8 research outputs found

    Reconstruction of electric fields and source distributions in EEG brain imaging

    Get PDF
    In this thesis, three different approaches are developed for the estimation of focal brain activity using EEG measurements. The proposed approaches have been tested and found feasible using simulated data. First, we develop a robust solver for the recovery of focal dipole sources. The solver uses a weighted dipole strength penalty term (also called weighted L1,2 norm) as prior information in order to ensure that the sources are sparse and focal, and that both the source orientation and depth bias are reduced. The solver is based on the truncated Newton interior point method combined with a logarithmic barrier method for the approximation of the penalty term. In addition, we use a Bayesian framework to derive the depth weights in the prior that are used to reduce the tendency of the solver to favor superficial sources. In the second approach, vector field tomography (VFT) is used for the estimation of underlying electric fields inside the brain from external EEG measurements. The electric field is reconstructed using a set of line integrals. This is the first time that VFT has been used for the recovery of fields when the dipole source lies inside the domain of reconstruction. The benefit of this approach is that we do not need a mathematical model for the sources. The test cases indicated that the approach can accurately localize the source activity. In the last part of the thesis, we show that, by using the Bayesian approximation error approach (AEA), precise knowledge of the tissue conductivities and head geometry are not always needed. We deliberately use a coarse head model and we take the typical variations in the head geometry and tissue conductivities into account statistically in the inverse model. We demonstrate that the AEA results are comparable to those obtained with an accurate head model.Open Acces

    Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain

    Get PDF
    The inverse problem in Electro- and Magneto-EncephaloGraphy (EEG/MEG) aims at reconstructing the underlying current distribution in the human brain using potential differences and/or magnetic fluxes that are measured non-invasively directly, or at a close distance, from the head surface. The solution requires repeated computation of the forward problem, i.e., the simulation of EEG and MEG fields for a given dipolar source in the brain using a volume-conduction model of the head. The associated differential equations are derived from the Maxwell equations. Not only do various head tissues exhibit different conductivities, some of them are also anisotropic conductors as, e.g., skull and brain white matter. To our knowledge, previous work has not extensively investigated the impact of modeling tissue anisotropy on source reconstruction. Currently, there are no readily available methods that allow direct conductivity measurements. Furthermore, there is still a lack of sufficiently powerful software packages that would yield significant reduction of the computation time involved in such complex models hence satisfying the time-restrictions for the solution of the inverse problem. In this dissertation, techniques of multimodal Magnetic Resonance Imaging (MRI) are presented in order to generate high-resolution realistically shaped anisotropic volume conductor models. One focus is the presentation of an improved segmentation of the skull by means of a bimodal T1/PD-MRI approach. The eigenvectors of the conductivity tensors in anisotropic white matter are determined using whole head Diffusion-Tensor-MRI. The Finite Element (FE) method in combination with a parallel algebraic multigrid solver yields a highly efficient solution of the forward problem. After giving an overview of state-of-the-art inverse methods, new regularization concepts are presented. Next, the sensitivity of inverse methods to tissue anisotropy is tested. The results show that skull anisotropy affects significantly EEG source reconstruction whereas white matter anisotropy affects both EEG and MEG source reconstructions. Therefore, high-resolution FE forward modeling is crucial for an accurate solution of the inverse problem in EEG and MEG.Motivation und Einordnung: Seit nun fast drei Jahrzehnten werden im Bereich der Kognitionswissenschaften und in klinischer Forschung und Routine die Quellen elektrischer Aktivitaet im menschlichen Gehirn anhand ihrer ueber das Elektroenzephalogramm (EEG) an der Kopfoberflaeche gemessenen Potentialverteilung bzw. ihres ueber das Magnetoenzephalogramm (MEG) in einigen Zentimetern Entfernung davon gemessenen magnetischen Flusses rekonstruiert. Im Vergleich zu anderen funktionellen Bildgebungsmethoden wie z.B. die Positronen-Emissions-Tomographie (PET) oder die funktionelle Magnetresonanztomographie (fMRT) hat die EEG/MEG-Quellrekonstruktion den Vorteil einer sehr hohen zeitlichen Aufloesung. Die gemessene Aktivitaet ist das Resultat von Ionenbewegungen in aktivierten kortikalen Regionen des Gehirns, den sog. Primaerstroemen. Schon im Jahr 1949 wurden erstmals die Primaerstroeme ueber Stromdipole mathematisch modelliert. Der Primaerstrom erzeugt R\'uckstr\'ome im leitf\'ahigen Gewebe des Kopfes, die sog. {\em Sekund\'arstr\'ome}. Die Rekonstruktion der Dipolquellen wird das {\em EEG/MEG inverse Problem} genannt. Dessen L\'osung erfordert die wiederholte Berechnung des {\em Vorw\'arts\-problems}, d.h. der Simulation der EEG/MEG-Feldverteilung f\'ur eine gegebene Dipolquelle im Gehirn. Ein erstes Anwendungsgebiet f\/indet sich in der Diagnose und Therapie von pharma-resistenten Epilepsien, von denen ca. 0,25\% der Weltbev\'olkerung betroffen sind und f\'ur die sich in den letzten Jahrzehnten eine systematische chirurgische Behandlung ent\-wickelt hat. Voraussetzung f\'ur einen die restlichen Gehirnregionen schonenden chirurgischen Eingrif\/f ist die Kenntnis der Lage und Ausdehnung der epileptischen Zentren. Bisher wurden diese Charakteristika in den Patienten stark belastenden invasiven Untersuchungen wie zum Beispiel Subdural- oder Tiefen-Elektroden gewonnen. Die bioelektrischen Signale von Epilepsiekranken weisen zwischen den Anfallsereignissen sog. interiktale Spikes auf. Die nicht-invasive Messung des EEG/MEG dieser interiktalen Spikes und die anschlie{\ss}ende Berechnung des epileptischen Zentrums belastet den Patienten nicht. Ein weiteres Anwendungsfeld ist die pr\'aoperative Ermittlung der Lage wichtiger funk\-tio\-nell-zu\-sam\-men\-h\'angender Zentren im Gehirn, z.B.~des prim\'ar-mo\-to\-ri\-schen, des prim\'ar-au\-di\-to\-rischen oder prim\'ar-somatosensorischen Cortex. Bei Operationen in diesen Bereichen (z.B.~Tumoroperationen) k\'onnten L\'ahmungen, H\'or- und Sensibilit\'atsst\'orungen vermieden werden. Dazu werden \'uber akustische oder sensorische Reize charakteristische Signale evoziert und \'uber Summationstechniken sichtbar gemacht. Durch das L\'osen des inversen Problems wird versucht, die zugrunde liegende Quellstruktur zu ermitteln. Neben den aufgef\'uhrten klinischen Anwendungen ergeben sich auch zahlreiche Anwendungsfelder in der Kognitionswissenschaft. Von Interesse sind z.B.~funktionelle Zusammenh\'ange im Gehirn und die Aufdeckung der aktivierten Areale w\'ahrend der Verarbeitung eines Reizes, wie z.B. der Sprachverarbeitung im Gehirn. Die L\'osung des Vorw\'artsproblems impliziert die Mo\-del\-lierung des Kopfes als Volumenleiter. Es ist bekannt, dass in makroskopischer Hinsicht Gewebe wie die Kopfhaut, der Sch\'adel, die Zerebrospinalfl\'ussigkeit (engl.: CSF) und die Hirngewebe graue und wei{\ss}e Substanz (engl.: GM und WM) verschiedene Leitf\'ahigkeiten besitzen. Der menschliche Sch\'adel ist aus drei Schichten aufgebaut, eine relativ gut leitf\'ahige spongi\'ose Schicht wird von zwei stark isolierenden Schichten, den \'au{\ss}eren und inneren Kompakta, eingeschlossen. In radialer Richtung durch den Sch\'adel handelt es sich also um eine Reihenschaltung von hohem, niedrigem und hohem Widerstand, wohingegen in den tangentialen Richtungen die Leiter parallel geschaltet sind. Als Ganzes gesehen besitzt der Sch\'adel demnach eine richtungsabh\'angige oder {\em anisotrope} Leitf\'ahigkeit mit einem gemessenen Verh\'altnis von bis zu 1 zu 10. F\'ur die faserige WM wurde ebenfalls eine Anisotropie mit einem \'ahnlichen Verh\'altnis (senkrecht zu parallel zu den Fasern) nachgewiesen. Leider existiert bis heute keine direkte Methode, die Leitf\'ahigkeit der WM nicht-invasiv in gen\'ugender Aufl\'osung zu ermittelt. Seit einigen Jahren werden aller\-dings Formalismen diskutiert, die den gesuchten Leitf\'ahigkeitstensor in Bezug setzen zum Wasserdiffusionstensor, der in WM nicht-invasiv \'uber die Diffusionstensor-MRT (DT-MRT) gemessen werden kann. Nat\'urlich wird keine fundamentale Beziehung zwischen der freien Beweglichkeit von Ionen und Wasserteilchen angenommen, sondern lediglich, dass die eingeschr\'ankte Mobilit\'at \'uber die Fasergeometrie der WM in Beziehung steht. Heutzutage werden verschiedene Ans\'atze f\'ur die L\'osung des Vor\-w\'arts\-pro\-blems genutzt und mit steigender Genauigkeit der Modellierung des Kopfvolumenleiters erh\'oht sich die Komplexit\'at der numerischen Feldberechnungen. Einfache Modelle, die immer noch am h\'aufigsten Gebrauchten, beschreiben den Kopf als Mehrschalenkugel-Leiter mit \'ublicherweise drei Schichten, die die Kopfhaut, den Sch\'adel und das Gehirn repr\'asentieren. Um besser auf die Geometrie der drei modellierten Oberfl\'achen einzugehen, wurden sog. BE-Modelle (von engl.: Boundary Element) entwickelt, die sich f\'ur isotrop leitf\'ahige Schichten eignen. Um sowohl auf realistische Geometrien als auch auf Anisotropien und Inhomogenit\'aten eingehen zu k\'onnen, wurden Finite-Elemente (FE) Modelle des Kopfes ent\-wi\-ckelt. Zwei wichtige Fragen stellen sich nun: Ist eine exakte Modellierung der vorgestellten Gewebeleitf\'ahigkeits-Anisotropien n\'otig und in welchen F\'allen reichen weniger berechnungsaufwendige Verfahren aus? Wie k\'onnen komplexe FE-Vorw\'artsmodelle hinreichend beschleunigt werden, um den Zeitrestriktionen f\'ur inverse Quellrekonstruktionen in den Anwendungen zu gen\'ugen? Es existieren zahlreiche Arbeiten, die, basierend auf FE-Modellen des Kopfes, gezeigt haben, dass \'Offnungen im Sch\'adel wie z.B. diejenige, durch die der optische Nerv eintritt oder das okzipitale Loch des Hirnstamms, oder Inhomogenit\'aten wie L\'asionen im Gehirn oder die Sutura des Sch\'adels (insbesondere bei Kleinkindern, wo die Sutura noch nicht geschlossen sind) einen nicht vernachl\'assigbaren Einfluss auf das EEG/MEG-Vorw\'arts\-problem haben. Eine erste Studie bzgl. der Sensitivit\'at zweier ausgew\'ahlter EEG-Rekonstruktionsverfahren wies teils gro{\ss}e Fehler im Falle der Nichtbeachtung von Sch\'adel-Anisotropie nach. Insbesondere f\'ur diverse klinische Anwendungen wird der sog. {\em single dipole fit} im kontinuierlichen Parameterraum verwendet. Aufgrund des hohen Berechnungsaufwands wurden solche Verfahren bisher noch nicht auf ihre Sensitivit\'at auf Sch\'adel\-anisotropie getestet. Obwohl bereits eine Studie einen nicht-vernachl\'assigbaren Einfluss auf die EEG/MEG-Vorw\'artssimulation zeigte, gibt es noch keinerlei Ergebnis zur Aus\-wir\-kung der WM-Anisotropie auf inverse Rekonstruktionsverfahren. Die L\'osung des inversen Problems ist im allgemeinen nicht eindeutig. Viele Dipol-Quell\-konfi\-gura\-tionen k\'onnen ein und dieselbe EEG und MEG Feldverteilung erzeugen. Zus\'atz\-liche Annahmen \'uber die Quellen sind dementsprechend unerl\'asslich. Bei den sog. {\em fokalen Rekonstruktionsmethoden} wird die Annahme gemacht, dass einige wenige Dipole den gemessenen Daten zugrunde liegen. Diese Dipole (Anzahl, Ort, Richtung, St\'arke) sollen innerhalb des anatomisch und physiologisch sinnvollen Suchgebiets so ermittelt werden, dass die Messwerte m\'oglichst genau erkl\'art werden, gleichzeitig aber das Rauschen keinen zu starken Einfluss auf die L\'osung nimmt und die Algorithmen stabil in Bezug auf eine \'Ubersch\'atzung der Anzahl aktiver Quellen bleiben. Bei diesen, wie auch bei den sog. {\em Stromdichterekonstruktionsverfahren}, wird sich das Konzept der Regularisierung als eine wichtige Methode herausstellen. Wissenschaftliche Ergebnisse der Dissertation: Die Ergebnisse der vorgelegten Dissertation k\'onnen in vier Teilbereiche aufgeteilt werden. Im ersten Teilbereich wurden Methoden zur Registrierung und Segmentierung multimodaler MR-Bilder vorgestellt mit dem Ziel, ein {\bf realistisches anisotropes Multigewebe Kopfmodell} zu generieren. In der Literatur wurde von gr\'o{\ss}eren EEG- und MEG-Quell\-rekonstruktions\-fehlern aufgrund mangelhafter Modellierung insbesondere der inneren Sch\'a\-del\-kante berichtet. Ein erster Fokus dieser Arbeit lag dementsprechend auf einer verbesserten Segmentierung dieser Kante, die \'uber ein auf dem T1-gewichteten MRT (T1-MRT) registrierten Protonendichte-ge\-wich\-teten MRT (PD-MRT) gewonnen wurde. Die innere Sch\'a\-del\-kante zeichnet sich im PD-MRT im Gegensatz zum T1-MRT durch einen hohen Kontrast zwischen CSF (protonenreich) und Knochen (protonenarm) aus. Das T1-MRT wurde hingegen f\'ur die Segmentierung der Kopfhaut, der GM und der WM verwendet. Die Standardtechnik im Bereich der EEG/MEG-Quellrekonstruktion nutzt lediglich ein T1-MRT und gewinnt die gesuchte innere Sch\'adelkante \'uber ein Gl\'atten und Aufblasen der segmentierten Hirnoberfl\'ache. Im Vergleich beider Methoden konnte eine Verbesserung der Segmentierung von bis zu 8,5mm in Gebieten erzielt werden, in denen die Standardmethode die Dicke der CSF-Schicht untersch\'atzte. \'Uber die vorgestellten Methoden, insbesondere der Segmentierung unter Ber\'ucksichtigung der MR-Inhomogenit\'aten, konnte zudem eine sehr exakte Modellierung der GM erzielt werden, welche dann als anatomische und auch physiologische Nebenbedingung in die Quellrekonstruktion eingebettet werden kann. Zur realistischen Modellierung der An\-iso\-tropie der Sch\'adelschicht wurde ein deformierbares Modell eingesetzt, welches eine gegl\'attete Spongiosaoberfl\'ache darstellt und somit ein Abgreifen der Leitf\'ahigkeitstensor-Eigenvektoren in radialer Knochenrichtung erm\'oglicht. Die Eigenvektoren der WM-Tensoren wurden \'uber Ganzkopf-DT-MRT gemessen. Sch\'adel- und WM-Tensor-Eigen\-werte wurden entweder unter Ausnutzung publizierter Werte simuliert oder gem\'a{\ss} einem differentialen EMA (von engl.: Effective Medium Approach) ermittelt. Der zweite Teilbereich betraf die {\bf schnelle hochaufgel\'oste FE-Modellierung} des EEG/ MEG-Vorw\'artsproblems. Zun\'achst wurde ein \'Uberblick \'uber die Theorie gegeben und die praktische Realisierung der sp\'ater eingesetzten hochaufgel\'osten anisotropen FE-Volumen\-leiter\-modelle vorgestellt. In numerischen Genauigkeitsstudien konnte nachgewiesen werden, dass Hexaeder-FE-Netze, welche ein Verschieben der St\'utzpunkte zur Gl\'attung an Gewebekanten nutzen, vorteilhaft sind zu herk\'ommlichen Hexaeder-Netzen. Dazu wurden die Reihenentwicklungsformeln f\'ur das Mehrschalenkugel-Modell eingesetzt. Ein wei\-terer Fokus dieser Arbeit lag auf dem Einsatz schneller FE-L\'osungsmethoden, welche die praktische Anwendbarkeit von hochaufgel\'osten anisotropen FE-Kopfmodellen in den verschiedenen Anwendungsgebieten erm\'oglichen sollte. In einem Zeitvergleich zwischen dem neu in die Software integrierten parallelen (12 Prozessoren) algebraischen Mehrgitter- und dem Standard-Einprozessor-Jacobi-Vor\-kon\-di\-tio\-nierer f\'ur das Verfahren der konjugierten Gradienten konnte f\'ur hochaufgel\'oste anisotrope FE-Kopfmodelle ein Beschleunigungsfaktor von mehr als 100 erzielt werden. Im dritten Teilbereich, den {\bf Methoden zum inversen Problem}, wurden neben einem \'Uber\-blick \'uber fokale Rekonstruktions\-verfahren und Stromdichte\-rekon\-struk\-tions\-verfahren algorithmische Neuentwicklungen pr\'asentiert. Es wurde zun\'achst die Methode des {\em single dipole fit} in die FE-Modellierung eingef\'uhrt. F\'ur multiple dipolare Quellen wurde ein {\em Si\-mu\-lated Annealing} Algorithmus in Kombination mit einer abgeschnittenen Singul\'arwertzerlegung im diskreten Parameterraum entwickelt. Im Vergleich zu Standardmethoden zeigte der Algorithmus in verschiedenen Si\-mu\-lations\-studien eine ver\-bes\-serte F\'ahigkeit der Unterscheidung zwischen realen und sog. {\em ghost} Quellen. Des Weiteren wurde eine k\'urzlich in der Literatur vorgestellte raum-zeitliche Regularisierungsme\-thode auf die Stromdichterekonstruktion und, als zweite Anwendung, auf die dynamische Impedanztomographie angewandt. Der raum-zeitliche Ansatz konnte dabei eine stabilisierende Wirkung auf die Rekonstruktionsergebnisse erzielen und zeigte im Hinblick auf seine Genauigkeit und den Speicher- und Rechenzeitbedarf Vorteile gegen\'uber einem sog. {\em Kal\-man-Gl\'atter}. Im letzten Teilbereich der Dissertation wurden Untersuchungen zur {\bf An\-iso\-tro\-pie-Sensi\-tivi\-t\'at} durchgef\'uhrt. Der erste Teil bezog sich dabei auf das Vorw\'arts\-problem, wo die Resultate im Einklang mit der verf\'ugbaren Literatur waren. Es kann festgehalten werden, dass Sch\'adelanisotropie einen nicht-vernachl\'assigbaren Einfluss auf die EEG-Simulation hatte, wohingegen das MEG unbeeinflusst blieb. Je mehr eine Quelle von WM umgeben war, desto gr\'o{\ss}er war der Einfluss der WM-Anisotropie auf sowohl EEG als auch MEG. F\'ur das MEG wirkte sich WM-Anisotropie insbesondere auf Quellen mit starken radialen Anteilen aus. Lokale Leitf\'ahigkeits\'anderungen im Bereich der Quelle sollten sowohl im Hinblick auf das EEG als auch auf das MEG modelliert werden. Im zweiten Teil wurden die Einfl\'usse auf die inverse Quellrekonstruktion untersucht. Mit 18mm maximalem Fehler des EEG basierten {\em single dipole fit} war die Lokalisation einer haupts\'achlich tangential orientierten oberfl\'achennahen Quelle besonders sensitiv gegen\'uber einer 1 zu 10 Sch\'adelanisotropie. Da die tangentialen Quellen im temporalen Bereich (Sch\'adel re\-la\-tiv d\'unn) zu tief und im parietalen und okzipitalen Bereich (Sch\'adel relativ dick) zu oberfl\'achennah lokalisiert wurden, scheint eine Approximation der Sch\'adelanisotropie in BE-Modellen \'uber eine Anpassung des skalaren Sch\'adelleitf\'ahigkeitswertes nicht m\'oglich zu sein. Obwohl bei Vernachl\'assigung der WM-Anisotropie der maximale EEG-Lokalisierungsfehler mit 6,2mm f\'ur eine tiefe Quelle wesentlich geringer ausfiel, kann aufgrund eines maximalen Orientierungsfehlers von 24^{\circ} und einer mehr als zweifach untersch\'atzten Quellst\'arke eine Missinterpretation des Ergebnisses nicht ausgeschlossen werden. F\'ur die Rekonstruktion der vier tangentialen oberfl\'achennahen Dipole, welche als Aktivit\'atszentren der sog. {\em Early Left Anterior Negativity} (ELAN) Komponente bei der Syntaxanalyse von Sprache betrachtet werden, stellte sich WM und Sch\'adel\-anisotropie als vernachl\'assigbar im Hinblick auf eine MEG-Rekonstruk\-tion heraus. Im Gegensatz dazu wurde das EEG-Rekonstruktionsergebnis f\'ur alle getesteten inversen Verfahren stark verf\'alscht. Anisotropie verschob das Aktivit\'ats\-zentrum von L1L_1 und L2L_2 Norm Stromdichterekonstruktionsverfahren entlang der Sylvischen Furche in anteriore Richtung

    Probabilistic models for structured sparsity

    Get PDF

    Characterizing Atrial Fibrillation Substrate by Electrogram and Restitution Analysis

    Get PDF
    Vorhofflimmern ist die häufigste supraventrikuläre Arrhythmie in der klinischen Praxis. Es gibt Hinweise darauf, dass pathologisches Vorhofsubstrat (Fibrose) eine zentrale mechanistische Rolle bei der Aufrechterhaltung von Vorhofflimmern spielt. Die Behandlung von Vorhofflimmern erfolgt durch Ablation des fibrotischen Substrats. Der Nachweis eines solchen Substrats ist jedoch eine ungelöste Herausforderung, was durch die mangelnden positiven klinischen Ablationsergebnisse ersichtlich wird. Daher ist das Hauptthema dieser Arbeit die Charakterisierung des atrialen Substrats. Die Bestimmung von Signalmerkmalen an Stellen mit fibrotischem Substrat erleichtert die Erkennung und anschließende Ablation solcher Areale in Zukunft. Darüber hinaus kann das Verständnis der Art und Weise, wie diese Areale das Vorhofflimmern aufrechterhalten, die positiven Ergebnisse von Ablationseingriffen verbessern. Schließlich kann Restitutionsinformation ein weiteres Instrument zur Substratcharakterisierung sein, das bei der Unterscheidung zwischen pathologischen und nicht-pathologischen Arealen helfen und somit das Ablationsergebnis weiter verbessert. In dieser Arbeit werden zwei Ansätze zur Substratcharakterisierung vorgestellt: Zunächst wurde eine Charakterisierung des Substrats mit Hilfe des intraatrialen Elektrogramms vorgenommen. Dazu wurde eine Auswahl spezifischer Merkmale des Elektrogramms an Positionen evaluiert, die eine Terminierung von Vorhofflimmern nach Ablation zur Folge hatten. Die Studie beinhaltete 21 Patienten, bei denen eine Ablation nach Pulmonalvenenisolation das klinisch persistierende Vorhofflimmern beendete. Der klinisch vorgeschlagene Grenzwert der Spannungsamplitude von <0:5 mV wurde genutzt, um die Positionen der Ablation zu definieren. Die Bereiche, in denen das Vorhofflimmern erfolgreich terminiert wurde, wiesen ausgeprägte Elektrogramm-Muster auf. Diese waren gekennzeichnet durch kurze lokale Zykluslängen, die fraktionierte Potentiale und Niederspannungspotentiale enthielten. Gleichzeitig zeigten sie eine lokale Konsistenz und deckten einen Großteil der lokalen Vorhofflimmer-Zykluslänge ab. Die meisten dieser Bereiche wiesen auch im Sinusrhythmus pathologisch verzögerte atriale Spätpotentiale und fraktionierte Elektrogramme auf. Im zweiten Teil der Arbeit wurden Restitutionsdaten der lokalen Amplitude und der lokalen Leitungsgeschwindigkeit (CV) erfasst und genutzt, um daraus Informationen über das zugrunde liegende Substrat abzuleiten. Die Daten zur Restitution wurden von 22 Patienten mit Vorhofflimmern aus zwei Kliniken unter Verwendung eines S1S2-Protokolls mit Stimulationsintervallen von 180 ms bis 500 ms gewonnen. Um Restitutionsdaten der Patientengruppe zu erhalten, musste ein automatisierter Algorithmus entwickelt werden, der in der Lage ist, große Mengen an Stimulationsprotokolldaten zu lesen, zu segmentieren und auszuwerten. Dieser Algorithmus wurde in der vorliegenden Arbeit entwickelt und CVAR-Seg genannt. Der CVAR-Seg Algorithmus bietet eine rauschresistente Signalsegmentierung, die mit extremen Rauschpegeln getestet wurde, die weit über dem erwarteten klinischen Pegel lagen. CVAR-Seg wurde unter einer Open-Source-Lizenz für die Allgemeinheit bereitgestellt. Es ermöglicht aufgrund seines modularen Aufbaus den einfachen Austausch einzelner Verfahrensschritte durch alternative Methoden entsprechend den Bedürfnissen des Anwenders. Darüber hinaus wurde im Rahmen dieser Studie eine neuartige Methode, die sogenannte inverse Doppelellipsenmethode, zur Bestimmung der lokalen CV etabliert. Diese Methode schätzt die CV, die Faserorientierung und den Anisotropiefaktor bei beliebiger Elektrodenanordnung. In Simulationen reproduzierte die Doppelellipsenmethode die vorherrschende CV, Faserorientierung und Anisotropie genauer und robuster als die aktuell gängigste Methode. Zusätzlich erwies sich diese Methode als echtzeittauglich und könnte daher in klinischen Elektrophysiologiesystemen eingesetzt werden. Die Doppelellipsenmethode würde durch die lokalisierte Vermessung des Vorhofsubstrats ermöglichen während eines Kartierungsverfahrens gleichzeitig eine CV-Karte, eine Anisotropieverhältniskarte und eine Faserkarte zu erstellen. Die Restitutionsinformationen der Patientenkohorte wurden mit der CVARSeg-Pipeline und der inversen Doppelellipsenmethode ausgewertet, um Amplituden- und CV-Restitutionskurven zu erhalten. Zur Anpassung der Restitutionskurven wurde eine monoexponentielle Funktion verwendet. Die Parameter der angepassten Funktion, die die Restitutionskurven abbilden, wurden verwendet, um Unterschiede in den Restitutionseigenschaften zwischen pathologischem und nicht-pathologischem Substrat zu erkennen. Das Ergebnis zeigte, dass klinisch definierte pathologische Bereiche durch eine reduzierte Amplitudenasymptote und einen steilen Kurvenabfall bei erhöhter Stimulationsrate gekennzeichnet waren. CV-Kurven zeigten eine reduzierte Asymptote und eine große Variation im Parameter der den Kurvenabfall beschreibt. Darüber hinaus wurden die Restitutionsunterschiede innerhalb des Vorhofs an der posterioren und anterioren Wand verglichen, da die Literatur keine eindeutigen Ergebnisse lieferte. In dieser Arbeit wurde nachgewiesen, dass die posteriore Vorhofwand Amplituden- und CV-Restitutionskurven mit höherer Asymptote und moderaterer Krümmung verglichen mit der anterioren Vorhofwand aufweist. Um über den empirisch beschriebenen manuellen Schwellenwert hinauszugehen, wurde der Parameterraum, der von den Anpassungsparametern der Amplituden- und CV-Restitutionskurven aufgespannt wird, nach natürlich vorkommenden Clustern durchsucht. Obgleich Cluster vorhanden waren, deutete ihre unzureichende Trennung auf einen kontinuierlichen, sich mit dem Schweregrad der Substratpathologie verändernden Verlauf der Amplituden- und CV-Kurven hin. Schließlich wurde eine einfachere und schnellere Methode zur Erfassung von Restitutionsdaten vorgestellt, die einen vergleichbaren Informationsgehalt auf der Grundlage der maximalen Steigung anstelle einer vollständigen Restitutionskurve liefert. In dieser Arbeit werden zwei neue Methoden vorgestellt, der CVAR-Seg-Algorithmus und die inverse Doppelellipsenmethode, die eine Auswertung von S1S2 Stimulationsprotokollen und die Bestimmung der lokalen Leitungsgeschwindigkeit beschleunigen und verbessern. Darüber hinaus werden in dieser Arbeit Merkmale von pathologischem Gewebe definiert, die zur Identifizierung von Arrhythmiequellen beitragen. Somit trägt diese Arbeit dazu bei, die Therapie von Vorhofflimmern in Zukunft zu verbessern

    Adaptive sparse representations and their applications

    Get PDF
    The sparsity of signals and images in a certain transform domain or dictionary has been exploited in many applications in signal processing, image processing, and medical imaging. Analytical sparsifying transforms such as Wavelets and DCT have been widely used in compression standards. Recently, the data-driven learning of synthesis sparsifying dictionaries has become popular especially in applications such as denoising, inpainting, and compressed sensing. While there has been extensive research on learning synthesis dictionaries and some recent work on learning analysis dictionaries, the idea of learning sparsifying transforms has received no attention. In the first part of this thesis, we study the sparsifying transform model and its relationship to prior linear sparse models. Then, we propose novel problem formulations for learning square sparsifying transforms from data. The proposed algorithms for transform learning alternate between a sparse coding step and a transform update step, and are highly efficient. Specifically, as opposed to sparse coding in the synthesis or noisy analysis models which is NP-hard, the sparse coding step in transform learning can be performed exactly and cheaply by zeroing out all but a certain number of nonzero transform coefficients of largest magnitude. The transform update step is performed using iterative conjugate gradients. The proposed algorithms give rise to well-conditioned square sparsifying transforms in practice. We show the superiority of our approach over analytical sparsifying transforms such as the DCT for signal and image representation. We also show promising performance in signal denoising using the learned sparsifying transforms. The proposed approach is much faster than previous approaches involving learned synthesis, or analysis dictionaries. Next, we explore a specific structure for learned sparsifying transforms, that enables efficient implementations. Following up on the idea of learning square sparsifying transforms, we propose novel problem formulations for learning doubly sparse transforms for signals or image patches. These transforms are a product of a fixed, fast analytic transform such as the DCT, and an adaptive matrix constrained to be sparse. Such transforms can be learned, stored, and implemented efficiently. We show the superior promise of our learned doubly sparse transforms as compared to analytical sparsifying transforms such as the DCT or Wavelets for image representation. Adapted doubly sparse transforms also generalize better than the ‘unstructured’ (or non-sparse) transform. We show promising performance and speedups in image denoising using the learned doubly sparse transforms compared to approaches involving learned synthesis dictionaries such as the K-SVD algorithm. In the third part of this thesis, we further develop the alternating algorithms for learning unstructured (non-sparse) well-conditioned, or orthonormal square sparsifying transforms. While, in the first part of the thesis, we provided an iterative method involving conjugate gradients for the transform update step, in this part, we instead derive efficient and analytical closed-form solutions for transform update. Importantly, we establish that the proposed algorithms are globally convergent to the set of local minimizers of the non-convex transform learning problems. In practice, our algorithms are shown to be insensitive to initialization. In the next part of the thesis, we focus on compressed sensing (CS), which exploits the sparsity of images or image patches in a transform domain or synthesis dictionary to reconstruct images from highly undersampled or compressive measurements. Specifically, we focus on the subject of blind compressed sensing, where the underlying sparsifying transform is unknown a priori, and propose a framework to simultaneously reconstruct the underlying image(s)/volume(s) as well as the square sparsifying transform from highly undersampled measurements. The proposed block coordinate descent type algorithms involve highly efficient closed-form optimal updates. Importantly, we prove that although the proposed blind compressed sensing formulations are highly nonconvex, our algorithms converge to the set of critical points of the objectives defining the formulations. We illustrate the usefulness of the proposed framework for magnetic resonance image (MRI) reconstruction from highly undersampled k-space measurements. As compared to previous state-of-the-art methods involving the synthesis model, our approach is 10x faster for reconstructing 2D MR images, while also providing promising reconstruction quality. The proposed transform-based blind compressed sensing has the potential to revolutionize medical imaging technologies by highly accelerating both the imaging and image reconstruction processes. In the fifth part of this thesis, we study the design of sampling schemes for compressed sensing MRI. The (pseudo) random sampling schemes used most often for CS may have good theoretical asymptotic properties; however, with limited data they may be far from optimal. Therefore, we propose a novel framework for improved adaptive sampling schemes for highly undersampled CS MRI. While the proposed framework is general, we apply it with some recent MRI reconstruction algorithms. Numerical experiments demonstrate that our adaptive sampling scheme can provide significant improvements in image reconstruction quality for MRI compared to non-adapted methods. In the next part of the thesis, we develop a methodology for online learning of square sparsifying transforms. Such online learning is particularly useful when dealing with big data, and for signal processing applications such as real-time sparse representation and denoising. The proposed transform learning algorithms are shown to have a much lower computational cost than online synthesis dictionary learning. In practice, the sequential learning of a sparsifying transform typically converges much faster than batch mode transform learning. Preliminary experiments show the usefulness of the proposed schemes for sparse representation (compression), and denoising. We also prove that although the associated optimization problems are non-convex, our online transform learning algorithms are guaranteed to converge to the set of stationary points of the learning problem. The guarantee relies on few (easy to verify) assumptions. In the seventh part of this thesis, we propose a novel convex formulation for doubly sparse square transform learning. The proposed formulation has similarities to traditional least squares optimization with 1\ell_1 regularization. Our convex learning algorithm is a modification of FISTA, and is guaranteed to converge to a global optimum, and moreover converges quickly. We also study two non-convex variants of the proposed convex formulation, and provide local convergence proof for the algorithm for one of them. These proposed non-convex variants use the 0\ell_0 ``norm" for measuring the sparsity of the transform and/or sparse code. We show the superior promise of our learned transforms here as compared to analytical sparsifying transforms such as the DCT for image representation. In these examples, the performance is sometimes comparable to the previously proposed non-convex (non guaranteed) doubly sparse transform learning schemes. While we studied the learning of square transforms in the initial parts of the thesis, in the eighth part of the thesis, we instead briefly study the learning of tall or overcomplete sparsifying transforms from data. We propose various penalties that control the sparsifying ability, condition number, and incoherence of the learned transforms. Our alternating algorithm for overcomplete transform learning converges empirically, and significantly improves the quality of the learned transform over the iterations. We present examples demonstrating the promising performance of adaptive overcomplete transforms over adaptive overcomplete synthesis dictionaries learned using the popular K-SVD algorithm, in the application of image denoising. The overcomplete transforms also denoise better than adaptive square transforms. In the final part of the thesis, we explore the idea of learning efficient structured overcomplete sparsifying transforms. Since natural images typically contain diverse textures that cannot be sparsified well by a single transform, we therefore propose a union of sparsifying transforms model. Sparse coding in this model reduces to a form of transform-domain clustering. This makes the model appealing for classification tasks. The proposed model is also equivalent to a structured overcomplete sparsifying transform model with block cosparsity, dubbed OCTOBOS. The alternating algorithm introduced for learning such transforms involves simple closed-form solutions. A theoretical analysis provides a convergence guarantee for this algorithm. It is shown to be globally convergent to the set of partial minimizers of the non-convex OCTOBOS (or, union of transforms) learning problem. We also show that under certain conditions, the algorithm converges to the set of stationary points of the overall objective. When applied to images, the algorithm learns a collection of well-conditioned square transforms, and a good clustering of patches or textures. The resulting sparse representations for the images are much better than those obtained with a single learned transform, or with analytical transforms. We show the promising performance of the proposed approach in image denoising, which compares quite favorably with approaches involving a single learned square transform or an overcomplete synthesis dictionary, or Gaussian mixture models. The proposed denoising method is also faster than the synthesis dictionary based approach

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
    corecore