152 research outputs found

    Transfer learning in ECG classification from human to horse using a novel parallel neural network architecture

    Get PDF
    Automatic or semi-automatic analysis of the equine electrocardiogram (eECG) is currently not possible because human or small animal ECG analysis software is unreliable due to a different ECG morphology in horses resulting from a different cardiac innervation. Both filtering, beat detection to classification for eECGs are currently poorly or not described in the literature. There are also no public databases available for eECGs as is the case for human ECGs. In this paper we propose the use of wavelet transforms for both filtering and QRS detection in eECGs. In addition, we propose a novel robust deep neural network using a parallel convolutional neural network architecture for ECG beat classification. The network was trained and tested using both the MIT-BIH arrhythmia and an own made eECG dataset with 26.440 beats on 4 classes: normal, premature ventricular contraction, premature atrial contraction and noise. The network was optimized using a genetic algorithm and an accuracy of 97.7% and 92.6% was achieved for the MIT-BIH and eECG database respectively. Afterwards, transfer learning from the MIT-BIH dataset to the eECG database was applied after which the average accuracy, recall, positive predictive value and F1 score of the network increased with an accuracy of 97.1%

    Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest

    Get PDF
    The automatic detection of pulse during out-of-hospital cardiac arrest (OHCA) is necessary for the early recognition of the arrest and the detection of return of spontaneous circulation (end of the arrest). The only signal available in every single defibrillator and valid for the detection of pulse is the electrocardiogram (ECG). In this study we propose two deep neural network (DNN) architectures to detect pulse using short ECG segments (5 s), i.e., to classify the rhythm into pulseless electrical activity (PEA) or pulse-generating rhythm (PR). A total of 3914 5-s ECG segments, 2372 PR and 1542 PEA, were extracted from 279 OHCA episodes. Data were partitioned patient-wise into training (80%) and test (20%) sets. The first DNN architecture was a fully convolutional neural network, and the second architecture added a recurrent layer to learn temporal dependencies. Both DNN architectures were tuned using Bayesian optimization, and the results for the test set were compared to state-of-the art PR/PEA discrimination algorithms based on machine learning and hand crafted features. The PR/PEA classifiers were evaluated in terms of sensitivity (Se) for PR, specificity (Sp) for PEA, and the balanced accuracy (BAC), the average of Se and Sp. The Se/Sp/BAC of the DNN architectures were 94.1%/92.9%/93.5% for the first one, and 95.5%/91.6%/93.5% for the second one. Both architectures improved the performance of state of the art methods by more than 1.5 points in BAC.This work was supported by: The Spanish Ministerio de Economía y Competitividad, TEC2015-64678-R, jointly with the Fondo Europeo de Desarrollo Regional (FEDER), UPV/EHU via GIU17/031 and the Basque Government through the grant PRE_2018_2_0260

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Novel hybrid extraction systems for fetal heart rate variability monitoring based on non-invasive fetal electrocardiogram

    Get PDF
    This study focuses on the design, implementation and subsequent verification of a new type of hybrid extraction system for noninvasive fetal electrocardiogram (NI-fECG) processing. The system designed combines the advantages of individual adaptive and non-adaptive algorithms. The pilot study reviews two innovative hybrid systems called ICA-ANFIS-WT and ICA-RLS-WT. This is a combination of independent component analysis (ICA), adaptive neuro-fuzzy inference system (ANFIS) algorithm or recursive least squares (RLS) algorithm and wavelet transform (WT) algorithm. The study was conducted on clinical practice data (extended ADFECGDB database and Physionet Challenge 2013 database) from the perspective of non-invasive fetal heart rate variability monitoring based on the determination of the overall probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV) and harmonic mean between SE and PPV (F1). System functionality was verified against a relevant reference obtained by an invasive way using a scalp electrode (ADFECGDB database), or relevant reference obtained by annotations (Physionet Challenge 2013 database). The study showed that ICA-RLS-WT hybrid system achieve better results than ICA-ANFIS-WT. During experiment on ADFECGDB database, the ICA-RLS-WT hybrid system reached ACC > 80 % on 9 recordings out of 12 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 6 recordings out of 12. During experiment on Physionet Challenge 2013 database the ICA-RLS-WT hybrid system reached ACC > 80 % on 13 recordings out of 25 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 7 recordings out of 25. Both hybrid systems achieve provably better results than the individual algorithms tested in previous studies.Web of Science713178413175

    Fuzzy and Sample Entropies as Predictors of Patient Survival Using Short Ventricular Fibrillation Recordings during out of Hospital Cardiac Arrest

    Get PDF
    [EN] Optimal defibrillation timing guided by ventricular fibrillation (VF) waveform analysis would contribute to improved survival of out-of-hospital cardiac arrest (OHCA) patients by minimizing myocardial damage caused by futile defibrillation shocks and minimizing interruptions to cardiopulmonary resuscitation. Recently, fuzzy entropy (FuzzyEn) tailored to jointly measure VF amplitude and regularity has been shown to be an efficient defibrillation success predictor. In this study, 734 shocks from 296 OHCA patients (50 survivors) were analyzed, and the embedding dimension (m) and matching tolerance (r) for FuzzyEn and sample entropy (SampEn) were adjusted to predict defibrillation success and patient survival. Entropies were significantly larger in successful shocks and in survivors, and when compared to the available methods, FuzzyEn presented the best prediction results, marginally outperforming SampEn. The sensitivity and specificity of FuzzyEn were 83.3% and 76.7% when predicting defibrillation success, and 83.7% and 73.5% for patient survival. Sensitivities and specificities were two points above those of the best available methods, and the prediction accuracy was kept even for VF intervals as short as 2s. These results suggest that FuzzyEn and SampEn may be promising tools for optimizing the defibrillation time and predicting patient survival in OHCA patients presenting VF.This work received financial support from Spanish Ministerio de Economia y Competitividad and jointly with the Fondo Europeo de Desarrollo Regional (FEDER), projects TEC2015-64678-R and DPI2017-83952-C3; from UPV/EHU through the grant PIF15/190 and through project GIU17/031; from the Basque Government through grant PRE-2016-1-0012; and from Junta de Comunidades de Castilla-La Mancha through SBPLY/17/180501/000411.Chicote, B.; Irusta, U.; Aramendi, E.; Alcaraz, R.; Rieta, JJ.; Isasi, I.; Alonso, D.... (2018). Fuzzy and Sample Entropies as Predictors of Patient Survival Using Short Ventricular Fibrillation Recordings during out of Hospital Cardiac Arrest. Entropy. 20(8):1-25. https://doi.org/10.3390/e20080591S125208Gräsner, J.-T., Lefering, R., Koster, R. W., Masterson, S., Böttiger, B. W., Herlitz, J., … Maurer, H. (2016). EuReCa ONE⿿27 Nations, ONE Europe, ONE Registry. Resuscitation, 105, 188-195. doi:10.1016/j.resuscitation.2016.06.004Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., … Deo, R. (2018). Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation, 137(12). doi:10.1161/cir.0000000000000558Rubart, M. (2005). Mechanisms of sudden cardiac death. Journal of Clinical Investigation, 115(9), 2305-2315. doi:10.1172/jci26381Zoll, P. M. (1952). Resuscitation of the Heart in Ventricular Standstill by External Electric Stimulation. New England Journal of Medicine, 247(20), 768-771. doi:10.1056/nejm195211132472005Cobb, L. A. (1999). Influence of Cardiopulmonary Resuscitation Prior to Defibrillation in Patients With Out-of-Hospital Ventricular Fibrillation. JAMA, 281(13), 1182. doi:10.1001/jama.281.13.1182Wik, L., Hansen, T. B., Fylling, F., Steen, T., Vaagenes, P., Auestad, B. H., & Steen, P. A. (2003). Delaying Defibrillation to Give Basic Cardiopulmonary Resuscitation to Patients With Out-of-Hospital Ventricular Fibrillation. JAMA, 289(11), 1389. doi:10.1001/jama.289.11.1389Link, M. S., Atkins, D. L., Passman, R. S., Halperin, H. R., Samson, R. A., White, R. D., … Kerber, R. E. (2010). Part 6: Electrical Therapies: Automated External Defibrillators, Defibrillation, Cardioversion, and Pacing * 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 122(18_suppl_3), S706-S719. doi:10.1161/circulationaha.110.970954Takata, T. S., Page, R. L., & Joglar, J. A. (2001). Automated External Defibrillators: Technical Considerations and Clinical Promise. Annals of Internal Medicine, 135(11), 990. doi:10.7326/0003-4819-135-11-200112040-00011Figuera, C., Irusta, U., Morgado, E., Aramendi, E., Ayala, U., Wik, L., … Alonso-Atienza, F. (2016). Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators. PLOS ONE, 11(7), e0159654. doi:10.1371/journal.pone.0159654Telesz, B. J., Hess, E. P., Atkinson, E., & White, R. D. (2015). Recurrent ventricular fibrillation: Experience with first responders prior to advanced life support interventions. Resuscitation, 88, 138-142. doi:10.1016/j.resuscitation.2014.10.010Xie, J., Weil, M. H., Sun, S., Tang, W., Sato, Y., Jin, X., & Bisera, J. (1997). High-Energy Defibrillation Increases the Severity of Postresuscitation Myocardial Dysfunction. Circulation, 96(2), 683-688. doi:10.1161/01.cir.96.2.683Cheskes, S., Schmicker, R. H., Christenson, J., Salcido, D. D., Rea, T., Powell, J., … Morrison, L. (2011). Perishock Pause. Circulation, 124(1), 58-66. doi:10.1161/circulationaha.110.010736Reed, M. J., Clegg, G. R., & Robertson, C. E. (2003). Analysing the ventricular fibrillation waveform. Resuscitation, 57(1), 11-20. doi:10.1016/s0300-9572(02)00441-0Firoozabadi, R., Nakagawa, M., Helfenbein, E. D., & Babaeizadeh, S. (2013). Predicting defibrillation success in sudden cardiac arrest patients. Journal of Electrocardiology, 46(6), 473-479. doi:10.1016/j.jelectrocard.2013.06.007Ristagno, G., Li, Y., Fumagalli, F., Finzi, A., & Quan, W. (2013). Amplitude spectrum area to guide resuscitation—A retrospective analysis during out-of-hospital cardiopulmonary resuscitation in 609 patients with ventricular fibrillation cardiac arrest. Resuscitation, 84(12), 1697-1703. doi:10.1016/j.resuscitation.2013.08.017Callaway, C. W., & Menegazzi, J. J. (2005). Waveform analysis of ventricular fibrillation to predict defibrillation. Current Opinion in Critical Care, 11(3), 192-199. doi:10.1097/01.ccx.0000161725.71211.42He, M., Gong, Y., Li, Y., Mauri, T., Fumagalli, F., Bozzola, M., … Ristagno, G. (2015). Combining multiple ECG features does not improve prediction of defibrillation outcome compared to single features in a large population of out-of-hospital cardiac arrests. Critical Care, 19(1). doi:10.1186/s13054-015-1142-zBrown, C. G., & Dzwonczyk, R. (1996). Signal Analysis of the Human Electrocardiogram During Ventricular Fibrillation: Frequency and Amplitude Parameters as Predictors of Successful Countershock. Annals of Emergency Medicine, 27(2), 184-188. doi:10.1016/s0196-0644(96)70346-3Sherman, L. D., Callaway, C. W., & Menegazzi, J. J. (2000). Ventricular fibrillation exhibits dynamical properties and self-similarity. Resuscitation, 47(2), 163-173. doi:10.1016/s0300-9572(00)00229-xWEAVER, W. D. (1985). Amplitude of Ventricular Fibrillation Waveform and Outcome After Cardiac Arrest. Annals of Internal Medicine, 102(1), 53. doi:10.7326/0003-4819-102-1-53Jekova, I., Mougeolle, F., & Valance, A. (2004). Defibrillation shock success estimation by a set of six parameters derived from the electrocardiogram. Physiological Measurement, 25(5), 1179-1188. doi:10.1088/0967-3334/25/5/008Wu, X., Bisera, J., & Tang, W. (2013). Signal integral for optimizing the timing of defibrillation. Resuscitation, 84(12), 1704-1707. doi:10.1016/j.resuscitation.2013.08.005Hamprecht, F. A., Jost, D., Rüttimann, M., Calamai, F., & Kowalski, J. J. (2001). Preliminary results on the prediction of countershock success with fibrillation power. Resuscitation, 50(3), 297-299. doi:10.1016/s0300-9572(01)00360-4Neurauter, A., Eftestøl, T., Kramer-Johansen, J., Abella, B. S., Sunde, K., Wenzel, V., … Strohmenger, H.-U. (2007). Prediction of countershock success using single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks. Resuscitation, 73(2), 253-263. doi:10.1016/j.resuscitation.2006.10.002Ristagno, G., Mauri, T., Cesana, G., Li, Y., Finzi, A., Fumagalli, F., … Pesenti, A. (2015). Amplitude Spectrum Area to Guide Defibrillation. Circulation, 131(5), 478-487. doi:10.1161/circulationaha.114.010989Eftestøl, T., Sunde, K., Ole Aase, S., Husøy, J. H., & Steen, P. A. (2000). Predicting Outcome of Defibrillation by Spectral Characterization and Nonparametric Classification of Ventricular Fibrillation in Patients With Out-of-Hospital Cardiac Arrest. Circulation, 102(13), 1523-1529. doi:10.1161/01.cir.102.13.1523Povoas, H. P., & Bisera, J. (2000). Electrocardiographic waveform analysis for predicting the success of defibrillation. Critical Care Medicine, 28(Supplement), N210-N211. doi:10.1097/00003246-200011001-00010Podbregar, M., Kovačič, M., Podbregar-Marš, A., & Brezocnik, M. (2003). Predicting defibrillation success by ‘genetic’ programming in patients with out-of-hospital cardiac arrest. Resuscitation, 57(2), 153-159. doi:10.1016/s0300-9572(03)00030-3Callaway, C. W., Sherman, L. D., Mosesso, V. N., Dietrich, T. J., Holt, E., & Clarkson, M. C. (2001). Scaling Exponent Predicts Defibrillation Success for Out-of-Hospital Ventricular Fibrillation Cardiac Arrest. Circulation, 103(12), 1656-1661. doi:10.1161/01.cir.103.12.1656Sherman, L. D., Rea, T. D., Waters, J. D., Menegazzi, J. J., & Callaway, C. W. (2008). Logarithm of the absolute correlations of the ECG waveform estimates duration of ventricular fibrillation and predicts successful defibrillation. Resuscitation, 78(3), 346-354. doi:10.1016/j.resuscitation.2008.04.009Lin, L.-Y., Lo, M.-T., Ko, P. C.-I., Lin, C., Chiang, W.-C., Liu, Y.-B., … Ma, M. H.-M. (2010). Detrended fluctuation analysis predicts successful defibrillation for out-of-hospital ventricular fibrillation cardiac arrest. Resuscitation, 81(3), 297-301. doi:10.1016/j.resuscitation.2009.12.003Gong, Y., Lu, Y., Zhang, L., Zhang, H., & Li, Y. (2015). Predict Defibrillation Outcome Using Stepping Increment of Poincare Plot for Out-of-Hospital Ventricular Fibrillation Cardiac Arrest. BioMed Research International, 2015, 1-7. doi:10.1155/2015/493472Watson, J. N., Uchaipichat, N., Addison, P. S., Clegg, G. R., Robertson, C. E., Eftestol, T., & Steen, P. A. (2004). Improved prediction of defibrillation success for out-of-hospital VF cardiac arrest using wavelet transform methods. Resuscitation, 63(3), 269-275. doi:10.1016/j.resuscitation.2004.06.012Gundersen, K., Kvaløy, J. T., Kramer-Johansen, J., & Eftestøl, T. (2008). Identifying approaches to improve the accuracy of shock outcome prediction for out-of-hospital cardiac arrest. Resuscitation, 76(2), 279-284. doi:10.1016/j.resuscitation.2007.07.019Howe, A., Escalona, O. J., Di Maio, R., Massot, B., Cromie, N. A., Darragh, K. M., … McEneaney, D. J. (2014). A support vector machine for predicting defibrillation outcomes from waveform metrics. Resuscitation, 85(3), 343-349. doi:10.1016/j.resuscitation.2013.11.021Indik, J. H., Conover, Z., McGovern, M., Silver, A. E., Spaite, D. W., Bobrow, B. J., & Kern, K. B. (2014). Association of Amplitude Spectral Area of the Ventricular Fibrillation Waveform With Survival of Out-of-Hospital Ventricular Fibrillation Cardiac Arrest. Journal of the American College of Cardiology, 64(13), 1362-1369. doi:10.1016/j.jacc.2014.06.1196Coult, J., Sherman, L., Kwok, H., Blackwood, J., Kudenchuk, P. J., & Rea, T. D. (2016). Short ECG segments predict defibrillation outcome using quantitative waveform measures. Resuscitation, 109, 16-20. doi:10.1016/j.resuscitation.2016.09.020Endoh, H., Hida, S., Oohashi, S., Hayashi, Y., Kinoshita, H., & Honda, T. (2010). Prompt prediction of successful defibrillation from 1-s ventricular fibrillation waveform in patients with out-of-hospital sudden cardiac arrest. Journal of Anesthesia, 25(1), 34-41. doi:10.1007/s00540-010-1043-xChicote, B., Irusta, U., Alcaraz, R., Rieta, J., Aramendi, E., Isasi, I., … Ibarguren, K. (2016). Application of Entropy-Based Features to Predict Defibrillation Outcome in Cardiac Arrest. Entropy, 18(9), 313. doi:10.3390/e18090313Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039Weiting Chen, Zhizhong Wang, Hongbo Xie, & Wangxin Yu. (2007). Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(2), 266-272. doi:10.1109/tnsre.2007.897025Xiao-Feng, L., & Yue, W. (2009). Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Physics B, 18(7), 2690-2695. doi:10.1088/1674-1056/18/7/011Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911Eftestøl, T., Sunde, K., & Steen, P. A. (2002). Effects of Interrupting Precordial Compressions on the Calculated Probability of Defibrillation Success During Out-of-Hospital Cardiac Arrest. Circulation, 105(19), 2270-2273. doi:10.1161/01.cir.0000016362.42586.feEdelson, D. P., Abella, B. S., Kramer-Johansen, J., Wik, L., Myklebust, H., Barry, A. M., … Becker, L. B. (2006). Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation, 71(2), 137-145. doi:10.1016/j.resuscitation.2006.04.008Ibarguren, K., Unanue, J. M., Alonso, D., Vaqueriza, I., Irusta, U., Aramendi, E., & Chicote, B. (2015). Difference in survival from pre-hospital cardiac arrest between cities and villages in the Basque Autonomous Community. Resuscitation, 96, 114. doi:10.1016/j.resuscitation.2015.09.269Jacobs, I., Nadkarni, V., Bahr, J., Berg, R. A., Billi, J. E., Bossaert, L., … Zideman, D. (2004). Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. Resuscitation, 63(3), 233-249. doi:10.1016/j.resuscitation.2004.09.008Rittenberger, J. C., Raina, K., Holm, M. B., Kim, Y. J., & Callaway, C. W. (2011). Association between Cerebral Performance Category, Modified Rankin Scale, and discharge disposition after cardiac arrest. Resuscitation, 82(8), 1036-1040. doi:10.1016/j.resuscitation.2011.03.034Marn-Pernat, A., Weil, M. H., Tang, W., Pernat, A., & Bisera, J. (2001). Optimizing timing of ventricular defibrillation. Critical Care Medicine, 29(12), 2360-2365. doi:10.1097/00003246-200112000-00019Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005Alcaraz, R., Abásolo, D., Hornero, R., & Rieta, J. J. (2010). Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine, 99(1), 124-132. doi:10.1016/j.cmpb.2010.02.009Zou, K. H., O’Malley, A. J., & Mauri, L. (2007). Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models. Circulation, 115(5), 654-657. doi:10.1161/circulationaha.105.594929Perkins, N. J., & Schisterman, E. F. (2006). The Inconsistency of «Optimal» Cutpoints Obtained using Two Criteria based on the Receiver Operating Characteristic Curve. American Journal of Epidemiology, 163(7), 670-675. doi:10.1093/aje/kwj063Monsieurs, K. G., Nolan, J. P., Bossaert, L. L., Greif, R., Maconochie, I. K., Nikolaou, N. I., … Wyllie, J. (2015). European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation, 95, 1-80. doi:10.1016/j.resuscitation.2015.07.038Ruiz, J., Ayala, U., de Gauna, S. R., Irusta, U., González-Otero, D., Alonso, E., … Eftestøl, T. (2013). Feasibility of automated rhythm assessment in chest compression pauses during cardiopulmonary resuscitation. Resuscitation, 84(9), 1223-1228. doi:10.1016/j.resuscitation.2013.01.034Ayala, U., Irusta, U., Ruiz, J., Ruiz de Gauna, S., González-Otero, D., Alonso, E., … Eftestøl, T. (2015). Fully automatic rhythm analysis during chest compression pauses. Resuscitation, 89, 25-30. doi:10.1016/j.resuscitation.2014.11.022Singh, A., Saini, B. S., & Singh, D. (2015). An alternative approach to approximate entropy threshold value (r) selection: application to heart rate variability and systolic blood pressure variability under postural challenge. Medical & Biological Engineering & Computing, 54(5), 723-732. doi:10.1007/s11517-015-1362-zNeurauter, A., Eftestøl, T., Kramer-Johansen, J., Abella, B. S., Wenzel, V., Lindner, K. H., … Strohmenger, H.-U. (2008). Improving countershock success prediction during cardiopulmonary resuscitation using ventricular fibrillation features from higher ECG frequency bands. Resuscitation, 79(3), 453-459. doi:10.1016/j.resuscitation.2008.07.024Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., & Başar, E. (2001). Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105(1), 65-75. doi:10.1016/s0165-0270(00)00356-3Weaver, B., & Wuensch, K. L. (2013). SPSS and SAS programs for comparing Pearson correlations and OLS regression coefficients. Behavior Research Methods, 45(3), 880-895. doi:10.3758/s13428-012-0289-7Sherman, L. D. (2006). The frequency ratio: An improved method to estimate ventricular fibrillation duration based on Fourier analysis of the waveform. Resuscitation, 69(3), 479-486. doi:10.1016/j.resuscitation.2005.09.024Weisfeldt, M. L., & Becker, L. B. (2002). Resuscitation After Cardiac Arrest. JAMA, 288(23), 3035. doi:10.1001/jama.288.23.3035Gazmuri, R. J., Berkowitz, M., & Cajigas, H. (1999). Myocardial effects of ventricular fibrillation in the isolated rat heart. Critical Care Medicine, 27(8), 1542-1550. doi:10.1097/00003246-199908000-00023JARDETZKY, O., GREENE, E. A., & LORBER, V. (1956). Oxygen Consumption of the Completely Isolated Dog Heart In Fibrillation. Circulation Research, 4(2), 144-147. doi:10.1161/01.res.4.2.144Hoogendijk, M. G., Schumacher, C. A., Belterman, C. N. W., Boukens, B. J., Berdowski, J., de Bakker, J. M. T., … Coronel, R. (2012). Ventricular fibrillation hampers the restoration of creatine-phosphate levels during simulated cardiopulmonary resuscitations. EP Europace, 14(10), 1518-1523. doi:10.1093/europace/eus078Neumar, R. W., Brown, C. G., Van Ligten, P., Hoekstra, J., Altschuld, R. A., & Baker, P. (1991). Estimation of myocardial ischemic injury during ventricular fibrillation with total circulatory arrest using high-energy phosphates and lactate as metabolic markers. Annals of Emergency Medicine, 20(3), 222-229. doi:10.1016/s0196-0644(05)80927-8Kern, K. B., Garewal, H. S., Sanders, A. B., Janas, W., Nelson, J., Sloan, D., … Ewy, G. A. (1990). Depletion of myocardial adenosine triphosphate during prolonged untreated ventricular fibrillation: effect on defibrillation success. Resuscitation, 20(3), 221-229. doi:10.1016/0300-9572(90)90005-yChoi, H. J., Nguyen, T., Park, K. S., Cha, K. C., Kim, H., Lee, K. H., & Hwang, S. O. (2013). Effect of cardiopulmonary resuscitation on restoration of myocardial ATP in prolonged ventricular fibrillation. Resuscitation, 84(1), 108-113. doi:10.1016/j.resuscitation.2012.06.006Salcido, D. D., Menegazzi, J. J., Suffoletto, B. P., Logue, E. S., & Sherman, L. D. (2009). Association of intramyocardial high energy phosphate concentrations with quantitative measures of the ventricular fibrillation electrocardiogram waveform. Resuscitation, 80(8), 946-950. doi:10.1016/j.resuscitation.2009.05.002Reynolds, J. C., Salcido, D. D., & Menegazzi, J. J. (2012). Correlation between coronary perfusion pressure and quantitative ECG waveform measures during resuscitation of prolonged ventricular fibrillation. Resuscitation, 83(12), 1497-1502. doi:10.1016/j.resuscitation.2012.04.013Didon, J.-P., Krasteva, V., Ménétré, S., Stoyanov, T., & Jekova, I. (2011). Shock advisory system with minimal delay triggering after end of chest compressions: Accuracy and gained hands-off time. Resuscitation, 82, S8-S15. doi:10.1016/s0300-9572(11)70145-9Ruiz de Gauna, S., Irusta, U., Ruiz, J., Ayala, U., Aramendi, E., & Eftestøl, T. (2014). Rhythm Analysis during Cardiopulmonary Resuscitation: Past, Present, and Future. BioMed Research International, 2014, 1-13. doi:10.1155/2014/386010Manis, G., Aktaruzzaman, M., & Sassi, R. (2018). Low Computational Cost for Sample Entropy. Entropy, 20(1), 61. doi:10.3390/e20010061Snyder, D., & Morgan, C. (2004). Wide variation in cardiopulmonary resuscitation interruption intervals among commercially available automated external defibrillators may affect survival despite high defibrillation efficacy. Critical Care Medicine, 32(Supplement), S421-S424. doi:10.1097/01.ccm.0000134265.35871.2bMenegazzi, J. J., Callaway, C. W., Sherman, L. D., Hostler, D. P., Wang, H. E., Fertig, K. C., & Logue, E. S. (2004). Ventricular Fibrillation Scaling Exponent Can Guide Timing of Defibrillation and Other Therapies. Circulation, 109(7), 926-931. doi:10.1161/01.cir.0000112606.41127.d2Lombardi, F. (2001). Sudden cardiac death: role of heart rate variability to identify patients at risk. Cardiovascular Research, 50(2), 210-217. doi:10.1016/s0008-6363(01)00221-8Moorman, J. R., Carlo, W. A., Kattwinkel, J., Schelonka, R. L., Porcelli, P. J., Navarrete, C. T., … Michael O’Shea, T. (2011). Mortality Reduction by Heart Rate Characteristic Monitoring in Very Low Birth Weight Neonates: A Randomized Trial. The Journal of Pediatrics, 159(6), 900-906.e1. doi:10.1016/j.jpeds.2011.06.044Sessa, F., Anna, V., Messina, G., Cibelli, G., Monda, V., Marsala, G., … Salerno, M. (2018). Heart rate variability as predictive factor for sudden cardiac death. Aging, 10(2), 166-1

    Development of a Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector

    Get PDF
    The central aim of this research is the development and deployment of a novel multilayer machine learning design with unique application for the diagnosis of myocardial infarctions (MIs) from individual heartbeats of single-lead electrocardiograms (EKGs) irrespective of their sampling frequencies over a given range. To the best of our knowledge, this design is the first to attempt inter-patient myocardial infarction detection from individual heartbeats of single-lead (lead II) electrocardiograms that achieves high accuracy and near real-time diagnosis. The processing time of 300 milliseconds to a diagnosis is just at the time range in between extremely fast heartbeats of around 300 milliseconds, or 200 beats per minute. The design achieves stable performance metrics over the frequency range of 202Hz to 2.8kHz with an accuracy of 77.12%, positive predictive value (PPV) of 75.85%, and a negative predictive value (NPV) of 83.02% over the entire PTB database; 85.07%, 81.54%, 87.31% over the PTB-XL (the largest EKG database available for research) validation set, and 84.17%, 78.37%, 87.55% over the PTB-XL test set. Major design contributions and findings of this work reveal (1) a method for the realtime detection of ventricular depolarization events in the PQRST complex from 12-lead electrocardiograms using Independent Component Analysis (ICA), with a slightly different use of ICA proposed for electrocardiogram analysis and R-peak detection/localization; (2) a multilayer Long-Short Term Memory (LSTM) neural network design that identifies infarcted patients from a single heartbeat of a single-lead (lead II) electrocardiogram; (3) and integrated LSTM neural network with an algorithm that detects the R-peaks in real time for instantaneous detection of myocardial infarctions and for effective monitoring of patients under cardiac stress and/or at risk of myocardial infarction; (4) a fully integrated 12-lead real-time classifier with even higher detection metrics and a deeper neural architecture, which could serve as a near real-time monitoring tool that could gauge disease progression and evaluate benefits gained from early intervention and treatment planning; (5) a real-time frequency-independent design based on a single-lead single-beat MI detector, which is of pivotal importance to deployment as there is no standard sampling frequency for EKGs, making them span a wider frequency spectrum. vi

    Signatures of Subacute Potentially Catastrophic Illness in the ICU: Model Development and Validation

    Get PDF
    Objectives: Patients in ICUs are susceptible to subacute potentially catastrophic illnesses such as respiratory failure, sepsis, and hemorrhage that present as severe derangements of vital signs. More subtle physiologic signatures may be present before clinical deterioration, when treatment might be more effective. We performed multivariate statistical analyses of bedside physiologic monitoring data to identify such early subclinical signatures of incipient life-threatening illness. Design: We report a study of model development and validation of a retrospective observational cohort using resampling (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis type 1b internal validation) and a study of model validation using separate data (type 2b internal/external validation). Setting: University of Virginia Health System (Charlottesville), a tertiary-care, academic medical center. Patients: Critically ill patients consecutively admitted between January 2009 and June 2015 to either the neonatal, surgical/trauma/burn, or medical ICUs with available physiologic monitoring data. Interventions: None. Measurements and Main Results: We analyzed 146 patient-years of vital sign and electrocardiography waveform time series from the bedside monitors of 9,232 ICU admissions. Calculations from 30-minute windows of the physiologic monitoring data were made every 15 minutes. Clinicians identified 1,206 episodes of respiratory failure leading to urgent unplanned intubation, sepsis, or hemorrhage leading to multi-unit transfusions from systematic individual chart reviews. Multivariate models to predict events up to 24 hours prior had internally validated C-statistics of 0.61-0.88. In adults, physiologic signatures of respiratory failure and hemorrhage were distinct from each other but externally consistent across ICUs. Sepsis, on the other hand, demonstrated less distinct and inconsistent signatures. Physiologic signatures of all neonatal illnesses were similar. Conclusions: Subacute potentially catastrophic illnesses in three diverse ICU populations have physiologic signatures that are detectable in the hours preceding clinical detection and intervention. Detection of such signatures can draw attention to patients at highest risk, potentially enabling earlier intervention and better outcomes

    Bottom-up design of artificial neural network for single-lead electrocardiogram beat and rhythm classification

    Get PDF
    Performance improvement in computerized Electrocardiogram (ECG) classification is vital to improve reliability in this life-saving technology. The non-linearly overlapping nature of the ECG classification task prevents the statistical and the syntactic procedures from reaching the maximum performance. A new approach, a neural network-based classification scheme, has been implemented in clinical ECG problems with much success. The focus, however, has been on narrow clinical problem domains and the implementations lacked engineering precision. An optimal utilization of frequency information was missing. This dissertation attempts to improve the accuracy of neural network-based single-lead (lead-II) ECG beat and rhythm classification. A bottom-up approach defined in terms of perfecting individual sub-systems to improve the over all system performance is used. Sub-systems include pre-processing, QRS detection and fiducial point estimations, feature calculations, and pattern classification. Inaccuracies in time-domain fiducial point estimations are overcome with the derivation of features in the frequency domain. Feature extraction in frequency domain is based on a spectral estimation technique (combination of simulation and subtraction of a normal beat). Auto-regressive spectral estimation methods yield a highly sensitive spectrum, providing several local features with information on beat classes like flutter, fibrillation, and noise. A total of 27 features, including 16 in time domain and 11 in frequency domain are calculated. The entire data and problem are divided into four major groups, each group with inter-related beat classes. Classification of each group into related sub-classes is performed using smaller feed-forward neural networks. Input feature sub-set and the structure of each network are optimized using an iterative process. Optimal implementations of feed-forward neural networks provide high accuracy in beat classification. Associated neural networks are used for the more deterministic rhythm-classification task. An accuracy of more than 85% is achieved for all 13 classes included in this study. The system shows a graceful degradation in performance with increasing noise, as a result of the noise consideration in the design of every sub-system. Results indicate a neural network-based bottom-up design of single-lead ECG classification is able to provide very high accuracy, even in the presence of noise, flutter, and fibrillation
    corecore