor has direct access to a local memory. The parallel program is

executed in an asynchronous way by all processors in the LogP machine.

The LogP model seeks to capture the communication network cost by describ-

ing the parallel computer in terms of four elements:

P : the machine’s number of processors.

g : communication bandwidth for short message (gap).

L: communication delay (latency) .

o: communication overhead (overhead) .

The latency is an upper bound on the time required to send a message from a

source processor to its target processor. The overhead is the fixed amount of time

that a processor requires to prepare for sending or receiving a message; during

this time the processor cannot perform other operations. The gap is the minimum

time interval between sending two messages on the same processor. The gap is

the inverse of the available per-processor communication bandwidth for a short

message. Several researchers[134, 135, 136] have shown that the LogP model

delivers good and accurate predictions for small messages.

91

Chapter 4. The HWSkel Cost Model (CM1)

A number of different extensions of the classic LogP model have been de-

veloped to improve prediction accuracy by addressing different communication

network issues:

LogGP

The LogGP model by Alexandrov et al.[137, 138] is an extension of the basic LogP

model. Since LogP facilitates only short-message communication transmission

between processors and ignores long messages, the LogGP model extended LogP

to provides a simple linear model that can model both short- and long-messages.

Just as in the original LogP model, LogGP is developed for distributed-

memory multiprocessors, where each processor has access to local memory. The

processors work in an asynchronous way and communicate with other processors

by point-to-point messages.

LogGP uses the parameters (latency, overhead, gap, and number of proces-

sors) that were introduced by the LogP model to characterise communication

performance. In addition, it introduces a new additional parameter, Gap per

byte, G, which captures the communication bandwidth for long message. Thus,

the LogGP model uses 1/g for short message and 1/G for long message.

In the LogP model, sending a k bytes message between two processors requires

sending dk/we messages, where w is the underlying message size of the machine.

This takes:

92

Chapter 4. The HWSkel Cost Model (CM1)

o+ (dk/we − 1) ∗max(g, o) + L+ o cycles

while sending everything as a single large message in the LogGP model takes:

o+ (k − 1) ∗G+ L+ o cycles.

LogGPS

The LogGPS model[139] is a parallel computational model that extends LogGP

to include the synchronisation cost. As in the original LogP model, LogGP

eliminates the synchronisation cost that is needed in other models such as PRAM

and BSP. This elimination might make LogGP not accurate enough, while it

ignores the need for synchronisation when sending a long message in programs

that use high-level communication libraries such as MPI. The LogGPS model has

been proposed to address this shortcoming in LogGP.

Sending a long message between two processors is often performed by sending

a small message to the receiver to check if it is ready to receive the original

message. The process causes the sender processor to be synchronised with the

receiver processor and adds a synchronisation cost to the overhead. Thus, the

LogGPS model adds one additional parameter, S, which reflects the message-size

threshold for synchronising sends.

93

Chapter 4. The HWSkel Cost Model (CM1)

HLogGP

Another extension of the LogGP model is the Heterogeneous LogGP[140] model.

HLogGP has been specifically proposed for heterogeneous parallel systems to

capture the heterogeneity in both communication networks and computational

nodes. Since the underlying architecture of the LogGP model is very similar to the

cluster architecture, it is considered an appropriate starting point for developing

HLogGP.

The HLogGP model extends LogGP by transforming its scalar parameters

into matrices. Conceptually, the parameters for overhead and gap are replaced by

vector parameters, and latency and Gap is replaced by matrix parameters. Fur-

thermore to capture the heterogeneity in the computational nodes, the parameter

for the number of processors is replaced by a computational power vector, which

describes the physical features for every node in the system.

The model has been shown to deliver an accurate prediction on heterogeneous

clusters.

Other LogP extension

Besides the previously mentioned LogP extensions, other extensions have been

proposed that aim to address different issues in communication. We briefly de-

scribe some here.

LogP-HMM[141] is a parallel computational model based on the LogP model.

94

Chapter 4. The HWSkel Cost Model (CM1)

The idea of LogP-HMM is to develop an accurate model that accounts for

the impact of both network communication and multilevel memory on the

performance of parallel algorithms and applications. Therefore, the LogP-

HMM model extends LogP with the HMM model[142], where the LogP

model deals with network communication and the HMM model addresses

the memory hierarchy.

LoGPC[143] is a simple model that extends LogP and its extension LogGP to

address another aspect of communication networks. It uses the features of

both models to account for short message as well as long message band-

width. Practically, the LoGPC model is intended to capture the impact of

network contention on the performance of message passing programs. In

addition, this model allows users to trade off between computation, com-

munication and contention when designing parallel programs.

parametrised LogP[144] or (pLogP for short) is a slight extension of the

LogP and LogGP models. This model can accurately predict the comple-

tion time of collective operations in message passing models such as MPI.

Five parameters are used in the pLogP model to characterised the network.

Like the LogP model, it uses P as the number of processors and L is the

end-to-end latency, but the original parameters o and g are replaced by a

function of message size, where os(m) and or(m) are the sender and receiver

overheads of the message size m, and g(m) is the delay between consecutive

95

Chapter 4. The HWSkel Cost Model (CM1)

message transmissions of size m.

4.1.4 HiHCoHP

The HiHCoHP model[145, 146] is a realistic communication model for hyperclus-

ters (multi-level clusters of clusters of processors) with heterogeneous processors.

It aims to capture the important features of a real hypercluster such as bandwidth

and transmission cost.

The HiHCoHP model is based on several parameters that reflect the hetero-

geneity of hyperclusters:

• Pi (“computing power”): HiHCoHP considers the computing power as N

heterogeneous nodes that may differ in computational power (computation

and memory speed).

• (“ message processing”): the Pa and Pb set up fixed communication cost

is (σ
(k)
a + σ̄

(k)
b); and the cost of message packing in Pa is π

(k)
a and message

unpacking in Pb is π̄
(k)
b .

• λ(k) (“network latency”): or the end-to-end latency is the amount that is

required to send one packet between the source node and destination node

at level-k of the network.

• β(k) (“link-bandwidth”): the amount of data that can be be sent between

two nodes at level-k of the network.

96

Chapter 4. The HWSkel Cost Model (CM1)

• k(k) (“Network capacity”): the maximum number of packets that can be

transmitted at once.

So the total end-to-end communication time of sending p-packet message from

node Pa to node Pb is given by:

(σ(k)
a + σ̄

(k)
b) + (π(k)

a + π̄
(k)
b)p+ λ(k) + ∆(p)

where ∆(p) = (p − 1)/β(k) in a pipeline network, and ∆(p) = λ(k)(p − 1) in a

store-and-forward network.

4.1.5 DRUM

Another type of parallel computational model are architectures-aware cost mod-

els. One of the well-known models is the Dynamic Resource Utilisation Model[147,

148] or (DRUM). DRUM is developed to support resource-aware load balancing

in a heterogeneous environment such as clusters and hierarchical clusters (clusters

of clusters, or clusters of multiprocessors).

DRUM accounts for the capabilities of both network and computing resources.

In particular, DRUM is intended to encapsulate information about the underlying

hardware, and provide monitoring facilities for hardware capabilities evaluation.

Benchmarks are used to assess the capabilities of computational, memory and

communication resources.

97

Chapter 4. The HWSkel Cost Model (CM1)

Each node in the tree structure of the DRUM model has been given a single

value called “power”, which represents the portion size of the total load that

can be assigned to that node based on its processing and communication power.

The power of node n in the DRUM model is calculated as the weighted sum of

processing power pn and communication power cn:

powern = wcomm
n cn + wcpu

n pn, wcomm
n + wcpu

n = 1

4.1.6 Skeletons

To improve the performance of parallel applications, performance cost models are

associated with algorithmic skeletons to accurately predict the costs of parallel

applications. More precisely, the aim of these performance models is to assist the

parallel skeletons, either implicitly or explicitly, to guide scheduling on a wide

variety of architectures.

This section deals with skeleton-associated performance cost models. Several

skeleton-based and similarly structured frameworks have employed performance

cost models for various kind of skeletons. Some of the skeleton-based frameworks

employ the well-known cost models and their variants such as the models that

were previously mentioned, and others use their own performance prediction tools

to estimate the performance of a given program.

Here, we briefly outline the skeleton-based frameworks that employ high-level

cost models.

98

Chapter 4. The HWSkel Cost Model (CM1)

4.1.6.1 Darlington’s group

Performance models are proposed in [149] for processor farms, divide and conquer

(DC), and pipeline skeletons. For example, a performance model has been pro-

posed for a divide and conquer skeleton to provide a prediction of the execution

time for given program, which is used to guide resource allocation.

In this model, the total execution time required to solve a problem of size N

on P processors is given by:

TsolN =

log(P)∑
i=1

(TdivN/2i−1
+ TcombN/2i

+ Tcomms) + TsolN/P

where TdivN is the time to divide a problem of size N, TcombN is the time to combine

the two results, and Tcomms is the communication time between processors.

4.1.6.2 BSP-based Approaches

Several authors associate the BSP model with algorithmic skeletons for perfor-

mance optimisation.

For example, Skel-BSP [126, 150] is a subset of P3L that uses an extension

of the BSP model called the Edinburgh-Decomposable-BSP model to achieve

performance portability for skeletal programming. EdD-BSP extends the BSP

model by adding partition and join operations to partition and reunify BSP

submachines which allows subset synchronisation as in D-BSP.

99

Chapter 4. The HWSkel Cost Model (CM1)

Compared to the standard BSP model, EdD-BSP replaces the g parameter

with two parameters which are g∞ and N1/2, and then estimates the cost of two

kinds of supersteps:

a) The cost of computational supersteps is given by:

T = W + hg∞(N1/2/h+ 1) + L

b) The cost of partition and join superstep is given by L

Another BSP -based approach is Bulk-Synchronous Parallel ML (BSML)[151].

BSBML is a functional data parallel language for programming BSP algorithms

using a set of high-level parallel primitives. It uses the BSP model to predict the

performance of a given program on a wide variety of parallel architectures.

4.1.6.3 P3L

P3L uses a variant of the LogP model to predict and optimise program per-

formance on parallel systems. An analytic model is presented in [152] for the

basic forms of parallelism to be used by the template-based compiler of the P3L

language.

This model is more complex than LogP, since it is intended to capture several

hardware features, such as the speed of processor, node architecture, and network

100

Chapter 4. The HWSkel Cost Model (CM1)

bandwidth and latency.

Here we briefly describe the analytical model for the high level template that

is related to our work.

The Map construct is implemented on an N dimension grid of processors. The

computation time T of input granularity k is given by:

T (k) = k(Tdis() + Tc

N∏
i=1

di + Tcol)

where:

Tc : seq. computation time.

di : data granularity for dimension i.

Tdis: data distribution time.

Tcol: time for collecting results.

4.1.6.4 HOPP

The HOPP (Higher-order Parallel Programming) model[153, 154] is a method-

ology based on the BMF (Bird-Meertens Formalism)[155], where the program is

expressed as a composition of higher-order functions.

The HOPP model uses a cost model introduced in [156] to predict the costs of

programs. This cost model is implemented as an analyser for calculating the costs

of possible implementations for a given program on a given distributed-memory

machine.

101

Chapter 4. The HWSkel Cost Model (CM1)

In the HOPP model, the cost of a program is computed in terms of n steps:

Cost =
i=n∑
i=1

Cpi +
i=n−1∑
i=0

Ci,i+1

where Cpi is the cost of phase i which depends on the number of processors and

sequential implementation of the functions in that step, and Ci,i+1 is the cost of

communication that may be incurred between step i and step i+ 1.

4.1.6.5 SkelML

SkelML[157] gives performance models for a number of skeletons such as pipeline,

farm, and fold Processor Chain skeletons. These models are based on the com-

munication overhead and computation time that are involved in application ex-

ecution. The skeleton performance models and profiling information help the

SkelML compiler to determine useful parallelism.

4.2 Resource Metrics for Parallel Cost Models

The performance of parallel machines is dependent on the underlying architecture

features. These features are referred to as resource metrics that characterise the

parallel computational model. Thus, a computational model can be identified by

a set of these resource metrics. We now consider some resource metrics that are

102

Chapter 4. The HWSkel Cost Model (CM1)

visible in all parallel computational models that were discussed in Sections 4.1.

Number of processors. The number of processor in the machine.

Communication Latency is the time needed to transfer a message from one

processor to another processor; this depends on both the network topology

and technology.

Communication Bandwidth is the amount of data that can be sent within a

given time; this is a limited resource in practice and depends on the network

interface.

Communication Overhead is the period of time that is needed by the pro-

cessor for sending and receiving message. The amount of overhead depends

on network topology features such as communication protocols.

Computational power. Computational power is the amount of work finished

by one processor in a given time for a specific task; this value depends on

the processor’s capabilities and the task being processed.

Synchronous/Asynchronous. In a synchronous model, all processors are

synchronised after executing each instruction. Processors may run semi-

asynchronously, where the computations occur asynchronously within each

phase and all processors are synchronised at the of each phase.

Table 2 shows how these resource metrics contribute in forming the computa-

tional models considered above.

103

Chapter 4. The HWSkel Cost Model (CM1)

Computational Synch
Model Procs Latency Bandwidth Overhead Power Asynch

PRAM
√

Synch

BSP
√ √ √

Semi-synch

LogP
√ √ √ √

Asynch

LogGP
√ √ √ √

Asynch

HLogGP
√ √ √ √ √

Asynch

SkelML
√ √

Asynch

P3L
√ √ √ √ √

Asynch

Ske-BSP
√ √ √

Semi-synch

HOPP
√ √ √ √ √

Asynch

Table 2: Resource metrics for parallel computation.

4.3 Design Ethos

In common with other cost-based skeletal approaches, our approach combines

algorithm skeletons with a performance cost model that characterises a parallel

machine, using performance parameters.

The current focus of designing parallel performance cost models is on provid-

ing low-level details of parallel execution to the programs to enable resource-aware

partitioning and dynamic load balancing procedures, in particular, for heteroge-

neous parallel architectures. We claim our methodology presented in Section 4.4

based on architectural details of a parallel machine to provide cost estimation of

a given program on a given machine, provides a reasonable trade-off between the

accuracy and simplicity needed for our heterogeneous skeletons.

104

Chapter 4. The HWSkel Cost Model (CM1)

Static cost models incur less overhead than dynamic models due to their sim-

plicity and lack of run-time overhead by eliminating the most costly dynamic

parameters such as network parameters. Thus, we introduce an architecture-

aware static cost model that accounts for a few simple architectural parameters

which reflect the processing capabilities that affect load-balancing on heteroge-

neous architectures.

In contrast to the cost models described in Section 4.1, our cost model provides

the following features:

Relative Simplicity. As the degree of model complexity depends on the num-

bers of parameters that need to be estimated, we are content with a simple

model, with small a number of parameters.

Target Architectures. HiHCoHP and HLogGP models are designed for het-

erogeneous clusters in which both processors and network are heteroge-

neous. Nevertheless, our cost model targets homogeneous networked clus-

ter where the nodes are heterogeneous. We focus on the optimisation of

processing time that can be affected by the computational features of the

nodes.

Skeleton-based Approach. The idea of associating cost models with algorith-

mic skeletons is not new. However, we are integrating an architectural cost

model that accounts for cache size for load balance in heterogeneous clus-

ters into a skeleton library for parallel implementations. Moreover, the cost

105

Chapter 4. The HWSkel Cost Model (CM1)

model is used implicitly to guide the implementation of parallel programs.

Performance Optimisation We seek to provide a simple cost model to opti-

mise overall processing time for our skeletons on a heterogeneous system,

rather than extracting the maximum performance from heterogeneous sys-

tems.

4.4 The CM1 Cost Model

We develop a cost model to optimise overall processing time for our skeletons

on a heterogeneous system composed of networks of arbitrary numbers of nodes,

each with an arbitrary number of cores sharing arbitrary amounts of memory and

arbitrary clock speeds. From our model, we seek relative measures of processing

power to guide data distribution rather than absolute predictions of processing

time. Thus, we are content with a simple model, with small numbers of easily

instantiable parameters.

In constructing the CM1 cost model, we assume that:

• inter-node communication time is uniform;

• on an individual node, all the cores have the same processor characteristics;

• each core processes a distinct single chunk of data, without interruption,

using the same algorithm as the other cores;

106

Chapter 4. The HWSkel Cost Model (CM1)

Hence, we focus the optimisation of processing time on distributing appropriately

sized chunks of data to cores to balance processing.

As a first attempt we might base this distribution on the number of nodes,

and for, each node, the speed of each core. Suppose node i has Ci cores each of

speed Si. Then, the total available processing power for n nodes is:

i=n∑
i=1

Ci ∗ Si

Each node i might receive:

Ci ∗ Si/
i=n∑
i=1

Ci ∗ Si

of the data, so each core of node i might receive:

Si/
i=n∑
i=1

Ci ∗ Si

Now, all processors have some memory hierarchy, from registers, via various

levels of cache, to RAM and beyond. We assume that registers and on-core

caches are private and operate at CPU speed. Shared cache, typically L2 or L3,

is usually many orders of magnitude smaller than shared RAM, and, for many

problems, RAM is sufficiently large for paging to be absent. Thus, we identify

the size of top level shared cache as the most significant memory factor affecting

overall performance.

107

Chapter 4. The HWSkel Cost Model (CM1)

The SPMD model implies that all cores are running the same algorithm,

which implies that they will have similar patterns of access to shared memory.

In particular, each core will incur similar sequences of cache faults. Then, the

number of cache faults will be determined by the size of the cache: for a larger

cache it is more likely that a required portion of the address space is already

resident.

Thus, we refine our model to take into account the size of the cache, which we

denote as L2i on node i, with a larger cache implying that a node should receive

larger size data chunks. Then, the relative power of node i of heterogeneous

multicore cluster is given by:

Ci ∗ Si ∗ L2i (7)

The overall power P of the system is given by:

P =
i=n∑
i=1

Ci ∗ Si ∗ L2i (8)

For total data size D, the chunk size for node i is:

(Ci ∗ Si ∗ L2i/P) ∗D (9)

and each core processes:

(Si ∗ L2i/P) ∗D (10)

108

Chapter 4. The HWSkel Cost Model (CM1)

For a heterogeneous multicore system, it is necessary to normalise the over-

all system power in order to predict maximum speedup and determine whether

that has been achieved as will be discussed in section 4.6.2.3. We think it most

principled to do so using the core with the greatest power.

So, to predict maximum speedup we:

• find the power of each core Pi and choose the greatest Pl:

• find the maximum possible speedup by dividing the overall power by the

greatest core power: P/Pl.

Then, to assess achieved speedup we:

• initially, measure the program on one core with that greatest power to

provide a base line;

• subsequently, measure speedup relative to that base line measurement.

4.5 Using CM1 in the HWSkel Library

In the HWSkel library the CM1 cost model is integrated into the skeletons to im-

prove their parallel performance on heterogeneous multicore clusters. In the hy-

brid programming model, load balance can be more easily achieved in the shared-

memory model(OpenMP) than the distributed-memory model(MPI), hence the

load balance is dependent on MPI distribution not on OpenMP.

109

Chapter 4. The HWSkel Cost Model (CM1)

Since the implementation of all skeletons in the HWSkel library is based on a

hybrid programming model where we assume that all cores on the node have the

same characteristics, we use CM1 only for data distribution and hence load over

the cluster nodes. Figure 8 (a) illustrates a naive load balancing mechanism for

load distribution, and (b) shows the effects of the hardware-based cost model on

load balancing for data distribution in HWSkel.

Node NodeNodeNode

Chunk Size

Core0Core1Core0Core3 Core2 Core1

Core7 Core4Core5Core6

Core0Core3 Core2 Core1Core0

Chunk Size Chunk Size Chunk Size

Data Size

Naive Partitioning

(a)

Node NodeNode

Node

Chunk Size

Core0Core1

Core0Core3 Core2 Core1

Core7 Core4Core5Core6

Core0Core3 Core2 Core1Core0

Chunk Size
Chunk Size Chunk Size

Data Size

CM1 Partitioning

(b)

Figure 8: Using Cost Model (CM1) in HWSkel for Load Distribution

110

Chapter 4. The HWSkel Cost Model (CM1)

Our data-parallel heterogeneous skeletons use the SPMD model for distributed

memory parallelism, therefore the master Processing Element (PE) is responsible

for applying CM1 as discussed in Section 3.2. Every skeleton program initially

calls InitHWSkel that, collects and registers the architectural information for each

node in the cluster that is needed by CM1 as discussed in Section 3.2.2.1. This

information is collected from the local system file “/proc/cpuInfo” of each node in

the system. After collecting the hardware information, the master node applies

CM1 to distribute the data over the cluster. The algorithm for implementing

CM1 in our skeletons is displayed in Algorithm 4, and the complete code for the

CM1 cost model can be found in Appendix B.1.

Algorithm 4 The Implementation of The CM1 Cost Model

1: skeleton initialisation
2: BEGIN
3: → master node:
4: for every nodei do in parallel
5: list[i] ⇐ node SPECs (Ci ∗ Si ∗ L2i) /* hardware specifications */
6: end for
7: for every list[i] do
8: P+ = Ci ∗ Si ∗ L2i /* overall power of the system */
9: end for

10: for every list[i] do
11: chunksList[i] ⇐ (Ci ∗ Si ∗ L2i/P) ∗D /* calculate chunk size */
12: end for
13: for every nodei do in parallel
14: Send chunklist[i]
15: end for
16: END

111

Chapter 4. The HWSkel Cost Model (CM1)

4.6 HWSkel Evaluation

This central section of the thesis details and explains the experiments that were

performed to provide evidence of the effectiveness of our cost model CM1 for

improving the performance of programs using HWSkel skeletons. In addition, we

illustrate and demonstrate the validity of our cost model by comparing the the

results obtained with those from several alternative related cost models that use

different architectural parameters.

4.6.1 Benchmarks

We have assessed the impact of our cost model on HWSkel heterogeneous skele-

tons using two different applications.

4.6.1.1 sum-Euler

The sum-Euler benchmark calculates the sum of the Euler totients between a

lower and an upper limit, where the totient function of an integer n gives the

number of positive integers less than or equal to n that are relatively prime to n:

sumEuler =

upper∑
n=lower

φ(n)

φ(n) =
n∑

i=1

euler(i)

112

Chapter 4. The HWSkel Cost Model (CM1)

Code fragment 4.1 is a sequential sumTotient function that receives a list of

integers.

1
2 int sumTotient (int ∗ da t a l i s t , int l ength)
3 {
4 int i , j , k ;
5 int sum ;
6 sum = 0 ;
7 for (i =0; i<l ength ; i++)
8 {
9 sum = sum+eu l e r (d a t a l i s t [i]) ;

10 }
11 return sum ;
12 }

Listing 4.1: Code for sumTotient function.

Code fragment 4.2 shows the euler function that applies the Euler totient

function to each element in the array; then the results are summed for all elements.

In the parallel version, the array of the integers is split into chunks using a split

function which employs the cost model of load distribution, and then the euler

function is mapped in parallel across each chunk.

1
2 int eu l e r (int n)
3 {
4 int i ;
5 int l ength=0;
6 for (i =1; i<n ; i++)
7 {
8 i f (r e lp r ime (n , i)) {
9 l ength++;

10 }
11 }
12 return l ength ;
13 }

Listing 4.2: Code for euler function.

Finally, the results are summed sequentially for all elements in the main func-

tion(sumTotient). Code fragment 4.3 presents the main sum-Euler program that

uses the hMapReduce skeleton.

113

Chapter 4. The HWSkel Cost Model (CM1)

1
2 int main (int argc , char ∗∗ argv)
3 {
4 InitHWSkel (argc , argv) ;
5
6 r e s u l t=hMapReduce (data , length , INT
7 , sumTotient , INT , p lus) ;
8
9 TerminateHWSkel () ;

10 }

Listing 4.3: Main program for sum-Euler.

The parameters of hMapReduce skeleton are sumTotient as the map function

and the plus from Program 4.4 as the reduction function.

1
2 int plus (int ∗ arr , int s i z e)
3 {
4 int i ;
5 int r e s u l t =0;
6 for (i =0; i<s i z e ; i++)
7 {
8 sum+=arr [i] ;
9 }

10 return r e s u l t ;
11 }

Listing 4.4: Code for plus function.

4.6.1.2 Image Matching

Image Matching is a fundamental aspect of many problems in computer vision

including object recognition. Matching different images of an object requires lo-

cal image features that are unaffected by nearby clutter or partial occlusion [158].

The Scale Invariant Feature Transform (SIFT) is an approach used to transform

image data into scale invariant coordinates relative to local features which has

properties that make it suitable for image matching and recognition [159]. There-

fore, image matching is performed by first extracting local features from the input

image using a SIFT algorithm and then these features are individually matched

114

Chapter 4. The HWSkel Cost Model (CM1)

to SIFT features obtained from training images by using a nearest-neighbour

algorithm. In addition, to avoid the expensive search required for the nearest-

neighbour algorithm, a modification of the k-d tree algorithm called best-bin-first

method is used [158].

Figure 9: Flowchart of Sequential Image Matching Algorithm

We ported the sequential object recognition program written by David Lowe

at the University of British Columbia. This application consist of 26 files which

contain approximately 9500 lines of C code. Basically, the sequential algorithm

115

Chapter 4. The HWSkel Cost Model (CM1)

divides into two stages: the first stage is SIFT keypoints detection and secondly

there is SIFT keypoints matching. The flowchart in Figure 9 illustrates the orig-

inal sequential algorithm.

The parallel version parallelises the computationally expensive second stage

of the application using the hMapReduceAll skeleton. That is, the application

is parallelised by allocating the keypoints to the cores and each core applies the

BBF algorithm [159] in order to perform the matching operation.

Code fragment D.5 presents the main Image Matching program using the

hMapReduceAll skeleton where the matchKeys is the map function and the re-

duction function is gatheringKeys.

1
2 #include”MatchBoth . h”
3
4 #include”HwSkel . h”
5
6 int main (int argc , char ∗∗ argv)
7 {
8 ArrayList ∗ keys ;
9 int keysCount ;

10
11 //− s k e l e t on i n i t i a l i z a t i o n
12 InitHWSkel (argc , argv) ;
13
14 //− a l l o c a t e memory fo r an a r r a y l i s t o f keypointNs
15 MultiMatch∗ mm = MultiMatch new0 () ;
16
17 i f (StartNode)
18 {
19 int no ;
20
21 //− number o f input images
22 mm−>imageCount = 2 ;
23 mm−>keySets=ArrayList new (mm−>imageCount , KeypointXMLList delete) ;
24
25 for (no=2;no<4;no++)
26 {
27 //− 1 . load the image f i l e
28 DisplayImage∗ p i c = DisplayImage new (argv [no]) ;
29 ImageMap∗ picMap = DisplayImage ConvertToImageMap (p i c) ;
30
31 //− 2 . f i nd the image f e a t u r e s (keypointNs)
32 mm = getImageFeatures (picMap) ;
33 }
34
35 keysCount=ArrayList Count (mm−>globalKeys) ;

116

Chapter 4. The HWSkel Cost Model (CM1)

36 keys = keyN MPI Pack (mm−>globalKeys) ;
37 }
38
39 //− c a l l hMapReduceAll s k e l e t on
40 ArrayList ∗ l i s t = hMapReduceAll (keys , keysCount ,ARRAY LIST, matchKeys ,

ARRAY LIST, gather ingKeys) ;
41
42 i f (StartNode)
43 p r i n t f (” Global match search y i e l d ed : %d Match \n” , ArrayList Count (l i s t))

;
44
45 //− s k e l e t on terminat ion
46 TerminateHwSkel () ;
47
48 return 0 ;
49 }

Listing 4.5: Main program for image matching.

4.6.2 Performance Evaluation

In this experiment we investigate the performance impact of both hMapReduce

and hMapReduceAll skeletons on homogeneous shared memory architectures, and

on different combinations of heterogeneous multicore architectures using CM1 for

load distribution.

Moreover, we use this experiment to study the contribution of each hardware

property that is used in the cost model. In our experiments, we have matched two

input images, where the size and the number of SIFT keypoints for each image

are shown in Table 3.

Since the original sequential sum-Euler program generates irregular data gran-

ularity, for simplicity we assume that all the elements in the array have the same

value and calculate the sum of the totients between 1 and 2,000,000 of an integer

with fixed value of 10,000 i.e. [10000, 10000, ,10000].

117

Chapter 4. The HWSkel Cost Model (CM1)

Size Keys
img1 1600x1200 (239,616) 71791
img2 1600x1200 (1,205,862) 12378

Table 3: Input Images for Image Matching Application.

4.6.2.1 Platform

We conduct our experiments on a heterogeneous cluster of five different parallel

architectures as summarised in Table 4. The employed machines are located at

Heriot-Watt University

- linux lab: 2-core machines consisting of Linux RedHat 4.1.2 workstations

with a 2.4GHz Intel processor, using 2GB RAM and 2048KB L2 cache.

- lxpara: 8-core Dell PowerEdge 2950 machines constructed from two quad-

core Intel Xeon 5410 processors running Linux RedHat 5.5 at 2.3GHz with

6144 KB L2 cache and using 8GB RAM.

- amaterasu: a 4-core machine running Linux RedHat 4.1.2 at 2.93GHz

with 8192 KB L2 cache and using 16GB RAM.

- brahma: a 4-core machine running Linux RedHat 4.1.2 at 3.06GHz with

512 KB L2 cache and using 4GB RAM.

- jove: a 8-core machine running Linux RedHat 4.1.2 at 2.80GHz with 8192

KB L2 cache and using 16GB RAM.

118

Chapter 4. The HWSkel Cost Model (CM1)

Throughout the evaluation section, the architectures will be cited as (speed/cache)

e.g (3G/512KB).

Three experimental combinations were explored (Het.Arch1-3). In each com-

bination, new machines were successively added from strongest to weakest.

Further, Compilation of benchmarks has been done using GCC 4.1.2 with the

-fopenmp flag for OpenMP compilation. Since parallel runtimes are variable, the

measurements are based on the middle (median) value of three executions.

Machine Het. Het. Het.
name Architecture Cores MHz L2 Cache Arch1 Arch2 Arch3

lxpara1 Xeon 5410 8 1998 6144KB
√ √ √

lxpara2 Xeon 5410 8 1998 6144KB
√

brahma Xeon(TM) 4 3065 512KB
√ √ √

amaterasu Core(TM) i7 4 1199 8192KB
√ √ √

jove Core(TM)i7 8 1200 8192KB
√

linux01 2 Duo CPU 2 1200 2048KB
√ √ √

linux02 2 Duo CPU 2 1200 2048KB
√ √ √

linux03 2 Duo CPU 2 1200 2048KB
√

linux04 2 Duo CPU 2 1200 2048KB
√

Table 4: Experimental Architectures.

4.6.2.2 Homogeneous Architectures

On homogeneous architectures both skeletons deliver linear speedup for the sum-

Euler and Image Matching programs.

Figure 10 compares the speedup curves for sum-Euler with an OpenMP ver-

sion and hMapReduce skeleton in a shared-memory environment (i.e. lxpara).

119

Chapter 4. The HWSkel Cost Model (CM1)

Both speedup curves are similar and hence hMapReduce is efficient on shared-

memory architectures.

4.6.2.3 Heterogeneous Architectures

On heterogeneous architectures, we run our skeletons on three different combina-

tions of the architectures described in Section 4.6.2.1.

Heterogeneous Architecture 1. Figure 11 plots speedup curves for our testbed

parallel programs on Het.Arch1 (lxpara, brahma, amaterasu, jove and 2xlinux).

Observe that the predicted and experimental speedup curves for Sum-Euler are

identical.

The results show that the implementation of HWSkel library without the cost

model delivered worse scalability, where we achieved good speedup on the first

fast machine (lxpara). The lower speedup curve falls as soon as we introduce

heterogeneity by adding the slow machines. This is due to the naive load balanc-

ing mechanism which distributes load equally between the machines. The upper

speedup curve shows the improved performance results for using a load distri-

bution based on the cost model in Section 4.4. As anticipated, our results show

better scalability for our skeletons with the CM1 cost model.

Heterogeneous Architecture 2. We combine two 8-core shared-memory ma-

chine lxpara with 4-core shared-memory machine brahma, 4-core shared-memory

machine amaterasu and two 2-core shared-memory machine linux (Het.Arch2).

120

Chapter 4. The HWSkel Cost Model (CM1)

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 8

S
p

ee
d

u
p

Cores

hMapReduceAll(Image Matching)
OpenMP

hMapReduce

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 8

S
p

ee
d

u
p

Cores

hMapReduceAll(Image Matching)
OpenMP

hMapReduce

(b)

Figure 10: Comparing hMapReduce(sum-Euler) and hMapReduceAll(Image
Matching) with OpenMP on Shared-Memory Architectures (lxpara).

121

Chapter 4. The HWSkel Cost Model (CM1)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

8 12 16 24 26 28

S
p

ee
d

u
p

Cores

 1-8 lxpara 9-12 brahma 13-16 amaterasu 17-24 jove 25-30linux
 (2g/6mb) (3g/512kb) (1g/8mb) (1g/8mb) (1g/2mb)

Sum-Euler (Het.Arch 1)
Without Cost Model

With Cost Model
Predicted Max Speedup

(a)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

8 12 16 24 26 28

S
p

ee
d

u
p

Cores

 1-8 lxpara 9-12 brahma 13-16 amaterasu 17-24 jove 25-30linux
 (2g/6mb) (3g/512kb) (1g/8mb) (1g/8mb) (1g/2mb)

Image Matching (Het.Arch 1)
Without Cost Model

With Cost Model
Predicted Max Speedup

(b)

Figure 11: hMapReduce sum-Euler & hMapReduceAll image-matching Speedup
with/without Cost Model on (Het.Arch1)

122

Chapter 4. The HWSkel Cost Model (CM1)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

8 16 20 24 26 28

S
p

ee
d

u
p

Cores

 1-16 lxpara 17-20 brahma 21-24 amaterasu 25-28 linux
 (2g/6mb) (3g/512kb) (1g/8mb) (1g/2mb)

Sum-Euler (Het.Arch 2)
Without Cost Model

With Cost Model
Predicted Max Speedup

(a)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

8 16 20 24 26 28

S
p

ee
d

u
p

Cores

 1-16 lxpara 17-20 brahma 21-24 amaterasu 25-28 linux
 (2g/6mb) (3g/512kb) (1g/8mb) (1g/2mb)

Image Matching (Het.Arch 2)
Without Cost Model

With Cost Model
Predicted Max Speedup

(b)

Figure 12: hMapReduce sum-Euler & hMapReduceAll image-matching Speedup
with/without Cost Model on (Het.Arch2)

123

Chapter 4. The HWSkel Cost Model (CM1)

Observe that the predicted and experimental speedup curves for Sum-Euler are

identical.

The results in Figure 12 show that in the first two machine (lxpara1 and lx-

para2) the performance of our implementations of both hMapReduce and hMapRe-

duceAll skeletons are slightly improved by using the cost model. This is due to

the architectural similarity of these machines. As for Het.Arch1 adding slow ma-

chines leads to poor performance due to the data-load distribution mechanism.

Again Figure 12 shows the performance of our skeletons can be improved using

the cost model.

Heterogeneous Architecture 3. Figure 13 shows the speedups on a different

heterogeneous architecture (Het.Arch3) comprising (lxpara, brahma, amaterasu,

and 4xlinux). Observe that the predicted and experimental speedup curves for

Sum-Euler are identical.

For this combination, the results look similar to the first combination shown

in Figure 11. It shows that the performance of our skeleton is improved by using

the CM1 cost model.

Predicted Maximum Speedup. In order to assess the effectiveness and ac-

curacy of the CM1 cost model for our heterogeneous skeletons, we calculate the

predicted maximum speedup as described in section 4.4 and compare it with the

experimental speedup for both programs. Tables 5, 6 and 7 lists the predicted

speedup, experimental speedup and the relative error on the 3 heterogeneous

124

Chapter 4. The HWSkel Cost Model (CM1)

 2

 4

 6

 8

 10

 12

 14

 16

 18

8 12 16 18 20 22 24

S
p

ee
d

u
p

Cores

 1-8 lxpara 9-12 brahma 13-16 amaterasu 17-24 linux
(2g/6mb) (3g/512kb) (1g/8mb) (1g/2mb)

Sum-Euler (Het.Arch 3)
Without Cost Model

With Cost Model
Predicted Max Speedup

(a)

 2

 4

 6

 8

 10

 12

 14

 16

 18

8 12 16 18 20 22 24

S
p

ee
d

u
p

Cores

 1-8 lxpara 9-12 brahma 13-16 amaterasu 17-24 linux
(2g/6mb) (3g/512kb) (1g/8mb) (1g/2mb)

Image Matching (Het.Arch 3)
Without Cost Model

With Cost Model
Predicted Max Speedup

(b)

Figure 13: hMapReduce sum-Euler & hMapReduceAll image-matching Speedup
with/without Cost Model on (Het.Arch3)

125

Chapter 4. The HWSkel Cost Model (CM1)

Predicted
Speedup

Experimental-Speedup Relative Error

Img- Sum- Img- Sum-

Match STD Euler STD Match Euler

8 7.99 0.0227 7.99 0 0.125 % 0.125 %
8.51 8.694 0.1481 8.492 0.0005 -2.162 % 0.211 %
14.946 14.28 0.0258 14.89 0.0005 4.456 % 0.374 %
21.38 17.949 0.2199 21.25 0.0005 16.047 % 0.608 %
21.782 17.371 0.0351 21.649 0.0008 20.250 % 0.610 %
22.58 17.815 0.0238 22.44 0 21.107 % 0.620 %

Table 5: Experimental and Predicted Maximum Speedup (Het.Arch1).

Predicted
Speedup

Experimental-Speedup Relative Error

Img- Sum- Img- Sum-

Match STD Euler STD Match Euler

8 8 0.0221 7.981 0 0 % 0.238 %
16 15.507 0.0593 15.955 0 3.081 % 0.281 %
16.522 15.64 0.0493 16.467 0.0005 5.338 % 0.332 %
22.95 18.549 0.1133 22.84 0 19.176 % 0.479 %
23.353 18.794 0.2188 23.236 0.0005 19.522 % 0.501 %
24.157 19.304 0.2097 24.033 0.0008 20.089 % 0.513 %

Table 6: Experimental and Predicted Maximum Speedup (Het.Arch2).

architectures, and also show the standard deviation of runtime over three runs.

In all 3 architectures, the relative error for Sum-Euler program is very low

where the experimental speedup is close to the maximum theoretical speedup pre-

dicted by our cost model. However, as expected in the Image-Matching program

the relative error is higher. The error is around 25.956 percent in the worst case.

This is due to the characteristics of this program which suffers high overheads

because of frequent communication. Figures 11, 12 and 13 plot the predicted

maximum speedup for the Sum-Euler and Image-Matching programs.

126

Chapter 4. The HWSkel Cost Model (CM1)

Predicted
Speedup

Experimental-Speedup Relative Error

Img- Sum- Img- Sum-

Match STD Euler STD Match Euler

8 8 0.0189 7.981 0.0005 0 % 0.237 %
8.51 8.694 0.0443 8.492 0 -2.162 % 0.211 %
14.946 14.244 0.0143 14.87 0.0008 4.696 % 0.508 %
15.348 13.923 0.4380 15.669 0.0005 9.284 % -2.091 %
16.153 13.967 0.0253 16.067 0.0008 13.533 % 0.532 %
16.957 15.495 0.0167 16.864 0.0005 8.621 % 0.548 %
17.762 13.152 0.0184 17.661 0.0005 25.954 % 0.568 %

Table 7: Experimental and Predicted Maximum Speedup (Het.Arch3).

4.6.3 Alternative Cost Models

Figure 14 shows different speedup results for the implementations of HWSkel

library on Het.Arch3 (lxpara, brahma, amaterasu, and 4xlinux) using the CM1

cost model with different architecture properties which includes number of cores,

CPU speed, and cache size. Although, the best result is achieved by using all

CPU properties in the cost model, we can see that the cache size property has

the most significant impact on the cost model performance.

Therefore, we conclude that our skeletons can deliver good parallel perfor-

mance and scalability on heterogeneous architectures using the static load-balancing

mechanism based on architecture properties. On the architectures that are likely

to be more heterogeneous the communication cost needs to be added to the cost

model.

127

Chapter 4. The HWSkel Cost Model (CM1)

 2

 4

 6

 8

 10

 12

 14

 16

8 12 16 18 20 22 24

S
p

ee
d

u
p

Cores

 1-8 lxpara 9-12 brahma 13-16 amaterasu 17-24 linux
(2g/6mb) (3g/512kb) (1g/8mb) (1g/2mb)

hMapReduce (Sum-Euler)
No Cost Model

Cores
Cores + Cache

Cores + Cache + Speed

(a)

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

8 12 16 18 20 22 24

S
p

ee
d

u
p

Cores

 1-8 lxpara 9-12 brahma 13-16 amaterasu 17-24 linux
(2g/6mb) (3g/512kb) (1g/8mb) (1g/2mb)

hMapReduce (Image Matching)
No Cost Model

Cores
Cores + Cache

Cores + Cache + Speed

(b)

Figure 14: hMapReduce sum-Euler & hMapReduceAll image-matching Speedup
with Alternative Cost Models on (Het.Arch1)

128

Chapter 4. The HWSkel Cost Model (CM1)

4.7 Summary

In this chapter, we have proposed a new architectural performance cost model

CM1 for heterogeneous parallel architectures. CM1 is used to statically determine

the data-chunk size according to the number of cores, clock speed and crucially

the cache size for each node over the heterogeneous multicore cluster

Since the naive implementation of our skeletons on a heterogeneous multicore

cluster delivers poor performance due to the difference in node capability, we

have shown in this chapter that it is possible to obtain better performance using

CM1 for workload distribution by our data parallel heterogeneous skeletons on

a heterogeneous multicore platform, which in turn makes the task of workload

distribution much easier for the skeleton programmer.

Finally, our experiments have shown that the cache size has the most signifi-

cant impact on the data-load distribution mechanism.

129

Chapter 5

GPU-HWSkel Library

This chapter describes our GPU-HWSkel skeleton library that extends the HWSkel

library to account for GPU programming. We start by introducing GPU-HWSkel

library in Section 5.1. Next We describe the general architecture of our system in

Section, which implemented by heterogeneous programming model in Section 5.2.

In Sections 5.3 and 5.4 we present the user functions and GPU-HWSkel skeletons.

5.1 GPU-HWSkel: A CUDA-Based Skeleton

Library

GPU-HWSkel is an extension of the HWSkel library introduced in Chapter 3. The

library is designed with the aim of providing a high-level parallel programming

environment to program parallel heterogeneous multicore/GPU systems including

single- and multicore CPU, and GPU architectures.

130

Chapter 5. GPU-HWSkel Library

The GPU-HWSkel library is based on the CUDA programming model to make

GPGPU accessible on NVIDIA GPUs. This limits our approach to NVIDIA

architectures. However, GPU-HWSkel can potentially take advantage of the

OpenCL standard to make other GPU devices accessible through GPU-HWSkel-

based skeleton programming.

Like SkePU, GPU-HWSkel offers a user function that can be used as an argu-

ment to our heterogeneous parallel skeletons described in Section 5.4. However,

our approach is implemented by using a different programming model, which we

will discuss in the following section.

The new library implements the same set of data-parallel skeletons that are

provided by the base HWSkel library, i.e. hMap, hReduce, hMapReduce, and

hMapReduceAll. These skeletons provide a general interface for both GPUs and

CPUs since the library is based on OpenMP and MPI to support CPU imple-

mentations, and CUDA for GPU implementations.

Theoretically, the library takes into account the support of Multi-GPU sys-

tems since most parallel systems provide multiple GPU cards to increase the

number of processing units for high performance as discussed in Section 7.3.2.

5.1.1 GPU-HWSkel Implementation Principles

The key idea behind GPU-HWSkel is to generate CUDA code (kernel functions)

at compilation time. After the compilation stage, all CUDA kernels are ready to

be executed. These kernel functions are passed to the skeletons as parameters for

131

Chapter 5. GPU-HWSkel Library

execution on the GPU.

Since the design aim of the GPU-HWSkel library is to provide developers

with a set of heterogeneous skeletons which can be used on a variety of parallel

platforms, both sequential and parallel code, for multicore and GPU architectures,

are generated for multiple implementation support.

The selection between different implementations of the GPU-HWSkel library

depends on the available architectures that are provided by the target hardware.

Therefore, an automatic-implementations selection plan for different skeletal im-

plementations is implemented in each of our skeletons. So as shown in Figure 15,

the auto-selection plan works by executing suitable code from the generated codes

for the available underlying hardware on either a sequential or parallel architec-

ture, where Phase 1 is generating CPU & GPU code from the input program,

and phase 2 is an auto-selection plan to select different skeletal implementations.

Translation
Auto-selection

Plan

Input
Program

CPU + GPU
Programs

Target
Implementation

Phase 1 Phase 2

Figure 15: Automatic-Implementation Selection Plan.

In most cases of heterogeneous clusters, the underlying hardware of each node

comprises both a multicore CPU and a GPU. Thus, the GPU-HWSkel library

132

Chapter 5. GPU-HWSkel Library

is implemented to enable CPU cores and GPU to execute the same computa-

tional operations concurrently as follows: GPU-HWSkel generates sequential and

OpenMP code for a CPU, and CUDA code for a GPU; in each single host node,

one of the CPU cores is controlling the GPU and the rest of the CPU cores exe-

cute the same code that performs the same operation that is being executed on

the GPU. In other words, we consider one CPU core (usually the core with rank

0) plus the GPU as one processing element and each other core in the CPU as

an independent processing element.

The selection of the GPU card is based on the ID of the OpenMP thread,

where the GPU index is derived from the ID to select the GPU. Consequently,

all the CUDA kernel calls in our heterogeneous programming model are taking

place within the parallel region of the OpenMP code.

5.1.2 GPU-HWSkel Characteristics

Besides the characteristics of the base library (HWSkel), the GPU-HWSkel li-

brary provides the following characteristics:

1. Cost Model: To ensure a good load balance between the heterogeneous

processing elements(GPUs and CPUs) in the system, GPU-HWSkel has

a new performance cost model (CM2) that take into account the perfor-

mance capabilities of GPU and CPU for data distribution as discussed in

Section 6.2.

133

Chapter 5. GPU-HWSkel Library

2. Dependencies: GPU-HWSkel uses the CUDA runtime API as a third-

party library, therefore all the GPU-HWSkel-based programs that use the

GPU-HWSkel library need to be compiled by NVCC compiler with the help

of a c compiler like gcc.

5.2 Implementing GPU-HWSkel

Having presented the implementation principles of the GPU-HWSkel library in

the previous section, We now discuss the programming model that is used to

implement our heterogeneous skeletons in the GPU-HWSkel library. Figure 16

shows the underlying target hardware of our approach.

PC PCPCPCPC

Network Interconnect

CPU
4 Cores

GPU
120 cores

Figure 16: Underlying Hardware of GPU-HWSkel Programming Model

Performing heterogeneous computation with our target architecture requires

three different types of interaction patterns [160, 161]:

134

Chapter 5. GPU-HWSkel Library

- Nodes-Interaction occurs between the nodes within the cluster due to

the communication between the processes. This type of interaction can be

implemented using any message passing programming model like MPI.

- Intra-node-Interaction occurs inside each node among the CPU cores

due to threads execution. This interaction requires a shared-memory pro-

gramming model like OpenMP.

- CPU-GPU-Interaction occurs between the CPU and GPU. This inter-

action requires a library that support all the functions that are needed for

transferring data between the CPU and the GPU, and launching the GPU

kernels.

As in HWSkel, the SPMD programming model that inherited from MPI is

used in the top level of our model. In the node-level parallel execution, we use

OpenMP for multicore CPU programming and CUDA for GPU programming

to provide comprehensive parallel heterogeneous performance comparable with

homogeneous multicore performance. Our heterogeneous programming model is

illustrated in Figure 17.

The aim of our approach is that the heterogeneous programming model that is

used in the GPU-HWSkel library will utilise all CPU cores and GPUs in hetero-

geneous multicore/GPU clusters by using CPU cores and GPU at the same time

in each node. The current implementation of our heterogeneous programming

model does not allow inter-communications between the GPU and other CPU

135

Chapter 5. GPU-HWSkel Library

CPU
4 Cores

PEPE PEPE

GPU
120 cores

CUDA

CPU
2 Cores

PE PE

GPU
120 cores

CUDA

MPI

OpenMP

CPU
4 Cores

PEPE PEPE

GPU
120 cores

CUDA

OpenMPOpenMP

Figure 17: Programming Model of GPU-HWSkel

cores inside the host nodes.

5.3 User Functions

The GPU-HWSkel library provides programmers with simple user functions that

can be passed as arguments to the skeletons. The user functions are implemented

using macros to create CUDA kernel code for the GPU as well as C-like functions

for CPU execution. For each skeleton in the library we define a corresponding

user function. For example, Listing 5.1 displays the macro for the hMap user

function.

136

Chapter 5. GPU-HWSkel Library

1
2 /∗ MAP user func t i on . ∗/
3
4 MAPFUNC(square , f loat , x ,
5 return x∗x ;
6) ;

Listing 5.1: MAP User Function.

while Listing 5.2 displays the macro expansion.

1
2 /∗
3 ∗ Macro d e f i n i t i o n
4 ∗ This macro c r ea t e s a CUDA kerne l & C− l i k e func t i on
5 ∗ f o r map s k e l e t on .
6 ∗/
7
8 #define MAPFUNC(funcName , dataType , parameter , funcBody) \
9 d e v i c e dataType\

10
11 DEVMAP FUNC(dataType parameter) \
12 {\
13 funcBody\
14 }\
15 dataType CPUMAP FUNC(dataType parameter) \
16 {\
17 funcBody\
18 }

Listing 5.2: Macro expansion.

5.4 Skeletons in GPU-HWSkel

In the HWSkel library we described the skeletons that represent the implemen-

tations of MPI and OpenMP. In this section we will discuss the new skeletons

versions that represent CUDA kernels for GPU implementation besides C-like

function for CPU implementation.

The GPU-HWSkel currently provides a set of data-parallel heterogeneous

skeletons including hMap, hMapAll, hReduce, hMapReduce and hMapReduceAll.

For each skeleton in GPU-HWSkel, a general interface is provided to be used

137

Chapter 5. GPU-HWSkel Library

for skeleton invocation, regardless of whether the skeleton is executed on a CPU

or GPU. Therefore, during the application development process, the applica-

tion programmer only needs to specify a well-suited skeleton interface and the

appropriate user function for the given problem, and not focus on where the

skeleton will be executed. Since the user function is introduced in GPU-HWSkel

to provide the definition of the function that will be executed by the skeleton,

we modified the interface of the previous skeletons by eliminating the parameter

that represents the function name.

1
2 #include ”HwSkel . h”
3
4 REDUCEFUNC(plus , f loat , x , y ,
5 return x+y ;
6) ;
7
8 MAPFUNC(square , f loat , x ,
9 return x∗x ;

10) ;
11
12 int main (int argc , char ∗∗ argv)
13 {
14 int l en ;
15 f loat ∗data , ∗map result , r e du c e r e s u l t ;
16
17 //− Ske l e ton i n i t i a l i s a t i o n
18 InitHWSkel (argc , argv) ;
19
20 i f (StartNode)
21 {
22 s s c an f (argv [1] , ”%d”,& len) ;
23
24 //− a l l o c a t e memory on hos t
25 data = (f loat ∗) mal loc (l en ∗ s izeof (f loat)) ;
26
27 //− f i l l the array
28 int i ;
29 for (i =0; i<l en ; i++)
30 {
31 data [i] = i +1;
32 }
33 }
34
35 //− c a l l hMap s k e l e t on
36 map resu l t = hMap(data , len , FLOAT) ;
37
38 //− c a l l hReduce s k e l e t on
39 r e du c e r e s u l t = hReduce (map result , len , FLOAT) ;
40
41 i f (StartNode) {

138

Chapter 5. GPU-HWSkel Library

42 p r i n t f (”C: sum of squar between [0 . . %d] = %. f \n” , len , r e du c e r e s u l t) ;
43 }
44
45 //− s k e l e t on terminat ion
46 TerminationHWSkel () ;
47
48 return 0 ;
49 }

Listing 5.3: An Example of using hMap and hReduce skeletons with User
Functions.

The implementation of our skeletons depends on the available architectures

and an automatic-implementation selection plan is used to select the appropriate

implementation as we discussed earlier. Thus, if a GPU device is found and a

CUDA implementation is needed, the skeleton registers all the property details

of the selected device such as the maximum number of threads per block and the

maximum number of blocks supported by device, and then sets up the execution

configuration and kernel parameters in a transparent way.

Each skeleton has a corresponding user function, Listing 5.3 shows an exam-

ple of using the map and reduce skeletons along with their corresponding user

functions.

5.5 Summary

In this chapter we have presented a skeleton-based programming framework called

GPU-HWSkel for heterogeneous multicore/GPU architectures including single-

core CPU, multicore CPU, GPU, and integrated multicore/GPU systems. Our

framework is intended to simplify the implementation of parallel applications and

139

Chapter 5. GPU-HWSkel Library

supports execution on heterogeneous multicore/GPU systems (i.e. a cluster of

multicore/GPU nodes) by providing high-level heterogeneous parallel skeletons

for CPU and GPU programming, which conceal the complexity of parallelisation,

in particular, communication between the CPU and GPU.

140

Chapter 6

A GPU Workload Distribution

Cost Model (CM2)

In this chapter we present and discuss an extension CM2 cost model of this

approach to account for the GPU as an independent processing element, and to

automatically find a good distribution in heterogeneous multicore/GPU systems.

Like the CM1 cost model, CM2 is a static cost model, dynamically parametrised

to provide performance portability.

Both CPU cores and a GPU device are considered as a single independent

processing unit in each host node of the heterogeneous multicore/GPU cluster

as we mentioned earlier. Thus we aim to extend our cost model to estimate the

relative processing power of a CPU as well as a GPU in each host node to guide

the distribution of workload across the cluster nodes, and between the GPU and

CPU cores on each host node. Our heterogeneous skeletons will fully automate

141

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

the distribution process on a heterogeneous multicore/GPU architecture by using

the extended performance cost model, which in turn makes the task of workload

distribution much simpler for the skeleton programmer.

This chapter presents our extended CM2 cost model for heterogeneous multi-

core/GPU systems . We start by reviewing the related performance cost models

for distributing workload on heterogeneous architectures that comprise multi-

core CPU and GPU in Section 6.1. In Section 6.2 we discuss our approach.

Then we describe the methodology of building our performance cost model for

the distribution of workload across CPU cores and GPU cards in heterogeneous

multicore/GPU systems in Section 6.3. Finally we discuss experimental results

to evaluate the effectiveness of the CM2 cost model in the performance of the

GPU-HWSkel heterogeneous skeletons for data parallelism on heterogeneous mul-

ticore/GPU systems in Section 6.4.

6.1 Related Work

A number of performance cost models have been developed for heterogeneous

parallel systems (See Section 4.1). To the best of our knowledge little research

has been done in considering the use of CPU cores and a GPU card simultaneously

on heterogeneous multicore/GPU configurations. Here we briefly describe related

models that consider using heterogeneous multicore/GPU systems.

- A mathematical performance cost model is introduced in conjunction with

142

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

a 2D-FFT library for finding the optimal distribution ratios between CPUs

and GPUs in a heterogeneous system [162]. The model is constructed to

predict the total execution time of a 2D-FFT of arbitrary data size. Firstly

the FFT computation is split into small steps, and then the model predicts

the execution time for each execution step using profiling results, and finally

the model determines the optimal load distribution ratio as the shortest

predicted execution time. Moreover the model attempts to overcome the

limitation in the memory sizes of GPUs by iterating GPU library calls.

- An adaptive mapping technique [11] is implemented in the heterogeneous

programming system called Qilin (See Section 2.4.2.4) for computation

placement on heterogeneous multiprocessors. It is a fully automatic adap-

tive approach to find the optimal computation mapping to processing ele-

ments. Qilin has a capability to use any heterogeneous platform, since it

does not require any hardware information for its implementations. This

technique uses a execution-time projection stored in a database to deter-

mine the execution times of both the CPU and GPU for a given program,

problem size and hardware configuration. Further, the determined execu-

tion times are used to statically partition the workload among the CPU and

GPU. Thus, the first step in the Qilin programming system is to conduct a

training run to add data to the database.

143

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

- An optimisation framework is introduced in [163] to improve the load bal-

ance on heterogeneous multicore/GPU systems. Instead of using static

partitioning method, the model applies an adaptive technique that dynam-

ically balances the workload distribution between the CPU cores and the

GPU in a single node. At the beginning of the execution process, the

model measures the performance of both the CPU and the GPU, and then

the measurement is used to guide the workload distribution. In addition to

this adaptive technique, the model tries to hide the communication over-

head of transferring the data between CPU and GPU by providing software

pipelining to overlap data transfers and kernel execution.

6.2 Discussion

Load-balancing at the multi-node heterogeneous multicore/GPU hardware level

can either be done dynamically or statically before program execution is started.

Static cost models incur less overhead than dynamic models due to their simplicity

and lack of runtime overhead. Besides, heterogeneous multicore/GPU systems

are highly distributed, and data transfer between host main memory and GPU

device memory is costly. So we seek to minimise this before program execution.

Therefore we wish to develop an accurate cost model and prediction mecha-

nism to balance the workload distribution across the cores and the GPU in each

144

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

single node as well as between the nodes in a heterogeneous multicore/GPU clus-

ter. The new cost model inherits all the features of the CM1 cost model described

in Section 4.3.

However, in contrast to the performance cost models described previously, our

new cost model provides the following features.

Heterogeneous-mode. The performance cost models in [162, 11, 163] are

based on measuring the performance of both the CPU and the GPU in a

heterogeneous system by using profiling results. Our CM2 cost model is

based on two different type of performance measurements for the core and

GPU. Since the performance of the GPU is changed by changing the data

size while the performance of the core can be more stable for different data

sizes, we need only measure the performance of the GPU with a training run

and the runtime of the program on one reference core of the system, while

the other cores performance is calculated using the architectural parameters

that were introduced in the CM1 cost model.

Hardware-auto-selection. Since our performance cost model can provide

enough information about the CPU and GPU performance capability, there-

fore, our heterogeneous skeletons can potentially choose to use either the

multicore CPU or a GPU card to execute the ongoing program. This feature

will be discussed in more detail in the future work in Section 7.3.

145

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

6.3 The CM2 Cost Model

We wish to reconstruct our architectural cost model in the HWSkel library to

distribute the workload on heterogeneous multicore/GPU systems by statically

determining the chunk size of data for each processing element either core or GPU

in the system.

Therefore, since our underlying target hardware consists of two levels of het-

erogeneous hardware architectures, the proposed new cost model is viewed as two-

phase cost model. The model is divided into two main components: i) Single-

Node Model, to guide the workload distribution across the CPU cores and the

GPU device inside each node in the multicore/GPU system; ii) Multi-Node

Model, to balance the workload across the nodes in the cluster.

In general, we focus on predicting the runtime of the application code on the

GPU device and use the simple CM1 architectural cost model that was used by

the HWSkel library for measuring the processing power of the multicore CPU. In

addition, since the workload is statically distributed across the CPU cores and

the GPU and also between the nodes at the beginning of program execution, the

model does not allow for any communication between the CPU cores and the

GPU or between the nodes in the system other than via the skeleton.

We will now discuss the two phases of our performance cost model in more

details.

146

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

6.3.1 Single-Node Cost Model

In a heterogeneous multicore/GPU node, the GPU is connected to the multicore

CPU via a PCI Express connection. The Single-Node cost model is viewed as the

method that tunes the distribution of the workload between the CPU cores and

the GPU.

In constructing the Single-Node cost model, we have assumed that one of

the CPU cores (usually the core with rank 0) is dedicated to control and to

communicate with the GPU device, and that the rest the of the CPU cores will

be executing the same computation. Thus, we assume that the CPU at least has

two cores. We also assume that there is no inter-process communication either

among the CPU cores or between the GPU and non-dedicated CPU cores.

We base the workload distribution on the performance ratio between the core

and GPU in the integrated node. So the cost model aims to predict the execution

time of a single core vs. the GPU device for arbitrary data sizes, and calculates

the chunk size for a CPU core and the GPU by using this performance ratio.

To facilitate our discussion, let us introduce the following notation:

TC : Program runtime on a single core.

TG : Program runtime on the GPU.

P : The relative power of a computational unit, e.g a core, GPU.

C : Number of cores in a single node.

147

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

D : Data Size.

We start by calculating P , the relative powers of the GPU and a single core:

P = TC/TG

If the GPU is allocated DGPU units of data then the multicore will receive 1

DGPU .P/(C − 1)

units. As the node comprises a multicore and a single GPU, the total data size is

Dtotal = DGPU +DGPU .P/(C − 1) (11)

Factoring out DGPU , the data allocated to the multicore is

Dmulticore = Dtotal/(1 + P/(C − 1)) (12)

and the each core is allocated

Dcore = Dmulticore/(C − 1) (13)

1C − 1 as one of the cores is dedicated to the GPU.

148

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

6.3.2 Multi-Node Cost Model

The Multi-Node cost model is based on the Single-Node cost model to determine

the chunk size for each node in the system. As a heterogeneous cluster might have

different kinds of computing nodes, the key idea of the Multi-Node cost model is

to measure the relative processing power for each node in the cluster. Hence, the

total available processing power P for n nodes is given by:

Ptotal =
i=n∑
i=1

Pi

So for data size Dtotal, the chunk size for node i is:

(Pi/Ptotal).Dtotal (14)

Nodes may have different architectures, and hence powers. The relative power

of a node i that consists of a GPU and multiple cores is the sum of the relative

powers of the cores, Pcore, and the GPU PGPU :

Pi = PGPUi
+ (Ci − 1).Pcorei (15)

if there is only a single core, i.e. C = 1, it follows directly that

Pi = PGPUi
(16)

149

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

To calculate Pcore and PGPU , we first measure TCbase
, the runtime of the program

on core of the system, and use it as follows:

PGPUi
= TCbase

/TGi
(17)

In practice we predict the relative powers on the base core, PCbase
, and on the

cores of node i, PCi
using the CM1 cost model, i.e. Equation 7 in Section 4.4:

PCi
= Si.L2i (18)

PCbase
= Sbase.L2base (19)

Hence the relative power of a core on node i is:

Pcorei = PCbase
/PCi

(20)

Substituting equations (17) and (20) in (15) gives the cost equation used in the

GPU-HWSkel library:

Pi = PGPUi
+ (Ci − 1).PCi

/PCbase
(21)

The key point is that we need only measure TGi
and TCbase

to parametrise the

model.

150

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

6.4 GPU-HWSkel Evaluation

Having presented the implementation of the GPU-HWSkel framework and the

CM2 cost model, we will now discuss and report experimental results to evaluate

the achievable performance with our skeletons that exploit CM2. The experi-

ments are conducted to justify and demonstrate the necessity of the CM2 cost

model for GPU-HWSkel, and also to check the behavioural consistency of the

skeletons with CM2 on a number of different parallel architectures that comprise

multicore CPU and GPU in each node.

6.4.1 Benchmarks

The experiments are based on running the common Matrix Multiplication par-

allel kernel, and also a simple Fibonacci program. A brief description of each

benchmark application is given in the following sections.

6.4.1.1 Matrix Multiplication

The well-known representative for a wide range of high-performance applications

is the problem of multiplying two matrices A with element am×n in row m and

column n, and B with element bn×k in row n and column k resulting in the matrix

C with element cm×k in row m and column k. There are a number of different

techniques for multiplying matrices. Here we are using matrix multiplication

algorithm to evaluate the performance of our heterogeneous Map skeleton.

151

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

Sequential Algorithm: In our algorithm the number of multiplications per-

formed is reduced by breaking down the input matrices into several sub-

matrices. Thus, to compute the matrix product C = AB,

let:

A =

A11 A12

A21 A22

 and B =

B11 B12

B21 B22



where Aij and Bij are sub-matrices of matrix A and matrix B.

Then the matrix C is computed by:

C =

A11B11 ⊕ A12B21 A11B12 ⊕ A12B22

A21B11 ⊕ A22B21 A21B12 ⊕ A22B22



GPU-HWSkel-based Parallel Algorithm: In the parallel version, the input

matrices are broken down into blocks of small matrices where the block size

is determined by the programmer, and then the resulting matrix is stored

as a array (Maparray) of sub-matrices elements to maintain the suitabil-

ity of using the Map skeleton. Each element in the Maparray contains all

sub-matrices that are needed to compute one of the sub-matrices in the

152

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

resulting matrix as follows:

Maparray = A11B11A12B21A11B12A12B22A21B11A22B21A21B12A22B22

The first step of the algorithm is performed only by the master PE and is

not included in the runtime. In the second step the chunk size for each PE

is determined using our performance cost model, and the array elements

are distributed across the available PEs using the hMap skeleton.

6.4.1.2 Fibonacci Program

Fibonacci is a function that computes Fibonacci numbers (See Code fragment

6.1). In our experiment, we use a simple program that calculate the Fibonacci

value for an array of integer numbers with fixed constants by replicating the fib

function from the original sequential program.

1
2 long f i b (long n)
3 {
4 long f i r s t = 0 ;
5 long second = 1 ;
6 long tmp ;
7 while (n−−){
8 tmp = f i r s t + second ;
9 f i r s t = second ;

10 second = tmp ;
11 }
12 return f i r s t ;
13 }

Listing 6.1: Code for Fibonacci function.

In the parallel version, the array of integers is split into chunks using a split

function which employs the cost model for load distribution, and then the fib

153

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

function is mapped in parallel across each chunk. Code fragment 6.2 presents the

main Fibonacci program that uses the hMapReduce skeleton.

1
2 int main (int argc , char ∗∗ argv)
3 {
4 int i ;
5 int l en ;
6 long ∗data ;
7 long ∗map resu l t ;
8
9 //− s k e l e t on i n i t i a l i s a t i o n

10 Sk e l e t o n s I n i t (argc , argv) ;
11
12 i f (StartNode)
13 {
14 s s c an f (argv [1] , ”%d”,& len) ;
15
16 //− a l l o c a t e memory on hos t
17 data = (long ∗) mal loc (l en ∗ s izeof (long)) ;
18
19 //− f i l l the array
20 for (i =0; i<l en ; i++)
21 data [i] = 1000000;
22 }
23
24 //− c a l l map s k e l e t on
25 map resu l t = hMap(data , len ,LONG) ;
26
27 //− s k e l e t on terminat ion
28 Ske le tons Terminat ion () ;
29 return 0 ;
30 }

Listing 6.2: Main program for hMap Fibonacci.

6.4.2 Platform

We conduct our experiments on a heterogeneous multicore/GPU cluster of a

number of different parallel architectures located at Heriot-Watt University as

summarised in Table 8.

- lxpara: an eight-core Dell PowerEdge 2950 machines constructed from two

quad-core Intel Xeon 5410 processors running Linux RedHat 5.5 at 2.33GHz

with 6144 KB L2 cache and using 8GB RAM.

154

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

- lxphd: a two-core machines with Intel E8400 processors running RedHat

5.5 at 3.00GHz with 6144 KB L2 cache and using 2GB RAM.

- linux lab: a two-core machines consisting of Linux RedHat 4.1.2 work-

stations with a 2.4GHz Intel processor, using 2GB RAM and 2048KB L2

cache.

- brahma: a four-core machine running Linux RedHat 4.1.2 at 3.06GHz

with 512 KB L2 cache and using 4GB RAM.

Each of the above machines is connected to an NVIDIA GeForce GT 520

GPU device. The device has 1 GB of DRAM and has one multiprocessor (MIMD

units) clocked at 810 MHz. The multiprocessor has 48 processor cores (SIMD

units) running at twice the clock frequency of the multiprocessor and has 16 KB

of shared memory.

Further, CUDA version 4.0 was used for the experiments. The CUDA code

was compiled using the NVIDIA CUDA Compiler (NVCC) to generate the device

code that is launched from the host CPU.

Machine CPU GPU
name archi Cores MHz L2 archi SM Cores MHz

lxpara Xeon 5410 8 1998 6144KB GT 520 1 48 1620

lxphd Intel E8400 2 1998 6144KB GT 520 1 48 1620

linux lab 2 Duo CPU 2 1200 2048KB GT 520 1 48 1620

brahma Xeon(TM) 4 3065 512KB GT 520 1 48 1620

Table 8: Experimental Architectures.

155

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

6.4.3 Performance Evaluation

In our experiments, we investigate the performance impact of the heterogeneous

hMap skeleton on different heterogeneous parallel architectures (outlined in Sec-

tion 6.4.2) including multicore CPU and GPU systems. To ensure the effective-

ness and the portability of our performance cost model, we have carried out our

experiments on two modes of parallel architecture: i) Single-Node, where the

hardware comprises a single multicore CPU connected to a single GPU device;

ii) Multi-Node or cluster, where the cluster consists of a number of loosely-

coupled nodes with a multicore processor and a single GPU device.

For all the measurements that are performed on the two-core processors (such

as linux and lxphd) , we follow the common practice of increasing the input-data

size to evaluate the behaviour consistency of the hMap skeleton with the CM2

cost model. While in the case of using machines with an eight-core processor

(such as lxpara), all programs are measured with a fixed data size on 1,2,3,4,5,6,

and 7 cores together with a single GPU device. We measure the runtimes on

lxpara for the hMap skeleton implementation, with a fixed data size of 1500 x

1500 for the input matrices, and 80,000 elements of Fibonacci (1,000,000).

6.4.3.1 Single Multicore/GPU Node Results

The single-node experiments have been carried out our on linux lab, lxphd, and

lxpara as single nodes.

156

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

Table 9 and 10 show the hMap runtime for Matrix Multiplication and Fi-

bonacci on linux lab and lxphd respectively. The measurements report the run-

time on 1 core, GPU, GPU plus 1 core, and show the percentage improvement

of hMap using the CM2 cost model. The hMap Fibonacci has an improvement

of 95% over the sequential time and improvement of 4% over the GPU time on

linux lab and lxphd using CM2 , while the hMap Matrix Multiplication has an

improvement of 68% over the sequential time on both linux lab and lxphd, and

improvement of 32% on linux lab and 20% over the GPU time on lxphd.

157

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

1 Core+GPU
Data Run-Time (s) Improvement %
Size 1 Core GPU 1 Core+GPU 1 Core GPU

800x800 2.31 1.40 1.32 42% 5%
900x900 3.30 1.77 1.54 53% 12%

1000x1000 4.52 2.09 1.80 60% 13%
1100x1100 6.02 2.73 2.12 64% 22%
1200x1200 7.82 3.26 2.54 68% 22%
1300x1300 9.94 4.29 3.19 67% 25%
1400x1400 12.41 5.37 4.00 67% 25%
1500x1500 15.26 7.23 4.91 67% 32%

(a) Matrix Multiplication

1 Core+GPU
Data Run-Time (s) Improvement %
Size 1 Core GPU 1 Core+GPU 1 Core GPU
1000 3.36 0.19 0.17 94% 10%
2000 6.77 0.34 0.32 95% 5%
5000 17.02 0.79 0.75 95% 5%
10000 34.17 1.53 1.47 95% 3%
20000 67.93 3.06 2.91 95% 4%
30000 103.30 4.55 4.39 95% 3%
40000 137.08 6.071 5.79 95% 4%
50000 170.80 7.55 7.24 95% 4%
60000 207.33 9.05 8.69 95% 4%
70000 243.79 10.51 10.12 95% 3%
80000 278.04 12.05 11.52 95% 4%

(b) Fibonacci

Table 9: 1 Core hMap Runtimes (linux lab).

158

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

1 Core+GPU
Data Run-Time (s) Improvement %
Size 1 Core GPU 1 Core+GPU 1 Core GPU

800x800 4.28 1.47 1.41 67% 4%
900x900 6.09 1.84 1.66 72% 9%

1000x1000 8.37 2.25 1.98 76% 12%
1100x1100 11.12 2.88 2.36 78% 18%
1200x1200 14.43 3.49 3.07 78% 12%
1300x1300 18.34 4.46 3.90 78% 12%
1400x1400 22.91 5.79 4.88 78% 12%
1500x1500 28.25 7.61 6.02 78% 20%

(a) Matrix Multiplication

1 Core+GPU
Data Run-Time (s) Improvement %
Size 1 Core GPU 1 Core+GPU 1 Core GPU
1000 3.27 0.20 0.19 94% 5%
2000 6.53 0.36 0.34 94% 5%
5000 16.36 0.79 0.77 95% 2%
10000 32.75 1.55 1.48 95% 4%
20000 65.47 3.07 2.93 95% 4%
30000 98.13 4.55 4.39 95% 3%
40000 130.97 6.07 5.77 95% 4%
50000 163.57 7.53 7.22 95% 4%
60000 196.44 9.06 8.67 95% 4%
70000 229.18 10.55 10.06 95% 4%
80000 261.77 12.00 11.52 95% 4%

(b) Fibonacci

Table 10: 1 Core hMap Runtimes (lxphd).

159

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

Table 11 shows the runtime of Matrix Multiplication with data size of 1500

x 1500 and Fibonacci with data size 80,000 elements with a value of 1,000,000

using hMap on lxpara. The measurements show that the hMap Fibonacci has

improvement of 77% over 8 cores, while the hMap Matrix Multiplication shows

that there is no improvement after 6 cores.

(Core-1)+GPU
Cores Run-Time (s) Improvement %

Cores GPU (Cores-1)+GPU Cores GPU
1 19.60 7.26 7.26 62% 0%
2 9.82 7.26 5.31 45% 26%
3 6.55 7.26 4.20 35% 42%
4 4.93 7.26 3.48 29% 52%
5 3.94 7.26 3.09 21% 57%
6 3.29 7.26 2.92 11% 59%
7 2.89 7.26 2.84 1% 60%
8 2.54 7.26 2.78 -9% 61%

(a) Matrix Multiplication

(Core-1)+GPU
Cores Run-Time (s) Improvement %

Cores GPU (Cores-1+GPU) Cores GPU
1 344.37 12.03 12.03 96% 0%
2 172.01 12.03 11.60 93% 3%
3 114.85 12.03 11.28 90% 6%
4 86.06 12.03 10.90 87% 9%
5 68.99 12.03 10.59 84% 11%
6 57.43 12.03 10.27 82% 14%
7 49.26 12.03 9.96 79% 17%
8 43.09 12.03 9.69 77% 19%

(b) Fibonacci

Table 11: Multiple Core hMap Runtimes (lxpara).

160

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

The parallel performance is measured as the absolute speedup of using both

the GPU and the cores within a single machine. Figures 18 and 19 show the

absolute speedup achieved for the Fibonacci and Matrix Multiplication programs

with different input-data sizes on the two-core linux and lxphd machines respec-

tively. As anticipated, our results show that using CPU cores together with a

GPU to perform the same computing operations concurrently can improve the

performance of our skeletons.

The graphs in Figures 18 and 19 compare the absolute speedup curve for (one

CPU-core plus single GPU) implementation with the curve for GPU implementa-

tion. Although the computing capability of the GPU is relatively large compared

with the computational power of a single CPU-core, the results show that using

cores together with a GPU can deliver expected and acceptable speedups on both

machines.

Our results also suggest that using the performance cost model for determin-

ing granularity and data placement on different heterogeneous architectures can

provide a good load balance for data distribution between cores and a GPU, for

data parallel programs with limited irregularity. This is reflected in the speedup

graphs where the curves are broadly similar for both programs (Fibonacci and

Matrix Multiplication) with different input data size on different parallel hetero-

geneous architectures.

Next, to investigate the impact of the data distribution strategy that is used

in the CM2 cost model on the parallel performance of a varying number of cores

161

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 800 900 1000 1100 1200 1300 1400 1500

S
p

ee
d

u
p

Data Size

Matrix Multiplication(linux-lab)
GPU

1 Core + GPU

(a)

 21

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 5000 10000 20000 30000 40000 50000 60000 70000 80000

S
p

ee
d

u
p

Data Size

Fibonacci(linux-lab)
GPU

1 Core + GPU

(b)

Figure 18: hMap Fibonacci & hMap Matrix Multiplication Absolute Speedup on
(linux lab)

162

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 800 900 1000 1100 1200 1300 1400 1500

S
p

ee
d

u
p

Data Size

Matrix Multiplication(lxphd)
GPU

1 Core + GPU

(a)

 20

 20.5

 21

 21.5

 22

 22.5

 23

 5000 10000 20000 30000 40000 50000 60000 70000 80000

S
p

ee
d

u
p

Data Size

Fibonacci(lxphd)
GPU

1 Core + GPU

(b)

Figure 19: hMap Fibonacci & hMap Matrix Multiplication Absolute Speedup on
(lxphd)

163

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

 1

 2

 3

 4

 5

 6

 7

 8

2 3 4 5 6 7 8

S
p

ee
d

u
p

Cores

Matrix Multiplication(lxpara)
GPU

Cores
GPU + cores-1

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8

S
p

ee
d

u
p

Cores

Fibonacci(lxpara)
GPU

Cores
GPU + cores-1

(b)

Figure 20: hMap Fibonacci & hMap Matrix Multiplication Absolute Speedup on
(lxpara)

164

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

with a single GPU-device, we run experiments with the Fibonacci and Matrix

Multiplication programs on a machine with eight cores (i.e. lxpara).

Figure 20 compares the absolute speedups of both Fibonacci and Matrix Mul-

tiplication programs on only cores and GPU, and CPU-core+GPU of lxpara. This

shows that in both programs we obtain good performance as anticipated. Firstly

the results presented in Figure 20 are consistent with others that we obtained for

both programs on the linux and lxphd machines, where the speedup is increased

by using one CPU-core plus the GPU. Secondly we have obtained almost linear

speedup with parallel efficiency of about 99% in both programs on cores. However,

in the Matrix Multiplication program we can see that the speedup has a slight

degradation to 95% parallel efficiency after six cores due to decreasing the chunk

size to the point that other overheads become more significant. The results show

that our skeleton delivers 28x from the GPU compared to a single CPU-core in

the Fibonacci program, while we report nearly 2.8x speedup over a CPU-core by

using a GPU in the Matrix Multiplication application. The variation in speedup

between both programs is due to the GPU-HWSkel-based parallel algorithm used

for each program. Since the major problem with GPU implementations which

affects the performance efficiency is the size of data being transferred between

the CPU and GPU, Strassen’s algorithm requires too much data communication

between the CPU and GPU, which increases the CPU-GPU communication over-

head. Therefore, we find that Strassen’s algorithm is more suitable for multicore

processors than for a GPU implementation, while the Fibonacci program makes

165

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

a good GPU program.

Finally, the results show that the speedup in both programs can be signif-

icantly increased by increasing the number of cores along with the help of the

GPU. Consequently, using cores together with a GPU can provide an effective

way and a sensible environment to execute all programs that are suitable for GPU

devices or a multicore processor.

6.4.3.2 Clusters of Multicore/GPU Nodes Results

We now discuss the results of using our performance cost model for data place-

ment on a heterogeneous cluster where each node has a single GPU card connected

to a processor with different numbers of CPU cores.

We evaluate the performance of our cost model and its effect on our hMap

heterogeneous skeletons by running the skeletons on different combinations of the

architectures that are described in Section 6.4.2. Figure 21 plots the speedups for

different configurations with different processing elements calculating Fibonacci(1000000)

1500,000 times. The graph compares the speedups of three different kinds of com-

puting units (i.e. cores, GPU, and GPU plus cores) on different numbers of given

machines.

Figure 21 shows that the results are consistent with those that were presented

in Section 6.4.3.1 where we obtain noticeable speedup by using only the GPU in

each host node over using only the cores in the same nodes with different numbers

of heterogeneous machines. However, we have improved the performance of our

166

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

 0

 20

 40

 60

 80

 100

 120

 140

0 1 2 3

S
p

ee
d

u
p

Architectures

 Arch1[1 GPU + 6 Cores] Arch2[2 GPU + 8 Cores] Arch3 [3 GPU + 10 Cores] Arch4[4 GPU + 14 Cores]
 (lxpara) (lxpara+lxphd) (lxpara+lxphd+linux) (lxpara+lxphd+linux+brahma)

Fibonacci(linux-lab)
Cores
GPU

GPU + Cores-1

Figure 21: Speedups for the hMap Skeleton on a Heterogeneous Cluster

hMap skeleton by exploiting the cores along with the GPU in each host node.

We suggest once again, that our performance cost model has provided a good

strategy of data placement for heterogeneous architectures. The graph shows

that the implementation of our hMap skeleton can deliver good scalability, where

the upper speedup curve shows improved performance results for using our cost

model for data placement between the heterogeneous nodes as will as within each

node between the cores and the GPU.

In summary, our experimental results show that using cores together with

167

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

a GPU in the same host with our skeleton and cost model can deliver good

performance either on a single node architecture or on a multiple nodes (cluster)

architecture.

6.5 Summary

In this chapter we present and discuss the CM2 cost model for heterogeneous

multicore/GPU systems. The purpose of the new cost model is to balance the

workload distribution between the nodes on heterogeneous multicore/GPU clus-

ter as well as between CPU cores (i.e. Equations 14 and 21) and GPU inside each

node in cluster (i.e. Equation 12). Our cost model is viewed as two-phase, the

Single-Node phase to guides workload distribution across CPU core and GPU

device using the performance ratio between the CPU and GPU in the multi-

core/GPU computing node, the Multi-Node phase balances the distribution of

workload among the nodes on a heterogeneous multicore/GPU cluster. In gen-

eral, we focus on predicting the runtime of the application code on GPU and use

an architectural performance cost model for measuring the processing power of

the CPU to calculate the performance ratio.

We have demonstrated how the proposed performance cost model can be

integrated in our skeletons to provide an effective static load-balancing strategy

with dynamic parametrisation on a heterogeneous multicore/GPU platform, and

make the task of workload distribution much simpler for the skeleton programmer.

168

Chapter 6. A GPU Workload Distribution Cost Model (CM2)

Finally, we have investigated the feasibility and the necessity of the CM2

cost model to improve the performance of our heterogeneous skeleton using two

data parallel benchmarks (See Section 6.4.1) on three single heterogeneous multi-

core/GPU node architectures and four clusters of heterogeneous multicore/GPU

nodes (See Table 8). We show that exploiting both multicore and GPU compo-

nents of the architecture improve performances in all cases.

169

Chapter 7

Conclusion

7.1 Introduction

In this thesis, we have addressed the problem of designing an efficient high-level

parallel programming model to assure performance portability on heterogeneous

parallel systems.

The thesis presented based-skeleton C libraries to simplify parallel program-

ming on heterogeneous parallel architectures including CPUs and GPUs. These

libraries provide application developers with heterogeneous parallel skeletons for

data parallel computations. In order to achieve an optimal performance on a

heterogeneous parallel architecture, performance cost models were provided for

the skeletons to explicitly and statically guide the workload distribution on het-

erogeneous systems.

170

Chapter 7. Conclusion

Chapter 1 discussed the challenges of designing a high-level parallel program-

ming model to abstract all the parallel activities involved in developing parallel

applications on heterogeneous systems.

Chapter 2 gave a survey of parallel computing in general and skeleton-based

programming in particular, describing existing skeleton frameworks.

Chapter 3 presented a C based skeleton library called HWSkel for parallel

programming on heterogeneous parallel architectures. It also described and dis-

cussed the parallel implementations of the heterogeneous skeletons provided by

the library.

Chapter 4 introduced an architecture-aware performance cost model to be

used by HWSkel skeletons to guide data distribution over a heterogeneous mul-

ticore cluster.

Chapter 5 presented the GPU-HWSkel library that provides support for paral-

lel programming on either CPU cores or a GPU in heterogeneous multicore/GPU

systems.

Chapter 6 presented and evaluated an extension cost model (CM2) of the

CM1 cost model.

7.2 Contributions of Thesis

This thesis makes the following contributions in the area of high-level parallel

programming models in general and skeleton-based parallel programming and

171

Chapter 7. Conclusion

performance cost models in particular:

• A skeleton-based parallel programming framework named HWSkel has been

presented as a base library to provide support for parallel programming

on heterogeneous multicore cluster architectures. This library is imple-

mented in C on top of MPI as a distributed-memory programming model

and OpenMP for shared-memory parallelism. This means that the hetero-

geneous skeletons can take advantage straightforwardly of its underlying

hybrid programming model to be executed either on distributed-memory

systems, shared-memory systems or distributed-shared memory architec-

tures. In particular, the HWSkel framework provides a set of heterogeneous

skeletons for data parallel computations such as hMap, hReduce, hMapRe-

duce, and hMapReduceAll. The HWSkel framework also provides wrapper

functions for MPI routines to keep the user away from using a new pro-

gramming language within the skeletal programs.

• The second contribution of this thesis is a performance cost model (CM1)

to improve the performance of HWSkel skeletons on systems composed of

heterogeneous multicore nodes. The model was integrated into HWSkel to

provide a load-balancing strategy in a transparent way. The cost model is

architecture-aware and is used to statically determine the data-chunk size

according to the number of cores, clock speed and crucially the cache size

for each node across a heterogeneous multicore cluster. The cost model

172

Chapter 7. Conclusion

supports performance portability by providing cost estimations on a broad

range of heterogeneous platforms.

• The third contribution is designing an extended library named GPU-HWSkel.

The library provides a high-level parallel programming environment through

skeletons to program systems including (single- and multicore) CPU, and

GPU architectures. As in the HWSkel base library, at the top level, MPI

is used to communicate between the nodes, OpenMP is employed in the

second level for multicore programming, and the last level is implement-

ing GPU programming by using CUDA. The GPU-HWSkel framework also

provides the programmers with an simple user functions, using macros to

create CUDA kernels code for GPUs as well as C-like functions.

• The fourth contribution is an extension (CM2) to the CM1 cost model to

balance the workload distribution between the nodes in multicore/GPU

systems as well as between the CPU cores and the GPU inside each node.

The model is viewed as two-phase since the underlying target hardware

consists of two level of heterogeneous hardware architectures: i) Single-

Node Phase, to guide the workloads distribution across the CPU cores and

the GPU inside each node in the multicore/GPU system; ii) Multi-Node

Phase, to balance the workload across the nodes in the cluster.

173

Chapter 7. Conclusion

7.3 Limitations and Future Work

The work in this thesis has a number of limitations. This section discusses the

main limitations and the possible solutions.

7.3.1 Distributed Data Structures

As discussed in Section 3.2.1 the data structures need to be packed into an Ar-

rayList before the distribution process and then unpacked on each processor.

Currently, the packing and unpacking are done explicitly by the user. However,

both the packing and unpacking procedures can be done automatically by intro-

ducing new constructs, where the user can describe the data structures in abstract

way like user defined MPI data type.

7.3.2 Exploring Multiple GPUs

With the growth in heterogeneity, where a multicore is coupled with multi GPUs,

skeletons are needed to handle all the challenges that introduced by such archi-

tecture. Moreover the current implementation of GPU-HWSkel does not provide

support to multi-GPU systems.

Nevertheless GPU-HWSkel can potentially exploit as many GPUs as are avail-

able in the system. As we described in Section 5.2, each GPU will be controlled

by one of the CPU cores, so, the number of GPUs that can be used in the system

is limited to the number of cores in the system. Figure 22 shows how multi-GPU

174

Chapter 7. Conclusion

CPUCPU

Core0

GPU

Core0

GPU

Core0

GPU 0

Core2Core3 Core1

GPU 1
multiGPU cluster

node: multi-core + multi-GPU

Figure 22: Multi-GPU Support in GPU-HWSkel

computing can be managed in each node within a heterogeneous multicore/multi-

GPU clusters. Thus, to make multi-GPU implementations possible, each CPU

core is connected to one device in the host node. Each CPU core ID is used to

set the GPU index.

7.3.3 New Skeletons

Currently, HWSkel and GPU-HWSkel frameworks provide heterogeneous skele-

tons that only support mostly regular data-parallel computations on heteroge-

neous architectures. An important future work would be the extension of our

framework by adding new heterogeneous skeletons for task-parallel computations

as well as more skeletons for data-parallel computations, and this also could allow

for task- and data-parallel skeleton integration.

175

Chapter 7. Conclusion

7.3.4 Automatic Configuration

The key point of designing our framework is to provide applications developers

with heterogeneous skeletons that are smart enough to expose the target archi-

tecture to invoke the appropriate programming model. Besides, we show in our

experiments that some applications may be able to obtain good performance on

particular architectures. An interesting topic of future work would be to develop

the current heterogeneous skeletons to be more intelligent to expose the target

and choose the appropriate hardware and programming for a given problem.

7.3.5 New Model Parameters

We demonstrated that it is possible to obtain good performance using the CM2

cost model for workload distribution with our skeletons on a heterogeneous plat-

form. However, including further architectural parameters (e.g. network commu-

nication cost) in our cost model has the potential for more accurate estimation

and performance improvement on highly heterogeneous environments.

7.3.6 New Platforms

Current implementation of the GPU-HWSkel framework are based on the CUDA

standard as the backend for GPU programming which limits the implementa-

tion of our skeletons to NVIDIA GPU architectures. This should be extended

176

Chapter 7. Conclusion

to cover a broad range of GPU architectures to increase the degree of imple-

mentation portability. For example, GPU-HWSkel could take advantage of using

the OpenCL standard to make other GPU devices accessible through skeleton

programming.

177

Appendix A

The HWSkel Library

This appendix presents the complete code for the HWSkel Library.

A.1 hMap Skeleton

This section presents the hMap function discussed in Section 3.2.3.

A.1.1 hMap

1
2 #include ”HwSkel . h”
3
4 //− hMap Ske l e ton
5
6 void∗ hMap(void∗ dataList , int s i z e ,enum DataType dType , void∗ mapFunc)
7 {
8 int i ; // index
9 int∗ l i s tOfChunks ; // l i s t o f chunks

10 void ∗ s u b l i s t ;
11 void ∗map resu l t ;
12 void ∗∗ s k e l r e s u l t ;
13
14 //− MPI Datatype Conversion
15 ty = dataTypeConversion (dType) ;
16
17 i f (StartNode)
18 {

178

Appendix A. The HWSkel Library

19 //− Master node
20 p r i n t f (” hMap Ske le ton \n”) ;
21 int dest ;
22 int o f f s e t ;
23
24 s k e l r e s u l t = (void ∗∗) mal loc (s i z e ∗ s izeof (void ∗)) ;
25
26 //− c a l l CM1 cos t model
27 l i s tOfChunks = CM1 CostModel (cur r entC lus te r , s i z e) ;
28
29 //− sending the chunks s i z e
30 MPI Bcast (l istOfChunks , np , MPI INT , 0 , MPICOMMWORLD) ;
31
32 //− ge t master ’ s s p e c i f i c a t i o n s
33 ModelParas ∗master In fo = ArrayList GetItem (cur rentClus te r , id) ;
34
35 //− master s p l i t and send data to workers
36 for (des t =1; dest<np ; des t++){
37 s u b l i s t = spl i tCostMode l (dataList , dest , l i s tOfChunks) ;
38 MPI Send (s ub l i s t , l i s tOfChunks [des t] , ty , dest , 0 , MPICOMMWORLD) ;
39 }
40
41 //− master ge t own data
42 s u b l i s t = sp l i tCostMode l (dataList , id , l i s tOfChunks) ;
43
44 //− master perform i t s t a sk
45 i f (masterInfo−>numOfCores > 1) {
46 //− c a l l mult i−core hMap
47 map resu l t = MultiCorehMap (s ub l i s t , l i s tOfChunks [id] , mapFunc) ;
48 memcpy(s k e l r e s u l t , map result , l i s tOfChunks [id]∗ s izeof (void ∗)) ;
49 o f f s e t = l i stOfChunks [id] ;
50 }
51 else {
52 //− c a l l s i n g l e−core hMap
53 map resu l t = SingleCorehMap (s ub l i s t , l i s tOfChunks [id] , mapFunc) ;
54 memcpy(s k e l r e s u l t , map result , l i s tOfChunks [id]∗ s izeof (void ∗)) ;
55 o f f s e t = l i stOfChunks [id] ;
56 }
57
58 //− r e c i e v e data from the workers
59 for (des t =1; dest<np ; des t++){
60 MPI Recv (map result , l i s tOfChunks [des t] , ty , dest , 0 , MPICOMMWORLD,

&s ta tu s) ;
61 memcpy(s k e l r e s u l t+o f f s e t , map result , l i s tOfChunks [des t]∗ s izeof (void ∗)

) ;
62 o f f s e t+=listOfChunks [des t] ;
63 }
64 return s k e l r e s u l t ;
65 }
66 else //−−−− Workers −−−−−//
67 {
68 ModelParas ∗workerIn fo = GetProcInfo () ;
69
70 //− l i s t o f chunks
71 l i s tOfChunks = (int ∗) mal loc (np∗ s izeof (int)) ;
72 MPI Bcast (l istOfChunks , np , MPI INT , 0 , MPICOMMWORLD) ;
73
74 s u b l i s t = (void ∗∗) mal loc (l i s tOfChunks [id]∗ s izeof (void ∗)) ;
75 MPI Recv (s ub l i s t , l i s tOfChunks [id] , ty , 0 , 0 , MPICOMMWORLD, &s ta tu s) ;
76
77 i f (workerInfo−>numOfCores > 1) {
78 //− c a l l mult i−core hMap
79 map resu l t = MultiCorehMap (s ub l i s t , l i s tOfChunks [id] , mapFunc) ;
80 //−worker send r e s u l t
81 MPI Send (map result , l i s tOfChunks [id] , ty , 0 , 0 , MPICOMMWORLD) ;

179

Appendix A. The HWSkel Library

82 }
83 else {
84 //− c a l l s i n g l e−core hMap
85 map resu l t = SingleCorehMap (s ub l i s t , l i s tOfChunks [id] , mapFunc) ;
86 //− worker send r e s u l t
87 MPI Send (map result , l i s tOfChunks [id] , ty , 0 , 0 , MPICOMMWORLD) ;
88 }
89 }
90 }

Listing A.1: hMap Skeleton Code.

A.1.2 hMap Single-Core

1
2 //− hMap Sing leCore
3
4 void∗ SingleCorehMap (void∗ dataList , int s i z e , void∗ funcName)
5 {
6 void ∗ r e s u l t ;
7 //− ca s t i n g the func t i on po in t e r
8 vo id fp = (void pFun) funcName ;
9 r e s u l t = (void ∗) (∗ vo id fp) (dataList , s i z e) ;

10 return r e s u l t ;
11 }

Listing A.2: hMap SingleCore Skeleton Code.

A.1.3 hMap Multi-Core

1
2 //− hMap MultiCore
3
4 void∗ MultiCorehMap (void∗ dataList , int s i z e , void∗ mapFunc)
5 {
6 void ∗ s u b l i s t ;
7 void ∗map resu l t ;
8 void ∗∗ r e s u l t s ;
9 int o f f s e t ;

10 int myChunkSize ;
11 int t i d ;
12
13 //− ge t number o f threads
14 int threads = omp get max threads () ;
15
16 //− c a l c u l a t e the chunk s i z e
17 int chunkSize = s i z e / threads ;
18
19 //− remainder
20 int remainder = s i z e%threads ;
21 r e s u l t s = (void ∗∗) mal loc (s i z e ∗ s izeof (void ∗)) ;
22

180

Appendix A. The HWSkel Library

23 //−p a r a l l e l reg ion
24 #pragma omp p a r a l l e l p r i va t e (t id , s ub l i s t , map result , myChunkSize , o f f s e t) shared

(threads , dataList , r e s u l t s , chunkSize , remainder)
25 {
26 //− ge t thread Id
27 t i d = omp get thread num () ;
28
29 i f (t i d == 0) {
30 myChunkSize = chunkSize+remainder ;
31 //− p a r t i t i o n i n g
32 s u b l i s t = sp l i tEqua l (dataList , myChunkSize , remainder , t i d) ;
33 map resu l t = Sing leCore (s ub l i s t , myChunkSize , mapFunc) ;
34 o f f s e t = 0 ;
35 }
36 else {
37 myChunkSize = chunkSize ;
38 //− p a r t i t i o n i n g
39 s u b l i s t = sp l i tEqua l (dataList , chunkSize , remainder , t i d) ;
40 map resu l t = Sing leCore (s ub l i s t , chunkSize ,mapFunc) ;
41 o f f s e t = t i d ∗myChunkSize+remainder ;
42 }
43 #pragma omp c r i t i c a l (update Resu l t s)
44 {
45 memcpy(r e s u l t s+o f f s e t , map result , myChunkSize∗ s izeof (void ∗)) ;
46 }
47 }
48
49 return r e s u l t s ;
50
51 }

Listing A.3: hMapMultiCore Skeleton Code.

A.2 hMapAll Skeleton

This section presents the hMapAll function discussed in Section 3.2.4.

A.2.1 hMapAll

1
2 #include ”HwSkel . h”
3
4 //− hMapAll s k e l e t on
5
6 void∗ hMapAll (void∗ dataList , int s i z e ,enum DataType dType , void∗ mapFunc)
7 {
8 void ∗ s u b l i s t ;
9 void ∗map resu l t ;

10 void ∗∗ s k e l r e s u l t ;
11
12 //− MPI Datatype Conversion
13 ty = dataTypeConversion (dType) ;

181

Appendix A. The HWSkel Library

14
15 i f (StartNode)
16 {
17 p r i n t f (” hMapAll Ske l e ton \n”) ;
18 int dest ;
19 int o f f s e t ;
20
21 //− c a l c u l a t e the chunks s i z e us ing the CM1 cos t model
22 l i s tOfChunks= CM1 CostModel (cur r entC lus te r , s i z e) ;
23
24 //− sending the chunks s i z e
25 MPI Bcast (l istOfChunks , np , MPI INT , 0 , MPICOMMWORLD) ;
26
27 //− l i s t s i z e
28 MPI Bcast(& s i z e , 1 , MPI INT , 0 , MPICOMMWORLD) ;
29
30 //−ge t master ’ s s p e c i f i c a t i o n s
31 ModelParas∗ master In fo = ArrayList GetItem (cur rentClus te r , id) ;
32
33 s k e l r e s u l t = (void ∗∗) mal loc (s i z e ∗ s izeof (void ∗)) ;
34
35 //−master d i s t r i b u t e the data
36 MPI Bcast (dataList , s i z e , ty , 0 , MPICOMMWORLD) ;
37
38 //−master ge t own data
39 s u b l i s t = spl i tCostMode l (dataList , id , l i s tOfChunks) ;
40
41 //− master perform i t s t a s k
42 i f (masterInfo−>numOfCores > 1) {
43 //− c a l l mult i−core hMapAll
44 map resu l t = MultiCorehMapAll (dataList , s i z e , s ub l i s t , l i s tOfChunks [id

] , mapFunc) ;
45 memcpy(s k e l r e s u l t , map result , l i s tOfChunks [id]∗ s izeof (void ∗)) ;
46 o f f s e t = l i stOfChunks [id] ;
47 }
48 else {
49 //− c a l l s i n g l e−core hMapAll
50 map resu l t = SingleCorehMapAll (dataList , s i z e , s ub l i s t , l i s tOfChunks [

id] , mapFunc) ;
51 memcpy(s k e l r e s u l t , map result , l i s tOfChunks [id]∗ s izeof (void ∗)) ;
52 o f f s e t = l i stOfChunks [id] ;
53 }
54
55 //−master r e c i e v e data from the workers
56 for (des t =1; dest<np ; des t++){
57 MPI Recv (map result , l i s tOfChunks [des t] , ty , dest , 0 , MPICOMMWORLD

, &s ta tu s) ;
58 memcpy(s k e l r e s u l t+o f f s e t , map result , l i s tOfChunks [des t]∗ s izeof (void

∗)) ;
59 o f f s e t+=listOfChunks [des t] ;
60 }
61 return s k e l r e s u l t ;
62 }
63 else
64 {
65 //− Workers
66 ModelParas∗ workerIn fo = GetProcInfo () ;
67
68 //− l i s t o f chunks
69 l i s tOfChunks = (int ∗) mal loc (np∗ s izeof (int)) ;
70
71 //− r e c e i v e l i s t o f chunks
72 MPI Bcast (l istOfChunks , np , MPI INT , 0 , MPICOMMWORLD) ;
73
74 //− r e c e i v e data s i z e

182

Appendix A. The HWSkel Library

75 MPI Bcast(& s i z e , 1 , MPI INT , 0 , MPICOMMWORLD) ;
76 MPI Bcast (dataList , s i z e , ty , 0 , MPICOMMWORLD) ;
77
78 //− s p l i t data
79 s u b l i s t = sp l i tCostMode l (dataList , id , l i s tOfChunks) ;
80
81 i f (workerInfo−>numOfCores > 1) {
82 //− c a l l mult i−core hMapAll
83 map resu l t = MultiCorehMapAll (dataList , s i z e , s ub l i s t , l i s tOfChunks [id

] , mapFunc) ;
84 MPI Send (map result , l i s tOfChunks [id] , ty , 0 , 0 , MPICOMMWORLD) ;
85 }
86 else {
87 //− c a l l s i n g l e−core hMapAll
88 map resu l t = SingleCorehMapAll (dataList , s i z e , s ub l i s t , l i s tOfChunks [id

] , mapFunc) ;
89 MPI Send (map result , l i s tOfChunks [id] , ty , 0 , 0 , MPICOMMWORLD) ;
90 }
91 }
92 }

Listing A.4: hMap Skeleton Code.

A.2.2 hMap Single-Core

1
2 //− Sing l eCoreAl l
3
4 void∗ SingleCorehMapAll (void∗ l i s t , int s i z e , void∗ s ub l i s t , int subs i ze , void∗

funcName)
5 {
6 void ∗ r e s u l t ;
7 //−ca s t i n g the func t i on po in t e r
8 vo id fp = (void pFun) funcName ;
9 r e s u l t =(void ∗) (∗ vo id fp) (l i s t , s i z e , s ub l i s t , s ub s i z e) ;

10 return r e s u l t ;
11 }

Listing A.5: hMapAll SingleCore Skeleton Code.

A.2.3 hMap Multi-Core

1
2 //− hMapAll MultiCore
3
4 void∗ MultiCorehMapAll (void∗ dataList , int s i z e , void∗ subDataList , int subs i ze ,

void∗ mapFunc)
5 {
6 void ∗ s u b l i s t ;
7 void ∗map resu l t ;
8 void ∗∗ r e s u l t s ;
9 int o f f s e t ;

10 int myChunkSize ;

183

Appendix A. The HWSkel Library

11 int t i d ;
12 int threads = omp get max threads () ;
13 int chunkSize = sub s i z e / threads ;
14 int remainder = sub s i z e%threads ;
15 r e s u l t s = (void ∗∗) mal loc (sub s i z e ∗ s izeof (void ∗)) ;
16 //−p a r a l l e l reg ion
17 #pragma omp p a r a l l e l p r i va t e (t id , s ub l i s t , map result , myChunkSize , o f f s e t)

shared (threads , dataList , subDataList , r e s u l t s , chunkSize , remainder)
18 {
19 t i d = omp get thread num () ;
20 i f (t i d == 0) {
21 myChunkSize = chunkSize+remainder ;
22 s u b l i s t = sp l i tEqua l (subDataList , myChunkSize , remainder , t i d) ; //−

p a r t i t i o n i n g
23 map resu l t = S ing l eCoreAl l (dataList , s i z e , s ub l i s t , myChunkSize ,

mapFunc) ;
24 o f f s e t = 0 ;
25 }
26 else {
27 myChunkSize = chunkSize ;
28 s u b l i s t = sp l i tEqua l (subDataList , chunkSize , remainder , t i d) ; //−

p a r t i t i o n i n g
29 map resu l t = S ing l eCoreAl l (dataList , s i z e , s ub l i s t , chunkSize ,

mapFunc) ;
30 o f f s e t = t i d ∗myChunkSize+remainder ;
31 }
32 #pragma omp c r i t i c a l (update Resu l t s)
33 {
34 memcpy(r e s u l t s+o f f s e t , map result , myChunkSize∗ s izeof (void ∗)) ;
35 }
36 }
37 return r e s u l t s ;
38 }

Listing A.6: hMapAll MultiCore Skeleton Code.

A.3 hReduce Skeleton

This section presents the hReduce function discussed in Section 3.2.5.

A.3.1 hReduce

1
2 #include ”HwSkel . h”
3
4 //− hReduce Ske l e ton
5
6 void∗ hReduce (void∗ dataList , int s i z e ,enum DataType dType , void∗ reduceFunc)
7 {
8 int i ; // index
9 int∗ l i s tOfChunks ; // l i s t o f chunks

10 void ∗ s u b l i s t ;
11 void ∗ r e du c e r e s u l t ;
12 void ∗∗ s k e l r e s u l t ;

184

Appendix A. The HWSkel Library

13
14 //− MPI Datatype Conversion
15 ty = dataTypeConversion (dType) ;
16
17 i f (StartNode)
18 {
19 p r i n t f (” Reduce Ske le ton \n”) ;
20 int dest ;
21 void ∗∗ r e s u l t s ;
22 r e s u l t s = (void ∗∗) mal loc (np∗ s izeof (void ∗)) ;
23
24 //−c a l c u l a t e the chunks s i z e us ing cos t model
25 l i s tOfChunks = HybridCostModel (cur r entC lus te r , s i z e) ;
26
27 MPI Bcast (l istOfChunks , np , MPI INT , 0 , MPICOMMWORLD) ;
28
29 //−ge t master ’ s s p e c i f i c a t i o n s
30 ModelParas ∗master In fo = ArrayList GetItem (cur rentClus te r , id) ;
31
32 //−master s p l i t and send data to workers
33 for (des t =1; dest<np ; des t++){
34 s u b l i s t = sp l i tCostMode l (dataList , dest , l i s tOfChunks) ; // p a r t i t i o n i n g
35 MPI Send (s ub l i s t , l i s tOfChunks [des t] , ty , dest , 0 , MPICOMMWORLD) ;
36 }
37
38 //−master ge t own data
39 s u b l i s t = sp l i tCostMode l (dataList , id , l i s tOfChunks) ; // p a r t i t i o n i n g
40 //−master perform i t s t a sk
41 i f (masterInfo−>numOfCores > 1) {
42 //− c a l l mult i−core hReduce
43 r e du c e r e s u l t = MultiCorehReduce (s ub l i s t , l i s tOfChunks [id] , reduceFunc) ;
44 r e s u l t s [id] = r e du c e r e s u l t ;
45 }
46 else {
47 //− c a l l s i n g l e−core hReduce
48 r e du c e r e s u l t = SingleCorehReduce (s ub l i s t , l i s tOfChunks [id] , reduceFunc) ;
49 r e s u l t s [id] = r e du c e r e s u l t ;
50 }
51
52 //− master r e c i e v e data from the workers
53 for (des t =1; dest<np ; des t++){
54 MPI Recv(& r e s u l t s [des t] , 1 , ty , dest , 0 , MPICOMMWORLD, &s ta tu s) ;
55 }
56 /∗
57 ∗ master perform g l o b a l reduce
58 ∗ i f i t i s only one machine (s i n g l e va lue)
59 ∗/
60 i f (np == 1) {
61 return r e s u l t s [0] ;
62 }
63 /∗
64 ∗ i f the s i z e o f the data l e s s than the number o f cores
65 ∗ then the s k e l e t on uses mul t i core reduce
66 ∗/
67 i f (masterInfo−>numOfCores<np) {
68 s k e l r e s u l t = MultiCorehReduce (r e s u l t s , np , reduceFunc) ;
69 }
70 else {
71 s k e l r e s u l t = SingleCorehReduce (r e s u l t s , np , reduceFunc) ;
72 }
73 return s k e l r e s u l t ;
74 }
75 else
76 {
77 //−Workers

185

Appendix A. The HWSkel Library

78 MPI Get processor name (name , &len) ;
79 ModelParas ∗workerIn fo = GetProcInfo () ;
80
81 //− l i s t o f chunks
82 l i s tOfChunks = (int ∗) mal loc (np∗ s izeof (int)) ;
83 MPI Bcast (l istOfChunks , np , MPI INT , 0 , MPICOMMWORLD) ;
84
85 s u b l i s t = (void ∗∗) mal loc (l i s tOfChunks [id]∗ s izeof (void ∗)) ;
86 MPI Recv (s ub l i s t , l i s tOfChunks [id] , ty , 0 , 0 , MPICOMMWORLD, &s ta tu s) ;
87 i f (workerInfo−>numOfCores > 1) {
88 //− c a l l mult i−core hReduce
89 r e du c e r e s u l t = MultiCorehReduce (s ub l i s t , l i s tOfChunks [id] ,

reduceFunc) ;
90 MPI Send(& r educ e r e su l t , 1 , ty , 0 , 0 , MPICOMMWORLD) ;
91 }
92 else {
93 //− c a l l s i n g l e−core hReduce
94 r e du c e r e s u l t = SingleCorehReduce (s ub l i s t , l i s tOfChunks [id] ,

reduceFunc) ;
95 MPI Send(& r educ e r e su l t , 1 , ty , 0 , 0 , MPICOMMWORLD) ;
96 }
97 }
98 }

Listing A.7: hReduce Skeleton Code.

A.3.2 hReduce Single-Core

1
2 //− hReduce Sing leCore
3
4 void∗ SingleCorehReduce (void∗ dataList , int s i z e , void∗ funcName)
5 {
6 void ∗ r e s u l t ;
7 //− ca s t i n g the func t i on po in t e r
8 vo id fp = (void pFun) funcName ;
9 r e s u l t = (void ∗) (∗ vo id fp) (dataList , s i z e) ;

10 return r e s u l t ;
11 }

Listing A.8: hReduce SingleCore Skeleton Code.

A.3.3 hReduce Multi-Core

1
2 //− hReduce MultiCore
3
4 void∗ MultiCorehReduce (void∗ dataList , int s i z e , void∗ reduceFunc)
5 {
6 void ∗ s u b l i s t ;
7 void ∗ r e du c e r e s u l t ;
8 void ∗∗ r e s u l t s ;
9 int t i d ;

186

Appendix A. The HWSkel Library

10 int threads = omp get max threads () ;
11 int chunkSize = s i z e / threads ;
12 int remainder = s i z e%threads ;
13 int master chunk = chunkSize+remainder ;
14 r e s u l t s = (void ∗∗) mal loc (threads ∗ s izeof (void ∗)) ;
15
16 //−p a r a l l e l reg ion
17 #pragma omp p a r a l l e l p r i va t e (t id , s ub l i s t , r e du c e r e s u l t) shared (dataList ,

r e s u l t s , chunkSize , master chunk)
18 {
19 t i d = omp get thread num () ;
20 i f (t i d == 0) {
21 s u b l i s t = sp l i tEqua l (dataList , master chunk , remainder , t i d) ; //−

p a r t i t i o n i n g
22 //− l o c a l reduce
23 r e du c e r e s u l t = Sing leCore (s ub l i s t , master chunk , reduceFunc) ;
24 }
25 else {
26 s u b l i s t = sp l i tEqua l (dataList , chunkSize , remainder , t i d) ; //−

p a r t i t i o n i n g
27 //− l o c a l reduce
28 r e du c e r e s u l t = Sing leCore (s ub l i s t , chunkSize , reduceFunc) ;
29 }
30 #pragma omp c r i t i c a l (update Resu l t s)
31 {
32 r e s u l t s [t i d] = r e du c e r e s u l t ;
33 }
34 }
35 //−g l o b a l reduce
36 r e du c e r e s u l t = Sing leCore (r e s u l t s , threads , reduceFunc) ;
37 return r e du c e r e s u l t ;
38 }

Listing A.9: hReduce MultiCore Skeleton Code.

A.4 hMapReduce Skeleton

This section presents the hMapReduce function discussed in Section 3.2.6.

A.4.1 hMapReduce

1
2 #include ”HwSkel . h”
3
4 //− hMapReduce Ske l e ton
5
6 void∗ hMapReduce (void∗ dataList , int s i z e ,enum DataType dType , void∗ mapFunc , void

∗ reduceFunc)
7 {
8 int i ; // index
9 int∗ l i s tOfChunks ; // l i s t o f chunks

10
11 void ∗ s u b l i s t ;
12 void ∗map resu l t ;

187

Appendix A. The HWSkel Library

13 void ∗ r e du c e r e s u l t ;
14 void ∗ s k e l r e s u l t ;
15
16 //− MPI Datatype Conversion
17 ty = dataTypeConversion (dType) ;
18
19 i f (StartNode)
20 {
21 p r i n t f (” MapReduce Ske le ton \n\n”) ;
22 int dest ;
23 void ∗∗ r e s u l t s ;
24
25 r e s u l t s = (void ∗∗) mal loc (np∗ s izeof (void ∗)) ;
26 //−c a l c u l a t e the chunks s i z e us ing cos t model
27 l i s tOfChunks = HybridCostModel (cur r entC lus te r , s i z e) ;
28 MPI Bcast (l istOfChunks , np ,MPI INT , 0 ,MPICOMMWORLD) ;
29
30 //−ge t master ’ s s p e c i f i c a t i o n s
31 ModelParas ∗master In fo = ArrayList GetItem (cur rentClus te r , id) ;
32 // i f (masterInfo−>procName[0]== ’ l ’) masterInfo−>numOfCores=1;
33
34 //− d i s t r i b u t e the data
35 for (des t =1; dest<np ; des t++){
36 s u b l i s t = spl i tCostMode l (dataList , dest , l i s tOfChunks) ; // p a r t i t i o n i n g
37 MPI Send (s ub l i s t , l i s tOfChunks [des t] , ty , dest , 0 , MPICOMMWORLD) ;
38 }
39
40 //− master ge t own data
41 s u b l i s t = spl i tCostMode l (dataList , id , l i s tOfChunks) ; // p a r t i t i o n i n g
42
43 //−master perform i t s t a s k
44 //−check f o r mult i−core system
45 i f (masterInfo−>numOfCores>1){
46 //− c a l l mult i−core hMapReduce
47 r e s u l t s [id] = MultiCorehMapReduce (s ub l i s t , l i s tOfChunks [id] ,mapFunc

, reduceFunc) ;
48 }
49 else {
50 //− c a l l s i n g l e−core hMapReduce
51 map resu l t = SingleCorehMapReduce (s ub l i s t , l i s tOfChunks [id] ,

mapFunc) ;
52 r e du c e r e s u l t = SingleCorehMapReduce (map result , l i s tOfChunks [id

] , reduceFunc) ;
53 r e s u l t s [id] = r e du c e r e s u l t ;
54 }
55
56 //−master r e c i e v e data from the workers
57 for (des t =1; dest<np ; des t++){
58 MPI Recv(& r e s u l t s [des t] , 1 , ty , dest , 0 , MPICOMMWORLD, &s ta tu s) ;
59 }
60 /∗
61 ∗ master perform g l o b a l reduce
62 ∗ i f i t i s only one machine (s i n g l e va lue)
63 ∗/
64 i f (np == 1) {
65 return r e s u l t s [0] ;
66 }
67 /∗
68 ∗ i f the s i z e o f the data l e s s than the number o f cores
69 ∗ then the s k e l e t on uses mul t i core reduce
70 ∗/
71 i f (masterInfo−>numOfCores<np) { // check f o r mult i−core system
72 s k e l r e s u l t = MultiCoreReduce (r e s u l t s , np , reduceFunc) ;
73 }
74 else {

188

Appendix A. The HWSkel Library

75 s k e l r e s u l t = SingleCorehMapReduce (r e s u l t s , np , reduceFunc) ;
76 }
77 return s k e l r e s u l t ;
78 }
79 }
80 else //−−−− Workers −−−−−//
81 {
82 ModelParas ∗workerIn fo = GetProcInfo () ;
83
84 //− l i s t o f chunks
85 l i s tOfChunks = mal loc (np∗ s izeof (int)) ;
86 MPI Bcast (l istOfChunks , np ,MPI INT , 0 ,MPICOMMWORLD) ;
87
88 //− worker r e c i e v e i t s por t ion o f data
89 s u b l i s t = (void ∗∗) mal loc (l i s tOfChunks [id]∗ s izeof (void ∗)) ;
90 MPI Recv (s ub l i s t , l i s tOfChunks [id] , ty , 0 , 0 , MPICOMMWORLD, &s ta tu s) ;
91
92 i f (workerInfo−>numOfCores>1){
93 //− c a l l mult i−core hMapReduce
94 s k e l r e s u l t = MultiCorehMapReduce (s ub l i s t , l i s tOfChunks [id] ,

mapFunc , reduceFunc) ;
95 MPI Send(& s k e l r e s u l t , 1 , ty , 0 , 0 , MPICOMMWORLD) ;
96 }
97 else {
98 //− c a l l s i n g l e−core hMapReduce
99 map resu l t = SingleCorehMapReduce (s ub l i s t , l i s tOfChunks [id] , mapFunc)

;
100 r e du c e r e s u l t = SingleCorehMapReduce (map result , l i s tOfChunks [id] ,

reduceFunc) ;
101 MPI Send(& r educ e r e su l t , 1 , ty , 0 , 0 , MPICOMMWORLD) ;
102 }
103 }
104 }

Listing A.10: hMapReduce Skeleton Code.

A.4.2 hMapReduce Single-Core

1
2 //− hMapReduce Sing leCore
3
4 void∗ SingleCorehMapReduce (void∗ dataList , int s i z e , void∗ funcName)
5 {
6 void ∗ r e s u l t ;
7 vo id fp = (void pFun) funcName ; //−ca s t i n g the func t i on po in t e r
8 r e s u l t = (void ∗) (∗ vo id fp) (dataList , s i z e) ;
9 return r e s u l t ;

10 }

Listing A.11: hMapReduce SingleCore Skeleton Code.

A.4.3 hMapReduce Multi-Core

189

Appendix A. The HWSkel Library

1 //− hMapReduce MultiCore
2
3 void∗ MultiCorehMapReduce (void∗ dataList , int s i z e , void∗ mapFunc , void∗ reduceFunc

)
4 {
5 void ∗ s u b l i s t ;
6 void ∗map resu l t ;
7 void ∗ r e du c e r e s u l t ;
8 void ∗∗ r e s u l t s ;
9 int t i d ;

10 int threads = omp get max threads () ;
11 int chunkSize = s i z e / threads ;
12 int remainder = s i z e%threads ;
13 int master chunk = chunkSize+remainder ; i s shown
14 r e s u l t s = (void ∗∗) mal loc (threads ∗ s izeof (void ∗)) ;
15
16 //−p a r a l l e l reg ion
17 #pragma omp p a r a l l e l p r i va t e (t id , s ub l i s t , map result , r e du c e r e s u l t) shared (

threads , dataList , r e s u l t s , chunkSize , master chunk)
18 {
19 t i d = omp get thread num () ;
20 i f (t i d == 0) {
21 s u b l i s t = sp l i tEqua l (dataList , master chunk , remainder , t i d) ; //−

p a r t i t i o n i n g
22 map resu l t = Sing leCore (s ub l i s t , master chunk ,mapFunc) ;
23 //− l o c a l reduce
24 r e du c e r e s u l t = Sing leCore (map result , master chunk , reduceFunc) ;
25 }
26 else {
27 s u b l i s t = sp l i tEqua l (dataList , chunkSize , remainder , t i d) ; //−p a r t i t i o n i n g
28 map resu l t = Sing leCore (s ub l i s t , chunkSize ,mapFunc) ;
29 //− l o c a l reduce
30 r e du c e r e s u l t = Sing leCore (map result , chunkSize , reduceFunc) ;
31 }
32 #pragma omp c r i t i c a l (update Resu l t s)
33 {
34 r e s u l t s [t i d] = r e du c e r e s u l t ;
35 }
36 }
37 //−g l o b a l reduce
38 r e du c e r e s u l t = Sing leCore (r e s u l t s , threads , reduceFunc) ;
39 return r e du c e r e s u l t ;
40 }

Listing A.12: hMapReduce MultiCore Skeleton Code.

190

Appendix B

The CM1 Cost Model

This appendix presents the complete code for the CM1 cost model discussed

in Section 4.4, and also presents the code of getClusterInfo() (Section B.2) and

getNodeInfo() (Section B.3) that collect and register the architectural information

for the underlying hardware as discussed in Section 3.2.2.1.

B.1 The CM1 Code

1
2 //− CM1 Cost Model
3
4 int∗ CM1 CostModel (ArrayList ∗ myParas , int dataS ize)
5 {
6 //− s t r u c t o f node informat ion
7 ModelParas∗ paras ;
8 //− l i s t o f chunks
9 int ∗ l i s tO fPo r t i o n s ;

10 //− t o t a l system power
11 f loat p=0.0;
12 int i n tpa r t =0;
13 int remainder ;
14 int i ;
15 for (i =0; i<np ; i++)
16 {
17 paras = ArrayList GetItem (myParas , i) ;
18 p = p + paras−>numOfCores ∗ paras−>f r e q ∗ paras−>cacheS i ze ;
19 }
20
21 //− c a l c u l a t e the chunk s i z e
22 l i s tO fPo r t i o n s = mal loc (np∗ s izeof (int)) ;
23 for (i =0; i<np ; i++)

191

Appendix B. The CM1 Cost Model

24 {
25 //− app ly CM1 cos t model
26 paras = ArrayList GetItem (myParas , i) ;
27 i f (paras−>numOfCores > 1) {
28 l i s tO fPo r t i o n s [i] = paras−>numOfCores ∗ paras−>f r e q ∗ paras−>cacheS i ze

/ p ∗ dataS ize ;
29 i n tpa r t+=l i s tO fPo r t i o n s [i] ;
30 }
31 else {
32 l i s tO fPo r t i o n s [i] = paras−>f r e q ∗ paras−>cacheS i ze / p ∗ dataS ize ;
33 i n tpa r t+=l i s tO fPo r t i o n s [i] ;
34 }
35 }
36
37 //− d i s t r i b u t e the remainder between the nodes
38 remainder = dataS ize − i n tpa r t ;
39 int dest =0;
40 for (i=remainder ; i >0; i−−){
41 l i s tO fPo r t i o n s [des t]++;
42 dest++;
43 i f (dest>=np) dest =0;
44 }
45
46 //− re turn the l i s t o f chunks
47 return l i s tO fPo r t i o n s ;
48 }

Listing B.1: The CM1 cost model.

B.2 getNodeInfo()

1
2 //− Get Node Sp e c i f i c a t i o n s
3
4 ModelParas∗ getNodeInfo ()
5 {
6 char bu f f [1 2 8] ;
7 FILE ∗ f i n ;
8 char ∗ f r e q ;
9 char ∗ cacheS i ze ;

10 i f ((f i n = fopen (”/proc / cpu in fo ” , ” r ”))==NULL) {
11 p r i n t f (”Can not open the cpu in fo f i l e !\n”) ;
12 e x i t (EXIT FAILURE) ;
13 }
14 ModelParas ∗ proc In fo = (ModelParas ∗) mal loc (s izeof (ModelParas)) ;
15 f r e q = mal loc (8∗ s izeof (char)) ;
16 cacheS i ze = mal loc (4∗ s izeof (char)) ;
17 while (f g e t s (buf f , s izeof (bu f f) , f i n) != NULL)
18 {
19 i f (strncmp (buf f , ” p ro c e s s o r ” ,9) == 0) {
20 procIn fo−>numOfCores++;
21 }
22 else i f (strncmp (buf f , ”cpu MHz” ,7) == 0) {
23 strncpy (f req , bu f f +11 ,8) ;
24 }
25 else i f (strncmp (buf f , ” cache s i z e ” ,10) == 0) {
26 strncpy (cacheSize , bu f f +13 ,4) ;
27 }

192

Appendix B. The CM1 Cost Model

28 }
29 f c l o s e (f i n) ;
30 procIn fo−>f r e q = ato f (f r e q) / 1024 . 00 ;
31 procIn fo−>cacheS i ze = ato f (cacheS i ze) / 1024 . 00 ;
32 return proc In fo ;
33 }

Listing B.2: Function for get node specifications.

B.3 getClusterInfo()

1
2 //− Get C lus t e r S p e c i f i c a t i o n s
3
4 ArrayList ∗ g e tC lu s t e r I n f o ()
5 {
6 int po s i t i o n ;
7 char ∗ bu f f ;
8 unsigned int bu f f S i z e ;
9 ModelParas ∗ cpuInfo ;

10 //− crea t e an a r r a y l i s t f o r c l u s t e r S p e c i f i c a t i o n s
11 ArrayList ∗ c l u s t e r I n f o = ArrayList new0 (NULL) ;
12 bu f f S i z e=2∗s izeof (int)+2∗s izeof (f loat)+MPI MAX PROCESSOR NAME∗ s izeof (char) ;
13 bu f f=mal loc (bu f f S i z e ∗ s izeof (char)) ;
14 i f (StartNode)
15 {
16 MPI Get processor name (name , &len) ;
17 //− ge t master s p e c i f i c a t i o n s
18 cpuInfo=GetNodecInfo () ;
19 cpuInfo−>procID = id ;
20 memcpy(cpuInfo−>procName , name , s t r l e n (name) ∗ s izeof (char)) ;
21 ArrayList AddItem (c l u s t e r I n f o , cpuInfo) ;
22 int dest ;
23 for (des t =1; dest<np ; des t++)
24 {
25 //− master r e c i e v e node s p e c i f i c a t i o n s
26 MPI Recv (buf f , bu f fS i z e , MPI PACKED, dest , 0 , MPICOMMWORLD, &s ta tu s) ;
27 cpuInfo = ModelParas new () ;
28 po s i t i o n =0;
29 MPI Unpack (buf f , bu f fS i z e , &pos i t i on ,&cpuInfo−>procName ,

MPI MAX PROCESSOR NAME, MPI CHAR, MPICOMMWORLD) ;
30 MPI Unpack (buf f , bu f fS i z e , &pos i t i on ,&cpuInfo−>procID , 1 , MPI INT ,

MPICOMMWORLD) ;
31 MPI Unpack (buf f , bu f fS i z e , &pos i t i on ,&cpuInfo−>numOfCores , 1 , MPI INT ,

MPICOMMWORLD) ;
32 MPI Unpack (buf f , bu f fS i z e , &pos i t i on ,&cpuInfo−>f r eq , 1 , MPI FLOAT,

MPICOMMWORLD) ;
33 MPI Unpack (buf f , bu f fS i z e , &pos i t i on ,&cpuInfo−>cacheSize , 1 , MPI FLOAT,

MPICOMMWORLD) ;
34 ArrayList AddItem (c l u s t e r I n f o , cpuInfo) ;
35 }
36 }
37 else
38 {
39 MPI Get processor name (name , &len) ;
40 //− ge t worker ’ s s p e c i f i c a t i o n s
41 cpuInfo=GetNodeInfo () ;
42 //− worker send the s p e c i f i c a t i o n s

193

Appendix B. The CM1 Cost Model

43 po s i t i o n = 0 ;
44 MPI Pack (name ,MPI MAX PROCESSOR NAME, MPI CHAR, buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
45 MPI Pack(&id , 1 , MPI INT , buf f , bu f fS i z e , &pos i t i on , MPICOMMWORLD) ;
46 MPI Pack(&cpuInfo−>numOfCores , 1 , MPI INT , buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
47 MPI Pack(&cpuInfo−>f r eq , 1 , MPI FLOAT, buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
48 MPI Pack(&cpuInfo−>cacheSize , 1 , MPI FLOAT, buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
49 MPI Send (buf f , bu f fS i z e ,MPI PACKED,0 , 0 ,MPICOMMWORLD) ;
50 }
51 return c l u s t e r I n f o ;
52 }

Listing B.3: Function for get cluster specifications.

194

Appendix C

The GPU-HWSkel Library

This appendix presents the GPU-HWSkel library. All the skeletons functions in

GPU-HWSkel library are similar to those presented in the HWSkel library, the

only difference is that multicore and single core functions are modified to handle

GPU device. Thus, in this appendix we present the hMap to show how the GPU

is being controlled by one of the cores in the system.

C.1 hMap Skeleton

This section presents the hMap function and show how to use CM2 cost model

(line 26 of C.1) presented in Appendix D.

C.1.1 hMap

1
2 //− hMap Function
3
4 void∗ hMap(void∗ dataList , int s i z e , enum DataType dType)
5 {
6 int i ; // index
7 int∗ l i s tOfChunks ; // l i s t o f chunks
8
9 //− UNSERIALIZED va r i a b l e s

10 void ∗ s u b l i s t ;

195

Appendix C. The GPU-HWSkel Library

11 void ∗map resu l t ;
12 void ∗∗ s k e l r e s u l t ;
13
14 //− MPI Datatype Conversion
15 ty = dataTypeConversion (dType) ;
16
17 i f (StartNode)
18 {
19 p r i n t f (”\nCal l heterogeneous map ske l e t on !\n”) ;
20 int dest ;
21 int o f f s e t ;
22
23 s k e l r e s u l t = (void ∗∗) mal loc (s i z e ∗ s izeof (void ∗)) ;
24
25 //− Cal l mult i−node CM2 cos t model
26 l i s tOfChunks = ClusterCostModel (cur rentC lus te r , s i z e) ;
27
28
29 MPI Bcast (l istOfChunks , np , MPI INT , 0 , MPICOMMWORLD) ;
30
31 //−ge t master ’ s s p e c i f i c a t i o n s
32 ModelParas ∗master In fo = ArrayList GetItem (cur rentClus te r , id) ;
33
34 //−master s p l i t and send data to workers
35 for (des t =1; dest<np ; des t++){
36 s u b l i s t = sp l i tCostMode l (dataList , dest , l i s tOfChunks) ; // p a r t i t i o n i n g
37 MPI Send (s ub l i s t , l i s tOfChunks [des t] , ty , dest , 0 , MPICOMMWORLD) ;
38 }
39
40 //−master ge t own data
41 s u b l i s t = sp l i tCostMode l (dataList , id , l i s tOfChunks) ; // p a r t i t i o n i n g
42
43 //− check f o r mult i−core system
44 i f (masterInfo−>cpuCores > 1) {
45 p r i n t f (” Master −−> multi−core machine \n”) ;
46 map resu l t = MultiCoreMap (s ub l i s t , l i s tOfChunks [id] , master In fo) ;
47 o f f s e t = l i stOfChunks [id] ;
48 }
49 else {
50 p r i n t f (” Master −−> s i n g l e−core machine \n”) ;
51 map resu l t = SingleCoreMap (s ub l i s t , l i s tOfChunks [id] , masterInfo−>

gpuDevices) ;
52 o f f s e t = l i stOfChunks [id] ;
53 }
54 memcpy(s k e l r e s u l t , map result , l i s tOfChunks [id]∗ s izeof (void ∗)) ;
55
56
57 //−master r e c i e v e data from the workers
58 for (des t =1; dest<np ; des t++){
59 p r i n t f (”worker(%d) l en = %d\n” , dest , l i s tOfChunks [des t]) ;
60 MPI Recv (map result , l i s tOfChunks [des t] , ty , dest , 0 , MPICOMMWORLD, &

s ta tu s) ;
61 memcpy(s k e l r e s u l t+o f f s e t , map result , l i s tOfChunks [des t]∗ s izeof (void ∗)) ;
62 o f f s e t+=listOfChunks [des t] ;
63 }
64 return s k e l r e s u l t ;
65
66 }
67 else
68 {
69 //− Workers
70 MPI Get processor name (name , &len) ;
71 ModelParas ∗workerIn fo = GetNodeInfo () ;
72
73 //− l i s t o f chunks

196

Appendix C. The GPU-HWSkel Library

74 l i s tOfChunks = (int ∗) mal loc (np∗ s izeof (int)) ;
75 MPI Bcast (l istOfChunks , np , MPI INT , 0 , MPICOMMWORLD) ;
76
77 s u b l i s t = (void ∗∗) mal loc (l i s tOfChunks [id]∗ s izeof (void ∗)) ;
78 MPI Recv (s ub l i s t , l i s tOfChunks [id] , ty , 0 , 0 , MPICOMMWORLD, &s ta tu s) ;
79
80 i f (workerInfo−>cpuCores > 1) {
81 p r i n t f (” Worker −−> multi−core machine \n”) ;
82 map resu l t = MultiCoreMap (s ub l i s t , l i s tOfChunks [id] , worker In fo) ;
83 }
84 else {
85 p r i n t f (” worker −−> s i n g l e−core machine \n”) ;
86 map resu l t = SingleCoreMap (s ub l i s t , l i s tOfChunks [id] , workerInfo−>

gpuDevices) ;
87 }
88 MPI Send (map result , l i s tOfChunks [id] , ty , 0 , 0 , MPICOMMWORLD) ;
89 return 0 ;
90
91 }
92 }

Listing C.1: hMap Skeleton Code.

C.1.2 hMap Single-Core

1
2
3 //− Sing leCore hMap
4
5 void∗ Sing leCore (void∗ dataList , int s i z e , int cudaVers ionFlag)
6 {
7 void ∗∗ r e s u l t s = (void ∗∗) mal loc (s i z e ∗ s izeof (void ∗)) ;
8
9 i f (cudaVers ionFlag != 1) {

10 cpu map (dataList , s i z e) ;
11 }
12 else {
13 cuda map (dataList , s i z e) ;
14 }
15
16 memcpy(r e s u l t s , dataList , s i z e ∗ s izeof (void ∗)) ;
17
18 return r e s u l t s ;
19 }

Listing C.2: hMap SingleCore Skeleton Code.

C.1.3 hMap Multi-Core

1
2 //− MultiCore hMap
3
4 void∗ MultiCore (void∗ dataList , int s i z e , ModelParas∗ nodeInfo)

197

Appendix C. The GPU-HWSkel Library

5 {
6 int i ;
7 void ∗ s u b l i s t ;
8 void ∗∗ r e s u l t s ;
9 int o f f s e t ;

10 int t i d ;
11
12 //− Cal l s i n g l e−node CM2 cos t model
13 int ∗ l i s tOfChunks = NodeCostModel (s i z e , nodeInfo) ;
14 r e s u l t s = (void ∗∗) mal loc (s i z e ∗ s izeof (void ∗)) ;
15
16 //− p a r a l l e l reg ion
17 #pragma omp p a r a l l e l p r i va t e (t id , s ub l i s t , o f f s e t) shared (dataList , r e s u l t s ,

l i s tOfChunks)
18 {
19 t i d = omp get thread num () ;
20 i f (t i d == 0) {
21 //− p a r t i t i o n i n g
22 s u b l i s t = sp l i tCostMode l (dataList , t id , l i s tOfChunks) ;
23 //− c o n t r o l l i n g GPU dev ice
24 SingleCoreMap (s ub l i s t , l i s tOfChunks [t i d] , nodeInfo−>gpuDevices) ;
25 }
26 else {
27 //− p a r t i t i o n i n g
28 s u b l i s t = sp l i tCostMode l (dataList , t id , l i s tOfChunks) ;
29 SingleCoreMap (s ub l i s t , l i s tOfChunks [t i d] , 0) ;
30 }
31 #pragma omp c r i t i c a l (update Resu l t s)
32 {
33 o f f s e t = 0 ;
34 for (i =0; i<t i d ; i++) o f f s e t+=listOfChunks [i] ;
35 memcpy(r e s u l t s+o f f s e t , s ub l i s t , l i s tOfChunks [t i d]∗ s izeof (void ∗)) ;
36 }
37 }
38 return r e s u l t s ;
39 }

Listing C.3: hMapMultiCore Skeleton Code.

198

Appendix D

The CM2 Cost Model

This appendix presents the complete code for the CM2 cost model discussed in

Section 6.3.

D.1 getNodeInfo()

1
2
3 //− Get Node Sp e c i f i c a t i o n s
4
5 ModelParas∗ GetNodeInfo ()
6 {
7 char bu f f [1 2 8] ;
8 FILE ∗ f i n ;
9 char ∗ f r e q ;

10 f loat speed ;
11 char ∗ cache ;
12 f loat cacheS i ze ;
13 i f ((f i n = fopen (”/proc / cpu in fo ” , ” r ”))==NULL) {
14 p r i n t f (”Can not open the cpu in fo f i l e !\n”) ;
15 e x i t (EXIT FAILURE) ;
16 }
17 ModelParas ∗nodeInfo=(ModelParas ∗) mal loc (s izeof (ModelParas)) ;
18 f r e q=mal loc (8∗ s izeof (char)) ;
19 cache=mal loc (4∗ s izeof (char)) ;
20 while (f g e t s (buf f , s izeof (bu f f) , f i n) != NULL)
21 {
22 i f (strncmp (buf f , ” p ro c e s s o r ” ,9) == 0) {
23 nodeInfo−>cpuCores++;
24 }
25 else i f (strncmp (buf f , ”cpu MHz” ,7) == 0) {
26 strncpy (f req , bu f f +11 ,8) ;
27 }
28 else i f (strncmp (buf f , ” cache s i z e ” ,10) == 0) {

199

Appendix D. The CM2 Cost Model

29 strncpy (cache , bu f f +13 ,4) ;
30 }
31 }
32 f c l o s e (f i n) ;
33 speed = ato f (f r e q) ;
34 nodeInfo−>cpuFreq = speed / 1 0 2 4 . 0 0 ; ;
35 cacheS i ze = ato f (cache) ;
36 nodeInfo−>cpuCacheSize = cacheS i ze / 1024 . 00 ;
37
38 //− GPU informat ion
39 nodeInfo−>gpuDevices = checkCudaDevices () ;
40 i f (nodeInfo−>gpuDevices != 0) {
41 nodeInfo−>gpuCores = getGpuCores () ;
42 nodeInfo−>gpuFreq = getGpuFreq () / 1024 ; //MHz
43 nodeInfo−>gpuCacheSize = getGpuCacheSize () / 1024 ; //MB
44 //− ge t Gpu time
45 nodeInfo−>gpuTime = getGpuTime () ;
46 }
47
48 //− ge t Cpu s e qu en t i a l time
49 nodeInfo−>cpuSeqTime = getCpuSeqTime () ;
50
51
52 return nodeInfo ;
53 }

Listing D.1: Node Information.

D.2 getClusterInfo()

1
2
3 //− Get c l u s t e r in format ion
4
5 ArrayList ∗ GetClus te r In fo ()
6 {
7 int po s i t i o n ;
8 char ∗ bu f f ;
9 int gpuDevices ;

10 int gpuCores ;
11 unsigned int bu f f S i z e ;
12 ModelParas ∗ pcIn fo ;
13
14 ArrayList ∗ c l u s t e r I n f o = ArrayList new0 (NULL) ;
15 bu f f S i z e=4∗s izeof (int)+6∗s izeof (f loat)+MPI MAX PROCESSOR NAME∗ s izeof (char) ;
16 bu f f=mal loc (bu f f S i z e ∗ s izeof (char)) ;
17
18 i f (StartNode)
19 {
20 //− ge t node ’ s name
21 MPI Get processor name (name , &len) ;
22
23 //− ge t master node informat ion
24 pcIn fo = GetNodeInfo () ;
25 pcInfo−>procID = id ;
26
27 memcpy(pcInfo−>procName , name , s t r l e n (name) ∗ s izeof (char)) ;
28 ArrayList AddItem (c l u s t e r I n f o , pc In fo) ;

200

Appendix D. The CM2 Cost Model

29
30 int dest ;
31 for (des t =1; dest<np ; des t++)
32 {
33 MPI Recv (buf f , bu f fS i z e , MPI PACKED, dest , 0 , MPICOMMWORLD, &s ta tu s) ;
34 pc In fo = ModelParas new () ;
35 po s i t i o n =0;
36 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>procName ,

MPI MAX PROCESSOR NAME, MPI CHAR, MPICOMMWORLD) ;
37 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>procID , 1 , MPI INT ,

MPICOMMWORLD) ;
38 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>cpuCores , 1 , MPI INT ,

MPICOMMWORLD) ;
39 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>cpuFreq , 1 , MPI FLOAT,

MPICOMMWORLD) ;
40 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>cpuCacheSize , 1 ,

MPI FLOAT, MPICOMMWORLD) ;
41 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>gpuDevices , 1 , MPI INT

, MPICOMMWORLD) ;
42 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>gpuCores , 1 , MPI INT ,

MPICOMMWORLD) ;
43 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>gpuFreq , 1 , MPI FLOAT,

MPICOMMWORLD) ;
44 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>gpuCacheSize , 1 ,

MPI FLOAT, MPICOMMWORLD) ;
45 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>cpuSeqTime , 1 ,

MPI FLOAT, MPICOMMWORLD)
46 MPI Unpack (buf f , bu f fS i z e , &pos i t i on , &pcInfo−>gpuTime , 1 , MPI FLOAT,

MPICOMMWORLD) ;
47 ArrayList AddItem (c l u s t e r I n f o , pc In fo) ;
48 }
49 }
50 else
51 {
52 //− ge t node ’ s name
53 MPI Get processor name (name , &len) ;
54
55 //− ge t worker node informat ion
56 pcIn fo = GetNodeInfo () ;
57
58 //− worker send the informat ion
59 po s i t i o n = 0 ;
60 MPI Pack (name ,MPI MAX PROCESSOR NAME, MPI CHAR, buf f , bu f fS i z e , &pos i t i on

, MPICOMMWORLD) ;
61 MPI Pack(&id , 1 , MPI INT , buf f , bu f fS i z e , &pos i t i on , MPICOMMWORLD) ;
62 MPI Pack(&pcInfo−>cpuCores , 1 , MPI INT , buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
63 MPI Pack(&pcInfo−>cpuFreq , 1 , MPI FLOAT, buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
64 MPI Pack(&pcInfo−>cpuCacheSize , 1 , MPI FLOAT, buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
65 MPI Pack(&pcInfo−>gpuDevices , 1 , MPI INT , buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
66 MPI Pack(&pcInfo−>gpuCores , 1 , MPI INT , buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
67 MPI Pack(&pcInfo−>gpuFreq , 1 , MPI FLOAT, buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
68 MPI Pack(&pcInfo−>gpuCacheSize , 1 , MPI FLOAT, buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
69 MPI Pack(&pcInfo−>cpuSeqTime , 1 , MPI FLOAT, buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
70 MPI Pack(&pcInfo−>gpuTime , 1 , MPI FLOAT, buf f , bu f fS i z e , &pos i t i on ,

MPICOMMWORLD) ;
71 MPI Send (buf f , bu f fS i z e ,MPI PACKED,0 , 0 ,MPICOMMWORLD) ;
72 }

201

Appendix D. The CM2 Cost Model

73 return c l u s t e r I n f o ;
74 }

Listing D.2: Cluster Information.

D.3 GPU Information

1
2
3 //−check f o r Cuda Device
4
5 extern ”C” int checkCudaDevices ()
6 {
7 int deviceCount = 0 ;
8 cudaGetDeviceCount(&deviceCount) ;
9 return deviceCount ;

10 }
11
12 //− ge t gpu c l o c k ra t e
13
14 extern ”C” int getGpuFreq ()
15 {
16 cudaDeviceProp devProp ;
17 int c lockRate ;
18 int deviceCount = 0 ;
19 cudaGetDeviceCount(&deviceCount) ;
20 i f (deviceCount != 0) {
21 cudaGetDevicePropert ies (&devProp , 0) ;
22 c lockRate = devProp . c lockRate ;
23 return c lockRate ;
24 }
25 return 0 ;
26 }
27
28 //− ge t gpu l 2 cache s i z e
29
30 extern ”C” int getGpuCacheSize ()
31 {
32 cudaDeviceProp devProp ;
33 int cacheS i ze ;
34 int deviceCount = 0 ;
35 cudaGetDeviceCount(&deviceCount) ;
36 i f (deviceCount != 0) {
37 cudaGetDevicePropert ies (&devProp , 0) ;
38 cacheS i ze = devProp . l2CacheSize ;
39 return cacheS i ze ;
40 }
41 return 0 ;
42 }
43
44 //− Get GPU cores
45
46 extern ”C” int getGpuCores ()
47 {
48 cudaDeviceProp devProp ;
49 int cudaMult iprocessor ;
50 int cudaCores ;
51 int deviceCount = 0 ;

202

Appendix D. The CM2 Cost Model

52 cudaGetDeviceCount(&deviceCount) ;
53 i f (deviceCount != 0) {
54 cudaGetDevicePropert ies (&devProp , 0) ;
55 cudaMult iprocessor = devProp . mult iProcessorCount ;
56 cudaCores = cudaMult iprocessor ;
57 return cudaCores ;
58 }
59 return 0 ;
60 }

Listing D.3: GPU Information.

D.4 Single-Node Cost Model

1
2 //− Node− l e v e l Cost Model
3
4 int ∗NodeCostModel (int s i z e , ModelParas ∗nodeParas)
5 {
6 int i ;
7 int cpuChunk , gpuChunk , coreChunk ;
8 int remainder ;
9 int chunkSize ;

10 f loat r a t i o ;
11
12 int ∗ chunksList = mal loc (nodeParas−>cpuCores∗ s izeof (int)) ;
13
14 i f (nodeParas−>gpuDevices == 0) {
15 remainder = s i z e%nodeParas−>cpuCores ;
16 chunkSize = s i z e /nodeParas−>cpuCores ;
17 chunksList [0] = chunkSize+remainder ;
18 for (i =1; i<nodeParas−>cpuCores ; i++)
19 chunksList [i]= chunkSize ;
20 }
21 else {
22 r a t i o = nodeParas−>cpuSeqTime / nodeParas−>gpuTime ;
23 cpuChunk = s i z e / (1 + r a t i o /(nodeParas−>cpuCores −1)) ;
24 gpuChunk = s i z e − cpuChunk ;
25
26 chunksList [0] = gpuChunk ;
27 chunkSize = cpuChunk / (nodeParas−>cpuCores −1) ;
28 remainder = cpuChunk % (nodeParas−>cpuCores − 1) ;
29 chunksList [1] = chunkSize+remainder ;
30 for (i =2; i<nodeParas−>cpuCores ; i++)
31 chunksList [i] = chunkSize ;
32 }
33 return chunksList ;
34 }

Listing D.4: Function for get node specifications.

203

Appendix D. The CM2 Cost Model

D.5 Multi-Node Cost Model

1
2
3 //− Multi−Node CM2 Cost Model
4
5 int∗ ClusterCostModel (ArrayList ∗ myParas , int dataS ize)
6 {
7 int i ;
8 ModelParas∗ paras ;
9 int ∗ l i s tO fPo r t i o n s = mal loc (np∗ s izeof (int)) ;

10 f loat t o t a l = 0 . 0 ;
11 int i n tpa r t = 0 ;
12 int remainder ;
13 f loat hardwareBase ;
14 f loat nodePower ;
15
16 paras = ArrayList GetItem (myParas , 0) ;
17 hardwareBase = paras−>cpuFreq ∗ paras−>cpuCacheSize ∗ paras−>cpuCores ;
18
19 //− c a l a c u l a t e t o t a l p roces s ing power
20 for (i = 0 ; i < np ; i++)
21 {
22 paras = ArrayList GetItem (myParas , i) ;
23 i f (paras−>gpuDevices == 0) {
24 nodePower = paras−>cpuCores ∗ (paras−>cpuFreq∗paras−>cpuCacheSize∗paras

−>cpuCores) / hardwareBase ;
25 t o t a l += nodePower ;
26 }
27 else {
28 nodePower = ((paras−>cpuCores −1) ∗ (paras−>cpuFreq∗paras−>cpuCacheSize

∗paras−>cpuCores) / hardwareBase)
29 + (tBase / paras−>gpuTime) ;
30 t o t a l += nodePower ;
31 }
32 }
33
34 //− c a l a c u l a t e the chunk s i z e
35 for (i = 0 ; i < np ; i++)
36 {
37 paras = ArrayList GetItem (myParas , i) ;
38 i f (paras−>gpuDevices == 0) {
39 nodePower = paras−>cpuCores ∗ (paras−>cpuFreq∗paras−>cpuCacheSize∗paras

−>cpuCores) / hardwareBase ;
40 l i s tO fPo r t i o n s [i] = nodePower / t o t a l ∗ dataS ize ;
41 i n tpa r t += l i s tO fPo r t i o n s [i] ;
42 }
43 else {
44 nodePower = ((paras−>cpuCores −1) ∗ (paras−>cpuFreq∗paras−>cpuCacheSize∗

paras−>cpuCores)) / hardwareBase + (tBase / paras−>gpuTime) ;
45 l i s tO fPo r t i o n s [i] = nodePower / t o t a l ∗ dataS ize ;
46 i n tpa r t += l i s tO fPo r t i o n s [i] ;
47 }
48 }
49
50 //− d i s t r i b u t e the remainder between the workers
51 remainder = dataS ize − i n tpa r t ;
52 l i s tO fPo r t i o n s [0] += remainder ;
53
54 return l i s tO fPo r t i o n s ;
55 }

Listing D.5: Function for get cluster specifications.

204

Bibliography

[1] NVIDIA. CUDA Programming Guide, Version 4.2. Technical report, 2012.

[2] E. Wu and Y. Liu. Emerging Technology about GPGPU. In APCCAS

2008. IEEE Asia Pacific Conference on Circuits and Systems, 2008., pages

618–622, 2008.

[3] D. B. Kirk and W. W. Hwu. Programming Massively Parallel Processors:

A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1st edition, 2010.

[4] G. Jost, H. Jin, D. an Mey, and F. F. Hatay. Comparing the OpenMP, MPI,

and Hybrid Programming Paradigms on an SMP Cluster. EWOMP’03,

Aachen, Germany, 2003.

[5] E. Lusk and A. Chan. Early Experiments with the OpenMP/MPI Hybrid

Programming Model. In IWOMP’08: Proceedings of the 4th International

Conference on OpenMP in a New Era of Parallelism, pages 36–47, Berlin,

Heidelberg, 2008. Springer-Verlag.

[6] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP Paral-

lel Programming on Clusters of Multi-Core SMP Nodes. Parallel, Dis-

tributed, and Network-Based Processing, Euromicro Conference, pages 427–

436, 2009.

205

Bibliography

[7] L. A. Smith. Mixed mode MPI/OpenMP programming. UK High-End

Computing Technology Report, 2000.

[8] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and

P. Hanrahan. Brook for GPUs: Stream Computing on Graphics Hardware.

In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 777–786, New

York, NY, USA, 2004. ACM.

[9] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Using Data Parallelism to

Program GPUs for General-Purpose Uses. In SIGARCH Comput. Archit.

News, volume 34, pages 325–335, New York, NY, USA, October 2006. ACM.

[10] Khronos OpenCL Working Group. The OpenCL Specification, version

1.0.29, 8 December 2008.

[11] C. Luk, S. Hong, and H. Kim. Qilin: Exploiting Parallelism on Hetero-

geneous Multiprocessors with Adaptive Mapping. In Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 42, pages 45–55, New York, NY, USA, 2009. ACM.

[12] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-

putation. The MIT Press, Cambridge, MA, 1989.

[13] K. Hammond and G. Michaelson, editors. Research Directions in Parallel

Functional Programming. Springer-Verlag, London, UK, 1999.

[14] F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel

and Distributed Computing. Springer-Verlag, London, UK, 2003.

[15] M. Leyton. Advanced Features for Algorithmic Skeleton Programming. PhD

thesis, Universite de Nice - Sophia Antipolis – UFR Sciences, October 2008.

206

Bibliography

[16] P. Ciechanowicz and H. Kuchen. Enhancing Muesli’s Data Parallel Skele-

tons for Multi-core Computer Architectures. In Proceedings of the 2010

IEEE 12th International Conference on High Performance Computing and

Communications, HPCC ’10, pages 108–113, Washington, DC, USA, 2010.

IEEE Computer Society.

[17] Y. Karasawa and H. Iwasaki. A Parallel Skeleton Library for Multi-core

Clusters. In Proceedings of the 2009 International Conference on Parallel

Processing, ICPP ’09, pages 84–91, Washington, DC, USA, 2009. IEEE

Computer Society.

[18] W. Gropp, E. Lusk, and A. Skjellum. Using MPI - 2nd Edition: Portable

Parallel Programming with the Message Passing Interface (Scientific and

Engineering Computation). The MIT Press, November 1999.

[19] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable Shared

Memory Parallel Programming (Scientific and Engineering Computation).

The MIT Press, October 2007.

[20] K. Armih, G. Michaelson, and P. Trinder. Cache Size in a Cost Model

for Heterogeneous Skeletons. In Proceedings of the Fifth International

Workshop on High-level Parallel Programming and Applications, HLPP ’11,

pages 3–10, New York, NY, USA, 2011. ACM.

[21] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman.

MPI: The Complete Reference. MIT Press, Cambridge, MA, USA, 1995.

[22] H. El-Rewini. Advanced Computer Architecture and Parallel Processing;

electronic version. Wiley, New York, NY, 2004.

207

Bibliography

[23] M. J. Flynn. Some Computer Organizations and Their Effectiveness. In

IEEE Trans. Comput., volume 21, pages 948–960, Washington, DC, USA,

September 1972. IEEE Computer Society.

[24] G. R. Andrews. Foundations of Parallel and Distributed Programming.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edi-

tion, 1999.

[25] T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake, and

C. V. Packer. Beowulf: A Parallel Workstation For Scientific Computation.

In Proceedings of the 24th International Conference on Parallel Processing,

pages 11–14, Urbana-Champain, Illinois, USA, 1995. CRC Press.

[26] P. A. Revenga, J. Sérot, J. L. Lázaro, and J. P. Derutin. A Beowulf-Class

Architecture Proposal for Real-Time Embedded Vision. In IPDPS ’03: Pro-

ceedings of the 17th International Symposium on Parallel and Distributed

Processing, page 232.2, Washington, DC, USA, 2003. IEEE Computer So-

ciety.

[27] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-

deram. PVM: Parallel Virtual Machine. MIT, 1994.

[28] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Comput-

ing Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2003.

[29] S. Akhter and J. Roberts. Multi-Core Programming: Increasing Perfor-

mance through Software Multi-threading. Richard Bowles, 2006.

[30] Intel Core2 Duo Processor. http://www.intel.com/products/processor/core2duo/.

208

Bibliography

[31] Athlon 64 X2 . http://www.amd.com/us/products/desktop/processors/athlon-

x2/Pages/athlon-x2-faqs-black-edition.aspx.

[32] Intel Xeon Processor E5410. http://ark.intel.com/products/33080/.

[33] Intel Xeon ’Nehalem-EX’ Processor. http://www.intel.com/pressroom/archive/-

releases/2009/20090526comp.htm.

[34] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,

J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe. The 48-core SCC

Processor: The Programmer’s View. In Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010.

IEEE Computer Society.

[35] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E. Lefohn,

and T. Purcell. A Survey of General-Purpose Computation on Graphics

Hardware. Computer Graphics Forum, 26(1):80–113, March 2007.

[36] K. S. Perumalla. Discrete-event Execution Alternatives on General Purpose

Graphical Processing Units (GPGPUs). In PADS ’06: Proceedings of the

20th Workshop on Principles of Advanced and Distributed Simulation, pages

74–81, Washington, DC, USA, 2006. IEEE Computer Society.

[37] NVIDIA CUDA Compute Unified Device Architecture: Programming guide

v2.0. 2008.

[38] High Performance Computing - Supercomputing with Tesla GPUs.

http://www.nvidia.com/object/tesla-supercomputing-solutions.html.

209

Bibliography

[39] T. Sato. The Earth Simulator: Roles and Impacts. Parallel Comput.,

30(12):1279–1286, December 2004.

[40] E. Strohmaier and J. D. Meuer. TOP500 Supercomputer Sites. Tech report,

University of Tennessee, Knoxville, TN, USA, 1997.

[41] R. Buyya. High Performance Cluster Computing: Programming and Ap-

plications. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[42] M. J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-

Hill Education Group, 2003.

[43] UPC Consortium. UPC Language Specifications, v1.2. Tech Report LBNL-

59208, Lawrence Berkeley National Lab, 2005.

[44] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed Shared Memory:

Concepts and Systems. IEEE Concurrency, 4(2):63–79, 1996.

[45] B. Nitzberg and V. Lo. Distributed Shared Memory: A Survey of Issues

and Algorithms. Computer, 24(8):52–60, 1991.

[46] S. Gorlatch, F. A. Rabhi, and S. Gorlatch. A Programming Methodology

with Skeletons and Collective Operations. In Patterns and Skeletons for

Parallel and Distributed Computing, pages 29–63. Springer-Verlag, London,

UK, UK, 2003.

[47] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1997.

[48] R. F. Pointon, P. W. Trinder, and H-W. Loidl. The Design and Implemen-

tation of Glasgow Distributed Haskell. In Selected Papers from the 12th

210

Bibliography

International Workshop on Implementation of Functional Languages, IFL

’00, pages 53–70, London, UK, UK, 2001. Springer-Verlag.

[49] M Aswad, P. W. Trinder, and H-W Loidl. Architecture Aware Parallel Pro-

gramming in Glasgow Parallel Haskell (GPH). In ICCS, volume 9 of Pro-

cedia Computer Science, pages 1807–1816, Omaha, Nebraska, USA, 2012.

Elsevier.

[50] Intel Threading Building Blocks . http://www.threadingbuildingblocks.org/.

[51] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati.

Accelerating Code on Multi-cores with FastFlow. In Proc. of 17th Intl.

Euro-Par 2011 Parallel Processing, volume 6853 of LNCS, pages 170–181,

Bordeaux, France, August 2011. Springer.

[52] S. Gupta. Performance Analysis of GPU Compared to Single-Core and

Multi-Core CPU for Natural Language Applications. IJACSA - Interna-

tional Journal of Advanced Computer Science and Applications, 2(5):50–53,

2011.

[53] M. McCool and S. D. Toit. Metaprogramming GPUs with Sh. AK Peters

Ltd, 2004.

[54] A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg. OpenCL

Programming Guide. Addison-Wesley Professional, 1 edition, July 2011.

[55] AMD Corporation. ATI Stream Computing User Guide, Version 2.01. Tech-

nical report, 2010.

[56] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi.

Evaluating Performance and Portability of OpenCL Programs. In The Fifth

211

Bibliography

International Workshop on Automatic Performance Tuning, UC Berkeley

- CITRIS, Sutardja Dai Hall, Berkeley, CA 94720, USA, June 2010.

[57] R. Rabenseifner. Hybrid Parallel Programming on HPC Platforms. Proc.

European Workshop on OpenMP ’03, Aachen, Germany, 2003.

[58] S. Pelagatti. A Methodology for the Development and the Support of Mas-

sively Parallel Programs. PhD thesis, University of Pisa, March 1993.

[59] T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns for Parallel

Programming. Addison-Wesley Professional, 2007.

[60] A. J. Dorta, J. A. González, C. Rodŕıguez, and F. de Sande. llc: A Parallel

Skeletal Language. Parallel Processing Letters, 13(3):437–448, September

2003.

[61] M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti, and M Vanneschi.

A Methodology for the Development and the Support of Massively Parallel

Programs. Future Gener. Comput. Syst., 8(1-3):205–220, 1992.

[62] G. H. Botorog and H. Kuchen. Skil: An Imperative Language with Algo-

rithmic Skeletons for Efficient Distributed Programming. In Proceedings of

the Fifth International Symposium on High Performance Distributed Com-

puting (HPDC5), pages 243–252. Society Press, 1996.

[63] C. A. Herrmann and C. Lengauer. HDC: A Higher-Order Language for

Divide-and-Conquer. Parallel Processing Letters, 10(2/3):239–250, 2000.

[64] M. Cole. Bringing Skeletons Out of the Closet: A Pragmatic Manifesto for

Skeletal Parallel Programming. Parallel Comput., 30(3):389–406, 2004.

212

Bibliography

[65] H. Kuchen. A Skeleton Library. In Euro-Par ’02: Proceedings of the 8th

International Euro-Par Conference on Parallel Processing, pages 620–629,

London, UK, 2002. Springer-Verlag.

[66] M. Aldinucci, M. Danelutto, and P. Dazzi. MUSKEL: An Expandable

Skeleton Environment. Scientific International Journal for Parallel and

Distributed Computing, Vol. 8:325–341, December 2007.

[67] M. Danelutto, F. Pasqualetti, and S. Pelagatti. Skeletons for Data Par-

allelism in P3L. In Euro-Par ’97: Proceedings of the Third International

Euro-Par Conference on Parallel Processing, pages 619–628, London, UK,

1997. Springer-Verlag.

[68] H. Kuchen and M. Cole. The Integration of Task and Data Parallel Skele-

tons. Parallel Processing Letters, 12(2):141–155, 2002.

[69] M. Danelutto and M. Aldinucci. Algorithmic Skeletons Meeting Grids.

Parallel Computing, 32(7-8):449–462, 2006.

[70] H. González-Vélez and M. Leyton. A Survey of Algorithmic Skeleton Frame-

works: High-Level Structured Parallel Programming Enablers. Software–

Practice & Experience, 40(12):1135–1160, November 2010.

[71] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L:

A Structured High-level Parallel Language, and its Structured Support.

Technical report, Pisa Science Center, Hewlett-Packard Laboratory, 1995.

[72] G. H. Botorog and H. Kuchen. Using Algorithmic Skeletons with Dynamic

Data Structures. In Proceedings of the Third International Workshop on

Parallel Algorithms for Irregularly Structured Problems, IRREGULAR ’96,

pages 263–276, London, UK, 1996. Springer-Verlag.

213

Bibliography

[73] S. Pelagatti. Task and Data Parallelism in P3L. In Fethi A. Rabhi and

Sergei Gorlatch, editors, Patterns and Skeletons for Parallel and Distributed

Computing, pages 155–186. Springer-Verlag, London, UK, 2003.

[74] H. Kuchen. Optimizing Sequences of Skeleton Calls. In C. Lengauer, D. Ba-

tory, C. Consel, and M. Odersky, editors, Domain-Specific Program Gener-

ation, volume 3016 of Lecture Notes in Computer Science, pages 254–273.

Springer Berlin Heidelberg, 2004.

[75] M. Aldinucci, M. Danelutto, and P. Teti. An advanced Environment Sup-

porting Structured Parallel Programming in Java. Future Gener. Comput.

Syst., 19(5):611–626, July 2003.

[76] M. Aldinucci, M. Danelutto, and J. Dnnweber. Optimization Techniques

for Implementing Parallel Skeletons in Grid Environments. In CMPP04

Intl. Workshop on Constructive Methods for Parallel Programming, pages

35–47, 2004.

[77] A. Benoit and M. Cole. Two Fundamental Concepts in Skeletal Parallel

Programming. In The International Conference on Computational Science

(ICCS 2005) , Part II, LNCS 3515, pages 764–771. Springer Verlag, 2005.

[78] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Flexible Skeletal Program-

ming with eSkel. In 11th Intl Euro-Par: Parallel and Distributed Comput-

ing, vol. 3648 of LNCS, 761-770, Lisbona, pages 761–770. Springer-Verlag,

2005.

[79] M. Danelutto and P. Dazzi. Joint Structured/Unstructured Parallelism Ex-

ploitation in muskel. In V. Alexandrov, G. Albada, P. Sloot, and J. Don-

garra, editors, Computational Science ICCS 2006, volume 3992 of Lecture

214

Bibliography

Notes in Computer Science, pages 937–944. Springer Berlin Heidelberg,

2006.

[80] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu. A Library of Constructive

Skeletons for Sequential Style of Parallel Programming. In InfoScale ’06:

Proceedings of the 1st International Conference on Scalable Information

Systems, page 13, New York, NY, USA, 2006. ACM.

[81] R. Backhouse. An Exploration of the Bird-Meertens Formalism. Technical

report, In STOP Summer School on Constructive Algorithmics, Abeland,

September 1989.

[82] K. Matsuzaki, K. Kakehi, H. Iwasaki, Z. Hu, and Y. Akashi. A Fusion-

Embedded Skeleton Library. In Euro-Par 2004 Parallel Processing, 10th

International Euro-Par Conference, pages 644–653. Springer, 2004.

[83] K. Matsuzaki and K. Emoto. Implementing Fusion-Equipped Parallel Skele-

tons by Expression Templates. In Draft Proceedings of the 21st International

Symposium on Implementation and Application of Functional Languages,

pages 100–115, Seton Hall University, 2009.

[84] D. Caromel and M. Leyton. Fine Tuning Algorithmic Skeletons. In Anne-

Marie Kermarrec, Luc Boug, and Thierry Priol, editors, Euro-Par 2007

Parallel Processing, volume 4641 of Lecture Notes in Computer Science,

pages 72–81. Springer Berlin Heidelberg, 2007.

[85] ProActive. http://proactive.activeeon.com/index.php.

[86] J. Falcou, J. Srot, T. Chateau, and J. T. Laprest. Quaff: Efficient C++

Design for Parallel Skeletons. Parallel Computing, 32(78):604 – 615, 2006.

215

Bibliography

[87] M. Leyton and J. M. Piquer. Skandium: Multi-core Programming with Al-

gorithmic Skeletons. Parallel, Distributed, and Network-Based Processing,

Euromicro Conference, pages 289–296, 2010.

[88] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. FastFlow:

High-level and Efficient Streaming on Multi-core. In S. Pllana and F. Xhafa,

editors, Programming Multi-core and Many-core Computing Systems, Par-

allel and Distributed Computing, pages 1 – 20. Wiley, January 2013.

[89] M. Alind, M. V. Eriksson, and C. W. Kessler. BlockLib: A Skeleton Li-

brary for Cell Broadband Engine. In Proceedings of the 1st International

Workshop on Multicore Software Engineering, IWMSE ’08, pages 7–14, New

York, NY, USA, 2008. ACM.

[90] C. W. Keler. NestStep: Nested Parallelism and Virtual Shared Memory for

the BSP model. The Journal of Supercomputing, 17:613 – 619, 1999.

[91] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Skeletons for Multi/Many-

core Systems. In B. Chapman, F. Desprez, G. R. Joubert, A. Lichnewsky,

T. Priol, and F. J. Peters, editors, Parallel Computing: From Multicores and

GPU’s to Petascale (Proc. of PARCO 2009, Lyon, France), volume 19 of

Advances in Parallel Computing, pages 265–272, Lyon, France, September

2009. IOS press.

[92] A. Dorta, P. López, and F. de Sande. Basic Skeletons in llc. Parallel

Comput., 32(7):491–506, September 2006.

[93] R. Reyes, A. J. Dorta, F. Almeida, and F. Sande. Automatic Hybrid

MPI+OpenMP Code Generation with llc. In Proceedings of the 16th Eu-

ropean PVM/MPI Users’ Group Meeting on Recent Advances in Parallel

216

Bibliography

Virtual Machine and Message Passing Interface, pages 185–195, Berlin,

Heidelberg, 2009. Springer-Verlag.

[94] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,

A. Rountev, and P. Sadayappan. A Compiler Framework for Optimiza-

tion of Affine Loop Nests for GPGPUs. In Proceedings of the 22nd Annual

International Conference on Supercomputing, ICS ’08, pages 225–234, New

York, NY, USA, 2008. ACM.

[95] S. Lee, S. Min, and R. Eigenmann. OpenMP to GPGPU: A Compiler

Framework for Automatic Translation and Optimization. SIGPLAN Not.,

44(4):101–110, February 2009.

[96] J. Hoberock and N. Bell. Thrust: A Parallel Template Library. http:

//code.google.com/p/thrust, 2012.

[97] S. Sengupta Y. Zhang M. Harris, J. Owens and A. Davidson. CUDPP:

CUDA Data Paralle Primitives Library. https://code.google.com/p/

cudpp/, 2011.

[98] J. Enmyren and C. W. Kessler. SkePU: A Multi-backend Skeleton Pro-

gramming Library for multi-GPU Systems. In Proceedings of the Fourth

International Workshop on High-level Parallel Programming and Applica-

tions, HLPP ’10, pages 5–14, New York, NY, USA, 2010. ACM.

[99] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - A Portable Skeleton

Library for High-Level GPU Programming. In Proceedings of the 2011 IEEE

International Symposium on Parallel and Distributed Processing Workshops

and PhD Forum, IPDPSW ’11, pages 1176–1182, Washington, DC, USA,

2011. IEEE Computer Society.

217

http://code.google.com/p/thrust
http://code.google.com/p/thrust
https://code.google.com/p/cudpp/
https://code.google.com/p/cudpp/

Bibliography

[100] U. Dastgeer, J. Enmyren, and C. W. Kessler. Auto-tuning SkePU: A Multi-

Backend Skeleton Programming Framework for multi-GPU Systems. In

Proceedings of the 4th International Workshop on Multicore Software En-

gineering, IWMSE ’11, pages 25–32, New York, NY, USA, 2011. ACM.

[101] S. Ernsting and H. Kuchen. Data Parallel Skeletons for GPU Clusters

and Multi-GPU Systems. In PARCO, volume 22 of Advances in Parallel

Computing, pages 509–518, Ghent, Belgium, 2011. IOS Press.

[102] S. Ernsting and H. Kuchen. Algorithmic Skeletons for Multi-core, Multi-

GPU Systems and Clusters. Int. J. High Perform. Comput. Netw.,

7(2):129–138, April 2012.

[103] M. Goli, M. T. Garba, and H. González-Vélez. Streaming Dynamic Coarse-

Grained CPU/GPU Workloads with Heterogeneous Pipelines in FastFlow.

In HPCC-ICESS, pages 445–452, Liverpool, UK, 2012. IEEE Computer

Society.

[104] A. Wikstrom. Functional Programming Using Standard ML. Prentice Hall

International (UK) Ltd., Hertfordshire, UK, UK, 1987.

[105] H. Kuchen and J. Striegnitz. Higher-order Functions and Partial Applica-

tions for A C++ Skeleton Library. In Proceedings of the 2002 joint ACM-

ISCOPE conference on Java Grande, JGI ’02, pages 122–130, New York,

NY, USA, 2002. ACM.

[106] R. Bird and O. de Moor. Algebra of programming. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1997.

[107] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. Commun. ACM, 51(1):107–113, January 2008.

218

Bibliography

[108] B.M. Maggs, L.R. Matheson, and R.E. Tarjan. Models of parallel compu-

tation: a survey and synthesis. In Proceedings of the Twenty-Eighth Hawaii

International Conference on System Sciences, 1995., volume 2, pages 61–70

vol.2, 1995.

[109] S. E. Hambrusch. Models for Parallel Computation. In ICPP Workshop,

pages 92–95, 1996.

[110] B. H. H. Juurlink and H. A. G. Wijshoff. A Quantitative Comparison of

Parallel Computation Models. ACM Trans. Comput. Syst., 16(3):271–318,

August 1998.

[111] P. Trinder, M. Cole, K. Hammond, H-W. Loidl, and G. Michaelson. Re-

source analyses for parallel and distributed coordination. Concurrency and

Computation: Practice and Experience, 25(3):309–348, 2013.

[112] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In

Proceedings of the Tenth Annual ACM Symposium on Theory of Computing,

STOC ’78, pages 114–118, New York, NY, USA, 1978. ACM.

[113] S. A. Cook and R. A. Reckhow. Time-Bounded Random Access Machines.

In Proceedings of the Fourth Annual ACM Symposium on Theory of Com-

puting, STOC ’72, pages 73–80, New York, NY, USA, 1972. ACM.

[114] A. Aggarwal, A. K. Chandra, and M. Snir. On Communication Latency

in PRAM Computations. In Proceedings of The First Annual ACM Sym-

posium on Parallel Algorithms and Architectures, SPAA ’89, pages 11–21,

New York, NY, USA, 1989. ACM.

[115] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of

PRAMs. Theor. Comput. Sci., 71(1):3–28, March 1990.

219

Bibliography

[116] C. Martel and A. Raghunathan. Asynchronous PRAMs with Memory La-

tency. J. Parallel Distrib. Comput., 23(1):10–26, October 1994.

[117] R. Cole and O. Zajicek. The APRAM: Incorporating Asynchrony into

the PRAM Model. In Proceedings of the First Annual ACM Symposium

on Parallel Algorithms and Architectures, SPAA ’89, pages 169–178, New

York, NY, USA, 1989. ACM.

[118] T. Heywood and S. Ranka. A Practical Hierarchical Model of Parallel

Computation I. The Model. Journal of Parallel and Distributed Computing,

16(3):212 – 232, 1992.

[119] P. B. Gibbons. A More Practical PRAM Model. In Proceedings of the First

Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA

’89, pages 158–168, New York, NY, USA, 1989. ACM.

[120] J. JáJá. An Introduction to Parallel Algorithms. Addison Wesley Longman

Publishing Co., Inc., Redwood City, CA, USA, 1992.

[121] P. B. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM:

Accounting for Contention in Parallel Algorithms. In Proceedings of the

Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’94,

pages 638–648, Philadelphia, PA, USA, 1994. Society for Industrial and

Applied Mathematics.

[122] P. Gibbons, Y. Matias, and V. Ramachandran. Efficient low-contention

parallel algorithms. In Proceedings of The Sixth Annual ACM Symposium

on Parallel Algorithms and Architectures, SPAA ’94, pages 236–247, New

York, NY, USA, 1994. ACM.

220

Bibliography

[123] L. G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM,

33:103–111, August 1990.

[124] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers

about BSP. Scientific Programming, 6(3):249–274, 1997.

[125] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang,

S. B. Rao, T. Suel, T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP

Programming Library. Parallel Computing, 24(14):1947 – 1980, 1998.

[126] A. Zavanella. Skel-BSP: Performance Portability for Skeletal Programming.

In Proceedings of the 8th International Conference on High-Performance

Computing and Networking, HPCN Europe 2000, pages 290–299, London,

UK, UK, 2000. Springer-Verlag.

[127] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Towards Effi-

ciency and Portability: Programming with the BSP Model. In Proceedings

of the Eighth Annual ACM Symposium on Parallel Algorithms and Archi-

tectures, SPAA ’96, pages 1–12, New York, NY, USA, 1996. ACM.

[128] A. Goldchleger, A. Goldman, U. Hayashida, and F. Kon. The implementa-

tion of the BSP Parallel Computing Model on the InteGrade Grid Middle-

ware. In Proceedings of the 3rd International Workshop on Middleware for

Grid Computing, MGC ’05, pages 1–6, New York, NY, USA, 2005. ACM.

[129] P. de la Torre and C. Kruskal. Submachine Locality in the Bulk Syn-

chronous Setting. In L. Boug, P. Fraigniaud, A. Mignotte, and Y. Robert,

editors, Euro-Par’96 Parallel Processing, volume 1124 of Lecture Notes in

Computer Science, pages 352–358. Springer Berlin / Heidelberg, 1996.

221

Bibliography

[130] B. H. Juurlink and H. G. Wijshoff. The E-BSP model: Incorporating Gen-

eral Locality and Unbalanced Communication into the BSP Model. In

L. Boug, P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Euro-Par’96

Parallel Processing, volume 1124 of Lecture Notes in Computer Science,

pages 339–347. Springer Berlin Heidelberg, 1996.

[131] L. G. Valiant. A Bridging Model for Multi-core Computing. In Proceedings

of the 16th Annual European Symposium on Algorithms, ESA ’08, pages

13–28, Berlin, Heidelberg, 2008. Springer-Verlag.

[132] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken. LogP: Towards A Realistic Model

of Parallel Computation. In Proceedings of the Fourth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPOPP

’93, pages 1–12, New York, NY, USA, 1993. ACM.

[133] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E.

Schauser, R. Subramonian, and T. von Eicken. LogP: A Practical Model

of Parallel Computation. Commun. ACM, 39(11):78–85, November 1996.

[134] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis. BSP

vs LogP. In Proceedings of the Eighth Annual ACM Symposium on Parallel

Algorithms and Architectures, SPAA ’96, pages 25–32, New York, NY, USA,

1996. ACM.

[135] T. Hoefler, L. Cerquetti, and F. Mietke. A Practical Approach to the Rating

of Barrier Algorithms Using the LogP Model and Open MPI. In Proceedings

of the 2005 International Conference on Parallel Processing Workshops,

222

Bibliography

ICPPW ’05, pages 562–569, Washington, DC, USA, 2005. IEEE Computer

Society.

[136] D.E. Culler, L.T. Liu, R.P. Martin, and C.O. Yoshikawa. Assessing fast

network interfaces. Micro, IEEE, 16(1):35–43, 1996.

[137] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP:

incorporating long messages into the LogP model — one step closer towards

a realistic model for parallel computation. In Proceedings of the Seventh

Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA

’95, pages 95–105, New York, NY, USA, 1995. ACM.

[138] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP:

Incorporating Long Messages into the LogP Model for Parallel Computa-

tion. Journal of Parallel and Distributed Computing, 44(1):71 – 79, 1997.

[139] F. Ino, N. Fujimoto, and K. Hagihara. LogGPS: A Parallel Computational

Model for Synchronization Analysis. In Proceedings of the Eighth ACM

SIGPLAN Symposium on Principles and Practices of Parallel Program-

ming, PPoPP ’01, pages 133–142, New York, NY, USA, 2001. ACM.

[140] J. L. Bosque and L. Pastor. A Parallel Computational Model for Het-

erogeneous Clusters. IEEE Trans. Parallel Distrib. Syst., 17:1390–1400,

December 2006.

[141] Z. Li, P. H. Mills, and J. H. Reif. Models and Resource Metrics for Parallel

and Distributed Computation. In Proceedings of the 28th Hawaii Interna-

tional Conference on System Sciences, HICSS ’95, pages 51–60, Washing-

ton, DC, USA, 1995. IEEE Computer Society.

223

Bibliography

[142] J. S. Vitter and E. A. M. Shriver. Optimal disk I/O with Parallel Block

Transfer. In Proceedings of the Twenty-Second Annual ACM Symposium

on Theory of Computing, STOC ’90, pages 159–169, New York, NY, USA,

1990. ACM.

[143] C. A. Moritz and M. Frank. LoGPC: Modeling Network Contention in

Message-Passing Programs. IEEE Trans. Parallel Distrib. Syst., 12(4):404–

415, 2001.

[144] T. Kielmann, H. E. Bal, and S. Gorlatch. Bandwidth-efficient collective

communication for clustered wide area systems. In In Proc. International

Parallel and Distributed Processing Symposium (IPDPS 2000), pages 492–

499, Cancun, Mexico, 2000. IEEE.

[145] F. Cappello, P. Fraigniaud, B. Mans, and A. L. Rosenberg. HiHCoHP:

Toward a Realistic Communication Model for Hierarchical HyperClusters of

Heterogeneous Processors. In Proceedings of the 15th International Parallel

& Distributed Processing Symposium, IPDPS ’01, pages 42–48, Washington,

DC, USA, 2001. IEEE Computer Society.

[146] A. L. Rosenberg. Sharing Partitionable Workloads in Heterogeneous NOWs:

Greedier Is Not Better. In Proceedings of the 3rd IEEE International Con-

ference on Cluster Computing, CLUSTER ’01, pages 124–132, Washington,

DC, USA, 2001. IEEE Computer Society.

[147] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco,

J. Faik, J. E. Flaherty, and L. G. Gervasio. New Challenges in Dynamic

Load Balancing. Appl. Numer. Math., 52(2-3):133–152, February 2005.

224

Bibliography

[148] J. Faik, J. D. Teresco, K. D. Devine, J. E. Flaherty, and L. G. Gervasio.

A Model for Resource-aware Load Balancing on Heterogeneous Clusters.

Technical Report CS-05-01, Williams College Department of Computer Sci-

ence, 2005.

[149] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp,

and Q. Wu. Parallel Programming Using Skeleton Functions. In PARLE

’93: Proceedings of the 5th International PARLE Conference on Parallel

Architectures and Languages Europe, pages 146–160, London, UK, 1993.

Springer-Verlag.

[150] A. Zavanella. Skeletons and BSP: Performance Portability for Parallel Pro-

gramming. PhD thesis, UNIPI, December 1999.

[151] F. Gava. BSP Functional Programming: Examples of a Cost Based Method-

ology. In Proceedings of the 8th International Conference on Computa-

tional Science, Part I, ICCS ’08, pages 375–385, Berlin, Heidelberg, 2008.

Springer-Verlag.

[152] D. Pasetto and M. Vanneschi. Machine-independent Analytical Models for

Cost Evaluation of Template-based Programs. In Proc. of Intl. Euromicro

PDP: Parallel Distributed and Network-based Processing, pages 485–492,

London, UK, January 1997. IEEE.

[153] R. Rangaswami. Compile-Time Cost Analysis for Parallel Programming.

In Proceedings of the Second International Euro-Par Conference on Parallel

Processing-Volume II, Euro-Par ’96, pages 417–421, London, UK, 1996.

Springer-Verlag.

225

Bibliography

[154] R. Rangaswami. A Cost Analysis for a Higher-order Parallel Programming

Model. PhD Thesis. University of Edinburgh, Department of Computer

Science, 1996.

[155] R. S. Bird. Algebraic Identities for Program Calculation. Comput. J.,

32(2):122–126, April 1989.

[156] D. B. Skillicorn and W. Cai. A Cost Calculus for Parallel Functional Pro-

gramming. J. Parallel Distrib. Comput., 28(1):65–83, 1995.

[157] T. A. Bratvold. Skeleton-Based Parallelisation of Functional Programs.

PhD thesis, Heriot-Watt University, November 1994.

[158] D. G. Lowe. Object Recognition from Local Scale-Invariant Features.

In ICCV ’99: Proceedings of the International Conference on Computer

Vision-Volume 2, page 1150, Washington, DC, USA, 1999. IEEE Computer

Society.

[159] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.

Int. J. Comput. Vision, 60(2):91–110, 2004.

[160] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland,

R. Dietrich, D. Poole, and C. Lamb. Parallel Performance Measurement

of Heterogeneous Parallel Systems with GPUs. In Proceedings of the 2011

International Conference on Parallel Processing, ICPP ’11, pages 176–185,

Washington, DC, USA, 2011. IEEE Computer Society.

[161] X. Yang, X. Liao, K. Lu, Q. Hu, J. Song, and J. Su. The TianHe-1A

Supercomputer: its Hardware and Software. J. Comput. Sci. Technol.,

26(3):344–351, 2011.

226

Bibliography

[162] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka. An Efficient, Model-

based CPU-GPU Heterogeneous FFT Library. volume 0, pages 1–10, Los

Alamitos, CA, USA, 2008. IEEE Computer Society.

[163] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu. Adaptive

Optimization for Petascale Heterogeneous CPU/GPU Computing. In Pro-

ceedings of the 2010 IEEE International Conference on Cluster Computing,

CLUSTER ’10, pages 19–28, Washington, DC, USA, 2010. IEEE Computer

Society.

227

	Introduction
	Motivation
	Research Contributions
	Contribution Summary
	Addressing the Challenges for Heterogeneous Hardware Programming
	Developing Performance Cost Models for Heterogeneous Skeletons

	Roadmap of The Thesis
	Publications

	Background
	Parallel Computing
	Short Survey of Parallel Architectures
	Distributed Memory Architectures
	Shared Memory Architectures
	GPU Architectures
	Heterogeneous Parallel Architectures

	Parallel Programming Models
	Distributed Memory Programming Models
	Shared Memory Programming Models
	GPU Programming
	Hybrid Programming Models

	High Level Parallel Programming Approaches
	Skeleton Programming
	A Survey of Structured Parallel Programming Frameworks
	Distributed Computing Environment
	Multi-Core Computer Architectures
	Heterogeneous Environments
	Skeletal-based GPU Programming

	Discussion

	The HWSkel Library
	C skeleton-based Library
	Design Summary
	Cole's Manifesto
	Host Language

	Algorithmic Skeletons in HWSkel
	Data Communication
	Initialisation and Termination
	InitHWSkel()
	TerminateHWSkel()

	The hMap Skeleton
	The hMapAll Skeleton
	The hReduce Skeleton
	The hMapReduce Skeleton
	The hMapReduceAll Skeleton

	Summary

	The HWSkel Cost Model (CM1)
	High-Level Parallel Cost Models
	The Family of PRAM Models
	 BSP and Variants
	The LogP Model Family
	HiHCoHP
	DRUM
	Skeletons
	Darlington's group
	BSP-based Approaches
	P3L
	HOPP
	SkelML

	Resource Metrics for Parallel Cost Models
	Design Ethos
	The CM1 Cost Model
	Using CM1 in the HWSkel Library
	HWSkel Evaluation
	Benchmarks
	 sum-Euler
	Image Matching

	Performance Evaluation
	Platform
	Homogeneous Architectures
	Heterogeneous Architectures

	Alternative Cost Models

	Summary

	GPU-HWSkel Library
	GPU-HWSkel: A CUDA-Based Skeleton Library
	GPU-HWSkel Implementation Principles
	GPU-HWSkel Characteristics

	Implementing GPU-HWSkel
	User Functions
	Skeletons in GPU-HWSkel
	Summary

	A GPU Workload Distribution Cost Model (CM2)
	Related Work
	Discussion
	The CM2 Cost Model
	Single-Node Cost Model
	Multi-Node Cost Model

	GPU-HWSkel Evaluation
	Benchmarks
	Matrix Multiplication
	Fibonacci Program

	Platform
	Performance Evaluation
	Single Multicore/GPU Node Results
	Clusters of Multicore/GPU Nodes Results

	Summary

	Conclusion
	Introduction
	Contributions of Thesis
	Limitations and Future Work
	Distributed Data Structures
	 Exploring Multiple GPUs
	New Skeletons
	Automatic Configuration
	New Model Parameters
	New Platforms

	The HWSkel Library
	hMap Skeleton
	hMap
	hMap Single-Core
	hMap Multi-Core

	hMapAll Skeleton
	hMapAll
	hMap Single-Core
	hMap Multi-Core

	hReduce Skeleton
	hReduce
	hReduce Single-Core
	hReduce Multi-Core

	hMapReduce Skeleton
	hMapReduce
	hMapReduce Single-Core
	hMapReduce Multi-Core

	The CM1 Cost Model
	The CM1 Code
	getNodeInfo()
	getClusterInfo()

	The GPU-HWSkel Library
	hMap Skeleton
	hMap
	hMap Single-Core
	hMap Multi-Core

	The CM2 Cost Model
	getNodeInfo()
	getClusterInfo()
	GPU Information
	Single-Node Cost Model
	Multi-Node Cost Model

	Bibliography

