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Abstract

Objective—Patients in intensive care units are susceptible to subacute, potentially catastrophic 

illnesses such as respiratory failure, sepsis, and hemorrhage that present as severe derangements of 

vital signs. More subtle physiologic signatures may be present before clinical deterioration, when 

treatment might be more effective. We performed multivariate statistical analyses of bedside 

physiologic monitoring data to identify such early, subclinical signatures of incipient life-

threatening illness.

Design—We report a study of model development and validation of a retrospective observational 

cohort using resampling (TRIPOD Type 1b internal validation), and a study of model validation 

using separate data (Type 2b internal/external validation).

Setting—University of Virginia Health System (Charlottesville), a tertiary-care, academic 

medical center.
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Patients—Critically ill patients consecutively admitted between January 2009 and June 2015 to 

either the neonatal, surgical/trauma/burn, or medical intensive care units with available 

physiologic monitoring data.

Interventions—None.

Measurements and Main Results—We analyzed 146 patient-years of vital sign and 

electrocardiography waveform time series from the bedside monitors of 9,232 ICU admissions. 

Calculations from 30-minute windows of the physiologic monitoring data were made every 15 

minutes. Clinicians identified 1,206 episodes of respiratory failure leading to urgent, unplanned 

intubation, sepsis, or hemorrhage leading to multi-unit transfusions from systematic, individual 

chart reviews. Multivariate models to predict events up to 24 hours prior had internally-validated 

C-statistics of 0.61 to 0.88. In adults, physiologic signatures of respiratory failure and hemorrhage 

were distinct from each other but externally consistent across ICUs. Sepsis, on the other hand, 

demonstrated less distinct and inconsistent signatures. Physiologic signatures of all neonatal 

illnesses were similar.

Conclusions—Subacute, potentially catastrophic illnesses in 3 diverse ICU populations have 

physiologic signatures that are detectable in the hours preceding clinical detection and 

intervention. Detection of such signatures can draw attention to patients at highest risk, potentially 

enabling earlier intervention and better outcomes.

Keywords

critical care; physiologic monitoring; hemorrhage; sepsis; respiratory insufficiency; statistical 
models

Introduction

Intensive care units (ICU) continue to see growth in number of patients and in their illness 

acuity (1-3). The severity of the original insult often determines prognosis, and the risk of 

death is further increased by events that occur during the stay, such as acute respiratory 

failure, sepsis, and hemorrhage. These new insults in critically ill patients, though not 

necessarily common, are potentially catastrophic (4).

These syndromes may begin with more innocuous conditions – volume overload, 

pneumonia, or a bleeding ulcer– that are tractable early in their course, and averting 

deterioration by prompt diagnosis and therapy may improve patient outcomes (5). Our 

hypothesis is that illnesses present signatures in the physiologic data prior to clinical 

suspicion (6-9).

To test this hypothesis we analyzed data from a large number of highly diverse ICU patients 

for whom events had been meticulously identified. By doing so, we hoped to understand 

how broadly our concepts might apply. The promise of Big Data predictive analytics and 

information technology in improving patient safety has been recognized, though 

implementation has been hindered by a fragmented healthcare informatics ecosystem 

(10-12). Notwithstanding, the bedside physiologic monitor is a ubiquitous and continuous 

source of information, and we have analyzed how physiologic measurements change in the 
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hours before clinicians suspected that illness might be developing. Here, we tested the 

hypothesis that subacute, potentially catastrophic illnesses have detectable signatures of 

deranged physiology in the monitoring data prior to clinical diagnosis across a broad 

spectrum of ICU patients and events.

Materials and Methods

Study design

We conducted a retrospective study from January 23, 2009 to June 25, 2015 at the University 

of Virginia (UVa) Health System, an academic, tertiary-care center. We studied admissions 

to the Neonatal ICU (NICU), Surgical/Trauma/Burn ICU (SICU), and Medical ICU (MICU) 

comprised of 45, 15, and 28 beds respectively, each with continuous physiologic monitoring 

systems and an electronic data warehouse that archived the complete medical record.

Primary end points were the times of intubation for respiratory failure, blood culture order 

for the suspicion of hospital-acquired sepsis, and first transfusion order of packed red blood 

cells (PRBC) for hemorrhage. Through systematic review of individual medical records, 

clinicians identified instances of sepsis and respiratory failure leading to urgent, unplanned 

intubation and entered the details into a database form. The institutional blood bank 

prospectively collected the date, time, and relevant circumstances of PRBC transfusions. We 

abstained from using secondary administrative data such as International Classification of 
Diseases (ICD) diagnosis codes.

We have used the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis (TRIPOD) statement checklist(13) in analyzing and reporting this 

study. The UVa Institutional Review Board approved this study with a waiver of informed 

consent.

Study populations and outcome definitions

To identify events of respiratory failure leading to urgent unplanned intubation, we searched 

records for documentation of the intubation procedure (7, 8).

To identify severe sepsis in adults, we used the Surviving Sepsis Campaign guidelines, 

which require clinical suspicion of infection, as suggested by an order for blood cultures, at 

least 2 of 4 systemic inflammatory response syndrome (SIRS) criteria, and specific evidence 

of end-organ dysfunction or damage (see Supplemental Methods, Supplemental Digital 

Content 1) (14). The time of the event was the instance of the first order of a blood culture 

for suspicion of infection. Some prolonged admissions were complicated by multiple 

episodes; we analyzed only the first.

In neonates, septicemia was defined as clinical deterioration at 3 or more days of age 

associated with a positive blood culture (excluding Corynebacterium and diphtheroids) and 

at least 5 days of antibiotics. Subsequent episodes of septicemia were included if they 

occurred more than 7 days after the previous episode or, if less than 7 days from the prior 

episode, were due to a different organism.
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For hemorrhage in adults, the time of the event was the initiation of the first of a 3 or more 

units transfusion of PRBC within 24 hours (9). For infants, this definition was modified to 2 

transfusions within 24 hours.

We studied only those patients who were at risk for each particular subacute, potentially 

catastrophic illness. Thus, for the study of urgent intubations we excluded intubations 

performed in the emergency department, operating room, and those performed electively, 

and we excluded observations occurring during periods of mechanical ventilation, after “Do 

Not Intubate” orders, or in patients who had a functional tracheostomy. For septicemia in the 

NICU, we included only very low birth weight preterm infants. For the study of sepsis, we 

excluded admissions with the diagnosis of sepsis present on arrival to the ICU. For the study 

of hemorrhage, we excluded events with PRBC transfusion in the preceding 24 hours.

Physiologic data acquisition and predictors

Measurements reported by the bedside monitor every 2 seconds included heart rate (HR), 

respiratory rate (Resp), pulse oximeter saturation (SpO2), and both invasive and noninvasive 

blood pressure (see Supplemental Methods, Supplemental Digital Content 1). In adults, 

every 15 minutes, we calculated the means and standard deviations of vital signs (HR, Resp, 

SpO2) for the prior 30 minutes, resulting in 96 measurements per day. In neonates, we used 

the hourly average of every 5-minute calculations from the preceding 10 minutes, consistent 

with previously published results (7). The cross-correlation coefficient of HR-Resp, Resp-

SpO2, and HR-SpO2 pairs were also calculated (maximum value for lags between plus or 

minus 20 seconds). Given the collinearity of blood pressure measurements and the 

postulated differences in pulse pressure responses to vasodilatory and vasoconstrictive 

pathophysiologic states as found in septic and hemorrhagic shock respectively, we chose to 

only include diastolic blood pressure (DBP) and pulse pressure (PP), calculated as the 

difference between systolic and diastolic BP measurements. From the ECG waveform we 

performed QRS detection to identify the RR interbeat intervals and then calculated linear 

and nonlinear dynamical measures of HR designed to detect arrhythmia and ectopy; these 

include standard deviation of the RR intervals or HR variability (HRV), detrended 

fluctuation analysis (DFA), and the coefficient of sample entropy (COSEn) (9, 15-17). 

Admissions without archived physiologic monitoring data due to technical complications 

were excluded.

Statistical analysis

Missing data (mean 7.4%; range: <0.5 – 39.2%) were multiply imputed under the fully 

conditional specification with chained equations using predictive mean matching (see 

Supplemental Methods, Supplemental Digital Content 1) (18). We developed binary logistic 

regression models labeling observations during the time window prior to the event as ‘one’, 

and observations outside this timeframe as ‘zero’. In the NICU, optimization of the models 

based on C-statistics resulted in lookback windows of 8, 24, and 24 hours for intubation, 

sepsis, and transfusion respectively. In the MICU, windows of 4, 6, and 8 hours led to 

optimal models for intubation, severe sepsis, and hemorrhage respectively. In the SICU, the 

optimal windows for intubation, severe sepsis, and hemorrhage were 6, 4, and 4 hours. In 

sensitivity analyses, adjusting the lookback window in 2-hour increments backwards beyond 
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these times did not greatly alter the performance of any model. We allowed our pre-specified 

candidate predictors to have non-monotonic and non-linear associations by modeling them 

with restricted cubic spline transformations (see Supplemental Methods, Supplemental 

Digital Content 1) (19). We adjusted for the repeated and correlated observations within 

individual patients with procedures that modify the variance-covariance matrix, and we 

quantified predictive accuracy using a concordance index (C-statistic) (20).

We validated these models internally using bootstrap resampling (TRIPOD Type 1b model 

study) to estimate the performance on a new sample of observations from the same patient 

population. We justify bootstrapping methodology over split-sample or cross-validation 

techniques by noting that the estimates generated by these alternative strategies are less 

stable (different splits lead to different results) and exhibit greater bias (samples that vary 

only by chance will probably show similar performance as in the development set) (21, 22). 

We additionally evaluated each model on separate data (TRIPOD Type 2b model study) in 

all other ICU-illness cohorts (23). To facilitate subsequent comparisons between models, we 

constrained all models to have identical pre-specified terms. All statistical analyses were 

performed in R (18, 20, 24). Figure 1A shows the flow of the data extraction, processing, 

and subsequent statistical analysis steps.

Results

Study patients

We reviewed the charts of 10,559 hospital admissions to the NICU, SICU, and MICU. Of 

these, 9,232 admissions had 145.8 patient-years (3.2 million observations) of physiologic 

time series measurement data available for analysis. Table 1 shows their baseline 

characteristics, and Figure 1B shows their flow through the study. We identified 1,206 

episodes of either incident respiratory failure leading to urgent, unplanned intubation; severe 

sepsis; or multi-unit transfusions of PRBC.

The incident rates of events in the NICU were 0.78, 0.27, and 0.55 per 100 ICU days for 

unplanned intubation, sepsis, and multiple transfusions respectively. Figure 2A compares the 

rates of each adult illness specific to each ICU, which ranged from 1.3 to 3.3 events per 100 

patient ICU days. In the SICU, the aggregate incidence rate was 7.9 per 100 ICU days, 

which, in this 15-bed ICU, equates to 1.2 events per day—13.8% of all SICU admissions 

experienced at least one illness event. Hemorrhage commonly occurred within the first 12 

hours of SICU admissions (40% of all hemorrhage events), while intubations (14%) and 

sepsis (9%) were less likely to occur early in the ICU course.

Outcomes

In adults, we examined the association of illness on ICU length of stay (LOS) and in-

hospital mortality. The association of each illness on the median ICU LOS was dramatic 

with an absolute difference ranging from 2.3 to 9.5 additional ICU days (Fig. 2B). There 

was a 1.8 to 6.4-fold increase in in-hospital mortality—ranging from an absolute increase of 

8.7% to 38.7% for admissions with events when compared to admissions without events 

(Fig. 2C).
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Signatures of illness in physiologic monitoring time series: model development

We identically analyzed the time series data regardless of its source. We calculated the same 

parameters and used multivariable logistic regression analysis, adjusting for repeated 

measures, to test the hypothesis that illness signatures were present prior to clinical 

diagnosis. For each parameter, we determined its relationship to the outcome, that is to say, 

whether the value changed significantly as the diagnosis approached, and whether the value 

rose or fell. These model development results are presented in Figure 3. The rows present 

the calculated parameters and the columns present the ICU and the diagnoses. Each colored 

tile represents the quantitative relationship of the calculated parameter to the ICU-specific 

diagnosis. The color saturation reflects the degree of statistical significance, and darker hues 

mean stronger association. The color orange signifies that the measured parameter rose prior 

to the diagnosis; the color blue signifies that it fell. The lines plot the log odds as calculated 

from the regression model as a function of the calculated value of the parameter, and the 

ribbons show the 95% confidence intervals. Two panels on the right further explain the 

process. The orange tile highlighted in blue shows that rising respiratory rate is highly 

significantly associated with the outcome of emergency intubation in the SICU; the blue tile 

highlighted in red signifies that falling DBP is highly significantly associated with the 

outcome of hemorrhage in the SICU.

The major findings are that the signatures of respiratory failure leading to intubation (first 

and second columns) and hemorrhage leading to multi-unit transfusion (fifth and sixth) are 

consistent between the SICU and MICU, as demonstrated by the similarity of the saturations 

and colors of the tiles. Signatures of sepsis in the adult ICUs, on the other hand, differ. 

Finally, all illnesses in the NICU lead to the same physiologic signature, one that does not 

present in adults. The dendrograms at the bottom of the figure further emphasize the 

clustering of the intubation, hemorrhage and NICU results. Sepsis, however, clusters 

separately – in the SICU, it clusters with respiratory failure; in the MICU, it clusters with 

hemorrhage.

Signatures of illness in physiologic monitoring time series: model validation

We sought to characterize the performance of the statistical models in independent data sets 

not used for model development. Since we tested all models on each ICU population, this is 

a form of external validation; however, as all the ICUs are in the same institution, this 

exercise is an intermediary internal / external validation (TRIPOD type 2b). Figure 4 is a 

matrix of blue tiles in which the saturation reflects the C-statistic, as shown by the color 

legend on the lower right, and darker tiles represent better performance. The rows are the 

ICU-specific models; the columns are the ICU populations. The diagonal represents the C-

statistic for the model as it was developed. Other tiles represent the testing of a model on an 

independent participant population not used in the development. The important findings are 

the tiles outlined in blue, green and red – these are performance of statistical models 

developed in one adult ICU and tested in the other. They are excerpted and arranged 

vertically on the right. Models to predict respiratory failure (outlined in blue) and 

hemorrhage (outlined in red) had C-statistics from 0.64 to 0.69 when tested in the opposite 

ICU. We interpret this as reasonable performance. Models to detect sepsis (outlined in 

green), on the other hand, had no predictive capability in the alternate ICU.
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Very low birth weight neonates

We identified 67, 72, and 61 cases of intubation for respiratory failure, septicemia, and 

multiple transfusions in VLBW neonates from 291, 601, and 268 at-risk NICU admissions 

that had physiologic monitoring data available and did not meet exclusion criteria. The 

models had internally validated C-statistics of 0.88, 0.71, and 0.74 (optimism: 0.02, 0.04, 

0.05 respectively) for intubation, sepsis, and transfusion. All three models had similar 

physiologic signatures in terms of the direction and significance of the component variables

—marked by increased risk associated with falling DBP, falling SpO2 from the normal 

range, and elevated HR-SpO2 cross correlation. The final three columns of Figure 3 

demonstrates this relative homogeneity for the VLBW NICU models where the predictor 

rows have both similar directions of association and statistical significance as indicated by 

the hues and saturations (Supplemental Fig. 1, Supplemental Digital Content 1). The cluster 

of dark tiles in the lower right corner of Figure 4 reflects the similarity of models in the 

NICU, suggesting that a model to detect any of the diagnoses serves about equally well in 

detecting the other diagnoses.

Urgent, unplanned intubations in adults

We identified 103 and 72 episodes of respiratory failure leading to urgent, unplanned 

intubations in 1,971, and 1,070 admissions to the SICU and MICU respectively. The models 

were both characterized by a signature of rising respiratory rate, rising HR, and rising SpO2 

variability (Fig. 3 and Supplemental Fig. 1, Supplemental Digital Content 1). The models 

had internally validated C-statistics of 0.68 and 0.77 (optimism: 0.03 and 0.02 respectively) 

for the SICU and MICU. The illnesses and models had similar characteristics and clustered 

together when evaluated on all other ICU-illness combinations (Fig. 4) suggesting that 

respiratory failure in adult critical care has a distinct physiologic signature that is consistent 

across adult ICUs.

Severe sepsis in adults

We identified 124 and 80 episodes of incident severe sepsis from 1,806 and 1,253 

admissions to the SICU and MICU respectively. The models had internally validated C-

statistics of 0.68 and 0.61 (optimism: 0.03 and 0.05 respectively) for the SICU and MICU. 

Of all the ICU-illness models studied, the physiologic signature of severe sepsis in the 

MICU was most dissimilar from that seen in the SICU. The MICU sepsis model clustered 

with the adult hemorrhage models whereas the SICU sepsis model clustered with the adult 

intubation models (Fig. 3 and Supplemental Fig. 1, Supplemental Digital Content 1). 

Evaluating the models on all other ICU-illness cohorts led to similar disparate clustering of 

the two adult sepsis models (Fig. 4).

Hemorrhage in adults

We identified 472 and 155 hemorrhage events requiring transfusion of at least 3 units of 

PRBC within a 24-hour period without any PRBC transfusion in the preceding 24 hours in 

4,943 and 3,688 admissions to the SICU and MICU respectively. Bleeding of this magnitude 

was more likely to occur in the SICU when compared to the MICU (3.3 vs 1.3 per 100 

patient ICU days; Fig. 2A). The models had internally validated C-statistics of 0.71 and 0.70 
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(optimism: 0.01 and 0.02 respectively) for the SICU and MICU. The physiologic signatures 

were characterized by falling DBP, rising HR, rising SpO2, and rising SpO2 variability (Fig. 

3 and Supplemental Fig. 1, Supplemental Digital Content 1). The illnesses and models had 

similar characteristics and clustered together when evaluated on all other ICU-illness 

combinations (Fig. 4) suggesting that hemorrhage in adult critical care has a similar and 

distinct physiologic signature.

Dynamic performance of predictive models

Evaluating the predictive model outputs in the several hours leading up to the time of clinical 

recognition or intervention, Figure 5C depicts the mean fold-increase in risk of event that 

dynamically increases prior to events and decreases afterwards in the context of clinical 

recognition and treatment. Respiratory failure presented the largest and most prolonged 

changes several hours before events. Hemorrhage and sepsis had more moderate changes in 

predictions accompanied by shorter prodromes.

Discussion

We applied Big Data analytics to the study of physiologic signatures of subacute, potentially 

catastrophic illnesses – respiratory failure leading to urgent, unplanned intubation, incident 

sepsis, and hemorrhage leading to multi-unit transfusion – in neonatal and adult ICU 

patients. We identified events through a time-consuming, individual chart inspection process, 

a substantially more accurate method than database queries on ICD diagnosis codes (25-27).

We found that the physiologic signatures for respiratory failure and hemorrhage were both 

distinct and consistent across different adult ICUs. The major elements – rising respiratory 

rate in the former, and rising HR and falling blood pressure in the latter – are consistent with 

existing clinical knowledge, affirming the validity of the statistical modeling.

We found that severe sepsis, on the other hand, had less distinct physiologic signatures 

thatdiffered between medical and surgical ICU patients. These findings underscore the 

clinical experience that manifestations of sepsis in adult ICUs patients are variable and may 

reflect different sources of sepsis between these populations (28).

Unlike adults, premature infants have a common physiologic signature for all three 

conditions. This is likely because premature infants with septicemia commonly present with 

respiratory failure requiring intubation, and commonly receive red blood cell transfusions 

for anemia and low blood pressure when they develop signs of sepsis. A prominent feature 

in neonatal illness is the correlation of HR and SpO2. This metric captures the concomitant 

bradycardia and SpO2 desaturation that accompanies severe neonatal apnea, and corresponds 

to clinical experience that increasing apnea can be an early sign of neonatal distress. Not 

captured in this analysis is the phenomenon of abnormal HR characteristics of reduced 

variability and transient decelerations that we have previously described (6). These abnormal 

heart rate characteristics are not known to occur in adults. In this work, we sought to analyze 

all of the time series data in the same way and thus excluded HR metrics optimized solely 

for detection of neonatal sepsis. The surprisingly limited repertoire of neonatal 
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cardiorespiratory responses to illness compared to the adult is not explained but may be 

related to prematurity.

Model development and validation

We have followed the TRIPOD statement recommendations for internal validation by 

resampling rather than sample splitting. Further, we measured performance of statistical 

models across ICUs; for example, we developed a model for hemorrhage in the MICU and 

then tested it in the SICU. This kind of nonrandom split-sample development and validation, 

named Type 2b by the TRIPOD Group, is intermediary between internal and external 

validation(22). The major findings in adults were that respiratory failure and hemorrhage 

had consistent signatures in independent populations, but sepsis did not.

We note that the range of C-statistics from 0.61 (sepsis in the MICU) to 0.88 (respiratory 

failure in the NICU) is similar to other well-established clinical risk scores, such as 

CHADS2, CHA2DS2-VASc, and the ASCVD pooled cohort risk equations (29, 30). The C-

statistic for heart rate characteristics monitoring, which improved NICU survival(31) is only 

0.70 (6).

Limitations

These results are based on a single-center observational study. We previously analyzed 

subsets of these study populations and reported optimized, parsimonious models that did not 

include all of methodologies or measurements presented in this study (7-9). Our aims in this 

study did not include optimizing models for early detection using all available data, but 

rather hypothesis testing about the presence and distinguishing features of physiologic 

signatures that might allow for early detection and treatment. As a result, we omitted a 

number of well-recognized metrics such as lab results, nursing assessments, and charted 

comorbidities. We justify their omission based on the fact that the models here presented 

could be implemented using only the streaming data from bedside monitors, without the 

encumbrance of integrating with proprietary electronic medical records or relying on the 

accuracy of codes used for administrative and billing purposes. Moreover, we used the 

Surviving Sepsis Campaign Guidelines, but note that the definition and diagnosis of sepsis 

and septic shock, particularly as acquired in the ICU, remain controversial (32).

Predictive analytics at the bedside

We have used multivariable statistical tools to test the hypothesis that there are physiologic 

signatures in ICU patients preceding clinical deteriorations, and we fail to reject it based on 

the statistical significance of the regression models. We note that these tools might also serve 

as risk estimators for imminent deteriorations at the bedside of future patients.

Several prediction models have been developed for the ICU, most commonly to predict 

mortality or quantify illness severity for the purpose of comparing study cohorts. APACHE, 

perhaps the most popular, is representative and is calculated only at a fixed point in time 

using only the worst objective and semi-quantitative values (33). The scores thus remain 

static, are prone to interobserver variation, and fail to adapt to a patient's subsequent ICU 

course.
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An advantage of models based on physiologic monitoring is that they provide continuously 

updated estimates of risk within much shorter horizons (the next few hours) based on the 

most recent measurements. A test of the dynamicity of our models is the observation of 

rising risk estimates leading up to an event as shown in Figure 5C. The risk estimates could 

improve by including additional data such as laboratory tests and clinical signs(34-36). We 

recognize the need for clinical trials of predictive monitoring to test for safety and efficacy 

as well as to validate our findings at additional sites. The penalty for predictive monitoring 

might be additional testing such as chest x-rays and blood tests for arterial gases, cell counts, 

and cultures. We note that heart rate characteristics monitoring for neonatal sepsis led to a 

10% increase in blood cultures but no increase in antibiotic use.

Conclusions

Signatures of deranged physiology were present up to 24-hours in advance of clinical 

detection and intervention of subacute, potentially catastrophic illnesses in a large patient 

population from 3 diverse ICUs. We propose that multivariable techniques such as the 

statistical tools described here may find a home in the care of the critically ill adult.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Methods Flowchart and Admissions Reviewed
(A) Flowchart depiction of data collection, processing, and analysis. (B): Flowchart 

depiction of patient admissions reviewed, time series data analyzed, and events identified. 

ICU: intensive care unit

Moss et al. Page 13

Crit Care Med. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Incidence and Associated Outcomes
Incidence (A) and impact of each adult ICU-illness event on median ICU length of stay in 

days (B) and in-hospital mortality (C). MICU: medical intensive care unit; SICU: surgical/

trauma intensive care unit; ICU: intensive care unit; LOS: length of stay
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Figure 3. Predictor Effects
Heatmap depiction of statistical significance and effect associations of predictors in each 

illness-ICU model. Each tile represents the predictor's effect and is a plot of the log-odds of 

the event of interest as a function of the predictor across its range. The translucent ribbon 

represents the 95% confidence interval. Saturation depicts the statistical significance.and hue 

represents the direction of association, with orange representing positive association and 

blue representing negative association. Non-monotonic associations were categorized based 

on the polarity of association in the range of the greatest density of data. For example, 

examining the respiration rate in the SICU, an observation of 20 breaths per minute when all 

other measurements are at the median yields a log-odds of -6.0. Dendrogram clustering was 

performed on a matrix of C-statistics generated by the evaluation of each model on itself and 

all other illness-ICU cohorts. MICU: medical intensive care unit; SICU: surgical/trauma 

intensive care unit; HR: heart rate; RR: respiratory rate; O2: oxygen saturation; DBP: 

diastolic blood pressure; O2V: oxygen saturation variability; HR-O2: cross-correlation 

coefficient of heart rate and oxygen saturation; HRV: heart rate variability. SICU: surgical 

intensive care unit; MICU: medical intensive care unit; NICU: neonatal intensive care unit. 

For complete representation including all predictors, see Supplemental Fig. 1 (Supplemental 

Digital Content 1).
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Figure 4. Comparison of ICU-Illness Models
(A) Heatmap depiction of the relative C-statistics for each model evaluated on itself as well 

as all other datasets. Intensity of saturation depicts higher C-statistics. Dendrogram 

clustering was performed on a matrix of C-statistics generated by the evaluation of each 

model on itself and all other ICU-illness cohorts. The largest distinction is between adults 

and very low birth weight neonates. Within the adult cluster, the next distinction is between 

hemorrhage and intubation with sepsis across adult ICUs not clustering. (B) Subset of (A), 

further demonstrating concordance of models trained and tested on the other adult ICUs. 

Sepsis, unlike intubation and hemorrhage has discrepant physiologic signatures between the 

adult ICUs. MICU: medical intensive care unit; SICU: surgical/trauma intensive care unit.
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Figure 5. Discriminatory Power and Dynamic Performance of ICU-Illness Models
(A) Receiver Operator Characteristic curves with biased estimates of area under the curve 

(C-statistic) for each adult model. MICU: medical intensive care unit; SICU: surgical/trauma 

intensive care unit. (B) Receiver Operator Characteristic curves with biased estimates of area 

under the curve (C-statistics) for each infant model. NICU: neonatal intensive care unit; 

VLBW: very low birth weight infants. (C) Mean predicted fold increase in risk as a function 

of the time relative to the event for all patients suffering an event and for whom physiologic 

monitoring data was available within the time period beginning 48 hours before and ending 

24 hours after. Panels are arranged by illness type. Line color represents each ICU-illness 

model respectively. For example, the statistical model for intubation in the MICU predicted 

patients, on average, to be at twice the baseline risk of the event at 24 hours prior and the 

estimated risk continued to increase in the remaining hours preceding urgent intubations. 

MICU: medical intensive care unit; SICU: surgical/trauma intensive care unit; hrs: hours.
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Table 1
Baseline Characteristics

Characteristic NICU SICU MICU

Number of patients reviewed with available data 601 4,948 3,688

Number at risk for:

 Unplanned intubation 268 1,971 1,070

 Sepsis 601 1,806 1,253

 Multi-unit transfusion 291 4,943 3,688

Age (years) or Estimated Gestational Age (weeks)

 median 27 58.2 60.7

 IQR 25-29 45.9-70.1 49.7-71.6

Male gender 298 (49.6%) 2,946 (59.6%) 1,936 (52.5%)

Number of observations analyzed 625,956 1,374,180 1,171,048

ICU length of stay (days)

 median 59.0 1.8 2.4

 IQR 34.0-94.3 1.0-3.8 1.1-4.8

In-hospital mortality 65 (10.8%) 311 (6.3%) 662 (18.0%)

Values are n (percentage) unless otherwise specified. NICU: neonatal intensive care unit, SICU: surgical intensive care unit, MICU: medical 
intensive care unit, IQR: interquartile range, ICU: intensive care unit.
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