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Abstract

In this thesis, three different approaches are developed for the estimation of focal brain activity

using EEG measurements. The proposed approaches have been tested and found feasible using

simulated data.

First, we develop a robust solver for the recovery of focal dipole sources. The solver uses

a weighted dipole strength penalty term (also called weighted L1,2 norm) as prior information

in order to ensure that the sources are sparse and focal, and that both the source orientation

and depth bias are reduced. The solver is based on the truncated Newton interior point method

combined with a logarithmic barrier method for the approximation of the penalty term. In

addition, we use a Bayesian framework to derive the depth weights in the prior that are used to

reduce the tendency of the solver to favor superficial sources.

In the second approach, vector field tomography (VFT) is used for the estimation of un-

derlying electric fields inside the brain from external EEG measurements. The electric field is

reconstructed using a set of line integrals. This is the first time that VFT has been used for the

recovery of fields when the dipole source lies inside the domain of reconstruction. The benefit

of this approach is that we do not need a mathematical model for the sources. The test cases

indicated that the approach can accurately localize the source activity.

In the last part of the thesis, we show that, by using the Bayesian approximation error

approach (AEA), precise knowledge of the tissue conductivities and head geometry are not

always needed. We deliberately use a coarse head model and we take the typical variations

in the head geometry and tissue conductivities into account statistically in the inverse model.

We demonstrate that the AEA results are comparable to those obtained with an accurate head

model.
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Basic Notations

Γ, γ covariance matrix and variance

δ(.) Dirac delta function

ε approximation errors

N (, ) Gaussian probability density function

ξ additive measurement noise

σ electric conductivity

π(.) probability density

∇× curl operator

∇· divergence operator

AT transpose of a matrix A

Ω ⊂ R
k domain of interest (k=2 in 2D and k=3 in 3D)

∂Ω boundary of the domain

N number of nodes of the discretized domain Ω

n̂ unit normal vector

x ∈ Ω position vector

xi ∈ Ω position vector at node i of a discrete domain

u(x) : Ω→ R potential function inside a domain

u = (u1, . . . , uN )
T ∈ R

N potential distribution

v = (v1, . . . , vm)
T ∈ R

m potential measurements on the m electrodes

d(x) : Ω→ R
k dipole source

di ∈ R
k dipole moment at node i of the discrete domain

n number of dipole source location in a discretized domain

d = (d1, . . . , dkn)
T ∈ R

kn dipole distribution

d̂ estimated dipole distribution

‖d‖2 =
∑kn

i=1 d
2
i L2 norm of the dipole distribution

‖d‖1,2 =
∑n

i=1 ‖di‖2 L1,2 norm or dipole strength norm

‖d‖1 =
∑kn

i=1 |di| L1 norm of the dipole distribution

K ∈ R
m×kn lead field matrix

w depth weighting factors

e(x) : Ω→ R
k electric field

I‖ longitudinal line integral

I⊥ transversal line integral

j(x) current density

S‖ longitudinal ray transform matrix

S⊥ transverse ray transform matrix
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Chapter 1

Introduction

The development of intelligent systems for the analysis of bio-electric brain signals constitutes a

springboard for the better understanding of brain structure, function and connectivity between

different tissues. Therefore, these systems are crucial for both diagnosis and advanced surgical

planning in case of brain dysfunction, and for the monitoring of cognitive processes.

The study of the structure and functional states of the human brain, mathematical mod-

elling of nerve electrical behavior and experimental set-ups that resemble real conditions are

very important for this development. For the study of the brain, specialized apparatus is re-

quired. The modalities on which brain studies rely are either signal processing-based, e.g. electro-

encephalography (EEG) and magneto-encephalography (MEG) [122, 13], or tomographic imaging-

based, e.g. magnetic resonance imaging (MRI), positron emission tomography (PET), computer

tomography (CT) [81, 147] and, more recently, functional near infra red (fNIR) spectroscopy

[51]. For cognitive studies and temporal tracking of brain activity, mainly EEG, MEG and

functional MRI have been used. Of these three modalities, the EEG devices have the advantage

that real time recordings can be acquired and they do not require particularly bulky equipment,

as MEG and MRI do. Moreover EEG devices are relatively inexpensive in comparison with the

other modalities. For these reasons, in this thesis we focused on techniques for the analysis of

EEG brain signals.

The activity measured with EEG electrodes is mainly the result of secondary ohmic current

propagation within the tissues induced by primary intracellular currents. The computation

of the scalp potentials when the brain activity generators are known, is referred to as the

EEG forward problem. The inverse problem, EEG brain imaging, is based on the idea that

by measuring the potentials on the head surface, the underlying brain electric activity can be

inferred, and thus, the brain areas that are activated due to a stimulation or a pathological

condition can be localized. For instance, an individual under examination may receive external

sensory stimulation, execute a motor task or have a cognitive experience which results in the

propagation of electric fields that can be observed with EEG. Consequently, the EEG inverse

problem is referred to as the estimation of the location and properties of the underlying electric

signal generators using the recorded data.
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The standard methodologies for solving the EEG inverse problem rely on accurate and precise

knowledge of the geometric and electrical properties of the head [55, 179]. In particular, for the

brain activity an appropriate source model for the representation of the intracranial activity

is required in addition to a computational model, the forward model, which describes how the

electric current flow propagates in the different tissues and appears on the surface of the scalp.

Moreover, a prior assumption on, for example, the types of sources or the extent of the activity

is usually required [102, 36].

In this thesis, we consider only focal brain activity that arises, for examples, in cases related

to an epileptic event or evoked potential responses to an external stimulus. For this purpose,

a non linear convex optimization algorithm is proposed. In the algorithm, a dipole strength

penalty term, also called a L1,2 norm, is utilized in order to ensure sparsity of the estimated

focal sources. The suggested optimization approach was proposed in [69] for the L1 norm

problem and in this thesis it has been further developed for L1,2 norms and adapted for the

sparse source reconstruction problem.

The accurate description of the electric flow propagation inside the brain is a challenging

task because the head consists of several different types of tissue with different electric properties

and complex intertwining shapes that differ from person to person. The previous methods use

either crude models of the head which result in high estimation errors [143, 184] or expensive and

time consuming methods, such as structural MRI (Diffusion tensor imaging/fMRI), to resolve

the exact geometry and conductivity distributions of a specific subject’s head which result in

smaller estimation errors.

In this thesis, we present two new alternative approaches. The first approach lies in the

application domain of vector field tomography (VFT) [155] and concerns the reconstruction of

the electric fields produced by the electro-chemical activity of the neurons. The advantage of

this approach is that a mathematical model for the sources is not required. The reconstructed

electric field gives information related to the directions of the electric currents and the region of

the brain activity.

In the second approach, we show that the conductivity and geometry modelling errors can

be compensated by considering the Bayesian approximation error approach (AEA). The idea of

AEA is to use an approximate computational model for the head and to estimate the statistics

of the errors between the approximate and accurate head models. Finally, the error statistics are

taken into account in the computation of the inverse solution. Thus, source localization errors

can be alleviated when a standard head model with a probabilistic model for the uncertainties

of the head features is employed. In other words, this means that with the AEA we can use

the same generic head model for every patient in EEG source imaging by taking the individual

variations into account with the help of approximation error statistics.
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1.1 Outline

Chapter 2 describes the basics of the neural activity, and the EEG forward model and gives

a review of the most common EEG inverse methods both from deterministic and probabilistic

point of view. The EEG inverse problem is an ill posed problem and prior information needs

to be included. Hence, the last section of this chapter is devoted to a qualitative explanation of

the effects of the regularization used in the EEG inverse solution and the need to use weights in

order to improve the reconstruction result. Specifically, when a prior without weighting factors is

employed, the maximum values of the estimated brain activity are close to the cortex even when

the actual activity is deeper in the brain. In EEG imaging, this intrinsic problem is referred to

as depth bias [1, 175, 31].

In chapter 3, we describe the solver for the estimation of sparse/focal sources. The solver uses

the dipole strength penalty (so called L1,2 norm) which ensures that the solution is sparse and

orientation unbiased. The problem is non linear and the solver is based on the truncated Newton

interior point method (TNIPM) combined with a logarithmic barrier for the approximation of

the penalty term. We estimate a robust stopping criterion for the algorithm and we derive an

upper bound for the regularization parameter of the penalty term. All the theoretical and com-

putational aspects of the methods are described analytically. Moreover, to make sure that the

sources are not misplaced close to the surface, we present, in section 3.3, a probabilistic method

for the selection of appropriate weights for the prior instead of using ad hoc selection methods.

The accuracy of the solution is validated by performing reconstructions of deep and superficial

sources and the solutions are also compared with the results obtained with the commonly used

weighted L2 and L1 norms.

In chapter 4, we propose the recovery of the propagated electric fields using vector field

tomography (VFT). The electric field is reconstructed using a set of longitudinal and traverse

line integrals. The examined test cases include the recovery of harmonic fields, irrotational fields

and electric fields caused by dipole sources inside a bounded domain using noisy measurements.

The numerical implementation of the approach is studied and different regularization parameters

are used depending on the properties of the field and the boundary conditions. In this chapter,

we reconstruct electric fields generated by internal dipole sources and we show that the location

of the activity can be found using VFT methods. These test cases correspond to EEG brain

imaging

In chapter 5, we evaluate the feasibility of AEA to compensate for the errors introduced by

the use of an approximated head model in EEG source imaging. We perform two sets of tests. In

the first set of simulations we assess how the method can compensate source localization errors

due to an approximated head geometry. In the second set, we consider additionally uncertainties

and errors related to conductivity modelling and measurements. In all cases, we study recon-

structions of sparse sources that arise for example in focal epilepsy. The results indicate that a

coarse model accompanied with the approximation error statistics can give comparable results

to those obtained using the accurate model.
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Chapter 6 includes suggestions for the future. The chapter is divided into two sections.

The first section concerns the future aspects of VFT and the second section, improvements in

focal source estimation. Finally, in the same chapter we present a brief review of the thesis

contributions.

1.2 Aims

The main objective of this thesis is twofold: first, to develop a robust solver for the EEG focal

source imaging, and second, to introduce two alternative approaches for solving the EEG imaging

problem. With the first, we aim to improve the performance of the existing dipole source solvers.

With the second, our aim is to reformulate the EEG inverse problem in such way that we can

exploit well-established techniques from other areas of inverse problems. The aims of this thesis

as follows.

In the first part of the thesis,

• to develop a robust solver that utilizes the weighted L1,2 norm for the recovery of focal

dipole sources. To the best of our knowledge, the proposed solver has not been previously

used for the L1,2 norm based regularizations.

• to present a probabilistic way for the selection of appropriate weights for the regularization

term in order to reduce the tendency of the solver to favor superficial sources, There has

not been previously a rigorous presentation how to derive these weights; previously, the

weights have mainly been considered as ad-hoc choices,

• to compare the dipole source solutions obtained using different prior models.

In the second part of the thesis, our aim was to utilize vector field tomography (VFT) in

EEG brain imaging and specifically

• to present the theoretical aspects of the VFT for the EEG problem,

• to numerically approximate the line integrals,

• to use the line integral formulation with different regularization terms in order to recon-

struct irrotational electric fields in unbounded and bounded domain,

• to reconstruct electric fields produced by dipole sources in a bounded domain which re-

sembles the EEG imaging problem and to validate that the region of activity is detectable

for different levels of measurement noise.

In the third part of the thesis, the approximation error approach (AEA) was used in EEG

source imaging. Here, our aims were

• to develop the use of AEA in the context of EEG source imaging and to derive ways of

estimating the approximation error statistics,
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• to verify with simulations that accurate source results can be obtained for patients without

requiring detailed knowledge of head geometry and the tissue conductivities.

1.3 Original Contributions

The following aspects of this thesis are believed to be original contributions:

Solver for focal sources: We developed a solver for the recovery of sparse focal sources

that is based on the truncated Newton interior point method and utilizes L1,2 norm and depth

weights. We derived a probabilistic approach to estimate the depths weights that is based on

setting appropriate variances in the posterior probability density. We developed a solver that

can reconstruct accurately few or several focal sources and is superior compared to algorithms

that utilize L1 or L2 norm penalty.

Vector field tomography for the recovery of EEG electric fields: We reformulated the EEG

source localization problem and developed a VFT-based technique to reconstruct the electric

field that corresponds to the source activity. VFT has not previously been used in cases in which

the computational domain contains any kind of sources or sinks. The developed VFT approach

can reconstruct electric fields that are generated by focal sources. Moreover, the location of the

activity can be determined based on the reconstructed electric field.

Bayesian approximation error approach in EEG source imaging: We applied the approxi-

mation error approach in EEG source imaging to compensate geometry and tissue conductivity

errors in the head model. We showed with numerical case studies corresponding to one, two

and three focal sources that a simplified head model accompanied with AEA can give the same

precision as the accurate head model. In other words, we developed an AEA-based approach in

which it is not necessary to know neither the exact geometry nor the tissue conductivities of the

head to get an accurate source reconstruction; it is enough to know the statistical variations in

these features.
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Chapter 2

Forward and Inverse Problem of

Electroencephalography

Bioelectric measurements are manifestations of current densities inside the human body. The

currents are generated when chemical energy is transformed to electrical form in living nerves,

muscles cells and tissues. In the brain, the chemical energy is transformed into neural electric

signal that induce bioelectric fields that can be detected with boundary measurements such as

electroencephalography (EEG).

The electrical signals on the scalp are produced by macroscopic brain activity that can be

mathematically described using the quasi-static Poisson equation with appropriate boundary

conditions. The task of predicting the boundary signals when the sources are known is called

the EEG forward problem.

In the bioelectric inverse problem, on the other hand, the properties of the sources are

determined based on the boundary recordings and numerical algorithms. This problem is usually

ill-posed i.e. the problem fails to satisfy one or more of the Hadamard’s criteria for a well-posed

problem [37]. These three criteria are (i) the existence of a solution, (ii) the uniqueness of

the solution and (iii) the continuous dependence of the solution upon the data. Most of the

computational models do not satisfy the second and third criterion and therefore additional

assumptions are needed to obtain a good solution.

In this chapter, we describe the basics of human brain activity and the corresponding EEG

forward modelling. Also, we review the most common approaches/techniques that are used to

solve the EEG inverse problem.

2.1 Bioelectric Signal Generation

In this section, we briefly describe how bioelectric signal are generated. Detailed information

can be found in [95, 122, 166]. The bioelectric signals recorded on the scalp are generated

by synchronized neuronal activity in the brain. The skull encloses the brain which contains

approximately one hundred billion interconnected neurons [122]. The nervous system is one of
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the smallest and yet the most complex body systems. The main functions of the nervous system

are (i) sensory, (ii) integrative (perception) and (iii) motor. A nerve is a bundle of hundreds or

thousands of axons with associated connective tissues and blood vessels. Each nerve follows a

specific path and serves a particular area of the body. Nervous tissue consists of two types of

cells: neurons and neuroglia. Neuroglia support, nourish, and protect the neurons and neurons

provide most of the functions of the nerve system e.g. controlling muscle activity, sensing and

thinking [166].

A neuron consists of three main components: the cell body (soma), several short and highly

branched protrusions called dendrites and a single nerve fiber called the axon (Fig. 2.1). The

neurons are specialized to (i) conduct information i.e. they have a mechanism for conduction

of internal communication between the neuron’s soma and its own terminals via the axon and

(ii) to transmit information between cells. The dendrites of a neuron receive impulses from

other cells and transfer them to the soma. The axon propagates nerve impulses towards another

neuron, muscle fiber or grand cell. In most neurons, nerve impulses arise at the junction point

between the axon and the soma (the trigger zone), from which they travel along the axon to

their destination. The site of communication between two neurons or a neuron and an effector

Figure 2.1: Schematic structure of a neuron.

cell is called a synapse. The communication between two neurons is called neuron-transmission.

The signal transmission at the synapse is preformed by the release of chemical neurotransmitters

from the first neuron (called presynaptic) and the activation of the receptor of the next neuron

(postsynaptic cell).

To begin a conduction, a rapid change in the cross-membrane voltage occurs as a result of

ion flows across the neuronal membrane in response to specific stimuli (depolarization phase).

If this voltage (the membrane potential) exceeds a threshold value, a nerve action potential is

initiated. Then the depolarization spreads through the axon to neighboring membrane of the

postsynaptic cell causing an excitatory post-synaptic potential. The released neurotransmitter

stimulates the neighboring neuron to form a post-synaptic potential in its dendrites and cell

body. In response to the potential, the axon of this neuron forms a nerve action potential. The

nerve action potential travels along the axon, which results in the release of neurotransmitter

at the synaptic point with another neuron and this process is repeated over and over between

neurons.
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Figure 2.2: The intracellular and extracellular flow of ions causes the propagation of primary
current inside the neurons and the induction of a secondary field outside of the cells.

The change of the electric potentials caused by the intracellular and extracellular flow of

ions induces the propagation of electromagnetic fields within the tissues. The currents that are

propagated within the neural trunk are called primary currents (intracellular). A secondary

(Ohmic) current flow is induced in the opposite direction in the exterior of the neurons as a

result of the electric charge conservation law (see Fig. 2.2).

The detectable electromagnetic signals arise as a result of simultaneous activation of a large

population of neurons which are spatially oriented in a similar way. This kind of activity is mainly

produced by pyramidal cells which are a type of neuron located mainly in the cortical areas,

amygdala and hippocampus [122, 95]. The EEG signals are produced by the secondary (ohmic)

current flow within the tissues and they are directly proportional to the potential differences on

the scalp of the head. Therefore, EEG signals dependent strongly on tissue inhomogeneities and

skull impedances. On the other hand, the Magnetoencephalography (MEG) signal is mainly

induced by the primary currents and it is less affected by the volume conductivities. However,

MEG only detects tangential currents and it is relatively insensitive to deep or radial currents

which can by detected using EEG [110].

2.1.1 Electromagnetic Activity of the Brain

The electromagnetic activity of the brain is usually categorized into (a) spontaneous activity, (b)

evoked potentials and (c) single neuron activity. The EEG devices can measure the spontaneous

activity on the scalp or the dura. The frequencies of these signals are between 0 − 70Hz and

the voltage about 100µV on the scalp [122]. Spontaneous brain activity can be related for

instance to an epileptic condition, brain malignancies, head injury or brain death. The evoked

potentials arise as a response to specific impulses, for example visual or auditory stimuli. The

evoked potentials are typically one or two orders of magnitude below the noise level and multiple

measurements are acquired to increase the signal to noise ratio. The recording and analysis of

the evoked potentials have given a boost on the development of brain-computer interface (BCI)

algorithms, mental monitoring and cognitive science [162]. The single-neuron recordings provide

a way of measuring neural activity of a single spot by implanting a micro-electrode system into

the cell. This signal can then be applied to BCI technologies for manipulating external devices

using the brain signal. In this thesis, we are interested mainly in EEG recordings produced by
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the spontaneous focal activity of the brain. The temporal behavior of the EEG waveforms is

not analyzed here. An extensive description of the different rhythms of EEG signals and their

interpretation can be found in [122].

2.2 EEG Measurement Devices

The EEGmeasurement system consists of (i) electrodes, (ii) a multichannel amplifier to strengthen

the weak bio-signals and (iii) a data acquisition system in which the recordings are displayed

and stored for further analysis. The most common EEG devices have been designed to record

signals in the range from microvolt up to a few millivolts for frequencies up to 70 Hz [122].

EEG electrodes are small metal plates that are attached to the skin using a conducting

electrode gel. The standard position scheme is the 10-20 system [123] to record spontaneous

activity. In this system 21 electrodes are placed on the scalp. The 10 and 20 numbers refer

to the relative distances between adjacent electrodes that are either 10% or 20% of the total

front-back (nasion-inion) or right-left (ears) dimension of the skull [124]. The reference electrode

is placed on the nose or the pre-auricular point (tip of the ear) (see Fig. 2.3). Frequently an

Figure 2.3: 10-20 standard system of electrodes positioning [148].

electrode cap is used to position the electrodes on the head. Electrode caps with, for example,

256 electrodes are available in multichannel configurations and provide a fast and easy way of

placing the electrodes uniformly over a wide range of scalp sizes and shapes.

2.3 EEG Forward Problem

2.3.1 Physics of the Brain Sources

The electrical activity in the brain is induced by the flow of charged ions across membranes

of the spatially aligned neural cells [122]. The collective interaction of the ion flow gives rise

to potentials that can be measured using EEG. It has been shown that this activity can be

modelled using the Poisson equation assuming that the geometric and conductivity properties

of the head compartments are known [3].

An electrical signal in the brain is expressed as a primary current source which results

from the transformation of the chemical energy inside the neuron cells to electric. This is a
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nonconservative current which can be considered as the superposition of several electric current

dipoles within individual active cells. The primary current source is zero everywhere outside the

region of the active cells [14, 61].

The primary current induces an electric current of the form σe (secondary current flow),

where σ is the bulk conductivity of the volume and e is the propagated electric field. The

total current density is given by j = jp + σe where jp are the primary currents and σe the

secondary currents respectively and both are functions of spatial position and time. In general,

the electric current density is time-varying. However, when using EEG to record bioelectric

source behavior at low frequencies (below several kHz) and assuming conductive medium, the

quasi-static approximation of the problem is justified [32, 62, 63] i.e. the currents and voltages

can be considered static at any given instant. The static consideration of the field implies

that the capacitance component of the tissue impendence can be assumed negligible and thus

∇·j = 0 [95]. Additionally, the electromagnetic wave effects can be neglected at these frequencies

[32] and therefore the electric field can be expressed as the gradient of a scalar potential u

i.e. e = −∇u. Therefore, under the quasi-static approximation the EEG problem can be

mathematically described by

∇ · j = 0⇒ ∇ · jp = ∇ · (−σe)⇒ ∇ · jp = ∇ · σ∇u. (2.1)

2.3.2 EEG Macroscopic Mathematical Model

The primary current source ∇ · jp, produced by the electro-chemical activity of the neurons,

gives rise to potentials u within the brain domain [95]. Under the quasi-static approximation

of the Maxwell’s equations, the relationship between the current sources and the potentials is

described by the Poisson equation with a homogeneous Neumann condition on the head surface

[14].

In particular, the computational domain is denoted by Ω ⊂ R
k and its conductivity properties

by σ(x) where x ∈ Ω is a position vector. For anisotropic media, the conductivity is direction

dependent, and the conductivity is a rank-k tensor (i.e. a square matrix) [181, 122]. In this

study, we assume isotropic conductivity within each of the head compartments and therefore

the conductivity is a scalar quantity i.e. σ(x) : Ω→ R
+.

The Poisson equation has the form

∇ · σ(x)∇u(x) = ∇ · jp(x), x ∈ Ω, (2.2)

where u(x) : Ω → R is the scalar potential function and ∇ · jp(x) is the current density with
jp(x) : Ω → R

k. Here, k is equal to either 2 or 3 depending whether the analysis is carried out

in 2D or 3D.
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The boundary conditions are

u(x) = 0, x ∈ ∂Ω0 (2.3)

σ(x)
∂u(x)

∂n̂
= 0, x ∈ ∂Ω \ ∂Ω0, (2.4)

where ∂Ω is the boundary of the domain, ∂Ω0 the subset of the boundary with Dirichlet boundary

condition, typically a single reference electrode, and ∂Ω \ ∂Ω0 with Neumann condition, and n̂

the outward unit normal vector to the boundary of the domain. Thus, in the EEG formulation,

the the Dirichlet (2.3) and the Neumann (2.4) boundary conditions are applied. The Neumann

condition states that the current density is zero on the interface between the head and air and

the Dirichlet condition ensures the uniqueness of the solution.

In the EEG forward problem the source jp(x), the geometry and conductivity of the tissues

are known and the potential distribution u(x) is estimated1. A necessary condition for the

existence of a solution u(x) is that
∫
x∈Ω∇ · jp(x) dx = 0 which implies the conservation of the

charge in Ω [30].

The general solution of the Poisson equation has the form

u(x) =

∫

x′∈Ω
g(x, x′)∇ · jp(x′) dx′, (2.5)

where g(x, x′) is a Green’s function [3].

2.3.3 EEG Forward Model

In EEG source imaging, the observations are a scalar function defined as the voltage at a point

x ∈ ∂Ω\∂Ω0 with respect to the reference electrode at location x0 ∈ ∂Ω0. In practice, there is a

set of measurements v = (v(x1), v(x2), . . . , v(xm))
T ∈ R

m where (x1, . . . , xm) ∈ ∂Ω \ ∂Ω0 and m

is the number of measurements. Furthermore, in EEG the primary current source is considered

as an idealized electrical dipole source of very small spatial extent with vector moment, denoted

by d(x) : Ω→ R
k.

Due to the quasi-static condition and the fact that all the underlying currents obey Ohm’s

law at low frequencies [146], the mapping from the source field to the ith boundary measurements

can be written as

vi =

∫

x∈Ω
ki(λ, σ, x) · d(x) dx, for i = 1, . . . ,m, (2.6)

where ki(λ, σ, x) is a non-linear vector function that depends on the parameterizations of the

geometry λ and material properties σ of the domain, and d(x) is the source configuration.

Function ki(λ, σ, x) is referred to as the lead field function [95].

Analytical expressions for the lead field function ki in equation (2.6) and for the potentials,

vi, can be derived for certain types of volume conductor and geometries e.g. for concentric

1In this work, we denote continuous vector-valued functions by lower-case, non-italic letters (e.g. x is a position
vector), scalars and discrete distributions by italic lower-case letters and matrices by italic upper-case letters. All
vectors are column vectors unless explicitly stated otherwise.
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spheres [183, 185]. For realistic head models, a numerical method based on the semi-analytic

expansion of the lead field function was proposed in [118].

In practice, for realistic head geometries, the forward problem can solved in discrete domains.

The integral (2.6) is approximated by a finite sum and the source distribution approximated

by dipole moments at a finite set of points. For realistic head geometries with homogeneous

and isotropic conductivities, the Boundary Element method (BEM) can be used. In the BEM

[99, 28, 159], the surface of the domain is discretized and the solution is based on a set of surface

integrals. BEM is better suited to MEG studies which are less sensitive to tissue conductivities

whereas its use for EEG requires more accurate modelling of the different tissue thicknesses and

conductivity distributions [21]. Alternatively, the Finite element method (FEM) can be applied

to approximate the EEG observation model [62, 124, 182]. In this study, the FEM is used

to calculate the EEG computational model since it can easily handle complex geometries and

tissues with different, and possibly non-uniform, conductivities. In section 2.4, the estimation

of the EEG observation model based on the FEM is presented.

2.3.4 Dipole Modelling

The mathematical dipole is a suitable model for the description of the source term, jp(x), in (2.2)

because it can adequately represent neural activity in the brain [109]. The brain activity can be

considered to be generated by one or more dipoles. Thus, the primary current source density

at location xl can be described by two point current sources of opposite polarity (source/sink)

with strength Il and a vanishingly small separation vector h between the poles [152]. Also, the

current source density at location xl can be described by

∇ · jp(xl) = lim
h→0

[
Ilδ(x− xl +

h

2
)− Ilδ(x− xl −

h

2
)

]
, (2.7)

where δ(·) is the Dirac delta function.

2.4 Finite Element Method in EEG and Construction of Lead

field Matrices

In the forward solution, the potentials on the electrodes can be estimated given the current

source configuration, Neumann boundary condition and a reference electrode [38]. The analytic

solutions of the elliptic partial differential equations (2.2) can be derived for simple geometries

such as spheres and cylinders, but not for the complex geometries associated with physiological

structures. Therefore, the FEM is appropriate numerical method for the computation of the

EEG forward solution [17]. In this section, we give a brief overview of the FEM modelling of the

EEG forward problem. Moreover, we derive the lead field (2.6) employing the FEM approach

and the mathematical dipole consideration (2.7).

The first step in FEM is the discretization of the domain Ω (head) into elements with different

conductivities corresponding to specific tissues. In particular, the head consists of three main
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compartment: the scalp, skull and brain. The brain can be further subdivided into white

matter (WM), grey matter (GM) and cerebral spinal fluid (CSF). Within each compartment

homogeneous electric conductivity is assumed. The shapes of the compartments can be acquired

from Magnetic Resonance (MR) images and, based on these, a mesh can be constructed. This

mesh defines the FEM space.

The continuous potential of (2.2) is projected into the FEM space considering a set of N

piecewise basis functions φi with value 1 at node i of the mesh and zero at all other nodes

(i.e. the basis function has support only on the elements where node i belongs) [171, 124]. The

potential function is approximated, u(x) ≈ uh(x) =
∑N

i=1 φi(x)ui where ui are the potential

values on the N nodes of the mesh.

FEM solution is based on the weak formulation of the Poisson equation (2.2) with the

Neumann condition (2.4) [86]. Briefly, to derive the weak formulation, Poisson equation (2.2) is

multiplied with a test function, g(x) : Ω→ R, and then is integrated over the domain Ω

∫

x∈Ω
g(x)∇ · σ∇u(x) dx = −

∫

x∈Ω
g(x)∇ · jp(x) dx. (2.8)

Using Green’s identity and Neumann condition,

∫

x∈Ω
σ∇g(x) · ∇u(x) dx = −

∫

x∈Ω
g(x)∇ · jp(x) dx. (2.9)

With the Galerkin method, where the test functions g(x) are chosen to be the basis functions

φi, and by setting u ≈ uh(x), the previous equation becomes

N∑

i=1

ui

∫

x∈Ω
σ∇φi(x) · ∇φj(x) dx = −

∫

x∈Ω
φj(x)∇ · jp(x) dx, (2.10)

where j = 1, . . . , N .

Finally, the above system is written in matrix form as

Au = b. (2.11)

Matrix A ∈ R
N×N is the conductance matrix (also referred as stiffness matrix [86]) and includes

the geometry and conductivity properties of the domain with coefficients given by aij = aji =∫
x∈Ω σ∇φi(x) · ∇φj(x) dx.

The right hand side vector b ∈ R
N is the load vector and represents the contribution of the

current sources to the potential values with coefficients bj = −
∫
x∈Ω φj(x)∇ · jp(x) dx. Vector

u ∈ R
N denotes the potential values at the N mesh nodes. System (2.11) can be solved either

using direct or iterative methods.

Before the solution, the right hand side (load vector) needs to be expressed in terms of FEM

analysis. The activity inside the domain can be considered as the sum of multiple mathematical

dipoles given by (2.7)
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Let (x1, . . . , xn) denote the possible locations of the dipole sources and n the number of

these locations (n ≤ N where N is the number of mesh nodes). Considering the dipole source

modelling (2.7), the load vector becomes

bj = −
∫

Ω

n∑

l=1

lim
h→0

φj(x)

[
Ilδ(x− xl +

h

2
)− Ilδ(x− xl −

h

2
)

]
dx

=

n∑

l=1

lim
h→0

[
Ilφj(xl +

h

2
)− Ilφj(xl −

h

2
)

]

≈
n∑

l=1

Ilh · ∇φj(xl) =

n∑

l=1

dl · ∇φj(xl), (2.12)

where dl = Ilh is the dipole moment at location xl with strength Il.

Alternative approaches to the simple mathematical dipole are the dipole formulation em-

ploying the potential subtraction approach [152] or the blurred dipole based on “St. Venant’s”

principle where a point dipole can by replaced by a distribution of electrical monopoles [15, 180].

In this study, only the mathematical dipole was used in the simulations.

2.4.1 Computation of the Lead Field Matrix

The lead field ki(λ, σ, x) in equation (2.6) can be computed based on the knowledge of matrix

A and load vector b (2.11). The dipole moment at location xl, for the 3D case (k = 3), can

be written as dl = (d
(l)
x , d

(l)
y , d

(l)
z )T ∈ R

3. Furthermore, for the source locations (x1, . . . , xn), the

dipole moments can be expressed with a vector representation as d = (d
(1)
x , d

(2)
x , . . . , d

(n)
z )T =

(dx, dy, dz)
T ∈ R

3n. The load vector b (2.12) can be expressed as

b = Bd, (2.13)

where matrix B ∈ RN×3n includes the values of the gradient of the basis functions φj(xl). From

(2.11) and (2.13), we get

Au = Bd. (2.14)

Consequently, we solve (2.14) with respect to u. In order to do this, we need to invert matrix

A. Matrix A is invertible if we include the Dirichlet boundary condition (2.3). The Dirichlet

condition can be included as follows: If xr is the node which corresponds to the reference

electrode (u(xr) = 0), then we set arr = 1 in matrix A and all the other coefficients of the rth

row equal to zero. Then, we can write u = Kud where Ku = A−1B ∈ R
N×3n is the so-called

lead field matrix [182].

Usually matrix A is sparse due to the small support of the basis functions, and many al-

gorithms have been developed to enable fast inversion [82]. Also, an approach based on the

reciprocity principle [122], was proposed in [182] in order to reduce the computational cost.

For the EEG observation model, only the rows of Ku which correspond to the measurement

locations are required. For v ∈ R
m measurements around the domain, the lead field matrix is
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K ∈ R
m×3n and the model which relates the measurements to the dipole distribution is

v = Kd. (2.15)

2.5 EEG Inverse Problem

The EEG inverse source imaging problem concerns the estimation of the brain activity given

the potentials along the scalp and the mapping operator which describes the propagation of the

electric activity of brain to the EEG measurement on the electrodes.

2.5.1 Review on the Source Reconstruction Methods

The spatial resolution and quality of the EEG scalp recordings are often poor due to the noise

and inhomogeneities of the skull conductivity which makes the analysis challenging. The current

flows towards the scalp from the intracranial sources and follows a tangential trajectory within

the skull which results in a significant voltage drop at the electrodes. To acquire an understand-

ing of the brain activity, many source imaging techniques have been developed over the past

20 years for the accurate localization and visualization of the neural current sources (inside the

brain) from the EEG measurements.

These source reconstruction methods can be divided into two main categories based on the

assumptions about the sources and the utilized mathematical tools. The first methods concern

the estimation of dipoles which fit best with the observations solving the problem in the least

squares (Dipole fit model) [128, 151, 7]. These methods attempt to explain the measurement with

a small number of dipole sources. The single or few dipole assumption has proven to be useful

in cases where the underlying brain activity is concentrated in a relatively small volume (most

of the brain is electrically silent). Additionally, the dipole term of a multi-pole source expansion

is the principle factor affecting the potential measurements. The main disadvantages of the

approach are that the number of dipole source needs to be predefined and that the approach is

non linear. There are also studies in which the number of sources is predefined using temporal

information [104]. However, in case the number of sources is incorrect, the approach fails to

localize the activity. The approach often works well for up to 2 dipoles, especially for sources

which are spatially separated.

When there are simultaneously several active regions, then the actual source configuration is

modelled using the so-called Distributed Source Modelling (DSM) [27]. In this approach, a large

number of sources is distributed in an relatively extended area. Methods using the DSM attempt

to compute a distribution of dipole moments at every point in a specified reconstruction space,

e.g gray matter. These methods are sometimes called tomographic reconstruction techniques.

The source locations are fixed while the amplitude and orientation are unknown. These methods

have the advantage that the computational model is linear, there is no need for prior estimation

of the number of sources and it can be used for extended source configuration. The solution

space consists of all the possible source locations in this area and therefore a significant problem
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is that the computational model (linear system) is severely under-determined. The distributed

source EEG problem is an ill-posed inverse problem and relatively strong assumptions are needed

for regularization. Additionally, noisy and incomplete data impose the need for additional

constraints related also to the physiological and anatomical information, for example recovering

only radial cortical sources [22].

In the following sections, commonly used time-invariant source reconstruction methods based

on the dipole fit modelling and the DSM employing different priors are reviewed. There are also

other modelling methods which are not included in this overview. For example the spatial filter-

ing method [172, 142] in which a set of spatial filters is designed in such a way that the filter passes

signals originating from a specified location within the brain while eliminates signals from other

locations and the Multiple Signal Classification (MUSIC) and (RAP)MUSIC [104, 88]. MUSIC

separates the measured data into signal and noise subspaces and the best orthogonal projection

operator of the signal onto the data-noise space is estimated. Subsequently, the orthogonal

projection operator can be used to guide a recursive parametric dipole fitting algorithm. For an

extended review of the inverse modelling methods, we suggest [61, 102, 36, 140]. Additionally,

when spatio-temporal methods the interested reader is referred to [101, 131, 104, 88] where the

temporal information in the signal is used. Furthermore, in spatio-temporal approaches, dif-

ferent dipole models [158] are used, for example the moving dipole model where all the dipole

parameters change over time, the rotation dipole model in which the source location is constant

during the EEG measurement acquisition [150, 105] or the fixed dipole mode, widely used in

evoked response studies with both the orientation and the location constant.

2.5.2 Dipole Fit Model

In the dipole fit modelling, the neural activity in the brain is considered to be restricted to a

relatively small volume allowing it to be well approximated by an equivalent single source or a

small number of sources. The method tries to estimate a small number of dipoles which fit best

with the observed potential measurements.

The sources are mathematically assumed to be dipoles with unknown positions and moments

(magnitude and orientation) [62, 14]. In this approach, the observation (2.6) equals to

vi =
n∑

l=1

ki(xl) · dl, (2.16)

where n is the number of the candidate dipole locations, dl ∈ R
k is the lth dipole moment at

location xl ∈ Ω and ki : Ω→ R
k. The associated minimization problem is

min
(l,xl,dl)

m∑

i=1

[
vi −

n∑

l=1

ki(xl) · dl
]2

, (2.17)

where m the number of observations. The minimization problem is neither convex or linear.

Direct search, non linear fitting methods or global optimization techniques can be used for the
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solution (e.g. the Levenberg-Marquardt algorithm). For several dipoles (i.e. n > 2) the problem

(2.17) due to non-convexity does not have a global minimum. Additionally, when the number

of unknown parameters exceeds the observations, the problem becomes under-determined. In

these cases, the DSM approach is used or temporal information is integrated in the model, i.e.

use measurements recorded over a time interval [131].

The simplest problem uses the assumption that there is only a single dipole source character-

ized by three parameters corresponding to magnitude, position and orientation (six degrees of

freedom). These parameters are adjusted in such way that the resulting electrostatic potential

matches the best with the given data [62]. The dipole moments are linear parameters and the

three location parameters are non linear. This problem can be solved recursively by a sequence

of linear and non linear solutions [128]. Specifically, if we consider a fixed source location then

the problem becomes linear and over determined and it can be easily solved using linear least

square method [43]. The least square estimate gives the optimal dipole for a given location. The

non linear part of the problem is to find the best of all optimal dipoles by changing the location

parameters.

The single dipole assumption can be used to estimate a distinctive spatial source. For

multiple sources with overlapping fields the dipole fit approach breaks down.

2.5.3 Distributed Source Model

In the DSM approach, the electrical activity is considered in the entire brain (or in an extended

region). The domain is divided into elements (voxels) and a dipole moment is placed at the

centre of the element. The mesh with the dipole locations is the source space. If these fixed

locations are denoted with x1, x2, . . . , xn, then (2.6) becomes vi =
∑n

l=1 ki(l) · dl

v = Kd, (2.18)

where v ∈ R
m, K ∈ R

m×kn is the lead field matrix and d ∈ R
kn is the dipole distribution.

With the distributed source model the problem becomes linear, however in most cases the linear

system is severely under-determined (m ≪ kn). To solve the inverse problem, different prior

assumptions and constraints have been proposed such as the (weighted) minimum norm [39, 58]

and smoothness properties [134] to ensure consistency. Also, anatomical and physiological priors

have been proposed [83, 70] which reflect the nature and the properties of the brain activity.

Additionally, for better performance, the number of unknowns can be reduced by restricting

the region of interest, e.g. by considering sources only in the cortical surface. In the following

paragraphs we review the most representative methods using the distributed source model (2.18).

The first distributed source model is the minimum norm estimate (MNE) introduced in [39].

The solution is based on the estimation of the dipole distribution with the lowest overall power

which also satisfies the potential measurements. The problem can be expressed as

min
d
‖d‖22 subject to v = Kd, (2.19)
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where ‖.‖2 is the L2 norm [100]. The solution is given by

d̂MNE = KT(KKT)−1d. (2.20)

The MNE was first introduced for the MEG problem however it can be similarly applied for the

EEG inverse problem. Usually, to improve the result a particular brain area is selected.

In practice, instead of the unconstraint MNE, the Tikhonov regularization (L2 norm regu-

larization) is used [40] and problem becomes

d̂Tikh := min
d
‖Kd− v‖22 + α‖d‖22, (2.21)

where α is a regularization parameter. However, MNE and (2.21) give solutions with maxima

close to the boundary. This is a consequence of the intrinsic depth bias of this lead field matrix

which results in shifting the dipole sources near the surface [1, 175, 31]. For the compensation

of the lead field matrix depth effect, the use of a weighted minimum norm estimate (WMNE)

was suggested in [58, 29]. This problem was formulated as

min
d
‖Wd‖22, subject to v = Kd, (2.22)

where matrix W is diagonal and has elements wii = (‖Ki‖2)−1 with Ki denoting the column of

the lead field matrix. The corresponding solution is d̂WMNE =WWTKT(KWWTKT)−1v.

An commonly used approach is also the Low Resolution Electromagnetic Tomography (LORETA)

[134]. LORETA is a generalized minimum norm estimate in which the distributed (smooth) elec-

tric activity is computed under the assumption that the neighboring neurons are simultaneously

and synchronously active. A discrete Laplace operator denoted by B is used as a smoothness

regularization and the problem is formulated as

min
d
‖BWd‖22, subject to v = Kd, (2.23)

where W is a depth compensation diagonal matrix with wi = ‖Ki‖2. Matrix B is constructed

to be a full rank and symmetric matrix employing a vanishing boundary condition. Conse-

quently, with the LORETA approach, the superficial sources are forced to be close to zero,

which is a drawback for the case of superficial brain activity. The solution is d̂LORETA =

(WBTBW )−1KT[K(WBTBW )−1K2]†v where † denotes the Moore-Penrose pseudo-inverse [100].
The standardized low resolution tomography (sLORETA) [133] is another approach for the

unbiased localization of a single underlying dipole source detection assuming no noise. The

location of the source is designated by the maximum value of the standardized power given by

Pi = d̂Ti (Rii)
−1d̂i for i = 1, . . . , kn where Rii are the diagonal elements of the resolution matrix

defined as R = KT (KKT)†K.

The previous described methods are linear and therefore the dipole distribution can be

solved directly. However, the solution usually has many small dipoles and only a few dipoles
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with larger magnitude, and the reconstructed images have low spatial resolution. In the best

cases, the L2 norm regularization results in a blurred version of the actual dipole distribution

[23] while sometimes imagining artefacts are introduced [97].

For better source resolution, the first proposed approach was the FOcal Under-determined

System Solver (FOCUSS) where focal sources were estimated using a recursive WMNE [35, 34].

In every iteration the weighting matrix is updated using the previous step values until most of

the elements of the solution become nearly zero. The algorithm terminates when the rank of the

weighting matrix drops below the number of the observations. The final solution of FOCUSS

depends highly on the initial source distribution and is sensitive to noise. In [87], the authors

discussed the integration of FOCUSS with the LORETA in a similar fashion as in [35] with the

WMNE.

For the detection of single dipoles, methods employing the sparse L1 norm [97, 98] or mixed

norms [168, 42, 41, 26] have also been suggested. All these approaches are non linear and non

linear optimization techniques need to be used for the solution. The first sparse inverse method

is the minimum current estimate (MCE) that was introduced in [97] and was formulated as

min
d
‖d‖1, subject to v = Kd. (2.24)

In [97], feasible solutions were obtained by selecting as many dipole moments as the the number

of the observations. The L1 norm imposes sparsity on the individual components of the dipole

moments, and therefore the solution is axes-parallel. In [168], a two step algorithm was suggested

such as to avoid the orientation bias i.e the orientation was solved using MNE and the amplitude

via L1 norm minimization scheme.

Mixed norms, e.g. the dipole strength norm were suggested in [131, 42, 26] in order to

eliminate the axes-parallel dipole distribution and the scattering result. In [42], the Focal Vector

Field Reconstruction approach was proposed. In this approach, the cost function was penalized

with the L1 norm of the dipoles strengths augmented by the L1 norm of the weighted Laplacian.

Particularly, the weighted Laplacian adjusts the spatial size of the focal sources and the L1

norm maintains the high spatial resolution, and thus the ability to discern multiple sources.

The estimation was based on

min
d

n∑

i=1

‖wi · di‖2 + α
n∑

i=1

‖wi · ti‖2, subject to v = Kd, (2.25)

where di ∈ R
k is the dipole moment and ti the Laplace operator evaluated in the components of

d. The weights wi ∈ R
k are the corresponding diagonal elements of the sLoreta resolution matrix

[133]. According to the authors, with this approach imaging artefacts were reduced because the

L1 norm of the weighted dipole strength ensures sparsity in the coupled dipole components and

not in individual components which can cause spikes. Additionally, the L1 norm of the Laplace

operator term imposes local smoothness and thus defines the extent of focal sources. However

the complexity of the algorithm and the tuning of the extra regularization parameter α does not
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make this approach very preferable.

2.5.4 EEG Inverse Problem using Bayesian Framework

The need to use prior information for the reconstruction of dipole sources and the availability

of only a limited number of noise-corrupted potential measurements makes the use of proba-

bilistic approaches appropriate. In this section, the basis of the probabilistic theory [66] and

the Gaussian assumptions for the solution of EEG inverse problem are discussed. Under certain

assumptions, the results of this section coincide with the results of the deterministic approaches

of the previous section.

Let us assume that the general observation model for the EEG source imaging problem can

be written in the form

v = Kd+ ξ, (2.26)

where v ∈ R
m are the potentials around the scalp, K ∈ R

m×kn is a mapping between sources

d ∈ R
kn and the measurements, and ξ ∈ R

m is the measurement noise.

In the Bayesian framework, all model variables are considered as random and the stochastic

nature of the problem is described by means of probability density functions2. In this section,

all the random variables are denoted with capital letters and their realizations with lowercase

letters. Thus, the model is

V = KD + Ξ, (2.27)

where the observable random variable V is called the measurement, and its realization V = v is

called the observation. The random variable D, that is of primary interest, is called the unknown

and Ξ is the random noise.

The joint probability of D, V and Ξ, π(d, v, ξ), can be decomposed as

π(d, v, ξ) = π(d, ξ)π(v|d, ξ), (2.28)

where π(d, ξ) is the prior probability density of D and Ξ and expresses the information we

have about these parameters without taking into account the observations. The likelihood

density, π(v|d, ξ), denotes the likelihood of different outcomes of the variable V for given dipole

distribution D = d and noise Ξ = ξ.

From the Bayes’ rule, we can estimate the joint posterior

π(d, ξ|v) = π(v|d, ξ)π(d, ξ)
π(v)

, (2.29)

which expresses the information we can infer after the realized observation V = v.

For the statistical inference of the sources D based on given observations V = v, we estimate

2for a random variable Y with realization y, instead of writing the probability π(Y = y) we write π(y).
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the posterior density, i.e. the marginalization of π(d, n|ξ) over ξ given by

πpost(d) = π(d|v) =
∫

Rm

π(d, ξ|v) dξ. (2.30)

The integral (2.30) usually cannot be solved analytically. Instead point estimates can be used for

the interpretation and visualization of the result. The most common estimate is the maximum

a posterior (MAP) estimate which is the solution of the optimization problem

d̂MAP := arg max
d∈Rkn

π(d|v). (2.31)

Another commonly used point estimate is the conditional mean (CM) given by

d̂CM =

∫

Rkn

d π(d|v) dd = E{d|v}. (2.32)

If no prior information is considered then the maximum likelihood (ML) can be used as a point

estimate,

d̂ML := arg max
d∈Rkn

π(v|d), (2.33)

expressing our belief in the observed data.

Likelihood Estimation

In order to estimate the likelihood π(v|d), we use the Bayes’ formula and chain rule [132]. The
joint density

π(v, ξ|d) = π(v|ξ, d)πnoise(ξ|d), (2.34)

where the subscript, noise, is used to clarify that πnoise(.) is the probability density of the noise

Ξ. Subsequently, the likelihood density is estimated with the marginalization of (2.34) over ξ,

i.e.

π(v|d) =
∫

Rm

π(v, ξ|d) dξ =
∫

Rm

π(v|ξ, d)πnoise(ξ|d) dξ. (2.35)

The conditional probability of the measurements is π(v|d, ξ) = δ(v −Kd − ξ) where δ(·) is the
Dirac delta function. Thus, (2.35) becomes

π(v|d) =
∫

Rm

δ(v −Kd− ξ)πnoise(ξ|d)dξ = πnoise(v −Kd|d). (2.36)

Gaussian Assumptions

Assuming that the additive noise Ξ (2.26) is Gaussian with distribution Ξ ∼ N (ξ∗,Γξ), where ξ∗
is the mean values and Γξ is the covariance matrix and is independent of D then the likelihood

(2.36) becomes

π(v|d) = πnoise(v −Kd) (2.37)
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and

π(v|d) ∝ exp

(
−1
2
(v −Kd− ξ∗)

TΓ−1ξ (v −Kd− ξ∗)

)
= exp

(
−1
2
‖Lξ(v −Kd− ξ∗)‖22

)
(2.38)

where Lξ comes from the Cholesky decomposition of Γ−1ξ (where Γ−1ξ = LT
ξ Lξ) [100]. The

maximization of (2.38) gives the ML estimate. If prior information is considered, by Bayes’ rule

we have

π(d|v) ∝ π(v|d)π(d). (2.39)

The statistical inference is based on the posterior probability density

π(d|v) ∝ π(d) exp

(
−1
2
‖Lξ(v −Kd− ξ∗)‖22

)
. (2.40)

For Gaussian prior D ∼ N(d∗,Γd) with mean d∗ and covariance Γd, the MAP estimate is

dMAP := arg max
d∈Rkn

π(d|v) = min
d
‖Lξ(v −Kd− ξ∗)‖22 + ‖Ld(d− d∗)‖22, (2.41)

where LT
d Ld is the Cholesky decomposition of Γ−1d . The minimization problem can be also

written as

dMAP := min
d

∥∥∥∥∥

(
Lξ(v − ξ∗)

Ldd∗

)
−
(
LξK

Ld

)
d

∥∥∥∥∥

2

2

. (2.42)

According to the previous analysis, we see that the deterministic L2 norm minimization

problem (2.21) corresponds to the MAP estimate with Gaussian prior dipole distribution [58, 92]

and the minimization problem MCE corresponds to the MAP estimate when the prior is the

Laplace distribution [97, 168].

Alternatively, instead of a prior distribution with parameters (i.e. covariance and mean), a

Bayesian learning (SBL) can be employed for the adaptive computation of these prior parameters

(which are called hyper-parameters) based on the measured data [93]. Once the optimal hyper-

parameters have been learned (e.g. by using Markov Chain Monte Carlo (MCMC) strategies),

the estimation of the dipole distribution is performed. Also, the parametrization of the prior

covariance matrix can vary depending on the features of the problem e.g. sparse or dense source

modelling [121, 177, 178, 91].

One important advantage of the statistical approaches is that the noise model is integrated in

the computational model and thus the selection of the prior coefficients (regularization parame-

ters) is performed implicity through the probabilistic modelling. For instance, equation (2.21) is

equivalent to the MAP formulation assuming Gaussian noise with zero mean and Gaussian prior

[67]. The numerical computation of the statistical parameters of the noise and prior (through

for example MCMC) can automatically define the values of the regularization parameters, and

thus there is no need to use heuristic or other deterministic techniques (e.g. L-curve) [40].
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2.5.5 Regularization and Depth Bias

Usually, the EEG inverse solution is based on the assumption that a large number of candidate

sources is distributed inside the gray matter of the brain. The solution space consists of all

the possible source locations in this area while the number of potential measurements is very

restricted. In practice, this means that the derived linear system used for the inversion is severely

under-determined and different source configurations can give rise to the same scalp recordings.

Therefore, prior information needs to be incorporated in the computational model.

In this section, we present a qualitative explanation of the effects of the different regulariza-

tion terms in the EEG inverse solution. Also, we explain why it is important the use of depth

weights in the penalty term in order to reduce the tendency of the solver to favour superficial

source. Here, we revisit the analysis presented in [16].

Assuming the simplified case where the domain Ω is homogeneous with boundary ∂Ω and

x ∈ Ω, we consider the constrained EEG inverse problem

min
ρ

R(ρ)

subject to: ∇2u(x) = ρ(x), u(x) = v|∂Ω and ∇u(x) · n̂|∂Ω = 0,
(2.43)

where R(ρ) is the regularization term, ρ(x) the source current density, v the voltages along the

scalp are known and n̂ the unit normal vector to the boundary. This problem can be formulated

as a constrained minimization problem with the Lagrangian [11]

L(ρ, u, ν, λ) =R(ρ) +

∫

∂Ω
ν(u(x)− v) ds+

∫

Ω
λ(−∇2u(x)− ρ(x)) dx

=R(ρ) +

∫

∂Ω
ν(u(x)− v) ds+

∫

Ω
(∇λ∇u(x)− λρ(x)) dx,

(2.44)

where ν and λ are the Lagrange multipliers. According to the Saddle Point Theorem [11], if

there exist ν and λ such that (ρ, u, ν, λ) define a saddle point for the Lagrangian L(ρ, u, ν, λ),

then this ρ is a solution of the constrained problem (2.43). Solving the equation ∂L = 0 with

respect to ρ, u and λ, we get

∂R(ρ) + {λ} ∈ 0, (2.45)

ν +∇λ · n = 0 on ∂Ω, (2.46)

∇2λ = 0 in Ω. (2.47)

From (2.47), we have that λ is harmonic and consequently attains its maximum on ∂Ω (maximum

principle for harmonic functions [103]).

If the regularization term is R(ρ) = 1
2

∫
Ω ρ(x)2 dx (Tikhonov) then the conditions (2.45)-

(2.47) imply that the source distribution is also harmonic (ρ = λ) and thus the solution yields

source maxima close to the boundaries.

One way to shift the energy from the boundary to deeper in the domain is by using ap-
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propriately selected weights w(x) (e.g. [58, 29]). In this case, the WMNE with R(ρ) =
1
2

∫
Ωw(x)ρ(x)2 dx results in λ = wρ.

For the case where the source is sparse, the regularization R(ρ) =
∫
Ω |ρ(x)| dx and condition

(2.45) gives

λ ∈





−1 if ρ < 0

1 if ρ > 0

(−1, 1) if ρ = 0

(2.48)

Because λ is harmonic, from (2.48) we conclude that λ attains the values ±1 on the boundaries,
and therefore the solution ρ will also have its maximum strictly on the boundary of the domain

and zero inside the domain, except for the case in which λ is constant and equal to either 1

or -1. In this case, the source distribution is zero everywhere. Similarly with the MNE, when

using weights the solution is a source distribution with minimum and maximum deeper in the

domain. The selection of the weights is further discussed in section 3.3.

2.6 Summary

The major objective of this chapter was to introduce the brain imaging using the EEG as one

of the most prominent biomedical application for monitoring the brain activity.

The analysis began by describing the basics of human brain activity and the mechanisms of

the electrical signal generations. Subsequently, we defined the EEG forward modelling and we

reviewed the most common approaches that are used to localize the brain activity both from

deterministic and probabilistic point of view. Finally, we explained the role of the weights in the

regularization terms in order to reduce the selective source placement closer to the boundaries

of the brain.
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Chapter 3

Reconstruction of Focal Sources in

the EEG Imaging

The potentials measured on the scalp surface using Electroencephalography (EEG) do not di-

rectly designate the location and the strength of neuron activity inside the brain since many

different source configurations can give rise to the same measurements [95, 63]. The way to

localize the presumed sources inside the brain is through the solution of the so called inverse

problem. Due to the ill-posed nature of the inverse problem further assumptions and prior

information need to be imposed. Many approaches have been proposed for the instantaneous

localization of the neural activity [36]. These approaches can be categorized into three main

classes, the dipole fitting techniques [102, 150, 149, 167], the distributed source models (DSM)

[39, 35, 58, 134, 97, 106, 23, 182] and the scanning techniques in which alogorithms from the field

of radar are used to recover the dipole field (e.g. MUSIC [104], beam-former [172]). In every

approach the selection of the preconditions and assumptions are crucial and need to be cho-

sen according to the neurophysiological information that we want to extract from the observed

measurements [102].

In the current study, we consider the DSM [7] which relates the dipole source distributions

linearly to the measured potentials on the scalp without requiring the number of sources to be

defined. The DSM was described in section 2.5.3. The solution space consists of all possible

source locations which are far more than the number of the sensors and therefore the linear

system is severely under-determined. In order to get a unique solution to the problem, prior

information (a penalty term) needs to be incorporated into the model. Our principle assumptions

are that the sources are sparse and that there is only a small number of active regions within

the brain. Our assumption is justified since focal brain activity can arise in such cases as in

pathological epileptic syndrome [122].

The minimum L2 norm estimate (MNE), weighted or not [39, 134], recovers source distri-

butions which are consistent with the observed data, however the solution is often too blurred

and thus does not reflect the actual focal activity. Focal source images are usually obtained by

imposing a sparsity-enforcing L1 norm penalty on the sources. However, the results tend to be

25



unstable and spatially scattered [168]. An additional drawback is that the L1 norm forces spar-

sity on the individual components of the dipole moments and thus the solver favors axes-parallel

dipole solutions which do not correspond to realistic physiological behaviour [42, 26].

In order to overcome this problem, the minimum current estimate (MCE), proposed by

Uutela et al. [168], suggested the prior estimation of the source orientations. The MCE al-

gorithm consisted of two step. In the first step, the MNE was employed for the estimation of

the source orientations. Subsequently, the dipole amplitudes were estimated by minimizing the

weighted L1 norm. The final result depended on the accuracy of the first step. The vector-

based spatiotemporal analysis (VESTAL) [54] applied the L1 norm to each source component

via an orientation bias-reduction scheme i.e. weighting factors were added in order to penalize

the dipole vector when it was close to the coordinates axes. In the cortically-constrained L2

minimum-norm problem ([83, 70]), the orientation was determined prior to L1 norm minimiza-

tion using both MNE and cortical anatomical information. The main difficulty arising in this

approach was that the precise knowledge of the subject’s cortical structure was essential.

Instead of applying an L1 norm penalty to the individual components, we employ the dipoles

strength penalty that is also referred as L1,2 norm [42, 131]. The idea of using the L1 norm

of the dipoles strengths has been previously stated (e.g. there is a first reference in [168]), as

it guarantees unbiased estimation of the dipole orientations and the solution is independent of

the rotation of the coordination system (see the rotationally invariant reconstruction proof in

[42]). Additionally, there is no requirement for intermediate steps. However, at that time, there

were technical difficulties and gaps in the knowledge related to the optimization methods for

general convex problems. Nowadays, the development of generic methods for the formulation

and modification of general minimization problems to convex optimization forms can enable

direct, accurate and fast reconstruction of sparse focal sources in the inverse EEG problem [11].

In particular, the sparse source reconstruction problem can be transformed to a second order

cone programming (SOCP) problem [89] which can be solved reliably and efficiently using one of

the state of the art optimization methods such as the interior point method, the active set method

or the dual augmented Lagrangian method [11]. Although these methods can potentially provide

accurate and fast solutions, their direct utilization is not always straightforward, practical or

even possible. Available software implementations are usually explicitly tailored to a specific

convex problem formulation. This limitation arise from the complexity and the variability of the

constraints, parameters and the formulation of the non-linear convex problem. In some cases,

the convex problem can be reformulated in such a way that it is compatible with an existing

software package, however, usually researchers face difficulties in specifying hidden parameters

and sometimes the solver is not thoroughly analyzed.

To the best of our knowledge, the previous publications related to the sparse source EEG

problem do not include explicit formulae or details either on the way that the algorithm was

implemented or the use of heuristic/empirical threshold or bounds (e.g. no details are given in

[131, 26, 42]). In this chapter, we rigorously describe, derive and analyze a solver for the sparse

source problem which employs robust stopping criteria. The proposed solver estimates the time-
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invariant source localization problem, solving the quadratic loss norm problem regularized by

the L1,2 norm. The solver uses the truncated Newton interior point method (TNIPM) [69].

The generic method in which our solver is based on, was developed by Boyd et al. [69] for the

solution of large scale L1 norm convex problem.

TNIPM was selected for the solution of the EEG sparse source problem because (i) this

algorithm can very efficiently deal with dense matrices (like the lead field matrix) [69], (ii) it is

faster compared to other interior-point methods that use direct or standard conjugate gradient

methods [72, 11] which have used previously in the EEG problem [138, 94, 131]. Furthermore,

the TNIPM performs comparably to the dual augmented Lagrange (DAL) and is simpler to be

applied [165]. Also, higher accuracy can be attained in a reasonable amount of time using the

TNIPM in contrast to the alternating direction method of multipliers (ADMM) which usually

converges slowly and has only modest accuracy [10].

Additionally, the TNIPM can solve efficiently large scale problems [69]. In previous ap-

proaches, dimensionality reduction was performed prior to the estimation in order to increase

the computation efficiency of the algorithms [94, 131]. Alternatively, the indirect estimation of

the source distribution by first approximating each weighted dipole with a linear combination

of spatial basis functions (called “dictionary”) and subsequently estimating the corresponding

coefficients of this basis expansion was proposed in [41]. This approach possibly can simplify

the problem, however the main challenge is the selection of the basis functions that recover

meaningful source distributions and balance smoothness and sparsity. So in conclusion, TNIPM

is more preferable for the solution of problems in 2D and 3D domains.

The structure of this chapter is as follows. First we give a general overview and the main

steps of the interior point method (IPM) and the truncated Newton version of it. Subsequently,

in section 3.2, we solve the problem of the quadratic loss function penalized with the weighted

L1,2 norm (dipole strengths penalty). We reformulate the problem to a convex second order cone

program (SOCP) and we employ the truncated Newton interior point method (TNIPM)[89, 2].

In particular, we approximate the SOCP using logarithmic Barrier Method [11] and we solve the

derived augmented logarithmic barrier cost function iteratively, applying the truncated Newton

method [43]. In addition, we define a dual problem and suggest the duality gap as a robust

stopping criterion of the IPM. We derive an upper bound for the useful range of the regularization

parameter of the penalty term [11]. Section 3.3 includes the description of the effect of the

absence of depth weighting factor in the penalty term and the selection of appropriate weights

for the reduction the tendency of the solver to misplace the sources in the superficial layers of

the domain [73, 134, 168]. Finally, we compare the reconstruction results using the weighted

L1,2, L1 and L2 norms. We show that the solution based on the L1,2 norm (dipole strength

penalty) can recover focal sources with gopd accuracy.
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3.1 An Interior Point Method for Convex Problems

We consider the general form of a non-linear convex problem

minimize
d

f(d) = f0(d) +

n∑

i=1

fi(d) (3.1)

where f0 : D → R is considered differentiable and convex while fi : D → R are considered convex

but not differentiable in a D real vector space. For this problem an optimal d∗ ∈ D exists. A

non-linear differentiable functional can be minimized using iterative methods [43]. For instance,

at each iteration we can approximate the minimizer of (3.1), dk+1 = dk + ∆dk by solving the

Newton system Hf (dk)∆dk = −∇f(dk) where Hf (dk) = ∇2f(dk) is the Hessian matrix at dk

and ∆dk the search direction, until it converges to a fixed point [43].

The solution of (3.1) by solving the Newton system is possible when fi are twice differentiable.

However, as we will see in section 3.2, fi function which corresponds to the dipole strength is not

a continuous differentiable function. Therefore, the Hessian and gradients cannot be estimated,

and the direct application of the iterative method is impossible. To overcome this, we employ

the interior point methodology [11]. First we approximate the functional with a new one which

is continuous and differentiable. Then, we can use an iterative method to estimate the minimizer

of the new functional which is an approximation to the actual solution.

3.1.1 Overview of the Logarithmic Barrier Method

The unconstrained non-differentiable convex problem (3.1) can be approximated by a convex

constrained problem using the variable-splitting method [11]. Therefore, a new variable ri is

defined, such as ri ≥ fi(d), and the problem becomes

minimize
(d,r)∈C

f0(d) +

n∑

i=1

ri

subject to ri ≥ fi(d), i = 1 . . . n,

(3.2)

where the feasible set C is defined as C = {d ∈ D, r ∈ R
n : ri − fi(d) ≥ 0 for i = 1, · · · , n}.

For the solution of (3.2) with the IPM we implicitly express the inequality constraint in the

objective, i.e.

minimize
(d,r)∈C

f0(d) +
n∑

i=1

ri +
n∑

i=1

I(fi(d)− ri), (3.3)

where I : R→ R is the indicator function defined as

I(fi(d)− ri) =

{
0, when ri − fi(d) ≥ 0

∞, otherwise
(3.4)
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The indicator function is not differentiable. However, it can be approximated by a logarithmic

function

Î(fi(d)− ri) = −(1/t) log(−(fi(d)− ri)), (3.5)

where t > 0 is a parameter which tunes the accuracy of the approximation [11]. Function Î is

convex, differentiable for ri− fi(d) > 0 and approximates the indicator function I for increasing

values of t.

Hence, problem (3.3) is approximated with the minimization problem

minimize
(d,r)

f0(d) +
n∑

i=1

ri − (1/t)Φ(d, r) (3.6)

where

Φ(d, r) =
n∑

i=1

log(ri − fi(d)) (3.7)

is called logarithmic barrier function. Term Φ(d, r) acts as a barrier which ensures that the

minimizer (d∗, r∗) of (3.6) is in the interior of the feasible set C. For t→∞, term Φ(d, r) affects

the minimization only if ri ≃ fi(d) due to the singularity of the logarithm. Instead of having

1/t, the objective function can be multiplied by t without affecting the solution. Thus, the

IPM for the constrained convex problem (3.2) is the solution of a sequence of the unconstrained

problems

minimize
(d,r)

Φt(d, r) = tf0(d) + t

n∑

i=1

ri − Φ(d, r) (3.8)

for various t > 0.

For given t > 0, the objective function (3.8) is convex and differentiable in the interior of

the feasible set C of (3.2). Thus, any local minimum is also a global minimum. With the IPM,

we solve a sequence of minimization problems (3.8) for increasing value of t. In particular, the

interior point algorithm based on the barrier function method consists of the two loops called

inner and outer loop, respectively. In the inner loop, the value of t > 0 is constant and we

estimate the solution of (3.8) denoted by (d∗(t), r∗(t)). The solution (d∗(t), r∗(t)) is usually

computed solving a Newton system. In the outer loop, the value of t is updated and problem

(3.8) can be solved again using as a starting point the previous estimated solution. The sequence

of the solutions (d∗(t), r∗(t)) for t > 0 is usually referred as the central path of the method [11].

Problem (3.8) is an approximation of the original problem (3.1). For large values of t, the

approximation improves and the optimal value of (3.8) converges to the minimum of (3.1). The

proof of this convergence can been found in appendix C. However, in IPM the value of t increases

progressively as the number of outer iterations increases. This is happening because the choice

of large initial t can cause numerical instabilities.

The algorithm terminates when a stopping criterion ǫtol (in Alg. 1) is satisfied. As a robust

stopping criterion, we can employ the so-called duality gap η between the primal problem (3.1)

and its dual problem [11]. The duality gap η is defined as the difference between the primal and
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the dual objective values at each iteration. The derivation of the dual problem will be rigorously

analyzed in section 3.2.2. As an example, (Fig. 3.1.a) shows how the duality gap progressively

decreases as the IPM converges. In Figure (3.1.b), we can see the corresponding values of the

primal and dual problems at each iteration. In Alg. 1, we show the basic steps of the IPM with

logarithmic barrier function.

Algorithm 1 Interior Point Method with Logarithmic Barrier

Initialization: t, (d, r) and ǫtol.
Repeat (Outer Loop):

1. Inner Loop: Minimize objective function Φt (3.8) and estimate (d
∗(t), r∗(t)).

2. Update (d, r).

3. Estimate dual problem and the duality gap η.
Quit if η < ǫtol

4. Update t.
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Figure 3.1: (a) Duality Gap and (a) optimal values of the Primal and Dual problem at each
iteration of the IPM for the EEG sparse focal source problem.

3.1.2 Inner Loop of IPM

The minimization of the objective (3.8) at step 1 of the Alg. 1 is the most computationally

expensive process, especially when we deal with large scale problems. Hence, a method which

balances the computational complexity and the convergence rate is preferable. For the solution

of (3.8) we use an iterative method which is more efficient than the direct method for medium

and large scale problems [43].

In the current implementation, we estimate the solution of (3.8) in two steps. First, we com-

pute the search direction denoted by (∆d,∆r), by approximately solving the Newton system
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HΦt(∆d,∆r) = −∇Φt where HΦt is the Hessian matrix of (3.8) at (d, r). The search direc-

tion is approximately solved using the Preconditioned Conjugate Gradient (PCG) method with

adjustable stopping criterion [72, 11].

Specifically, the PCG converges faster compared to other iterative methods (e.g steepest

descent [43]) and it is efficient to compute because at each iteration it requires only two matrix

vector multiplications and a small number of inner products [43]. The storage needs are very

modest as most of the variables are overwritten and no explicit representation of the Hessian is

required [43]. Moreover, the adjustable tolerance leads to an approximate solution of Newton

system by truncating the number of iterations while keeping an acceptable convergence rate [72].

The term Truncated Newton in IPM refers to the estimation of an approximate solution of the

Newton system using PCG which is terminated earlier than the convergence point.

In the second step, a line search is performed along the search direction (∆d,∆r) (damped

Newton method [43]) and we estimate a scalar s. The new solution becomes (d, r) := (d, r) +

s(∆d,∆r). The second step is important because the Newton system usually returns an unreli-

able search direction unless it is started close enough to the actual solution.

3.2 Focal Sources Reconstruction using TNIPM

In the EEG focal source imaging, we want to minimize the quadratic ‖Kd−v‖22 term regularized

by the L1,2 norm, i.e.

f(d) = ‖Kd− v‖22 + ‖d‖1,2, (3.9)

where d ∈ R
kn is the component-wise representation of the dipole distribution, k is the number

of components (k = 2 or 3 depending on the dimension of the problem), n is the number of

discretization points in the dipole distribution, K ∈ R
m×kn is the lead field matrix, m is the

number of measurements and v ∈ R
m the measured potentials (m < kn). With di, we denote

the dipole moment at location i. The L1,2 norm (also called dipole strength penalty) is defined

as

‖d‖1,2 = α

n∑

i=1

wi‖di‖2 =
n∑

i=1

wi

√√√√
k∑

j=1

d2i+(j−1)n, (3.10)

where α > 0 is a scaling parameter and wi > 0 are weighing factors. The L1,2 norm in (3.9)

restricts the solution to have only a small number of non zero amplitudes.

The functional in (3.9) is convex and thus an optimal minimizer d∗ exists, however it is not

differentiable. For the solution of problem (3.9) we transform it to one which has differentiable

objective and constraint functions, and subsequently we solve it using TNIPM described in

section 3.1.
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Problem (3.9) can be transformed to the convex Second Order Cone program (SOCP) [89],

minimize
(d,r)

‖Kd− v‖22 + α

n∑

i=1

ri

subject to ri > wi‖di‖2, i = 1, . . . , n

(3.11)

where r ∈ R
n
+. Then, SOCP is reformulated to an unconstrained problem using a barrier method

[11].

Let’s define the logarithmic barrier function for the constraints ri ≥ wi‖di‖2 of (3.11)

Φ(d, r) = −
n∑

i=1

log(r2i − w2
i ‖di‖22) (3.12)

where ri > 0 and r2i − w2
i ‖di‖22 > 0 for i = 1, . . . , n.

The associated interior point problem is the minimization of the weighted objective function

(3.11) augmented by the logarithmic barrier for the constraints, i.e.

minimize
(d,r)

Φt(d, r) = t‖Kd− v‖22 + tα

n∑

i=1

ri −
n∑

i=1

log(r2i − w2
i ‖di∗‖22), (3.13)

where t varies from 0 to ∞.

Function Φt is smooth and strictly convex and it has a unique minimizer (d∗(t), r∗(t)) for

each given value of t. For t > 0, the set of points (d∗(t), r∗(t)) which minimize (3.13) defines

the so-called central path of the IPM associated with problem (3.11). In IPMs, we compute a

sequence of (d∗(t), r∗(t)) for increasing values of t using the previously computed central points

[11]. The method is terminated when a stopping criterion is satisfied. In Appendix C.1, we show

that as t increases the minimum of Φt converges to the optimal value of (3.11) and consequently

to the optimum of (3.9). In the following section, we focus first on the solution of problem (3.13)

for given t (inner loop of the method).

3.2.1 Inner Loop of the TNIPM

Search Direction using Precondition Conjugate Gradient

For given t > 0, we solve (3.13) following two steps. First we compute the search direction

using the preconditioned conjugate gradient method (PCG). The search direction is defined as

∆p = [∆dT,∆rT]T ∈ R
(k+1)n with ∆d ∈ R

kn, ∆r ∈ R
n and T denoting the transpose. Then,

we update the solution, given in column vector, p = [dT, rT]T ∈ R
(k+1)n using the backtracking

line search [11].

In particular, we use the truncated Newton method [43] to estimate the search direction ∆p

as an approximate solution to Newton system

HΦt(p)∆p = −gΦt(p), (3.14)
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whereHΦt(p) = ∇2Φt(d, r) ∈ R
(k+1)n×(k+1)n is the Hessian and gΦt(p) = ∇Φt(d, r) ∈ R

(k+1)n the

gradient of Φt. The truncated Newton method employs the PCG solver with pre-conditioner

PPCG ∈ R
(k+1)n×(k+1)n and adjustable tolerance ǫPCG to balance the trade off between the

convergence rate and the computational effort. In other words, it estimates an approximate

solution of (3.14) by truncating the number of iterations while keeping an acceptable convergence

tolerance. In the current algorithmic implementation, the PCG terminates when the maximum

number of iterations NPCG
max is exceeded or the relative tolerance of the residual is less than ǫPCG.

Details about the selection of ǫPCG are given in section 3.2.4.

We employ a pre-conditioner to accelerate the convergence. Even though the pre-conditioner

requires an extra matrix-vector multiplication per iteration, it can accelerate the conjugate

gradient method because the new transformed linear system P−1PCGHΦt∆p = −P−1PCGgΦt(p) has

more clustered eigenvalue distribution (i.e. lower condition number and more stable system)

and thus the algorithm converges with fewer iterations [43].

The pre-conditioner we employ here is given by PPCG = 2t diag(KTK) +∇2Φt(d, r) which

is similar to the pre-conditioner proposed in [69]. The pre-conditioner improves the condition

of the Hessian matrix HΦt . For instance, in a test case we saw that the condition number of

HΦt was kH ≈ 103 and the preconditioned Hessian P−1PCGHΦt had condition number kPH = 643

at the 16th outer loop iteration of the IPM (Alg. 3). Details about the PCG algorithm and the

explicit formulae of the pre-conditioner and Hessian of (3.14) can be found in Appendix C.2.2.

Backtracking Line Search

We can make the truncated Newton method more robust by performing a line search along the

estimated direction of the Newton step ∆p = [∆dT,∆rT]T. The new solution is p := p + s∆p

where s ∈ R
+ is the step size estimated by the Backtracking line search [69].

In backtracking line search (BLS) s = βρ, where ρ ≥ 0 is the smallest integer that satisfies

Φt(p+ βρ∆p) ≤ φt(p) + αβρ∇Φt(p)∆p (3.15)

where α ∈ (0, 0.5) and β ∈ (0, 1). The backtracking line search algorithm is the following:

Algorithm 2 Backtracking Line Search (BLS)-Estimate the step size s

Initialize: ρ = 0, (α, β) = (0.01, 0.5), s = 1.

Set: estimated search direction ∆p and p (PCG results).

Repeat:

Check if condition (3.15) is satisfied. If Yes then Quit.

Else: update p := p+ s∆p, ρ := ρ+ 1, s := βρ .
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3.2.2 Outer Loop Stopping Criterion: Duality Gap

The convex problem (3.9) is called the primal problem. For the estimation of a robust stopping

criterion, we need to derive a Lagrange dual of the primal functional (3.9) [11]. The Lagrange

dual function is always concave and yields lower bounds on the optimal value of the primal

problem (3.9) which can be used as non-heuristic criterion for the termination of the algorithm

[50, 11]. Here, we derive a Lagrange dual function of the primal problem (3.9). Subsequently,

we use the difference between the values of functional (3.9) and its dual function as a stopping

criterion. This difference is the so called duality gap. The algorithm terminates when the duality

gap is less than a given tolerance.

In order to estimate the dual function, we elect to reformulate the problem (3.9) as an

equality constrained problem. In particular, we introduce a new variable z ∈ R
m and the

equality constraint z = Kd−v. The functional in (3.9) can be written with the equal expression

f̃(d, z) = zTz + α

n∑

i=1

wi‖di‖2

subject to z = Kd− v

(3.16)

where f̃ : Rkn × R
m → R.

Let us redefine the primal problem as

p∗ := min
d∈Rkn z∈Rm

f̃(d, z)

subject to z = Kd− v
(3.17)

where p∗ denotes the optimal value.

The Lagrangian of (3.17) is

L(d, z, ν) = zTz + α
n∑

i=1

wi‖di‖2 + νT(Kd− v − z), (3.18)

where ν ∈ ℜm is the Lagrange multiplier.

If C is the feasible set of (3.17) i.e. C = {(d, z) ∈ R
kn × R

m : z = Kd − v} then by

construction

f̃(d, z) = L(d, z, ν) ∀ (d, z) ∈ C. (3.19)

We obtain the Lagrange dual function g̃ : Rm → R by minimizing the Lagrangian over (d, z) ∈
R
kn × R

m

g̃(ν) = inf
(d,z)

(
zTz + α

n∑

i=1

wi‖di‖2 + νT(Kd− v − z)

)
(3.20)

From (3.17) and (3.19) we have

p∗ = min
(d,z)∈C

f̃(d, z) = min
(d,z)∈C

L(d, z, ν) ≥ g̃(ν) (3.21)
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which shows that the dual function (3.20) yields lower bounds on the optimal values of problem

(3.16) for feasible points (d, z). This bound has a practical meaning if we can make sure that

the dual problem is feasible, i.e g̃(ν) > −∞ for some ν. We define as dual feasible points ν, the

values of ν which ensure that g̃(ν) > −∞. If we can construct a dual feasible point then we

can ensure a finite lower bound on the optimal value of (3.16) and thus an accurate stopping

criterion for the TNIPM (Alg. 3). Next, we derive an explicit formula for the dual problem

and subsequently we construct dual points ν, which give us finite bounds g̃(ν). Additionally, we

shall see that the dual points are explicitly associated with the primal feasible points (d, z) ∈ C,

hence when we have an estimate for the values of (d, z) then we can directly estimate the value

of ν [11].

We re-write the Lagrange dual function (3.20) as

g̃(ν) = inf
z

(

zTz − νTz
)

+ inf
d

(

α
n

∑

i=1

wi‖di‖2 + νT(Kd)

)

− νTv. (3.22)

The first term of (3.22) can be denoted as L(z) = zTz− νTz and it is quadratic with respect to

z. Thus, it has minimum for dL(z)
dz = 0⇒ z = 0.5ν.

By substituting z = 0.5ν in (3.22) we obtain

g̃(ν) = inf
d

(

α
n

∑

i=1

wi‖di‖2 + νT(Kd)

)

− 0.25νTν − νTv. (3.23)

Next, we find such a condition that

min
d

(

α

n
∑

i=1

wi‖di‖2 + νT(Kd)

)

> −∞ (3.24)

We set Kd =
∑n

i=1

∑k
j=1K

(i+(j−1)n)di+(j−1)n where K(i+(j−1)n) ∈ R
m×1 is the (i+ (j − 1)n)th

column of the lead field matrix and the dipole strength term equals to ‖di‖2 =
√

∑k
j=1 d

2
i+(j−1)n.

So, the left-hand side of (3.24) becomes

min
d





n
∑

i=1

[αwi

√

√

√

√

k
∑

j=1

d2i+(j−1)n +
k

∑

j=1

νTK(i+(j−1)n)di+(j−1)n]



 . (3.25)

Using the following linear transform

pi =

k
∑

j=1

νTK(i+(j−1)n)di+(j−1)n (3.26a)

q
(ul)
i = νTK(i+(u−1)n)di+(l−1)n − νTK(i+(l−1)n)di+(u−1)n, (3.26b)

where l = 1, . . . , k − 1 and l < u ≤ k, expression (3.25) is transformed into a form that enables

35



the estimation of the minimum1. Particularly, by applying the linear equations, (3.25) becomes

min
p,q




n∑

i=1

αwi

√
p2i +

∑k
l<u q

2(ul)
i√

k∑
j=1

(νTK(i+(j−1)n))2

+ pi




. (3.27)

The minimum of (3.27) is finite iff

αwi√
k∑

j=1
(νTK(i+(j−1)n))2

> 1 for all i = 1, . . . , n (3.28)

Therefore, the minimum of (3.24) is finite and equals zero when

α >




√
k∑

j=1
(νTK(i+(j−1)n))2

wi




i=1:n

. (3.29)

The dual problem is defined as

maximize g̃(ν) = −0.25νTν − νTv

subject to α >




√
k∑

j=1
(νTK(i+(j−1)n))2

wi




i=1:n

.
(3.30)

A dual feasible point ν needs to satisfy the constraints of (3.30). We construct the following

dual point

ν = λz

where λ = min





α
wi√

k∑
j=1

(zTK(i+(j−1)n))2

for i = 1, · · · , n





(3.31)

and z = 2(Kd−v). Parameter λ ensures that the constraints of (3.30) are applied and therefore

ν is a dual feasible point.

1Let assume that instead of (3.25), we have the simplified 2D equivalent expression
√

x2 + y2+ax+ by. Then,
in this case (3.26a) becomes p = ax+ by and (3.26b) q = bx− ay and the expression can be linearly transformed

to
√

p2+q2

a2+b2
+ p. From the transformed equation, we can see that the minimum of the equation is finite and equal

to 0 when 1√
a2+b2

> 1 otherwise it is minus infinity.
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We define the duality gap between (3.17) and (3.30) as

η = ‖Kd− v‖22 + α

n∑

i=1

wi‖di‖2 − g̃(ν) ≥ 0 (3.32)

The duality gap η ensures that the estimated minimizer of (3.16) cannot be more than η-

suboptimal (see appendix C.1 for further details). Also frequently, the relative duality gap

defined as the fraction η/g̃(ν) is used and the algorithm terminates when η/g̃(ν) ≤ ǫtol where

ǫtol is selected sufficiently small.

3.2.3 Optimality Condition

In Tikhonov regularization, the penalty parameter varies over [0,+∞), the solution converges

to zero for α → +∞ and the solution equals to (KTK)†KTv when α is zero [40]. However, in

problem (3.9), the range of the parameter α is different and it shows different limiting behaviour.

In particular, for α → 0 the solution satisfies the minimum sum of the dipole strengths among

all the possible solutions of KT(Kd− v) = 0, and the solution is d = 0 when α is greater than

a finite upper limit [69].

In this section, we derive the upper bound of the parameter α for problem (3.9). This

upper bound is also referred to as the optimality condition of the convex problem because it

guarantees that the convex functional (3.9) has an optimal solution at zero for the values of α

equal or greater than this upper bound [11].

In the following paragraphs, we show that the upper bound for the scaling parameter is

αmax =

∥∥∥∥∥

√

k
∑

j=1
[2vTK(i+(j−1)n)]

2

wi

∥∥∥∥∥
∞
, (3.33)

where K(i+(j−1)n) is a column of the lead field matrix K ∈ R
m×kn, v the observations and norm

‖ · ‖∞ = maxi | · |, for i = 1, . . . , n [100].

For the derivation of (3.33), we use the first order optimality condition for convex functionals

[11]. The functional in (3.9) is not differentiable at zero and thus we estimate the sub-differential2

of (3.9).

The necessary and sufficient condition for optimality is that

0 ∈ ∇d

(

‖Kd− v‖22
)

+ α∂d





n
∑

i=1

wi

√

√

√

√

k
∑

j=1

d2i+(j−1)n



 (3.34)

First we compute the sub-differential3 ∂d





√

√

√

√

k
∑

j=1

d2i+(j−1)n



 .

2Sub-differentials generalize the derivative to functions which are not differentiable everywhere in their domain
of definition. The sub-differential of a function is set-valued. For the definition see appendix C.1.1.

3We estimate to sub-differential because the dipole strength ‖di‖2 is not continuously differentiable (i.e at
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The sub-differential with respect to the dipole component di+(l−1)n for l = 1, . . . , k is

∂

√
d2i+(l−1)n +

∑

j 6=l

d2i+(j−1)n

∂di+(l−1)n
=





U
(l)
i di+(l−1)n > 0

−U (l)
i di+(l−1)n < 0

(−U (l)
i , U

(l)
i ) di = 0

(3.35)

where U
(l)
i =

|di+(l−1)n|
√

√

√

√

√

√

k∑

j=1

d2i+(j−1)n

and (·, ·) denotes the open interval.

From (3.35) and (3.34) the differential of ∇d

(

‖Kd− b‖22
)

with respect to the dipole compo-

nent di+(l−1)n equals to

[

2(K(i+(l−1)n))T(Kd− v)
]

i
∈











αwi U
(l)
i di+(l−1)n > 0

−αwi U
(l)
i di+(l−1)n < 0

αwi(−U (l)
i , U

(l)
i ) di = 0

(3.36)

where K(i+(j−1)n) is the (i+ (j − 1)n)th column of K.

From the previous equation we have that d = 0 iff

|2vTK(i+(l−1)n)| ≤ αwi U
(l)
i (3.37)

for l = 1, . . . , k and i = 1, . . . , n. The sum

k
∑

l=1

U
(l)2
i =

1
k

∑

j=1

d2i+(j−1)n

k
∑

l=1

|di+(l−1)n|2 = 1. (3.38)

So, term U
(l)
i can be eliminated from the previous inequalities i.e

k
∑

l=1

[

2vTKi+(l−1)n
]2
≤ α2w2

i

k
∑

l=1

U
(l)2
i = α2w2

i . (3.39)

Finally, we obtain
√

k
∑

l=1

[

2vTKi+(l−1)n]2

wi
≤ α, (3.40)

for i = 1, . . . , n. Hence, for values of α equal or greater than the left hand side of the inequality

(3.40) the solution of (3.9) is zero.

zero, the partial derivatives do not exist).
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3.2.4 TNIPM Algorithm for Sparse Sources

In this section, we give an overview of the TNIPM algorithm for the solution of (3.9) We describe

the details concerning about the initial values of (d, r), the updating rule t, the initial values of t

and the stopping criteria. The TNIPM algorithm is described in Alg. 3. The algorithm consists

of two loops, the outer and inner loop. In the inner loop, the value of t > 0 is constant and we

estimate the solution (d∗(t), r∗(t)) of (3.13) using the PCG and line search. In the outer loop,

the solution and the value of t are updated.

Algorithm 3 TNIPM for Sparse Source Reconstruction

Initialization: d := 0, r := 1, relative tolerance ǫtol = 10−4,
scaling parameter α < αmax where αmax is defined in (3.33) and t := min{1/α, n/η}.
Stopping criteria for:

Outer loop: ǫtol
Inner (PCG) loop: Maximum number of iterations NPCG

max = 600 or ǫPCG defined in (3.42)
Outer loop:

1. Inner loop

a. PCG: Compute search direction [∆d,∆r] by solving (3.14).

b. BLS: Estimate the step size s using (Alg.2) where (α, β) = (0.01, 0.5)

2. Update [d, r] := [d, r] + s[∆d,∆r] and estimate z := Kd− v.

3. Estimate the dual feasible point ν (3.31) and the dual problem g̃(ν) (3.30) and the
duality gap η (3.32).
Quit if η/g̃(ν) ≤ ǫtol

4. Update t (3.41)

t-Update Rule

The most frequently used updating rule is t := µt where µ is a constant number greater than 1

[11]. However, the main drawback of this rule is that the value of µ influences the performance

of the algorithm in such way that when µ is large the value of t changes rapidly which increases

both the number of the PCG and line search iterations. On the other hand, for µ close to 1,

we have a very slow convergence of the algorithm to the optimal value [11]. To balance the

trade off between the PCG cost and overall convergence, the update rule can be designed in a

more sophisticated way [72]. Better performance can be achieved if we keep t constant, until Φt

(3.13) is nearly minimized, i.e. ‖∇Φt‖2 ≃ 0 and then increase the value of t by a factor µ > 1

([72, 69]).

Therefore, we use the the following rule

t :=

{
max{µmin{n/η, t}, t}, s ≥ smin

t s < smin,
(3.41)
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where s ∈ (0, 1] is the line search step and µ a constant between 2 and 50 [11]. In the current

application we found good performance when smin = 0.5 and µ = 4. Further explanation about

the selection of the rule (3.41) can be found in appendix (C.2.4).

Initial Values

We select the starting value d = 0 which is close to the desired solution as we want most of

the dipole sources to be equal to zero. The choice of r = 1 guarantees the constraints of (3.11)

and that the logarithmic barrier (3.12) exists. The initial values do not affect the performance

significantly, however they need to be selected in such a way that the constraints are satisfied.

The initial value of t is t0 = min{1/α, n/η} where α is the scaling parameter of (3.9), n the

number of the dipoles and η the initial value of the duality gap (3.32) for [d, r] = [0, 1]. The

value 1/α is estimated by minimizing ‖1/t∇Φt(0, 1)‖2 However, when α is selected to be very

small, t0 is very large and this results in an increase in the condition number of (3.14). For that

reason, we select the initial value of t0 = min{1/α, n/η}.

Stopping Criteria

The performance of the algorithm depends on the selection of the tolerance rate ǫPCG of PCG.

Low precision may cause failure in convergence and a very low duality gap reduction at each

iteration. On the other hand, demanding too fine precision makes the computation too slow

and, in effect, eliminates the truncation rule. A good overall performance can be achieved with

the adjustable tolerance [69],

ǫPCG = min

{
0.1,

0.5η

min{1, ‖gΦt‖2}

}
, (3.42)

where η is the duality gap (3.32) and gΦt is the gradient of (3.13) at the current iteration.

Tolerance ǫPCG ensures that the precision is not worse than 10% at the early stages of the

algorithm where η is large and gives more accurate solution as the duality gap decreases.

The algorithm terminates when the the fraction of the duality gap over the value of the dual

functions falls below ǫtol. We selected ǫtol = 10−4 which gives a good precision.

Selection of Parameter α

The value of parameter α can change significantly the performance of Alg. 3 (see details in

[69, 72]). The number of PCG iterations (step 1.a of Alg. 3) varies with α. When α is near

αmax then the solution is strictly sparse i.e. only a very small number of dipoles are non-zero,

the algorithm converges fast and only a small number of PCG iterations is required. When the

scaling parameter is too low, the solution includes many non-zero amplitudes. In this case, PCG

can work slower.

Intuitively we can understand this behavior of the PCG algorithm from Fig. 3.2. For large

values of α, the PCG algorithm slides down directly to the minimum of the functional in (3.9)
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which is shaped like paraboloid bowl. On the other hand, when α is small, the shape of functional

is more flat, which results in rocking back and forth along the valley of the bowl before eventually

settling at the lowest point. In addition, for low α, the conditioning of the problem (3.9) worsens

as a result of the high condition number of the lead field matrix and the low influence of the

penalty term. Ill-conditioning is inherited by the Hessian matrix (3.14). Consequently, for small

values of α, the Hessian has a high condition number and a non-clustered eigenvalue spectrum

which leads to a slower convergence of the PCG algorithm. The pre-conditioner can accelerate

the converge of PCG, however for very low α this improvement is not significant [11]. In the

current implementation we selected values in the range [0.1αmax, 0.001αmax]. This particular

range seemed to work well for the reconstruction of single or few focal sources as will see later.

d
y

(1)
d

x

(1)

a=0.5a
max

a=0.005a
max

F
s
(d)

Figure 3.2: Shapes of f(d) for large and small scaling parameter.

3.3 Weights for Depth Compensation

In this section, we define the weighting factors wi of the penalty term in (3.9). The weights are

important for the accurate localization of sources. In particular, in the absence of any prior,

the solution of the under-determined system Kd = v results in a dipole distribution with the

lowest overall power and an exact fit to the measured observations, also referred to as minimum

norm estimate (MNE). The MNE is prone to misplace deep sources close to the surface. This

happens because less power is required for a superficial source distribution than for deep sources

to give rise to the same surface potential values since the electric potentials fall quadratically

with respect to the distance between the source and the sensors. Additionally, when we employ

the L1,2 norm and wi = 1, the solution is focal but there is no restriction related to the depth

of the source. Hence, for instance, instead of an actual deep source, the solver may result in

several scattered superficial sources.

There are several authors who have suggested different weights in order to reduce the source

misplacement. The first approach was to weight the dipole activity in the penalty term with the

inverse of the Euclidean norm of the columns of the lead field matrix [73, 134, 168]. The reason
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for this selection is because, by construction, the columns of the lead field matrix express the

potential contribution of the dipole locations to the measured observation. Unfortunately, this

approach did not seem to work very well.

In sLORETA [133], the depth compensation was treated by the post hoc normalization of

the minimum norm solution d̂. Specifically, the standardized power distribution was estimated

as d̂Ti (Rii)
−1d̂i for i = 1, . . . , kn where Rii were the diagonal elements of the resolution matrix

defined as

R = KT(KKT)†K, (3.43)

where K is the lead field matrix and † is the Moore-Penrose pseudo-inverse [100]. From the

probabilistic point of view, it can been shown that R coincides with the covariance of the

maximum likelihood (ML) (or equivalently the MNE) estimate [133]. The diagonal elements

of R are variances which correspond to each dipole component. We can see that the variances

differ depending on the depth i.e. we have higher variances closer to the surface and very low

variances deeper in the domain and thus the MNE estimate favours more intense superficial

sources (Fig. 3.3). The standardization of the estimate with the variances reduces the depth

biased effect. However, the sLORETA gives a power distribution and not dipole distribution

and works well only for a single blurred source. In [42], it was suggested using the sLORETA

variances, Rii, in the penalty term. The source activity at locations with high variance were

penalized with higher weighting factors than locations with low variance. However, it was not

stated clear how or why these precise weights were selected.

Figure 3.3: (Left image) The normalized variances of the dipole locations with respect to depth
for the ML estimate (equivalent to MNE). (Right image) The marginal posterior density of
a dipole which is located deep (in red) in the domain and the marginal posterior of a dipole
of a superficial location (in blue). Without any prior information, the ML estimate favours
superficial sources. This can be explained with the marginal distributions. More precisely, if the
same measurements are produced by either a small superficial dipole or a large dipole deeper in
the domain, then from the marginal distributions we can see that the probability of the small
superficial source is much higher than the probability of the big deep source.
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3.3.1 Weight Estimation using Bayesian Analysis

In the following text, we use Bayesian analysis to estimate the weights wi in the penalty term

(3.9). Our aim is to reduce the high variances in the superficial locations and to increase the

variances in deeper locations, and therefore to reduce the tendency of the solver to give solutions

mainly close to the boundaries. The problem is solved indirectly by estimating first the variances

of the prior that is considered as Gaussian given the posterior variances. The posterior variances

were selected to be equal to the inverse of the variances of the maximum likelihood (ML) estimate

in order to allow the dipole strength to increase with respect to the depth. Subsequently, the

estimated Gaussian prior variances are used to derive the weights of the L1,2 prior model given

by π(d) ∝ exp

(
−α

n∑
i=1

wi‖di‖2
)
.

Selection of Posterior Variances

Let us assume that the EEG observation model is

v = Kd+ ξ, ξ ∼ N (0,Γξ) (3.44)

where K ∈ R
m×kn, d ∈ R

kn and ξ ∈ R
m is the additive measurement noise with covariance

Γξ = γξI
m×m (where Im×m is the identity matrix).

The posterior of the dipole distribution d is

π(d|v) ∝ π(v|d)π(d) (3.45)

where

π(v|d) ∝ exp

(
−1
2
(Kd− v)TΓ−1ξ (Kd− v)

)
(3.46)

is the likelihood density and π(d) the prior.

We begin our analysis with the case where we do not have any prior information. This case

coincides with the MNE and, in probabilistic terms, is the ML estimate. The solution in this

case is given by

d̂ML = KT(KKT)−1v. (3.47)

From (3.45) and (3.46) the corresponding covariance matrix is

ΓML = (KTΓ−1ξ K)† (3.48)

By construction ML favors shallow sources even though the same observed measurements can

be explained by strong dipoles deeper in the domain. Intuitively, we can understand this by

observing the variances of the dipole locations with respect to depth in Fig. 3.3. A deep source

has a very low variance compared to a superficial source. However, a deep source must be much

more intense than a superficial to give rise to the same measurements, as the strength of the

dipole is reduced quadratically with the distance. This means that the low variance restricts
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the power range of a deep source making a deep source very unlikely.

We can compensate this if the variances of the posterior are selected in such a way that they

allow the dipole strength to increase quadratically with respect to the depth. There are different

ways to achieve this. One of these is to choose the inverse of the ML variances as the posterior

variances (see Fig. 3.4). This choice takes into account apart from the depth, the conductivities

and all the properties that are included in the lead field matrix. For the estimation of the ML

Figure 3.4: (Left image) The selected variances (normalized) for each dipole location with
respect to depth. The selected variances are the inverse variances of the ML estimate. (Right
image) Marginal posterior densities for a dipole component in a deep and superficial location
considering Gaussian approximation. Our aim is to reduce the depth bias. This can be achieved
if the probability of a source distribution with maxima deeper in the domain to be as equal as
possible to the source distribution with maxima in superficial layers for given measurements.
Accordingly, the type of the prior model e.g. sparce/focal or blurred property can define which
distribution will be selected.

variances, diag(ΓML) = γ
(i)
ML, we select to run simulations (Alg. 4) that require the solution

of a smaller linear system instead of estimating (3.48 which requires the inversion of a large

ill-conditioned matrix.

Algorithm 4 Estimate Variances of the ML estimate

Repeat l = 1 : Ns times:

1. Draw dipole sample d(l) ∼ N (0, αIkn×kn) and noise sample ξ(l) ∼ N (0, γξIm×m)

2. Estimate: v(l) = Kd(l) + ξ(l)

3. Solve: d̂(l) = KT(KKT)−1v(l)

Estimate covariance matrix: ΓML =
1

Ns−1
Ns∑
l=1

(d(l) − d∗)(d(l) − d∗)T where d∗ =

Ns
∑

l=1
d(l)

Ns
.
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Estimation of the Depth Weights

The depth weights of the L1,2 norm are derived based on the posterior variances derived in

the previous section. For the estimation of the weights (variances) of the prior model, an

analytical equation which relates the weights (variances) of the prior model with the posterior

variances is usually required. However, in the case of the L1,2 norm prior, the posterior covariance

matrix cannot be written in a closed form (expression). In this case the problem can be solved

indirectly. First, we consider a Gaussian prior that gives us an analytical expression for the

posterior covariance matrix that includes the prior parameters. In practice, considering Gaussian

distributions, the posterior and prior variances lead to a set of non-linear equations. Therefore,

the Gaussian prior variances can be estimated based on the posterior variances. Finally, the

Gaussian prior variances are used to estimate the weights of the L1,2 norm prior model.

We assume that the prior in (3.45) is Gaussian π(d) ∝ exp
(

−1
2d

TΓ−1d d
)

with zero mean

and Γd covariance matrix. The covariance matrix has non-zero entries only on the diagonal i.e.

Γd = α−2diag(γ(i)d ) for i = 1, . . . , kn where α is a scaling factor. The posterior density (3.45)

becomes

π(d|v) ∝ exp

(

−1
2
(Kd− v)TΓ−1ξ (Kd− v)

)

exp

(

−1
2
dTΓ−1d d

)

. (3.49)

By multiplying the exponential terms of the likelihood and prior and completing squares we

obtain

π(d|v) ∝ exp

(

−1
2
(d− d∗|v)

TΓ−1d|v(d− d∗|v)
T

)

, (3.50)

where the posterior mean d∗|v and covariance Γd|v are

d∗|v = (KTΓ−1ξ K + Γ−1d )−1KTΓ−1ξ v

Γd|v = (KTΓ−1ξ K + Γ−1d )−1.
(3.51)

The posterior variances depend on the lead field matrix K, the covariance matrix Γξ and the

prior variances γ
(i)
d .

The diagonal entries of the posterior covariance (3.51) were selected to be equal to the inverse

of the diagonal entries of the estimated ML covariance, i.e.

diag((KTΓ−1ξ K + Γ−1d )−1) = diag(γ
(i)
ML)

−1. (3.52)

The prior variances γ
(i)
d are estimated solving the system (3.52). By employing the matrix

inversion lemma [100] the covariance matrix Γd|v can be rewritten as

(KTΓ−1ξ K + Γ−1d )−1 = Γd − ΓdK
T(Γξ +KΓ−1d KT)−1KΓd. (3.53)

From (3.52) and (3.53)

diag(Γd − ΓdK
T(Γξ +KΓ−1d KT)−1KΓd) = diag(γ

(i)
ML)

−1. (3.54)
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So, from (3.54) a set of non linear equations for i = 1, . . . , kn can be obtained, given by

α2

γ
(i)
ML

= γ
(i)
d − γ

2(i)
d K(i)TMK(i) (3.55)

where M = α−2(Γξ +KΓdK
T)−1 and K(i) is the ith column of K.

The variances γ
(i)
d are estimated by minimizing

G(γd) =
1

2

kn∑

i=1

(rs(i))2 (3.56)

where rs(i) = α2

γ
(i)
ML

− γ
(i)
d + γ

2(i)
d K(i)TMK(i). We estimated γ

(i)
d using Levenberg-Marquardt

(LMA) algorithm (see Alg.6 in appendix C.3). The next step is the estimation of the weights in
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Figure 3.5: (a) 2D Gaussian prior, (b) L1,2 norm prior .

the L1,2 norm prior. The L1,2 norm prior is given by

π(d) ∝ exp

(
−α

n∑

i=1

wi‖di‖2
)
. (3.57)

We can set ‖di‖2 = ri and the prior for the dipole strength at location i using ri can be written

as

π(ri) ∝ exp (−αwiri). (3.58)

We approximate the standard deviation
√
γri of the prior π(ri) at location i with the corre-

sponding Gaussian prior standard deviations of the dipole components

√
γ
(i+(j−1)n)
d at the same
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location according to

γri = 2α−2

k∏
j=1

γ
(i+(j−1)n)
d

k∑
j=1

γ
(i+(j−1)n)
d

, (3.59)

where j = 1, . . . , k. In Fig 3.5, we see the Gaussian and the corresponding L1,2 prior densities

at location i when the relationship (3.59) holds.

The variances of the prior π(ri) at location i is

γri = c

∫ ∞

0
(ri − r∗i)

2 exp (−αwiri) dri

= 2c
1

α3w3
i

− 2c
r∗i

α2w2
i

+ c
r2∗i
αwi

=
1

α2w2
i

(3.60)

where r∗i = c
∫∞
0 ri exp (−αwiri) dri =

c
α2w2

i

and from
∫∞
0 c exp (−wiri) dri = 1⇒ c = αwi .

From (3.60) and (3.59) the weights are

wi =

√√√√√√√√

k∑
j=1

γ
(i+(j−1)n)
d

2
k∏

j=1
γ
(i+(j−1)n)
d

(3.61)

The estimated variances and the corresponding weights of the L1,2 prior with respect to the

depth are shown in Fig. 3.6. The estimated weights force the sparse source solver to be less

Figure 3.6: Variances of candidate source locations and the corresponding weights with respect
to depth for the L1,2 norm prior.

prone to favor superficial sources. In particular, with these weights the variances are higher

for deep source locations and lower for shallow locations. In this analysis, there was only one

weight factor for every candidate source location and the suggested approach works well when

the estimated variances of the dipole components at a location i are in the same range. It would
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be worth studying whether the use of different weights for x- and y- components improve the

result.

3.4 Results and Discussion

3.4.1 Comparisons and Evaluation

In this section we describe the set up of the simulations that evaluate the efficiency of the

TNIPM algorithm with L1,2 norm penalty to recover focal sources. We compare the obtained

results with the solutions of the quadratic loss function ‖Kd− v‖2 augmented with the L2 and

L1 norm priors respectively.

The potential measurements v were obtained from 32 point sensors equally spaced around

the boundary of a 2D domain

v = K̄d̄ (3.62)

where lead field matrix K̄ ∈ R
m×2n̄ and d̄ ∈ R

2n̄ is the simulated dipole vector with only few

non-zero peaks. For the forward and the inverse model we use meshes with different number of

nodes, i.e. the forward mesh is finer than the inverse one in order to decrease the dimensionality

of the inverse problem and to avoid inverse crimes4.

Then, we compare the solution from the following three functionals for given v. First, we

estimate the solution given by the minimization of the so called L2 norm model, i.e.

d̂L2 := min
d
‖(v −Kd)‖22 + αL2

n0∑

i=1

w2
i ‖di‖22, (3.63)

where K ∈ R
m×2n0 with n0 < n̄ and d = P d̄ ∈ R

2n0 where P is the projection operator from

the fine forward mesh to the inverse mesh. The penalty term is ‖di‖22 =
∑1

j=0 d
2
i+jn0

.

Next, we compute the solution of the L1 model

d̂L1 := min
d
‖(v −Kd)‖22 + αL1

N0∑

i=1

wi‖di‖1, (3.64)

where ‖di‖1 =
∑1

j=0 |di+jn0 |.
The solution of the L1,2 model is given by

d̂L1,2 := min
d
‖(v −Kd)‖22 + αL1,2

n0∑

i=1

wi‖di‖2, (3.65)

where ‖di‖2 =
√∑1

j=0 d
2
i+jn0

.

4The term “inverse crimes” is used in [66] and it is referred to the numerical method contain features that
“effectively” lead to a “less ill-posed” inverse problem than it actually is and consequently yielding optimistic
results. In practice, an “inverse crime” is committed in cases where the discretization and lead field matrix of the
forward model are the same as the ones used in the inverse problem.

48



For the solution of the L2 and L1 models we used the CVX toolbox [52]. The solution of

the L1,2 model is estimated using the TNIPM (Alg. 3). The weights wi were the same for the

three models and estimated as was described in section 3.3. The scaling parameter αL1 in (3.64)

is was equal to αL1 = cαmaxL1
where αmaxL1

= maxi

{
(2KTv)i

wi

}
for i = 1, . . . , 2n0 [69]. The

scaling parameter in (3.65) is αL1,2 = cαmaxL1,2
and it is lower than the bound (3.33). For the

2D case, we can rewrite the upper bound (3.33) as

αmaxL1,2
= max





[√
(2KT

x v)
2 + (2KT

y v)
2
]

i

wi
for i = 1, . . . , n0





(3.66)

where (Kx,Ky) = K and index i denotes the ith element of the vector (·). The constant c

is selected to be in the interval [0.01, 0.001]. The scaling parameter αL2 of the L2 model was

selected after visual inspection. We noticed that the L2 models gives the best possible results

when parameter αL2 is close to the value of αL1,2 .

For the evaluation of the results we employ the earth mover’s distance (EMD) metric [145].

The EMD can be used as a measure of disagreement between the simulated and the estimated

dipole distribution when there are only few non-zero values. Also, it can be used when the actual

distribution has only few non-zero values but the inverse solution is highly dispersed. Thus, the

EMD is a good metric both for the L1 and L1,2 models (sparsity constraints) as well as the L2

model which recovers more blurred sources. The EMD is defined in detail in section 5.3.5.

3.4.2 Circular model

In this section we show the results for one, two, three focal source reconstructions and a case

with ten focal sources. We use the three layer circle model both for the forward and inverse

model with lead field matrices having conductivity values equal to 0.33/0.015/0.33 (S/m) for

the scalp/skull/brain respectively. In these simulations there was no additive noise.

In the following figures, the small images on the left hand side show the test case with the

actual dipole distribution. The location of the simulated dipole is marked with a blue circle

and the orientation with a small blue line. The remaining images, starting from left, show the

reconstruction solution using L2 prior model (3.63), L1 model (3.64) solved using CVX toolbox

[52] and L1,2 prior model by employing the TNIPM (Alg. 3). The blue marker x shows the

locations of actual focal sources.

For the test cases, the scaling parameters were αL1 = 0.005αmaxL1 , αL1,2 = 0.005αmaxL1,2

and αL2 = 1.2αL1,2 . In the multiple source cases, the dipoles have equal strengths and randomly

chosen orientation.

By comparing the reconstruction results in Fig. 3.7 and the corresponding EMD values we

can see that the L1,2 norm model works the best. The solver with the L2 norm penalty gives

a blurred source distribution as was expected and the L1 norm mode yields a sparse solution

but the result is more scattered compared to the L1,2 norm based prior model. This is mainly
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because L1 norm forces sparsity on the individual components of the dipole. A multiple source

Figure 3.7: Reconstruction of source distribution using 32 electrodes around the circular domain.
The rightmost images present the actual source configurations (one, two and three source cases)
and the rest of the images, the reconstructions based on different penalty terms.
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case may fall in a different brain activity category e.g. generalized epilepsy. However, a test

case with multiple dipole source is presented here to show the feasibility and the limitations

of the reconstruction algorithms for more scattered focal sources. In this case all the models

face difficulties to recover the source distribution (Fig. 3.8). The EMD indicates that there are

no gross differences between the solutions but it seems that the L1,2 prior gives slightly better

results than the other two prior models.

Figure 3.8: Reconstruction of ten focal points. This test does not correspond to a sparse source
case and thus the reconstruction results using the L1,2 norm penalty deteriorates.

3.4.3 MRI cross section model

In this section, we illustrate the reconstruction results when the lead field matrix is constructed

considering the five layer model with conductivities equal to 0.33 and 0.015 (S/m) for scalp and

skull, respectively, and 1.76/0.016/0.33 for the cerebral spinal fluid (CSF), grey matter (GM)

and white matter (WM). The results show that the L1,2 norm model gives the least scattered

results and it works the best for single focal sparse sources (Fig. 3.9). For the two source case,

the L1 and L1,2 norm results are similar (i.e. equal EMD values) and the L2 norm result is

blurred.

Also, we can see that the results for two and three sources are slightly scattered when the 5

layer MRI model is used. This is possibly related to the discontinuity of the conductivity values

within the brain in the 5 layer model. Also, the different discretization (between the forward

and inverse MRI mesh) close to the boundaries can cause some numerical errors. However, it

is worth noting that the localization of the brain activity is accurate which implies that the

applied weights reduce the source localization error (the depth bias).

51



Figure 3.9: Reconstruction of source distributions using different prior models. The right most
images show the actual source configuration and the reconstruction results (starting from left
to right) using the solvers: (3.63), (3.64) and (3.65) respectively.

Finally, a 3D case of a single dipole source was studied and preliminary results are shown in

Fig. 3.10. In this figure the blue cone denotes the actual dipole source and the red cones show
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the reconstructed dipole distributions. According to these results, we can say that the weighted

L1,2 norm based prior performs better that the other two models as it achieves to reconstruct

a sparse and focal source even though the recovered source is slightly in the wrong location.

The L2 norm model reconstructs a blurred source while the L1 norm model recovers a scattered

dipole distribution.

L norm prior2 L norm prior1 L norm prior1,2

Figure 3.10: Reconstruction results of a single focal source using different prior models in a 3D
domain. The blue cone denotes the actual dipole source and the red one, the reconstructed
source distribution.

3.5 Summary

In this chapter we developed a solver that uses the TNIPM for the reconstruction of focal sources

in the inverse EEG problem. We analyzed the algorithmic details and derived all the essential

formulae for the design of a software directly applicable to the sparse-focal EEG problem.

Moreover, we employed a Bayesian analysis to derive the weights in the prior that reduce

the tendency of the solver to favor superficial sources.

Finally, we verified the ability of the solver to recover sparse sources by performing simu-

lations and we compared the results of different prior models. The reconstructions indicated

that the best localization results were obtained especially for single focal source cases with the

weighted L1,2 prior. We can point out here that the TNIPM can be used also for larger scale

problems. For the interested readers the computational advantage of TNIPM method compared

to other relevant methods can be found in [69].
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Chapter 4

Electric Field Imaging using Vector

Field Tomography

Vector field tomography (VFT) concerns the reconstruction of a vector field in a bounded domain

by using integral data over projections of this vector field [155, 161]. In this chapter, we introduce

an approach in which VFT is used in EEG source imaging. In particular, we propose recovering

the electric field evoked by bio-electric activity of the brain with a finite set of line integrals.

The proposed modeling obeys the same physical principles as the EEG source imaging problem

i.e. (i) the quasi-static approximation and (ii) the field is the negative gradient of the scalar

potential [95]. In the literature, this kind of field is called irrotational [103].

In the proposed approach, the line integrals along lines which “trace” the brain are ap-

proximated linearly and result in a linear system of equations. The recovery of vector fields

using VFT is an ill posed and shares the same features as many other inverse problems [78, 71].

Therefore, prior information and boundary constraints are required for a good solution. The

final minimization problem is solved using convex optimization techniques [11]. In the presented

test cases, the field was reconstructed using simulated data. The simulations presented in this

chapter suggest that the VFT solution can give information comparable to a solution of the

dipole source reconstructions (problem) and the active area of the brain can be localized based

on the estimated field. It is worth noting that the electric field reconstruction requires neither

an estimate of the lead field matrix nor any knowledge of the underlying source model.

The chapter is organized as follows. In section 4.1, we give a brief overview of the math-

ematical foundation of VFT. Section 4.2 reviews the theoretical approaches for the recovery

of 2D and 3D vector fields in boundless domains using different types of Radon integral data.

Subsequently in section 4.3, we present the reconstruction of a continuous 2D field in a bounded

domain using line integrals. Details about the approximation of the line integrals and the nu-

merical formulation of the proposed approach are described in section 4.4. In sections 4.6 and

4.7, we evaluate the use of the line integrals in the recovery of different types of fields beginning

first with simple irrotational vector fields that also have analytical expressions, and we conclude

with electric fields produced by focal sources in a bounded domain. To best of our knowledge,
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VFT has not previously been used in cases in which internal sources are present for example in

electric field imaging using EEG data.

4.1 Introduction to VFT problem

The reconstruction of a scalar function from its line integrals in a bounded domain is a well

known problem. Today there are many practical applications in different fields such as in

biomedicine (e.g. MRI, CT), acoustic and seismic tomography which employ this method with

great success and accuracy [111]. However, there are other applications, such as the blood flow

tracking in vessels and the diffusion tensor MRI problem, in which we are interested in the

estimation and visualization of a vector field. In these cases, tomographic vector methods can

be used to reconstruct these fields from integrals in a similar way as in the scalar tomographic

methods [24, 161].

Let’s denote a computational domain Ω ⊂ R
k and a position vector x ∈ Ω. For a general

vector f(x) : Ω → R
k, the vector field tomographic problem is defined as the reconstruction of

the field from integral data over projections of the field in different directions (e.g. orthogonal,

tangential with respect to the line of integration).

The general form of the problem is given by a line integral (along a line L) that “traces” the

domain Ω, i.e.

IL(f) =

∫

L
f(x) · ŝL dℓ(x), (4.1)

where ŝL is the unit vector in a predefined direction and dℓ(x) is a “vanishingly” small segment

of the line.

The integrals used most in VFT approaches are the longitudinal line integral given by

I
‖
L =

∫

L
f(x) · ŝ dℓ(x), (4.2)

where ŝ is the unit vector in the direction of line L and the transverse line integral

I⊥L =

∫

L
f(x) · ŝ⊥ dℓ(x), (4.3)

where ŝ⊥ is the unit vector orthogonal to the line.

The line integral data (4.2) over projections of the field in the direction of the line is the

so-called longitudinal ray transform and the transverse line integral (4.3) is also referred to

as transverse ray transform [155]. The longitudinal transform is closely related to the Radon

transform and coincides with it in two dimensions (k = 2). However, in higher dimensions

(k = 3), the Radon transform is defined as the integral data over projections of the field along

hyper-planes instead of lines [47].

As we shall see in the next section, the VFT methods focus usually on the reconstruction

of different types of fields depending on the physical properties of the problem. Here, we give

brief definitions of these fields. If field f(x) satisfies the condition ∇ · f(x) = 0, then it is
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called solenoidal (divergence-free or incompressible) field. For a field in a bounded domain, the

solenoidal condition implies that there are no sources or sinks in this domain but there may be

vortices. If the solenoidal condition holds then there exists a vector a(x) (potential vector) such

as f(x) = ∇× a(x). Alternatively, for the irrotational fields, the curl vanishes i.e. ∇× f(x) = 0.

The irrotational field property implies that the field can be expressed as the gradient of a scalar

function. If both conditions are satisfied then the field is both irrotational and solenoidal and it

is called a harmonic field.

4.2 Theoretical Aspects for the Recovery of 2D and 3D Contin-

uous Vector Fields

The theoretical analysis for the recovery of an unknown vector field in the continuous domain

using line integrals [119, 120, 12, 161], is mainly based on (i) the decomposition of the vector

field into an irrotational and solenoidal component (Helmholtz Decomposition) and (ii) the use

of the Fourier slice theorem (FST) [111] (defined in appendix B.2).

According to Helmholtz Decomposition, a continuous vector field f(x) in an infinite space

(x ∈ R
k) that vanishes at infinity and is twice differentiable, can be expressed as the sum of an

irrotational component −∇u0(x) and a solenoidal component ∇× a(x), i.e.

f(x) = −∇u0(x) +∇× a(x). (4.4)

The decomposition holds for infinite spaces or for bounded domains if the vector flow on the

boundary is zero [9].

The first application of longitudinal line integrals for the reconstruction of vector fields was

presented in [119]. In [119], it was shown that, in a 2D domain Ω, the Fourier transform (FT)

of the longitudinal line integral of field f(x) (4.2) is equal to the FT of its solenoidal component

a(x), considering vanishing boundary values of the irrotational part1. If the longitudinal line

integral (4.2) is re-written as a surface integral

I
‖
L =

∫

x∈Ω
f(x) · ŝ δ(x · ŝ⊥ − p) dx, (4.5)

where p is the distance of the line L from the origin and δ(.) is the Dirac delta function.

Then, the FT of this line integral is

Ĩ
‖
L =

∫

p∈R+

ILe
−i(κp)dp = (2iπκ)ã, (4.6)

where .̃ denotes the FT of the corresponding functions, 2iπκ comes from the exponent of the

FT and ã is the FT of the solenoidal part ∇ × a(x) = (∂a∂y ,−∂a
∂x), when x = (x, y). For the

numerical computation of the solenoidal part, classical methods of the scalar tomography have

1For the interested reader, the derivation of this proof, for the 3D case, can be found in appendix B.4
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been suggested based on either transformed oriented methods (e.g. filtered back-projection)

[153, 120, 77, 111] or algebraic methods (e.g. algebraic reconstruction techniques (ART)) [176,

65, 25].

Regarding the recovery of the irrotational component u0(x) of the field, different methods

have been proposed, using either prior information [119] or integral based approaches [12, 77,

139]. More precisely, in [119] it was shown that the full reconstruction of a 2D field is feasible

under the assumption that the unknown field is divergence-free (∇· f(x) = 0) which implies that

there are no sources or sinks inside the domain. In this approach, the solenoidal component was

estimated using the longitudinal line integral while the irrotational component was computing

solving the Laplace’s equation. In particular, the divergence of the field decomposition (4.4)

yields Laplace’s equation,

∇ · f(x) = −∇ · ∇u0(x) +∇ · ∇ × a(x) ⇒ ∇2u0(x) = 0. (4.7)

The Laplacian (4.7) can be solved using either finite difference methods [186, 8], finite elements

methods (FEM) [61, 174] or boundary element methods (BEM) [159, 154].

The integral based approaches suggested the estimation of integrals over projections of the

field in directions other than the longitudinal direction [77, 12, 139]. In [12], the recovery of

2D fields using both the longitudinal and transverse line integrals was described. Furthermore,

the reconstruction in domains with non homogeneous boundary condition was examined. In

the latter case, the decomposition of the field into a solenoidal and irrotational part was not

unique and therefore an extra term in the vector decomposition was added to ensure that the

boundary conditions hold. This extra term is called a harmonic component. It was proved

that the combination of the longitudinal and transverse integrals can fully recover a field in a

circular domain. The approach was verified by carrying out reconstructions of simulated fluid

flows (also called incompressible vector fields). Later in [77], a 3D incompressible field was full

reconstructed using a similar concept. A more general approach for the full recovery of a 3D

arbitrary field in a 3D domain Ω using inner product formulation was described in [139, 130].

The so-called Radon probe transform was defined as the integral data over the projection of a

field on planes and is given by

Ib(n̂, p) =

∫

x∈Ω
f(x) · b δ(x · n̂− p) dx, (4.8)

where b is the so-called probe vector, p the distance between the projection plane δ(x · n̂ − p)

and the origin and n̂ the unit normal vector to the plane. Particularly, with the help of the field

decomposition (4.4) and by applying the FST, the FT of the previous integral (4.8) results in

Ĩb(n̂, κ) = (i2πκ) b · [ũ0(κn̂)n̂+ n̂× ã(κn̂)], (4.9)

where .̃ denotes the FT of the corresponding function, κ the FT variable and i the imaginary

unit. Therefore, if the probe vector b is selected orthogonal to n̂ then the irrotational component
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is eliminated. On the other hand when b is parallel to n̂ then the solenoidal component vanishes.

However, in practice measuring the transverse line integrals of the Radon probe transform is

difficult or even impossible in most cases, for instance in Doppler techniques [25] or in geophysics

[120]. That means that the full recovery of a field using solely integrals is a challenging task in

practical applications.

Until now, the majority of the existing literature in VFT methods has been directed towards

the imaging of fluid velocity fields from actively acquired measurements [119, 120, 156, 64, 12,

90, 144, 176, 76, 59, 155]. In these problems, the fluid is assumed incompressible [119, 176]

which in mathematical terms ensures a divergence-free field and there are no sources/sinks in

the domain which results in a solenoidal field that can be estimated following the FT based

methods [153, 77]. These applications include the use of ultrasound measurements (acoustic

rays) to reconstruct the velocity field of blood veins [64, 60], estimation of a field in Kerr

materials in optical polarization tomography [48] and oceanographic tomography [144]. In [76]

the vector field approach was used for the estimation of the magnetic field of the corona of the

sun.

As far as we know, VFT has been previously used only in applications for the reconstruction

of incompressible fluid flows which are solenoidal fields. In this work however, we are interested

in applying similar methods to reconstruct electric fields produced by source/sinks in bounded

domains. These fields are irrotational and arise in applications such as in electroencephalography

(EEG) [95]. Our aim is to recover fields which resemble the bioelectric field induced by the

neural activity using the potential measurements on the scalp. For this purpose, we follow the

numerical concepts suggested in [137, 176], i.e. we use the discretized longitudinal line integral

for the reconstruction of electric fields from potential measurements. In particular, we show that

the numerical solution of the linear system that is derived from the numerical approximation of

the line integrals can be used for the reconstruction smooth irrotational fields and more complex

electric fields which resemble bioelectric fields. The main advantage of this approach is that

there is no need for the incorporation of the source model in the equations unlike, for example,

in the EEG source imaging problem [62, 61, 55].

4.3 Reconstruction of 2D Continuous Vector Field in Domains

with non-Homogeneous Boundary

In this section, we employ the FST to derive relationships between the irrotational, solenoidal

and harmonic components of a 2D field with its longitudinal and transverse line integrals by

assuming non homogeneous boundary conditions. The analysis is based on [12] where theoretical

aspects of the recovery of fluid velocity fields using ultrasonic measurements was presented.

However, here we deal with a more general case. We show that the FT of the longitudinal

line integral equals to the harmonic component when the solenoidal part of the field is zero.

Additionally, when the field is both irrotational and divergence-free then only the longitudinal

and transverse line integrals are needed for the reconstruction of the field. This section was
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added in order to clarify the vector components which can be retrieved from the integral data

when the analysis is carried out in a continuous and bounded domain. Most of the previously

published theoretical analysis deals with fields with zero values on the boundaries or infinite

domains.

In a 2D domain Ω ⊂ R
2, let us denote f(x) = (fx(x), fy(x)) : Ω→ R

2 as the unknown vector

field. The field is non-zero on the boundary ∂Ω, f(x)|∂Ω 6= 0. The line L of integration is defined

by the parametric expression

L(φ, p) := {x = (x, y) ∈ Ω : x cosφ+ y sinφ = p} (4.10)

where p is the signed distance of the line from the origin and φ the angle as shown in Fig. 4.1.

Figure 4.1: 2D Line L on z plane with parameters (φ, p) where 0◦ ≤ φ ≤ 180◦ and p ∈ R.

The longitudinal line integral (4.2) can be expressed as a surface integral using the 1D Dirac

delta function δ(·) and ŝ = (sinφ,− cosφ), i.e.

I
‖
L =

∫ ∫

(x,y)∈Ω
(fx sinφ− fy cosφ)δ(x cosφ+ y sinφ− p) dxdy. (4.11)

Similarly, the transverse line integral is

I⊥L =

∫ ∫

(x,y)∈Ω
(fx cosφ+ fy sinφ)δ(x cosφ+ y sinφ− p) dxdy, (4.12)

as ŝ⊥ = (cosφ, sinφ). The FTs of (4.11) and (4.12) are

Ĩ
‖
φ(κ) =

∫
I
‖
Le
−i(κp) dp = f̃x sinφ− f̃y cosφ (4.13)

Ĩ⊥φ (κ) =
∫

I⊥L e−i(κp) dp = f̃x cosφ+ f̃y sinφ, (4.14)

where f̃x =
∫ ∫

(x,y)∈Ω fx(x, y)e
−iκ(x cosφ+y sinφ) dxdy and f̃y =

∫ ∫
(x,y)∈Ω fy(x, y)e

−iκ(x cosφ+y sinφ) dxdy

are the FTs of the fx and fy components and ·̃ refers to the FT of the components.

Furthermore, according to the Helmholtz-Hodge decomposition theorem [9], a smooth vector

field f(x), defined in a bounded domain, can be uniquely decomposed into three components: 1)

an irrotational component ∇u0(x), which is normal to the boundary; 2) an incompressible com-
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ponent ∇× a(x) = (∂a∂y ,−∂a
∂x), which is parallel to the boundary; and 3) a harmonic component

h(x) = (hx, hy), i.e.

f(x) = −∇u0(x) +∇× a(x) + h(x). (4.15)

The harmonic component h(x) satisfies the conditions ∇ · h(x) = 0 and ∇× h(x) = 0.

From (4.15), we have that the derivatives of f(x) are

fx(x) =
∂a

∂y
− ∂u0

∂x
+ hx,

fy(x) = −
∂a

∂x
− ∂u0

∂y
+ hy

(4.16)

and the FTs of the fx and fy components are

f̃x(κ) = (iκ)ã sinφ− (iκ)ũ0 cosφ+ h̃x

f̃y(κ) = −(iκ)ã cosφ− (iκ)ũ0 sinφ+ h̃y.
(4.17)

From (4.13) and (4.17), the FT of the longitudinal ray transform becomes

Ĩ
‖
φ(k) = (iκ) ã+ h̃x sinφ− h̃y cosφ. (4.18)

And equations (4.14) and (4.17) results in the FT of the transverse integral

Ĩ⊥φ (κ) = −(iκ)u0 + h̃x cosφ+ h̃y sinφ. (4.19)

When the field f(x) is irrotational (∇ × f(x) = 0) then ∇ × a(x) = 0. The field is f(x) =

−∇u0(x) + h(x) and the FT of the longitudinal line integral becomes

Ĩφ(κ) = h̃x sinφ− h̃y cosφ. (4.20)

In this case, the longitudinal integral gives information related to the harmonic component.

However, (4.20) and (4.19) measurements are not sufficient for the full reconstruction of a 2D

irrotational field, since we have two integral measurements and three unknowns and an extra

condition is required. Now, when the field is also irrotational (∇ × f(x) = 0) then f(x) = h(x)

and the FT of the traversal ray transform becomes

Ĩ⊥φ (κ) = h̃x cosφ+ h̃y sinφ. (4.21)

Therefore, the longitudinal and the transverse integrals can recover a harmonic field in an area.

However, in practice the transverse integral is difficult to be measured. Thus, instead of the

transverse line integrals for the reconstruction of a harmonic field we can use alternative prior

knowledge. In section 4.6, we show that the numerical computation of harmonic fields is feasible

in a discrete domain using the longitudinal line integral and the prior knowledge that the field

is divergence-free.
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4.4 Estimation of Electric Fields in Discrete Domains

In this section, we describe the numerical estimation of a 2D electric field using the line integral

measurements. We formulate the discrete VFT problem for the reconstruction of irrotational

field and we describe the line integral approximations used in the computations.

Let us assume that in a convex domain Ω ⊂ R
k, where k is equal to either 2 or 3 depending

whether the analysis is carried out in 2D or 3D (in the following simulations k = 2), the field

e(x) : Ω→ R
k, where x ∈ Ω, satisfies the curl-free condition

∇× e(x) = 0. (4.22)

This condition implies that e(x) can be expressed as the gradient of a scalar function u(x) : Ω→
R [3], i.e.

e(x) = −∇u(x). (4.23)

Therefore, the longitudinal line integral (4.2) of e(x) along a ray L with end points xa and xb

on the domain boundary ∂Ω equals to

I
‖
L =

∫

L
e(x) · ŝ dℓ(x) =

∫

L(xa,xb)
−∇u(x) · ŝ dℓ(x) = u(xa)− u(xb). (4.24)

In this inverse problem, the potential differences between boundary measurements, which equal

to the longitudinal integral data, will be used for the numerical estimation of the field in the

domain Ω (see Fig. 4.2).

Figure 4.2: Tracing lines between the measurements. The difference between u(1) and u(j) gives
the value of the line integral along the line which connects measurement points (1) and (j).
In this problem, the observation vector comprises the potential differences between all possible
pairs of electrodes.

For the solution of the problem, the concept of the numerical methods, described in [137, 176,

111], was followed. The domain Ω is divided into elements Ωi and N nodes. The approximate

longitudinal line integral along a line Lj which “traces” Ω and intersects Ω at two points equals

to

∆uj = I
‖
Lj
(e) =

∫

Lj

e(x) · ŝ dℓ(x) =
∑

Lj∈Ωi

s
‖
i · ei, (4.25)
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where ∆uj is the potential difference between these two electrodes, ei ∈ R
k is the electric field

at node xi ∈ Ωi and s
‖
i ∈ R

k are the corresponding approximated line integral coefficients. If

line Lj does not intersect the discrete element which includes the node xi then the respective

s
‖
i = 0. Analytical description of the estimation of the coefficients s

‖
i is given in section 4.4.3.

In practice, the number of the electrodes is finite and thus a finite set of boundary potential

measurements can be obtained. The set of potential measurements is u = (u(x1), u(x2), . . . , u(xm))

where (x1, . . . , xm) ∈ ∂Ω andm is the number of electrodes. For the potential differences between

all possible pair of electrodes, equation (4.25) can be expressed in matrix form as

Du = S‖e, (4.26)

where e ∈ R
kN is the electric field distribution, S‖ ∈ R

l×kN is the so-called longitudinal ray

matrix with l = m(m−1)
2 and D ∈ R

l×m is the difference matrix to calculate the differences

between the potential measurements u ∈ R
m. So, the longitudinal integral data vector comprises

the potential differences between all possible pairs of electrodes and is given by I‖ = Du ∈ R
l.

Similarly, a set of transverse line integrals

I⊥L =

∫

L
e(x) · ŝ⊥ dℓ(x) (4.27)

yields the linear system

I⊥ = S⊥e, (4.28)

where I⊥ ∈ R
l is the transverse integral data and S⊥ ∈ R

l×kN is the transverse ray matrix.

4.4.1 Ill-posedness and ill-conditioning of the Problem

The line integrals of the vector field are compact operators between appropriately defined spaces

and therefore, they are not continuously invertible [111]. Thus, the continuous VFT problem

is ill-posed, as the third Hadamard’s condition is not satisfied [37]. Generally speaking, the

ill-posedness term technically applies only to continuous problems. The ill-posedness of the

continuous problems is inherited as ill-conditioning of the discrete version of the problem. Even

though, the discretization of the problem is an implicit regularization (this, in literature, is

referred to as regularization by discretization [40]), usually some kind of extra regularization is

required in order to obtain a good solution.

Furthermore, in practical applications, usually the line integral measurements are an incom-

plete sampling of information. Therefore, the ill-posedness, in addition to the instability, is also

related to the non-uniqueness of the solution (second Hadamard’s condition) and therefore prior

information needs to be incorporated in the modeling.

In the discrete electric field reconstruction, the ill-conditioning of the ray matrix (4.26) is

related to the invertibility of the integral operator as well as to the fact that the number of

observed measurements is normally far less than the number of unknowns. Thus, in the test

cases examined in sections 4.6 and 4.7, penalties and prior information are used to ensure an
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accurate reconstruction.

4.4.2 Implicit Regularization using Line Integrals

The fact that the number of the integral data (l = m(m−1)
2 ) is larger than the number of potential

measurements m in equation (4.26) can be used as an implicit regularization to the problem. In

this section, we give a brief explanation how the integral data redundancy can act as an implicit

regularization.

In particular, using the QR decomposition [100], the difference matrix D in equation (4.26)

can be decomposed as

D = Q[RT, 0T]T (4.29)

where Q ∈ R
l×l, R ∈ R

m×m is an upper triangle matrix, 0 ∈ R
(l−m)×m is a zero matrix and T

denotes the transpose of a matrix. Thus, the linear system (4.26) can be re-written as

Q[RT, 0T]Tu = S‖e. (4.30)

Because Q−1 = QT,

[RT , 0T ]Tu = QTS‖e. (4.31)

If Q = [Q1, Q2]
T where Q1 ∈ R

m×l and Q2 ∈ R
(l−m)×l then from (4.31) we obtain

RTu = Q1S
‖e and Q2S

‖e = 0. (4.32)

So, the solution of (4.26) is equivalent to the solution of (RT)u = Q1S
‖e with constraint Q2S

‖e =

0.

However, due to the (intrinsic) instability of the integral operator as well as to the fact that

the number of observed measurements is usually less than the number of unknowns (l ≪ kN),

further regularization is required for a good solution.

4.4.3 Computation of the Longitudinal Line Integrals

For the numerical formulation of the problem, the 2D domain Ω was discretized using triangular

elements Ωi i.e. Ω =
⋃K

i=1Ωi where K is the number of triangles. The longitudinal ray transform

(4.25) was defined by

I
‖
Lj
=
∑

i

I
(i)‖
∆L , (4.33)

where I
(i)‖
∆L is the longitudinal line integral along the line segment of line Lj in the triangle i

(e.g. Fig. 4.3).
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Figure 4.3: In a discrete domain, the ray transform can be expressed as the sum of the line
integrals along the line segments of the ray L which intersect the discrete elements.

In the following analysis, we estimate the line integral in one triangle with corner point x1,

x2 and x3. The estimated integral coefficients are assigned to the corresponding elements of the

ray matrix S‖ in (4.26).

The line integral along the segment ∆L defined by the intersection of the line Lj with the

triangle at points xA and xB (Fig. 4.3) is

I
(i)‖
∆L =

∫

∆L
e(x) · ŝ dℓ(x) =

∫

∆L
e(s) · ds, (4.34)

where ŝ dℓ(x) = ds and the position vector along the line segment ∆L = ‖xAxB‖2 is given by

s = xA + (xB − xA)t (4.35)

for t ∈ [0, 1].
Also,

ds = (xB − xA)dt. (4.36)

Thus, the line integral (4.34) can be rewritten as

I
(i)‖
∆L =

∫

∆L
e(s) · ds =

∫ 1

0
e(t) · (xB − xA) dt = (xB − xA) ·

∫ 1

0
e(t) dt. (4.37)

The next step is to approximate the field e(t) and solve the integral (4.37). We approximate the

field using a linear interpolation. In particular, the field inside the triangle is approximated by

e(x) = e1 +
[
e2 − e1 e3 − e1

]
λ = e1 + Pλx, (4.38)

where e1, e2 and e3 ∈ R
2 are the field values at the nodes of the triangle, P =

[
e2 − e1 e3 − e1

]
∈

R
2×2 and λ(x) = [λ1 λ2]

T are the interpolation coefficients.

For the estimation of the coefficients λ we use an iso-parametric mapping in which the

element geometry and the field are represented by the same interpolation polynomial [171]. The
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position vector inside the triangle is given by

x = x1 +
[
x2 − x1 x3 − x1

]
d = x1 + Jλ, (4.39)

where

J =
[
x2 − x1 x3 − x1

]
(4.40)

and λ = [λ1 λ2]
T are the coefficients defined in (4.38) that satisfy λ1 ≥ 0, λ2 ≥ 0 and λ1+λ2 ≤ 1.

We estimate λ by solving (4.39), i.e.

λ = J−1(x− x1). (4.41)

Substituting (4.41) into (4.38) we get

e(x) = e1 + PJ−1(x− x1). (4.42)

Finally, the field e(t) along the line segment is given by setting x = s = xA + (xB − xA)t, i.e.

e(t) = e1 + PJ−1(xA − x1 + (xB − xA)t) (4.43)

Substituting (4.43) into (4.37), we obtain the linear approximated line integral

I
(i)‖
∆L = (xB − xA)

T · e1 + (xB − xA)
T ·
∫
(PJ−1(xA − x1 + (xB − xA)t)dt

= (xB − xA)
T ·
(
e1 + PJ−1(xA − x1 + (xB − xA)

∫ 1

0
tdt

)

= (xB − xA)
T ·
(
e1 + PJ−1(xA − x1 +

1

2
(xB − xA)

)

= (xB − xA)
T ·
(
e1 + PJ−1(

1

2
(xB + xA)− x1)

)
.

(4.44)

If we set J−1 =
[
B1 B2

]
and y = 1

2(xB + xA)− x1, then

I
(i)‖
∆L =

(
(xB − xA)

T ·
[
e1 e2 e3

])
T, (4.45)

where T =
[
1− (B1 + B2) · y B1 · y B2 · y

]
.

The coefficients of the transverse ray matrix (4.28) can be estimated in a similar way by

replacing the vector (xB − xA) with its normal. In the following sections, we use this numerical

approach for the estimation of the coefficients in the ray matrices.
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4.5 Simulation Set-up and Evaluation Metric

In the following sections, irrotational fields satisfying different properties are reconstructed. In

particular, two different sets of tests are performed. In the first one, the approach is evaluated

for the reconstruction of smooth harmonic and irrotation fields using the proposed approach.

In the second set of tests, we deal with the reconstruction of electric fields produced by dipole

sources inside a bounded domain. In this latter case, we use prior information related to the

structure of the field and penalty terms which satisfy the boundary conditions.

In all cases, the electric field minimization problem has the general form

min
e
‖Duξ − S‖e‖22 + regularization term, (4.46)

where e ∈ R
2N is the electric field, N the number of discretization points, Duξ ∈ R

l the potential

differences in the presence of additive noise ξ and S‖ ∈ R
l×2N is longitudinal ray matrix.

The observation vector, Duξ, which is the multiplication of matrix D with the potential

measurements uξ, comprises the potential differences between all possible pairs of electrodes,

i.e. for m electrodes, the integral data is of size l = m(m−1)
2 . The potential measurements

are given by uξ = u + ξ where u ∈ R
m and ξ ∈ R

m is the noise vector with distribution

ξ ∼ N (0, γξIm×m).
We quantified the reconstruction accuracy of the approach using the point-wise reconstruc-

tion criterion, called reconstruction error (REC) [42], given by

REC =

∥∥∥∥
e

‖e‖2
− ê

‖ê‖2

∥∥∥∥
2

, (4.47)

where e denotes the correct (forward) field and ê the estimated one.

The Signal-to-Noise ratio of the input data (SNRin) was defined as SNRin = 20 log ‖u‖2√
γξ
. In

the following simulations, for each value of
√
γξ (noise level), we performed 40 reconstructions

using different noise vectors which were drawn from the Gaussian distribution. The average and

standard deviation of the REC were estimated based on the corresponding reconstructed fields.

In the following test cases, the vector fields were reconstructed in a 2D homogeneous circular

domain Ω with radius 0.1m and center at the origin (0, 0). The potential measurements u were

obtained from m = 32 point electrodes equally distributed around the domain.

4.6 Smooth Field Reconstructions

In this section, we reconstruct vector fields at a set of N discrete nodes inside a 2D region of

interest from integral data under the assumption that ∇ × e = 0. We reconstruct two simple

fields in order to assess the potential of the numerical approach to recover fields without any

singularities or very high frequency components.
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4.6.1 Divergence-free Electrostatic Field

The first experiment concerned the reconstruction of a field which is both irrotational and

divergence-free. The divergence-free property (i.e. ∇ · e = 0) implies that there are neither

sources nor sinks in this region and thus the field does not have singularities.

The field was estimated using the linear system (4.26). To improve the stability of the

system and to obtain a good solution, the divergence of the field was used as a penalty term.

The estimation of the field was based on the minimization

ê := min
e
‖Duξ − S‖e‖22 + λ‖∇ · e‖22, (4.48)

where e ∈ R
2N , Duξ ∈ R

l the potential differences in the presence of noise ξ, S‖ ∈ R
l×2N

is longitudinal ray matrix and λ the regularization parameter selected by visual inspection

(λ = 0.001). The number of mesh node was N = 480. The divergence operator was numerically

approximated using the Graph toolbox (Matlab) [79].

In this section, we solved the minimization problem (4.48) for the case of a smooth elec-

trostatic field. The integral data was obtained from the potential differences between pairs of

electrodes. The potential value at each electrode was estimated from the Columb’s law i.e.

u(xi) = −ke
∑k

j=1
qj

‖xi−xqj ‖2
for i = 1, . . . ,m. The constant ke is the Coulomb’s constant [3] (for

the simulation we set ke = 1), xi are the locations of the electrodes (sensors), xqj are the loca-

tions of the electric charges (monopoles) with qj the values of the charges. The source locations

xqj were outside the domain of interest in order to ensure that the field inside the domain does

not have singularities.

In the test case (Fig. 4.4 ), the potential measurements were computed considering two

monopoles located at (0.0373,−0.1684) and (−0.0224, 0.1711) with respective charges qj equal
to 1 and −1. The potential measurements were taken from m = 32 points around the circular

domain and the input integral data had size l = 496. The field ê was estimated by solving

Figure 4.4: Test Set-up: The circular domain (coloured in red) designates the area of interest.
The sensors (electrodes) are placed around the domain. The blue x show the locations of the
charges and the arrows the correct electrostatic field. In this experiment, we are interested in
estimating the electrostatic field inside the circle.
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Average REC ± std
SNRin(dB) 60 40 30

# point sources 2 0.35± 0.002 0.67± 0.055 1.01± 0.065

Table 4.1: Average Reconstruction Error (REC) and standard deviation (std) of the electrostatic
field of two monopoles. 40 different noise vectors where used for each noise level.

(4.48) (inverse solution) and it was compared with the correct electrostatic field computed

using the analytical expression (Coulomb’s law) for the electrostatic field (forward solution)

e(xl) =
∑k

j=1

qj(xl−xqj )
‖xl−xqj ‖32

, for l = 1, . . . , N and where xl denotes the coordinates of the lth node.

Figure 4.4 shows the test set-up and the forward solution. The arrows and the blue markers

indicate the correct field and the location of the sources. The light red circle designates the

region where the field ê is estimated.

In Fig. 4.5, we see the results for different levels of noise, the first row corresponds to the

amplitude of the field and the second row to the normalized field orientation lines. We visualized

the normalized vector field lines instead of the actual ones in order to improve the clarity of the

figure. Additionally, the leftmost pictures, titled “Test case”, designate the magnitude and the

unit length field lines of the correct field, and the rest of the pictures, the reconstructions for

decreasing value of SNRin.

Figure 4.5: Left column depicts the magnitude and vector lines of the reference vector field (an-
alytically estimated field using Coulumb’s law) and the remaining pictures, the reconstructions
for decreasing SNRin (λ = 10−3).

For each noise level, minimization problem was solved 40 times using different noisy data.
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The average values of the reconstruction error metric REC and the corresponding standard

deviations are shown in Table 4.1. According to Fig. 4.5 and Table 4.1, the pattern of the

reconstructed field follows the correct vector field for low noise level. The orientation of the

recovered field is similar to the correct field with very few small deviations and the same can

be said about the magnitude when the additive measurement noise is not prominent. However,

there seems to appear some artefact and small discontinuities in the reconstruction. These may

be related to the discretization of the domain, the linear approximation of the field and the

linear approximation of the penalty term.

69



4.6.2 Irrotational Vector Fields

In the second experiment, two smooth fields with non-zero divergence were studied. These fields

were estimated by minimizing

ê := min
e
‖Duξ − S‖e‖22 + λ‖∇2 · e‖22, (4.49)

where e ∈ R
2N , Duξ ∈ R

l is the vector with the differences between the noisy potential mea-

surements, S‖ ∈ R
l×2N is longitudinal ray matrix, ∇2 = ( ∂2

∂x2 ,
∂2

∂y2
) is the Laplace operator and λ

the regularization parameter. The vectorial Laplace operator was used as a smoothness penalty

term and it was approximated numerically using the Graph toolbox [79].

The domain of reconstruction was a circle with radius 0.1 and centered at (0, 0). The m = 32

potential measurements at the electrodes were computed analytically, according to

u(xi, yi) = −
k∑

j=1

tan−1
yi − bj
xi − aj

, for i = 1, . . . ,m, (4.50)

where (xi, yi) are the coordinates of the electrodes and (aj , bj) are constants and indicate the

locations of the field vortices. The integral data Duξ was estimated by taking the differences

between pairs of potential measurements. Subsequently, the field ê was estimated by minimizing

(4.49). The regularization parameter in (4.49) was equal to 0.005.

In the following test cases, we compared the estimated solutions ê (inverse solution) with

the field (forward solution) given by the analytical expression

e(xl, yl) =


−

k∑

j=1

yl − bj
(xl − aj)2 + (yl − bj)2

,

k∑

j=1

xl − aj
(xl − aj)2 + (yl − bj)2


 , for l = 1, . . . , N,

(4.51)

where (xl, yl) are the coordinates of the N mesh nodes and k indicates the number of vortices

of the field. The vector fields (4.51) satisfy the irrotational property if we exclude the vortex

point (aj , bj). Thus, we selected
√
a2j + b2j > 0.1 in order to ensure that the vortices at points

(aj , bj) are outside of the circular domain (region of interest) and thus the estimated potential

data corresponds to an irrotational field.

In this section, we present the reconstruction of two vector fields with different number of

vortices k. For the test case A, the boundary data (4.50) was estimated for k = 1 and (a1, b1) =

(0.12, 0). In test case B, the potentials were computed for k = 3 and (a1, b1) = (0.12, 0),

(a2, b2) = (0,−0.12) and (a3, b3) = (−0.101, 0.101). The second field B is less smooth compared

to the first one. The correct field A and B and the reconstruction area for the two test cases are

shown in Fig. 4.6. The area of interest was the circle coloured in light red.

In Table 4.2 and Fig 4.7 are summarized the estimated average REC for the two cases. In

both cases, we can see that the reconstruction results are good when the level of measurement

noise is low and the estimates deteriorate when the level of noise increases. Additionally, for
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Figure 4.6: Test Set-up: the reconstruction area is the circle (in light red)(A) Test case A
(left image) correct field A with vortex at point (a1, b1) = (0.12, 0). (B) Test case B (right
image) correct field B with k = 3 and (a1, b1) = (0.12, 0), (a2, b2) = (0,−0.12), (a3, b3) =
(−0.101, 0.101).

all the noise levels, according to the REC, the reconstruction result is slightly better for the

test case A, where the actual field is simpler, compared to test case B where the field is more

complicated with 3 vortices close to the region of interest.

Average REC ± std
SNRin 60 40 30

# vortices
k = 1 0.18± 0.003 0.36± 0.049 0.72± 0.09
k = 3 0.26± 0.008 0.71± 0.095 1.10± 0.13

Table 4.2: Average reconstruction error (REC) and standard deviation (std) for the irrotational
fields. 40 simulated noise vectors were used for each noise level for the estimation of the statistics.
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Figure 4.7: Left column shows the magnitude and the vector lines of the correct field (Test
case) and the remaining pictures staring from left to right, the reconstruction results for SNRin

equals to 60dB, 40dB and 30dB. Test case A (first two rows): reconstruction of a field with
k = 1 vortex at location (a1, b1) = (0.12, 0). Test case B (the last two rows) reconstruction
of a field which has k = 3 vortices at locations (a1, b1) = (0.12, 0), (a2, b2) = (0,−0.12) and
(a3, b3) = (−0.101, 0.101).
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Figure 4.8 shows the average REC and the corresponding standard deviation intervals as a

functions of the SNRin. As it was expected, when the SNRin is high, i.e. the additive noise is

low, the REC decreases and the reconstruction result improves. We can notice that for high

values of the SNRin (above 40dB) the variation of the REC is very low. Additionally, we can

observe that the reconstruction error is higher for the test case B because the vector field B is

more complex compared to the vector field in test case A.

Figure 4.8: Average REC ± std (standard deviation) with respect to the SNRin.
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4.7 Electric Field Reconstructions produced by Dipole Sources

In this section, we test the approach for the reconstruction of an electric field produced by

a focal source inside the domain. Such vector field is of great interest because it resembles

the bio-electric field generated by brain activity. In addition, we examine the reconstruction

performance in the case of additive boundary noise. For the evaluation of the reconstructions

we used the REC metric defined in (4.47).

In particular, we reconstruct electric fields e(x) = (ex(x), ey(x)) : x ∈ Ω → R
2 caused by

a focal (dipole) source inside a homogeneous bounded circle Ω. Considering that the quasi-

static approximation holds, the Maxwell’s equations for the electric field are ∇× e(x) = 0 and

∇ · e(x) = ρ(x) where ρ(x) is the current source density inside the domain. The boundary

condition is e(x) · n̂|∂Ω = 0, where n̂ is the unit normal vector of the boundary ∂Ω of the domain.

The electric field is estimated by minimizing the functional

min
e

∑

j

[∆uj − I
‖
Lj
(e)]2 + λ|

∫

x∈∂Ω
e(x) · n̂ dℓ(x)|2

+ν

∫

x∈Ω
|w(x)(∇2 · e(x))| dx + κ

∑

j

|I⊥Lj
(e)|,

(4.52)

where the first term is called fidelity term and is defined as the difference between the potential

measurement difference on the boundary and the longitudinal line integrals I
‖
Lj

(4.25). The

second term is the boundary condition which ensures that there is no outwards flux. The third

penalty term is the L1 norm of the Laplacian, ∇2 = ( ∂2

∂x2 ,
∂2

∂y ), which imposes connectivity and

sparsity in the field. In particular, the electric field is almost everywhere smooth and close to

zero apart from a small area around the dipole source. Hence, we employ the Laplace operator

in order to smooth the solution; however, because there is a source inside the domain, we relax

the strict smoothing effect by using the Laplace with the L1 norm. Additionally, the weights w

ensure that the solution is not a harmonic field and it attains its maximum only on the boundary

(see section 2.5.5). Thus, using the weights it is possible to reconstruct also fields with maximum

amplitude deeper inside the domain.

The last penalty term corresponds to the transverse line integral (4.27). A transverse line

integral I⊥Lj
(e) can be interpreted as the vector flux across the line of integration. Numerically,

the transverse line integral is equal to the sum of the inner products between the field along the

line and the unit normal vector of the line. For an electric field in a domain with sources/sinks

(dipole source), the total flux across most of the lines is zero because either the field values are

very low far from the source or the field is parallel to the line (see for example the red line

in Fig. 4.9). However, the transverse integral is non-zero only for few lines (e.g. blue line in

Fig. 4.9) which trace the domain close to the source location and are normal (or nearly normal)

to the dipole direction. Hence, sparsity was imposed on the transverse line integral term. This

sparsity constraint forces the source and sink to be close to each other in order to resemble

a neural source. Finally (λ, ν, κ) denote the corresponding regularization parameters. For the
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Line perpendicular to the dipole

Line parallel to the dipole

Figure 4.9: Two tracing lines and the vector field. The red line is parallel to direction of the
dipole moment and the blue line is normal to the dipole moment. The total flux across the red
line which corresponds to the tangential integral along this line is equal to zero. On the other
hand, we see that the blue line divides the circle into two regions and there is flux from the left
hand side region to the right hand side.

numerical estimation of the field, the above minimization problem is written in matrix form as

min
e
‖Du− S‖e‖22 + λ‖Te‖22 + ν‖Be‖1 + κ‖S⊥e‖1 (4.53)

where e ∈ R
2N is the discrete electric field (E-field), Du ∈ R

l are the differences of the potential

measurements, S‖ ∈ R
l×2N is the longitudinal ray matrix and l the number of line integrals.

Furthermore, the L2 norm of Te corresponds to the boundary condition with T ∈ R
b×2N and b

is the number of boundary nodes. Matrix B = (WB ⊗ I2×2) is the weighted discrete Laplace

operator (see appendix B.5 for further details), ⊗ denotes the Kronecker product and matrix

W is a diagonal matrix, W = diag(w1, . . . , wN ). In the current implementation, we selected the

weight wi to be the normalized distance of the ith node from the center of the circle. Finally,

matrix S⊥ ∈ R
lN includes the coefficients of the transversal ray matrix. Problem (4.53) is a

non-linear optimization problem. For the estimation of the field, the CVX toolbox was used

[11, 52].

Forward Model and Measurements

In this paragraph we describe the model that was used to derive the observations. Moreover,

the same model was used to compute the forward field (forward solution) in order to compare

and evaluate the reconstruction results (4.53). For the forward estimation we used finer mesh

compared to the mesh used for the inverse solution (4.53). The nodes of the forward mesh are

denoted ny N̄ and of the inverse mesh by N (Table 4.3). In particular, the potential values

ū+ ∈ R
N̄ in a circular domain were estimated from the the linear system

ū+ = K̄+d̄+, (4.54)
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Mesh Forward Inverse
# Nodes 3045 760

Table 4.3: Number of node for the forward and inverse mesh.

where K̄+ ∈ R
N̄×2n̄ is the lead field matrix of the forward model (assuming constant conductivity

equals to 1). The number of possible source location is denoted by n̄ and the number of mesh

nodes by N̄ (n̄ ≤ N̄). The simulated dipole source is d̄+ ∈ R
2n̄. For a single source, vector d̄+

has only two non-zero values, one for the x- and y- component respectively.

The potential measurements v+ = (ū+(x1), . . . , ū+(xm))
T + ξ were obtained from 32 points

at locations xi equally placed around the circular domain. The noise vector ξ was drawn from

a Gaussian distribution, ξ ∼ N (0, γξIm×m). The integral data was estimated by taking the

potential differences Dv+ between the m electrodes.

Also, the forward field, given by ē+ = −∇ū+ ∈ R
2N̄ , was computed numerically by applying

the linear gradient reconstruction approach [19]. The results, estimated solving (4.53), were

compared with projected forward field, e+ = P ē+ where P ∈ R
N×N̄ is a linear reduction

mapping operator, using the REC (4.47).

Inverse Solutions

The field was estimated solving

ê := min
e
‖Dv+ − S‖e‖22 + λ‖Te‖22 + ν‖Be‖1 + κ‖S⊥e‖1 (4.55)

The following figures show the reconstruction results of the E-Fields produced by a single dipole

source which was (i) deep in the domain, (ii) superficial-normal (iii) superficial-tangential to the

boundaries. The results are summarized in Fig. 4.10, Fig. 4.11 and Table 4.4.

Average REC ± std
SNRin(dB) 60 40 30

Deep Dipole 1.4± 0.0 1.5± 0.011 1.5± 0.031

Superficial Dipole
Normal 1.22± 0.0 1.223± 0.017 1.26± 0.043

Tangential 1.23± 0.0 1.25± 0.08 1.2± 0.012

Table 4.4: Average Reconstruction Error (REC) and standard deviation (std) for the E-Field
of a single dipole source. For each noise level, 40 reconstruction were performed using different
noise vectors.

About the E-field results we can say that the maximum strength of the electric field is in the

correct location in all the test cases. However, the reconstructed electric field strengths are lower

than the correct strengths. In addition, the reconstruction accuracy decreases with increasing

noise as it was expected.

Moreover, the dipole, by definition, consists of a source and a sink that are separated by

a (very) short distance. This can be seen in the leftmost pictures with the unit length E-field
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Figure 4.10: A test case of an E-field produced by a deep source. Left column shows the
magnitude and the vector lines of the forward field (Test case) and the remaining pictures
staring from left, show the reconstruction results for SNRin equals to 60dB, 40dB and 30dB.

arrows in Fig. 4.11, the arrows point inwards and outwards at the ends of the dipole. In the

reconstructions of field produced by superficial sources, it can be seen that the source and the

sink are separated by slightly larger distance than what should. The mentioned reconstruction

errors both in the magnitude and the orientation may be partly due to the linear approximation

of the line integrals and partly due to the coarse discretization of the domain.
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Figure 4.11: This figure shows two different test cases. Left column shows the magnitude and
the vector lines of the forward field (for each test case) and the remaining pictures staring from
left, show the reconstruction results for SNRin equals to 60dB, 40dB and 30dB. The two top
rows correspond to the test case where the E-field was produced by a superficial source which
is normal to the boundary. The last two rows correspond to the reconstruction case where the
field was produced by dipole source (almost) tangential to the closest boundary point.
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4.8 Summary

In this chapter, vector field tomography was employed to reconstruct electric fields based on

known boundary data. The test cases included the reconstruction of harmonic fields, irrota-

tional fields and non-zero divergence electric fields caused by dipole sources inside the domain.

Spesifically, the last case which is the most challenging has practical importance because it

corresponds to EEG imaging in which brain activity (caused by dipole-like sources) is localized

based on potential measurements around the scalp.

It was shown that the pattern of the electric field strength distribution could be reconstructed

correctly using vector field tomography, even though the absolute values were not always correct.

Due to the linear approximation of the line integrals also the arrow figures that depict the E-field

lines had sometimes errors near the dipole source. Nevertheless, it is noteworthy that based on

the form of the electric field strength, correct active areas could still be localized even in the

case of dipole source imaging.
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Chapter 5

Compensation of Approximation and

Modeling Errors in EEG Imaging

The goal of EEG source imaging is to reconstruct the source activity inside the brain from

potential measurements on the scalp. The main factor that limits the current accuracy and

applicability of the approach is the complexity and the variability of the brain anatomy. In

particular, because the EEG source imaging is an ill-posed inverse problem [122], the solution

is highly sensitive to measurement and modeling errors. Specifically, the accuracy of the inverse

solution can be affected by errors in the shape of the head model [55] and in the conductivity

distribution within the brain [169].

The geometry of the skull and the conductivities of the different tissues within the brain

vary among individuals. For instance, in Fig. 5.1 we see the variation in the geometries and the

thicknesses of the main head compartments for three different individuals. Typical values for

the conductivities of different brain tissue types can be obtained from the literature [122], but

the imaging results can be incorrect if the variation of the conductivities and the anatomical

complexity and lesions of the individual under examination are significant [170].

The effect of the head geometry and the induced errors in the inverse solution have been

studied by several authors. The differences in the solutions between a simplified geometry, such

as a spherical head with concentric layers and a realistic head were studied in [21, 143, 184, 7].

Also, the discrepancies in the shape and thicknesses of skulls are significant factors resulting in

source misplacement [5, 184]. The evaluation of the skull inhomogeneities (i.e. holes, lesions)

was presented in [125] and the effect of the variation of the skull thickness was studies in

[20, 5]. All these studies indicated the need of an accurate computational implementation of the

underlying model while only very small scale details, e.g. sulci and fissures on the cortical layer,

may be neglected from the EEG modeling [173]. Furthermore, the effects of variations in the

conductivities and anisotropic properties of the brain tissues and the resulting imaging errors

caused by poor conductivity modeling have been investigated in [6, 170, 179, 181].

The inverse solution should ideally be based on an exact head model for each particular

individual. However, the extraction of the real geometry for each individual is a multidisciplinary,
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Figure 5.1: Head geometries for different individuals. The three different lines show the three
main head compartments [96].

time consuming, expensive and challenging task. Strong clinical expertise is required while the

development of fast and robust segmentation, registration and post-processing algorithms for

the extraction of the conductivities and the construction a head with the conjunction of multi-

modalities (CT/D-MRI) are still open fields of research [160]. Therefore, the use of exact head

models is not feasible if we wish to use the EEG as a fast and low cost modality for monitoring

of the electrical activity.

In this chapter, we apply the so-called Bayesian approximation error approach (AEA) [67] to

the EEG imaging problem to take into account modeling errors due to unknown head geometry

and uncertainty in the conductivities of the different tissues. The AEA has been developed

specifically to cope with both modeling and numerical discretization errors [66, 4, 112]. Hence,

instead of an accurate head model which is too complex and time consuming to be extracted,

an approximative computational model is employed in the inversion. The statistical discrepancy

between the accurate model and the approximate model is pre-computed and considered in the

inverse modeling. This discrepancy is called the approximation error and is incorporated in the

model as an additional term. The approach is Bayesian in the sense that the computation of the

approximation error statistics is performed over the modeled priors of the unknowns. The likeli-

hood model includes the statistical models of both the approximate error and the measurement

noise. By incorporating an appropriate prior, it is possible to construct the posterior density. A

Bayesian point estimate, e.g. maximum a posterior (MAP), can be used to visualize the brain

activity [66]. To summarize the main idea, the AEA allows the use of a simple head model for

every patient by taking the individual variations into account by means of a statistical model.

In this work, we evaluate the feasibility of the AEA to reduce the errors caused due to the

use of a coarsely discretized, three-layer, concentric circle geometry in the EEG source imaging

instead of a realistic head model. In the simulations, we consider only the reconstruction of sparse

sources arising in cases like focal epilepsy. In particular, we examine two different cases; in the

first case we assess how the method can compensate for the source localization errors arising

from the discrepancies in the head geometry and the model reduction. In this first case, we

consider fixed conductivity values and noiseless measurements. In the second case, we consider

the combination of unknown geometry, unknown conductivities and additive measurement noise.

With the second set of experiments, our intention is to test the method with more realistic

examples. The conductivities are isotropic in both cases. The tests were performed only in 2D
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domain. However, the extension of the method in 3D cases is straightforward and is left as a

future work. Our simulations show that the incorporation of the approximation error statistics

in the inverse model improve the estimation of the location of the focal sources.

The remainder of the chapter is organized as follows. In section 5.1, we give a brief overview

of the application domains where the AEA has previously been applied. The theoretical back-

ground of the AEA is presented in section 5.2. In section 5.3, we describe the details about the

the simulation configurations, the test cases we examine and the computation of the approxima-

tion error statistics. The results using simulated data are shown in section 5.4 which discusses

the feasibility of the AEA approach to reconstructing focal sources.

5.1 Review on Approximation Error Studies

The AEA has been successfully utilized in several applications, mainly in tomography-related

inverse problems, for example optical diffusion tomography (ODT) was studied in [4, 75, 164,

163], electrical impedance tomography (EIT) in [114, 85, 115], and several cases were studied

in [66] including dental X-ray imaging and image de-blurring. The extension of the AEA to

non-stationary linear and non-linear inverse problems was considered in [56], with application in

the time dependent tracking of the distributed thermal conductivity and perfusion coefficients of

human tissue [57]. The source of the approximation and modelling errors includes dimensionality

reduction (coarse mesh) of the model [4, 74, 85], unknown boundary shape [115], using isotropic

model for an anisotropic medium [45], truncation of the computational domain [75], unknown

contact impedances or sensors locations [114, 107], domain mismodelling [44] and approximative

mathematical model [164].

In ODT, the reduction of modelling errors caused by coarse discretization was studied in [4].

The method was tested with simulated data for two dimensional examples. It was shown that

the AEA allows significant reduction in the dimensionality of the FEM model while maintaining

accurate reconstruction compared with the conventional model when denser discretization is

employed. The feasibility of the AEA for the three-dimensional ODT problem with real data in

a cylindrical structure was presented in [75]. The method was able to compensate errors caused

both by coarse meshing and by truncation of the computational domain. The approach appears

to be especially attractive for low noise levels. In [44], the effects of the body shape discrepancy

on the computational model was studied. The difference between the actual geometry and the

standard model caused modelling anisotropy even though the actual medium was considered

isotropic. The optical absorption coefficients were estimated taking into consideration these

uncertainties when employing the AEA.

The anisotropic property of different tissues was considered in [45]. The uncertainties in

the background anisotropy values were treated as approximation errors. Specifically, the tissues

anisotropy parameters (i.e. the strengths and the direction) were considered as random variables,

with Gaussian prior distribution and the approximation error statistics were carried out. In [163],

the AEA was applied in order to reduce errors due to the approximate mathematical modelling
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of the light propagation in a low scattering body and the model dimensionality reduction. More

precisely, the computationally demanding radiative transfer equation was approximated with

the approximate diffusion model. However, the diffusion model describes light propagation in

strongly scattering media. Therefore, the AEA was used to balance the low accuracy of modelling

when a medium with weakly scattering property is examined. In [164], the approximation error

caused by the linear formulation of the problem was reduced applying AEA. In particular,

the linear model was derived from the first order Born approximation with an infinite space

Green’s function. Usually, the modelling errors can be corrected when reference measurements

with known background optical properties are available. However, frequently the background

properties are mismodeled and the reference measurement is not available. In those cases, it was

shown that the AEA allowed the reconstruction of good images. In addition, AEA was applied

to reduce the spurious artifacts caused by the scalp blood flow which can mask the underlaying

cortical activity [46]. Other errors related to optical sensors coupling, position inaccuracies of

the electrodes, unknown domain boundary and the feasibility of the AEA to reduced these errors

was studied in [107, 108].

Moreover, the approximation error approach has been utilized extensively in the electrical

impedance tomography (EIT). In particular, the AEA was applied for compensation of the errors

due to coarse discretization and restriction of the domain of interest in geophysical application

of EIT [80]. In process tomography, the model reduction and partially unknown level of the

liquid inside a cylindrical tank causing erroneous conductivity estimation, was treated with the

AEA [113]. Moreover, the extension of the previous study taking into account the errors due to

the unknown contact impedances of the electrodes was tested in [114]. In medical applications,

EIT has been proposed for the reconstruction of the conductivity distributions in the chest

region. The use of a generic geometry (in this case a cylinder) instead of the actual thorax

geometry and the reduced discretization introduced errors which were handled with AEA [115].

A further step for the approximate reconstruction of the chest cross sections was proposed in

[116]. Particulary, in addition to the conductivity estimation, a low rank approximation of the

modelling error was computed. An estimate of the modelling error was then used to compute an

approximation for the actual domain boundary shape which had been parameterized with low

number of parameters. Finally, other applications using EIT modality in process tomography for

the time-dependent tracking of the velocity flows in pipelines employed AEA for the reduction

of the model uncertainties [84, 85, 80].

5.2 Approximation Error Approach in EEG Imaging

In this section, we describe the theoretical background of the AEA for the generic EEG imaging

problem based on the analysis presented in [67]. The observation model for the EEG imaging

problem can be written in the form

v = A(λ, σ, x) + ξ (5.1)
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where v ∈ R
m contains the measured potentials around the scalp, A is a mapping between the

quantity of interest x and the measurements. The variable x can be for example the source

distribution or the cortical potentials. The parametrization of the head geometry is denoted by

λ, σ are the electric conductivity of the tissues and ξ ∈ R
m is the measurement noise which is

modeled as Gaussian ξ ∼ N (ξ∗,Γξ) with mean ξ∗ and covariance Γξ ∈ R
m×m.

In practice, for the estimation of x, the problem is represented in discrete form, i.e.

Ah(λ, σ, x)→ A(λ, σ, x) as h→ 0, (5.2)

where h denotes the discretization level of the domain and Ah ∈ R
m×n is the numerical approx-

imation of A.

Let’s now define a sufficiently accurate numerical model

v = Aδ(λ, σ, x̄) + ξ, (5.3)

where Aδ ∈ R
m×n̄ is the operator between x̄ ∈ R

n̄ and the measurements v ∈ R
m. The index

δ in the operator implies that the discretization level and geometry description is such that the

numerical approximation errors are lower that the observation errors ξ.

In the AEA, the accurate model is replaced by an approximate computational modelA0(λ0, σ0, x) ∈
R
m×n0 with x ∈ R

n0 in the following way:

v =A0(λ0, σ0, x) + (Aδ(λ, σ, x̄)−A0(λ0, σ0, x)) + ξ

=A0(λ0, σ0, x) + ε(λ, σ, x̄) + ξ

=A0(λ0, σ0, x) + ν,

(5.4)

where

ν = ε(λ, σ, x̄) + ξ (5.5)

includes all the model uncertainties and the measurement noise. The error term ε(λ, σ, x̄) in-

cludes all the modeling/approximation errors caused by the discretization, the geometry dis-

tortion and the unknown conductivities. In probabilistic terms, the approximation error is the

discrepancy of the predictions of the measurements when using the the accurate and approximate

model.

The variables x̄ and x in (5.4) are related according to

x = Px̄, (5.6)

where P : R
n̄ → R

n0 is a linear model reduction map from the fine domain to the coarse

approximative domain.

The objective in AEA is to solve of the problem from Bayesian point of view, by deriving

an computationally efficient approximation π̃(x|v) for the posterior density π(x|v) based on the
model (5.4). In particular, in the Bayesian framework, all the variables including the measure-
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ments are considered as random and the stochastic nature of the problems is described with the

help of the probability distributions. The joint density of parameters x, ν and v is

π(x, ν, v) = π(v|x, ν)π(x, ν), (5.7)

where π(v|x, ν) is the likelihood and π(x, ν) the prior model of x and ν.

The joint posterior density using Bayes’ formula, is

π(x, ν|v) = π(x, ν)π(v|x, ν)
π(v)

. (5.8)

The joint posterior density model encodes all the uncertainties of the unknowns given the mea-

surements. In practice, our interest is the primary unknown x which is obtained from the

marginal conditional distribution

π(x|v) =
∫

π(x, ν|v) dν. (5.9)

In general cases, integral (5.9) does not have an analytical solution. However, it can be numer-

ically approximated with algorithms that are computationally highly demanding (e.g. MCMC

[66]). As we shall see in then next section, an alternative is to obtain a computationally efficient

approximation of the posterior density (5.9), by considering the Gaussian approximation π̃(x, ν)

of the joint density π(x, ν).

5.2.1 Construction of the posterior density

In this section, our objective is to derive a computationally efficient approximation to the pos-

terior density (5.9) using the model (5.4). From Bayes’ rule, the posterior is given by

π(x|v) = π(v|x)π(x)
π(v)

∝ π(v|x)π(x), (5.10)

where π(v|x) is the likelihood and π(x) is the prior density. The probability π(v) > 0 is a constant

and can be neglected. The first step for the estimation of the posterior is the derivation of the

likelihood. In particular, from (5.4) we have that the likelihood for given x and ν is

π(v|x, ν) = δ(v −A0(λ0, σ0, x)− ν), (5.11)

where δ(·) is the Dirac-delta function. The marginal likelihood over ν is

π(v|x) =
∫

π(v, ν|x) dν. (5.12)
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From chain rule π(x, v, ν) = π(v|x, ν)π(x, ν) = π(v|ν, x)π(ν|x)π(x) [132] and Bayes’ theorem,

we can derive the density π(v, ν|x), i.e.

π(v, ν|x) = π(v|ν, x)π(ν|x). (5.13)

From (5.12), (5.13) and (5.11) the likelihood is

π(v|x) =
∫

π(v|ν, x)π(ν|x) dν =
∫

δ(v −A0(λ0, σ0, x)− ν)π(ν|x) dν. (5.14)

Thus,

π(v|x) = πν|x(v −A0(λ0, σ0, x)|x). (5.15)

The subscript ν|x is used to clarify that πν|x(.) is the conditional probability density of the

random variable ν given x.

From (5.10) and (5.15), the posterior density becomes

π(x|v) ∝ π(v|x)π(x) = πν|x(v −A0(λ0, σ0, x)|x))π(x). (5.16)

In the AEA, the additive noise is consider Gaussian with ξ ∼ N (ξ∗,Γξ) and independent

of x and the modelling parameters. Furthermore, before the inference, the joint density π(x, ε)

is approximated by a Gaussian distribution π̃(x, ε). Therefore, the conditional πν|x (5.15) is

approximated by

π̃ν|x(v −A0(λ0, σ0, x)|x) ∝ exp

(
−1
2
(v −A0(λ0, σ0, x)− ν∗|x)

TΓ−1ν|x(v −Ah0(λ0, σ0, x)− ν∗|x)

)

(5.17)

where

ν∗|x =ε∗|x + ξ∗

Γν|x =Γε|x + Γξ

(5.18)

The approximate posterior model (5.16) becomes

π̃(x|v) ∝ π̃ν|x(v −A0(λ0, σ0, x)|x))π(x). (5.19)

In the next section, we derive the formulae of the conditional mean ε∗|x and covariance matrix

Γε|x.

Approximation Error Statistics

Let’s z denote the stacked variables

z =

(
x

ε

)
. (5.20)
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The joint distribution of z is

π̃(x, ε) = π(z) ∝ exp

(
−1
2
(z − z∗)

TΓ−1z (z − z∗)

)
(5.21)

where

Γz =

[
Γx Γxε

Γεx Γε

]
(5.22)

is the joint covariance matrix with the following inverse

Γ−1z = B =

[
B11 B12

B21 B22

]
(5.23)

and mean z∗ = (x∗, ε∗)T.

From (5.20) and (5.23), the expansion of the exponent in (5.21) yields

π̃(x, ε) ∝ exp−1
2

(

(x− x∗)
TB11(x− x∗) + (ε− ε∗)

TB22(ε− ε∗) + 2(x− x∗)TB12(ε− ε∗)
)

(5.24)

as B12 = BT
21.

The conditional π̃(ε|x) is estimated from (5.24) by completing the quadratic form in the

exponential into squares

π̃(ε|x) ∝ exp

(

−1
2
(ε− ε∗|x)

TB22(ε− ε∗|x)

)

(5.25)

where the conditional mean is

ε∗|x = ε∗ −B−122 B21(x− x∗) (5.26)

and the covariance matrix

Γε|x = B−122 (5.27)

Using the matrix inversion Lemma [66], we have that B−122 = Γε − ΓεxΓ
−1
x Γxε and B−122 B21 =

−ΓεxΓ
−1
x . Substituting these identities into (5.26) and (5.27)

ε∗|x =ε∗ + ΓεxΓ
−1
x (x− x∗)

Γε|x =Γε − ΓεxΓ
−1
x Γxε.

(5.28)

5.2.2 Maximum A Posteriori Estimate

The statistical inference from the posterior density in a high-dimensional parameter space is

conceptually and computationally inconvenient. Instead, Bayesian point estimates such as the

maximum a posteriori (MAP) estimate enables visualization and ease interpretation of the so-
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lution. The MAP estimate of x is

x̂ = arg max
x

π̃(x|v) (5.29)

where π̃(x|v) was defined in (5.19).
Thus, variable x is estimated according to

x̂ := min
x
‖Lν(v −A0(λ0, σ0, x)− ν∗|x)‖22 − 2 lnπ(x), (5.30)

where Γ−1ν|x = LT
ν Lν is the Cholesky factorization of Γ

−1
ν|x [100] and π(x) is chosen prior model.

There are also other Bayesian point and spread estimates e.g. conditional mean (CM)

xCM =
∫
xπ̃(x|v) dx and conditional covariance estimate given by cov(x|v) =

∫
(x − xCM)(x −

xCM)
Tπ̃(x|v) dx. In this thesis, we use only the MAP estimate and we compute x by solving

problem (5.30).

5.3 Computations and Simulated Data

5.3.1 EEG focal Source Imaging using AEA

For the EEG inverse computations, we employ the distributed source modeling(DSM) which

relates linearly the dipole source vector with the measured potentials, v ∈ R
m [7]. The finite

element method (FEM) is used for the numerical formulation of the problem.

Briefly, the EEG observation source model in a 2D domain is

v = K̄λ̄(σ̄)d̄+ ξ, ξ ∼ N (0,Γξ), (5.31)

where K̄λ̄(σ̄) ∈ R
m×2n̄ is the lead field matrix of the accurate geometry, d̄ = [d̄Tx , d̄

T
y ]

T ∈ R
2n̄

is the accurate representation of the dipole components in column form, index λ̄ denotes the

domain (i.e. geometry parameter) and σ̄ ∈ R
n̄ is the conductivity distribution. For the additive

noise ξ we assume that has covariance matrix Γξ = γ2ξ I
m×m where Im×m is the identity matrix.

In practical clinical measurements, the exact knowledge of the geometry and electrical prop-

erties of the head are not always available and therefore the reconstruction is carried out using

an approximate model λ0.

The accurate model is replaced by an approximate model and the approximation error is

incorporated in the previous equation according to

v =Kλ0(σ0)d+ (K̄λ̄(σ̄)d̄−Kλ0(σ0)d) + ξ

=Kλ0(σ0)d+ ε(d̄, λ̄, σ̄) + ξ

=Kλ0(σ)d+ ν

(5.32)

where d = [dTx , d
T
y ]

T ∈ R
2n0 , Kλ0(σ0) ∈ R

m×2n0 (m < n0) is the lead field matrix of the

standard geometry λ0 and σ0 ∈ R
n0 . The total noise is ν = ε(d̄, λ̄, σ̄) + ξ, where ε(d̄, λ̄, σ̄) is the

88



approximation error term due to the geometry and conductivity uncertainty. The additive noise

ξ is statistically independent of the dipole distribution d.

The dipole source distribution in the standard geometry can be represented by a linear

transformation

d = P d̄, (5.33)

where P ∈ R
n×n̄ is a matrix that interpolates nodal dipoles from geometry λ̄ to λ0 according to

a deformation scheme. The geometry deformation model is defined as

x = T (x̄), (5.34)

where x̄ ∈ Ωλ̄ is a position vector in the MRI domain Ωλ̄ and x ∈ Ω0 a position vector in the

standard circular domain Ω0 and T : Ωλ̄ → Ωλ0 is the domain deformation operator.

Analogous to the analysis in section 5.2, the posterior distribution is

π̃(d|v) ∝ π̃ν|d(v −Kλ0(σ0)d|d))π(d). (5.35)

For the reconstruction of sparse focal sources, the prior distribution π(d) is

π(d) ∝ exp

(
−α

2

n0∑

i=1

wi‖di‖2
)
, (5.36)

where di is the dipole vector at location i, α a scaling factor and wi the depth weighting factors

defined in section 3.3. The approximate posterior is

π̃(d|v) ∝ exp

(
−1
2
‖Lν(v −Kλ0(σ0)d− ν∗|d)‖22 −

α

2

n0∑

i=1

wi‖di‖2,
)

(5.37)

where LT
ν Lν is the Cholesky factorization of Γ

−1
ν|d. The joint covariance matrix is

Γν|d = Γε|d + γξI
m×m (5.38)

and the mean is ν∗|d = ε∗|d. The approximation error statistics are

ε∗|d =ε∗ + ΓεdΓ
−1
d (d− d∗)

Γε|d =Γε − ΓεdΓ
−1
d Γdε

(5.39)

The dipole mean is considered d∗ ≃ 0. As in section 3.2.3, we have that the scaling parameter

α is α = cαmax where c ∈ (0, 1) and

αmax = max





√∑2
j=1 b

TU (i+(j−1)n0)

wi
for i = 1, . . . , n0



 (5.40)
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where U (i+(j−1)n0) is the corresponding column of the matrix U = Lν(Kλ0 + ΓεdΓ
−1
d ) and

b = Lν(v − ε∗).

5.3.2 Computation of the Error Statistics

The approximation error statistics can be enclosed in the the analytical expression of the condi-

tional mean (CM) or MAP estimate in the case of linear Gaussian observation model, Gaussian

prior and simple modelling errors e.g. model reduction errors. However, the computation of the

estimate requires the solution of a system which still includes the complexity of the accurate

modeling (see for instance equation (5.26) in [66]). Additionally, for general cases where the

prior is not Gaussian, for example, in the EEG sparse imaging problem where L1,2 norm prior

is employed or for a non linear problem, these estimates do not have analytical expressions.

Thus, the mean and covariance of the approximation error (5.39) need to be computed through

simulations.

For the estimation of the mean and covariance matrix of the approximation error, we

employed K different (training) geometries denoted {λ̄(i); i = 1, . . . ,K}. The dipole mo-

ments were drawn from a Gaussian distribution given by π(d̄) ∝ exp
(
− 1

2γd̄
d̄Td̄

)
. We note

that this distribution is a function of d̄Td̄ = ‖d̄‖22 and does not, therefore, depend on the

dipole orientation. The conductivities, σ̄, were drawn from the truncated Gaussian distribution

π(σ̄) ∝ π+(σ̄) exp
(
− 1

2γσ̄
(σ̄ − σ̄∗)T(σ̄ − σ̄∗)

)
where σ̄∗ are the nominal tissue conductivities and

π+(σ̄) = 1 when all element of σ̄ > 0 and equals to zero otherwise.

For the computation of the error statistics, for each geometry λ̄(i), a set of M draws were

generated from the distributions π(d̄) and π(σ̄). The samples of the dipole distributions, d̄, and

the parameter σ̄ are denoted by

{d̄(l), σ̄(l), l = 1, . . . ,M} (5.41)

for each geometry λ̄(i). The total number of samples was Ns = KM .

By setting k = (i − 1)K + l, the predictions of the accurate and the approximate model

were v(k) = K̄ ¯λ(i)(σ̄
(k))d̄(k) and v(k) = Kλ0(σ0)d

(k). Samples d(k) were estimated from the linear

reduction mapping from geometry λ̄(i) to λ0, d
(k) = Pλ̄(i) d̄(k) (Fig. 5.2).

The samples of the approximation errors ε(k) were

ε(k) = K̄λ̄(i)(σ̄(k))d̄(k) −Kλ0(σ0)d
(k) for k = 1, . . . ,KM. (5.42)

Let us denote ζ the stacked variables ζ =

(
d

ε

)
. The numerical joint mean and covariance

matrix of the approximation error ε and the unknown d is given by

ζ∗ =

∑Ns

k=1 ζ
(k)

Ns
(5.43)
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and

Γζ =
1

Ns − 1

Ns∑

k=1

θ(k)θ(k)
T

(5.44)

where Ns = KM , ζ(k) =

(
d(k)

ε(k)

)
are the samples and θ(k) =

(
d(k)

ε(k)

)
− ζ∗.

The numerical mean is ζ∗ ≈
(
d∗
ε∗

)
and the covariance Γζ ≈

(
Γd Γdε

Γεd Γε

)
.

Deform MRI shape to
Standard Geometry

Figure 5.2: Projection of a single dipole to the standard geometry

5.3.3 Different Reconstructions and Quantification of the Accuracy

To test the approximation error approach, a new head geometry that was not included in the set

of previous (training) geometries was selected. Then, the boundary data was computed using

the accurate head model. With this data, three different reconstructions were computed and

compared.

First we estimate the boundary data v+ by solving the forward problem

v+ = K̄λ̄+
(σ̄+)d̄+ + ξ, (5.45)

where λ̄+ denotes the accurate geometry with lead field matrix K̄λ̄+
(σ̄+) ∈ R

m×2n̄, when a

sparse dipole vector d̄+ and a noise vector ξ are given.

Afterwards, three different inverse solutions were computed using the estimated data v+.

The first one was computed using a coarsely discretized version of the accurate head model with

the correct conductivity distribution. The coarse discretization was used in order to avoid the

so-called inverse crime [66]. The second inverse solution was computed using the standard model

that consisted of three concentric circles [36] that depicted scalp, skull and brain. The third

solution was computed again using the standard model but now accompanied with the statistics

that compensated the approximation errors.

The maximum a posteriori (MAP) estimates were used for the evaluation and visualization
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of the results. The MAP estimate in the accurate geometry is

d̂acc := min
d
‖1
2
γ−1ξ (v+ −Kλ+(σ+)d)‖22 + α1

n∑

i=1

wi‖di‖2, (5.46)

where γξ is the variance of the measurement noise, Kλ̄+
∈ R

m×2n, n < n̄ and σ+ = Pλ+ σ̄+ with

Pλ̄+
∈ R

n×n̄ being a linear interpolation matrix for the fine mesh to the coarse actual mesh.

Subsequently, the MAP estimate in the standard geometry is

d̂st := min
d
‖1
2
γ−1ξ (v+ −Kλ0(σ0)d)‖22 + α2

n0∑

i=1

wi‖di‖2, (5.47)

and finally, the third MAP estimate that utilizes the approximation error approach in the stan-

dard geometry is

d̂AEA := min
d
‖Lν(v −Kλ0(σ0)d− ν∗|d)‖22 + α3

n0∑

i=1

wi‖di‖2 (5.48)

The scaling parameters (α1, α2 and α3) were selected based on visual observations but their

values were always lower than the bound defined in section 3.2.3.

5.3.4 Simulation Configuration

In this section, we describe the set-up of the simulations for the evaluation of the performance

of the models (5.46), (5.47) and (5.48) when used to reconstruct focal sources.

Head Models for the Error Statistics

For the computation of the approximation error statistics, several accurate head models were

needed. Therefore, 32 (training) head geometries were acquired from the OASIS project database

[96]. The head geometries were from healthy adults, both men and women.

The analysis was carried out in 2D. First, the traverse (axial) cross sections which correspond

to the head area above the eyes were selected (for example see the left image in Fig. 5.3).

Each cross section was segmented into three compartments Scalp/Skull/Brain. The scalp was

extracted using the FieldTrip toolbox [129]. The skull was segmented using threshold and

morphology operators [136] and the brain with the help of the brain masks provided by the

OASIS database for each individual adult.

Then, 32 measurement electrodes and an additional fixed ground electrode (above the right-

hand-side ear) were equally distributed around the scalp. The corresponding meshes were con-

structed using comsol64 [53]. The lead field matrices were estimated using the FEM with linear

nodal basis functions [182].
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MRI cross section
Segmentation

3 Compartments

32 point electrodes (grey)

Grounded electrode (red)

Figure 5.3: Left image: MRI cross section, middle: segmentation into scalp, skull and brain
area, right image: 32 point sensors around the 2D domain and a fixed ground point.

Geometries for the Validation

To evaluate the AEA, a new head geometry ( the left image in Fig. 5.4) that was not included

in the set of the (training) geometries, was used. The mesh of the forward problem was finer

than the inverse meshes. For the inverse solutions, we used two different meshes. The mesh in

the middle of Fig. 5.4 is a coarse version of the forward mesh. The circular domain (“Standard

Model” in Fig. 5.4) was used in the minimization problems (5.47) and (5.48).

Forward mesh

Accurate Model Standard Model

Inverse meshes

Figure 5.4: The discrete domains used in the forward and inverse problem. (Left image) A
fine mesh used to compute the accurate noiseless (forward) measurements. This mesh was
constructed based on an MRI cross section. (Middle image) A coarse mesh of the same MRI
geometry which was employed in the (accurate model) inversion and (right image) the standard
circular mesh employed in the inversion for the standard model and AEA model.

Projection Operator

In this section, we give an explanation how the mapping between the actual geometry and the

circular standard model is performed and how the projection operator P in equation (5.33) is

constructed.

The selected geometry deformation model (5.34) preserves the angle and relative distance

between the center of the domain and the boundary. The construction of the interpolation

matrix Pλ̄ in (5.33) was carried out as follows; let x̄i be the position vector of the ith node of

the FEM mesh of geometry λ̄. First, we estimate the deformed coordinate xi = T (x̄i). The

estimation is based on xi = r x̄i
r̄ , where r̄ is the length of the line passes, through point x̄i and
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connects the center of the domain and the boundary for the MRI geometry, and r is the radius of

the standard circular geometry (see for example left and middle image in Fig. 5.5). Subsequently,

the FEM element of the standard mesh in which the point xi is located, is estimated. Once this

has been done, we express xi as a linear combination of the element nodes using barycentric

coefficients (l1, l2, l3). We assign the barycentric coefficients in the elements of the ith row of

P which correspond to the indices of the nodes of the FEM element where xi is located (right

mesh in Fig. 5.5 shows the element and the nodes of the standard mesh where xi is located).

Similar deformation scheme has been previously used in [108, 115]. This scheme was found

useful also in the test cases studied here. Alternative models for the mapping can be found from

image registration literature [49]. However, for small deformation between convex domains we

do not expect significant differences between the mapping methods.

Figure 5.5: First, the deformed coordinates are estimated using a simple radial deformation
scheme that keeps the relative distances with respect to the origin. Subsequently, a linear
interpolation scheme (barycentric coefficients) is applied for the estimation of the coefficients in
the mapping P .

Sources Set-up

The candidate sources were located in the grey matter of the brain (Fig. 5.6) which is in accor-

dance with the fact that the grey matter includes regions of the brain involved in muscle control

and sensory perception [122].

The candidate source locations for the accurate model are shown on the left in Fig. 5.6.

The candidate source locations of the standard model are the whole brain area, as shown on

the right in Fig. 5.6. A single dipole source was generated at a randomly selected candidate

source location. The values of the dipole components (in x and y coordinates) were drawn from

a Gaussian distribution. The single peak was blurred using a Gaussian [5 × 5pixel] (where 1

pixel ≈ 1mm) low pass filter. Hence, a single source consisted of a small patch with smoothly

varying magnitudes and similar orientation. This source resembles a set of pyramidal neurons

that form layers with similar orientation. Depending on how many active regions we wanted to
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Candidate source locations in
the inverse problem

Accurate model Standard model

Figure 5.6: Candidate source locations for the accurate model and the standard model.

simulate, we selected the corresponding number of source locations. In the following test cases,

we simulated up to three different active regions.

Scaling Parameter and Weighting Factors

The scaling parameters in (5.48), (5.46) and (5.47) were in the range [0.1αmax, 0.001αmax] where

αmax is the upper bound which can be derived for each minimization problem according to

the analysis in section 3.2.3, and it depends on the lead field matrix, covariance matrix and

measurements. For the AEA problem (5.48), the upper bound of this parameter is given in

(5.40). The scaling parameters were selected to be in this range in order to relax the strict

sparsity and to enable the fast algorithmic convergence.

The scaling parameter of the AEA minimization problem (5.48) was selected to be slightly

higher than the parameters used in the other two problems (5.46) and (5.47). Specifically, matrix

Lν in (5.48) tends to spread the solution. Therefore, we ensured that the solution in (5.48) is

focal by selecting a slightly higher scaling parameter. The weighting factors wi were computed

according to section 3.3.

5.3.5 Metrics for Evaluation

The validation of the inverse EEG method is a difficult task due to the lack of the “ground

truth” and the gap for systematic ways of inspection and supervision of the brain activity

and functionality. The most efficient way to test the liability of the proposed method is by

reconstructing simulated data d̄ ∈ R
2n̄. In this section, we describe the validation metrics used

to evaluate the accuracy of the inverse EEG solutions.

We denote d̂ ∈ R
2n0 a solution of the inverse problem and d = P d̄ ∈ R

2n0 the projection

of the actual dipole vector to the inverse geometry. We compared the estimated d̂ with the

projected vector d or the actual dipole d̄ by using four different metrics. The first two metrics,

the earth’s mover distance (EMD) and the nearest source distance (NSD) give a quantitative

rendering of how far are the estimated distribution from the actual sources. With the strength

difference (SD) we compared the total power difference between the two distributions. The

weighted angle difference (WAD) gives information related to the difference in the orientations
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of the actual sources and the reconstructed ones.

In particular, for assessing quantitatively the source localization accuracy we used the earth

mover’s distance (EMD) metric. The EMD has been introduced in computer vision for compar-

ing image [145] and it has been used previously in EEG [42, 91] as it is suitable for comparing

signals with possibly non-overlapping support e.g. sparse vectors.

The EMD is defined as the minimum work that must be done to transform one normalized

discrete signal into the other, when a metric between the discrete points of the domain is

provided. For the EEG inverse solution, we are interested in measuring the weighted distance

between the locations of the actual sources and the estimated distribution. The EMD gives these

weights which are called flow values and they correspond to the fraction of the estimated dipole

strength which is “transported” from location i to j in such way that the work is minimized.

The EMD is shown graphically in Fig. 5.7. Given d̂ and d, the EMD is estimated according to

EMD(d̂, d) = min
{fij}

∑

i,j

fijlij

s.t.
∑

i,j

fij = 1,
∑

j

fij ≤ ĝi,
∑

i

fij ≤ gj
(5.49)

where ĝi =
‖d̂i‖2

∑n0
i=1 ‖d̂i‖2

is normalized vector of the estimated dipole strengths and gj =
‖dj‖2

∑n0
j=1 ‖dj‖2

the normalized actual strengths, for i, j = 1, . . . , n0 and fij the flow. As a metric between

the source locations we use the Euclidean distance lij = ‖xi − xj‖2 where xi and xj are the

coordinates of the ith and jth nodes of the mesh. The minimization problem (5.49) is computed

Ii

j

g

g

fij

Figure 5.7: The EMD for the EEG problem is the minimum work needed to transform the
normalized strength ĝ of the estimated distribution to the actual normalized distribution g.

using linear programming solver [11, 135].

The second metric used is called Nearest Source Distance (NSD) and it is given by

NSD =

∑
i min
j=1,...,k

{lij}‖d̂i‖2
∑

i ‖d̂i‖2
, (5.50)

where min
j=1,...,k

{lij} is the minimum Euclidean distance between the estimated dipole at location

i and a focal source at location xj with k the total number of actual focal sources.

For instance, in Fig. 5.8, there are two actual sources (j = 1, 2) and the estimated distribution
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Figure 5.8: NSD is the mean distance between a reconstructed distribution and its nearest actual
dipole source.

has two active regions which are close to source j = 1. The NSD is the weighted distances

between the estimated distribution and the location x(1).

We used two different metrics for the source localization evaluation because there are cases

were the depicted results cannot be explained by the EMD and we needed the complementary

NSD validation metric. Specifically, the EMD and NSD metrics are expected to give almost

similar results for a single source case. However, for more than one sources, the values of the

EMD and NSD may differ from each other. Usually the EMD gets higher values than the NSD.

For example, for the case of two equal sources which are far from each other, the reconstruction

algorithm may give two sources in the correct locations but with uneven strengths. In this

case, the EMD value can be unexpectedly high because a fraction of the more intense source is

“transferred” to the less intense source location. On the other hand the NSD value is going to

be quite low (for example see test case in Fig. 5.14).

Additionally, to assess the strength difference in Decibel (db) between the simulated vector

d̄ and the reconstructed d̂ we use the strength difference metric

SD = 10 log10
‖d̂‖22
‖d̄‖22

(5.51)

For the orientation error we estimate the angle between the dipole d̂i at location i and the

projected dipole dj weighted by the flow values fij that were estimated in (5.49) according to

WAD =
∑

i,j

fij |ωij | where ωij = cos−1 d̂i·dj
‖d̂i‖2‖dj‖2

. (5.52)
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5.4 Results and Discussion

In this section, we study the feasibility of the AEA to reduce the source location errors due to

the unknown head shape, different thicknesses of the head layers, coarse discretization of the

mesh and conductivity uncertainties. Two different types of test cases were studies. In the first

set of test cases, it was studied how AEA could be used to compensate head geometry errors.

In the second set of test cases, also conductivity and measurement errors were considered.

Fixed Conductivities
 3 compartments

Mean conductivities
5 compartments

Figure 5.9: Conductivity distribution of the forward models. The left hand side image corre-
sponds to the first cases (unknown geometry) where the conductivities in the three compartments
are fixed. The right hand side image has the mean values of the conductivities for the 5 layer
model which corresponds to the second case study (Unknown geometry and conductivities).

5.4.1 Case 1: Unknown geometry

In these test cases, only the effects of the unknown geometry were studied. A new head geometry

(that was not included in the training geometries) and sparse dipole distributions were selected.

The boundary data was computed using the forward model with accurate geometry and three

compartments (scalp, skull, brain as shown in the left hand side picture of Fig. 5.9). The

conductivities of the different compartments (0.33, 0.016 and 0.33 S/m, respectively) were fixed.

The total number of MRI cross sections used for the estimation of the error statistics in (5.42)

was K = 321.

In the following figures, the small images on the left hand side show the actual head geometry

and the simulated dipoles. The location of the simulated dipole is marked with a blue circle

and the orientation with a small blue line. The remaining images, starting from the left, show

the reconstruction solution of (5.46), (5.47) and (5.48) respectively. In particular, in the images

titled “Accurate model” we have the results obtained by solving the accurate model (5.46)

where the geometry and conductivity distribution are the same as in the forward model but

the dimension of the inverse model is lower. The images named “Standard” depict the result

obtained from the standard model (5.47), in this case we considered the 3 concentric circles and

we did not take into account the AEA statistics. The right hand side images (“AEA”) show the

AEA results obtained from (5.48). The blue circle shows the correct location of the projected

1Appendix D.1 presents reconstruction results when the approximation error statistics were estimated based
on different number of MRI geometries.
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dipole. The estimated metrics (as defined in section 5.3.5) for each inverse model are shown

below the images. In the right hand side of the figures, there is a scale in millimeters in order

to give a quantitative estimation how far are located the reconstructed sources from the actual

dipole locations. In this study, there was no additive measurement noise.

Single Source

The first set of pictures shows the results in the cases where a single focal region of activity is

recovered. We studied the reconstructions for different depths and different locations around

the brain: we placed the source deep in the brain (Fig. 5.10) and in the frontal area and back

side (Fig. 5.11). In the test case with a deep source, all the models have good performance

as shown in Fig. 5.10. With visual inspection of Fig. 5.11, we can see that the AEA model is
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Figure 5.10: A test case of a single deep source reconstruction is examined. The left image shows
the actual dipole source and the other three pictures (from left to right) show the reconstructions
when: (1) the actual geometry and conductivity distribution, (2) the standard modelling and
(3) the AEA model are used.

able to localize a superficial dipole source more accurately than the standard model. This is in

agreement with the EMD and NSD metrics. Also, it is worth noting that the differences between

the EMD values of the accurate and AEA model are quite moderate.

Moreover, the standard model without using the AEA recovered slightly scattered source

distributions which quantitatively are expressed with higher values of the EMD metric. The

scattered solutions are partly related to the differences between the forward geometry and the

inverse one. The solution would be less scattered if a higher α parameter had been selected.

However, the dipole would have been misplaced deeper in the brain. Also, about the standard

model without AEA we can say that this model gives better reconstruction when the source is

in the back side compared to the case where the source is in the front side. This may be related
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Figure 5.11: Two test case of a single source located in the frontal side and back side. The left
image shows the actual dipole source and the other three pictures (from left to right) show the
three different reconstructions when: (1) the actual geometry and conductivity distribution are
considered, (2) the standard geometry without the AEA statistics and (3) the standard model
with the AEA statistics are used. Below the pictures, the estimated metric values are presented
for the three different reconstructions.

to the head deformations, i.e. in the forehead area the differences between the MRI geometry

and the three concentric circles are more prominent.

The previous results show that the AEA can compensate errors related to the geometry

because it gives better accuracy that the standard model. In the superficial source cases, the
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AEA is almost as good as the accurate model based on the EMD values. The accurate and the

standard model perform better when the source is deep in the domain. Possibly, the different

discretization (between the forward and the inverse model) close to the boundaries can cause

some numerical errors which result in less accurate superficial source reconstructions.

Additionally, we evaluated the overall performance of the three different reconstructions by

running 500 simulations of single dipole sources and estimating the EMD and NSD values. In the

histograms, Fig. 5.12, the first row shows the EMD distributions for the three reconstructions

and the second row shows the NSD distributions. Under the title of each picture, the averages

and the standard deviations of the EMD and NSD are presented. The EMD and NSD statistics

indicate that the AEA model works better than the standard model and that the AEA and

accurate model have quite similar performance.
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Figure 5.12: Statistics of the EMD and NSD for single dipole reconstructions using the accurate,
standard and AEA model. The statistics were estimated based on the reconstructions of 500
different simulated single sources. Above each image, the average and the standard deviation of
the corresponding metrics are given.

Furthermore, Fig. 5.13 illustrates how the three different reconstructions depend on the

depth of the source by depicting the average EMD with respect to depth. For the accurate

model the lowest average EMD values correspond to deep dipole locations while the highest

errors are for dipoles near the boundaries (see leftmost image in Fig. 5.13). The EMD value

is pretty constant with respect to depth for the standard model (middle picture Fig. 5.13) even

though its performance is worse compared to the accurate model. The AEA model shows almost

similar performance both for deep and superficial source reconstructions.
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Figure 5.13: Average and standard deviations of the EMD with respect to the depth of a single
focal source are presented. The EMD values decrease when the source is deep in the domain for
the accurate model. The overall performance of the AEA model is better than the conventional
(standard) model both for deep and shallow sources.

Two Sources

Next, we simulated two sources with equal strength and randomly chosen orientations. In Fig.

5.14 and Fig. 5.15 we show two cases. In the first case, the sources are close to each other and

in the second case the sources are far from each other. It seems that two sources are not always

found when they are close to each other: for example, the accurate model finds one broad source

in the middle and another smaller on in the wrong brain hemisphere, the same happens with the

standard model, but the AEA on the other hand finds both sources relatively accurately. When

the sources are far apart, all the models have some difficulties: the accurate model reconstructs

several additional small sources; standard model finds two sources which however have very

uneven intensities; and AEA finds two slightly spread sources. The EMD values are higher than

in the single dipole cases. Based on these figures and the metric values, the AEA model gives

better results than the standard model.

Furthermore, the values of the EMD and NSD metrics are notably different for the standard

model. For instance, in the middle image of Fig. 5.14, the EMD is pretty high compared to

the respective NSD value. In this case, the standard model finds two sources that are visually

quite close to the correct locations but still the EMD value is very high because of the wrong

intensities. In other words, EMD does not only depend on the accuracy of the locations of

the sources but also on the accuracy of their strengths. One the other hand, the NSD value is

lower because it is a weighted average of the distances between the reconstructed dipoles and

the closest actual dipoles. Here, it should also be noted that the EMD numbers may contain

small numerical errors due to the projections from the accurate domain to the circular domain.

We assessed the feasibility of the models to reconstruct two sources with equal strengths by

performing 500 reconstructions. The histograms in Fig. 5.16 shows the overall performance of

the three models. AEA model performs better than the standard model and pretty similar to

the accurate model. Additionally, we compare the average EMD values as a function of the

distance between the two sources (see Fig. 5.17). The average value of the EMD is almost the

same for the AEA and accurate model regardless how far the two sources are from each other

102



0 15 30 mm

2 4 6

x 10
−7

Test case Accurate model

0 0.5 1

x 10
−6

Standard

0 1 2

x 10
−6

AEA

0 5 10

x 10
−7

EMD (mm) :

NSD (mm) :

SD (dB) :

WAD (°):

6.8 17.7 7.2

8.9 11.9 7.0

0.1 1.8 0.1

20.0 28.8 8.0

Figure 5.14: A test case with two sources close to each other. The left image shows the ac-
tual dipole source and the other three pictures (from left to right) show the three different
reconstructions using the different models. Below the pictures, the estimated metric values
are presented for the three different reconstructions. The AEA model manages to recover two
separated sources.
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Figure 5.15: A test case with two sources symmetrically placed in the two sides of the head.
The reconstruction results are good both for the accurate and the AEA model.

(right hand side Fig. 5.17). The poorest performance is shown in the middle image especially

when the source are far apart from each other. Probably, the standard model (5.47) cannot

retrieve two locations or the strength of the dipoles is dramatically uneven.
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Figure 5.16: EMD and NSD statistics for 500 reconstructions for the case where two focal sources
are reconstructed. Also a Gaussian curve is fitted to examine how close is the histogram of the
metrics to the normal distribution.

Figure 5.17: Average EMD and standard deviation with respect to the distance between two
sources which have equal strength.

Three Sources

In the following cases, we tested the potential of the models to recover three regions of activity.

The simulated sources had equal strengths and randomly chosen orientations. In the following

figures, we present two test cases. In the first case, we have three sources which are clearly

separated from each other (Fig. 5.18). The reconstruction results show that the accurate model

can localize the sources, but there are also some artefact, the standard model retrieves three

regions of activity but the intensities are uneven and the two out of three sources are misplaced.

The AEA model localizes quite accurately the two of the three focal sources and recovers also

the third source but with lower intensity.
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Figure 5.18: A test case where three sources are placed close to the surface. The AEA results
are comparable to those obtained from the accurate model.

For the second test case, there is one deep source and two sources near the boundaries. From

the results in Fig. 5.19 we can say that the accurate model detects the three regions of activity

even though the result is a bit scattered. The standard model reconstructs two regions, one

closer to the boundary and the other between the deep and the superficial source.

The AEA model gives a slightly scattered source reconstruction but it is able to localize all

the three regions of activity (even though the intensities are uneven). There is an extra peak

in the right hand side of the circular domain. The EMD values are lower for the AEA model

than the standard model since the reconstructed peaks are closer to the actual dipole locations

despite the extra peak.
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Figure 5.19: A test case with two sources near the surface and one deep in the domain. The
metrics and the images designate the AEA model with the error statistics is superior over the
standard modeling.

For 500 reconstruction, we estimated the statistics of the EMD and NSD. The values of the

metrics are higher than in the previous test cases and consequently the reconstruction errors

increase for the three dipole case compared to the two sources case (Fig. 5.20). The average and

standard deviation of EMD are comparable for the AEA and accurate model. In Fig. 5.21, the
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Figure 5.20: Histograms of the EMD and NSD for the three source case. The average and the
standard deviation of the metrics were estimated based on 500 different realizations.

average and standard deviation of the EMD with respect to the triangular area that connects

the three sources is presented. Sources which are close to each other or collinear have small
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surface area. In Fig. 5.21, the AEA model gives average EMD values between 10− 18 mm and

the result seems that slightly improves for sources which are far apart from each other. It should

Figure 5.21: Average EMD values with respect to the area designated by the three focal sources.

be noted that recovering more than two focal points is a challenging task because the difficulty

of the problem increases. Also, the evaluation of the results is challenging because the EMD

and NSD may not always be appropriate criteria for good performance. This is because these

metrics can have high values even when the sources are correctly localized if the reconstructed

intensities are incorrect.
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5.4.2 Case 2: Noise, unknown geometry and conductivity

In these test cases, we assess the use of AEA when the head geometry and the precise tissue con-

ductivities are unknown and the boundary measurements contain noise. The forward boundary

data was now computed using the five compartment head model (scalp, skull, CSF, GM and

WM as shown in the second picture of Figure 5.9). The conductivities of the tissues were drawn

from Gaussian distributions: the mean values were the nominal conductivity values (0.33, 0.016,

1.76, 0.14, 0.33 S/m, respectively) and the standard deviations were 1% of the nominal values.

Finally, additive measurement Gaussian noise was simulated and the signal to noise ratio (SNR)

was 40dB and 20dB, that corresponds to noise level: 1% and 10% of the standard deviation of

the measurements.

In the “accurate” inverse solution, the accurate geometry and precise conductivity values

were known. In the “standard” and “AEA” models, the head consists of three circles (scalp,

skull, brain) and the conductivity values are fixed to their nominal values (0.33, 0.016 and 0.33

S/m, respectively).

Single Source

In these test cases, we deal with errors caused by the additive noise, the unknown geometry

and conductivity distribution. For the single source case, in the following two figures we show

the results for a deep and superficial source reconstruction. These cases correspond to the same

noiseless cases as in Fig. 5.11 and Fig. 5.10.

In these tests, we generated 30 different noise vectors and we performed 30 reconstructions

using the noisy boundary data. Figure 5.22 and Fig. 5.23 show the average of the 30 reconstruc-

tions. The average and the standard deviation of the estimated metrics are listed below the

figures. For the low noise case (40dB), we noticed that the values of the metrics increase when

compared to the noiseless case (Fig. 5.11) and the results deteriorate except for the standard

(“without AEA”) model whose performance is largely unchanged. For the standard model this

is possibly because the reconstruction artefact caused by the modelling errors (geometry and

conductivity) are much higher than the ones caused by the simulated noise.
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Figure 5.22: One test case with a single superficial source is shown on the left. The dipole
location is the same as (frontal source) Fig. 5.11. However, here five compartment forward
model was used and the conductivity distribution was considered uncertain. The reconstruction
results are averages of 30 different realization of noisy measurement (in dB) and the averages
and standard deviations of the EMD, NSD, SD, and WAD are shown below the reconstructions.
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Figure 5.23: A test case with a deep source is shown on the left. The simulation setting were as
explained in Fig 5.22. The reconstruction solutions with the three models are presented in the
rest of the pictures for two different levels of noise.
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Similar conclusions can be drawn from Fig. 5.24. Figure 5.24 shows histograms of the EMD

evaluated on 500 simulated single sources at both 40dB and 20dB SNR. The EMD values in

Fig. 5.24 indicate that when the SNR decreases from 40dB to 20dB, the performance of the

AEA and accurate models becomes closer to the standard model. For the AEA model, we can

say that when the level of the additive noise is higher than the level of approximation error i.e.

in the covariance Γν|d = Γξ +Γε|d, the noise part Γξ is dominating over the Γε|d then we expect

that the result becomes closer to the standard model solution. For additive errors, in general, it

is required ‖ξ∗‖22 + trace(Γξ) ≤ 4(‖ε∗|d‖22 + trace(Γε|d)) to ensure that the the modelling errors

dominate the measurement noise [68].
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Figure 5.24: Histograms with the EMD values for 500 different single source reconstructions.
Above the histograms are shown the average and standard deviation of the EMD for each of the
three models.

Two Sources

The two source reconstruction results are presented in Fig. 5.25. The actual sources have equal

strengths and different orientations. The test case corresponds to the noiseless case shown in

Fig. 5.15. It can be seen that all the models have some problems reconstructing the two sources.

However, the AEA model can reconstruct pretty well the two sources.
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Figure 5.25: Reconstruction of two superficial sources far apart from each other in the presence
of measurement noise when the forward model consists of 5 compartments and the conductivity
in each tissue is perturbed.

Three Sources

One test case with three equal sources was selected, the same as in Fig. 5.19. It is interesting

to observe that the AEA model results are very good and less scattered than the results of the

other two models even for the case where the noise level is 20dB.
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Figure 5.26: A test case with three focal sources and SNR =40dB and 20dB. The dipole location
is the same as in Fig. 5.19. But here the five compartment forward model was used and the
conductivity distribution was perturbed from the nominal values. The reconstruction results
are averages of 30 different realization of noisy measurement and the averages and standard
deviations of the corresponding metrics are shown below the reconstructions.

We summarize the EMD statistics estimated from the reconstruction of 500 dipole distri-

butions using the three models. The results are shown in Table 5.1 with the corresponding

forward model used for the measurements, number of sources and SNR level. For all the cases

the accurate model and AEA reached the same level of EMD values. It can be seen that the

EMD values are lower for the noiseless 3 compartment cases (case 1: unknown geometry), and

that the increase of noise (lower SNR) in the 5 compartment cases (case 2:unknown geometry

and conductivities) gives higher EMD values.
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Table 5.1: To evaluate the accuracy of the different solutions, 500 dipole distributions were
simulated. Here are the averages and the standard deviations of the corresponding EMD-values
when the different inverse models were used.

Forward Number of SNR EMD (mm)
model sources (dB) Accurate model Standard model AEA model

3 compartments 1 ∞ 5.9 ± 3.9 14.2 ± 4.6 7.6 ± 3.7
3 compartments 2 ∞ 11.6 ± 5.3 19.6 ± 5.6 12.5 ± 5.0
3 compartments 3 ∞ 16.9 ± 6.1 21.3 ± 5.7 17.3 ± 6.4
5 compartments 1 40 11.6 ± 4.8 15.8 ± 4.5 11.5 ± 4.7
5 compartments 1 20 16.9 ± 6.2 16.2 ± 4.7 14.4 ± 6.1
5 compartments 2 40 17.1 ± 6.0 23.1 ± 7.1 17.8 ± 5.9
5 compartments 2 20 20.3 ± 5.9 23.5 ± 7.2 20.5 ± 6.5
5 compartments 3 40 19.5 ± 5.3 23.2 ± 7.0 19.2 ± 5.0
5 compartments 3 20 23.3 ± 5.3 26.9 ± 7.0 22.6 ± 5.4

It is worth noting that the quality of the reconstruction depends on the approximation error

statistics, i.e. how similar the test geometry is to the set of the (training) geometries used for the

estimation of the approximation error statistics. An example, where different test geometries

were used, is shown in Appendix D.2.

5.5 Summary

In this chapter we studied the reconstruction of one, two and three foci of brain activity. We

showed that the AEA can be used to cope with uncertainties related to the head geometry,

tissue conductivities and noisy measurements. AEA model proved to be feasible regardless of

the number of focal sources and the source locations; in particular, the AEA results for superficial

sources were far better than the results with the standard model. Surprisingly, in some cases

the AEA also worked better than the accurate model in which the geometry and conductivity

uncertainties were known. Therefore we can conclude that with AEA model it is not always

necessary to know the exact head geometry nor the accurate tissue conductivities.
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Chapter 6

Future work and Conclusions

The study and analysis of techniques for the reconstruction of dipole source distributions and

electric fields inside the brain were the major objectives of this thesis. The results demonstrated

the feasibility of these techniques to localize the brain activity.

This chapter gives the suggestions for the future work. The chapter is divided into two main

sections. Section 6.1 concerns the future aspects in vector field tomography (VFT) and section

6.2, the improvement of the focal source estimation. Moreover, we describe the basic concepts

how VFT could be used in trans-cranial direct simulation and how the Bayesian approximation

error approach (AEA) could enhance EEG cortical imaging.

6.1 Vector Field Tomography in Brain Electric Field Imaging

In this thesis, it was shown that the line integral equations penalized with prior information can

be efficiently used for the reconstruction of electric fields generated by dipole sources inside the

brain. The proposed approach was tested with a simple circular head model in 2D and in the

future work more realistic models will be used.

Electric Fields of Dipole Sources

The future aspects of the electric field reconstruction using VFT are the followings: 3D mod-

elling, numerical approximation of the line integrals and experimental studies using real data.

More precisely, electric fields are inherently three dimensional, therefore the reconstruction of

electric fields produced by intracellular dipole sources will be carried out in 3D. Also more

realistic head model will be used.

In some cases, the linear approximation of the line integrals and the corresponding electric

field may not be accurate enough. Therefore, it is justified to study other line integral ap-

proximations. Another possibility is to utilize approximation error statistics to compensate the

associated numerical errors. Finally, the utilization of real data is in our prospective plans.
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Electric Fields due to Trans-cranial Currents

Another interesting bioelectric application in which the VFT could be used is the brain stimu-

lation with an external source such as the trans-cranial direct current stimulation (tDCS). The

tDCS is a non invasive excitatory technique applied to the brain by injecting weak currents

through planar electrodes. This technique can be used for example in therapeutical rehabili-

tation after a stroke or other neuropathologies [117]. We propose the utilization of the VFT

approach for the reconstruction of the electric field produced by these external stimulation. In

the following paragraphs, we describe the tDCS problem and illustrate how the VFT could be

used.

In particular, the inverse problem in tDCS can be defined as the recovery of the electric

field induced by external (applicable) source. The VFT could be used for the computation of

the direction of the electric field. The knowledge of the electric field is important for verifying

that the selected electrode locations are such that correct brain areas will be excited and the

treatment will be effective.

In mathematical terms, the volume conduction problem posed in tDCS can be described by

the quasi-static Maxwell equations, which lead to the Laplace equation [141] and algebraically

it can be expressed by

Au = v, (6.1)

where A is the FEM matrix (2.11) estimated in section 2.4, u(x) the potential inside the head

volume denoted by Ω and v the electrodes excitatory voltages. The continuous electric field is

given by e(x) = −∇u(x) and the electric field is associated with the current source according to

j(x) = σe(x) where σ is the tissue conductivities.

The electric field produced by the tDCS can be estimated employing VFT. The linear system

(4.26) can be used in the inversion which has the advantage over matrix A that the exact

knowledge of the tissue conductivities is not required.

Another possible extension is the application of the AEA to directly estimate the source j

when the tissue conductivities are unknown. Specifically, similar to (4.26), we can have

Dv = S‖e. (6.2)

Moreover, j = Σe where is the matrix representation of the continues relationship j(x) = σe(x).

Matrix Σ is a diagonal matrix with the conductivity values at the discrete nodes. The observation

model for the tDCs with respect to the source distribution in VFT can be defined as

Dv = S‖Σ−1j + ξ, (6.3)

where ξ is the noise vector. Similarly as in section 5.2, a simplified computational model (ho-

mogeneous/isotropic domain) with an additional error term can be used

Dv = S‖j + ε+ ξ, (6.4)
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where the approximation error is ε = S‖Σ−1j−S‖j and ξ additive noise. This approach requires

a set of training models in which the electrical properties of the tissues and the geometries are

accurately known for the approximation error statistics.

6.2 Brain Source Imaging with EEG

Two approaches for the recovery of focal source distributions inside the brain were described in

chapters 3 and 5. For the reconstruction of focal sources the dipole strength prior, also called

L1,2 norm, was used. For the solution of the problem a solver based on truncated Newton

interior point method (TNIPM) employing logarithmic barrier of the L1,2 norm was utilized. In

future, the TNIPM can be used with mixed priors that incorporate structural and physiological

information related to the neurophysiological information, for instance the connectivity between

different brain regions or a mixed regularizer that combines relative smoothness and sparsity

as in [42]. Moreover, the suggested solver can be used in other applications related to vector

parametrization problems (flow fields) or in problems related to compressed sensing and color

(rgb) imaging.

Compensation of Modelling Errors

The study presented in chapter 5 acts as the proof of concept for applying AEA in EEG imaging

and further work is required to make AEA applicable in practice. For example, the approach

needs to be tested in 3D, more precise computational model for the training set geometries needs

to be applied for a more precise estimation for the approximation error statistics and finally the

approach needs to be validated with real data.

In particular, for the improvement of the method we propose the following possible future

tasks.

• The statistics of the approximation errors (5.42) can be computed using more accurate

training geometries where the gray and white matter anisotropy are considered [179, 181].

• The corresponding lead field matrices can be constructed using different basis functions

than the linear ones which could describe the conductivity “jump” between the tissue

boundaries basis more accurately [180]. One possibility is to use the discontinues Galerkin

method [18].

• For the standard model (geometry), a more realistic head model than the concentric circle

model could be used to improve the identification of active regions. For example, an elliptic

geometry with distinctive brain regions could enhance the result.

• Supplementary MEG data which has the advantage that it is insensitive to head inho-

mogeneities could be included in the modeling [122]. Since the brain activity propagates

with respect to time, also the application of temporal constraints in order to improve

reconstruction accuracy could be studied as was suggested in [131].
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All in all, it can be said that AEA will become important in EEG source imaging in the fu-

ture. This is because it can be used to take into account many different uncertainties in the

experimental setup. Even when highly accurate head models are used there may be significant

uncertainties related to the electrode positions and the electrode-skin contact which can also be

integrated in the approximation error statistics.

Skull related Uncertainties in Cortical Imaging

The AEA can be used for many different applications. In the field of brain imaging using

EEG, one of them could be EEG cortical imaging in which the uncertainties related to the skull

thickness and conductivity could be taken into account.

Cortical imaging (also called high resolution EEG [122]) is defined as the reconstruction of

the potential distribution on the cortical surface (dura) from potential measurements on the

scalp [124]. Cortical imaging can be very beneficial as a diagnostic tool because it can improve

the spatial resolution that is deteriorated due to the skull inhomogeneities. Moreover, it can

potentially reduce the need of diagnostic surgery in which electrodes are implanted on the brain

surface for better monitoring of the cortical activity. The cortical imaging differs from the source

imaging in the sense that we are interested in the estimation of the potential distribution on

the dura instead of the actual neural sources. Compared to the EEG source imaging, cortical

imaging is slightly easier problem as we do not need to deal the dipole source modelling, possible

singularities and the high dimensionality of the source imaging problem.

However, for the accurate estimation of the cortical potential, precise knowledge of the

electrical properties and the shape of the skull are required for the computational model. Instead

of an accurate model, the statistic of the modelling errors can be incorporated into a less accurate

model in a similar fashion as in the EEG source imaging.

In particular, if the computational model is described by v = A0ucort + ε + ξ where v are

the potentials around the electrodes, ucort the potentials along the cortical surface, A0 is a

standard modeling matrix given in [126], ξ the measurement noise and ε the modeling error

then by following the steps described in section 5.2, the cortical potentials could be estimated

using the AEA. Of course, an appropriate prior model needs to be considered. In Fig. 6.1 and

6.2, preliminary results of cortical potential estimation are presented. In the right images of

Fig. 6.1 and Fig. 6.2, we can see the cortical potentials estimated using three different models.

Specifically, the estimated cortical potentials using a computational model where the correct

thickness of the skull is known is depicted with the black line, the result of the standard model

without AEA is with the green line and the AEA model is in blue. For the standard model,

the skull thickness was constant. It can be seen that the AEA gives better results than the

standard modelling. For the cases in which the exact skull shape cannot be extracted then the

AEA approach seems to be the best alternative.
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Figure 6.1: Potentials evoked by a tangential superficial source. (Left Image) Potentials on
the electrodes (in blue) and on the cortical surface (in red). (Right Image) Estimated cortical
potentials when (a) the thickness of the skull is known (black line), (b) standard circular skull
is used (green line) and (c) standard circular skull with AEA is used (blue line).
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Figure 6.2: Potentials evoked by a radial superficial source. (Left Image) Potentials on the
electrodes (in blue) and on the cortical surface (in red). (Right Image) Estimated cortical
potentials when (a) the thickness of the skull is known (black line), (b) standard circular skull
is used (green line) and (c) standard circular skull with AEA is used (blue line).

119



6.3 Conclusions

In this thesis, three different mathematical approaches were developed and presented for the

accurate estimation of focal brain activity using EEG measurements. The proposed approaches

were tested and found feasible using simulated test cases.

In chapter 3, we developed and analyzed an algorithm for the recovery of sparse dipole

sources. It was showed that the solution employing the dipole strength penalty term (called

the L1,2 norm) is superior over other common priors for focal source recovery. The proposed

algorithm for the solution of the inverse problem was based on the truncated Newton interior

point method with a logarithmic barrier function. In addition, we used Bayesian analysis to

derive the depth weights in the prior that were used to reduce the tendency of the solver to

favor superficial sources. It is worth noting that until now, there has not been a rigorous

presentation of how to derive these weights; previously, the weights have always been considered

as ad-hoc choices.

In chapter 4, we proposed a method of recovering the electric field produced by dipole sources

using vector field tomography. The electric field was reconstructed using a set of line integrals.

We showed that, even though the absolute values of the reconstructed electric field were not

always exact, the pattern of the field identified the correct location of the activity which in most

cases is the paramount consideration. The benefit of this approach is that there is no need to

use a mathematical model for the sources.

The most significant shortcoming of most EEG inverse methods is that an accurate head

model (geometry and tissue conductivities) is required for each individual in order to get a

reliable solution. The procedure to extract these features is time consuming, expensive, requires

special expertise and in many cases is not even possible. Therefore, approaches that do not

require exact knowledge of these features would be extremely valuable. In this thesis, we suggest

and evaluate an approach that fills these requirements.

In chapter 5, we showed that exact knowledge of the head geometry and tissue conductivities

are not always necessary. These head features can be taken into account statistically by using the

approximation error approach. We demonstrated that a coarse model, the three concentric circle

model, accompanied with the approximation error statistics is able to give results comparable

to those obtained with an accurate head model. This means that it is possible to get accurate

EEG imaging results for every patient without having detailed knowledge of their head features;

it is enough to know the statistical variations in these features.
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[131] W. Ou, M. S. Hämäläinen, and P. Golland. A distributed spatio-temporal EEG/MEG

inverse solver. Neuroimage, 44:932–946, 2009.

[132] A. Papoulis and S. U. Pillai. Probability, Random Variables, and Stochastic Processes,

Fourth Edition. McGraw-Hill Europe, 2002.

[133] R. D. Pascual-Marqui. Standardized low resolution brain electromagnetic tomography

(sLORETA): technical report. Mathods and finding in exprerimental and clinical pharma-

cology, 24 Suppl, D:5-12, 2002.

[134] Roberto D. Pascual-Marqui, Dietrich Lehmann, Thomas Koenig, Kieko Kochi, Marco

C. G. Merlo, Daniel Hell, and Martha Koukkou. Low resolution brain electromagnetic

tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, pro-

ductive schizophrenia. Psychiatry Research-neuroimaging, 90:169–179, 1999.

[135] O. Pele and M. Werman. Fast and robust earth mover’s distances. In Proceeding of the

IEEE International Conference on Computer Vision, pages 460–467, 2009.

[136] M. Petrou and P. Bosdogianni. Image processing - the fundamentals. John Wiley & Sons,

1999.

[137] M. Petrou and A. Giannakidis. Full tomographic reconstruction of 2D vector fields using

discrete integral data. The Computer Journal, 53(9), 2010. doi: 10.1093/comjnl/bxq058.

[138] A. Polonsky and M. Zibulevsky. MEG/EEG Source Localization Using Spatio-temporal

Spars Representations. In Independent Component Analysis and Blind Spare Representa-

tions. Springer Berlin / Heidelberg, 2004.

[139] J. L. Prince. Tomographic reconstruction of 3D vector fields using inner product probes.

IEEE Transactions on Image Processing, 3(2):216–219, 1994.

[140] R. R. Ramirez, D. Wipf, and S. Baillet. Neuroelectromagnetic Source Imaging of Brain

Dynamics. In Wanpracha Chaovalitwongse, Panos M. Pardalos, and Petros Xanthopoulos,

editors, Computational Neuroscience, Springer Optimization and Its Applications, pages

127–155. Springer New York, 2010.

[141] S. M. Rampersad, A. M. Janssen, F. Lucka, U. Aydin, B. Lanfer, Seok L., C. H. Wolters,

D. F. Stegeman, and T. F. Oostendorp. Simulating Transcranial Direct Current Stimu-

lation With a Detailed Anisotropic Human Head Model. IEEE Transactions on Neural

Systems and Rehabilitation Engineering, 22(3):441–452, 2014.

[142] A. Rodriguez-Rivera, B. V. Baryshnikov, B. D. Van Veen, and R. T. Wakai. MEG and

EEG source localization in beamspace. IEEE Transactions on Biomedical Engineering,

53(3):430–441, 2006.

131



[143] B. Roth, M. Balish, A. Gorbach, and S. Sato. How well does a three-sphere model predict

positions of dipoles in a realistically shaped head? Electroenceph. Clin. Neurophysiology,

87(4):175–184, 1993.

[144] D. Rouseff, K. B. Winters, and T. E. Ewart. Reconstruction of Oceanic Microstruc-

ture by Tomography: A Numerical Feasibility Study. Journal of Geophysical Research,

(96:C5):8823–8833, 1991.

[145] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth Mover’s Distance as a Metric for

Image Retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

[146] J. Sarvas. Basic mathematical and electromagnetic concepts of the bio-magnetic inverse

problems. Physics in Medicine and Biology, 32(1):11–22, 1987.

[147] P. W. Schaefer, P. E. Grant, and R. G. Gonzalez. Diffusion-weighted MR Imaging of the

Brain. Radiology, 217(2):331–345, 2000. PMID: 11058626.

[148] G. Schalk and J. Mellinger. A Practical Guide to Brain-Computer Interfacing with

BCI2000. Springer Publishing Company, Incorporated, 1st edition, 2010.

[149] M. Scherg, T. Bast, and P. Berg. Multiple Source Analysis of Interictal Spikes: Goals,

Requirements, and Clinical Value. Journal of Clinical Neurophysiology, 16:214–224, 1999.

[150] M. Scherg and D. Von Cramon. Evoked dipole source potentials of the human auditory

cortex. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section,

65(5):344–360, 1986.

[151] M. Scherg and J. S. Ebersole. Models of brain sources. Brain Topography, 5:419–423, 1993.

[152] P. H. Schimpf, C. Ramon, and J. Haueisen. Dipole models for the EEG and MEG. IEEE

Transactions on Biomedical Engineering, 49(5):409–418, 2002.

[153] T. Schuster. The 3D Doppler transform: elementary properties and computation of re-

construction kernels. Inverse Problems, 16(3):701–722, 2000.

[154] T. Schuster. Defect correction in vector field tomography: detecting the potential part

of a field using BEM and implementation of the method. Inverse Problems, 21(1):75–91,

2005.

[155] T. Schuster. 20 years of imaging in vector field tomography: A review. In A. K. Louis (Eds.)

Y. Censor, M. Jiang, editor, Mathematical Methods in Biomedical Imaging and Intensity-

Modulated Radiation Therapy (IMRT), volume 7 of Publications of the Scuola Normale

Superiore, (CRM). Birkhäuser, 2008.
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Appendix A

Theoretical Aspects and Numerical

Solution of the EEG Source Imaging

A.1 Maxwell Equations and Derivation of the EEG Source Prob-

lem

The derivation of the EEG source imaging problem is based on the macroscopic Maxwell equa-

tions inside a domain Ω where x ∈ Ω ⊂ R
3 and for t ∈ R

+ [3]. In particular, the Maxwell

equations are

∇× e(x, t) = −∂B(x, t)

∂t
, (A.1a)

∇×H(x, t) = j(x, t) +
∂D(x, t)

∂t
, (A.1b)

∇ ·D(x, t) = ρ(x, t), (A.1c)

∇ · B(x, t) = 0. (A.1d)

where e(x, t) is the electric field, B(x, t) the magnetic field, H(x, t) the magnetic field intensity

and D(x, t) the electric displacement field. Additionally, j(x, t) is the electric current density,

ρ(x, t) is the electric charge density. Considering linear and isotropic medium, the following

equations hold, i.e.

D(x, t) = ǫ(x)e(x, t) (A.2a)

B(x, t) = µ(x)H(x, t) (A.2b)

(A.2c)

where ǫ(x) is the dielectric permittivity and µ(x) the magnetic permittivity. Furthermore, for

the electric current density in the EEG problem we have that

j(x, t) = jp(x, t) + σ(x)e(x, t), (A.3)
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where σ(x) is the electric conductivity within the domain, jp(x) is the primary neural activity

and σ(x)e(x) the induced secondary currents. Here, we need to mention that there are cases

where the medium is considered anisotropic and the conductivity is a tensor instead of a scalar

function [181] however, in this work we consider only isotropic media.

In EEG problem, the electric neural activity is a time-harmonic signal. In this case, the

time-harmonic version of the Maxwell equation (A.1a)-(A.1d) is considered, i.e.

∇× e(x) = −iωB(x), (A.4a)

∇×H(x) = j(x) + iωD(x), (A.4b)

∇ ·D(x) = ρ(x), (A.4c)

∇ · B(x) = 0, (A.4d)

where ω is the angular frequency and i is the imaginary unit. Neural signals recorded using EEG

are in very low frequencies (below several kHz) and therefore the quasi-static approximation of

the problem is justified [32, 62, 63]. Term iωB(x) can be neglected and (A.4a) becomes

∇× e(x) = 0. (A.5)

This implies that

e(x) = −∇u(x), (A.6)

where u(x) is an electric scalar potential function.

Using (A.2a) and (A.3) in (A.4b), we get

∇×H(x) = jp + σe(x) + iωǫe(x). (A.7)

By taking the divergent ∇· in both side of the previous equation, we have

0 = ∇ · jp +∇ · (σ + iωǫ)e(x). (A.8)

The capacitance effects are negligible (σ ≫ ωǫ) which results in

∇ · σe(x) = −∇ · jp (A.9)

or equivalently

∇ · σ∇u(x) = ∇ · jp. (A.10)

A.2 Existence and Uniqueness

In this section, we show that the solution of a Poisson equation with the Neumann boundary

condition has a unique solution up to an additive constant and thus an extra constraint is needed

to specify this additive constant [127, 103].
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In a bounded domain Ω ⊂ R
3 with x ∈ Ω, the Poisson equation with Neumann condition on

the boundary ∂Ω is given by

∇ · σ∇u(x) = ρ(x) in Ω (A.11a)

σ∇u(x) · n̂ = 0 on ∂Ω, (A.11b)

where n̂ denotes the outward pointing normal vector on ∂Ω, σ > 0 defines the properties of the

medium (conductivity) and ρ(x) is the source term.

If ρ(x) is continuous and differentiable and u(x) is a solution of (A.11a), then space U is

defined to be the set of all real valued function u with the property that u and its first and

second derivatives are continuous in Ω̄ = Ω + ∂Ω. For the existence of a solution, we begin

with the assumption that there is a solution u ∈ U which satisfies (A.11a) and (A.11b). By

integrating both sides of (A.11a) and applying the divergence theorem [3], we have that

∫

x∈Ω
ρ dx = −

∫

s∈∂Ω
σ∇u · n̂ ds = 0. (A.12)

This is the necessary condition for the existence of a solution u [127]. The complete proof for

the existence of a solution relies on the Fredholm Alternative theorem which it is out of the

scope of the current paragraph however further details can be found in [127].

The next step is to check if (A.11a) and (A.11b) ensure a unique solution. Uniqueness is

ensured if the operator ∇ · σ∇ is positive definite (Ch.10, Theorem 10.20 [127]). We can write

that ∇ · σ∇ is positive definite iff

〈u;∇ · σ∇u〉 > 0 for all u 6= 0 (A.13)

〈u;∇ · σ∇u〉 = 0 ⇒ u = 0, (A.14)

where 〈; 〉 denotes the L2 scalar product[3].

From Green’s theorem, we have that

∫

x∈Ω
(u∇ · σ∇u) dx = −

∫

s∈∂Ω
u(σ∇u) · n̂ ds+

∫

x∈Ω
σ(∇u)2 dx =

∫

Ω
σ(∇u)2 dx ≥ 0 (A.15)

because σ > 0 is strictly positive. Thus, condition (A.13) is satisfied. However, every constant

u = c satisfies condition (A.14). In addition, any constant c satisfies also the homogeneous

Neumann boundary condition. So, the solution is no unique because one can add in any con-

stant c to solution u without affecting neither the equations (A.11a), (A.12) nor the boundary

conditions (A.11b). Therefore, Poisson boundary value problem with homogeneous Neumann

condition does not have a unique solution. Instead, we have a family of solutions which differ

by a constant. For uniqueness, an additional condition should be considered. Frequently, it is
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used a similar condition as condition (A.12) [33], i.e.

∫

x∈Ω
u dx = 0. (A.16)

For u = u + c, condition (A.16) gives c = 0. Alternatively a value for c can be specified (for

example in EEG forward problem usually a reference electrode is set).

A.3 Weak Formulation

A sufficiently smooth function u which satisfies (A.11a), (A.11b) and (A.16) is known as a

classical solution to the Poisson problem with homogeneous Neumann boundary condition. In

general cases of non-smooth domains or discontinues source functions ρ(x), function u(x) may

not be smooth enough to be regarded a classical solution. An alternative description to the

Poisson boundary value problem is through its weak form where the differentiability requirements

imposed on the classical solution can be relaxed [33].

For the weak form, the solutions space of u is

U = {u ∈ H1(Ω), x = (x, y) ∈ Ω | σ∇u(x) · n̂ = 0 on ∂Ω}, (A.17)

where H1(Ω) = {u(x) : Ω → R |
∫
Ω u2 dx,

∫
Ω u2x dx,

∫
Ω u2y dx ≥ 0} and u does not need to be

twice differentiable. Moreover, as we shall see in the next equations it is only necessary for ρ(x)

to be integrable.

If we assume that u(x) satisfies (A.11a) and (A.11b) and u ∈ U then,

∇ · (σ∇u) g = ρ g for all g ∈ G, (A.18)

where g is a test function defined in space G. By integrating (A.18) and using the Green’s

identity with homogeneous Neumann condition, we obtain

∫

Ω
σ∇u · ∇ g dx =

∫

Ω
ρ g dx for all g ∈ G. (A.19)

The weak formulation of (A.11) is to find u ∈ U such as to satisfy

∫

Ω
σ∇u · ∇g dx =

∫

Ω
ρ g dx for all g ∈ G. (A.20)

Or alternatively,

findu ∈ U so that a(u, g) = f(g) ∀ g ∈ G. (A.21)

where a(u, g) =
∫
Ω σ∇u · ∇g dx is the bilinear functional a : U ×G→ R and f(g) =

∫
Ω ρ g dx is

the right hand side linear functional f : G→ R.

The solution of (A.11) is also a solution of (A.20), however if u is a solution of (A.20), this

does not automatically imply that u is also solution of (A.11). Using calculus of variation [33],
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we can show that the solution of the the weak formulation is also solution of the problem (A.11).

The proof is omitted but details can be found in [127].

A.4 Galerkin Method

For the numerical solution of the forward problem we reformulate problem (A.11) into the weak

form (eq. A.20) and function g is chosen from a suitable space of test functions G.

In particular, the problem is solved in a discrete space Un ⊂ U where the space G = U [33]

and thus, the discrete version of (A.21) is

finduh ∈ Un so that a(uh, gn) = f(gn) ∀ gn ∈ Un. (A.22)

Let φ1, φ2, . . . φN be basis functions of Un, then we can find uh ∈ Un such that

a(uh, φj) = f(φj) for j = 1, . . . , N (A.23)

and where uh =
∑N

i=1 φiui.

So,

a(
N∑

i=1

φiui, φj) = f(φj) for j = 1, . . . , N. (A.24)

A.5 FEM Implementation details

The coefficient of the matrix A in (2.11) can be expressed as the sum of the integrals over the

elements Ωl of the domain Ω = ∪L
l=1Ωl where L is the number of the elements of the FE-mesh.

A coefficient aij becomes

aij =

L∑

l=1

∫

Ωl

σ∇φi(x) · ∇φj(x) dx

=

∫

∪Ωl

σ∇φi(x) · ∇φj(x) dx (i.e if i and j Nodes ∈ Ωl). (A.25)

For the estimation of the coefficients (A.25) we used one-to-one mapping x = F (x̂) that maps

Ωl on Ωref [171] (see Fig. A.1). Thus, we have that

P3

P2

P1

P1

Ωκ

Ωref

P3

P2

F

Figure A.1: Mapping F : from element Ωref to a reference element Ωl.
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∫

Ωk

σ∇φi(x) · ∇φj(x) dx =

∫

Ωref

σ∇φi(F (x̂)) · ∇φj(F (x̂))| det JF | dx, (A.26)

where det JF is the determinant of the Jacobian of F .

The gradients of (A.26) are estimated using the derivative chain rule i.e. ∇φi(x̂) = JTF∇φi(x)

[171]) and thus

∇φi(x) = (JTF )
−1Li (A.27)

where Li = ∇φi(x̂).

We re-write (A.26) by substituting (A.27)

∫

Ωref

σ
[
(JT

−1

F Li)
T(JT

−1

F Lj)
]
| det JF | dx̂. (A.28)

Numerical Estimation of the FEM Integral

The integral (A.28) is estimated using the three points Gaussian Quadrature approximation

[43]. The integral (A.28) becomes

∫

Ωref

σhij(x̂) dx̂ ≈
1

6

[
σx̂m1 hij(x̂

m
1 ) + σx̂m2 hij(x̂

m
2 ) + σx̂m3 hij(x̂

m
3 )
]
, (A.29)

where hij(x̂) = (JT
−1

F Li)
T(JT

−1

F Lj)| det JF |, x̂mu are, for u = 1, 2, 3, the midpoints of the edges of

Ωref and σx̂mu the corresponding conductivities.

The conductivity at these points is estimated as a linear combination of the conductivities

at the nodes i.e. σx̂mu =
∑3

l=1 βlσl, where σl are the conductivities at the corners of the triangle.

Iso-Parametric Mapping

In the FEM implementation, we use an iso-parametric mapping F [171] i.e.

x =

NΩi∑

i=1

φi(x̂)xi (A.30)

where xi are the coordinates at nodes of the element. For triangle elements, NΩi
is either 3 or

6 for the linear or quadratic basis function case respectively.

For 2D meshes, the Jacobian of the mapping F is given by

JF =

[
∂
∑

NΩi
i=1 φi(x̂)
∂x̂ xi

∂
∑

NΩi
i=1 φi(x̂)
∂ŷ xi

]T
. (A.31)

where the position vector is x̂ = (x̂, ŷ)T.
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Linear Basis

The linear basis functions for a triangular mesh are



φ1(x̂)

φ2(x̂)

φ3(x̂)


 =



1− x̂− ŷ

x̂

ŷ


 . (A.32)

We can simultaneous estimate the integrands of (A.28) for the three basis functions and get a

3× 3 symmetric matrix.

In particular, if we set L =
[
L1 L2 L3

]
=
[
∇φ1(x̂) ∇φ2(x̂) ∇φ3(x̂)

]
then

L =

[
−1 1 0

−1 0 1

]
(A.33)

and the Jacobian (A.31) for the linear case is

JF =
[
x2 − x1 x3 − x1

]T
. (A.34)

Moreover, it can be easily shown that the Jacobian is equal to JTF = LP where P =
[
x1 x2 x3

]T
.

Hence, we obtain a 3× 3 matrix with the coefficients hij of (A.28)

H =
[
(JT

−1

F L)T(JT
−1

F L)
]
| det JF |. (A.35)
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Appendix B

Theorems and proofs used in VFT

B.1 Helmholtz Decomposition Theorem

The Helmholtz decomposition is a fundamental theorem of the vector calculus analysis [3, 103].

This theorem states that any vector f which is twice continuously differentiable and which, with

its divergence and curl, vanishes faster than 1/r2 at infinity (e.g. Schwartz vectorial functions

[161]), can be expressed uniquely as the sum of a gradient and a curl as follows

f = fI + fS ⇒ (B.1)

f = −∇u0 +∇× a. (B.2)

The scalar function u0 is the scalar potential and a = (ax, ay, az) is the vector potential which

should satisfy ∇ · a = 0.

Since, ∇ × fI = ∇ × (∇u0) = 0, component fI is called irrotational or curl-free while fS is

the solenoidal or divergence-free component as it satisfies ∇fS = ∇ · (∇× a) = 0.

In the 2D, the decomposition equation becomes

f = −∇u0 +∇× az(x, y)ẑ, (B.3)

where ẑ is the unit vector normal to the xy plane.

B.2 Fourier Slice Theorem

The Fourier(central) slice theorem (FST) states that the 2D Fourier transform (FT) of scalar

function f(x, y) along a line with inclination angle φ is equal to the 1D FT of its longitudinal

line integral I(φ, p) along the same line. In particular, the line integral of f(x, y) is

I(φ, p) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(x cosφ+ y sinφ− p)dxdy. (B.4)
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The Fourier transform of I(φ, p) is

Ĩ(k, φ) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(x cosφ+ y sinφ− p)e−iκp dxdydp =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−iκ(x cosφ+y sinφ) dxdy = f̃(k cosφ, k sinφ).

(B.5)

The FST in conjunction with many algorithms (e.g. filtered back-projection) gave rise to the

x

y

f(x,y) f(p cos , )φ φp sin

p

p

φ

φ

~

2-D Fourier Transform

1-D Fourier Transform

p cos ,φ

p sinφ

Figure B.1: Central Slice Theorem

development of accurate and robust imaging results (e.g. Computed Tomography (CT) image

reconstruction) [111].

B.3 Vectorial Ray Transform

In a bounded 3D domain Ω,the longitudinal ray transform is expressed as

I
‖
L(φ, θ, p) =

∫

L(φ,θ,p)
f · ŝφ,θ dℓ

=

∫

L(φ,θ,ρ)
fx(x, y, z) cosφ sin θ dℓ

+

∫

L(φ,θ,ρ)
fy(x, y, z) sinφ sin θ dℓ

+

∫

L(φ,θ,p)
fz(x, y, z) cos θ dℓ,

(B.6)

where fx, fy and fz are the components of vector f, φ and θ define the direction of the ŝφ,θ unit

vector along line L(θ, φ, p) as shown in Fig. B.2. Point p gives the intersection coordinates of the

line with the plane which passes through the origin and it is orthogonal to ŝφ,θ. Consequently,
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Figure B.2: Londitudinal ray transform in 3D.

the line integral (B.6) can be written as a volume integral using Dirac delta functions. Thus,

I
‖
L(φ, θ, p) =

∫ ∫ ∫

V
fx(x, y, z) cosφ sin θδxpδyp dxdydz

+

∫ ∫ ∫

Ω
fy(x, y, z) sinφ sin θδxpδyp dxdydz

+

∫ ∫ ∫

Ω
fz(x, y, z) cos θδxpδyp dxdydz,

(B.7)

where δyp = δ(x sinφ−y cosφ−yp) and δxp = δ(−x cosφ cos θ−y sinφ cos θ+z sin θ−xp) where

(xp, yp) are shown in (Fig. B.2).

B.4 Reconstruction of the Solenoidal Component of a Vector

Field

In this section, we show that the CST can be used for the reconstruction of the solenoidal part of

the field from longitudinal line integrals assuming homogeneous boundary condition [119, 120].

Particularly, the Fourier Transform (FT) of (B.6) I
‖
L(φ, θ, p = {xp, yp}) is

Ĩφ,θ(κ1, κ2) =

∫ ∫
I
‖
L(φ, θ, xp, yp)e

−i(κ1xp+κ2yp) dxpdyp, (B.8)
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where i =
√
−1. So, from (B.8) we obtain

Ĩφ,θ(κ1, κ2) = cosφ sin θf̃x(ν, v, w) + sinφ sin θF̃y(ν, v, w) + cos θf̃z(ν, v, w) (B.9)

where f̃x, f̃y and f̃z are the FT of fx, fy and fz respectively and ν = κ1 sinφ − κ2 cosφ cos θ,

v = −κ1 cosφ− κ2 sinφ cos θ and w = κ2 sin θ.

Applying the Helmholtz decomposition (eq. B.2) we have

fx(x, y, z) =
∂az
∂y

− ∂ay
∂z

− ∂u0
∂x

fy(x, y, z) = −
∂az
∂x

+
∂ax
∂z

− ∂u0
∂y

fz(x, y, z) =
∂ay
∂x

− ∂ax
∂y

− ∂u0
∂z

.

(B.10)

For vanishing boundary values the FT yields to

f̃x(ν, v, w) = ivãz(ν, v, w)− iwãy(ν, v, w)− iνũ0(ν, v, w)

f̃y(ν, v, w) = iwãx(ν, v, w)− iνãz(ν, v, w)− ivũ0(ν, v, w)

f̃z(ν, v, w) = iνãy(ν, v, w)− ivãx(ν, v, w)− iwũ0(ν, v, w).

(B.11)

Therefore, from (B.9) and (B.11) we have

Ĩφ,θ(κ1, κ2) =i(κ1 cosφ cos θ + κ2 sinφ)ãx

+i(κ1 sinφ cos θ − κ2 cosφ)ãy − iκ1 sin θãz
(B.12)

In two dimensional cases, θ = π/2, κ = κ1 and κ2 = 0

Ĩφ(κ) = −iκãz(κ cosφ, κ sinφ). (B.13)

B.5 Discrete Laplace Operator

In our implementations we employ the symmetric/normalized discrete Laplace operator B which

is given by

B = I2N×2N − diag(H)−1/2Hdiag(H)−1/2, (B.14)

where I2N×2N is the identity matrix and the elements of matrix H are for i 6= j we have that

Hij = − 1
hij

if nodes i and j are connected with a vertex, otherwise Hij = 0, and the diagonal

element equal to Hii = −
∑

j Hij where hij is the distance between the nodes j and j.
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Appendix C

Interior Point Solver

C.1 Interior Point Method with Logarithmic Barrier

Here we show that for increasing values of t, the solution of the interior point function with s

logarithmic barrier converges to the optimal value of the primal constrained problem (C.1), and

that for any given positive t, this solution cannot be more than n/t suboptimal, where n is the

number of constraints [11]. Additionally, we define the dual problem and we show that duality

problem gives lower bounds to the optimal value of the primal problem. The analysis is based

on [11, 50].

Convergence of the Interior Point Solution

Lemma 1. Suppose we have the convex constrained problem (Primal Problem)

p∗ = min
(d,u)∈C

f(d, r)

subject to ri ≥ fi(d), i = 1 · · ·n
(C.1)

where f : D → R, p∗ is the optimal value and f is differentiable.

We define a feasible set C as C = {(d, r) ∈ D : ri − fi(d) > 0 i = 1, . . . , n} and the associated

centering problem

ft(d, r) = f(d, r)− 1/t
n∑

i=1

log (ri − fi(d)) (C.2)

we show that, if (d∗t , r
∗
t ) ∈ C is a minimizer of (C.2) for given t > 0, then

0 ≤ f(d∗t , r
∗
t )− p∗ ≤ n/t (C.3)

and

lim
t→∞

f(d∗t , r
∗
t ) = p∗ (C.4)

where n is then number of constrains in (C.1).

Proof. Let assume that (d∗t , r
∗
t ) ∈ C is a minimizer of (C.2) for t > 0. So, for the minimizer

147



(d∗t , r
∗
t ) we have that the optimality condition

∇(dt,rt)ft(d
∗
t , r

∗
t )−

n∑

i=1

1

t(r∗i − fi(d∗t ))
∇(d,r)[r

∗
i − fi(d

∗
t )] = 0 (C.5)

In addition, (d∗t , r
∗
t ) minimizes the Lagrangian of (C.1) given by

L(d, r, ν) = f(d, r) +
n∑

i=1

νi(ri − fi(d)) (C.6)

when ν∗i =
1

t(r∗i−fi(d∗t ))
.

In particular, the gradient of the Lagrangian at (d∗t , r
∗
t ) is

∇(dt,rt)L(d
∗
t , r

∗
t , ν) = ∇(dt,rt)f(d

∗
t , r

∗
t )−

n∑

i=1

νi[r
∗
i − fi(d

∗
t )]. (C.7)

From (C.5) and (C.7) we obtain that

∇(dt,rt)L(d
∗
t , r

∗
t , ν

∗) = 0 when ν∗i =
1

t(r∗i − fi(d∗t ))
for i = 1, . . . , n. (C.8)

Additionally, the optimal value p∗ is related with the Lagrangian according to

p∗ ≥ min
(d,r)∈C

L(d, r, ν)

= min
(d,r)∈C

f(d, r)−
n∑

i=1

νi(ri − fi(d))

=f(d∗t , r
∗
t )−

n∑

i=1

ν∗i (r
∗
i − fi(d

∗
t ))

=f(d∗t , r
∗
t )−

n∑

i=1

1

t(r∗i − fi(d∗t ))
(r∗i − fi(d

∗
t ))

=f(d∗t , r
∗
t )− n/t.

(C.9)

Thus,

f(dt
∗, rt

∗)− p∗ ≤ n/t. (C.10)

As p∗ is the optimal value of (C.1), we have that p∗ ≤ f(d∗t , r
∗
t ). So, we proved equation (C.3)

which ensures that for any given t > 0, the minimizer of (C.2) is no more than n/t suboptimal.

Moreover, from (C.3) we can deduce directly condition (C.4) i.e. p∗ = limt→∞ f(d∗t , u
∗
t ),

which confirms that for large values of t, (d∗t , r
∗
t ) is the minimizer of problem (C.1).
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Dual Problem and Duality Gap

A dual problem of (C.1) is defined as the minimization of Lagrangian (C.6) over (d, r) ∈ D

g̃(ν) = inf
(d,r)∈D

L(d, r, ν) (C.11)

where ν should be dual feasible point in order g̃(ν) > −∞.

From (C.8) we have that every point (d∗t , u
∗
t ) which minimizes the objective (C.2) yields to

a dual feasible point ν∗ and consequently we have that p∗ ≥ g̃(ν∗).

In particular, we define the duality gap between (C.1) and (C.11) as

η = f(d, r)− g̃(ν). (C.12)

For the minimizer (d∗t , r
∗
t ) of (C.2) and ν∗ a dual feasible point we have that

η = f(d∗t , r
∗
t )− g̃(ν∗) = f(d∗t , r

∗
t )− L(d∗t , r

∗
t , ν

∗) = n/t. (C.13)

From (C.11) and (C.9)

f(d∗t , r
∗
t ) = n/t+ g̃(ν∗) and f(d∗t , r

∗
t )− p∗ ≤ n/t ⇒ p∗ ≥ g̃(ν∗) (C.14)

which shows that the dual problem gives lower bounds on the optimal value of the primal

problem. Finally, we define the relative duality gap, which we use in our implementation, as

ηrel =
f(d∗t , r

∗
t )− g̃(ν∗)
g̃(ν∗)

≥ f(d∗t , r
∗
t )− p∗

p∗
. (C.15)

C.1.1 Sub-Differential

The sub-differential concept generalizes the derivative to functions which are not differentiable.

In particular, a vector z ∈ R
k is defined as the sub-gradient of a function f : Rk → R, at x ∈ R

k

if for all y ∈ R
k

f(y) ≥ f(x) + zT(y − x). (C.16)

Function f is called sub-differentiable at x if there is at least one sub-gradient at x. The set

of sub-gradients of f at x is called the sub-differential of f at x, and is denoted by ∂f(x). For

example, consider f(x) = |x| which is not differentiable at 0. For x < 0, the sub-differential is

unique: ∂f(x) = {−1}. Similarly, for x > 0, ∂f(x) = {1}. At x = 0, the sub-differential is

defined by the inequality |y| ≥ zy, which is satisfied if z ∈ [−1, 1] and therefore ∂f(0) = [−1, 1].
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C.2 Preconditioned Conjugate Gradient (PCG)

C.2.1 Newton system

For the minimization of the associated centering problem (3.13) we seek a zero of the gradient

∇Φt(p) = 0, where p = [dT, rT]T. The gradient of Φt can be approximated by the truncated

Taylor expansion [43].

∇Φt(p+∆p) ≃ ∇Φt(p) +HΦt(p)∆p, (C.17)

where ∆p = [∆dT,∆rT]T the search direction in column form. The new point p := p+∆p leads

to an optimal estimation if ∇Φt(p+∆p) ≃ 0.

So, we want to estimate a new p such as

HΦt(p)∆p = −∇Φt(p). (C.18)

This is called Newton’z system (C.18) and ∆p is the Newton’s step. This system can be solved

efficiently using iterative methods (e.g Steepest Descent Method, Conjugate Gradient etc. [43]).

Far from the actual solution, the Newton step ∆p gives an unreliable estimate. Usually, a

parameter s can be estimated along ∆p using line search scheme in order to ensure that the new

point approximates the solution. The update rule is then

p := p+ s∆p. (C.19)

When s ≃ 1, from (C.17) and (C.18) we deduce that the new point is near the solution as

∇Φt(p+ s∆p) ≃ 0.

C.2.2 Gradient and Hessian of Newton System

In this section, we give the explicit formulae for the gradient and the Hessian of Φt (3.13) for

the 2D case problem where vector d = [dTx , d
T
y ]

T, similar expressions can be derived for the 3D

case.

We set ∇Φt(p) = g(p) where g(p) = [gTx , g
T
y , g

T
r ]

T ∈ R
3n and p = [dTx , d

T
y , r

T]T ∈ R
3n.

The gradients with respect to x, y and r are given analytically

gx = ∇xΦt(dx, dy, r) = 2tKT
x (Kd− v) +




2d
(1)
x

r(1)2−d(1)2x −d(1)2y

...

2d
(n)
x

r(n)2−d(n)2
x −d(n)2

y



∈ R

n. (C.20)
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Similar expression we obtain for the y component gy. Also, we have

gr = αt1−




r(1)2

r(1)2−d(1)2x −d(1)2y

...
r(n)2

r(n)2−d(n)2
x −d(n)2

y


 ∈ R

n (C.21)

where 1 ∈ R
n is a unit vector and K = [Kx,Ky] is the lead field matrix.

The Hessian matrix is given by

H(p) =



2tKT

x Kx +H11 2tKT
x Ky +H12 H13

2tKT
y Kx +H12 2tKT

y Ky +H22 H23

H13 H23 H33


 ∈ R

3n×3n (C.22)

where the elements of H are diagonal matrix given by

H11 =diag

(
2

r(1)2 + d
(1)2
x − d

(1)2
y

(r(1)2 − d
(1)2
x − d

(1)2
y )2

, . . . , 2
r(n)2 + d

(n)2
x − d

(n)2
y

(r(n)2 − d
(n)2
x − d

(n)2
y )2

)

H22 =diag

(
2

r(1)2 + d
(1)2
y − d

(1)2
x

(r(1)2 − d
(1)2
x − d

(1)2
y )2

, . . . , 2
r(n)2 + d

(n)2
y − d

(n)2
x

(r(n)2 − d
(n)2
x − d

(n)2
y )2

)

H12 =diag

(
4

d
(1)
y d

(1)
x

(r(1)2 − d
(1)2
x − d

(1)2
y )2

, . . . , 4
d
(n)
y d

(n)
x

(r(n)2 − d
(n)2
x − d

(n)2
y )2

)

H13 =− diag

(
4

r(1)d
(1)
x

(r(1)2 − d
(1)2
x − d

(1)2
y )2

, . . . , 4
r(n)d

(n)
x

(r(n)2 − d
(n)2
x − d

(n)2
y )2

)

H23 =− diag

(
4

r(1)d
(1)
y

(r(1)2 − d
(1)2
x − d

(1)2
y )2

, . . . , 4
r(n)d

(n)
y

(r(n)2 − d
(n)2
x − d

(n)2
y )2

)

H33 =diag

(
2

r(1)2 + d
(1)2
x + d

(1)2
y

(r(1)2 − d
(1)2
x − d

(1)2
y )2

, . . . , 2
r(n)2 + d

(n)2
x + d

(n)2
y

(r(n)2 − d
(n)2
x − d

(n)2
y )2

)
.

(C.23)

C.2.3 PCG Algorithm

The algorithmic steps of PCG for the estimation of the search direction ∆p by solving system

(C.18) [43, 157]. From (C.18) we set x = ∆p, H(p) = H and ∇Φt(p) = g. PCG algorithm solves

the system Hx = −g with pre-conditioner P as follows:
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Algorithm 5 Preconditioned Conjugate Gradient

Initialization: k = 0, residual a0 = g +Hx0, direction of PCG ∆x0 = P−1a0
Stopping criteria: convergence tolerance ǫPCG or maximum number of iterations NPCG

Pre-conditioner: P
Repeat for k = 1, 2, . . . until convergence:

1. αk =
aT
k
P−1ak

∆xT
k
H∆xk

2. xk+1 = xk + αk∆xk

3. ak+1 = xk − αkH∆xk

4. βk+1 =
aT
k+1P

−1ak+1

aT
k
P−1ak

5. ∆xk+1 = P−1ak+1 + βk+1∆xk

6. Quit if k + 1 = NPCG or ‖ak+1‖2/‖g‖2 ≤ ǫPCG

At each iteration k of the PCG we need to apply two vector matrix multiplications, i.e. H∆xk

and P−1ak+1. Step P−1ak+1 even though it adds an extra matrix-vector multiplication can

accelerate the conjugate gradient method. By transforming the linear system into P−1Hxk =

−P−1g, the transformed matrices may have better eigenvalue clustering and lower condition

number and thus the algorithm can converge more quickly than the original one [157]. The

algorithm terminates when the norm of the residual falls below a small fraction of the initial

residual ‖g‖2.
In the current implementation, the pre-conditioner P is an approximation of the Hessian,

keeping the diagonal elements of the lead field matrix K and the Hessian matrices (C.23) i.e.

P = 2tdiag(KTK) +∇2Φt(p).

C.2.4 t Update Rule explanation

In the t-update rule (3.41), line search threshold smin determines if the values of t will increase

or not in each outer loop. As we explain here, we select a value for the threshold smin in order

to ensure that the value of t is updated when the new estimated solution (d, r) approximates

the minimizer (d∗(t), r∗(t)) of Φt (3.13).

In particular, let assume that the line search step s ≃ 1 in (Alg. 2). This implies that

the search direction [∆dT,∆rT]T estimated from the Newton system (3.14) gives a new point

[dT, rT]T + s[∆dT,∆rT]T which nearly minimizes (3.13) as for the new value ∇Φt ≃ 0. On the

other hand, when s≪ 1, the new estimation is not close to the minimizer of Φt (3.13).

Hence, we select the threshold smin in (3.41) to be close to 1. With this selection when the

line search gives a value approximately 1, we know that the estimated solution approximates the

actual minimizer and thus the value of t is updated. Otherwise, when s < smin the algorithms

continues with constant t until the solution is nearly optimal.

Moreover the choice of the update rule for the branch of (3.41) where s ≥ smin can be
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explained as follows. We showed that the optimum (d∗, r∗) of Φt (3.13) gives no more than

n/t suboptimal estimates (lemma 1, appendix C.1) which means that the function f(d) in (3.9)

satisfies f(d∗) − p∗ ≤ n/t where p∗ is the optimal value of problem (3.9). In addition, we have

f(d)− p∗ ≤ η because p∗ ≥ g̃(ν) (3.21) and η = f(d)− g̃(ν) is the duality gap.When s ≃ 1, then

the value d approximates the minimizer d∗. Therefore, the previous two inequalities give that

t ≤ n/η which is the update rule for t when s is greater that smin.

C.3 Levenberg Marquardt (LMA) Algorithm

In this paragraph, we give the steps of the LMA algorithm used for the estimation of the Gaussian

prior variances [43].

Algorithm 6 Estimate Variances γd of the Gaussian prior

Initialization: Set γ
(i)
d = 1/γ

(i)
ML and estimate G(γd) (3.56) and the Jacobian of G, J .

Set the parameters: κ = 10−6max{diag(JTJ)}, λ = 2 and maximum number of iterations
Nmax.
Repeat:

1. Estimate Jacobian J = ∇G(γd).

2. Approximate Hessian H ≈ (JTJ + κIkn×kn).

3. Solve ∆γd = −(HT)−1JT.

4. Perform Line Search (Alg. 2): estimate s along ∆γd

• If s > 0.5
Update γd := γd + s∆γd and Gnew(γd) := G(γd + s∆γd)
κ := κ/λ

• Else κ := λκ and go to step 2.

5. Quit if Gnew < ǫ
(1)
tol and ‖s∆γd‖2 < ǫ

(2)
tol‖γd‖2 or exceed Nmax.
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Appendix D

Further Results using Bayesian

Approximation Error Approach

This chapter is complementary to chapter 5 and its aims are (i) to present some further test

cases examined during the investigation of the application of the Bayesian approximation error

approach in the EEG source imaging problem, (ii) to show some extra results which were not of

primal importance but may be of interest to some readers.

D.1 AEA Results when Different Numbers of training Geome-

tries for the Error Statistics

It is well known that the number of MRI geometries can affect the accuracy of the Bayesian

approximation error solution. For instance, by using only few geometries, the computed covari-

ance matric may not efficiently describe the variation within individuals. On the other hand,

the estimation of the error statistics using too many geometries is not very practical. In this

section, we examined how the reconstruction results were affected when the statistics of the

approximation errors were computed using different number of MRI geometries. To evaluate

how the number of geometries influences the performance, we reconstructed dipole distributions

using potential data obtained solving the three compartment forward problem with constant

nominal conductivity in each compartment (skull/skull/brain). For the inverse solution, the

three compartment circular domain was used. The approximation error covariance matrix was

estimated using 5, 15 and 32 MRI cross sections. The results in Fig. D.1 and Fig. D.2 suggest

that when the number of MRI geometries is 32, the reconstruction results improve. More pre-

cisely, we can expect that when the EMD number is low and approximates the EMD value of

the accurate model, additional geometries cannot improve the EMD number of the AEA model.

By comparing the EMD values of these results with the EMD of the accurate MRI model (which

was equal to EMD=7.2 for the case of Fig. D.1 and EMD=5.31 for the case in Fig. D.2) we can

say that the 32 geometries seems to be good in describing the geometrical variation of the MRI

cross sections. Thus, this is the number that was used for the estimation of the error statistics
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in the test cases presented in chapter 5.
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Figure D.1: Single source reconstructions using different number of training geometries in the
approximation error statistics.
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Figure D.2: Two source reconstructions using different number of training geometries in the
approximation error statistics.
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D.2 Reconstructions using two Different Forward Geometries

In this section, our intention was to compare the performance of the Bayesian AEA to localize

correctly sources for two different individuals i.e. two persons with different head geometries

when the electric activity inside the brain is in the same area.

In the following figures, the reconstruction results obtained using two forward models (which

correspond to two individuals) when a source is located approximately in the same place in both

geometries. According to the metrics, the overall results are better for the individual with

geometry A (test case A) compared to the individual with geometry B (test case B). For the

standard model (without AEA) this is possible because the difference between the circular

domain and the MRI are smaller for the geometry A compared to geometry B. Also, the AEA

performs better for the test case A which could be explained as follows: The set of the geometries

used for the computation of the error statistics share more similarities with geometry A than with

geometry B. In other words, the statistics “support” better the features (shape/conductivities)

of geometry A.
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Figure D.3: A test case with a deep source when two different forward models were used.

156



0 15 30 mm

0 5 10

x 10
−5

Test case A

Actual Geom.

0 5

x 10
−5

without AEA

0 1 2

x 10
−4

with AEA

0 2 4 6

x 10
−5

EMD (mm) :

NSD (mm) :

SD (dB) :

WAD (°):

9.19 12.9 3.16

9.93 12.8 3.85

−0.544 1.66 0.105

12.1 10.6 6.95

Figure D.4: Superficial source reconstructions in geometry A and B.

D.3 Further Results

D.3.1 Histograms of WAD and SD

For the EEG source imaging problem, we are usually interested in source localization errors and

for this purpose, EMD and NSD are more suitable than the SD and WAD metrics. However,

in order to have a better understanding of the overall performance of the different solvers we

decided to include here the corresponding histograms of SD and WAD metrics for the one, two

and three sources case, studied in section 5.4.1. In those cases, the forward and inverse model

were consisted of three compartments and there was no additive noise. In most cases, also SD

and WAD metrics verify that the AEA model works better than the standard model (without

AEA).
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Figure D.5: Single source: Histograms of SD and WAD for 500 simulations of a single dipole.
Values closer to zero for the SD figures and smaller values for the WAD indicate better result.
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Figure D.6: Two sources: Histograms of SD and WAD for 500 simulations of two dipoles with
equal strength.
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Figure D.7: Three sources: Histograms of SD and WAD for 500 simulations of three simulated
dipoles.
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D.3.2 Effect of the Orientation of the Dipole

In this section, we study the effect of the source orientation to the reconstruction result. We

simulate a single dipole with different direction and constant strength (Fig. D.8). From the

graphs, we see that there is periodicity in the values of the metrics as a function of the orientation.

The values of the EMD and NSD seem to be relatively stable with respect to the orientation.

However, the WAD metric is affected by the orientation of the simulated dipole. The strength

difference SD has the greatest fluctuation in the standard model.

Figure D.8: EMD, WAD, NSD and SD for different dipole orientations. The dipole was rotated
anti-clockwise from the shown orientation.
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