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ABSTRACT OF THE DISSERTATION

DEVELOPMENT OF A REAL-TIME SINGLE-LEAD SINGLE-BEAT

FREQUENCY-INDEPENDENT MYOCARDIAL INFARCTION DETECTOR

by

Harold Martin

Florida International University, 2021

Miami, Florida

Professor Malek Adjouadi, Major Professor

The central aim of this research is the development and deployment of a novel multi-

layer machine learning design with unique application for the diagnosis of myocardial

infarctions (MIs) from individual heartbeats of single-lead electrocardiograms (EKGs) ir-

respective of their sampling frequencies over a given range. To the best of our knowledge,

this design is the first to attempt inter-patient myocardial infarction detection from indi-

vidual heartbeats of single-lead (lead II) electrocardiograms that achieves high accuracy

and near real-time diagnosis. The processing time of 300 milliseconds to a diagnosis is

just at the time range in between extremely fast heartbeats of around 300 milliseconds, or

200 beats per minute. The design achieves stable performance metrics over the frequency

range of 202Hz to 2.8kHz with an accuracy of 77.12%, positive predictive value (PPV) of

75.85%, and a negative predictive value (NPV) of 83.02% over the entire PTB database;

85.07%, 81.54%, 87.31% over the PTB-XL (the largest EKG database available for re-

search) validation set, and 84.17%, 78.37%, 87.55% over the PTB-XL test set.

Major design contributions and findings of this work reveal (1) a method for the real-

time detection of ventricular depolarization events in the PQRST complex from 12-lead

electrocardiograms using Independent Component Analysis (ICA), with a slightly differ-

ent use of ICA proposed for electrocardiogram analysis and R-peak detection/localization;

(2) a multilayer Long-Short Term Memory (LSTM) neural network design that identifies

vi



infarcted patients from a single heartbeat of a single-lead (lead II) electrocardiogram; (3)

and integrated LSTM neural network with an algorithm that detects the R-peaks in real

time for instantaneous detection of myocardial infarctions and for effective monitoring of

patients under cardiac stress and/or at risk of myocardial infarction; (4) a fully integrated

12-lead real-time classifier with even higher detection metrics and a deeper neural archi-

tecture, which could serve as a near real-time monitoring tool that could gauge disease

progression and evaluate benefits gained from early intervention and treatment planning;

(5) a real-time frequency-independent design based on a single-lead single-beat MI de-

tector, which is of pivotal importance to deployment as there is no standard sampling

frequency for EKGs, making them span a wider frequency spectrum.
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CHAPTER 1

INTRODUCTION

According to the Center for Disease Control and Prevention (CDC), every 40 seconds

someone in the USA suffers a heart attack. There are roughly 790 thousand myocardial

infarctions per year in the United States (although some sources list this number to be

even higher) and about 20% of them occur without warning or symptoms [1]. Altogether,

49 percent of Americans have relevant risk factors of heart diseases that could lead to

myocardial infarctions at an average medical cost of $11,664 [2, 3]. Therefore, as they

remain a condition with significant possible complications [4], their accurate and early

diagnosis is of utmost importance and urgent necessity.

Thankfully, physicians have a powerful tool in electrocardiograms (ECGs/EKGs) to

diagnose and track the progress of MIs and other heart defects and abnormalities. These

non-invasively recorded signals can help researchers and clinicians assess the health and

fitness of the heart through the inherent characteristics of its electrical activity [5]. There-

fore, numerous papers have used the information present therein to attempt and diagnose

myocardial infarctions and other cardiac ailments [6–31]. As could be expected, the source

of the information being processed (i.e., type and number of EKG leads considered), the

classification method used , and the performance measures obtained vary from one study

to another.

Throughout the literature, various types of signal processing algorithms and artificial

neural networks have been used to identify myocardial infarctions [6, 13, 16, 17, 20–23].

The authors of [6] use deep convolutional neural networks to detect myocardial infarc-

tions using single lead EKGs (lead II) producing an intra-patient classifier. Padmavathi

Kora in [7] uses a Hybrid Firefly algorithm to perform feature extraction to be fed into
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either a support vector machine, a K-nearest neighbor classifier, or an artificial neural

network. They also report an intra-patient classifier that utilizes single-lead EKG. Sharma

and Sunkaria [8] introduce a 3-lead EKG inferior myocardial infarction classifier for both

intra- and inter-patient classification. They use stationary wavelet transforms to produce

features later employed by k-nearest neighbor or support vector machine classifiers. Liu

et al. [9] achieve myocardial infarction classification by using a multiple-feature-branch

convolutional neural network on 12-lead electrocardiograms. They present results for

intra-patient classification as well as a modified version of inter-patient classification

where they use the first 32 beats of every patient used in the testing set for the training

phase. Support vector machines are once more used in [10] on 12-lead EKGs to perform

intra-patient classification. Support vector machines are also applied in [11] along with

multiple instance learning as a type of supervised learning. In such study, the authors

attempted to detect myocardial infarction from EKG-level topic vectors of a 12-lead EKGs

and perhaps develop an intra-patient classifier (the most likely data split method used ap-

pears to be file split). The work in [12] introduces a bagging tree classifier that is used to

detect myocardial infarctions and arrhythmia. In their study the authors explored which of

the EKGs leads would be most appropriate to identify the targeted diseases and arrived at

the conclusion that V4 was the most appropriate. However, although good testing metrics

are reported, the type of classifier achieved is not clearly defined, as the authors did not

mention whether they attempted to produce an intra- or inter-patient classifier, nor did

they indicate how the data was split into training and testing sets.

Real-time classification of myocardial infarctions is attempted in [13] and [14]. Liu

et al. [13] use a multi-lead convolutional neural network to perform the inter-patient clas-

sification from a four-lead electrocardiogram. However, they require the whole patient’s

EKGs to achieve a diagnosis. Meanwhile, Sopic et al. [14] introduce an event-driven clas-

2



sification technique to be used in wearable systems. They feed a random forest classifier

with key features extracted from a single lead (Lead 5) electrocardiogram to generate an

inter-patient diagnosis.

More recently, [15] implemented an algorithm to detect and localize myocardial in-

farctions from a single beat of 12-lead electrocardiograms. They used Dual-Q TQWT

along with wavelet packet tensor decomposition and a decision tree to achieve intra-patient

classification. In [16], interestingly, a multi-branch fusion network is implemented and

trained on an EKG image dataset rather the standard EKG signals to achieve significant

detection accuracy and yield an inter-patient classifier. While, finally, [17] trained a

multi-lead residual neural network to detect and locate myocardial infarctions from 12-

lead EKGs. However, although they set out to create an inter-patient classifier, they end

up with something in between intra and inter, as they split their dataset along file lines and

not patients, thereby contaminating their test sets.

However, as there is no standard sampling frequency that is widely used, one common

drawback of the currently available MI detection methods is that they are dependent on

the sampling frequency of the EKGs used to train or develop them. Therefore, there would

be significant benefit from developing a myocardial infarction detector and/or classifier

which is frequency independent. In other words, the detector’s performance would not

vary over a predetermined frequency range, making it amenable to existing cardiac mon-

itoring equipment of varied sampling frequencies with no need to retrain or redevelop

the underlying model. Furthermore, as lead II electrocardiograms are currently widely

available from exercise equipment, activity trackers, and fitness monitoring devices, it

3



would be very practical and technically significant to make such detector work with single

lead, specifically Lead II, electrocardiograms.

Moreover, several attempts have been made at automating the R-peak detection in EKG

signals, and multiple strategies have been developed for effective noise removal [32–36].

R-peak detection is especially useful as a starting point for the decomposition of the car-

diac signal into its essential subcomponents and to subsequently determine and diagnose

conditions associated with abnormal cardiac rhythms [37, 38]. Therefore, real-time de-

tection of R-peaks would be extremely beneficial for the effective analysis of EKG signals

and for online diagnosis and detection of abnormalities associated with the cardiac rhythm.

Among the many methods that deal with multivariate analysis, the Independent Com-

ponent Analysis (ICA) decomposition has played a historically leading role in signal

processing and denoising, especially where the observed signals are assumed to be mix-

tures of an original set of independent sources [39–42]. This statistical technique is widely

applied in other disciplines such as electroencephalogram (EEG) denoising, which by iso-

lating unknown sources of noise, ICA manages to minimize the degrading effects such

sources have on the original signals to produce highly accurate results [39, 41]. ICA is

often used during the pre-processing phase to remove noise and external perturbations to

the signal that degrade the detection process [41–43]. It is a very powerful tool that allows

for the independent sources present in mixed signals to be effectively separated. However,

due to the nature of ICA, the separation matrix is often randomly initialized, resulting in

independent sources that are differently ordered every time the algorithm is performed.

It is important to note that all these signal processing algorithms are often performed

offline and in the background over an entire record, where the clinicians do not have ac-
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cess to the decision process, and what could have been perceived as noise and is therefore

removed or ignored. This is a common drawback of filtering techniques that might lead

to the loss of important information, which may result in a degraded classification or

identification process.

Consequently, to expand on the literary body of research related to myocardial in-

farction detection, and with the intent to address the aforementioned design deficiencies

and drawbacks for effective MI detection, this dissertation explores and develops various

machine learning methods and applications for the detection of myocardial infarctions

from electrocardiogram signals. The ultimate goal is to develop a single-lead (Lead II

electrocardiograms), single-beat and frequency independent detector for the accurate and

real-time detection of myocardial infarction.

Chapter 2 starts by introducing a method for the real-time detection of ventricular

depolarization events in the PQRST complex from 12-lead electrocardiograms using In-

dependent Component Analysis (ICA). A slightly different use of ICA is proposed for

electrocardiogram analysis and R-peak detection/localization. As ICA benefits from sig-

nals recorded from different points of views and yields the same number of independent

sources as there are mixed signal, a 12-lead EKG will yield 12 independent components,

one of which is bound to contain the R-peaks (as they are the most distinctive feature of

the EKG). This approach separates the components of the cardiac electrical signal and

applies the detection process on them. It preserves all the leads recordings of the signal for

observation and validation while still performing heart disease biomarker detection over

the independent components. The potential benefits of such real-time implementation are

far reaching, from the online diagnosis of disease and related abnormalities to its use in

tracking heart functioning during the testing and development of cutting edge research
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and treatments, such as transcranial magnetic stimulation (TMS) [44], and automated

localization and segmentation of beats for MI classification.

Chapter 3 assesses the different types of classifiers present in the research body. It

also explores the three main types of data splits (beat split, file or record split and patient

split) reported therein, along with their drawbacks, benefits, and the undesired potential

for overfitting that results when datasets are not properly engineered. Training versus

testing empirical implementations are provided in this chapter to clearly demonstrate the

behavior and training progression of each of these data splits over the training epochs.

Chapter 4 introduces a multilayer Long-Short Term Memory (LSTM) neural network

design to identify infarcted patients from a single heartbeat of a single-lead (lead II)

electrocardiogram. This task is particularly challenging as detecting generalized cases

of MI from Lead II alone which focuses on the inferior part of the heart and therefore

has a hard time detecting anterior, antero-septal, posterior, and lateral MIs. However,

the choice made on this specific lead is that it is extensively used in everyday exercise

equipment and fitness trackers, making the deployment of the proposed algorithm feasible

and cost effective. Although various types of artificial neural networks have been used in

the past to identify myocardial infarctions [6,13,16,17,20–23], we choose to use LSTMs

because they have a long and proven track record at classifying time-varying signals such

as text, speech, and video [45–52]. Hence, the genesis for using LSTMs to identify heart

ailments from electrocardiograms. By combining the resulting neural network with an

algorithm that detects the R-peaks in real time [53], nearly instantaneous detection of

myocardial infarctions can be achieved. Through fast diagnosis, this integrated method

(LSTM and real-time R-peak detection) could become extremely beneficial for monitoring

patients under cardiac stress and/or at risk of myocardial infarctions, while still signifi-
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cantly improving the prospects for both the correct diagnosis of the disease condition and

the planning of early treatment.

Chapter 5 expands on 4 and introduces a fully integrated 12-lead real-time classifier

with even higher detection metrics and a deeper neural architecture. It proposes a novel and

complete pipeline that achieves 40 millisecond myocardial infarctions detection leveraging

a deep-LSTM architecture with real-time beat detection and segmentation from Chapter

2. We once again use LSTM networks for their long track record of positive results at

classifying time-varying signals. Herein, the resulting real-time classifier could be of

great value to the population at risk of MI and could serve as a monitoring tool for gaug-

ing disease progression and benefits gained from early intervention and treatment planning.

Chapter 6 expands the work of Chapters 4 and 5 and explores the possibility of a

real-time frequency-independent single-lead single-beat Myocardial Infarction detector.

The key insight of this chapter is the frequency independence of the MI detector. This is

of pivotal importance, as there is no standard sampling frequency for electrocardiograms,

therefore making the available EKGs span many frequencies in the spectrum. Thereby,

by making the detector frequency independent, it could be readily deployed to any avail-

able device that already collects electrocardiogram signals and has adequate processing

power. Furthermore, it expands the reach and potential benefits of the proposed algorithm.

Finally, Chapter 7 provide a retrospective on the aims and contributions of this research

endeavor towards the effective and accurate detection of myocardial infarctions. The

incremental advances in time that were made through this work are highlighted in terms
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of the drawbacks faced, remaining hurdles that need to be overcome, as well as in terms

of real-world deployment and computational burdens that were faced in seeking real-time

processing.
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CHAPTER 2

REAL-TIME R-SPIKE DETECTION IN THE CARDIAC WAVEFORM

THROUGH INDEPENDENT COMPONENT ANALYSIS

2.1 Goal

In this chapter, we propose a use of Independent Component Analysis (ICA) focusing

on the R-peak detection as a relevant and distinct characteristic in the QRS complex in

EKG. ICA benefits from signals recorded from different points of views, yielding the same

number of independent sources as there are mixed signal. Therefore, a 12-lead EKG will

yield 12 independent components, one of which is bound to be the R-peaks, as they are the

most distinctive feature of the EKG. Our approach separates the components of the cardiac

electrical signal and applies the detection process on them. This approach preserves all the

leads recordings of the signal for observation and validation while still performing heart

disease biomarker detection over the independent components. The potential benefits of

such real-time implementation are far reaching, from the online diagnosis of MI and other

heart ailments diseases to its use in heart monitoring during the testing and development

of cutting edge research and treatments, such as in the use of transcranial magnetic stim-

ulation (TMS) to assess any effects post treatment [54].

2.2 Materials and Methods

2.2.1 Data Acquisition

The data used for the development of this method was provided by The PTB Diagnostic

EKG Database [55] [56]. It consists of a collection of 549 records from 290 subjects.
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Ages ranged from 17 to 87 with a mean of 57.2. There are 209 men and 81 women. Each

record contains 15 simultaneously measured signals: the conventional 12 leads (I, II, III,

aVR, aVL, aVF, V1, V2, V3, V4, V5, V6) and 3 Frank lead EKGs (vX, vY, vZ). The

signals were sampled with a 16-bit ADC at 1000 samples per second, over a range of

±16.384 mV. There is also a clinical diagnosis associated with most of the records. The

diagnosis available are: Myocardial infarction (148), Cardiomyopathy/Heart failure (18),

Bundle branch block (15), Dysrhythmia (14), Myocardial hypertrophy (7), Valvular heart

disease (6), Myocarditis (4), Miscellaneous (4), Healthy controls(52).

2.2.2 Data Filtering

The best noise to have is none. However, sources of noise are always present and we

must deal with their interference. Some noise sources (i.e. power line interference) can

be relatively easy to remove, others present more of a challenge and can lead to unwanted

consequences (i.e. muscle movements capture by equipment, eye blinks in EEGs), and

some are unavoidable (i.e. signals emanating from an unknown source, or simply un-

wanted interference that we are unaware of).

The simplest noise sources to deal with are external in nature, i.e. the environment,

AC power lines, lighting, and interference from various electronic equipment. When

recording EKGs, we are interested in a very specific set of electrical signals generated by

the functioning of the heart, all other signals that are not related to it are simply noise and

hinder our ability to perform proper processing.
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Several methods have been proposed to deal with noise removal over the past decades.

The process of filtering can be performed either in the time or frequency domain and some

of the most widely used techniques to do so are noise subtraction using linear regression,

adaptive filtering, and data decomposition.

In this study, we use simple filters, a 60Hz stop-band Infinite Impulse Response (IIR)

to remove power line interference and a 500 milliseconds rolling average filter to reduce

low-frequency noise.

2.2.3 Independent Component Analysis

The key assumption of Blind Source Separation (BSS or independent component anal-

ysis) is that the observed signals are a mixture of an original set of independent sources.

There are different approaches that differ in the algorithms and the information used to

estimate the mixing matrix and the source signals.

Second order statistical methods are based on the assumption that the original signal

sources are uncorrelated and aim to decompose the observed signals into several uncorre-

lated components. Principal Component Analysis (PCA), perhaps the most widely known

method, decomposes a given time series into a number of orthogonal (uncorrelated) com-

ponents of decreasing significance, such that most of the variance of the original signal

is contained by a small subset of the principal components (the components with highest

corresponding eigenvalues). PCA is most often used as a dimensionality reduction method.
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When the original signal sources are assumed to be independent, methods based on

higher order statistics can be used to decompose the observed signals. Various methods

that make use of various measures of statistical independence for independent component

analysis (ICA) have been developed [57, 58].

An independent component analysis method searches for a linear transformation that

minimizes the statistical dependence between the components of a given signal. The

expansion of mutual information is utilized as a function of cumulants of increasing order

to define a suitable search criterion [59].

Suppose we have a random variable S, with probability density function %B (B), and

the cumulative distribution function � (B) = %(( ≤ B) defined as:

� (B) =
∫ B

−∞
%B (C) 3C >A %B (B) = �′(B) (2.1)

Therefore, we can model the distribution of the variable S either by specifying its

probability density functions or its cumulative distribution function.

Assuming the data comes from n original sources, meaning (nR=(n different parts of

the heart), we define B
(8)
:

as the signal from the independent component k at time i.

What we observe in the EKG recording is an actual combination of the indepen-

dent sources, assuming linearity and ignoring propagation speed differences as well as

conductance disparities for simplicity sake:

- (8) = � ∗ ((8) (2.2)
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Figure 2.1: Independent Components.

where - (8)nR= corresponding to the n electrodes. Here the matrix A is known as the

mixing matrix and what we observe at the 9 Cℎ electrode at time i is:

G
(8)
9

= :� 9 :B
(8)
:

(2.3)

The goal of the ICA method is to find the optimal unmixing matrix , = �−1 so that we

can recover the original sources from the observable variables:

((8) = , ∗ - (8) (2.4)

To further illustrate this, lets suppose each of the original sources (independent signals)

are random white noise. This way, we can think of a 2D plot of any of the sources as the
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Figure 2.2: Mixture of Independent Components.

plot represented in Figure 1. On the other hand, a typical sample of what is recorded by

the electrodes is represented in Figure 2.2.

The purpose of ICA is to find the transformation (matrix W) that would provide the

results shown in Figure 2.1 from the mixture shown in Figure 2.2. Since the original

sources are independent, the probability density function of s is going to be given by the

product of the marginal probabilities of each B8:

%(B) =
=∏
8=1

%B (B8) (2.5)
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Then the density for X will be:

%(G) = [
=∏
8=1

%B (F)
8 G)] ∗ |, | (2.6)

Where F)
8

is the 8Cℎ row of the W matrix.

To complete the formulation of the ICA model, it is necessary to choose a probability

density function for the sources B8. What is usually selected is the cumulative distribution

function as any signal that goes from zero to one. State-of-the-art ICA algorithms use

a variety of functions. Some of them maximize one of the following: non-gaussianity,

independence, or complexity.

The complete ICA model then follows as: Given my training set {G1, G2, , G=}, we can

derive the log likelihood of the parameters as:

; (,) =
∑
8

;>6(
∏
9

%B (F)
8 G)) ∗ |, | (2.7)

The stochastic gradient descent algorithm is used to arrive at the optimal mixing matrix

W:

,:+1 = ,: + U∇, ; (,) (2.8)

where U is the learning rate, and ∇, ; (,) is the partial derivative of the log likelihood

function with respect to W.

The proposed approach uses FastICA [17], a reputed ICA algorithm that relies on the

maximization of non-gaussianity of the independent sources. Traditionally, the mixing

matrix is randomly initialized but through experimentation we have observed that using

the identity matrix as a starting point tends to result in the first independent component

being the most distinctive feature of the electrocardiogram, defining the R wave in this case.
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The configuration of the electrodes is not subject to change during the collection of

the data, and as such, the separation matrix of the signal should not change either. There-

fore, we perform the ICA algorithm in the first 10 seconds of data and use the resulting

separation matrix for the remainder of the collection. This allows us to perform real-time

detection of the R peaks.

2.2.4 Modeling background interference and selection of R-peak can-

didates

The data used for this study comes from the recording of 12 distinct electrodes signals

from different anatomical locations (which are transformed in to 12 signals). However,

there can be many more co-occurring processes in the heart (= � 2). Since ICA inputs

are these 12 signals, we can only recover 12 independent components out of the algorithm.

Our assumption is that the R spikes are strong enough in the mixed signals in terms of

frequency and amplitude that they will be captured completely by a single component of

the ICA transformation. We will call it the R-component. In other words, the R spikes

are going to be represented and clearly observed in one of the independent components

of the ICA algorithm outputs. In the ideal case, with 12 ongoing recordings in the heart,

the R-component will only capture the R spikes with only minimal noise. The real case

scenario is that there still exist n-12 independent relevant processes that have no option

but to be distributed among the 12 independent components being extracted. This leads

to non-minimal noise in each of the output signals, including the R-component. Proving

that this noise is Gaussian might be tedious in terms of the applicability of the central

limit theorem and the assumption on how this electrode signals are measured. Moreover,
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Figure 2.3: Histogram of the First Independent Component.

we do not plan to do statistical inferences based on normality assumptions. However, a

near normal behavior could still be beneficial to somehow model and deal with this noise.

One empirical way to corroborate the normality assumption is to look at the histogram

of the signal. We start by picking a random patient and obtaining the corresponding

R-component signal. We then remove the extreme values that might correspond to the

R-spikes or some other artifacts to leave only the supposed Gaussian noise behind. Figure

2.3 shows the histogram of this signal.
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It can be seen from the figure, that the normality assumption is not a bad approxima-

tion. The Q-Q plot for this signal is also provided in Figure 2.4.

It can be observed that there is a slightly deviation from normality at the lower quartiles

resulting in a heavier left tale. This is likely due to the presence of noisy artifacts or the

presence of any other independent source in this component. Either way, the normality

assumption is still valid for our practical purposes.

This behavior is representative of all the patients in our study. We did not proceed any

further with normality testing, as it would have not been very useful.

The normality assumption allows us to model this independent component as a

Gaussian-distributed background signal with the R-peaks superimposed. As a conse-

quence, whatever fits inside the Gaussian distribution is considered background noise, and

those events not explained by the model (3 standard deviations or more away from the

mean) are considered R-peak candidates.

Taking advantage of the Normal distribution properties shown in the graph below, we

can setup thresholds that would identify the occurrence of R-spikes:

Therefore, we proceed by computing the mean ` 9 and the standard deviation f9 of a

500 milliseconds rolling window in the selected component.

Following the model of the Gaussian distribution visualized in the figure, we can

conclude that 99.7% of the noise will be within the [` 9 − 3 ∗ f9 , ` 9 + 3 ∗ f9 ] range and

any point that lays outside of this range is a possible R-peak candidate. Therefore, the

algorithm is to test for the following condition:
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Figure 2.4: Q-Q plot of First Independent Component vs Standard Normal distribution.

8 5 (` 9 − 3 ∗ f9 ≤ B
(8)
9

≤ ` 9 + 3 ∗ f9 )

{Cℎ4 8Cℎ B0<?;4 > 5 Cℎ4 9 Cℎ B86=0; 8B 0 B?8:4 20=3830C4} (2.9)

When this condition is met, a set of possible R-peak candidates are expected.

The last detection step is to check whether the width of the proposed peaks is within

10 and 60 milliseconds. Figure 2.6 shows the first independent component (in black)

alongside the rolling threshold (blue, as defined by the condition in equation 2.9).
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Figure 2.5: For the normal distribution, the values less than one standard deviation
away from the mean account for 68.27% of the set; while two standard deviations
from the mean account for 95.45%; and three standard deviations account for 99.73%.
https://en.wikipedia.org/wiki/Normal_distribution.

2.3 Results

Initial experimental results and analysis can be reported for a subset of 80 randomly se-

lected recording from the 549 available. Said sample is composed of 40 healthy individuals

and 40 unhealthy ones with one or more diagnosis (myocardial infarction, cardiomyopa-

thy/heart failure, bundle branch block, dysrhythmia, myocardial hypertrophy, valvular

heart disease, myocarditis, miscellaneous). These records collectively contain over ten
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(10) thousand R waves. Table 2.1 contains the summary statistics for the proposed method

over the processed records.

Table 2.1: Summary Statistics for the ICA R-Spike Detection Method

Subjects True Positives False Positive False Negatives Detection Rate (Sensitivity)
Controls 5411 6 112 97.9%
Others 5188 3 90 98.29%
Totals 10599 9 202 98.13%

We are unable to report accuracy readings from one of the files as it contains numerous

artifact that make the proper labeling of the R-peaks (by humans) impossible. Figure 2.7

depicts a portion of such recording along with the attempts of the proposed algorithm

to detect the R-peaks (red vertical bars). Figure 2.8 shows the computed threshold (blue

line) and the independent component being looked at. Finally, Figure 2.9 show how the

artifacts affect all the independent components extracted from the EKG.

For all other 79 files, the proposed method performed accordingly, properly identifying

over 98 percent of the R-peaks. Most of the files containing false negatives misdetected

only the first, or first two, beats while the rolling threshold was being initialized. Only 8

EKG records had more than three (3) false negatives.

Figures 2.10 through 2.12 show how the algorithm detects the R-peaks. Figure 2.10

contains the 12-lead input EKG with the R-peaks labeled (red vertical bars), figure 2.11

is the results of applying independent component analysis to the input signal in 2.10,

and Figure 2.12 demonstrates how the proposed rolling threshold works when identifying

potential R-peak candidates in the identified independent component.
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Another observation that can be made is how the algorithm ignores signal artifacts, as

they would tend to belong to a different component than the one containing the R-peaks.

Figure 2.13 is such a case, where unrecognized artifact, that could hinder the accuracy of

R-peak detection algorithms, are present and not detected as R-peaks. From Figure 2.15,

it is apparent that the artifacts affect the first three independent components but are rather

attenuated in the fourth, where the R-peaks are. Figure 2.14, as in previous instances,

shows the independent component containing the R-peaks (black) along with the moving

threshold being computed (blue).

It should be noted that When the EKG waveform contains significant perturbations,

the first component could capture a signal other than the R-peaks. This is the case for some

records of patients with myocardial infarction and some controls that contained significant

artifacts were the first component would alternate between the Q, R, and S spikes, and

the component containing the R-peak could be as far back as the third one. Table 2.2 is a

summary of the location of the R-peaks within the independent components.

Table 2.2: Number of EKGs containing the R-peak in the given Independent Component

IC1 IC2 IC3 IC4
# of EKGs 63 15 1 1

Although the R-peaks are contained within the first independent component in most

instances, a procedure to automatically identify its location, or force them to appear in the

first IC at all times, remains a challenge to be met as future work.
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Figure 2.6: R-peak detection in First Independent Component (black) and Detection
Threshold (blue).

Figure 2.7: EKG Record 557 for patient 293. It contains multiple artifacts that make
proper R-peak labeling impossible.
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Figure 2.8: Second Independent Component (black) along with the computed rolling
threshold (blue) for Figure 2.7.

Figure 2.9: Independent Components of EKG Record 557 for patient 293. It shows how
the artifacts from the EKG affect all components effectively not allowing the proposed
method to extract or identify the R-peaks when they are present.
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Figure 2.10: EKG Record 242 for patient 75. It is an EKG from a patient with a Myocardial
Infarction.
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Figure 2.11: Independent Components of EKG Record 242 for patient 75.
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Figure 2.12: Second Independent Component (black) along with the computed rolling
threshold (blue) forFigure 2.10.

Figure 2.13: EKG Record 543 for patient 284. An EKG containing multiple artifacts that
could hinder the performance of R-peak detection algorithms.
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Figure 2.14: Forth Independent Component (black) along with the computed rolling
threshold (blue) for Figure 2.13.

Figure 2.15: Independent Components of EKG Record 543 for patient 284.
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CHAPTER 3

DATA SPLITS FOR MACHINE LEARNING TRAINING

3.1 Goal

This chapter examines the different types of classifiers present in the research body

and explores the merits and drawbacks of the three main types of data splits which are

beat split, file or record split and patient split. Measures of precaution are taken to asses

the potential for overfitting that is present when datasets are not properly engineered.

Empirical evaluations are performed to explore the testing and training performance of

these different data split methods, highlighting their overall behavior in the training and

testing phases and tracking their progression over the different epochs.

3.2 Materials and Methods

3.2.1 Data

The data used in this study was obtained from The Physikalisch-Technische Bunde-

sanstalt (PTB) diagnostic EKG Database [60, 61]. This database consists of 549 12-lead

individual EKG records collected from 290 subjects (209 men and 81 women) with ages

ranging from 17 to 87 years old, of which only 148 Myocardial Infarction (MI) and 52

Healthy Control (HC) patients are used for this study. However, although 12 leads are

available, we only consider Lead II for this study as it is widely used in wearable/portable

devices and exercise equipment; thereby positioning the proposed network to be readily

deployed in these existing devices and thus eliminating the need to create custom ones.
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Each record has its associated diagnosis out of which we are interested in the ones con-

taining acute myocardial infarction, old myocardial infarction, and normal control.

A 60Hz stop-band and a 500-millisecond moving average filters are applied to remove

powerline and low-frequency noise. Once the data is filtered, we apply an Independent

Component Analysis (ICA) based algorithm [62] to identify the locations of the ventricu-

lar depolarization events (also known as R peaks) and thereafter separate each individual

heartbeat to be used in the training phase of the proposed multilayer LSTM network. Each

training sample is one second long (500 milliseconds before and 500 milliseconds after

the ventricular depolarization event) of the EKGs Lead II data (the information from all

other leads is discarded).

3.2.2 Structure

In the PTB DB data is structured in a hierarchical inclusive manner as depicted in

Figure 3.1. There are multiple patients, each patient can have multiple records, and each

record has multiple heartbeats or sample segments.

Therefore, if we choose the size of any given training/testing sample to be a heartbeat,

there are three primary ways in which they are separated into sets for training, testing,

and/or validation:

Beat-Split: The electrocardiograms in the datasets are split into its constituent heart

beats and these are further randomly added to one of the sets (i.e. training, testing, val-

idation, or cross validation sets). In this particular data-split practice we only care that
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Figure 3.1: Data Structure.

independent heart beats seen during training are not also used for testing. However, indi-

vidual patients could have a set of heartbeats in the training and another set of heartbeats,

albeit different, in the testing set; making it the least restrictive of all methods. This tech-

nique is used in the literature to perform intra-patient classification [6–10,12,15,24–28].

File-Split: Also known as Record-Split. As each patient in a given dataset may have

multiple recording sessions (record), the individual heart beats associated with each of the

individual records can only be present in one of the derived sets. That is, any given record

cannot have simultaneous representation in the testing and training sets [15, 16, 23].

Patient-Split: Each patient (with all of its available records) can only be present in one

of the following derived sets (i.e. training, testing, validation, or one of the cross validation

sets). Here, data from patients used for training cannot be used for testing, and vice versa.

This technique better ensures that the results achieved during testing will more adequately
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Figure 3.2: Patient Data Sample.

represent those of new unseen patients. This practice is used in the literature to perform

inter-patient classification and is the most restrictive data-split method [8, 9, 13, 14, 16].

Figures 3.2 and 3.3 give a more visual example of how these splitting techniques would

work in practice. Figure 3.2 introduces the data from 3 patients and figure 3.3 brakes them

down into training and testing sets following the aforementioned split criteria.

Overarchingly, there are two main type of classifiers/detectors that can be achieved

and are present in the literature:

Intra-patient classifiers would be those that take advantage of the reduced intra-patient

variability (heartbeats of the same patient are more alike than heartbeats from different

patients) to achieve a classification. These classifiers produce a classification result for

new heartbeats of patients seen during training. Although they can be an effective tool

and help speed up the learning process, special care must be taken to ensure that there is
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Figure 3.3: Dataset Spliting Methods Examples.

some variability in the heartbeat/sample label, as if they are homogeneous, it will most

likely tend to prompt the classifier to learn to distinguish the patients rather than the dis-

ease. Perhaps taking advantage of the lower intra-patient variability rather than the larger

inter-sample variability of the disease itself.

Inter-patient classifiers, on the other hand, would be those that, once trained, can be

effectively used to classify novel patients not seen during training. These classifiers are

especially useful for cases were sample labels are homogeneous (only one label exists for

all samples of the same subject). In this instance the testing performance would more

realistically follow that of a deployed system, as the classifier would be exposed to novel

data point during testing and final deployment.
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3.2.3 Methods

To test how the different dataset generation methods affect the learning process we

will make advanced used of the LSTM network introduced in Chapter 4. As a brief

introduction to the model (depicted in Figure 3.4), we use a shallow LSTM architecture to

minimize the occurrence of overfitting from possible memorization of samples that could

occur with very deep architectures, along with RMSProp for weight updates, gradient

clipping, and L2 regularization.

Figure 3.4: Simplified Network Architecture.

This model was implemented using DeepLearning4J version 0.9.1, a deep learning

library for Java, and was trained and tested in a 64-bit Windows 10 PC with an AMD FX-

8350 Eight-Core Processor, 32 GB of DDR3 RAM, and an NVIDIA GeForce GTX1070.

Each training epoch ran for approximately 5 hours and covered roughly 60 thousand sam-

ples.
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3.3 Results and Discussion

3.3.1 Effects of the Different Data Splits

We first focus on the beat-split method (used to generate intra-patient classifiers) and

use 10-fold cross-validation. As with the beat-split technique, we only care that indepen-

dent heart beats seen during training are not also used for testing. This has a side effect

of allowing patients used for training to also be used for testing (since the distinction is

made only on the individual heart beats). Figure 3.5 shows the training evolution of this

particular test case.

Figure 3.5: Training Progress for Beat-Split Case.
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Figure 3.6: Training Progression of Different Split Methods.

These results show that the networks performance on the testing data continuously

increases and closely tracks the training metrics. Therefore, it is important to review all

testing results in combined plots to better understand the model as it is being trained.

Figure 3.6 shows the testing results for the different types of data splits including beat-split

(DB), file-split (DF), and patient-split (DP).

It is evident from these plots that the network first starts to show decreased performance

on testing sets that use patient-split followed by test sets generated with file-split. That is,

the model seems to start learning to classify the disease but eventually learns something

else (perhaps patient level characteristics that help it distinguish hard heartbeats, taking
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advantage of the lower intra-patient variability). As its performance starts to drop for

patients never seen before (as it is the case in DP) and then from files (records) not seen

during training (DF) it appears to learn features that are shared across files and eventually

features shared across heart beats of the same patient; effectively memorizing patients

by learning to identify which beats belong to patients seen during training and assigning

them the appropriate diagnosis based on prior knowledge.

It is also important to point out that minor epoch-level differences among the three split

modes (DB, DF, and DP) are due to the nature of training; where the classifier focuses

on different features at different timepoints as it descends down the multidimensional

gradient in its attempt to minimize the classification error. What should be taken from the

plots is the general direction/trend of the plotlines themselves and not the local differences.

3.3.2 Randomizing labels of myocardial infarction patients and nor-

mal controls

Because the network could be learning many things, and not specifically memorizing

patients, we take it one step further and randomize the labels (MI/Controls) of each pa-

tient before retraining the model using beat-split. This action effectively eliminates any

existing link(s) between biomarkers and disease label. Therefore, if the network model

was never about memorizing the patients but just about learning the nature of the disease,

we shouldnt be able to attain a mean accuracy greater than 50%, given that the new labels

are uniformly and randomly distributed. This time around, we trained the network for 90
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Figure 3.7: Training Over Randomized Labels.

epochs to identify any distinctive patterns that may arise. Figure 3.7 shows the results of

the experiment.

These results clearly show that the proposed network is capable of learning features

that help it identify heart beats from previously seen patients, effectively memorizing

them, if adequate time is given. Therefore, it is of paramount importance that an adequate

data-splitting method be used when creating the training and testing datasets, as choosing

an inappropriate one will mask overfitting and lead to erroneously high testing metrics

that are not representative of the models performance on the general population.
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CHAPTER 4

NEAR REAL-TIME SINGLE-BEAT MYOCARDIAL INFARCTION

DETECTION FROM SINGLE-LEAD ELECTROCARDIOGRAM USING

LONG-SHORT TERM MEMORY NEURAL NETWORK

4.1 Goal

In this chapter, a multilayer Long-Short Term Memory (LSTM) neural network is

developed to identify infarcted patients from a single heartbeat of a single-lead (lead

II) electrocardiogram. This task for detecting generalized cases of MI from Lead II

alone is challenging since Lead II focuses on the inferior part of the heart and therefore

has a hard time detecting anterior, antero-septal, posterior, and lateral MIs. However,

we choose to do so as this lead is extensively available in everyday exercise equipment

and fitness trackers, making the deployment of the proposed algorithm feasible and cost

effective. Although various types of artificial neural networks have been used in the

past to identify myocardial infarctions [6, 13, 16, 17, 20–23], we choose to use LSTMs

because they have a long and proven track record at classifying time-varying signals

such as text, speech, and video [45–52]. Hence, the genesis of their use here to identify

heart defects and other cardiac conditions from electrocardiograms. By combining the

resulting neural network with an algorithm that detects the R-peaks in real time, the results

indicate near-instantaneous detection of myocardial infarctions. Through this expedited

diagnosis, this integrated method (LSTM with real-time detection of R peaks) could

become extremely beneficial for monitoring patients under cardiac stress and/or at risk

of myocardial infarctions while significantly improving the prospects for both the correct

diagnosis of the disease condition and for the planning of early treatment.
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4.2 Materials and Methods

4.2.1 Data

The data used in this study was obtained from The Physikalisch-Technische Bunde-

sanstalt (PTB) diagnostic EKG Database [60, 61] as was the case for the study performed

in Chapter III. Same database, same amount of patients, and same type of filtering tech-

niques are used here as described earlier in Section 3.2.1.

After the data is segmented, it must be separated into groups to be used for training

and testing. There are three primary ways in which electrocardiogram heartbeats are

separated in the literature when used to detect myocardial infarctions as described in the

previous chapter: Beat-Split, File-Split, and Patient-Split. However, as we aim to train

a classifier that can be used in real life applications, we use the most restrictive data

split available, namely Patient-Split, to ensure that the testing dataset best represents the

population at large. As such, once all the independent heart beats have been segmented,

each patient (along with all its segmented heartbeats) is assigned to one of 10 distinct

and non-overlapping groups, to be used for ten-fold cross-validation. Imperatively, no

one patients data is present in more than one group at any given time. This is important,

as having individual patients simultaneously represented in both the training and test-

ing phases results in overfitting that could yield to misleading high testing metrics, and

hence overestimating the performance of the algorithm. Also, this type of data splitting

is more amenable to real-world applications, as the network would be trained on a dataset

of recorded patient data but will be used and deployed on patients not seen during the

training phase.
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Figure 4.1: LSTM unit structure.

4.2.2 Network Architecture

We use a three-layer LSTM network to differentiate between subjects with myocardial

infarctions (MI) and healthy controls (HC). Layer one and two consist of 100 LSTM units

with hyperbolic tangent activation, while the third and last layer is a single LSTM unit with

sigmoid activation function. Each training and testing sample is one second long and cen-

tered on the ventricular depolarization event (500 milliseconds before and after the R-peak)

of the EKGs Lead II data. The design construct of the LSTM model is shown in Figure 4.1.

LSTMs, shown in Figure 4.2, are a type of recurrent neural networks (RNNs) that

see the input signals as time-varying and can therefore make temporal relation inferences

about the signals being categorized. Whereas, other common neural networks architec-

tures used in the literature such as convolutional neural networks (CNNs) can only make

spatial relations and are therefore limited by the size of their kernels. This is not the case

for RNNs as they can learn to remember events indefinitely long in the past of the sequence

and make decisions based on it. Also, LSTMs dampen the effect of vanishing gradients
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Figure 4.2: Network Architecture.

present in the original RNNs where events long in the past have diminishing influence in

current decisions.

It can be seen from Figure 4.1 that an LSTM unit requires as an input its previous state

BC−1, its last output HC−1, and the current input vector GC to generate a new internal state BC

and a new output HC . Therefore, an LSTM neuron can produce a classification prediction

for every input timestep thereby generating time-varying classifications that becomes more

accurate and final as more sample points of the signal are processed. This is especially

evident in the output activations of the network in Figure 4.2, where the final classification

label is produced during the last 200ms of the signal once the PQRST complex has been

processed.

This architecture was particularly chosen as it requires no previous expert knowledge

of the signal at hand, being able to come up with the features it deems important on its

own from the training data. It is also narrower in terms of the required processing steps

and hence less complex than other architectures reported in the literature for myocardial

infarction classification, making it less prone to overfitting over a limited amount of data

as a more complex model gives the network more flexibility to overfit.
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The network itself was trained using stochastic gradient decent while implementing

L2 regularization [62] with _ = 0.001, RMSProp updater [63] (learning rate = 0.1, weight

decay = 0.95, and epsilon = 10e-6) with weight decay, and gradient clipping (5.0). The

weights are initialized using the method proposed by Xavier Glorot [64]. The specific

LSTM units used in our study were first described by Alex Graves in [65] to label sequen-

tial data such as speech and hand-written text.

The network described herein, was trained and deployed in a 64-bit Windows 10 PC

with an AMD FX-8350 Eight-Core Processor, 32 GB of DDR3 RAM, and an NVIDIA

GeForce GTX1070. Each training iteration (epoch) took approximately 5 hours and cov-

ered around 60K samples, depending on the cross-validation split being used. The network

architecture itself was implemented using DeepLearning4J version 0.9.1, a deep learning

library for Java.

4.3 Results

The network is trained using early stopping, for which after 10 epochs of no perfor-

mance improvement we stop training and back up to the best set of weights. We repeat

this process for each of the cross-validation folds. The mean training time is 34.4 epochs

(±19.4 4?>2ℎB 95% ��) when optimizing for accuracy and 27.4 (±12.64 95% ��)

epochs when the best J-Measure is the target. The maximum number of epochs required

to train any given fold was 75 and the minimum was 4. Classification of a single 1-second

sample takes around 40 milliseconds, which would be appropriate for online classification
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as the time between fast heartbeats is around 300 milliseconds, well above the required

processing time.

To measure performance, we have used Accuracy (4.1), F1-Score (4.2), Precision

(4.3), Recall (4.4), Specificity (4.5), and Youdens J statistic (J-Measure) as defined in

(4.6).

�22 = ()% +)#)/()% +)# + �% + �#) (4.1)

�1 = (2 ∗)%)/(2 ∗)% + �% + �#) (4.2)

%A42 = )%/()% + �%) (4.3)

'420;; = )%/()% + �#) (4.4)

(?42 = )#/()# + �%) (4.5)

� = '420;; + (?42 − 1 (4.6)

Where TP stands for true positives, TN for true negatives, FP for false positives, and

FN as false negatives.

Table 4.1 shows the detailed metrics obtained for both optimization methods (accuracy

and J measure) on the testing datasets in the 10-fold cross-validation using the Patient-Split
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approach, and Figure 4.3 shows the training progression vs the testing results of the 80

epochs during the training phase.

It can be observed from these figures that the network starts to stabilize in terms of

testing accuracy early in the training, somewhere in between epoch 20 and epoch 25. At

that point the network keeps on learning the training dataset, eventually reaching the high

nineties before being stopped at epoch 80. This could be due to a lack of significant

variability in the training set that would best represent the population at large, a problem

which could be addressed by adding more patients into the training dataset.

Another significant fact to appreciate from Table 4.1 is that the Recall measure is sig-

nificantly larger than Specificity for either optimizing condition. This is the case mainly

Figure 4.3: Evolution of performance metrics for the training and testing phase for
the proposed LSTM model. (a) Accuracy, (b) F1 Score, (c) Precision, (d) Recall, (e)
Specificity, (f) J-Measure
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because the dataset itself is greatly unbalanced, being largely composed of myocardial

infarction patients with significantly less control subjects. To improve performance more

controls should be added to the dataset to increase data variability and hence allow the

model to better generalize.

Table 4.1: Testing Results of the Proposed LSTM Method

Acc F1 Precission Recall Specificity J # Epochs
Acc 91.36 94.71 93.54 96.00 69.28 65.28 34.40

(±2.88%) (±1.97%) (±2.46%) (±2.45%) (±8.41%) (±8.41%) (±19.40%)
J 89.56 93.45 95.30 91.88 80.81 72.69 27.40

(±2.79%) (±1.94%) (±2.86%) (±3.13%) (±9.62%) (±8.98%) (±12.64%)

4.3.1 Influence of MI Location on Detection Rate

The location of the myocardial infarction has a great potential to influence the detec-

tion rate of the proposed classifier. As we choose to use a single ECG lead, the model

proposed herein has a limited view of the heart’s electrical activity and certain MI types

could be obscured from such a view.

In practice, we can encounter various types of MIs which themselves affect the elec-

trical activity of different sections of the heart. In the database used for this study, there

are four main types of infarction that are described as follows:

Anterior MIs happen when the left anterior descending (LAD) coronary artery is ob-

structed, which could lead to changes in leads V1 through V6 but might or might not show

in Lead II, depending on where the occlusion happens. Antero-Lateral MIs (a combination

of Anterior and Lateral) show up in leads V3 through V6, while Antero-Septal MIs can
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be seen in leads V1 through V4. All along, these types of Anterior MIs could produce

changes in Lead II depending on the location of the LAD occlusion [66].

Inferior MIs, account for about 40% of all MIs and generally involve a blockage of

the right coronary artery. When the Inferior region is the main location of the infarction,

leads II, III, aVF, and aVL show changes in their respective electrical activity [67].

Lateral MIs are rare in their pure form; they generally occur as part of larger infarctions

involving multiple areas, because the left ventricular lateral wall is perfused by the left

anterior descending artery and the left circumflex artery. Leads I, III, aVL, aVF, V5, and

V6 can all show electrical changes associated with Lateral MIs [68].

Posterior MIs present subtle changes in ECGs, therefore making them challenging to

diagnose when they occur in isolation and often lead to misdiagnosis. They commonly

take place in combination with Inferior and Infero-Lateral MIs. Purely posterior MIs can

be hard to observe in ECGs and might require the addition of extra leads not present in

the typical 12-lead ECGs (V7-V9) [69].

Figure 4.4 shows the detection rates of the proposed MI detector according to the loca-

tion of the myocardial infarction as well as the availability of samples for each of the cases.

It is evident from this figure that the cases where the model underperforms (Lateral and

Posterior) are ones where the electrical changes associated with them are hard to observe

from the lead used in this study [68, 69]. On the other hand, we must also be cautious
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Figure 4.4: Detection Rate According to MI Location

of cases where the model performs exceedingly well, especially Antero-Septo-Lateral and

Infero-Posterior, as the number of available samples for training and testing is minuscule.

4.3.2 Behavior when Encountering Other Pathologies

Although various pathologies are present in the PTB database, we only used the data

available form patients diagnosed with myocardial infarctions and that from healthy con-

trols for both training and testing. However, much like in real life, the proposed model

will encounter samples from classes other than MI or HC. Therefore, we would benefit
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from understanding or at least viewing how the classifier would respond when presented

with samples from these other classes.

In this section, we run all samples from every patient from the PTB not used in this

study through the already trained classifiers for each fold of training and report the average

detection rate along with the respective standard deviation.

Figure 4.5 shows the distribution of the classifier’s output for heartbeats from patients

with a main diagnosis other than myocardial infarction or healthy control. In this figure

the columns are associated with a given reason for admission and each of them has two

colors; orange represents MI and blue represents HC. If a column is mostly composed of

orange that means that most of the heartbeats associated with that diagnosis are classified

as MI by the proposed model, while if mostly blue is present the classifier saw them as HCs.

In this figure, we can see the primary reasons for admission present in the PTB header

files associated with each record. Going even deeper, we can further break down how

within each reason for admission the classifier proposed herein treats each subject.

Bundle Branch Block: There are 20 independent records, belonging to 18 different

patients, that list bundle branch block as a diagnosis. Of them, 17 (from 15 different

patients), this condition was listed as the reason for the ECG and admission to the hospital

and only 5 records (from 4 distinct patients) had more than fifty percent (50%) of its

heartbeats classified as healthy controls.

Cardiomyopathy: There are 17 independent records (from 15 different patients) for

which this condition was listed as the reason for the ECG and admission to the hospital.
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Figure 4.5: Distribution of Classifier’s Output for Diagnosis Not Covered in Training

Of these only 2 records had more than fifty percent (50%) of its heartbeats classified as

healthy controls and they each belonged to different patients.

Dysrhythmia: There are 16 different files from 14 different patients for which the main

reason for admission was the condition of dysrhythmia. However, dysrhythmia condition

rarely appeared alone and "Atrial Fibrillation" (AFib) was also evident in 8 (50%) of

them where more than fifty percent (50%) of the heartbeats in each of those records were

classified as belonging to the myocardial infarction class. "Coronary Artery Disease"

(CAD) also accompanied dysrhythmia. Only one record from a single patient containing

the main diagnosis of dysrhythmia had more than fifty percent (50%) of its heartbeats

classified as healthy controls.
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Heart Failure (Types 2,3, and 4): There are very limited number of records exhibiting

heart failure; only one of each type from separate subjects exist in the PTB. Each of this

records had a very high percentage (> 96%) of its constituent heartbeats classified as MI.

Hypertrophy: is present as the main reason for admission in seven (7) ECGs from

seven patients. Hypertrophy was never diagnosed alone and only one patient’s record

(being additionally diagnosed with hypertension) had 93% of its heartbeats classified as

healthy. For all other records, at least 61% of the heartbeats where considered infarcted.

Myocarditis: is observed in four (4) records form four (4) distinct patients. Only one

of these records had most (> 94%) of its heartbeats classified as healthy. The record with

most beats classified as MI (> 84%) has an additional diagnosis of "Bundle Branch Block".

Palpitation: are only present in one single record where over 95% of the heartbeats

are classified as infarcted. This record also had an additional diagnosis of Coronary Heart

Disease.

Stable Angina: is the main reason for the admission of two separate patients (for a

total of two ECGs). One of them only has additional cold and Hyperlipoproteinemia as a

diagnosis and received a healthy classification for over 90% of its heartbeats. The other

has CAD and hypertension, resulting in over 95% of its heartbeats being classified as MI.

Unstable Angina: is only present in one record and 100% of the beats are classified as

MI.
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Valvular heart disease: is listed as the main reason for the admission of six (6) patients,

for a total of six (6) ECGs. Every one of these records has multiple associated diagnoses

and over 75% of the heartbeats in each record were classified as MI.

Atrial Fibrillation (AFib): is never listed as the main reason for the admission of any

patient but is listed as an associated diagnosis in fourteen (14) separate records from eleven

(11) patients. Every time AFib is listed as a diagnosis for a given record, over 60% of the

heartbeats therein were classified as MI.

Unknown (UNK): The reason for the admission of 22 patients is listed as unknown.

From these, 27 separate records were recorded. Most of them have over 90% of their

heartbeats classified as MIs, about 22 records. Of the remaining five (5), four (4) have

over 50% of the heartbeats classified as MI and only one has over 90% of them classified

as healthy.

It seems to be evident from these broad statistics that the model proposed in this study,

although only trained to differentiate between myocardial infarctions and healthy controls,

appears to be detecting life threatening heart ailments. This possibility would have to

be further explored in future studies that encompass broader datasets, as no conclusive

finding can be done over these limited samples.

4.3.3 Visualizing the Errors

Although high classification metrics were achieved using the proposed approach, it

is important to understand where the proposed model falls short and does not achieve
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Figure 4.6: Examples of Missclassified Heartbeats

the best performance. To start, figure 4.6 depicts interestingly different heartbeats from

specific records were the classification accuracy was particularly low (<10%).

The heartbeat present in Figure 4.6a belongs to a patient originally admitted for an

Anterior MI but the ECG was recorded over a year after the infarction took place, to

be more specific 396 days after. This heartbeat was classified by the model as "Healthy

Control" although the truth value from the diagnosis was "Myocardial Infarction" making

it a false negative. Only eleven (11) out of the one-hundred and forty-two (142) heartbeats

for patient 120 were correctly labeled as MI instead of HC.

Figure 4.6b shows an example of improper lead placement or contact that yielded

a very noisy ECG recording. This heartbeat belongs to patient 180, a healthy control

subject, and is part of record s0476_re. In this record, there is a vast amount of noise

present in Lead II, while leads 1 through 6 are fairly clean. However, as this classifier only

uses the information from Lead II it is hindered by the noise and is challenged to properly
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classify the detected heartbeats. Only one (1) out of the two-hundred and forty-one (241)

detected heartbeats is properly classified as HC, while all others are improperly labeled as

MI.

A truly interesting false positive case is present in Figure 4.6c. This heartbeat also

belongs to patient 180, but this time the record is s0561_re and there is no significant noise

to contend with. In this instance, the classifier was unable to properly classify around 63%

of all detected heartbeats, assigning them an MI label instead of the correct HC.

Figure 4.6d shows another instance of a false negative outcome. This heartbeat be-

longs to records s0141lr of patient 43, a subject with a lateral infarction. In this instance

there are a couple of factors that made the classification difficult: 1) the electrocardiogram

was recorded over eight (8) months after the infarction took place and a catheterization

was performed, and 2) the type of infarction in question was a "Lateral MI", which are

difficult to diagnose from Lead II alone as electrical activity changes associated with it

might not be revealed in such a lead [68].

4.4 Discussion

As the type of data split used for training is seen to greatly affect the performance

metrics, we must restrict our comparative assessment contrasting the proposed method to

related studies that use the same data split method in order to avoid unfair comparisons.

Some relevant studies covered in the literature are presented in Table 4.2. Herein, we pro-
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vide a simplified evaluation of their dataset generation techniques along with the number

of leads used and the sample size required to make a classification.

Table 4.2: Simplified Analysis of Relevant Studies

Given the unique way of assuming only a single heart beat and single-lead electro-

cardiograms together with the adoption of patient split method of analyzing data, to the

best of our knowledge, there are no other studies of myocardial infarction detection and

classification that can be completely and fairly compared to ours, as types of MI classified

vary and the datasets and dataset subsets are not equal to ours. However, in Table 4.3 we

provide an in depth comparison of some of the available studies that generate inter-patient

detection of MI. In this table, we cover and provide the numbers of leads used, number

of patients and heartbeats evaluate, the sample length required, the method used, and the

general performance metrics of each study.
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Of all the studies presented herein, [8] and [14] are somewhat close, although much

more restrictive (they use subsets of the available data), as they use electrocardiograms

available from the PTB diagnostic ECG Database [60, 61].

Sharma and Sunkaria [8] focused on acute myocardial infarctions in the inferior por-

tion of the heart (IMI) leading them to a rather restricted dataset of only 30 MI subjects

and 52 HC. Moreover, they use three leads of the available twelve, specifically leads II, III

and aVF, as better representatives of electrical activity in the inferior portion of the heart.

Sopic et al. [14] use random forest feed by expert features extracted from Lead 5 of the

available electrocardiograms using discrete wavelet transforms. They use 52 MI subjects

as they want to keep a balanced set for training and testing due to the limited availability

of healthy controls (52). Just as in [8], this study is not directly comparable to ours as they

use a different ECG lead and a more restrictive, yet balanced dataset.

Although our results are not directly comparable, we achieve the highest accuracy and

recall, when comparing against either [8] or [14], for either of the two optimization cases

(best Accuracy or best balance between Specificity and Recall). However, our specificity

and J-Measure oscillate, providing the best number only when we train our network to

achieve the best balance between Specificity and Recall. The lower specificity is likely

due to the fact that we have a heavily unbalanced dataset, as there are about three times

more myocardial infarction subjects than healthy controls in our datasets, and a higher

accuracy will tend to lead the network to prioritize properly classifying MI records over

HCs. We overcome this in this study, by optimizing, or targeting the point in time at

which the network is having the best balance between specificity and recall instead of

using the common practice of just targeting the best accuracy. We also only require one

lead of the electrocardiogram as does [14] but unlike them our lead is more commonly
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sampled and simpler to record that lead V5. Neither [8] nor [14] provides the diagnosis

time (or processing time), but study [14] provides a hardware implementation which is

commendable and could be used as means to reduce the processing time.

From Table 4.3 we can also see that the detection accuracy is positively correlated

with the number of leads used, that is, more leads equals greater accuracy. This is to be

expected, as more electrocardiogram’s leads equates to more views of the heart and more

information is gathered. The extra information collected from other leads is especially

useful to detect infarctions that are not visible or hard to see from a single lead, as it is

our case [66, 68, 69]. By using 12-lead ECGs, [9] and [16] are able to achieve higher

performance metrics than any other single lead method.

Longer sample lengths seem to also influence the performance of the different models,

but the relevance of this pattern is not very clear. In the case of [13], by using the whole

record to produce a classification, the authors achieve higher performance metrics than

those reported by [16] who used more leads (12 in [16] vs 4 in [13]). However, [16] is

detecting MI from ECG images, not digital signals like all other studies in Table 4.3 are,

and this could explain the difference in performance. The authors of [13] also tailored

their lead selection to the type of MI they were trying to detect (Generalized Anterior

MI) which makes it less clear whether or not the sample length is the key factor yielding

the performance improvement. Therefore, it is hard to gauge the influence of sample

length in classifier performance due to the fact that such vary from study to study along

with classification method, number of leads, and even dataset used. To the best of our

knowledge there is no study that explores the influence of sample length on MI detection

rate.
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One more significant factor to point out is that we are not able to provide a statistical

comparison of our method to other present in the literature or those presented in this sec-

tion, as they only provide the average performance metrics of their validation approaches

and do not provide the standard deviations of such.

Overall, the results obtained are highly competitive in comparison to state-of-the-art

algorithms, although stringent conditions are set up in the training phase to overcome

overfitting, data leakage and bias from features seen in the training phase. The proposed

method would have performed even better if a balance between the normal controls and MI

subjects could have been reached through the collection of more data from normal controls.

Table 4.3: Comparative Results of Methods Using Patient Split Method
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CHAPTER 5

12-LEAD REAL-TIME MYOCARDIAL INFARCTION DETECTION

5.1 Goal

In this study, we propose a novel and complete pipeline for the online real-time classi-

fication (40 milliseconds) of myocardial infarctions. We do so by using the Independent

Component Analysis (ICA) R-spike detection method described in Chapter 2, to identify

and localize the occurrence of ventricular depolarization events, alongside a multilayer

LSTM network, to detect and classify infarcted heartbeats. We particularly use LSTM

neurons for their long track record of positive results at classifying time-varying signals

such as speech, text, and video. The resulting real-time classifier could be of great value

to the population at risk of MI and as a monitoring tool for gauging disease progression

and evaluating merits of treatment or therapeutic intervention.

5.2 Material and Methods

5.2.1 Data and Preprocessing

We use the popular Physikalisch-Technische Bundesanstalt (PTB) diagnostic EKG

database [60, 61]. This dataset is composed of 549 12-lead EKG records from 209 men

and 81 women. There are multiple different diagnoses in the dataset, but for our study

we only use patients with myocardial infarctions (MI) and the healthy controls (HC), this

brings the patient count to 200 patients from the original 290. Furthermore, we only use

records from those patients that were recorded no more than 5 days after the infarction
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Figure 5.1: Frequency Power Spectrum of unfiltered (left) and filtered (right) data

date, except for the first electrocardiogram taken at admission, as after admission to the

hospital, patients are given treatment and the hearts electrical activity responds to it.

The data is filtered using a 50Hz band-stop cascade IIR filter to remove any powerline

interference that might be left over after the initial recording, and a 500 milliseconds

moving average filter to remove baseline wander as an inherent EKG artifact. Frequency

spectrums of the signal are shown in Figure 5.1 before and after the filtering step. After

filtering, we apply the real-time R-peak detection algorithm described in [70] to produce

near instantaneous ventricular depolarization detection. Heartbeats are segmented into

1-second samples, centered at the R-peaks, and separated into training and testing datasets.

We have followed the Patient-Split dataset generation procedures as the performance met-

rics obtained from it on the testing dataset will most closely resemble those of the systems

deployment in real-unseen data. That is, we have taken special care to ensure that any

data from patients seen during training is not used for testing. A segmented sample of a

processed heartbeat can be seen in Figure 5.2

60



Figure 5.2: Sample Filtered and Centered Heartbeat

5.2.2 Methods

The simplified system architecture of the proposed system for online and real-time

diagnosis of myocardial infarctions is shown in Figure 5.3. The first step is to filter the in-

coming data to remove undesired frequency components and noise. Subsequently, the ICA

R-Spike detector is used to identify the center of the ventricular depolarization event and to

use it as a reference for segmenting and centering samples to be passed to the MI classifier.

The proposed architecture continuously generates classification outputs for each de-

tected heartbeat. The filter and the R-Peak detection stage run non-stop seeking out new

samples to be processed. While the classifier produces a classification label (MI/HC)

for every point in the input sample, only the last 80ms are used. This is because the

classification does not become valid until the classifier has had a chance to look at the

complete heartbeat (after the T wave).
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For our classifier we use a deep LSTM neural network with five layers. The size of

the network is chosen so that the network is big enough to accommodate a significant

number of features and dropout is used during training on every other layer to minimize

overfitting. A more detailed view of the network architecture can be seen in Figure 5.4.

This neural network architecture is particularly suited for this problem as it can handle

time-varying data, does not require prior expert knowledge of the signal at hand, and is

simpler than other previously proposed architectures. Furthermore, its simplicity makes

it less prone to overfitting and yields low inference times.

The proposed model is built with Graves LSTM [65] units and initialized using Glorot

and Bengios proposed initialization [64]. It uses stochastic gradient decent with L2 regu-

larization [62], RMSProp [63] as the optimizer, and gradient clipping to avoid exploding

gradients due to excessive weight updates. A more detailed view of the networks training

behavior and the influence of dropout can be appreciated in Figure 5.5, where the first and

third layer implement different dropout rates. By using dropout during training, we force

the network to prioritize and create redundant copies of important latent features in large

layers. We do so by randomly zeroing out, or dropping, the outputs of 80% of the neurons

in the first layer and 50% of the neurons in the third one, thereby effectively reducing the

amount of data available to the subsequent layers.

5.3 Results

The network is trained using early stopping, where after 10 epochs of no performance

improvements we stop training and back up to the best set weights. A 10-fold cross vali-

dation approach is performed to avoid reporting on a particularly beneficial or detrimental
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Figure 5.3: Simplified System Architecture

Figure 5.4: 12-Lead Classifier Architecture

dataset split due to their small sizes. We train the model in a 64-bit Windows 10 PC

with an AMD FX-8350 Eight-Core Processor, 32 GB of DDR3 RAM, and an NVIDIA

GeForce GTX1070 graphics card. The system proposed herein was implemented and

deployed using Java and DeepLearning4J version 0.9.1 as the machine learning library.
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Performance was measured by using the aforementioned standard metrics of Accuracy,

F1-Score, Precision, Recall, Specificity, and Youdens J statistic (J-Score/J-Measure) as

defined earlier in (4.1) through (4.6) in Chapter 4. Recall that true positives (TP) define

patients with MI diagnosed as MI, true negatives (TN) define healthy controls (HC) diag-

nosed as HC, false positives (FP) define HC diagnosed as MI, and false negatives (FN)

define MI diagnosed as HC. We trained our system seeking two important measures and

report these values in Table 5.1: highest classification accuracy and highest J-Score.

The forward inference time, the time required for the network to process a sample, is

12.3 milliseconds on average, while the whole system requires around 40 milliseconds to

process a sample when accounting for preprocessing time. Training took on average 5

hours and covered around 30 thousand 1-second samples per epoch (a single run through

all training instances). From Table 5.1, the maximum number of training epochs was 50

for the slowest converging training fold and 3 for the fastest, with an average of 19.44

epochs when looking for the maximum accuracy and 21.33 when looking for the best

Figure 5.5: 12-Lead Classifier Architecture during Training
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balance between specificity and sensitivity. The average accuracy across the 10-fold cross

validation is 95.76% with a 95% confidence interval (CI) from 93.36% to 98.16% and the

average J-Score is 90.31% with a 95% CI from 84.11% to 96.51%.

Table 5.1: Performance Results of Two Training Scenarios

Acc F1 Precission Recall Specificity J # Epochs
Acc 95.76 96.73 96.86 96.67 93.64 90.31 19.44

(±2.4%) (±2.1%) (±2.7%) (±2.4%) (±5.7%) (±6.2%) (±18.9%)
J 95.66 96.64 97.13 96.27 94.38 90.64 21.33

(±2.5%) (±2.2%) (±2.8%) (±2.6%) (±5.5%) (±6.0%) (±17.5%)

5.4 Comparison and Discussion

Although the literature on myocardial infarction detection and classification is abound,

the way in which they create their training and testing datasets are not uniformly consistent,

resulting in intra- and inter- patient classifiers that are not directly comparable. Therefore,

in this section we will attempt to compare our results to those from other methods that

most closely resemble the data splitting method we use, that is inter-patient classifiers.

We will also explain why we believe that the proposed method is not directly comparable

to some of the references we consider in this section.

As can be appreciated from Table 5.2, our proposed method has some of the highest

metrics in comparison to other approaches. These are methods that use the same number

of Electrocardiogram leads (12) and are trained on the same database (although not specif-

ically the same dataset). However, not all the methods covered in this table are directly

comparable as detailed below.
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Table 5.2: Comparative Results of the Proposed Methods

Study Dataset Sample Length Method Accuracy Recall Specificity J
[71] 128MI, 52HC 0.6 seconds MFB-CNN 98.79 98.73 99.35 98.08
[72] 148MI, 52HC 0.6 seconds CNN and BLSTM 93.08 94.42 86.29 80.71
[17] 113MI, 52HC 4 seconds ML-ResNet 95.49 94.85 97.37 92.22
[73] 148MI, 52HC 4 seconds PCA and SVM 92.69 80.96 80.96 61.92
[74] 148MI, 52HC 5 seconds DWT-PCA-ANN 98.21 99.40 98.22 97.62
[74] 148MI, 52HC 5 seconds Deep Residual CNN 100 100 100 100

Proposed 148MI, 52HC 1 second Deep-LSTM 95.66 96.27 94.38 90.64

Liu et al., in [71], introduce a Multiple-feature-branch CNN classifier, that produces a

particularly good inter-patient MI classifier, but they use data from the patients in the test-

ing set during training (the first 32 beats of each patient), effectively contaminating it and

no longer producing a pure inter-patient classifier and rather something that is somewhat

in between intra- and inter- patient.

In [72], Liu et al. expand on their previous work on multiple-feature-branch CNN

classifiers and add bidirectional LSTMs, producing an MFB-CBRNN. This time around,

they avoided contamination of their training sets and did produce a truly inter-patient MI

classifier. Their approach classifies single heartbeats, just like ours, but produces less accu-

racy, 93.08% compared to 95.66% for ours, and lower J-Score, 80.71% vs. ours at 90.64%.

Han and Shi produced two good classifiers in [17] and [73], however, even though

they claim to produce inter-patient classifiers, it is unclear from their dataset generation

descriptions that they took special care to ensure that data from patients seen during train-

ing was not used for testing. It appears that their dataset generation method resembles that

of a File-Split instead. They also require particularly long sample sizes that encompass

more than a single heartbeat.
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Perhaps the best classifier in terms of accuracy is reported by Jafarian et al. [74],

achieving 100% accuracy in their end-to-end deep neural network model, but their method

requires five (5) second samples and is perhaps resource intensive to deploy. Neverthe-

less, they do take particularly good care to avoid cross-contamination of their training and

testing sets, yielding truly inter-patient classifiers.
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CHAPTER 6

REAL-TIME FREQUENCY-INDEPENDENT SINGLE-LEAD AND

SINGLE-BEAT MYOCARDIAL INFARCTION DETECTION

6.1 Goal

This chapter presents a single-lead frequency independent myocardial infarction de-

tection algorithm. It expands on the architecture and knowledge of previous Chapters to

produce a readily deployable system able to detect myocardial infarctions from single-lead

electrocardiogram. Wherein, perhaps the most relevant feature that it attempts to achieve

is the frequency independence of the algorithm, as electrocardiograms come in no stan-

dard sampling frequencies and therefore vary form device to device. This inter-device

variation will force frequency dependent classifiers to be retrained with signals collected

at the specified sample frequency, thereby undermining deployability and increasing cost

and difficulty. This chapter will attempt to overcome these drawbacks and provide readi-

ness for deployment, cost effectiveness and increased usability.

6.2 Material and Methods

6.2.1 Data

This study makes use of the newly released PTB-XL database, the largest currently

publicly available electrocardiography dataset [61, 75, 76]. It contains 10-second long

12-lead electrocardiograms from 18885 distinct patients, with a total of 21837 combined

records. Of these, there are 9528 healthy control (HC) records and 5486 myocardial in-

farction (MI) records. The records themselves are stored in WaveForm DataBase (WFDB)
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format with a resolution of 1uV/LSB and are provided in two different files with different

sampling frequencies of 500 and 100 Hz, where the 100 Hz files are downsampled from

the 500 Hz ones.

Furthermore, the PTB-XL database is broken down by its publishers into 10 non-

patient overlapping sets to be used for algorithm training, validation, and test. These sets

are obtained using stratified sampling and ensure that all records associated with the same

patient are only present in one of the sets. They recommend that sets 1-8 be used for train-

ing, set 9 for validation, and set 10 for testing. We followed this recommendation to ensure

that future algorithms can be fairly compared to ours. The PTB DB [60], used in previous

studies, is also used to validate the trained classifier, as it is composed of different patients

and is sampled at a different frequency. In both these datasets we are only interested in us-

ing Lead II, as it is widely employed by wearable/portable devices and exercise equipment,

and therefore start by removing all other lead information. We also only keep records with

diagnosis of acute myocardial infarction, old myocardial infarction, and/or normal control.

A low-pass filter with a cutoff frequency of 45Hz and a 500-millisecond moving

average filter are applied to each record to remove powerline and low-frequency noise,

respectively. Special care must be taken to ensure that the powerline interference filter

(either low pass or stop-band) removes 50Hz frequencies, as these datasets were collected

in Europe, where 50Hz power lines are standard, and not in America where 60Hz power

distribution is the case. However, this would not generally be a problem if the noise were

present in both MI and HC records, but Figure 6.1 makes it clear that this 50Hz spike is

only present in MI patient and not in HC ones in the PTB-DB, thereby making it a clear

distinguishing feature between the two. Therefore, if a 60Hz stop-band filter were to be

applied, it is possible that the deep-learning classifier built in this design could latch onto
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Figure 6.1: Frequency Spectrum of pre- and post- filtered data for PTB and PTB-XL
datasets

the characteristic 50Hz spike present mostly in the MI cases to incorrectly provide a di-

agnosis based on the frequency content of the signal rather than on the disease biomarkers.

Once the data is filtered, a design variation of the Pam and Tompkins algorithm de-

scribed by Chen and Chen in [53] is applied to identify the locations of the ventricular

depolarization events (also known as R peaks), and to separate thereafter each individual

heartbeat to be used in the training and testing of the proposed multilayer LSTM network.

Each sample is one second long (500 milliseconds before and 500 milliseconds after the

ventricular depolarization event) of the EKGs Lead II data (information from all other

leads is discarded).
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6.2.2 Network Architecture

The complete pipeline used to process the electrocardiograms is presented in Figure

6.2. The first step is to filter the incoming data to remove undesired frequency components

and noise. Subsequently, the R-Spike detector from [53] is used to identify the center of

the ventricular depolarization events and to use them as references for segmenting and

centering of the samples to be passed to the MI/HC classifier.

The proposed architecture continuously generates classification outputs for each de-

tected heartbeat. The filter and the R-Peak detection stage run non-stop seeking out new

samples to be processed. While the classifier produces a classification label (MI/HC) for

every point in the input sample, only the last 80ms are used. The classification does not

become valid until the classifier has had a chance to look at the complete heartbeat (after

the T wave).

The classifier itself is presented in Figure 6.3. It is four (4) layers deep and consist

solely of LSTM units. The first, second, and third layers are made up of 50, 25, and 10

units respectively with hyperbolic tangent activation functions, while the last layer has a

single neuron with a sigmoid activation function.

LSTM neurons can produce a classification prediction for every input timestep thereby

generating time-varying classifications that ultimately become more accurate and final as

more sample points of the signal are processed. This is especially evident in the output

activation of the network in Figure 6.3, where the final classification label is produced

during the last 200ms of the signal once the PQRST complex has been processed.

71



Similar to [6, 13, 16, 17, 77–79] and others, deep neural networks are used as they

require no expert knowledge of the signal or the data being processed and are able to

interpret which underlying features are important on their own from the training data.

The model is trained using stochastic gradient descent and implements L2 regular-

ization [43] with _ = 0.001, RMSProp updater [44] (learning rate = 0.1, weight decay =

0.95, and epsilon = 10e-6) with weight decay for parameter updates, and gradient clipping

(5.0). Herein, the weights are initialized using the method proposed by Xavier Glorot [45]

and the specific LSTM units used were first described by Alex Graves in [46] to label

sequential data.

The network was trained and deployed in a 64-bit Windows 10 PC with an AMD FX-

8350 Eight-Core Processor, 32 GB of DDR3 RAM, and an NVIDIA GeForce GTX1070.

Each training iteration (epoch) took approximately 3.5 days and covered around 435K

samples. The network architecture itself was implemented using DeepLearning4J version

0.9.1, a deep learning library for Java.

6.2.3 Multifrequency Scaling

To make the classifier frequency independent we expose it to signals of different

sampling frequencies at training time. To do so, we down- and up- sample the electro-

cardiograms in the continuous range between 250Hz and 1000Hz, given that the training

dataset is sampled at a set frequency of 500Hz and only a downsampled version of it is

provided at 100Hz.
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Figure 6.2: End-to-End MI Detection Pipeline

Figure 6.3: MI/HC Classifier Architecture

However, there are infinitely many frequencies between 250Hz and 1000Hz and we

cannot reasonably generate and make available all possible frequencies for every single

epoch. To overcome this hurdle, we randomly pick ten (10) different frequencies in this
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range for every file at every epoch. Thereby generating a ten-fold increase in the avail-

able data and covering a large percentage of the frequency spectrum, which will further

increase with successive epochs.

The up- and down- sampling is achieved using Lanczos resampling [80] with a 20-

point kernel as described by equation 6.1.

(6.1)

Where a is the kernel size, S is the re-sampled signal, and s is the original one.

By using these equations, we are able to re-sample all the available EKGs to any of

the frequencies of interest. This step is only critical for training, and not required for

deployment or real-time application, as we need to expose the classifier during training to

the wide range of possible frequencies that could be encountered when deployed.

6.2.4 Dataset Balancing

Both the PTB and the PTB-XL datasets are highly unbalanced, albeit in different

directions. The PTB dataset is MI heavy, while the PTB-XL dataset is HC dominant. Left

unbalanced, this has the effect of causing the classifier to lean, or have higher classification
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metrics, in the direction of the subset with a larger number of subjects. This is evident

in [77], where the proposed model showed increased recall at the expense of specificity,

as there are nearly three times as many MI subjects as there are HCs in the dataset used.

Therefore, to address the lack of balance, we put forth a subexperiment where we will

test whether balancing the dataset has any effect on the classifiers performance. In this

particular case, because we will be using the PTB-XL, the unbalanced scenario will use all

available training samples and will have a ratio of around 1.7:1 in favor of healthy controls.

The dataset rebalancing takes effect every epoch. This will ensure that no training

sample is wasted, and that enough variability remains, while at the same time keeping

each of the minibatches balanced.

To balance the datasets, we start by identifying which subgroup (either HC or MI) has

the least training samples and use it as a starting point for the training set. Once a set has

been identified, we randomly subsample the same number of instances from the other and

merge them into the set of samples to be used for the current epoch. The pseudo code

used to achieve the dataset balancing can be seen in Figure 6.4.

6.3 Results and Discussion

The network is trained using early stopping, for which after 10 epochs of no per-

formance improvement we stop training and back up to the best set of weights. As

recommended by the PTB-XL publishers, we train the model on sets 1 through 8, use set 9

for validation, and test on fold 10. We also test the performance of the model on the entire
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Figure 6.4: Pseudo Code for Dataset Balancing

PTBDB, as the sampling frequency is different from that of the training set and different

set of patients are acquired under different conditions.

Training took 35K parameter updates, or 30.6 days, and the best performance was ob-

tained at 29K parameter updates for both accuracy and J-Measure. Processing of a single

1-second sample is achieved in 300 milliseconds, on average by the classifier at a sam-

pling frequency of 500Hz, and there is negligible difference over the entire pipeline. This

fast processing time would be appropriate for online classification as the time between

fast heartbeats is around 300 milliseconds. However, this processing time is sampling

frequency dependent, where it ranges from 100 ms for 202Hz to 1.2 seconds for 2.8kHz.

Therefore, for sampling frequencies larger than 500Hz, we recommend an extra downsam-
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pling step be added to the front of the pipeline, bringing the sampling frequency below

500Hz, in order to attain real-time processing.

Table 6.1 shows the final testing metrics in the different datasets, while Figure 6.5

depict the evolution of the validation metrics during training. Figure 6.6 shows the Re-

ceiver Operating Characteristics (ROC) curve of the final model over the different datasets.

To measure performance, we have used Accuracy (4.1), F1-Score (4.2), Precision

(4.3), Recall (4.4), Specificity (4.5), and Youdens J statistic (J-Measure) as defined in

(4.6).

Table 6.1: Testing and Validation Results for the Proposed Algorithm.

Dataset (fold) Accuracy F1 Precision Recall Specificity J AOC
Validation (9) 85.07% 80.02% 78.52% 81.54% 87.31% 68.66% 0.918

Test (10) 84.17% 78.45% 78.54% 78.37% 87.55% 65.92% 0.903
PTB 77.12% 84.5% 95.38% 75.85% 83.02% 58.87% 0.880

Combined 79.69% 83.42% 91.59% 76.59% 85.89% 62.48% 0.893

6.3.1 Balanced vs Unbalanced Training

As both datasets used in the study suffer from data imbalance, we have performed an

experiment to determine the impact of such, if any, on training performance and speed.

Figure 6.7 shows the evolution of the validation metrics during training using an unbal-

anced set while Figure 6.8 visually compares the progression of the validation metrics for

both balanced and unbalanced training sets.
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Figure 6.5: Evolution of Evaluation Metrics at Training with Balanced Training Set

It is important to point out the validation sets for balanced and unbalanced training

are identical, there are no differences between them, the only difference in these models

is whether their respective training sets were balanced.

It is evident, from Figure 6.8, that while there is no difference in the fitted trend line in

accuracy progression, there are marked differences in the J measure, where the balanced

set outperforms the unbalanced one. Therefore, as it is evident that the balanced dataset

performance is superior when training our particular model, we continued training on a
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Figure 6.6: ROC plot of the Proposed Classifier

balanced training set for further iterations to attain better performance. The numbers and

findings reported hereafter belong to the model trained on the balanced dataset.

6.3.2 Influence of Myocardial Infarction Location on Detection

The heart is nourished by multiple arteries, and as such, myocardial infarctions can

occur in one or many of its different regions. When the blood supply to one of those

regions is cut, the electrical activity of the muscle fiber therein starts to change. The

morphology of the changes visible in the electrocardiogram recordings depends on the

leads used.
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Figure 6.7: Evolution of Evaluation Metrics at Training with Unbalanced Training Set

Therefore, in this section we break down the dataset and explore how the proposed

detector fares for the different kinds of MIs present therein. Generally speaking, we will

be looking at the following types of myocardial infarctions.

Anterior MI produces electrical changes in leads V1 through V6 but might or might

not produce changes in Lead II, depending on where the left anterior descending (LAD)

coronary artery is occluded. Antero-Lateral MI can be observed in leads V3 through V6,

while Antero-Septal MI can be observed in leads V1 through V4. Similarly to Anterior

MIs, changes in Lead II for either case depend on the location of the LAD occlusion. [66]
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Figure 6.8: Comparison of Balanced VS Unbalanced Training

Inferior MIs, in most cases, involve a blockage of the right coronary artery and they

account for about 40% of all MIs. When an MI occurs in this region, the resulting elec-

trical activity changes can be observed in leads II, III, aVF, and aVL. [67]

Lateral MIs are rare in isolated form; they usually occur as part of larger infarctions

involving multiple areas, as the left ventricular lateral wall is perfused by the left anterior

descending artery and the left circumflex artery. In EKGs, lateral MIs can be observed in

leads I, III, aVL, aVF, V5, and V6. [68]
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Posterior MIs are challenging to diagnose when they occur in isolation due to subtle

changes in EKGs that often lead to misdiagnosis. They commonly occur in conjunction to

Inferior and Infero-Lateral MIs. EKG changes associated with solely posterior MIs may

be hard to observe and might require the addition of extra leads not included in the typical

12-lead EKGs (V7-V9). [69]

Both the PTB and PTB-XL databases have broadly the same types of MI classifica-

tions, but the PTB-XL further assign probabilities to the location of the infarctions. MI

beats within the PTBDB have only one infarction location label.

Table 6.2 brakes down the total number of heart beats for every type of MI in the

dataset, as well as healthy controls, and gives a detection rate metric. Figure 6.9 visually

represents these values as a plot for ease of understanding as well as for the availability of

samples for each of the cases.

From these data, it can be concluded that the proposed algorithm performs exceedingly

well for the wide range of MIs present in the datasets, considering that this is a single lead

detector using only Lead II EKGs.

Furthermore, it is not possible to conclude whether the diminished performance in

Lateral MI detection is due to the reduced availability of samples in the dataset and at large

(purely lateral infarctions are uncommon [68]) or to the inability of the model to detect

them. A measure of caution is taken for the Antero-Septal-Lateral and Postero-Lateral

MIs due to their limited presence in the available data, where their exceedingly good

recognition rate might be due to chance.
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Table 6.2: Influence of MI Location on Detection Rate

6.3.3 Frequency Independence

Frequency independence is one of the key appeals and features of the proposed algo-

rithm. By not being limited to a specific sampling frequency, the model proposed herein

can be easily deployed to existing hardware and take advantage of the wide variety of data

available, albeit recorded at different sampling frequencies, without the need of expensive

and time-consuming retraining.
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Figure 6.9: Detection Rate According to MI Location

To test the frequency independence of the proposed model, a series of tests are per-

formed on three portions of the frequency spectrum of interest:

250-1000Hz: This is the training range of the detector and were the highest and most

stable detection rate is expected to be found.

10-250Hz: Low range frequency response. As the sampling frequency decreases, the

amount of data available to the model also decreases and as a result we expect a decrease

in performance as less data is available.

1kHz-10KHz: High frequency range. As the sampling frequency increases more data

is available. However, the time in between samples is also reduced, which might confuse
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the detector. One significant drawback of large sampling rates is increased processing

time and hardware cost.

Each of these ranges is subdivided into ten (10) distinct frequency sub-bands and the

model is tested on thirty (30) randomly selected distinct frequencies from the continuous

range within each bin boundary. For each frequency point within the bin, thirty (30) pa-

tients are randomly selected from the PTB-XL test set (fold 10) to obtain the performance

metrics. Within each bin, no two different frequency points can share data from the same

patient. Figure 6.10 showcases the accuracy distribution within each frequency band/bin.

Figure 6.10: Accuracy vs Frequency

To assess the claim of frequency independence, we perform a multiple comparison test

on the accuracy distributions for each of the frequency bands in the three relevant regions.

We use a pairwise t-test with Bonferroni adjustment. The significance level is at p < 0.05.
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Frequency Independence from 250Hz to 1kHz:Training Band. Within this frequency

band, there is no statistical evidence that any of the bins is different from each other. That

is, all p values for each of the pairwise t-tests are more than 0.05. See Table 6.3.

Table 6.3: Training Band Multiple Comparison Test

Frequency Independence from 10Hz to 250Hz: Low Frequencies. In this band there

are multiple bins which are different from each other. The statistical analysis shows no

evidence that there is any difference in accuracy from 10-106 Hz. While the same is true

for 178-250Hz. See Table 6.4.

Table 6.4: Low Frequencies Multiple Comparison Test

Frequency Independence from 1kHz to 10kHz: High Frequencies. This band performs

similarly to the low band. There is an accuracy transition period right after 2800 Hz which
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stabilizes after 3700 Hz. There is no statistical evidence of difference in accuracy from

3.7 kHz to 10 kHz. See Table 6.5.

Table 6.5: High Frequencies Multiple Comparison Test

To explore the width of the frequency invariant region around the training area, we

perform a new multiple comparison test with the mid bin accuracy of the training region

and the low and high side frequency bins. See Table 6.6.

Table 6.6: MidBand Performance Range Test

From these statistical analyses we can conclude that the proposed models performance

is independent from the signals sampling frequency from around 202Hz to 2800Hz, a

range considerably larger than that covered during training. However, although frequency

independence is observed in the training region, it is relevant to explore the possible causes

of the decrease in performance outside of it.

Figure 6.11 shows how the classifiers confidence (output) changes over the frequency

spectrum for both MI and HC beats. It is observable that the model remains fairly con-

fident (confidence > 0.5) on MI beats, but it becomes confused on healthy ones as the
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sampling frequency decreases past the lowest and increases above the maximum training

frequencies, thereby confusing healthy beats for infarcted ones.

Figure 6.11: MI detection Confidence VS Frequency for MI and HC beats

Here, perhaps, it is important to recall how LSTMs see time varying signals and to

remember that they produce a classification output for each input timestep. With this in

mind, when the classifier is presented with a one second signal sampled at half the min-

imum sampling frequency (250 Hz) seen at training (that is fs=125Hz), it sees a sample

that ends where it expects to find the R-peak and not sufficient data has been collected to

make a determination from the models perspective. On the other hand, when the signal

is sampled at a rate faster than the maximum seen during training, time apparently slows

down, taking more samples for events to happen than what was previously experienced.

When the sampling frequency is 2kHz, the model sees 2000 points for a one second

sample. By the time the R-peak happens in the sample, at 1000 points, it is expecting to

have seen the end of the longest previously experienced sample. However, the proposed
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final trained classifier is able to remain frequency invariant up to frequencies two and a

half (x2.5) times higher than the maximum seen at training.

Another important key variable in the classifiers performance is the ability of the beat

detection algorithm to actually detect beats. Figure 6.12 plots the number of detected

beats versus the signals sampling frequency. It is evident in this plot that the detectors

performance decreases as the sampling frequency does, particularly below 106Hz, with

the worst performing range being 10 to 34 Hz, where in some instances the detector fails

to detect any beats whatsoever. This is to be expected due to the fact that at very low

sampling frequencies, the EKG becomes unable to reliably sample its most important

feature for beat detection and segmentation, the R-spike.

Figure 6.12: Heartbeat Detection Variability vs Frequency
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Nonetheless, the detector and beat segmentation algorithm performs adequately for

frequency bands above 58Hz where no significant difference in their performance can be

observed.

Therefore, to improve the models performance at high frequencies, we simply need

to expose it to higher frequency samples at training time, where the highest expected

sampling frequency is taken into consideration. However, increasing performance on the

lower side of the spectrum is a bit more challenging, as we are bound by the Nyquist

criterion when setting a lower bound on a practical frequency at which we can still sample

the frequency components associated with the ventricular depolarization events.

6.3.4 Comparison

Comparing the proposed method to existing ones is not very straight forward for the

following reasons:

1) Type of dataset generation and classifier, inter- vs intra- patient.

2) Dataset used. The same classifier can have drastically different performance over dif-

ferent datasets.

3) Leads used. The number of leads used by the model affects the performance for the

simple reason that some type MIs are more visible in some leads over others. More leads

(i.e. more views of the heart) equals more information.

4) Frequency dependency. To our knowledge, there is no other frequency independent MI

detector present in the literature.
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However, we still present an encompassing picture of related studies and go ever their

differences and similarities in the forthcoming tables. Table 6.7 goes over the different

variables of importance associated with the different models proposed in the literature.

It shows how there is large diversity of models/methods employed along with different

sample sizes, number of EKG leads, dataset generation method, and even preprocessing

steps (filtering).

Table 6.7: Myocardial Infarction Detection Methods Comparison

Table 6.8 shows a more detailed performance comparison of the methods that most

closely resemble the type of data used by ours and those that can be more fairly compared
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to each other. From it, we can appreciate that the proposed algorithm outperforms all

others in terms of specificity over all tested sets. However, it does not achieve better

metrics for Accuracy, Specificity, or J; the best performance in those is achieved by the

model we originally proposed in Chapter 4. The increased performance from the latter

might be due to the fact that said was trained over the PTB database and perhaps learned

some intrinsic characteristics of such that help it at testing. On the other hand, it could

also be latching on to the 50Hz underlaying signal present in the PTB database for only MI

patients, something their preprocessing steps fail to remove, as they use a 60Hz band-stop

(BS) filter instead of a 50Hz one. Furthermore, it could also be due to specialization, or in

this models case generalization; perhaps learning how to detect MIs at various sampling

frequencies causes the model to learn generalization procedures that decrease its perfor-

mance at any given single frequency point.

Table 6.8: MI Detector Performance Comparison

Overall, the detection model and associated processing pipeline presented herein, to

the best of our knowledge, are the first to attempt myocardial infarction detection indepen-

dent of the signals sampling frequency. We are also the first to test a trained MI detector

across datasets, that is, training in one dataset and testing its performance in another. The
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proposed algorithm and training procedure presented herein, have not been previously

employed in the literature and highlight a new possible research direction. Finally, the

model itself shows great promise and has the potential and ability to be readily deployed

on existing hardware devices that collect electrocardiogram signals from standard lead II

with no need for retraining.
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CHAPTER 7

CONCLUSION

7.1 Central Aim

This study aimed to develop a real-time single-beat frequency independent myocardial

infarction detector from single-lead (Lead II) electrocardiograms for the early detection

and treatment of the leading cause of dead in the United States prior to COVID-19, heart

attacks. To fulfill this aim, we explored the literature for the latest detection algorithms

and their deficiencies, while developing new methods and algorithms to overcome them.

7.2 Contributions

In Chapter 2, we introduced an algorithm for the real-time detection of the most dis-

tinct component of the cardiac electrical signal, the R-peak. It implemented independent

component analysis (ICA) to isolate the source of this signal and a rolling threshold to

select potential candidates. This approach could lead to real-time analysis and decompo-

sition of the complete cardiac signal and the online diagnosis of cardiac abnormalities.

The potential benefits of such real-time implementation are far reaching, from the online

diagnosis of diseases and abnormalities to its use in tracking heart functioning during

the testing and development of cutting-edge research and treatments, such as transcranial

magnetic stimulation.

In Chapter 3, we explored the literature for the latest myocardial infarction classifi-

cation and detection methods, as well as the available databases and their makeup. We

further evaluate how training datasets are currently generated in the literature and ex-
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perimentally highlighted the tendency of machine learning models to overfit and provide

misleading testing metrics when evaluated over improperly engineered sets.

In Chapter 4, we proposed a novel multilayer LSTM neural network for near-real

time and accurate infarction detection using one-second EKG samples of Lead II EKGs.

148 myocardial infarction patients and 52 healthy controls which were split into 10 non-

patient-overlapping sets for 10-fold cross validation. The proposed algorithm, which

uniquely relies on a single heartbeat of single-lead (lead II) electrocardiograms, achieved

an accuracy of 89.56%, recall/sensitivity of 91.88%, a specificity of 80.81%, all with a

95% Confidence Interval (CI). It is emphasized that in the approach considered, while

deploying the patient split method, care was taken that no heart beats or subjects (MIs and

HCs) seen in the training phase are considered in the testing phase. Moreover, within the

design construct of the model allowed for a processing time of only 40 milliseconds to

diagnosis, which is well within the time in between two heartbeats of 300 milliseconds,

assuming a fast heart rate. This fast-processing capability of the model allows for its

deployment on existing wearable/portable devices and other test instruments which could

have significant societal impact in the lives of at-risk patients and the population at large.

In Chapter 5, we put forward a novel pipeline for the real-time online detection of my-

ocardial infarction from a single heartbeat of a 12-lead electrocardiogram. Our pipeline

combines a real-time R-spike detector with a novel deep LSTM classifier to produce highly

accurate and fast detection results (40 milliseconds when accounting for preprocessing

time). The proposed system achieves state-of-the-art performance with an accuracy of

95.76% with a 95% confidence interval (CI) from 93.36% to 98.16% and the average

J-Score is 90.31% with a 95% CI from 84.11% to 96.51%. The uses and benefits of the
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proposed system are far reaching as they can have significant societal and clinical impacts

in the lives of not only at-risk patients but also the population at large.

Finally, in Chapter 6 we combine previous knowledge from chapters 3, 4 and, 5 and

present a novel and complete pipeline along with a deep-LSTM neural network for the

detection of Myocardial Infarction. By combining a modified real-time heartbeat detec-

tor with frequency resampling, and dataset balancing, we achieve a real-time single-beat

frequency independent myocardial infarction detector that could be readily deployed and

integrated to existing exercise and cardiac monitoring equipment with sampling frequen-

cies ranging from 202Hz to 2.8KHz with no need to modifications to any component of

the pipeline. The proposed model achieves MI detection rates of 77.02% combined across

the tested datasets (of different sampling frequencies) and a specificity of 88.08% with a

combined accuracy of 80.90%.

However, regardless of what results we obtain in this study and as mentioned before in

the literature, the true benefits of any MI detector would depend on the numbers of at-risk

individuals. Because a significant portion of MIs mortality is due to the lack of awareness

to the condition and therefore the lack of immediate medical attention. Consequently, such

an approach could significantly improve the odds of detecting silent MIs by monitoring

at-risk individuals and providing them with an early diagnosis. Determining the early sign

of MI could help in the planning of early treatment and extending the time available for

doctors to plan ahead on an individual basis in case of an emergency.

Furthermore, integrating the proposed approach to a standalone software/hardware

platform that would monitor a patients cardiac activity, perhaps through the use of widely

available fitness trackers and other currently commercially available wearable devices,
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would be a significant portion of our research efforts for the next step in the development

of this software-based design. Moreover, given the implemented architecture of our final

LSTM model, we could also seek to identify at which point of the heartbeat the presence

of myocardial infarctions becomes evident, as the last LSTM layer can be set up to provide

a per-time-step diagnosis.

7.3 Retrospective

The genesis of this research is in the intent of developing and deploying a novel

multilayer Long-Short Term Memory Neural Network (LSTM) architecture with unique

application for the diagnosis of myocardial infarctions from individual heartbeats of single-

lead electrocardiograms. To the best of our knowledge, this research work is the first to

attempt single lead (lead II) electrocardiograms on individual heartbeats that achieve near

real-time diagnosis with a processing time of 40 milliseconds. It is worthy to note that

the processing time of 40 milliseconds is most appropriate for online classification as

the time between fast heartbeats is around 300 milliseconds, which is well above the

achieved processing time. In order to achieve this processing time and still have a high

accuracy, a simplified LSTM-based model is proposed without compromising its flexi-

bility and accuracy for myocardial infarction detection. The designed architecture takes

into consideration all the different data splits methods in the training phase and cautions

against data splits that could conceal the occurrence of overfitting to produce misleadingly

high-testing metrics of the models performance. Moreover, the proposed approach with its

fast processing time and optimal design architecture lends itself to a standalone integrated

software/hardware platform that would monitor a patients cardiac activity, through the use
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of widely available fitness trackers and other currently commercially available wearable

devices.

The novelty of this research endeavor in the area of myocardial infarction detection

and the contributions made are reflected through the following observations:

1. The depth (number of layers), size of layers, and architecture of the model (the

model itself is not widely used, although the LSTM neurons are). In general, there is

nothing special about similar architectures of decent size, as we can get the same perfor-

mance out of a network with 100 neurons in the first layer and 50 in the second layer, as

we did for ours. The main objective behind the proposed network is to minimize the risk

of overfitting while allowing for flexibility and accuracy in the results. The number of

neurons (100) is deemed large enough to accommodate the significant features but not too

large as to prohibitively increase the training time. When added complexity is required

of the model, then more layers could be added, but with caution that it could lead to

overfitting if there is not enough variability in the training data.

2. This research work provides valuable insight into the importance of proper data

splitting techniques when generating training and testing datasets and we highlight key

findings on the issue of data splits and show how they can be ineffectual if not deployed

properly.

3. Empirical evaluations demonstrate the propensity to overfitting that the powerful

LSTMs architecture have through empirical data (randomized data labels and different

splitting methods). Evidently, all machine learning methods, even KNNs, have a propen-

sity to overfit, so what we tested was two-fold:(a) we show that if the data is not properly
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split into training and testing sets, overfitting occurs in a non-apparent way, masked by

the contamination of the testing set, and misleadingly yielding a high performance that

will not match that of the deployed system in real-unseen data; (b) in the particular case

of LSTMs, we show that they can overfit to such an extreme as to memorize data from

a patient to effectively yield a biometric detector, while the only thing linking heartbeats

from the testing and training sets is that the testing data came from patients seen during

training (even though the testing heartbeats were not used for training). This is extremely

important to consider when deploying such LSTM-based models. In retrospect, we do not

claim that we have found a way to overcome overfitting, overfitting will always happen in

the long run; what we did is made sure that we are detecting it and that we are not being

blinded to it by ineffectual splitting techniques.

4. Proposed the use of the of independent component analysis as means to extract

that independent component bound to contain the R-peaks in the QRS complex as the

most distinct and important feature for analyzing EKG data. This approach separates the

components of the cardiac electrical signal and applies the detection process on them. It

preserves all the leads recordings of the signal for observation and validation while still

performing heart disease biomarker detection over the independent components.

5. Developed and implemented an integrated method that combined the LSTM and

the real-time R-peak detection as means to consolidate their potential for more accurate

and faster detection of myocardial infarction condition. A method found to be extremely

beneficial for monitoring patients under cardiac stress and/or at risk of myocardial infarc-

tions, while still significantly improving the prospects for both the correct diagnosis of the

disease condition and the subsequent planning of early intervention and treatment.
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6. In MI research, since there is no common standard frequency range by which a de-

tector could be designed to be stable over any prescribed frequency range, this dissertation

also delves into designing an MI detector that is not only single lead but also frequency

independent for its easy deployment in currently available exercise equipment and fitness

monitoring devices. Recall that in this mission of seeking frequency independence of this

single lead detector, the real-time processing issue for its practical deployment has already

been resolved.

As a result of all these new developments, a novel myocardial infarction (MI) system

design was created for inter-patient MI detection from individual heartbeats of single-lead

(lead II) electrocardiograms not seen in the training phase. This detector assimilates

high detection accuracy and near real-time processing of 300 milliseconds to a diagnosis.

The design was further augmented to be frequency independent and stable performance

metrics were still obtained over the frequency range of 202Hz to 2.8kHz. MI detection,

applied over this wide frequency range and on the entire PTB database (the largest EKG

database that is available to the research community), was achieved with an accuracy of

77.12%, a positive predictive value (PPV) of 75.85%, and a negative predictive value

(NPV) of 83.02%. In achieving this final design model, initial design steps took into

serious consideration the different data splits methods in the training phase to prevent

data contamination and overfitting. The ultimate goal of this research was reached by

establishing an MI detector that is accurate, capable of real-time processing, and amenable

to real-world use on fitness trackers and other wearable heart monitoring devices.
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