
Accepted Manuscript

Finding parallel functional pearls: Automatic parallel recursion scheme
detection in Haskell functions via anti-unification

Adam D. Barwell, Christopher Brown, Kevin Hammond

PII: S0167-739X(17)31520-0
DOI: http://dx.doi.org/10.1016/j.future.2017.07.024
Reference: FUTURE 3554

To appear in: Future Generation Computer Systems

Received date : 16 December 2016
Revised date : 27 June 2017
Accepted date : 10 July 2017

Please cite this article as: A.D. Barwell, C. Brown, K. Hammond, Finding parallel functional
pearls: Automatic parallel recursion scheme detection in Haskell functions via anti-unification,
Future Generation Computer Systems (2017), http://dx.doi.org/10.1016/j.future.2017.07.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/161931534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.future.2017.07.024

Finding Parallel Functional Pearls:
Automatic Parallel Recursion Scheme Detection in

Haskell Functions via Anti-Unification

Adam D. Barwell, Christopher Brown, and Kevin Hammond

School of Computer Science, University of St Andrews, St Andrews, United Kingdom
{adb23,cmb21,kh8}@st-andrews.ac.uk

Abstract

This paper describes a new technique for identifying potentially parallelisable
code structures in functional programs. Higher-order functions enable simple
and easily understood abstractions that can be used to implement a variety of
common recursion schemes, such as maps and folds over traversable data struc-
tures. Many of these recursion schemes have natural parallel implementations in
the form of algorithmic skeletons. This paper presents a technique that detects
instances of potentially parallelisable recursion schemes in Haskell 98 functions.
Unusually, we exploit anti-unification to expose these recursion schemes from
source-level definitions whose structures match a recursion scheme, but which
are not necessarily written directly in terms of maps, folds, etc. This allows us
to automatically introduce parallelism, without requiring the programmer to
structure their code a priori in terms of specific higher-order functions. We
have implemented our approach in the Haskell refactoring tool, HaRe, and
demonstrated its use on a range of common benchmarking examples. Using
our technique, we show that recursion schemes can be easily detected, that
parallel implementations can be easily introduced, and that we can achieve real
parallel speedups (up to 23.79× the sequential performance on 28 physical cores,
or 32.93× the sequential performance with hyper-threading enabled).

1. Introduction

Structured parallelism techniques, such as algorithmic skeletons, expose par-
allelism through suitable language-level constructs [1]. By exploiting a range
of high-level, composable patterns that have natural parallel implementations,
such as maps or folds, parallelism can be introduced quickly, easily and automat-
ically. Unlike common lower-level approaches, such as OpenCL, the programmer
does not need to explicitly deal with implementation details such as communi-
cation, task creation, scheduling, etc. [2]. Structured parallel code also avoids
common and difficult-to-debug problems, such as race conditions and deadlocks,
and allows the definition of simple, but effective, cost models that can accurately

Preprint submitted to Elsevier June 27, 2017

predict parallel runtimes and speedups. There is a close, and long-observed,
correspondence between structured approaches and functional programming.
In particular, algorithmic skeletons can be seen as parallel implementations of
higher-order functions (e.g. [3, 4]). There are further advantages to structured
parallel approaches when writing parallel software for heterogeneous [5] or high
performance parallel systems [6], which may involve massive numbers of proces-
sors, of possibly different types. Given a set of skeletons for the desired target
architecture(s), the programmer need only be concerned with which skeletons to
call, where they should be called, and what parameters should be given to them
so that they give the best performance on the given architecture. Unfortunately,
determining precisely where to introduce skeletons can be a non-trivial exercise,
requiring significant programmer effort [2, 7, 8]. It follows that if instances of
higher-order functions can be discovered automatically, and if cost information
can be used to direct the choices of skeletons, parameters, etc., then parallel
functional programs can be produced quickly, easily and efficiently. Such pat-
terns occur frequently in real applications. For example, the spectral part of
the NoFib suite of Haskell benchmarks [9] comprises a total of 48 programs.
Manual inspection shows that at least 19 (39.6%) of these have one or more
functions that could be rewritten in terms of map or fold patterns. This gives
a potentially large corpus of easily parallelisable programs.

1.1. Novel Contributions

This paper introduces a new technique for discovering instances of generalised
higher-order functions (recursion schemes), using anti-unification [10]. As part
of our technique, we define a new, specialised anti-unification algorithm, and
demonstrate how pattern arguments can be derived from the substitutions that
are inferred by the anti-unification process. Our anti-unification analysis and
corresponding refactorings are implemented for Haskell in the HaRe refactor-
ing tool. Our implementation allows the automatic discovery and refactoring
of parallelisable recursion schemes, detecting instances that could otherwise be
difficult to detect. Moreover, manually checking a large code base for possible
instances of parallelisable patterns would be a time-consuming and error-prone
task, even for an expert programmer. We have tested our prototype on four
standard benchmark programs: matrix multiplication, n-body, n-queens, and
sumeuler, demonstrating that it can successfully expose the underlying recur-
sion schemes. The corresponding parallel implementations achieve maximum
speedups of 32.93 (21.66 using physical cores) for matrix multiplication, 27.08
(23.46 using physical cores) for n-body, 22.65 (20.48 using physical cores) for
n-queens, and 30.50 (22.24 using physical cores) for sumeuler, on a 28-core
hyper-threaded experimental testbed machine. Our technique is not restricted
to Haskell, or to a specific set of recursion schemes, but is, in principle, com-
pletely general. It can be applied to a wide range of recursion schemes/skeletons,
and to a wide range of programming languages, including both functional lan-
guages, such as Erlang, Scala, CAML, or Clojure, and other languages such as
C, C++, or Java. The only requirement is that the code structure matches the
recursion schemes of interest, and that there are no unwanted side effects.

2

1 8 16 24 32 40 48 56

0

5

10

15

20

25

30

Cores

S
p

ee
d

u
p

n = 1000

n = 5000

n = 10000

n = 15000

n = 20000

n = 25000

n = 30000

n = 35000

n = 40000

n = 45000

n = 50000

Figure 1: sumeuler, speedups on corryvreckan, a 28-core hyper-threaded Intel Xeon server,
dashed line shows extent of physical cores.

1.2. Illustrative Example

We illustrate our approach using an example from the NoFib suite, sumeuler,
that calculates Euler’s totient function for a list of integers and sums the results.

1 sumeuler :: [Int] -> Int

2 sumeuler xs = sum (map euler xs)

Here, euler is Euler’s totient function, and sum sums the values in its argument,
a list of integers. sumeuler can be easily parallelised using, e.g., the Haskell
Strategies library:

1 sumeuler :: [[Int]] -> Int

2 sumeuler xs =

3 sum (map (sum . map euler) xs `using` parList rdeepseq)

Here, parList, from the standard Control.Parallel.Strategies library, par-
allelises the map over xs without changing the original definition. It is param-
eterised on rdeepseq, a nested strategy that forces each element of the result
to be fully evaluated. By cleanly separating the functional definition of the
program from its evaluation strategy, it is easy to introduce alternative par-
allelisations, while ensuring that the parallel version is functionally equivalent
to the original definition. Fig. 1 shows the raw speedups that we obtain for
this program for varying sizes on n on our 28-core hyper-threaded experimental
machine, corryvreckan. We obtain a maximum speedup of 30.50 for n = 50000
on 48 hyper-threaded cores. Other parallelisations are possible. Eden [11], the
Par Monad [12], GPUs via the Accelerate library [13], etc., can all substitute
for parList to introduce parallelism over the map operation. It is also possible

3

to rewrite sumeuler to use a direct fold (or reduce) operation. This applies an
operation, g between each pair of elements in an input list, returning q, when
the end of the input list is reached. So, for example, foldr (+) 0 [1,2,3] is
expanded to foldr (+) 0 ((:) 1 ((:) 2 ((:) 3 [])), where (:) is the
binary list constructor function of type a -> [a] -> [a] and [] is the empty
list. This is reduced to (+) 1 ((+) 2 ((+) 3 0)), the result of which is 6, the
sum of the elements in the input list.

1 sumeuler [Int] -> Int

2 sumeuler xs = foldr ((+) . euler) 0 xs

3 where foldr g q [] = q

4 foldr g q (w:ws) = g w (foldr g q ws)

This new definition of sumeuler can then be parallelised in an alternative way to
the parallel map above, using e.g. a parallel implementation of foldr. Taking
advantage of parallelism in sumeuler is therefore both simple and potentially
automatic [14]. Moreover, alternative parallelisation approaches are possible.
However, if sumeuler was defined without using either an explicit map or foldr,
e.g. as shown below using direct recursion, then parallelisation would be less
straightforward, and lower, or no, speedups might result.

1 sumeuler :: [Int] -> Int

2 sumeuler [] = 0

3 sumeuler (x:xs) = ((+) . euler) x (sumeuler xs)

Since this version of sumeuler is implicitly an instance of foldr, it is best to
first restructure the definition so that it explicitly calls foldr before attempting
parallelisation. In order to rewrite the inlined sumeuler as an explicit foldr,
however, we need to derive concrete arguments to foldr that will yield a func-
tionally equivalent definition. These arguments can be derived by inspecting
the inlined definition of sumeuler, as shown in Fig. 2. To automatically derive
the arguments to foldr, we inspect the definitions of sumeuler and foldr us-
ing anti-unification, which aims to find the least general generalisation between
two terms. In Plotkin and Reynolds’ original work [10, 15], anti-unification was
defined for totally ordered terms, where terms consisted of variables, literals,
and function application. More recent approaches to anti-unification have ap-
plied the technique to programming languages such as Haskell [16, 17], primarily
for clone detection and elimination [18]. In these approaches, anti-unification
compares two terms (expressions) to find their shared structure, producing an
anti-unifier term (representing the shared structure), plus two sets of substitu-
tions that enable the original term to be reconstructed from the anti-unifier.
For example, anti-unifying the [] clause of sumeuler with foldr compares the
unequal 0 and z expressions, producing the anti-unifier, h:

1 h g z [] = z

Where the anti-unified structures diverge, a variable is introduced in the anti-
unifier that can be substituted for the original term. Substitutions, σ, have the

4

Figure 2: Rewriting sumeuler as an instance of foldr

((+) . euler) x (sumeuler xs)

((+) . euler) x (sumeuler xs)

((+) . euler) x sumeuler xs

((+) .) euler

(+) (.)

g x (foldr g z xs)

g x (foldr g z xs)

g x (foldr g z) xs

foldr g z

foldr g

Figure 3: ASTs for the (:) branch of sumeuler (left) and foldr (right); shared structure in
black, differing structure in dark green and red.

form (v 7→ ti), where v is a variable and ti is some term. Substitutions are
applied to terms, written using postfix notation, e.g. t σ, and can be composed
like functions. An applied substitution replaces all instances of v with ti in t.
For example, the substitutions for the [] clause of sumeuler are:

σ1 = (z 7→ 0)

and the substitutions for the [] clause of foldr are ε, i.e. the identity substitu-
tion. Anti-unifying the respective (:) clauses of sumeuler and foldr produces
the anti-unifier:

1 h g z (x:xs) = g x (α xs)

where α is a free variable. As shown in Fig. 3, the structures of the two clauses
are very similar, consisting primarily of application expressions. Differences
can be found at the leaves of foldr, highlighted in both dark green and red
in Fig. 3. Since x and xs are in the same relative positions, they feature in
h. As ((+) . euler) 6= g (highlighted in dark green), g is used to represent

5

the function applied to two arguments in h. Finally, since the recursive call
prefixes sumeuler 6= (foldr g z) (highlighted in red), the variable α is used in
their place in h. This produces the substitutions: (g 7→ ((+) . euler)) and
(α 7→ sumeuler) for sumeuler, and: (α 7→ (foldr g z)) for foldr. Since it is
possible to reconstruct the original terms by applying the relevant substitutions
to an anti-unifier, when given the anti-unifier h:

1 h g z [] = z

2 h g z (x:xs) = g x (a xs)

we can, in principle, rewrite sumeuler and foldr in terms of h using substitu-
tions as arguments:

1 sumeuler xs = h ((+) . euler) 0 xs

2

3 foldr g z xs = h g z xs

Furthermore, because foldr is equivalent to h, we conclude that sumeuler must
be an instance of foldr. As both sumeuler and foldr can be rewritten in terms
of h, it must be the case that sumeuler can be rewritten in terms of foldr.
The substitutions for sumeuler inferred as part of anti-unification are valid as
arguments to foldr, allowing sumeuler to be rewritten:

1 sumeuler xs = foldr ((+) . euler) 0 xs

Parallelism can now be introduced using a parallel implementation foldr, either
manually or using e.g. a refactoring/rewriting tool (e.g. [19, 8]). Alternatively,
the foldr operation can be split into its map and foldr (sum) components,
perhaps by using the laws of hylomorphisms as in [4], producing:

1 sumeuler xs = foldr (+) 0 (map euler xs)

which is equivalent to our original definition of sumeuler:

1 sumeuler xs = sum (map euler xs)

This can then be parallelised using the parallel map that we originally showed.

2. Algorithmic Skeletons and Structured Parallelism

Algorithmic skeletons [3] abstract commonly-used patterns of parallel computa-
tion, communication and interaction into parameterised templates that can be
used to implement high-level patterns of parallelism. There is a long-standing
connection between the skeletons community and the functional programming
community [20]. In the functional world, skeletons are implemented as higher-
order functions that can be instantiated with specific user code to give some
concrete parallel behaviour [2]. Using a skeleton approach allows the program-
mer to adopt a top-down structured approach to parallel programming, where
skeletons are composed to give the overall parallel structure of the program. This

6

gives a flexible approach, where parallelism is exposed to the programmer only
through the choice of skeleton and perhaps through some specific behavioural
parameters (e.g., the number of parallel processes to be created, or how elements
of a parallel list are to be grouped to reduce communication costs). Details of
communication, task creation, task or data migration, scheduling, etc. are em-
bedded within the skeleton implementation, which may be tailored to a specific
parallel architecture or class of architectures [5].

Common skeletons include: farm, reduce, feedback, and pipeline [1]. A farm
applies some function, (f :: a -> b), to each element in a stream of inputs
in parallel, where the number of processes created may be controlled by some
parameter. The farm skeleton corresponds to the sequential map operation.
The reduce skeleton takes an associative function, (f :: a -> a -> a), and
repeatedly applies it to a collection of two or more elements in parallel until one
element, i.e. the result, remains. This corresponds to a fold when the fold fix-
point function is associative. The feedback skeleton enables looping operations
for skeletons, taking some skeleton, s, to which inputs are applied repeatedly
until some function, (f :: a -> Bool), is satisfied. This corresponds to an
iterate, where the result is the nth element of the produced list. Finally, the
pipeline skeleton enables the composition of two or more skeletons, where par-
allelism arises from executing multiple pipeline stages in parallel. This corre-
sponds to function composition (.). Many implementations of these skeletons
exist, e.g. [1, 7, 8, 12, 11, 19, 21, 22, 23], with some for multiple architectures
such as GPUs, e.g. [5, 13, 24]. The choice of implementation is beyond the
scope of this paper. In principle, however, this correspondence allows skeletons
to be introduced over their sequential equivalents, introducing parallelism for
free [4]. This paper takes full advantage of these correspondences. Our anti-
unification technique therefore focuses on finding instances of recursion scheme
implementations such as map, foldr, and iterN.

1 iterate :: (a -> a) -> a -> [a]

2 iterate f x = x : iterate f (f x)

3 -- iterate ((+) 1) 1 = [1, 1+1, 1+2, 1+3,...]

4

5 iterN :: Int -> (a -> a) -> a -> a

6 iterN n f x = iterate f x !! n

7 -- iterN 1 ((+) 1) 1 = 2

8

9 map :: (a -> b) -> [a] -> [b]

10 map f [] = []

11 map f (x:xs) = f x : map f xs

12 -- map ((+) 1) [1,2,3,..] = [1+1,1+2,1+3,..]

13

14 foldr :: (a -> a -> a) -> a -> [a] -> a

15 foldr f z [] = z

16 foldr f z (x:xs) = f x (foldr f z xs)

17 -- foldr (+) 0 [1,2,3,4,5] = 1 + (2 + (3 + (4 + (5 + 0))))

7

P = Set of pattern implementations
f = Function to be transformed
p = A function in P
h = Result of the anti-unification of f and p

f’ = f rewritten as an instance of p
ai = Argument of f or p being recursed over
vai

= Variable declared in ai
t, ti = Terms for anti-unification
σ, σi = Substitutions for anti-unification

ε = The identity substitution
α = Hedge variables, found only in h

Figure 4: Key to terms and notation.

These higher-order functions can be automatically introduced for suitable Haskell
98 data types, using e.g. the Haskell type class Functor for map pattern in-
stances. We assume they are supplied in a library such as the Haskell standard
Prelude. Here, iterate creates an n-element list where the first item is calcu-
lated by applying the function f to the second argument, x; the second item is
computed by applying f to the previous result and so on. The example on Line
3 shows how iterate can be used to generate an infinite list of incrementing
integers. For convenience, we also define iterN, which takes the nth element
from the result of iterate. Line 7 illustrates this. map applies a given function
(((+) 1), which defines the function that adds 1 to its argument) to a list of
elements. Line 12 shows how map can be used to apply the function ((+) 1) to
a list of integers, [1,2,3,..], to produce a list of integers where each element
is incremented by one. As discussed above, foldr reduces a list by replacing
(:) with a binary right associative function. The result reduces the elements
of the list by applying the binary function, f, pair-wise to the elements of the
list. Line 17 shows how foldr can be used to sum a list. For the rest of this
paper, we refer to these higher-order functions as patterns, and we denote these
patterns collectively by P (see Figure 4).

While some of the above parallel patterns have additional requirements, such
as associativity of operation for fold, proving these requirements is beyond the
scope of this paper. Through the discovery of these recursion schemes, we are
able to expose components available for potential parallelisation. Further prop-
erty checking, such as those for associativity, and further transformations that
adjust the configuration, such as chunking [25], may be necessary or worth-
while to produce the best speedups. By exposing components for parallelism,
we expose properties, such as how a data structure is traversed, and are able
to effectively guide the programmer to where any extra property checking is
required and where parallelism might be introduced.

8

3. Detecting and Refactoring Pattern Instances for Haskell

This section gives an overview of our technique. Fig. 4 provides a key to our
notation. Some function f that matches a pattern, p, in the set of patterns, P,
is rewritten to a new function, f’, that uses p and that is functionally equivalent
to f. Our approach determines whether f is an instance of p, and if so, derives
the arguments that are needed to make f and p functionally equivalent. This
is achieved in two main stages: i) anti-unifying f and p to derive argument
candidates; and ii) using the result of the anti-unification to determine if f is
an instance of p, and if so, validating the argument candidates. Our approach
compares two functions, and given a finite set of P, can be applied repeatedly
to discover a set of potential rewrites. When multiple rewrites are valid, we
take the first, although other selection methods are also valid. We give our
assumptions in Sec. 3.1; we define a specialised anti-unification algorithm in
Sec. 3.2; and define the properties to check whether f can be rewritten as a call
to p. We give definitions for all our concepts, and provide a proof of soundness
for our anti-unification algorithm.

3.1. Preliminaries and Assumptions

We illustrate our approach using the Programatica AST representation of the
Haskell 98 standard [26]. Programatica is used as a basis for the Haskell refac-
torer, HaRe, which we extend to implement our approach. Our prototype imple-
mentation is available at https://adb23.host.cs.st-andrews.ac.uk/hare.

html. Programatica represents a Haskell AST using a collection of 20 Haskell
data types, comprising a total of 110 constructors [16]. These types are parame-
terised by the location of the syntactic elements they represent, and in the case of
variables and constructors, where they are declared. For example, the expression
42 is represented in Programatica by (Exp (HsLit loc (HsInt 42))). Here,
HsLit indicates that 42 is an expression; HsInt indicates that it is an integer;
and loc represents its location in the source code. We refer to the representation
of Haskell expressions in Programatica as terms; i.e. given some expression e
and some term t, we say that t is the Programatica representation of e (denoted
JeK = t). In the above example, J42K = (Exp (HsLit loc (HsInt 42))); i.e.
(Exp (HsLit loc (HsInt 42))) is the term that represents the expression 42.
There is a one-to-one mapping between expressions and terms. In the Progra-
matica tool set, terms are values of the HsExpI type. We make the distinction
between expressions and terms since terms can be easily generalised over using
their constructors, as we do in Sec. 3.2.

Although in principle we anti-unify the Haskell functions f and p, we do so
in a structured way that we define in Sec. 3.2. Beyond this, we do not need
to consider (the representations of) arbitrary Haskell declarations or modules
since we only anti-unify terms that form the right-hand side of like-equations
in f and p. Since location information will mean that any two compared terms
will always be unequal, we discard location information. Finally, and to simplify
our presentation, we will omit the outer Exp constructor, the common Hs prefix
of constructors, and any explicit specification of literal terms (e.g. integer or

9

string). For example, (Exp (HsLit loc (HsInt 42))) is instead recorded as
(Lit 42). Where variables and constructors are both represented as identifiers,
we will instead record these using Var and Con, respectively. For example, the
term of the variable expression x is (Var x), and the term of the cons operator
expression, (:), is (Con (:)). While our approach works for all terms, here we
only need to explicitly refer to: Var (representing variables), Lit (representing
literals), and App (representing application expressions). All other terms fall
under the generic constructor C, and lists of terms (e.g. [t1, . . . , tn]) that used
as arguments to C to represent lists and tuples. Other common expressions
found in functional languages, such as lambdas, fall under the general case
since they are both unlikely to appear in recursion scheme implementations,
and are otherwise safe to anti-unify due to the assumptions below.

Assumptions. In order to determine whether f is an instance of p, we will
assume:

1. that variables are unique in f and p;

2. that no variables are free in p, and that all variables in p are declared as
arguments to p;

3. that f and p recurse on the same type (denoted τ);

4. that f and p only pattern match on the argument that is being traversed
(denoted ai, where ai is the ith argument to f and/or p);

5. that for every clause that matches a constructor of τ in p, there is a
corresponding clause that matches the same constructor in f, and vice
versa; and

6. that no parameter to ai (denoted vai
) occurs as part of any binding in an

as-pattern, let-expression, or where-block.

Clauses in p are always anti-unified with like clauses in f, according to the
constructor of τ matched for that clause, C. ai then acts as ‘common ground’
between f and p; i.e. both functions declare the parameters of the constructor in
ai as arguments. This enables a check to ensure that the inferred substitutions
are sensible (Def. 14). It is therefore useful to know which vai

in f correspond
to which vai

in p. Despite this, since variables in f and p are assumed to be
unique, it follows that no variable term in f will ever be syntactically equal to
any variable term in p. We instead consider vai with the same position in f and
p to be equivalent.

Definition 1 (Shared Argument Equivalence). Given the argument of type τ
that is pattern matched in both f and p, ai, where in f, ai = (D v1 . . . vn), and
in p, ai = (D w1 . . . wn), we say that each vi is equivalent to each wi (denoted
vi ≡ wi); i.e. ∀i ∈ [1, n], vi ≡ wi. Given two arbitrary vai in f and p, vfai

and
vpai , we denote their equivalence by vfai

≡ vpai .

10

In sumeuler and foldr from Sec. 1.2, for example, x and xs are vai in sumeuler,
and w and ws are similarly vai in foldr. Here, both x ≡ w and xs ≡ ws hold,
since x and w are the first arguments to their respective cons operations, and
xs and ws are the second arguments.

Traditional anti-unification algorithms use syntactic equality to relate two
terms, t1 and t2, their anti-unifier, t, and the substitutions σ1 and σ2. To
take advantage of argument equivalence we must use a weaker form of syntactic
equality. First, we define the binary relation ∼ over terms, a form of alpha
equivalence.

Definition 2 (Alpha Equivalent Terms). Given two variables, vfai
and vpai ,

we say that the term representations of vfai
and v

p
ai are equivalent (denoted

Jvfai
K ∼ JvpaiK) when:

vfai
≡ vpai

Var vfai
∼ Var vpai

We then replace syntactic equality with a weaker form of equivalence using
Def. 2.

Definition 3 (Syntactic Equivalence). We define syntactic equivalence to be
a binary relation over two terms, t1 and t2, denoted t1 ∼= t2, where ∼= is the
reflexive structural closure of ∼.

For example, (Lit 42) ∼= (Lit 42) holds; t1 ∼= t2 holds for all t1 = (C t11 . . . tn)
and t2 = (C t21 . . . t2n) when ∀i ∈ [1, n], t1i ∼= t2i; and finally, (Var vfai

) ∼=
(Var vpai) holds only when vfai

≡ vpai is true. We note that for all other variables,
v, w, (Var v) ∼= (Var w) does not hold.

Where τ is a product type, e.g. as in zipWith, we permit pattern matching
on all arguments that represent the data structure(s) being traversed. All other
arguments must be declared as simple variables. For example, given:

1 f1 a b c [] [] = []

2

3 f2 0 (b',b'') c [] = []

f1 is permitted, but f2 is not.
As-patterns, let-expressions, and where-blocks all enable occurrences of

some vai
to be aliased, or obfuscated, and thereby potentially obstruct argument

derivation. Since our analysis inspects the syntax of f and p, such patterns and
expressions can obfuscate the exact structure of f; i.e. lift potentially important
information out of the main body of f and p. For example, given the definition,

1 f3 [] = []

2 f3 (x:xs) = g1 x : f3 xs where g1 = g2 xs

the fact that xs is passed to g2 is obfuscated by the where-block, and could
lead to an incorrect rewriting of f3 as, e.g., a map.

We do not restrict the type of recursion; general recursive forms are allowed,
for example. Partial definitions are also allowed. For example, both zipWith

11

and zipWith1 are valid as implementations of the general zipWith recursion
scheme:

1 zipWith g [] [] = []

2 zipWith g (x:xs) (y:ys) = g x y : zipWith xs ys

3

4 zipWith1 g1 g2 g3 [] [] = []

5 zipWith1 g1 g2 g3 (x:xs) [] = g1 x : zipWith1 xs []

6 zipWith1 g1 g2 g3 [] (y:ys) = g2 y : zipWith1 [] ys

7 zipWith1 g1 g2 g3 (x:xs) (y:ys) = g3 x y : zipWith1 xs ys

This permits more implementations of a given scheme, and so increases the
likelihood of discovering an instance of a scheme in f.

Finally, and since our approach effectively requires that f has a similar syn-
tactic structure to p as a result of the anti-unification, we permit any valid and
finite normalisation procedure that rewrites some arbitrary f0 to f, such that f0
is functionally equivalent to f. Normalisation can be used, e.g., to ensure that
any of the above assumptions are met. For example, consider assumption 6:
as-patterns and definitions in let-expressions and where-blocks can be inlined
(or unfolded in the transformational sense). For example, the where-block def-
inition of g1 in f3 can be unfolded to produce:

1 f3 [] = []

2 f3 (x:xs) = g2 xs x : f3 xs

Alternatively, normalisation procedures can be used to reshape [2] functions into
a form to allow, or simplify, the discovery of recursion schemes. For example,
the definition,

1 f4 xs0 = case xs0 of

2 [] -> 0

3 (x:xs) -> x + f xs

can be rewritten to lift the case-split into a pattern match, allowing the function
to be anti-unified against a foldr:

1 f4 [] = 0

2 f4 (x:xs) = x + f xs

3

4 foldr g z [] = z

5 foldr g z (x:xs) = g x (foldr g z xs)

More ambitious normalisation procedures may split a function, e.g. f5:

1 f5 [] z = g2 z

2 f5 (x:xs) z = f5 xs (g1 x z)

which can be can considered a near fold. Here, we can lift out the application
of g2 in the base case, and therefore expose a foldl instance:

12

1 f5 xs z = g2 (f5' xs z)

2

3 f5' [] z = z

4 f5' (x:xs) z = f5' xs (g1 x z)

Splitting of functions in this way is allowed provided that any such splitting is
finite and reduces the size of the split function. For example, some f0 cannot be
split into the composition of f0’ and f0’’, where f0’ or f0’’ is functionally
equivalent to the identity operation. In line with the intention for f to be anti-
unified against a set of recursion schemes, we do not require the normalisation
procedure to be confluent.

3.2. Argument Derivation via Anti-Unification

In order to derive arguments to express f as an instance of p, we must anti-unify
f and p. We define anti-unification for two levels: i) at the term level for two
arbitrary terms; and ii) at the function level where we anti-unify f and p. At
the term level, the anti-unification of two terms, t1 and t2, (denoted t1 , t2)
we obtain the triple (t× σ1× σ2), where t is the anti-unifier with respect to the
substitutions σ1 and σ2. At the function level, the anti-unification of f and p

produces a list of triples that represents the results of anti-unification for each
pair of clauses in f and p.

We define a substitution to be a function that takes a variable, x, and returns
a term, t2. When applied to a term, t1, a substitution returns t1 but with all
occurrences of x replaced by t2.

Definition 4 (Substitution). Given two terms, t1,t2, and a variable name, x,
that occurs in t1, substituting x for t2 in t1 replaces all occurrences of (Var x)
in t1 with t2. This substitution is denoted (x 7→ t2); and the application of
substitutions to terms is denoted t1 (x 7→ t2), where (x 7→ t2) is applied to t1.
We use σ to refer to substitutions; e.g. σ = (x 7→ t2).

Here, we update the classical definition of substitution [15] to account for the
Programatica representation. Substitutions are denoted as substituting a vari-
able name for some term. When applied to a term, a substitution replaces all
variable terms that are parameterised by the given variable name with another
term. For example, the result of the substitution σ applied the term t, t σ, is:

t = Var g

σ = (g 7→ (App (App (Var .) (Var +)) (Var euler)))

t σ = (App (App (Var .) (Var +)) (Var euler))

Here, g is substituted for a term representing the expression ((+) . euler),
from sumeuler. While the name of the variable being substituted is given in σ, it
is the variable term parameterised by g, i.e. (Var g), in t that is substituted. We
call the variables in substitutions that are substituted for terms hedge variables.
Uniqueness of variables means that all occurrences of a hedge variable in a term
can be substituted safely.

13

Definition 5 (Identity Substitution). The identity substitution, denoted ε, is
defined such that for all terms t, t = t ε.

Substitutions can be composed using an n-ary relation such that composition
forms a rose tree of substitutions.

Definition 6 (Substitution Composition). For all terms t0, . . . , tn, and for all
substitutions σ1, . . . , σn, where t0 = (C t1 . . . tn), there exists some substitution
σ0 = Lσ1, . . . , σn M such that t0 σ0 = (C (t1 σ1) . . . (tn σn)). Similarly, where
t0 = [t1, . . . , tn], there exists some substitution σ0 = Lσ1, . . . , σn M such that
t0 σ0 = [(t1 σ1), . . . , (tn σn)].

For the function f , defined

f v11 . . . v1n = e1

...

f v21 . . . v2n = en

and for the substitutions σ1, . . . , σn, there exists some substitution

σ0 = Lσ1, . . . , σn M
such that JfKσ0 is defined:

f v11 . . . v1n = e′1
...

f v21 . . . v2n = e′n

where
∀i ∈ [1, n], Je′iK = JeiKσi

Composed substitutions are ordered, such that when applied to some term t0,
the first composed substitution is applied to the first direct subterm to t0, the
second composed substitution is applied to the second direct subterm, and so on.
Each composed substitution is only applied to its corresponding direct subterm
in t0, and does not interfere with any other subterm of t0. For example, the
expression (g x x) is represented by the term t0,

t0 = App (App (Var g) (Var x)) (Var x)

and given the substitution, σ0,

σ0 = L L (g 7→ Var euler), ε M, (x 7→ Var p) M
when we apply σ0 to t0, the resulting term is:

t0 σ0 = App (App (Var euler) (Var x)) (Var p)

A composition of substitutions may be applied to either f or p, where each
substitution applies to the right-hand side of each equation in order. We will
refer to such compositions by σf and σp. For example, given the function sum,

14

1 sum [] = []

2 sum (x:xs) = x + (sum xs)

and the substitution σf = Lσ1, σ2 M, applying σf to sum, applies σ1 to the term
representation of [], i.e. the right-hand side of the first equation, and σ2 to the
term representation of (x + (sum xs)), i.e. the right-hand side of the second
equation.

Anti-unification computes the anti-unifier of two terms. In the literature,
all hedge variables are fresh. Conversely, and since we aim to rewrite f in terms
of p, we can use the variables declared in p as hedge variables. This allows us
to easily derive expressions that can be passed to p in f. We refer to the set
of hedge variables from p by Vp. All hedge variables not in Vp are fresh hedge
variables, which we denote by α.

Another difference to traditional anti-unification algorithms can be found the
concept of unobstructive recursive prefixes. As we are anti-unifying two different
recursive functions, by definition they will diverge in at least one respect: their
recursive calls. We extend this notion to recursive prefixes, where a recursive
prefix is a variable expression comprising the name of the function, i.e. f or p,
or an application expression that applies f or p to one or more expressions. For
example, given the definition of foldr,

1 foldr g z [] = z

2 foldr g z (x:xs) = g x (foldr g z xs)

the recursive call (foldr g z xs), has four recursive prefixes: i) (foldr g z

xs); ii) (foldr g z); iii) (foldr g); and iv) foldr. It is useful to further
extend the notion of recursive prefixes with the concept of unobstructiveness.
We define an unobstructive recursive prefix to be a recursive prefix for which
the values of its arguments do not change. In the above example, all recursive
prefixes, with the exception of (foldr g z xs), are unobstructive.

Definition 7 (Unobstructive Recursive Prefix). Given a recursive function f ,

f v1 . . . vn = e

for all recursive calls in e,
f e1 . . . en

we say that a recursive prefix is either:

1. the direct subexpression f e1 . . . em, where 1 ≤ m ≤ n; or

2. the expression f itself.

We say that a recursive prefix is unobstructive when ∀i ∈ [1,m], ei = vi. An ex-
pression, e′ is denoted as being an unobstructive recursive prefix by membership
of the set of unobstructive recursive prefixes for f ; i.e. e′ ∈ Rf .

To help ensure that as many instances of some scheme are found, we will also
assume the existence of the identity operator, which is defined in Haskell as id.

15

Definition 8 (The Identity Operation). We define id to be the lambda expres-
sion (\ x -> x) such that for all terms, t, (App (Var id)(t)) ∼= t.

Our anti-unification algorithm calculates the anti-unifier t and substitutions σ1
and σ2 for the terms t1 and t2, such that t1 ∼= t σ1 and t2 ∼= t σ2 hold, denoted:

t1 , t2 = t× σ1 × σ2
Our rules in Fig 5 define how to infer t, σ1, and σ2 from t1 and t2. Rules have
the form,

p[
t1
t2

]
∼= (t)

[
σ1
σ2

]

where p denotes any additional assumptions necessary for t1 ∼= t σ1 and t2 ∼= t σ2
to hold. We use matrix notation as shorthand for the two equations; i.e.

[
t1
t2

]
∼= (t)

[
σ1
σ2

]
= t1 ∼= t σ1 ∧ t2 ∼= t σ2

When t1 and t2 are the same, i.e. t1 ∼= t2, eq holds. For all other cases when
t2 is a variable term, and is not (Var p), t2 is used as the hedge variable in t
(var). When t2 is an application term applying some function u to a vai

, and
t2 is a variable term that is equivalent to the vai

in t2, then the application term
is used in t, and u is substituted for id in σ1 (id). When t2 is an unobstructive
recursive prefix of p, rp holds. const states that when t1 and t2 are terms
with the same constructor, C, then t is a term with constructor C and its direct
subterms are the anti-unifiers of each of the respective direct subterms in t1 and
t2. list is similar to const, but satisfies when the t1 and t2 are lists of terms,
where t1 and t2 are the same length. In all other cases, otherwise holds. For
example, the terms, t1 and t2,

t1 = App (Var e) (Lit 42)

t2 = App (Var g) (Lit 108)

both apply some function to some literal, and have the anti-unifier and substi-
tutions:

t = (App (Var g) (Var α))

σ1 = L (g 7→ (Var e)), (α 7→ (Lit 42)) M
σ2 = L ε, (α 7→ (Lit 108)) M

Here, σ1 and σ2 are compositions reflecting the two arguments to App (const).
Since the first argument in both t1 and t2 are variable terms, but with different
names, t2 is chosen as the anti-unifier with the substitution for σ1 replacing
g with e, and the identity substitution for σ2 (var). Conversely, the second
argument differs in t1 and t2, and since (Lit 108) is not an identifier, a fresh
hedge variable, α, is used for t, with the corresponding substitutions replacing
(Var α) in (Lit 42) and (Lit 108) for t1 and t2, respectively (otherwise).

16

eq
t1 ∼= t2[

t1
t2

]
∼= (t2)

[
ε
ε

]

var
v 6= p[

t1
Var v

]
∼= (Var v)

[
(v 7→ t1)

ε

]

id
u 6= p v1ai

≡ v2ai[
Var vfai

App (Var u) (Var v
p
ai)

]
∼= (App (Var u) (Var v

p
ai))

[L (u 7→ id), ε M
ε

]

rp
t2 ∈ Rp[

t1
t2

]
∼= (Var α)

[
(α 7→ t1)
(α 7→ t2)

]

const

∀i ∈ [1, n],

[
t1i
t2i

]
∼= (ti)

[
σ1i
σ2i

]

[
C t11 . . . t1n
C t21 . . . t2n

]
∼= (C t1 . . . tn)

[Lσ11, . . . , σ1n M
Lσ21, . . . , σ2n M

]

list

∀i ∈ [1, n],

[
t1i
t2i

]
∼= (ti)

[
σ1i
σ2i

]

[
[t11, . . . , t1n]
[t21, . . . , t2n]

]
∼= ([t1, . . . , tn])

[Lσ11, . . . , σ1n M
Lσ21, . . . , σ2n M

]

otherwise [
t1
t2

]
∼= (Var α)

[
(α 7→ t1)
(α 7→ t2)

]

Figure 5: Inference rules to calculate the anti-unifier t for the terms t1 and t2.

As we are interested in finding instances of a pattern in a function, it is con-
venient to relax the least general property found in traditional anti-unification
algorithms. Specifically, the rc rule in Fig. 5 can result in an anti-unifier that
is not the least general generalisation of two terms. To illustrate this, consider
the example of elem anti-unified against a foldr, where

1 elem a [] = False

2 elem a (x:xs) =

3 (\y ys -> if a == y then True else ys) x (elem a xs)

4

5 foldr g z [] = z

6 foldr g z (x:xs) = g x (foldr g z xs)

17

Here, the anti-unification of the recursive calls in the cons-clauses produces the
term:

App (Var α) (Var xs)

since (foldr g z) is an unobstructive recursive prefix. In this case, the rc rule
applies instead of const. const would otherwise apply since both (foldr g

z) and (elem a) are application expressions, and would produce a less general
generalisation than the result of applying the rc rule. Intuitively, the least
general generalisation is the term t that shares the closest structure to t1 and
t2, and requires the least number of substitutions in σ1 and σ2. In the above
example, the least general generalisation for the recursive call is:

App (App (Var α) (Var z)) (Var xs)

The ‘shortcuts’ produced by application of the rc rule are useful. Unobstructive
recursive prefixes are uninteresting, aside from their relative location, since they
produce no valid argument candidates in σf (Sec. 3.3). Moreover, without the rc
rule, extra work would be necessary to derive and/or choose between argument
candidates.

Theorem 1 (Soundness of Anti-Unification Algorithm). Given the terms t1
and t2, we can find t, σ1, and σ2, such that t1 ∼= t σ1 and t2 ∼= t σ2 hold.

We give the proof for the above soundness property in Appendix A.
Having defined anti-unification for terms, we can now define it for f and p.

Given the functions f and p,

f v11 . . . v1m = ef1 p w11 . . . w1l = ep1
...

...

f vn1 . . . vnm = efn p wn1 . . . wnl = epn

where vij and wij are arguments to f and p, respectively, and we define the
anti-unification of f and p, denoted h, to be the list:

h =
[
Jef1K , Jep1K, . . . , JefnK , JepnK

]

where each element, ∀i ∈ [1, n], ehi , in h corresponds to the anti-unification of
the ith clauses in f and p; and elements are the triple (ti × σ1i × σ2i). The
substitutions for each element in h can be composed, and we refer to the com-
position of substitutions for f as σf, and the composition of substitutions for p
as σp; i.e.

σf = Lσ11, . . . , σ1n M
σp = Lσ21, . . . , σ2n M

h is, in principle, equivalent to a function with n equations and where: i) the
anti-unifier term in each element represents the right-hand side of its respective
equation; and ii) the set of all hedge variables are the parameters to the function.
For example, the functions f and p,

18

1 f x = x + 42

2 g y = y + 108

when anti-unified, produce:

h = [(App (App (Var +) (Var y)) (Var z))

× L L ε, (y 7→ (Var x)) M, (z 7→ (Id 42)) M× L L ε, ε M, (z 7→ (Id 108)) M]

Here, h can be represented as:

1 h y z = y + z

2

3 f x = h x 42

4

5 g y = h y 102

where, h is the anti-unifier, and the substitutions are represented using standard
function application. To simplify our presentation, in examples we confuse h for
its equivalent function definition.

3.3. Deriving Pattern Arguments

Given the anti-unifier h of f and p, with substitutions σf and σp respectively,
we next derive the arguments to p that are needed to rewrite f as an instance
of p. Our anti-unification algorithm is designed such that σ1 provides candidate
arguments. These candidates are considered valid when they adhere to three
properties:

1. that p and h are equivalent (Def. 10);

2. that there does not exist a (sub-)substitution in σf or σp where a vai occurs
as either a hedge variable or as a term (Def. 12); and

3. that all substitutions in σf substituting for the same hedge variable that
is derived from p must substitute for the same term (Def. 14).

Equivalence of Pattern and Anti-Unifier. Recall that we aim to rewrite f in
terms of p. As stated in Sec. 3.2, the syntactic equivalence properties of the
produced anti-unifier allow f to be rewritten as a call to the function represen-
tation of h. Furthermore, by equational reasoning [27], if p and h are equivalent,
then f can be rewritten to replace the call to h with a call to p; i.e. f is an instance
of p. Since anti-unification will always produce an anti-unifier and substitutions
between any two arbitrary terms, the production of an anti-unifier cannot be
used as a test of equivalence. We instead define an equivalence relation between
p, h, σf, and σp. In order to do this, we first define equivalence between two
terms t2 and t and substitutions σ1 and σ2 with respect to t1.

19

Definition 9 (Equivalence of Terms with Substitutions). Given the terms, t,
t1, t2, and the substitutions σ1 and σ2, such that

[
t1
t2

]
∼= (t)

[
σ1
σ2

]

we say that t2 and t are equivalent with respect to σ1, σ2, and t1, (denoted
t2 ≡t1 t× σ1 × σ2) when:

eq
t2 ∼= t

t2 ≡t1 t× ε× ε
hedge

v 6= p v ∈ Vp
(Var v) ≡t1 (Var v)× (v 7→ t1)× ε

fresh
t1 ∈ Rf t2 ∈ Rp α 6∈ Vp

t2 ≡t1 (Var α)× (α 7→ t1)× (α 7→ t2)

const
∀i ∈ [1, n], t2i ≡t1 ti × σ1i × σ2i

(C t21 . . . t2n) ≡t1 (C t1 . . . tn)× Lσ11, . . . , σ1n M× Lσ21, . . . , σ2n M

list
∀i ∈ [1, n], t2i ≡t1 ti × σ1i × σ2i

[t21, . . . , t2n] ≡t1 [t1, . . . , tn]× Lσ11, . . . , σ1n M× Lσ21, . . . , σ2n M
Here, eq states that when t2 and t are the same, and when σ1 and σ2 are both
ε, then t2 and t are equivalent with respect to σ1 and σ2. When t2 and t are
both variable terms, t2 and t are equivalent when the variables have the same
name and when the the variable is a hedge variable derived from p (hedge).
Similarly, when t2 and t are both fresh hedge variables, α, then both terms
substituted for α must be unobstructive recursive prefixes in their respective
functions (fresh). Finally, const and list state that terms consisting only
of subterms are equivalent when all respective subterms are equivalent. The
definition of equivalence for p and h then follows naturally.

Definition 10 (Equivalence of Pattern and Anti-Unifier). Given two functions
f and p, and the result of their anti-unification, h, containing the substitutions
σf and σp, we say that p and h are equivalent when for all clauses in p, epi , and
elements in h, ehi = (ti × σ1i × σ2i), Jepi K ≡t1i e

h
i .

Absence of Shared Arguments in Substitutions. As stated in Sec. 3.1, the vari-
ables, vai , that are declared in ai are shared between f and p. As such, if f is
an instance of p, vai must be used in f in an equivalent way to their use in p;
i.e. their relative locations in the structure of f and p must be the same. For
example, in sumeuler and foldr,

1 sumeuler [] = 0

2 sumeuler (x:xs) = ((+) . euler) x (sumeuler xs)

3

4 foldr g z [] = z

5 foldr g z (w:ws) = g w (foldr g z ws)

20

the heads of the matched lists, x in sumeuler and w in foldr, are both passed
as the first argument to some function, g; and the tails of the matched lists, xs
and ws respectively, are passed as the last argument to the recursive calls in f

and p. While the equivalence of pattern and anti-unifier (Def. 10) ensures the
structural equivalence of p and h, it does not inspect hedge variables derived
from p. Our anti-unification rules in Fig. 5 means that no vai will occur as
either a hedge variable or as a subterm in either σf or σp when all equivalent
vai

have the same relative positions in f and p. Conversely, the occurrence of
some vai

in σf or σp indicates that not all equivalent vai
have the same relative

positions in f and p.

Definition 11 (Variable Occurrence in Terms). For all variables v, and for all
terms, t, we say that v occurs in t (denoted v � t) when t = (Var v) or when
there exists a subterm, ti, in t such that ti = (Var v).

Definition 12 (Shared Argument Absence). Given the functions f and p, and
their anti-unification h, containing the substitutions σf and σp, we say that no
vai

occurs in σf or σp (denoted vai
6∈ Lσf, σp M) when, for all vai

:

v 6∼= vai
(Var vai

) 6� t

vai
6∈ (v 7→ t)

∀i ∈ [1, n], vai
6∈ σi

vai
6∈ Lσ1, . . . , σn M

Substitution Uniqueness. Substitution composition (Def. 6) ensures that the
same hedge variable can be used to substitute for different terms without the
problem of substitution interference. For example, consider some f that is anti-
unified against scanl:

1 f a [] = [a]

2 f a (x:xs) = (+) a x : f ((-) a x) xs

3

4 scanl g z [] = [z]

5 scanl g z (x:xs) = g z x : scanl g (g z x) xs

Here, the result of the anti-unification of the two cons-clauses will include sub-
stitutions where g is substituted for both (+) and (-) in σf. In scanl, however,
g is the same in both instances. We therefore also require that all substitutions
that substitute for the same hedge variable in σf are substituted for the same
term.

Definition 13 (Substitution Flattening). For all substitutions, σ, we say the
flattening of σ (denoted bσc) is the list of substitutions, where:

b(v 7→ t)c = [(v 7→ t)] bLσ1, . . . , σn Mc = bσ1c+ · · ·+ bσnc

Here, + appends two lists, and [a] denotes the singleton list.

A list of substitutions cannot be applied to a term, allowing us to safely expose
any potential substitution interference across f.

21

Definition 14 (Substitution Uniqueness). Given the functions f and p, and
their anti-unification h. Given that σf is the composition of substitutions in h

for the clauses of f. We say that substitutions are unique in σf when for all
hedge variables, v ∈ Vp, and for all pairs of substitutions in bσfc, (v 7→ t1) and
(v 7→ t2), t1 = t2 holds.

Sufficiency of Validity Properties. Given f, p, h, σf and σp, the above three
properties are sufficient to determine whether the candidate arguments in σf
are valid. Equivalence of p and h (Def. 10) ensures that for all clauses in p and
h, the terms for that clause, t2 and t, are syntactically equivalent (Def. 3). Hedge
variable terms have additional information in their respective substitutions, σ1
and σ2. There are two cases: fresh hedge variables, α, and hedge variables
derived from p, v. For α, Def. 10 requires that both terms, t1 and t2, substituted
for α are unobstructive recursive prefixes (Def. 7). No other terms are allowed.
For v, two cases are possible: v = vai and otherwise. All equivalent vai in
f and p must have the same relative locations to ensure that ai is traversed
in the same way, and that no free variables occur in any argument candidate
expression. The rules in Fig. 5 mean that the identity substitution is derived for
all equivalent vai

in the same relative position in f and p. For the case when a
vai

is not anti-unified with its equivalent, Shared Argument Absence (Def. 12)
requires that no vai occurs in any substitution and so will fail in this case. For
all other v, Def. 10 requires that v will be in scope, due to the assumption that
all variables that occur in p are in scope and are declared as parameters of p.
Any updates to the value of v must be reflected in p, e.g. such as in foldl and
scanl. Finally, and since each argument may be instantiated only once for each
call to p, Substitution Uniqueness (Def. 14) ensures that for all substitutions
that substitute for the same hedge variable, the substituted terms are the same.

3.4. Deriving Arguments from Substitutions

Given that f, p, and their anti-unification, h, adhere to Def. 10 (Equivalence
of Pattern and Anti-Unifier), Def. 12 (Shared Argument Absence), and Def. 14
(Substitution Uniqueness), the arguments for p can be directly obtained from
σf. For sumeuler, given σ1 for the [] clause:

σ1 = (z 7→ (Lit 0))

and σ1 for the (:) clause:

σ1 = L L (g 7→ (App (App (Var .) (Var +)) (Var euler))), ε M,
L (α 7→ (Var sumeuler)), ε M M

((+) . euler) is passed as g; 0 is passed as z; and ai (i.e. (x:xs)) is passed as
itself due to Shared Argument Absence and Argument Equivalence properties.
Substitutions with fresh hedge variables are discarded. We can now refactor f

in terms of p using the derived arguments above, to give:

1 sumeuler xs = foldr ((+) . euler) 0 xs

22

Which, as before, can be rewritten to give our original definition:

1 sumeuler xs = foldr (+) 0 (map euler xs)

¡/¿Maximum Segment Sum. Where sumeuler is a simple foldr, consider the
less obvious example of maximum segment sum, as defined by Kannan [7]:

1 mss xs0 = mss2 0 0 xs0

2

3 mss2 y z [] = z

4 mss2 y z (x:xs) = mss2 (max y (x+z)) (max x (x+z)) xs

Here, mss2 traverses over the list xs0. Since mss2 does not return a list, we
instead consider a fold pattern. Two possibilities are available: a foldr or
a foldl. The standard Prelude definitions of these functions take only one
initial/accumulator argument, and neither will produce a rewritten mss2. To
solve this, y and z in mss2 may be tupled as part of a normalisation process:

1 mss2 y z xs0 = fst (mss2' (y,z) xs0)

2

3 mss2' w [] = w

4 mss2' w (x:xs) =

5 mss2' ((\(y1,z1) x -> (max y1 (x1+z1), max x1 (x1+z1))) w x) xs

When anti-unified against foldr and foldl, mss2’ will produce the following
anti-unifiers:

1 hr g z [] = z

2 hr g z (x:xs) = g x α
3

4 hl g z [] = z

5 hl g z (x:xs) = α (g z x) xs

where hr is the result of anti-unifying mss2’ and foldr, and hl is the result of
anti-unifying mss2’ and foldl. For hr, z is substituted for w, g is substituted
for mss2’, x is substituted for

1 (\(y1,z1) x1 -> (max y1 (x1+z1), max x1 (x1+z1))) w x)

and α is substituted for xs in mss2’ and (foldr g z xs) in foldr. hr will
not pass the validation properties, since: i) x and xs (i.e. vai

) both occur
in substitutions; and ii) hr is not equivalent to foldr, in part because α is
substituted for (foldr g z xs) which is not an unobstructive recursive prefix.
Conversely, an instance of foldl can be found, and f rewritten:

1 mss2' w xs0 = foldl (\(y,z) x -> (max y (x+z), max x (x+z))) w xs0

An alternative and equally valid approach can be to anti-unify against a foldl

that takes two accumulative variables; e.g.:

23

1 foldl g1 g2 y z [] = y

2 foldl g1 g2 y z (x:xs) = foldl g1 g2 (g1 y z x) (g2 y z x) xs

When anti-unified against mss2’ in the form:

1 mss2' y z [] = y

2 mss2' y z (x:xs) =

3 mss2' ((\y1 z1 x1 -> max y1 (x1+z1)) y z x)

4 ((\y1 z1 x1 -> max x1 (x1+z1)) y z x)

5 xs

the following anti-unifier is produced, and mss2’ is rewritten:

1 h g1 g2 y z [] = y

2 h g1 g2 y z (x:xs) =

3 α (g1 y z x) (g2 y z x) xs

4

5 mss2' y z xs0 =

6 foldl (\y1 z1 x1 -> max y1 (x1+z1))

7 (\y1 z1 x1 -> max x1 (x1+z1))

8 xs0

where α is substituted for mss2’ and (foldl g1 g2) in mss2’ and foldl,
respectively. This example demonstrates the increased importance of normal-
isation as functions become more complicated; a limitation we will explore in
future work.

Termination of Approach. As an additional result, we observe that our ap-
proach will always terminate, given our assumptions, that the definitions of f

and p are themselves finite, and P contains a finite number of scheme implemen-
tations. Our first-order anti-unification algorithm can be represented as a fold
over two finite terms, and so will both always terminate and produce a finite
result. Similarly, our validation properties will always terminate, since they too
can be represented as a fold over finite substitutions and function definitions.
Should the validation properties not hold for a given f and p, then the process
terminates with no rewriting. Conversely, when the validation properties hold
for a given f and p, the selection of arguments to p and rewriting of f will both
always terminate. The selection of arguments can be represented as a search
for a particular node of a finite tree. Similarly, the rewrite always constructs
a single clause function whose body is an application expression that applies
p to a finite number of arguments. Should our approach be extended by a
normalisation procedure, as suggested in Sec. 3.1, we require and assume that
the normalisation procedure is both finite and valid. Therefore, whether our
approach is extended by a normalisation procedure or not, our approach will
always terminate.

24

n MUT SD Total SD Sparks Heap Residency

1000 0.06 0.02 0.06 0.02 3 67795856 68256
5000 1.29 0.01 1.31 0.01 11 1958285432 214792

10000 5.34 0.03 5.39 0.03 21 8296937744 224584
15000 12.43 0.03 12.54 0.03 31 19280868336 498624
20000 22.82 0.08 23.03 0.07 41 35050884184 761720
25000 36.29 0.03 36.6 0.04 51 55705003000 1024160
30000 53.24 0.18 53.7 0.18 61 81319554136 1228304
35000 73.36 0.3 73.99 0.3 71 111956760792 1428304
40000 96.77 0.04 97.6 0.04 81 147666965368 1612232
45000 123.98 0.13 125.04 0.13 91 188497463480 1612232
50000 154.33 0.25 155.65 0.26 101 234487830776 1778184

Figure 6: Sequential mutator (MUT) and total (Total) times in seconds (with standard devia-
tions), total number of sparks for parallel version, and heap allocation and residency in bytes
for sumeuler on corryvreckan.

4. Examples

We have applied our approach to four examples from the NoFib suite [9] of
Haskell benchmarks that are known to have parallel implementations. For each
example we provide: performance and speedup results on our 28-core testbed
machine; a brief description of the size and structure of the program; the number
of explicit patterns that it contains; and a description of any other interesting
functions/patterns. All four examples have been anti-unified against relevant
map/fold patterns using our prototype anti-unification implementation.

Experimental Setup. All our examples have been executed on our experimen-
tal testbed machine, corryvreckan, a 2.6GHz Intel Xeon E5-2690 v4 machine
with 28 physical cores and 256GB of RAM. This machine allows turbo boost up
to 3.6GHz, and supports automatic dynamic frequency scaling. Using built-in
hyper-threading support, it is possible to scale to 56 virtual cores, but this does
not always give performance improvements. All four examples have been com-
piled using GHC 7.6.3 on Scientific Linux version 3.10.0. The original source
programs have been taken from the repository at git.haskell.org/nofib.git
(commit ce4b36b). We have not changed this code, apart from adding wrappers
to aid profiling where this is necessary. Our code is available at https://adb23.
host.cs.st-andrews.ac.uk/nofib-parallel.zip. We compiled the exam-
ples using -O, -feager-blackholing, -threaded, and -rtsopts flags, which
we found gave the best general performance. Our measurements represent the
average of three runs and are taken from the -s Haskell RTS option, which
records execution statistics. Timing information is taken from two sources: mu-
tator time (MUT) and total time (Total), both in seconds. The mutator time
represents the CPU time that is spent purely on executing the program, and is
thus a measure of pure parallel performance. The total time is the elapsed or

25

1 8 16 24 32 40 48 56

0

5

10

15

20

25

30

Cores

S
p

ee
d

u
p

n = 1000

n = 5000

n = 10000

n = 15000

n = 20000

n = 25000

n = 30000

n = 35000

n = 40000

n = 45000

n = 50000

Figure 7: Speedups for sumeuler on corryvreckan using reported mutator (MUT, reduplicated
from Sec. 1.2) times. Dashed line indicates 28 physical cores, with a total of 56 hyper-threaded
cores.

real-time for the program as a whole, and also includes the additional system
runtime overheads of initialisation, finalisation and garbage collection time.

4.1. Sumeuler

As described in Sec. 1.2, sumeuler calculates Euler’s totient function for a list
of integers and sums the results. In the NoFib suite, sumeuler consists of three
Haskell files: ListAux (41 lines), SumEulerPrimes (36 lines), and SumEuler (290
lines). Collectively, these introduce 31 functions, 12 of which have explicit maps
or folds as part of their definitions. Our prototype implementation rediscovers
all the implicit maps and folds. One interesting case is primesIn:

1 primesIn :: [Int] -> Int -> [Int]

2 primesIn ps@(p:rest) n

3 | p > n = []

4 | n `mod` p == 0 = p:primesIn ps (n `div` p)

5 | otherwise = primesIn rest n

primesIn is a foldr over an infinite list when the standard Prelude definition
of foldr does not define behaviour for the empty list.

We executed sumeuler for n = 1000, 5000 and between 10000 and 50000 at
intervals of 5000, with a chunk size of 500. Fig. 6 gives average sequential times
(with standard deviations), the number of sparks, heap allocation, and residency
for all n. All sparks are converted for all n. Fig. 7 and Fig. 8 give speedups for
sumeuler using mutator and total time, achieving maximum speedups of 30.50
for n = 50000 on 48 virtual cores (mutator) and 20.92 for n = 50000 on virtual
48 cores (total). This clearly shows that sumeuler scales both with n and with

26

1 8 16 24 32 40 48 56

0

5

10

15

20

25

30

Cores

S
p

ee
d

u
p

n = 1000

n = 5000

n = 10000

n = 15000

n = 20000

n = 25000

n = 30000

n = 35000

n = 40000

n = 45000

n = 50000

Figure 8: Speedups for sumeuler on corryvreckan using reported total (Total) times. Dashed
line indicates 28 physical cores, with a total of 56 hyper-threaded cores.

n MUT SD Total SD Sparks Heap Residency

11 0.1 0.03 0.1 0.03 101 95722624 64088
12 0.42 0.08 0.43 0.08 122 569715376 1693112
13 2.13 0.02 2.19 0.03 145 3590068664 9854376
14 13.65 0 14.1 0.01 170 24108663032 59041312
15 96.36 0.17 103.11 0.18 197 171560553832 479706512
16 717.66 0.81 821.03 0.35 226 1293635766936 3097146864

Figure 9: Sequential mutator (MUT) and total (Total) times in seconds (with standard devia-
tions), total number of sparks for parallel version, and heap allocation and residency in bytes,
for queens on corryvreckan.

the number of cores. Total time speedups are more likely to reduce as further
cores are added for a given n, since garbage collection time increases with more
cores. The irregularity of the tasks in sumeuler is also likely to have contributed
to this result. For this example, all of the potential parallelism (Haskell sparks)
was converted into actual parallelism (Haskell ultra-lightweight threads). In
general, however, the sophisticated evaluate-and-die mechanism will throttle
excess parallelism, giving a better load-balance, and avoiding system overload
when massive amounts of parallelism are present.

4.2. N-Queens

The n-queens problem (queens) calculates the positions of n queens on a n× n
chess board such that no two queens threaten each other. In the NoFib suite,
queens consists of one Haskell file, Main, that is 42 lines long and defines 6

27

1 8 16 24 32 40 48 56

0

2

4

6

8

10

12

14

16

18

20

22

24

Cores

S
p

ee
d

u
p

n = 11

n = 12

n = 13

n = 14

n = 15

n = 16

Figure 10: Speedups for queens on corryvreckan using reported mutator (MUT) time. Dashed
line indicates 28 physical cores, with a total of 56 hyper-threaded cores.

functions. Two of these 6 functions have explicit maps and folds (including list
comprehensions), and an explicit call to iterate. One other function, safe,

1 safe :: Int -> Int -> [Int] -> Bool

2 safe x d [] = True

3 safe x d (q:l) = x /= q && x /= q+d && x /= q-d && safe x (d+1) l

is an implicit foldr over lists:

1 safe :: Int -> Int -> [Int] -> Bool

2 safe x d qs = fst $ foldr f (True,d) qs

3 where

4 f q (l,d) = (x /= q && x /= q+d && x /= q-d && l, d+1)

Since d is updated between recursive calls, our prototype implementation will
not currently detect this foldr1. By rewriting safe as a composition of an
unfold and an (implicit) foldr, our prototype can detect the foldr over the
tree generated by the unfold. safe may alternatively be considered an instance
of a zygomorphism [28], it may therefore be worth investigating this pattern as
part of our future work. Another function, pargen, enumerates the different
possible locations of the queens on the board.

1This is because in the original definition of safe, d is updated between recursive calls
meaning a standard foldr is not equivalent (Def. 10).

28

1 8 16 24 32 40 48 56

0

2

4

6

8

10

12

14

16

18

20

22

24

Cores

n = 11

n = 12

n = 13

n = 14

n = 15

n = 16

Figure 11: Speedups for queens on corryvreckan using reported total (Total) time. Dashed
line indicates 28 physical cores, with a total of 56 hyper-threaded cores.

1 pargen strat n b

2 n >= t = iterate gen [b] !! (nq - n)

3 otherwise =

4 concat (map (pargen strat (n+1)) (gen [b]) `using` strat)

This is defined as a sub-function of the top-level queens function. Here, nq

denotes the number of queens that are to be searched for, and t is a threshold for
controlling parallelism. The strat parameter is an evaluation strategy: either
evalList or parList depending on whether sequential or parallel operation is
chosen. n is used as a measure for determining whether the threshold, t, is
reached; b accumulates results; and gen generates an individual result. We can
unfold both iterate and map expressions as implicit iterN and map functions
that are called by pargen:

1 pargen n b

2 n >= t = pgI ([b],(nq-n))

3 otherwise = concat $ pgM (gen [b])

4 where

5 pgI (rs,0) = rs

6 pgI (rs,i) = pgI ((gen rs),i-1)

7

8 pgM [] = []

9 pgM (r:rs) = pargen' (n+1) r : pgM rs

Our prototype correctly (re)discovered instances of both iterN and map within
pgI and pgM. We executed queens for n ranging from 11 to 16, with t = 2. Fig. 9

29

1 8 16 24 32 40 48 56

0

20

40

60

80

100

120

140

160

Cores

T
im

e
(s

)

n = 11

n = 12

n = 13

n = 14

n = 15

n = 16

Figure 12: Garbage collection times for queens on corryvreckan. Dashed line indicates 28
physical cores, with a total of 56 hyper-threaded cores.

gives mutator and total times (with standard deviations) for sequential runs,
and number of sparks, heap allocation size, and residency for each n. An average
of 30% of sparks were converted on 4 cores, 65% on 8 cores, and 85% for all other
cores. Fig. 10 and 11 shows speedups for queens in terms of mutator and total
time. We achieve maximum speedups of 22.65 for n = 16 on 48 hyper-threaded
cores and 10.00 for n = 12 on 36 hyper-threaded cores. When n = 11, the
mutator time plateaus quickly and sharply, possibly due to lack of work. When
n = 12, speedups reduce as the number of cores is increased, probably because
there is insufficient work to offset increased overheads. Otherwise, mutator
times plateau above 28 cores, probably because hyper-threading is not effective
in this example. Unlike our other examples, total time speedups reveal an overall
halving of performance gains as a consequence of increased garbage collection
time. Fig. 12 shows that when n = 15 and n = 16, garbage collection times are
heavily increased. This is probably due to repeated generation of lists.

4.3. N-Body

nbody calculates the movement of bodies in m-dimensional space according to
the physical forces between them. The classical representation of this problem
is between celestial bodies, modelling the effects of gravity on their trajectories.
In the NoFib suite, nbody consists of two Haskell files: Future (16 lines) and
nbody (135 lines) which collectively define 8 functions. Two of these 8 functions
have an explicit map or fold, and one, loop, is an implicit iterN. Our prototype
discovers the maps and folds in both functions where they are explicitly used,
from their inlined definitions. The loop sub-function of compute is defined as:

1 loop i ax ay az

2 i == end = (# ax,ay,az #)

3 otherwise = loop (i+1) (ax+px) (ay+py) (az+pz)

4 where

30

n MUT SD Total SD Sparks Heap Residency

10000 2.06 0.06 2.07 0.06 40 6310152 1197488
25000 11.61 0.1 11.63 0.11 40 15670360 5216880
50000 46.93 0.13 46.98 0.13 40 31270520 12311984
75000 104.9 0.35 104.96 0.34 40 46870848 12547600

100000 187.47 0.1 187.57 0.11 40 62471232 25082544
250000 1164.34 0.68 1164.52 0.65 40 156226496 40215360

Figure 13: Sequential mutator (MUT) and total (Total) times in seconds (with standard devia-
tions), total number of sparks for parallel version, and heap allocation and residency in bytes,
for nbody on corryvreckan.

1 8 16 24 32 40 48 56

0

5

10

15

20

25

Cores

S
p

ee
d

u
p

n = 10000

n = 25000

n = 50000

n = 75000

n = 100000

n = 250000

Figure 14: Speedups for nbody on corryvreckan using reported mutator (MUT) time. Dashed
line indicates 28 physical cores, with a total of 56 hyper-threaded cores.

5 (x,y,z) = vector

6 (x',y',z') = vecList Array.! i

7

8 (# dx,dy,dz #) = (# x'-x, y'-y, z'-z #)

9 eps = 0.005

10 distanceSq = dx^2 + dy^2 + dz^2 + eps

11 factor = 1/sqrt(distanceSq ^ 3)

12 (# px,py,pz #) =

13 (# factor * dx, factor * dy, factor *dz #)

where i and n control the number of iterations performed; ax, ay, az are the
three-dimensional cartesian coordinates of the body being updated; and, ulti-
mately, px, py, and pz are updates to those initial coordinates. Applying our
prototype to loop, with guards converted to pattern matched clauses and i and

31

1 8 16 24 32 40 48 56

0

5

10

15

20

25

Cores

Total

n = 10000

n = 25000

n = 50000

n = 75000

n = 100000

n = 250000

Figure 15: Speedups for nbody on corryvreckan using reported total (Total) time. Dashed
line indicates 28 physical cores, with a total of 56 hyper-threaded cores.

end inverted such that i decreases to 0, our prototype discovers the iterN.

1 loop ((ax,ay,az),i) = iterN g ((ax,ay,az),i)

2 where

3 g (ax,ay,az) = let ... in ((ax+px),(ay+py),(az+pz))

We have elided the local definitions for clarity. We executed nbody for n =
{10000, 250000} and between 0 and 100000 at intervals of 25000. Fig. 13 gives
the corresponding mutator and total times (with standard deviations), and the
number of sparks (potential parallelism), heap allocation size, and residency for
each n. An average of 97.5% of sparks were converted on 4 cores, and 100%
of sparks were converted on all other numbers of cores. Fig. 14 and 15 give
speedups for nbody using mutator and total time, achieving maximum speedups
of 27.08 for n = 250000 on 52 hyper-threaded cores and 26.82 for n = 250000 on
52 hyper-threaded cores, respectively. There is little difference between mutator
and total reported speedups for nbody, showing that garbage collection is not
significant for this example. The example also demonstrates good scalability
for both varying n and number of cores. The growth in speedup does diminish
after 28 cores, and the use of hyper-threading is again the most likely cause.

4.4. Matrix Multiplication

Matrix multiplication (matmult) multiplies two matrices. The NoFib suite defi-
nition consists of two Haskell files: ListAux (41 lines) and MatMult (246 lines).
These collectively define 42 functions, 11 of which feature explicit maps and
folds (not including the specialised versions of foldr, e.g. filter or sum, that

32

n MUT SD Total SD Sparks Heap Residency

1000 13.15 1.59 13.37 1.58 18 317362136 44416
1500 56.09 5.12 56.33 5.14 27.5 713751520 44416
2000 131.72 14.07 131.96 14.07 38 1268624520 44416
2500 226.58 7.49 226.83 7.51 49.5 1835831694 44416
3000 402.13 2.71 402.36 2.69 62 1801405160 44416
3500 633.18 9.43 633.44 9.43 67 2451609160 44416
4000 946.42 12.1 946.67 12.08 80.5 3201845928 44416
4500 1344.39 16.09 1344.59 16.08 85.5 4052049928 44416
5000 1823.05 0.96 1823.31 0.96 100 5002253928 44416

Figure 16: Sequential mutator (MUT) and total (Total) times in seconds (with standard devia-
tions), total number of sparks for parallel version, and heap allocation and residency in bytes,
for matmult on corryvreckan.

are used extensively in this example). All the instances of explicit maps and
folds are discovered by our prototype from their inlined definitions. Three func-
tions, shiftRight and both addProd definitions, are implicit folds. shiftRight
is defined as:

1 shiftRight c [] = []

2 shiftRight c (xs:xss) = (xs2++xs1):shiftRight (c-1) xss

3 where (xs1,xs2) = splitAt c xs

and is an implicit foldr:

1 shiftRight c xs = fst $ foldr f ([],c) xs

2 where

3 g xs (xss,c) = let (xs1,xs2) = splitAt c xs

4 in ((xs2++xs1):xss, c-1)

As with safe from queens (Sec. 4.2), our prototype cannot discover the foldr

in shiftRight because c is updated in the recursive call. The second implicit
fold, addProd, is defined as:

1 addProd :: Vector -> Vector -> Int -> Int

2 addProd (v:vs) (w:ws) acc = addProd vs ws (acc + v*w)

3 addProd [] [] n = n

addProd can be viewed as a composition of a zipWith and a foldl, or simply
as a foldl. Here, both zipWith and foldl implementations need not be total
definitions, as mentioned in Sec. 3.1. We executed matmult for n between 1000
and 5000 at intervals of 500, with chunk size set to 20. Two parallel versions are
possible: i. performs the multiplication of each row in parallel, and ii. divides
each matrix into blocks to be computed in parallel and joins their result. We
have used both modes here. Whilst the original NoFib suite definition provides
its own matrix generation function, we have adjusted this so that matrices are
generated using:

33

1 8 16 24 32 40 48 56
0

5

10

15

20

25

30

35

Cores

S
p

ee
d

u
p

n = 1500

n = 2000

n = 2500

n = 3000

n = 3500

n = 4000

n = 4500

n = 5000

Figure 17: Speedups for matmult on corryvreckan using the row-wise parallelisation option
and reported mutator (MUT) time. Dashed line indicates 28 physical cores, with a total of 56
hyper-threaded cores.

1 replicate n [1..n]

Fig. 16 reports sequential times (with standard deviations), and the number of
sparks, heap allocation size, and residency for each n. The average number of
sparks converted varies with n, instead of the number of cores seen in previous
examples. Converted sparks fluctuate between 100% and not less than 93%
(seen on 4 cores), and fluctuations grow smaller with larger n. Figs. 17, 19, 18,
and 20 give speedups for matmult using mutator and total time for both parallel
modes. Row-wise parallelisation achieves maximum speedups of 28.26 for n =
2500 on 56 hyper-threaded cores for both mutator and total values. Block-wise
parallelisation achieves maximum speedups of 32.93 for n = 1500 on 52 hyper-
threaded cores for both mutator and total values. As with nbody, there is little
difference between mutator and total reported speedups for matmult, and mode
2 proves generally only slightly better than mode 1. The example demonstrates
good scalability for both varying n and number of cores. Once again, speedup
growth slows after 28 cores due to hyper-threading.

5. Related Work

Anti-unification was first described by Plotkin [10] and Reynolds [15] who de-
scribed the approach using lattices of totally ordered terms. The technique has
been explored and expanded upon since, enabling its operation on unranked
terms [29], and used in a range of application areas; including generating code
from analogy [30], generating invariants for program verification [17], termi-
nation checking [31], symbolic mathematical computing [32], and clone detec-

34

1 8 16 24 32 40 48 56

5

10

15

20

25

30

35

Cores

S
p

ee
d

u
p

n = 1500

n = 2000

n = 2500

n = 3000

n = 3500

n = 4000

n = 4500

n = 5000

Figure 18: Speedups for matmult on corryvreckan using the block-wise parallelisation option
and reported mutator (MUT) time. Dashed line indicates 28 physical cores, with a total of 56
hyper-threaded cores.

tion [33, 18]. Whilst our technique can be considered a form of clone detec-
tion, traditional anti-unification approaches to clone detection have focussed on
comparing functions within the same program. Instead, we compare functions
against potentially arbitrary higher-order functions that can either be from the
same program, the Haskell Prelude, or a library.

One closely related technique, higher-order matching, was introduced and
developed by Huet in 1976 [34] and later by Statman in 1982 [35]. Originally
defined for the simply typed lambda calculus, higher-order matching has been
adapted to work with Haskell-like languages and as part of program transforma-
tion tools [36]. Higher-order matching is a NP-hard problem [36]. Conversely,
and by targeting the functions to which it is applied, anti-unification algorithms
can be made efficient [17]. One important aspect of our technique is determining
whether or not a function is an instance of a chosen pattern, a decision that
is made by inspecting the structure of the anti-unifier. Higher-order matching
algorithms result in a set of possible substitutions from the language itself [36],
meaning that a decision of whether the examined function is an instance of a
given pattern remains unanswered, and potentially unanswerable from the re-
sult alone. This collection of inferred substitutions presents another problem:
a substitution must be chosen from the overall set, and the substitution must
maintain functional equivalence between the examined function and its recon-
structed form. Anti-unification derives its substitutions from both examined
function and pattern, requiring no selection of inferred substitutions to ulti-
mately derive pattern arguments. Lastly, we envisage that when comparing
functions of increasingly different structures reasoning about the anti-unifier
and inferred substitutions will play a greater roll in argument inference.

35

1 8 16 24 32 40 48 56
0

5

10

15

20

25

30

35

Cores

S
p

ee
d

u
p

n = 1500

n = 2000

n = 2500

n = 3000

n = 3500

n = 4000

n = 4500

n = 5000

Figure 19: Speedups for matmult on corryvreckan using the row-wise parallelisation option
and reported total (Total) time. Dashed line indicates 28 physical cores, with a total of 56
hyper-threaded cores.

Although the refactoring and clone detection fields are not traditionally con-
cerned with the discovery of patterns, it is often a stage in the parallelisation
process [8] as patterns as a simplification of parallelisation have been shown to
be an effective [4, 5, 37, 38]. Pattern discovery for parallelism has primarily
focused on approaches for imperative programs by analysing dependencies and
machine learning techniques [39, 40, 8, 41]. Alternative automatic approaches
focus on deriving parallel implementations from small programs or specifica-
tions, commonly employing the Bird Meertens formalism to calculate parts of
the program [42, 43, 7, 44]. Whilst these approaches do not explicitly look for
patterns, they use algorithmic structures such as list homomorphisms [45] and
hylomorphisms [4] which are amenable to divide-and-conquer skeletons. These
approaches have thus far focussed on translating operations into specific types,
e.g. cons- or join-lists, which can then be easily parallelised [44, 7]. The approach
by Geser [42] is particularly notable here, as it uses a form of anti-unification
(referred to simply as generalization). These approaches are all limited by their
type translations, and by the specific parallelism mechanics they introduce.
In [46], Hu demonstrates how hylomorphisms can be found in arbitrary code,
but the approach is limited to hylomorphisms. Our approach and prototype
implementation works for Haskell 98, and can in principle discover arbitrary
patterns in existing code. These patterns can be parallelised by, e.g., the ap-
proaches in [14, 4], but also used as part of code maintenance, and ensuring code
reuse. Used for parallelism or performance reasons, our approach also allows
the use of a variety of parallelisation or optimisation approaches.

36

1 8 16 24 32 40 48 56

5

10

15

20

25

30

35

Cores

S
p

ee
d

u
p

n = 1500

n = 2000

n = 2500

n = 3000

n = 3500

n = 4000

n = 4500

n = 5000

Figure 20: Speedups for matmult on corryvreckan using the block-wise parallelisation option
and reported total (Total) time. Dashed line indicates 28 physical cores, with a total of 56
hyper-threaded cores.

6. Conclusions and Future Work

In this paper, we have presented a technique to detect instances of recursion
schemes in Haskell functions using anti-unification. That is we describe how
to detect recursive patterns whose behaviour is well understood. We have de-
scribed how our approach can be combined with automated or semi-automated
refactoring techniques to transform functions into a form that enables the detec-
tion of such recursion schemes, and subsequently to rewrite the function as an
instance of the pattern that is detected. As part of our approach, we have de-
fined a specialised anti-unification algorithm. We have prototyped our approach
by adapting the HaRe refactoring tool for Haskell, and have demonstrated our
technique on four benchmarks from the standard NoFib suite. We have shown
that real performance improvements and speedups can be achieved using paral-
lel versions of the patterns that we find. Whilst our approach shows promising
results, our analysis does presently require code to be written in a stylised form.
We envisage, however, that further work on argument derivation will allow us
to detect recursion schemes in a broader range of structures. We also intend to
explore how equational reasoning, in conjunction with standard reduction op-
erations, can be applied to inferred substitutions to successfully derive pattern
arguments more flexibly. Additionally, we intend to examine larger, pre-existing
examples of Haskell code. Although we have explained the technique with ref-
erence to Haskell and the standard iterN, map and fold patterns, none of these
is a fundamental limitation. The approach described in this paper is, in fact,
completely general. In future, we expect to apply our work to a much broader
range of Haskell higher-order functions including many of the libraries that al-

37

ready exist in e.g. the hackage repository. We also intend to apply our approach
to more varied patterns, e.g. unfolds [47], which have been shown to be useful
components of parallel programs [4].

7. Acknowledgements

This work has been partially supported by the EU H2020 grant “RePhrase:
Refactoring Parallel Heterogeneous Resource-Aware Applications – a Software
Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), sup-
ported by COST (European Cooperation in Science and Technology), by EP-
SRC grant “Discovery: Pattern Discovery and Program Shaping for Manycore
Systems” (EP/P020631/1), and by Scottish Enterprise PS7305CA44.

References

[1] H. González-Vélez, M. Leyton, A Survey of Algorithmic Skeleton Frame-
works: High-level Structured Parallel Programming Enablers, Vol. 40, John
Wiley & Sons, Inc., New York, NY, USA, 2010, pp. 1135–1160.

[2] A. Barwell, C. Brown, K. Hammond, W. Turek, A. Byrski, Using “Program
Shaping” to Parallelise an Evolutionary Multi-Agent System in Erlang, J.
Computing and Informatics (to appear).

[3] M. Cole, Algorithmic Skeletons: Structured Management of Parallel Com-
putation, MIT Press, Cambridge, MA, USA, 1991.

[4] D. Castro, S. Sarkar, K. Hammond, Farms, Pipes, Streams and Refor-
estation: Reasoning about Structured Parallel Processes using Types and
Hylomorphisms, in: Proc. ICFP ’16, 2016, pp. 4–17.

[5] V. Janjic, C. Brown, K. Hammond, Lapedo: Hybrid Skeletons for Program-
ming Heterogeneous Multicore Machines in Erlang, Parallel Computing:
On the Road to Exascale 27 (2016) 185.

[6] M. Coppola, M. Vanneschi, High-performance data mining with skeleton-
based structured parallel programming, Parallel Computing 28 (5) (2002)
793–813.

[7] V. Kannan, G. Hamilton, Program Transformation to Identify Parallel
Skeletons, in: Int. Conf. on Parallel, Distributed, and Network-Based Pro-
cessing (PDP’16), IEEE, 2016, pp. 486–494.

[8] I. Bozó, V. Fordós, Z. Horvath, M. Tóth, D. Horpácsi, T. Kozsik, J. Köszegi,
A. Barwell, C. Brown, K. Hammond, Discovering Parallel Pattern Candi-
dates in Erlang, in: Proc. 2014 ACM Erlang Workshop, 2014, pp. 13–23.

38

[9] W. Partain, The nofib benchmark suite of haskell programs, in: J. Launch-
bury, P. Sansom (Eds.), Functional Programming, Glasgow 1992: Pro-
ceedings of the 1992 Glasgow Workshop on Functional Programming, Ayr,
Scotland, 6–8 July 1992, Springer London, London, 1993, pp. 195–202.

[10] G. D. Plotkin, A Note on Inductive generalization, Machine Intelligence 5
(1970) 153–163.

[11] S. Breitinger, R. Loogen, Y. O. Mallen, R. Pena, The Eden Coordination
Model for Distributed Memory Systems, in: Proceedings of the 1997 Work-
shop on High-Level Programming Models and Supportive Environments
(HIPS ’97), HIPS ’97, 1997, pp. 120–.

[12] S. Marlow, R. Newton, S. Peyton Jones, A Monad for Deterministic Par-
allelism, in: Proceedings of the 4th ACM Symposium on Haskell, Haskell
’11, 2011, pp. 71–82.

[13] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, V. Grover, Accel-
erating Haskell Array Codes with Multicore GPUs, in: Proceedings of the
Sixth Workshop on Declarative Aspects of Multicore Programming, DAMP
’11, 2011, pp. 3–14.

[14] N. Scaife, S. Horiguchi, G. Michaelson, P. Bristow, A Parallel SML Com-
piler Based on Algorithmic Skeletons, Journal of Functional Programming
15 (4) (2005) 615–650.

[15] J. C. Reynolds, Transformational Systems and the Algebraic Structure of
Atomic Formulas, Machine intelligence 5 (1) (1970) 135–151.

[16] C. Brown, Tool Support for Refactoring Haskell Programs.

[17] P. E. Bulychev, E. V. Kostylev, V. A. Zakharov, Anti-unification Algo-
rithms and Their Applications in Program Analysis, in: Proceedings of the
7th International Andrei Ershov Memorial Conference on Perspectives of
Systems Informatics, PSI’09, 2010, pp. 413–423.

[18] P. Bulychev, M. Minea, An Evaluation of Duplicate Code Detection Using
Anti-Unification, in: Proc. 3rd International Workshop on Software Clones,
2009.

[19] C. Brown, H.-W. Loidl, K. Hammond, ParaForming: Forming Parallel
Haskell Programs Using Novel Refactoring Techniques, in: Proceedings of
the 12th International Conference on Trends in Functional Programming,
TFP’11, 2012, pp. 82–97.

[20] K. Hammond, M. Aldinucci, C. Brown, F. Cesarini, M. Danelutto,
H. González-Vélez, P. Kilpatrick, R. Keller, M. Rossbory, G. Shainer, The
ParaPhrase Project: Parallel Patterns for Adaptive Heterogeneous Multi-
core Systems, in: Formal Methods for Components and Objects, Vol. 7542
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013,
pp. 218–236. doi:10.1007/978-3-642-35887-6_12.

39

[21] E. Horowitz, A. Zorat, Divide-and-Conquer for Parallel Processing, IEEE
Transactions on Computers C-32 (6) (1983) 582–585.

[22] V. Janjic, C. Brown, K. MacKenzie, K. Hammond, M. Danelutto, M. Ald-
inucci, J. D. Garcia, RPL: A Domain-Specific Language for Designing and
Implementing Parallel C++ Applications, in: Proc. PDP ’16: Intl. Conf.
on Parallel, Distrib. and Network-Based Proc., 2016, pp. 288–295.

[23] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, P. Trinder, Seq No More:
Better Strategies for Parallel Haskell, in: Proceedings of the Third ACM
Haskell Symposium on Haskell, Haskell ’10, 2010, pp. 91–102.

[24] L. Bergstrom, J. Reppy, Nested Data-parallelism on the Gpu, in: Proceed-
ings of the 17th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’12, 2012, pp. 247–258.

[25] C. Brown, M. Danelutto, K. Hammond, P. Kilpatrick, A. Elliott, Cost-
Directed Refactoring for Parallel Erlang Programs, International Journal
of Parallel Programming (2013) 1–19.

[26] Programatica: Integrating programming, properties and validation.
URL http://programatica.cs.pdx.edu

[27] D. A. Plaisted, Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming (Vol. 1), 1993, Ch. Equational Reasoning and Term Rewriting
Systems, pp. 274–364.

[28] R. Hinze, N. Wu, J. Gibbons, Unifying Structured Recursion Schemes,
SIGPLAN Not. 48 (9) (2013) 209–220.

[29] T. Kutsia, J. Levy, M. Villaret, Anti-unification for unranked terms and
hedges, Journal of Automated Reasoning 52 (2) (2014) 155–190.

[30] H. Gust, K.-U. Kühnberger, U. Schmid, Metaphors and anti-unification, in:
Proc. Twenty-First Workshop on Language Technology: Algebraic Meth-
ods in Language Processing, Verona, Italy, 2003, pp. 111–123.

[31] J. W. Lloyd, An Algorithm of Generalization in Positive Supercompilation,
in: Logic Programming: The 1995 International Symposium, MIT Press,
1995, pp. 465–479.

[32] C. Oancea, C. So, S. M. Watt, Generalisation in Maple 277–328.

[33] C. Brown, S. Thompson, Clone Detection and Elimination for Haskell, in:
Proceedings of the 2010 ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, PEPM ’10, 2010, pp. 111–120.

[34] G. Huet, B. Lang, Proving and Applying Program Transformations Ex-
pressed with Second-order Patterns, Acta Inf. 11 (1) (1978) 31–55.

40

[35] R. Statman, Completeness, invariance and -definability, Journal of Sym-
bolic Logic 47 (1) (1982) 1726.

[36] O. de Moor, G. Sittampalam, Higher Order Matching for Program Trans-
formation, in: A. Middeldorp, T. Sato (Eds.), Functional and Logic Pro-
gramming: 4th Fuji International Symposium, FLOPS’99 Tsukuba, Japan,
November 11-13, 1999 Proceedings, 1999, pp. 209–224.

[37] L. Gesbert, F. Gava, F. Loulergue, F. Dabrowski, Bulk synchronous parallel
{ML} with exceptions, Future Generation Computer Systems 26 (3) (2010)
486 – 490.

[38] F. Gava, F. Loulergue, A static analysis for bulk synchronous parallel {ML}
to avoid parallel nesting, Future Generation Computer Systems 21 (5)
(2005) 665 – 671.

[39] C. Hammacher, K. Streit, S. Hack, A. Zeller, Profiling Java Programs for
Parallelism, in: Proceedings of the 2009 ICSE Workshop on Multicore Soft-
ware Engineering, IWMSE ’09, 2009, pp. 49–55.

[40] R. Ferenc, A. Beszedes, L. Fulop, J. Lele, Design pattern mining enhanced
by machine learning, in: 21st IEEE International Conference on Software
Maintenance (ICSM’05), 2005, pp. 295–304.

[41] J. Ahn, T. Han, An Analytical Method for Parallelization of Recursive
Functions, Parallel Processing Letters 10 (01) (2000) 87–98.

[42] A. Geser, S. Gorlatch, Parallelizing Functional Programs by Generalization,
J. Functional Programming 9 (06) (1999) 649–673.

[43] S. Gorlatch, Extracting and Implementing List Homomorphisms in Parallel
Program Development, Science of Computer Programming 33 (1) (1999) 1
– 27.

[44] M. Dever, G. W. Hamilton, AutoPar: Automatic Parallelization of Func-
tional Programs, in: 2014 Fourth International Valentin Turchin Workshop
on Metacomputation (META 2014), 2014, pp. 11–25.

[45] J. Gibbons, The Third Homomorphism Theorem, Journal of Functional
Programming (JFP) 6 (4) (1996) 657–665.

[46] Z. Hu, H. Iwasaki, M. Takeichi, Deriving Structural Hylomorphisms from
Recursive Definitions, SIGPLAN Not. 31 (6) (1996) 73–82.

[47] J. Gibbons, G. Jones, The Under-appreciated Unfold, SIGPLAN Not.
34 (1) (1998) 273–279.

41

Appendix A. Proof for Soundness of Anti-Unification Algorithm

Theorem 1 (Soundness of Anti-Unification Algorithm). Given the terms t1
and t2, we can find t, σ1, and σ2, such that t1 ∼= t σ1 and t2 ∼= t σ2.

Proof Sketch. Given the terms t, t1, t2, and substitutions, σ1 and σ2. The proof
is by case analysis on t1 and t2.

Case t1 ∼= t2:

By application of eq with t = t2 and σ1 = σ2 = ε, we must show that t1 ∼= t2 ε
and t2 ∼= t2 ε.

By Def. 5 and reflexivity, both t1 ∼= t2 and t2 ∼= t2 hold.

Case t2 = (Var v) ∧ (v 6= p):

By application of var when t = (Var v), σ1 = (v 7→ t1), and σ2 = ε, we must
show that t1 ∼= (Var v) ((v 7→ t1)) and (Var v) ∼= (Var v) ε hold.

By Def. 4 and reflexivity, t1 ∼= t1 holds.

By Def. 5 and reflexivity, (Var v) ∼= (Var v) holds.

Case t1 = (Var vfai
) ∧ t2 = (App (Var u) (Var vpai)) ∧ (u 6= p) ∧ (vfai

≡ vpai):

By application of id where

t = (App (Var u) (Var vpai
))

σ1 = L (v 7→ id), ε M
σ2 = ε

we must show that:

(Var vfai
) ∼= (App (Var u) (Var vpai

)) L (u 7→ id), ε M (1)

(App (Var u) (Var vpai
)) ∼= (App (Var u) (Var vpai

)) ε (2)

For (1):
By Def. 6, (Var vfai

) ∼= (App (Var u) (u 7→ id) (Var v
p
ai) ε).

By Def. 4 and Def. 5, (Var vfai
) ∼= (App (Var id) (Var vpai)).

By Def. 8 and reflexivity, (Var vfai
) ∼= (Var vpai) holds.

For (2):
By Def. 5 and reflexivity, (App (Var u) (Var v

p
ai)) ∼= (App (Var u) (Var v

p
ai))

holds.

42

Case t2 ∈ Rp:

By application of rp where t = (Var α), σ1 = (α 7→ t1), and σ2 = (α 7→ t2), we
must show that both t1 ∼= (Var α) (α 7→ t1) and t2 ∼= (Var α) (α 7→ t2) hold.

By Def. 4 and reflexivity, both t1 ∼= t1 and t2 ∼= t2 hold.

Case t1 = (C t11 . . . t1n) ∧ t2 = (C t21 . . . t2n) ∧
∀i ∈ [1, n], (t1i ∼= ti σ1i) ∧ (t2i ∼= ti σ2i):

By application of const where

t = (C t1 . . . tn)

σ1 = Lσ11, . . . , σ1n M
σ2 = Lσ21, . . . , σ2n M

we must show that:

(C t11 . . . t1n) ∼= (C t1 . . . tn) Lσ1i, . . . , σ1n M
(C t21 . . . t2n) ∼= (C t1 . . . tn) Lσ2i, . . . , σ2n M

By Def. 6, (C t11 . . . t1n) ∼= (C (t1 σ11) . . . (tn σ1n))
and (C t21 . . . t2n) ∼= (C (t1 σ21) . . . (tn σ2n)).
By assumption, substitutivity and reflexivity,
both (C t11 . . . t1n) ∼= (C t11 . . . t1n) and (C t21 . . . t2n) ∼= (C t21 . . . t2n)
hold.

Case t1 = [t11, . . . , t1n] ∧ t2 = [t21, . . . , t2n]∧
∀i ∈ [1, n], t1i ∼= ti σ1i ∧ t2i ∼= ti σ2i:

By application of list where

t = [t1, . . . , tn]

σ1 = Lσ11, . . . , σ1n M
σ2 = Lσ21, . . . , σ2n M

we must show that:

([t11 . . . t1n]) ∼= ([t1 . . . tn]) Lσ1i, . . . , σ1n M
([t21 . . . t2n]) ∼= ([t1 . . . tn]) Lσ2i, . . . , σ2n M

By Def. 6, ([t11 . . . t1n]) ∼= ([(t1 σ11) . . . (tn σ1n)])
and ([t21 . . . t2n]) ∼= ([(t1 σ21) . . . (tn σ2n)]).
By assumption, substitutivity and reflexivity,
both ([t11 . . . t1n]) ∼= ([t11 . . . t1n]) and ([t21 . . . t2n]) ∼= ([t21 . . . t2n])
hold.

43

Otherwise:

By application of otherwise where t = (Var α), σ1 = (α 7→ t1),
and σ2 = (α 7→ t2), we must show that both t1 ∼= (Var α) (α 7→ t1) and
t2 ∼= (Var α) (α 7→ t2) hold.

By Def. 4 and reflexivity, both t1 ∼= t1 and t2 ∼= t2 hold.

44

Adam Barwell is a PhD student at the University of St Andrews working in

the area of static analysis and refactoring. Adam graduated from

University College London in 2013 where he developed an interest in

programming langauge theory, and is now studying under Kevin Hammond and

Chris Brown.

*Biographies (Text)

Chris Brown is a Post-Doctoral Research Fellow at the University of St

Andrews working in the area of Refactoring and Parallelism. Chris has a

Ph.D. from the University of Kent under the supervision of Simon

Thompson, where he worked on the implementation of the HaRe refactoring

tool for Haskell. Chris now works at St Andrews building radically new

refactoring techniques and methodologies to exploit parallel skeleton and

pattern applications in both the functional and imperative domains. Chris

has published at major conferences in the field of functional

programming, refactoring and parallelism.

*Biographies (Text)

Kevin Hammond is a Professor of Computer Science at the University of St

Andrews working in the area of Parallelism. In the past, Kevin has helped

implement Haskell, worked on EU Projects such as ParaPhrase, and is

currently working on the RePhrase project.

*Biographies (Text)

*Biographies (Photograph)
Click here to download high resolution image

*Biographies (Photograph)
Click here to download high resolution image

*Biographies (Photograph)
Click here to download high resolution image

 We present a technique using anti‐unification to discover recursion schemes in
Haskell functions

 We present a new, specialised anti‐unification algorithm.

 We have implemented our approach using the Haskell refactoring tool HaRe

 We have demonstrated our approach on a range of standard examples

 Our technique is in principle completely general, able to discover arbitrary patterns
in code.

