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ABSTRACT This study focuses on the design, implementation and subsequent verification of a new type
of hybrid extraction system for noninvasive fetal electrocardiogram (NI-fECG) processing. The system
designed combines the advantages of individual adaptive and non-adaptive algorithms. The pilot study
reviews two innovative hybrid systems called ICA-ANFIS-WT and ICA-RLS-WT. This is a combination
of independent component analysis (ICA), adaptive neuro-fuzzy inference system (ANFIS) algorithm or
recursive least squares (RLS) algorithm and wavelet transform (WT) algorithm. The study was conducted
on clinical practice data (extended ADFECGDB database and Physionet Challenge 2013 database) from the
perspective of non-invasive fetal heart rate variability monitoring based on the determination of the overall
probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV) and harmonic mean
between SE and PPV (F1). System functionality was verified against a relevant reference obtained by an
invasive way using a scalp electrode (ADFECGDB database), or relevant reference obtained by annotations
(Physionet Challenge 2013 database). The study showed that ICA-RLS-WT hybrid system achieve better
results than ICA-ANFIS-WT. During experiment on ADFECGDB database, the ICA-RLS-WT hybrid
system reached ACC > 80 % on 9 recordings out of 12 and the ICA-ANFIS-WT hybrid system reached
ACC > 80 % only on 6 recordings out of 12. During experiment on Physionet Challenge 2013 database the
ICA-RLS-WT hybrid system reached ACC > 80 % on 13 recordings out of 25 and the ICA-ANFIS-WT
hybrid system reached ACC > 80 % only on 7 recordings out of 25. Both hybrid systems achieve provably
better results than the individual algorithms tested in previous studies.

INDEX TERMS Noninvasive fetal electrocardiography, independent component analysis (ICA), adaptive
neuro fuzzy inference system (ANFIS), recursive least squares (RLS), wavelet transform (WT), ICA-ANFIS-
WT, ICA-RLS-WT, hybrid methods, fetal heart rate variability monitoring, extraction systems.

I. INTRODUCTION
Before the advent of electronics in obstetrics and gynae-
cology, doctors had to rely on their senses and experience.
One of the first methods to detect non-invasive fetal cardiac
activity was to listen to (auscultation) heart sounds using
a stethoscope [1]. In this way, only basic information such
as indicative fetal heart rate (fHR), significant arrhythmias,
or cardiac arrest could be obtained about fetal health [2].With
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the development of electrical engineering, it was possible to
switch to more advanced fetal health monitoring - electronic
fetal monitoring (EFM) [3]. In the 1960s, cardiotocogra-
phy (CTG) was introduced; this is a new method using the
ultrasound principle that allows EFM while watching uterine
contractions [4].

EFM breeds the possibility of continuous monitoring and,
thus, early detection of symptoms of fetal hypoxia [5] and
other life-threatening conditions. This has led to a significant
reduction in neonatal mortality, as shown, for example, by the
study presented by Chen et al. in [6]. CTG is currently
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technically sophisticated and forms an essential part of mod-
ern obstetrics for its simplicity, speed, non-invasiveness and
painlessness [7]. Despite these innumerable advantages, how-
ever, it faces problematic reliability and accuracy. In addition,
its great drawback is the fact that it does not provide any
information about Beat to beat (BTB) variabilities [8]. This is
mainly due to the methods that are used to reduce the number
of signal loss episodes. These methods include, in particu-
lar, correlation methods based on signal periodicity analysis.
Their use leads to significant averaging of instantaneous fHR
values [8]. It is therefore not possible to detect rapid changes
in fHR - so-called short-term variability (STV) [8], [9], which
is important for the assessment of fetal health.

Cases, when fetal hypoxia is diagnosed falsely positively,
pose a big problem. Many studies [10]–[16] blame CTG for
the large increase in the number of Caesarean sections, which
has provably increased since this method was put into prac-
tice. The acute caesarean section, as a very invasive surgical
procedure, is a great burden for the woman’s, as well as the
child’s, body compared to the natural mode of delivery. Many
researches [17]–[19] show that it is not only a physical, but
also mental, burden that can lead to post-traumatic stress.
In addition, this type of delivery is associated with consid-
erable economic losses for hospital facilities [20], [21].

Fetal electrocardiography is a monitoring technique based
on electrical potential monitoring, manifesting cardiac activ-
ity, specifically in the form of a fetal electrocardiogram
(fECG). Fetal ECG has been studied for over 100 years -
it was first mentioned in the scientific literature as early as
1906, when Cremer presented the first record of an abdominal
fECG [22]. However, significant progress in this area took
place about 50 years later, mainly due to the work of three
independent groups of scientists in London, Stockholm and
Paris [1]. This led in particular to the first direct fECG record-
ings that were presented at the Mount Sinai Hospital meeting
in 1956 [23]. This accelerated further research in this field,
in particular, the investigation of fECG morphology, and the
heart rate derived therefrom, and their changes in the case
of pathological conditions [1]. These findings have led to a
better understanding of the pathophysiology of the fetal car-
diovascular system during childbirth and, thus, to recommen-
dations for obstetricians used also for CTG monitoring [1].

The first attempts to capture the non-invasive fECG at the
beginning of the 1960s were limited mainly by the technical
possibilities at that time. Many authors [24]–[26] have been
able to capture abdominal ECGs (aECGs) and describe them
in relation to invasive recordings, but the major limitation
was the large amount of interference that was sensed along
with the useful signal, especially the maternal ECG (mECG).
Although there were efforts to perform automatic reduction
of the maternal component from the aECG, its complete
elimination was not achieved [1].

The biggest problem with the reduction of the maternal
component is the fact that the fECG signal overlaps in the
time and frequency domain and, moreover, its amplitude
is several times higher. Hence, classical linear filtration is

ineffective in this respect and more advanced methods are
required. With advances in computer technology and signal
processing techniques, significant progress has been made in
the extraction of fECG in recent decades. A large number
of authors have achieved successful extraction using various
methods and approaches, including:

1) Methods using only abdominal electrodes (AES meth-
ods) [27]–[65],

2) Methods using a combination of abdominal and tho-
racic electrodes (CS methods) [52], [66]–[89].

Healthcare professionals prefer the former, as it is clinically
better feasible and more comfortable for the patient. Thus,
most commercially available fECG-based devices use only
abdominal measuring electrodes. At present, the main param-
eter in obstetrics is fHR. In this respect, a large number of
AES algorithms have proven to be sufficient [32], [90], [91],
leading to the implementation of the first commercially avail-
able NI-fECG-based systems in clinical practice in recent
years [92], [93].

On the other hand, it should be noted that many authors
have achieved very good results with adaptive methods using
the CS approach [52], [66], [67], [71], [89]. As already
mentioned, AES methods are useful for determining fHR
obtained by detecting R-peaks of the ECG waveform. Nev-
ertheless, processing by these methods generally distorts the
fECG waveform, thus changing its morphology [94]–[96]
(ST segment, QT interval, T/QRS ratio), which is important
from a diagnostic perspective. From this perspective, adaptive
CS methods are more effective. Therefore, combining both
approaches is one way to improve the quality of fECG extrac-
tion. Examples of such research have been presented in [97],
where hybrid methods based on combination of CS and AES
algorithms appear to be the most effective methods, see [59],
[98]–[102].

By developing new or improving existing methods of
fECG monitoring, it could lead to both improved diagno-
sis of fetal hypoxia and minimized unnecessary Caesarean
sections due to putative hypoxia. At the same time, the ST
analysis of the ST section of the fECG waveform (STAN) is
an available option, see [94]–[96]. This sophisticated method
enables observation of the ST segment of the ECG waveform
of the fetus, which is sensed transvaginally using a fetal scalp
electrode (FSE). It is an invasive method that can only be
used during delivery. An example of a device capable of
performing ST analysis is, for example, STAN S31 made by
the Swedish company Neoventa Medical AB [103].

The main challenge of current research is developing a
system based on NI-fECG able to provide morphological
analysis similar to the invasive ST analysis (i.e. NI-STAN).
This paper proposed a method that, when optimized, would
be able to achieve this task. To achieve this, it is necessary to
find suitable algorithms in terms of both the extraction quality
and the clinical feasibility, which is associated with both the
performance and the computational cost.

Some of the authors tested the methods separately, some
combined other methods. The results of studies [98]–[102]
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show that hybrid methods outperform the other methods
by means of the quality of the fECG extraction. The aim
of the study proposed therein is combining the methods in
order to combine their advantages and to eliminate their
drawbacks. The approach of evaluating the results is also
novel since we investigated the overall trend of the fHR
curve in comparison with the reference FSE along with the
standard evaluation by means of quality parameters such as
accuracy (ACC), sensitivity (SE), positive predictive value
(PPV), the harmonic mean between SE and PPV (F1), and so
on.

The original contribution of this article is to test new
hybrid methods combining independent component analy-
sis (ICA), adaptive neuro-fuzzy inference system (ANFIS)
algorithm, recursive least squares (RLS) algorithm and
wavelet transform (WT) algorithm. Separately, these meth-
ods are relatively effective in fECG extraction [52], [66],
[67], [71], [89]. Thus, their incorporation into the extraction
and post-processing phases in a complex fully automated
hybrid system seems very advantageous. Many authors have
only tested their algorithms using synthetic data. However,
the algorithm presented in this article has been verified on
real clinical data - using the gold standard in the form of a
signal continuously scanned with a FSE [104], [105].

The team of authors, as well as other research teams around
the world in the past, tested both ICA and principal compo-
nent analysis (PCA) [29], [51], [58], [98], [106] and adaptive
systems using algorithms such as least mean squares (LMS)
and RLS [69], [71], [107]–[109]. Based on the results sup-
ported by the statistical analysis, it can be stated that the
robust hybrid system presented here achieves far better results
in the determination of the fHR than the two aforementioned
approaches alone. At the same time, this system is potentially
able to extract the fECG waveform in such a way that a more
detailedmorphological analysis can be performed. This could
lead to creating a new non-invasive alternative to the current
STAN method.

Based on the in-depth research [97] and the initial experi-
ments [58], [110] conducted, the ICA algorithm for the first
part of the hybrid methods was selected. It has been found
that the ICA algorithm is able to extract an mECG component
from the aECG signals containing only the mECG signal and
an aECG component containing the mECG signal and the
fECG signal that is highlighted and is located at the same
amplitude level as the mECG signal (marked as aECG*).
Pre-processing of input aECG signals for adaptive algorithms
thus forms an ICA algorithm. The mECG and aECG signals
obtained after pre-processing are used as inputs to two differ-
ent adaptive algorithms. These are ANFIS and RLS adaptive
algorithms. The output fECG signal from both adaptive algo-
rithms needs to be smoothed using WT (after fECG signal
processing). The combination of these algorithms resulted
in 2 hybrid methods, ICA-ANFIS-WT and ICA-RLS-WT.
This chapter will deal with the 4 algorithms (ICA algorithm,
ANFIS algorithm, RLS algorithm and WT algorithm) and
their mathematical description.

A. INDEPENDENT COMPONENT ANALYSIS
This is an algorithm that tries to find a linear representation
of non-Gaussian data that contains statistically independent
components. When processing the fECG signal, the ICA
algorithm principle can be easily explained. There are 2 elec-
trodes located in the abdominal area of a pregnant woman
providing 2 time signals: x1(t) and x2(t). These signals then
include the sum of the signals induced by the maternal and
fetal cardiac activity designated s1(t) and s2(t) (in reality,
moreover, the noise-induced signals). In general, the com-
position of the signals x1(t) and xn(t) can be described by
equations (1) and (2), where Amix denotes a mixing matrix,
a denote parameters depending on the distance of individual
cardiac activities from the electrodes and n denotes the num-
ber of statistically independent components. The problem is
that the parameters a are not known. The only possibility
is to assume that the signals s1(t) and s2(t) are statistically
independent, which is confirmed when processing the fECG
signal. Equation (3) is then used to estimate independent com-
ponents from mixed aECG signals, where W is the inverse
matrix from the Amix matrix [29], [58], [110]–[112].

xj = aj1s1 + aj2s2 + · · · + ajnsn. (1)

−→x = Amix
−→s =

n∑
i=1

aisi. (2)

−→s = W−→x . (3)

Themost widely used type of ICA algorithm is the FastICA
algorithm. It is based on a fixed iteration scheme looking for
maxima of data not derived from−→w T−→x normal data distribu-
tion. To devise the FastICA algorithm, weight vector −→w and
derivative g of the non-quadratic G function are needed. The
FastICA algorithm is based on 4 steps. Before performing
the following steps, pre-processing using centring must be
applied to create data of zero mean value and whitening
to create data vectors whose components are subsequently
uncorrelated with unit scattering. Furthermore, the conver-
gence criterion δ (δ = 0.00001 is often used), the maximum
number of iterations of the kICA cycle (often kICA = 100) and
the number of ICA, n output components must be selected.
The smallest recommended number of output components
for fECG signal processing is ICA, n = 3. Convergence
seeks to achieve practically zero scalar product between old
and new vector values. First, random standardized initial
weights of vector −→w T−→x are created. Then the current vector
−→w + is stored in vector −→w , and the equation (4) is used to
calculate the kurtosis, or the negentropy can be calculated
in this step. Subsequently, the standardization is performed
using equation (5). The last step checks whether the scalar
product of the new vector −→w + and vector −→w is smaller than
the selected convergence criterion δ, and whether the cycle
has been run more times than the maximum number of kICA
iterations selected. If the condition is not met, the second and
third steps of the FastICA algorithm are repeated [110], [112].

−→w + = E{−→x g(−→w T−→x )} − E{g′(−→w T−→x )}−→w . (4)
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−→w + =
−→w +

‖
−→w +‖

. (5)

B. RECURSIVE LEAST SQUARES FILTER
Adaptive algorithms calculate error e(n) between the desired
and real output of the adaptive algorithm using equation (6),
where d(n) is the desired output of the adaptive algorithm
and y(n) is the actual output of the adaptive algorithm. The
adaptive algorithm attempts to adjust the filter coefficients
w(n) to achieve an output as much correlated as the desired
one [71], [113].

e(n) = d(n)− y(n). (6)

The RLS algorithm is based on recursive determination of
weight coefficients, Kalman filter theory, time averaging and
also on the LMS algorithm. The advantage of this algorithm
is that it uses the values of previous error estimates and has
very high performance in time-varying environments. The
disadvantage then is that it has higher computing complexity
and has stability problems. Its aim is to minimize the result of
the objective function ξ , see equation (7), where n represents
the external time index indicating the number of last values
and k denotes the internal time index. The required output
p can be expressed by equation (8), where λ denotes the
forgetting factor being in the interval <0,1>. Most often,
the forgetting factor ranges from 0.95 to 0.99. The forget-
ting factor λ serves for forgetting the previous values. It is
desirable to make a compromise between trying to achieve
parameter convergence using λ = 1 and between the ability
to monitor the algorithm’s sensitivity to changing parameters
using λ < 1. The ideal solution to the problem is to use a
variable forgetting factor [71], [113], [114].

ξ (n) =
n∑

k=1

pn(k)e2n(k). (7)

pn(k) = λn−k. (8)

From equation (7), it is clear that at a certain time n, all
the values obtained since the start of the RLS algorithm must
be available. This means that the number of values processed
rises with increasing time and, therefore, the RLS algorithm
is very memory intensive. To reduce the computational com-
plexity, the NRLS filter order is used, which indicates the final
number of previous values processed [71], [113], [114].

This algorithm updates the current variables in each itera-
tion cycle based on the state in the previous iteration. When
implementing the RLS algorithm, it is possible to reduce the
computational complexity (except for decreasing the order of
the filter) by omitting the inverse matrix step, whose calcula-
tion is not necessary in practice. In the first step, the filter
output is calculated using the input vector of the current
iteration and using the filter weights obtained during the
previous iteration, see equation (9), where the vector −→x (n)
denotes the input signal. In the second step, the mean gain
vector is calculated using equation (10) and (11). The third
step solves equation (12), which determines the value of the

estimation error. In the following step, the balance vector
−→w (n) is updated using the estimation error value and the gain
vectors, see equation (13). In the last step, the inverse matrix
is calculated, see equation (14), and the pattern selection from
the training set is terminated. In Figure 6, the RLS algo-
rithm application block can be seen, where the λ parameter
shows the forgetting coefficient and NRLS indicates the filter
order [71], [113], [114].

−→
y n−1(n) =

−→
w T(n− 1)−→x (n). (9)

−→u (n) = 9̃−1λ (n− 1)−→x (n). (10)
−→
k (n) =

1

λ+−→x T(n)−→u (n)
−→u (n). (11)

−→
e n−1(n) = d(n)−

−→
y n−1(n). (12)

−→w (n) =
−→
w T(n− 1)+

−→
k (n)
−→
e n−1(n). (13)

9̃−1λ (n) = λ−19̃−1λ (n− 1)

−
−→
k (n)[−→x T(n)9̃−1λ (n− 1)]. (14)

C. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
This is the most commonly used adaptive algorithm to
extract the fECG signal, developed by Jang in his work
in 1993 [115]. This adaptive algorithm belongs to softcom-
putingmethods, which are methods based on analytical meth-
ods, boolean logic, sharp classification, and deterministic
search. The ANFIS algorithm can often be referred to as
a hybrid adaptive algorithm because it combines a fuzzy
inference system such as Takagi-Sugeno (fuzzy logic) [116],
[117] and a feed-forward neural network learning algo-
rithm [118], [119]. It is, therefore, a very powerful algorithm
utilizing the advantage of fuzzy expert systems (the ability
to work with inaccurate data) and neural networks (learning
from the environment). In addition, the ANFIS algorithm
can work with a learning algorithm consisting only of a
backpropagation algorithm (BP) or a combination of BP and
LMS algorithm [87], [120].

Thus, the ANFIS algorithm manifests itself as a fuzzy
expert system implemented by a multilayer feed-forward
neural network, and it is important to include Sugeno zero
or first order model. Next, the system needs only one output,
has no shared rules, the output membership functions are
of the same type (linear or constant), and the number of
rules correlates with the number of membership functions.
Figure 5 shows the block diagram of the ANFIS algorithm.
As the inputs of the noise cancellation system using ANFIS
algorithm, we use mECG a mECG*, which is mECG with
a 1 sample delay that is necessary for a correct estimation
of the maternal component from the aECG* signal. It can be
seen from the figure that the ANFIS algorithm architecture
consists of 5 feed-forward layers. The ANFIS algorithm rule
base can be described by two IF-THEN rules, see equa-
tions (15) and (16) [80], [87], [120].

R1 : IF x is A1 and y is B1,

THEN z1 = p1X + q1Y + r1. (15)
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R2 : IF x is A2 and y is B2,

THEN z2 = p2X + q2Y + r2. (16)

In the 1st layer, which is adaptive and referred to as an input
layer, fuzzification of input language variables representing
individual nodes is performed. The functions for individual
nodes can be written using equation (17). The neural net-
work adapts, by its learning in the first layer, parameters of
membership functions representing the antecedent. In the 2nd
layer, which is called a rule layer, a multiplication of the first
layer output signals is performed to determine the rules of
weights w. The antecedent of rules is composed of language
values of language variables. Thus, this layer consists of only
non-adaptive nodes representing individual Takagi-Sugeno
fuzzy rules. The weight of each rule is at the output of the
2nd layer and can be calculated using equation (18). The next
layer represents the standardization layer composed only of
non-adaptive nodes. The output of the 3rd layer is the ratio
of the weights of individual rules to the sum of all rules.
The standardized force of each rule is calculated using equa-
tion (19). The defuzzification layer (4th layer) uses adaptive
nodes that have a linear or constant transmission function
determined by the consequent. The 4th layer is connected to
the standardization nodes as well as to the language variables
x and y. The calculation of the adaptive nodes of the 4th layer
is performed by equation (20), where p, q and r represent the
parameters of the consequent. The last, 5th layer, consists of
one non-adaptive node called summation, which uses equa-
tion (21) to determine ANFIS [80], [87], [120].

o1,i = µAi (x).

o1,i = µBi (y). (17)

o2,i = wi = µAi (x) · µBi (y). (18)

o3,i = wi =
wi

w1 + w2
. (19)

o4,i = wifi = wi · zi = wi(pix + qiy+ ri). (20)

o5,i =
∑
i

wifi =

∑
i wifi∑
i wi

. (21)

Correct functionality of the ANFIS algorithm is very often
performed by a combination of suitably set nonlinear param-
eters of the 1st layer using the BP and appropriately set linear
parameters of the 4th layer using the LMS algorithm. This
hybrid combination of BP and LMS algorithm was also used
in our study. At the output of the ANFIS algorithm, the total
error between the ANFIS output and the desired output is
calculated. The program ends when an optimally small total
error is reached or when the number of selected epochs (iter-
ations) is exceeded. This combination of the ANFIS algo-
rithm using BP and the LMS algorithm includes forward and
reverse run [80], [87], [120].

D. WAVELET TRANSFORM
It is a very similar algorithm as the Fourier transform, but
its great advantage is that it is very effective in process-
ing non-stationary signals and signals containing multiple

components (such as fECG signal processing). The essence
of the WT algorithm is to select the appropriate shape and,
then, the width of the wavelet. Often, wavelet types such as
Daubechies, Symlets, and Coiflet are used in fECG signal
processing. The Daubechies wavelet type seems to be the
most suitable [39], [121], so in this work, this wavelet is
selected when performing R-peak detection and smoothing
the resulting fECG signal. In case a wrong type of mother
wavelet is used, the result of WT could be unsufficient.
Indeed, it could cause distortion of the output signal leading
to inaccurate R-peaks detection. Basically, this algorithm
performs signal decomposition using the selected type and
width of the maternal wavelet 9 [46], [122].
When applying discrete WT (DWT), it is necessary to

choose the type of maternal wavelet9 and the decomposition
level n. In the first decomposition stage, the signal is decom-
posed by the Low-pass filter to one cA approximation com-
ponent (containing the lower half of the frequencies and pro-
viding the overall signal trend) and by the high-pass filter to
one detailed cD component (containing the upper half of the
frequencies and providing additional fineness information).
In the second decomposition stage, the approximation com-
ponent of the signal is divided into another one approximation
component and one detailed component. This is happening
until the final selected degree of decomposition [46], [122].

Equation (22) is used to describe DWT, where 9∗j,k is a
complex conjugate function to the daughter wavelet9j,k. The
daughter wave, which is dilated and shifted, can be described
by equation (23), where j is the number of wavelets needed
to cover the maternal wavelet and k is the wavelet position
over time. The reverse DWT contains, at its input, signal c
composed of the last approximation component and of all the
detailed components from the highest degree of decomposi-
tion to the lowest one, see equation (24), where n denotes
the degree of decomposition chosen. This composite signal
is adjusted by thresholding before the DTW is completed.
With reverse DWT, convolution with reconstruction filters
is applied. Equation (25) is used to calculate the inverse
DWT [46], [122].

DWT (f ) = F(j, k) = f̂ (j, k)

=

∫
∞

−∞

f (t) ·9∗j,k(t)dt. (22)

9j,k(t) = 2
j
29(2jt − k). (23)

c = cAn + cDn + cAn−1 + · · · + cA1. (24)

DWT−1(F) = f (t) =
∑
j,k

cj,k ·9j,k(t). (25)

Thresholding removes part of the noise by setting the
coefficients to zero. The coefficients representing the useful
portion of the signal are left undamaged. Adaptive thresh-
olding uses the calculation of the noise standard deviation
σ in a floating window with the selected length l and the
selected empirical constant K to calculate the empirical
threshold λ, see equation (26). Subsequently, it is advisable to
select soft thresholding. First, the coefficients having a value
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smaller than the threshold value are set to zero. Thereafter,
the remaining coefficients having a value greater than the
threshold value are shifted to zero by the threshold size.
Equation (27) shows soft thresholding where U denotes the
data processed [46], [122]–[124].

λj,k = σj,k · K . (26)

D(U , λ) = sgn(U )max(0, |U | − λ). (27)

II. EVALUATION PARAMETERS
Correct evaluation is vital to verify the accuracy of the
proposed method. Various evaluation parameters are used
among different studies, so it makes an objective comparison
challenging. This chapter describes the evaluation parameters
that were selected for the evaluation of the results in order to
ensure objectivity and repeatability of the experiments.

A. DETERMINATION OF EXTRACTION ACCURACY
To determine the accuracy of the extraction of the fECG
signal relative to the reference fECG signal, the use of param-
eters determining the true positive values (TP), false posi-
tive values (FP) and false negative values (FN) was chosen.
The number of TPs indicates how many times the R-peak
was determined by the detector in the extracted signal at
certain signal locations where R-peaks are to be determined
by reference. The TP determination interval was 50 ms left
and 50 ms right of the reference annotations. This interval
was determined based on a study by Billeci and Varanini
in 2017 [125]. This interval then serves to determine the num-
ber of FNs. If, according to the reference annotation, an R-
peak was to be a frequency in the given point of the signal, but
it was not determined in the extracted fECG signal; thismeans
omitting the R-peak while increasing the number of FNs. The
number FP indicates the determination of R-peaks outside
the intervals in which the R-peaks are located by reference.
When displaying the variable of fHR over time. An example
of TP, FP and FN determination can be seen in Chapter IV,
Figure 11.
By means of the TP, FP and FN values obtained, ACC

can be calculated using equation (28), which is an estimate
of the probability of correct detection of the R-peak (TP) by
the hybrid method used relative to the reference. Parameter
SE can be calculated using equation (29), PPV can be cal-
culated using equation (30) and F1 can be calculated using
equation (31) [58], [125].

ACC =
TP
n
· 100 =

TP
TP+ FP+ FN

· 100 (%). (28)

SE =
TP

TP+ FN
· 100 (%). (29)

PPV =
TP

TP+ FP
· 100 (%). (30)

F1 = 2 ·
SE · PPV
SE + PPV

=
2 · TP

2 · TP+ FP+ FN
· 100 (%). (31)

B. BLAND-ALTMAN GRAPH
If, in statistics, the goal is to evaluate pairs of random
variables (X1,Y1), (X2,Y2) to (Xn,Yn), which form pairs of
dependent observations, it is necessary to use pair tests when
verifying the position. Such tests include the Bland-Altman
graph. In the first step of the pair test, the difference

−→
D and

the averages
−→
M between the pairs of random variables is

calculated, see equations (32) and (33), where
−→
X is a vector

of random variables obtained from the fHR reference variable
over time,

−→
Y is a vector of random variables obtained from

the estimated fHR variable over time using the test method,
n is the number of elements of the individual vectors and i
is the i-th element of the individual vectors. It can then be
assumed that the quantities (D1,D2, . . . ,Dn) are statistically
independent and have the same distribution with the mean
value µ = µ1 − µ2 [58], [126]–[128].

−→
D = (D1,D2, . . . ,Dn), where Di = Xi − Yi. (32)
−→
M = (M1,M2, . . . ,Mn), whereMi =

Xi + Yi
2

. (33)

The standardized normal distribution is based on point
µ±1.96σ indicating the 97.5 % quantile of the normal distri-
bution, where µ indicates the mean value and σ the standard
deviation. Then, from equation (34) and the modification of
this equation, see equations (35), (36) and (37), where P
denotes the probability and z denotes the normal distribution
quantile point, it follows that 95 % of the area of normal
distribution lies in the interval µ ± 1.96σ . The mean value
of µ and 1.96σ from the difference vector

−→
D is calculated

on the basis of equations (38) and (39), where n is the total
number of elements of the difference vector

−→
D and i is the

i-th element of the vector
−→
D [58], [126]–[128].

P(z0.025 <
−→
D − µ
σ

< z0.975) = 0.95. (34)

P(−z0.975 <
−→
D − µ
σ

< z0.975) = 0.95. (35)

P(−1.96 <
−→
D − µ
σ

< 1.96) = 0.95. (36)

P(µ− 1.96σ <
−→
D < µ+ 1.96σ ) = 0.95. (37)

µ =

n∑
i=1

Di

n
. (38)

1.96σ = 1.96 ·

√√√√√ n∑
i=1

(Di−µ)2

n− 1
.

(39)

To construct a Bland-Altman graph, first, the values of the
vectors

−→
D and

−→
M are plotted, then the middle line mark-

ing the mean value µ and then the upper and lower limits
of compliance (LoA) are plotted using two lines indicating
µ± 1.96σ [58], [126]–[128].
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FIGURE 1. Block diagram of the hybrid system.

III. MATERIAL AND METHODS
In this chapter, the basic methods used in this article will
be presented. This is a description of the dataset that was
used to test the methods presented. Furthermore, both the
hybrid extraction systems tested and the validation process
are discussed in detail.

A. DATASET
In this work, a database of abdominal and direct fetal
electrocardiogram (ADFECGDB) was used, which is a
freely available database from Physionet sites [104], [105],
[129]–[131]. This database contains 5 five-channel record-
ings from 5 different pregnant women in the 38th to 41st week
of pregnancy which were taken at birth. All 5 recordings were
taken at the pulmonary department of the Medical University
of Zabrze, Poland. The individual signals are recorded with a
bandwidth of 1 to 150 Hz (with 50 Hz network interference
removed), a sampling rate of 1 kHz, a resolution of 16 bits
and a length of 5 minutes. Individual recordings contain 4
aECG signals measured on the maternal abdomen and one
fECG signal measured directly from the fetal head surface.
4 silver chloride electrodes placed around the navel (electrode
surface was ground to reduce skin impedance), a reference
electrode placed above the pubic symphysis, and an active
electrode located on the left lower limb were used to mea-
sure aECG signals. The direct fECG signal was measured
transvaginally using a typical spiral electrode. From the direct
fECG signal measured, the positions of the R-peaks were
automatically marked with the sensing system used and were
subsequently verified by a group of cardiologists to compile
accurate reference markers (annotations). In addition to the
5 recordings listed on the Physionet site (r01, r04, r07, r08,
and r10), other 7 recordings (r02, r03, r05, r06, r09, r11,
and r12) with sampling rate of 500 Hz were included in this
study.

Another database used was set A of Physionet Chal-
lenge 2013 [131]. This database was created to improve
the development of accurate fHR, fetal RR-interval, or fetal
QT-interval estimation algorithms. Total of 25 records
(a01 to a25) contain 4 aECG signals. The length of the indi-
vidual signals is 1 minute with a sampling frequency of 1 kHz
and a resolution of 12 bits. set A is consists of reference
annotations that have been created and indicate the positions
of the individual R-peaks.

B. HYBRID SYSTEM DESCRIPTION
This part describes in detail the concept of novel hybrid
extraction systems for fHR variability monitoring based on
NI-fECG. Subsequently, the modification of the fHR vari-
able curves detected over time based on decision making
and moving averaging used in all 12 recordings employed
is described. Finally, a statistical comparison of the fHR
variables estimated over time follows using two new hybrid
methods of ICA-ANFIS-WT and ICA-RLS-WT against the
fHR reference variable over time.

In Fig. 1, a block diagram of the hybrid system imple-
mented can be seen. The methods employed consist of sev-
eral steps which are performed successively to complete the
successful extraction of the fECG signal. An example of
extraction on the block diagram is shown on recording r01.

First, at least 2 measured aECG signals are fed to
the preprocessing block where the initial signal adjust-
ment is performed, see Fig. 2. The electrode layout
in this figure is based on the ADFECGDB data-
base [104], [105], [129]–[131]. The input signals are labelled
as AE1 to AE4, the reference signal is denoted as AE0 and the
active ground is denoted asN . It is possible to select any filter
of a certain band, but, in our case, the FIR filter was chosen.
When using a bandpass filter, it is possible to set lower
limit frequency fFIR,L, upper limit frequency fFIR,U, filter
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FIGURE 2. Input signal preprocessing.

order NFIR and, in addition, it is necessary to set sampling
frequency fs of the input aECG signals used. To adjust aECG
signals, fFIR,L = 3 Hz, fFIR,U = 150 Hz, NFIR = 500
and fs = 500; 1000 Hz were set (5 recordingss from the
ADFECGDB database had a sampling frequency of 1 kHz
and 7 recordings had a sampling frequency of 500 Hz). The
band selected cannot, in any way, damage the fECG signal
because the fetal QRS complex is, according to the study by
Sameni et al. in 2010 [132], in the range of 10 to 15 Hz. The
FIR filter used with the bandpass set is designed to eliminate
the variation of isolines, but also to remove noise, for example
in the form of maternal and fetal movements.

Signals after preprocessing are then brought to the ICA
algorithm block, see Fig. 3. In this block, the number of
components ICA, n, the convergence criterion δ and the max-
imum number of iterations of the cycle kICA can be selected.
ICA, n = 3, δ = 0.00001, and kICA = 100 were set
for our experiments. The output of the ICA algorithm is
then formed by 3 components. The scheme described shows
that, in most cases, one component practically corresponds

to the mECG signal, the second component corresponds to
the aECG signal with the enhanced fECG signal at the same
amplitude level as the mECG signal (marked as aECG*), and
the third component corresponds to noise.

The individual components are in a different order each
time the ICA algorithm is started, they have an altered ampli-
tude due to standardization within the cycle, the components
are rotated, and moreover, the components are time-shifted
by several samples. For this reason, the output components
are fed to an auto-centring block where the components are
first differentiated and, then, rotated in the right direction,
as shown in Fig. 4. Subsequently, the component corre-
sponding to the mECG signal is amplitude and time aligned,
based on the mQRS complexes, with the component corre-
sponding to the aECG* signal with enhanced fECG signal.
Finally, re-standardization is performed because amplitude
adjustments occur during centring. If the automatic centring
result is unsatisfactory, it is possible to use manual centring,
where the user subjectively chooses the mECG signal and
the aECG* signal with the fECG signal enhanced (or the
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FIGURE 3. Implementation of the ICA algorithm to obtain components for adaptive systems.

FIGURE 4. Progress of automatically selected algorithm and centring of output components from the ICA algorithm.

aECG signal can be selected from the input signals), and
then the person aligns the signals by amplitude and time.
After finishing the automatic or manual centring, the mECG
signal and the aECG* signal are standardized. In the
remaining course of the program, the output signals then
have a dimensionless unit, and, thus, output fECG signals
too.

Thus, the signals are ready for entering the adaptive algo-
rithm and for the subsequent extraction of the fECG sig-
nal. It is now possible to select either the extraction of the
fECG signal using the ANFIS algorithm, see Fig. 5, or the
RLS algorithm, see Fig. 6. Using the ANFIS algorithm, it is
possible to select the shape of membership functions µANF,
the number of membership functions ANF, n and the number
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FIGURE 5. Extraction of the fECG signal from centred signals using the ANFIS algorithm.

FIGURE 6. Extraction of the fECG signal from centred signals using the RLS algorithm.

of epochs kANF. As wementioned before, hybrid combination
of BP and LMS algorithm was used in our study. Conversely,
when using the RLS algorithm, the NRLS filter order and the
forgetting coefficient λ must be selected. The advantage of
this algorithm is the fact that it works faster than the ANFIS
algorithm. In this work, the filter settings optimization was
performed for both algorithms in order to achieve the highest
accuracy of fECG signal extraction. In addition, we tested
all possible combinations of input signals for each record.
Altogether, 11 possible electrode combinations were tested
for each record. In the case of ANFIS algorithm, we tested
the settings such as the shape of the membership function:
µANF = trimf (triangular membership function); µANF =

trapmf (trapezoidal membership function); µANF = gbellmf

(generalized bell membership function); µANF = gaussmf
(Gaussian membership function); and also the number of
membership functions: ANF, n = 2; ANF, n = 4; ANF, n =
6; ANF, n = 8; ANF, n = 10 and kANF = 10; kANF = 20;
kANF = 30. By combining the individual settings of the
ANFIS algorithm, 45 outputs were generated for one elec-
trode combination of a given record. A total of 660 outputs
were generated for each record when applying the selected
ANFIS settings to all 11 electrode combinations. Finally,
the optimal setting of the ANFIS algorithm and the most
appropriate combination of input signals for each record
were found for each record as the global maximum of the
ACC parameter. Table 1 shows the number of nodes, number
of linear parameters, number of nonlinear parameters and
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TABLE 1. ANFIS parameter setting with respect to the parameters of membership functions.

FIGURE 7. Smoothing the fECG signal using the WT algorithm after exiting the adaptive filter.

number of fuzzy rules when applying the selected number
of membership functions ANF, n. A similar optimization
approach was used to test the RLS algorithm, where the filter
order NRLS varied from 2 to 100 with step of 2. This way,
50 outputs of the RLS algorithm were generated for one
electrode combination, i.e. 550 outputs for the whole record.
Finally, the optimal setting of the RLS algorithm and the most
appropriate combination of input signals for each record were
found for each record.

The output fECG signals from the adaptive algo-
rithms are initially re-standardized, and, then, they are
adjusted (smoothed) in the last block using theWT algorithm.
Fig. 7 shows the application of the WT algorithm where
fECG is the input fECG signal labelled as ICA-ANFIS in
the figure, if an adaptive ANFIS algorithm was applied in the
previous step, or as an ICA-RLS, if an adaptive RLS algo-
rithm was applied in the previous step. The output is fECG*,
which is a smoothed fECG signal labelled as ICA-ANFIS-
WT in the figure, if an adaptive ANFIS algorithmwas applied
in the previous step, or as an ICA-RLS-WT, if an adaptive
RLS algorithm was applied in the previous step. The reason
for smoothing the fECG signals is to highlight the R-peaks

for the subsequent estimation of the fHR variable over time,
which is the primary task of this work. For this algorithm,
the type of maternal wavelet 9, the level of decomposition
n, the length of the window l for adaptive thresholding and
the empirical constant K are to be set. For the WT algorithm,
9 = db4 (Daubechies mother wavelet with a width of 4),
n = 6, l = 500 and K = 2.5 were set to test the fECG signal
extraction accuracy.

The selection of all parameters was based on repeated
testing of the individual algorithms on all recordings from
the ADFECGDB database [104], [105], [129]–[131]. Many
parameters have also been set based on the study of fECG
signal processing using individual algorithms [55], [58], [70],
[71], [97], [110], [113], [114].

The statistical evaluation of the fECG signal extraction
quality relative to the reference can then be seen in Fig. 8,
which illustrates a block scheme for plotting fHR variable
curves over time, for plotting Bland-Altman graphs and for
determining TP, FP, FN, µ, 1.96σ , ACC, SE, PPV and F1,
see [58], [125], [128]. In the first step, the detection of
R-peaks locations using a CWT-based detector is performed
on the signals extracted, see [133]–[135]. The locations of
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FIGURE 8. Diagram of extraction quality testing using both hybrid methods.

the R-peaks specified are used to determine the TP, FP and
FN against the reference annotations (or the detected R-peaks
in the reference signal to which reference annotations have
not been provided). Subsequently, the calculation of ACC,
SE, PPV and F1 is performed. In the next step, fHR variable
curves over time are generated based on the locations of the
R-peaks of the reference and extracted signals. The fHR vari-
able curves of the signals extracted over time are first adjusted
and then plotted in the graphs along with the fHR variable
reference curve over time for visual evaluation. Subsequently,
these curves are compared using Bland-Altman graphs and
themean valuesµ and 1.96σ are determined. Amore detailed
description of the detection and modification of the curves is
provided in the following subchapter III-C.

C. DATA PREPARATION
Extraction of individual fECG signals using both hybrid
methods is followed by estimation of fHR variable over time.
First, the automatic determination (detection) of the R-peak
locations from all extracted fECG signals is performed. The
detector used is based on CWT, where the detector tries to
find all local minima and maxima exceeding the specified
threshold using Daubechies mother wavelet with a decompo-
sition degree of 5. In the location where the distance between

one local minimum and one local maximum is a maximum
of 120 ms, the sample is recognized as an R-peak. It is a
very accurate and effective detector. The locations of the
R-peaks of the reference signals measured by FSE (here-
inafter referred to as reference signals) are entered in the
database for r01, r04, r07, r08 and r10 recordings; they are
determined by medics and recognized as correct annotations
of the recordings. There are no reference annotations for r02,
r03, r05, r09, r11, and r12 recordings available, so it was nec-
essary to perform accurate R-peak detection. Fig. 12 shows
these reference signals in black. Using the reference signal
R-peaks locations and the locations of the extracted signal
determined, the TP, FP and FN values are then determined
as described in subchapter II-A. An example of R-peaks
annotations for the reference signal from r01 recording can
be seen in Fig. 9a, and an example of R-peaks detection
from the extracted fECG signal from r01 recording using the
ICA-ANFIS-WT hybrid method can then be seen in Fig. 9b.
The next step was to determine the interval vector

−→
T

between the individual locations of the R-peaks determined
and, subsequently, to recalculate the interval vector

−→
T to the

vector of the current fHR values
−→
fHR using equation (40),

where n is the number of RR intervals determined. The
result is multiplied by 60 to be in beats per minute (bpm),
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FIGURE 9. Examples of fECG signals from r01 recording with marked locations of R-peaks. a) a measured fetal scalp signal with
an electrode marked with R-peaks on the basis of reference annotations; and b) an extracted signal using the ICA-ANFIS-WT
method with R-peaks determined by the CWT detector.

FIGURE 10. An example of how to estimate the fHR variable over time from the fECG signal extracted from r01 recording using
the ICA-ANFIS-WT method. a) detecting R-peaks and creating a vector of current fHRs, b) plotting a vector of current fHRs in a
graph, c) removing the deviated values by curve approximation, and d) performing moving averaging.

see Fig. 10a.
−→
T = (T1,T2, . . . ,Tn),

−→
fHR = (fHR1, fHR2, . . . , fHRn),

where

fHRi =
1
Ti
· 60. (40)

The vector of current fHR plotted in the graph can be seen
in Fig. 10b. It illustrates the fHR variable at the time of the
fECG signal extracted using the ICA-ANFIS-WT method.
In this figure, it can be seen that even the effective detector
used estimates the R-peak incorrectly in some locations and
deviated values occur. These values need to be eliminated as
much as possible in order to achieve the most accurate fHR
variable over time as it is the case of the reference signal.

It should also be pointed out that the r01 recording in the fig-
ures is the best recording and the results herein were the best
(in other recordings, the number of deviated values was much
higher). The elimination of outliers was conducted using
an algorithm that searches for these outliers and replaces
them with curve approximation. The algorithm searches for
locations where there is a big difference between the current
fHR and the next fHR value. Such finding of the value is
transferred to the average value calculated from the previous
value before the outlier and the following value, which has
been recognized as correct based on the decision process. The
maximum number of consecutive outliers (either positively
oriented, negatively oriented, or some positively and some
negatively oriented) that can be removed by the algorithm
is 5. A signal modified this way can be seen in Fig. 10c.
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TABLE 2. Best combination of ANFIS algorithm settings when applying the hybrid method ICA-ANFIS-WT for each electrode set on recording r01 with the
combination having the highest accuracy highlighted.

The last step in signal modification is to perform moving
averaging, which is a time-based filtration. The filter slides
on a moving window of the selected number of elements
and averages. If a smaller number of eliminations of outliers
than one fifth of the vector

−→
fHR elements were performed

in the previous step, moving averaging of 10 elements is
performed. Otherwise, moving averaging of 30 elements is
performed. The final signal after moving averaging is shown
in Fig. 10d. These signal modifications were made for all
12 fECG signals extracted obtained using both hybrid meth-
ods (together, 24 fECG signals extracted) and, after plotting
the fHR variable curves over time, Bland-Altman graphs are
created between the estimated curves and the fHR reference
curves over time along with entering mean µ values and
values 1.96σ .
It should be emphasized that, by plotting the reference

annotations into the graph, it found that some contain several
outliers. These outliers have been replaced in the annotations
by the mean value between the previous and next correct
value, since, otherwise, when executing the Bland-Altman
graph, the determination of mean values µ and values 1.96σ
was affected.

IV. RESULTS
The results in this chapter will be divided into 4 sections
(experiments). Three experiments were carried out using sig-
nals from ADFECGDB database and one experiment was
carried out using signals from database Physionet Chal-
lenge 2013. First, we perform optimization of the adaptive
algorithms in order to find the most suitable combination
of the filter settings and the electrodes to be used as the
source of the inputs of the extraction systems (as described
in chapter III-B). The signals that correspond to the most
accurate extraction (according to the ACC parameter) are
subsequently statistically analyzed and compared with the
reference FSE signal. In the first part, the determination of TP,
FP and FN (see chapter II-A) from all fECG signals extracted
will be performed on 12 recordings from the ADFECGDB
database using both hybrid methods and the ACC, SE, PPV
and F1 parameters will be calculated to determine extrac-
tion accuracy. In the second part of this chapter, a visual

representation of the estimated fHR variables adjusted over
time will be performed for the reasons of a subjective assess-
ment of the filtration accuracy relative to the fHR reference
variables over time. The third part will deal with the imple-
mentation of Bland-Altman graphs to assess the accuracy of
the fHR variable curve estimation over time relative to the
fHR variable reference curves over time based on pair tests.
Last part of this chapter deals with results of experiments
carried out using signals from set A, Physionet Challenge
2013.

A. EVALUATION OF R-PEAK DETECTION ACCURACY
After performing optimization and associated extractions on
all 12 recordings using both hybrid methods, the detection of
R-peaks was performer using a CWT-based detector. Table 2
shows example of performed optimization by hybrid method
ICA-ANFIS-WT on r01 recording. Similarly, this was per-
formed for other recordings and for all recordings using
the ICA-RLS-WT method. Based on the detected locations,
the number of TP, FP and FN was determined for all signals
extracted, see the methodology in Fig. 11.

By obtaining the individual numbers of TP, FP and FN
for all signals extracted using both hybrid methods, the cal-
culation of the selected parameters, ACC, SE, PPV and F1,
was performed. The ACC parameter is evaluated as primary
because other parameters cannot achieve less accuracy than
the ACC parameter. It means, if the ACC parameter exceeds
95 %, the SE, PPV, and F1 parameters reach an accuracy
of over 95 %. The results for the ICA-ANFIS-WT hybrid
method can be seen in Table 3. It can be seen that the
method worked, based on ACC, above 95 % with r01, r02,
r05 and r08 recordings, value over 90 % for r09 recording,
and over 80 % for r03 recording. On the basis of PPV and F1,
it worked, moreover, above 95 % with r09 recording, which,
according to the ACC and SE parameters, did not reach 95 %
accuracy. This fact indicates that, in the signal extracted,
on r09 recording, there was a low number of FP values, but
a high number of FN values. With the other 6 recordings
out of 12, this method did not achieve good results, and,
thus, it was not, as an extraction method, effective in these
recordings.
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FIGURE 11. An example of automatic determination of TP, FP and FN based on reference annotations for the signal extracted using the
ICA-RLS-WT method on r06 recording.

TABLE 3. Determination of TP, FP and FN based on the detection of R-peak locations in the fECG signals extracted from ADFECGDB database using the
hybrid ICA-ANFIS-WT method relative to R-peak locations in the reference signal, and calculation of the ACC, SE, PPV and F1 parameters.

The same assessment was performed for the hybrid
ICA-RLS-WT method and the results can be seen in Table 4.
Based on the ACC parameter, this method achieved values
above 95 % with r01, r02, r05, r08, and r09 recordings,
values over 90 % for r03 and r10 recordings, and over 80 %
for r06 and r07 recordings. With the signal extracted from
r03 recording, the method, based on the PPV and F1 parame-
ters, reached a values above 95 %. This fact indicates that,
in the signal extracted, on r03 recording, there was a low
number of FP values, but a high number of FN values. With
the signal extracted from r10 recording, the method, based
on SE and F1, reached a values above 95 %. It can be seen
from the table that, in this recording, the method extracts
signals, in which a low number of R-peaks are omitted during
detection (FN), but it generates many FP values. With the
other recordings, r04, r11, and r12, the ICA-RLS-WT hybrid
method was not effective.

During this testing, the ICA-RLS-WT hybrid method
achieved significantly better results than the ICA-ANFIS-
WT hybrid method. It can be seen that, in 7 recordings out
of 12, the ICA-RLS-WT hybrid method was able to extract
fECG signals that reached at least 90 % based on the ACC
parameter, and, as a result, with 9 recordings out of 12, they
reached at least 80 % based on the ACC parameter. The ICA-
ANFIS-WT hybrid method was able to extract usable fECG
signals in only 6 recordings out of 12.

B. VISUAL COMPARISON
In this part of the evaluation of fECG signal extraction
accuracy using both the hybrid methods tested, fHR vari-
able curves over time were first generated for individually
extracted signals. Subsequently, removal of outliers and slid-
ing averaging for individual estimated fHR variables over
time were performed. With the reference fHR variable curves
over time given by annotations or detection by a CWT-based
detector, removal of deviated values was also conducted in
some cases. Consequently, the individual fHR variable curves
over time obtained by the hybrid ICA-ANFIS-WT method
are connected behind each other in a single graph together
with the connected fHR variable curves over time given by
the reference signals. Hence, the visual assessment of the
accuracy of the estimate of the fHR variable curves over time
using the ICA-ANFIS-WT method is shown in Fig. 12a. The
same procedure is performed for the visual assessment of the
accuracy of the estimate of the fHR variable curves over time
using the ICA-RLS-WT method, see Fig. 12b. The graphical
representation is based on FIGO classification [136]. The
fHR segment from 110 to 150 bmp is labelled in white and
indicates normal fHR. The segments from 150 to 180 bpm
and from 90 to 110 bpm are marked in yellow and indicate an
increased risk of fetal hypoxia. The segment above 180 and
below 80 bpm is marked in pink and indicates that the fetus
is at risk due to hypoxia, which may result in the need for
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TABLE 4. Determination of TP, FP and FN based on the detection of R-peak locations in the fECG signals extracted from ADFECGDB database using the
hybrid ICA-RLS-WT method relative to R-peak locations in the reference signal, and calculation of the ACC, SE, PPV and F1 parameters.

FIGURE 12. Graphical comparison of estimated and reference fHR variables over time from ADFECGDB database. a) comparison
of estimated variables using the ICA-ANFIS-WT hybrid method; and b) comparison of estimated variables using the hybrid
ICA-RLS-WT method.

surgical termination of pregnancy. Fig. 12 shows that the
ICA-RLS-WT hybrid method provides more similar fHR
variable curves over time than the ICA-ANFIS-WT hybrid
method. Thus, it can be stated that, based on visual assess-
ment, the ICA-RLS-WT hybrid method achieves better fECG
signal extraction accuracy.

C. BLAND-ALTMAN GRAPHS
In this part of the test, Bland-Altman graphs were
plotted between the individual estimated and reference

fHR variables were over time after adjustments from chap-
ter IV-B. Fig. 13 and 14 show 2 examples of accurate esti-
mated variables of fHR over time and Fig. 15 and 16 show
2 examples of inaccurately estimated variables of fHR over
time.

Initially, before the Bland-Altman graphs were plotted, two
vectors were calculated between the individual estimated fHR
variables over time and between the fHR reference variables
over time using both hybrid methods. The first difference
vectors

−→
D were made for the Y-axes, which show the dif-
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FIGURE 13. Comparison of estimated and reference variables of fHR over time from recording r01.
a) comparison of the reference and estimated variables of fHR over time using ICA-ANFIS-WT based on the
Bland-Altman graph; and b) comparison of the reference and estimated variables of fHR over time using
ICA-RLS-WT based on the Bland-Altman graph.

FIGURE 14. Comparison of estimated and reference variables of fHR over time from recording r08.
a) comparison of the reference and estimated variables of fHR over time using ICA-ANFIS-WT based on the
Bland-Altman graph; and b) comparison of the reference and estimated variables of fHR over time using
ICA-RLS-WT based on the Bland-Altman graph.

FIGURE 15. Comparison of estimated and reference variables of fHR over time from recording r11.
a) comparison of the reference and estimated variables of fHR over time using ICA-ANFIS-WT based on the
Bland-Altman graph; and b) comparison of the reference and estimated variables of fHR over time using
ICA-RLS-WT based on the Bland-Altman graph.

ferences between the values of the fHR variables at the time
of the reference and estimated signals, see equation (32).
The second vectors

−→
M were made for the X-axes, which

show the averages between the values of the fHR variables
at the time of the reference and estimated signals, see equa-
tion (33). The elements of both of the vectors

−→
D and

−→
M
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FIGURE 16. Comparison of estimated and reference variables of fHR over time from recording r12.
a) comparison of the reference and estimated variables of fHR over time using ICA-ANFIS-WT based on the
Bland-Altman graph; and b) comparison of the reference and estimated variables of fHR over time using
ICA-RLS-WT based on the Bland-Altman graph.

were then plotted into individual Bland-Altman graphs. The
main part of the Bland-Altman graph construction is the
calculation of mean value µ, which is shown in the graph by
the middle thick horizontal line. Subsequently, on the basis
of this mean value µ and the calculated standard deviation σ ,
two LoAs are determined using µ ± 1.96σ which are rep-
resented by the remaining two thinner lines in the graph.
Equations (37), (38) and (39) are used for the calculation.

The individual mean values µ and values 1.96σ deter-
mined were recorded in Table 5. In the tables, it is necessary
to monitor whether the mean value µ approaches 0. At a
high positive or negative value, the mean value µ will show
that there were large values in the difference vector

−→
D and,

therefore, there is a large difference between the estimated
and the reference variables of fHR over time. A similar phe-
nomenon can be then observed in values 1.96σ . Table 5 shows
that a low mean value µ was achieved for r01, r02, r03, r05,
r08, and r09 recordings, indicating that the ICA-ANFIS-WT
hybrid method is effective in these recordings. Nevertheless,
r03 recording shows a fairly high value of 1.96σ , so, for this
recording, we have to disprove the statement. This means
that good fECG signal extraction efficiency using the hybrid
ICA-ANFIS-WT method can be monitored, based on this
testing, only in r01, r02, r05 r08 and r09 recordings.

Table 5 also shows that the ICA-RLS-WT hybrid method
has low mean values µ for r01, r02, r03, r05, r06, r08,
r09 and r10 recordings, indicating good efficiency of the
ICA-RLS-WT hybrid method in these recordings. From the
recordings marked, large value of 1.96σ can be seen in r03,
r06 and 10 recordings, which means that good fECG signal
extraction efficiency using the hybrid ICA-RLS-WT method
can be monitored in the remaining 5 recordings.

D. ECG PHYSIONET CHALLENGE 2013
This chapter deals with evaluation of both hybrid methods
on dataset from set A, Physionet Challenge 2013. Previ-
ous experiments proved that ICA-RLS-WT hybrid method

TABLE 5. The recorded mean values and values after plotting
Bland-Altman graph for individual adjusted and estimated fHR variables
over time using the ICA-ANFIS-WT and ICA-RLS-WT hybrid methods
relative to fHR reference variables over time.

performs better than ICA-ANFIS-WT hybrid method. Exper-
iments carried out using ADFECGDB database were very
extensive, so experiment carried out using Physionet Chal-
lenge 2013 database is performed only on evaluation of
R-Peak detection accuracy (similar to experiment in chap-
ter IV-A). After performing optimization and associated
extractions on all 25 recordings using both hybrid methods,
the detection of R-peaks was performer using a CWT-based
detector. Then determination of of TP, FP and FN and cal-
culation of selected parameters, ACC, SE, PPV and F1,
was performed on all recording from Physionet Challenge
2013 database.

Table 6 shows the results for the ICA-ANFIS-WT hybrid
method. It can be seen that the method worked, based on
ACC, above 95 % with 6 recordings (a04, a05, a08, a15,
a17 and a22), and over 80 % for a01 recording. On the basis
of PPV, it worked, moreover, above 95 % with a01 recording,
which, according to the ACC, SE and F1 parameters, did
not reach 95 % accuracy. This fact indicates that, in the
signal extracted, on a01 recording, there was a low number
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TABLE 6. Determination of TP, FP and FN based on the detection of R-peak locations in the fECG signals extracted from Physionet Challenge
2013 database using the hybrid ICA-ANFIS-WT method relative to R-peak locations in the reference signal, and calculation of the ACC, SE, PPV and
F1 parameters.

TABLE 7. Determination of TP, FP and FN based on the detection of R-peak locations in the fECG signals extracted from Physionet Challenge
2013 database using the hybrid ICA-RLS-WT method relative to R-peak locations in the reference signal, and calculation of the ACC, SE, PPV and
F1 parameters.

of FP values, but a high number of FN values. With the other
recordings, this method did not achieve good results, and,
thus, it was not, as an extraction method, effective in these
recordings.

The same assessment was performed for the hybrid ICA-
RLS-WTmethod and the results can be seen in Table 7. Based
on the ACC parameter, this method achieved values above
95 % with 7 recordings (a03, a04, a05, a08, a15, a17 and
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FIGURE 17. Estimated fHR variable curve over time using the ICA-RLS-WT hybrid method on r10 recording. Graphs a), b) and c) show 3 selected sections
where filtration did not work, and graphs d), e) and f) show 3 selected sections where filtration worked properly.

a22), values over 90 % for a12 and a24 recordings, and
over 80 % for a01, a14, a19 and a25 recordings. With the
signal extracted from a12 recording, the method, based on the
PPV and F1 parameters, reached a values above 95 %. This
fact indicates that, in the signal extracted, on a12 recording,
there was a low number of FP values, but a high number
of FN values. With the signal extracted from a24 record-
ing, the method, based on the SE, PPV and F1 parameters,
reached a values above 95 %. With the signal extracted from
a19 recording, the method, based on PPV, reached a value
above 95 %. This fact indicates that, in the signal extracted,
on a19 recording, there was a low number of FP values, but a
high number of FN values. With the other 12 recordings out
of 25, the ICA-RLS-WT hybrid method was not effective.

During this experiment, the ICA-RLS-WT hybrid method
achieved significantly better results than the ICA-ANFIS-
WT hybrid method. It can be seen that, in 9 recordings out
of 25, the ICA-RLS-WT hybrid method was able to extract
fECG signals that reached at least 90 % based on the ACC
parameter, and, as a result, with 13 recordings out of 25,
they reached at least 80 % based on the ACC parameter. The
ICA-ANFIS-WT hybrid method was able to extract usable
fECG signals in only 7 recordings out of 25.

V. CONCLUSION AND DISCUSSION
The results summarized in the previous subchapters show
that the algorithms presented are very effective for most

of the recordings tested. However, for some recordings or
their sections, their effectiveness is limited. As an example,
recording r10 will be discussed in detail in this chapter in
connection with the ICA-RLS-WT method.

Fig. 17 shows the estimated fHR variable curve using the
given method and in comparison with the reference fHR
curve obtained from FSE recording. Further, this figure con-
tains six selected 5 s sections, three of which relate to cases
where the resulting fHR curve deviated significantly from the
reference and, in case of longer duration, this could lead to a
false positive diagnosis of fetal distress. The remaining three
sections then relate to cases where the specified fHRmatches
the reference. The analysis of these six sections includes an
example of three signals from a given time interval: the refer-
ence signal from the FSE, abdominal electrode 1, and, also,
the signal estimated using the ICA-RLS-WT method. It is
clear from these examples that the quality of the extraction
depends on the quality of the input abdominal signals. In the
case of sections where the recording quality was inadequate,
i.e. a) to c), this algorithm was not able to suppress this
interference, which resulted in an increase in the number
of false positive peaks (FP), thus reducing the parameters
evaluating extraction quality (ACC, PPV, F1). With sections
d) - f) having good-quality abdominal recordings, the use-
less signal was suppressed to such an extent that successful
detection of fetal R waves was possible; therefore, the fHR
curve determined is consistent with the reference. Hence,
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FIGURE 18. Estimated fHR variable curve over time using the ICA-ANFIS-WT and ICA-RLS-WT hybrid methods on r03 recording. Graphs a) to f) show
selected sections for a comparison of the efficiency of both methods.

in the case of clinical use of this method, it is essential to
maintain a high quality of the abdominal recording. It is
negatively influenced in particular by insufficient adhesion of
the measuring electrodes and their placement, fetal position
and maternal movement.

Another factor that has a tremendous impact on the qual-
ity of extraction using the hybrid system presented here is
the optimal adjustment of adaptive algorithms. As examined
in [71], this setting varies depending on the placement of
the input electrodes (reference thoracic and abdominal ones).
In this case, however, the reference maternal signal is esti-
mated using AES methods. Therefore, in further research,
a more detailed study of optimizing the adaptive algorithm
settings is required, particularly depending on various factors,
such as the selection of the quantity and location of the hybrid
system input electrodes, the gestational age of the fetus or its
position. At the same time, it is necessary to test and compare
combinations of different algorithms in each block of the
hybrid extraction system depending on the factors mentioned
above.

Fig. 18 shows a comparison of fHR variable curves deter-
mined using the ICA-ANFIS-WT and ICA-RLS-WT meth-
ods tested in r03 recording compared to the reference fHR
curve obtained from the FSE recording. It can be stated
that the ICA-RLS-WT method is more capable of copying
the trend within the resulting fHR curve. The method using

ANFISwas not able to suppress thematernal component from
the abdominal recording in some sections, and the resulting
fHR thus correlated with the maternal heart rate that is lower
than fetal one. On the other hand, the method using the RLS
algorithm, with some exceptions as section e), was able to
successfully suppress the maternal component to such an
extent that it did not affect the subsequent detection of R-R
intervals, hence the calculation of the resulting fHR.

Fig. 19 shows the example of the reference output signal
and the fHR waveforms along with those estimated by means
of hybrid methods ICA-ANFIS-WT and ICA-RLS-WT on
a08 recording, where the filtrations achieved 100 % for all
the evaluation parameters. The fHR determined using the
estimated fECG signal is almost identical with the reference
fHR signal.

Fig. 20 shows the example of the reference output signal
and the fHR waveforms along with those estimated by means
of hybrid methods ICA-ANFIS-WT and ICA-RLS-WT on
a18 recording, i.e. the recording with the worst results. It can
be noticed that in the input aECG signal, the magnitude of the
fetal component is negligible in comparisonwith thematernal
one. For such signal, the extraction is challenging.

It should be noted that the Physionet Challenge
2013 dataset is composed of variety of data. Part of the
data was taken from various fECG databases using various
electrode deployment, while some were synthetic. It can
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FIGURE 19. Estimated fHR variable curve over time using the ICA-ANFIS-WT and ICA-RLS-WT hybrid methods on a08 recording. Graphs a)–f) show
selected sections in recording where filtration worked properly.

FIGURE 20. Estimated fHR variable curve over time using the ICA-ANFIS-WT and ICA-RLS-WT hybrid methods on a18 recording. Graphs a)–f) show
selected sections in recording where filtration did not work.
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be noticed that the signals significantly differ from the real
recordings that were used in the rest of the experiments in the
time domain and also in terms of the determined fHR.

Hybrid methods combine the benefits of both adaptive
and non-adaptive approaches, such as accuracy, stability, and
minimization of the number of measuring electrodes. This
study shows that this approach is very promising for the
extraction of fECG and very accurate for the needs of deter-
mining fHR as the main parameter observed in current clini-
cal practice. The subject of further research should be deeper
morphological analysis, such as ST segment, QT interval or
T/QRS ratio analysis. This would lead to the creation of a
new diagnostic method - a non-invasive variant of STAN, i.e.
NI-STAN, thus improving diagnosis of fetal hypoxia.

In this work, wavelet transform was used in the last step.
This method is very effective for the purpose of detect-
ing R-peaks, which is important for determining the heart
rate. On the other hand, this method has negative effects
on the ECG curve morphology. Therefore, for the purposes
of NI-STAN, a replacement for the final post-processing
step would have to be found in this hybrid system in the
future. Nevertheless, it can be stated that the construction
of hybrid methods achieves promising efficiency in fECG
signal extraction, hence, it can be assumed that these meth-
ods could be used in clinical practice as a replacement for
classical CTG. However, before introducing this method into
clinical practice, the negative factors affecting the efficiency
of the extraction system need to be addressed. They include,
in particular, the quality of abdominal recordings, which is
primarily influenced by the location and adhesion of the
measuring electrodes, and the maternal or fetal movement.

In this initial study, particular attention was paid to the
precise determination of fHR. However, in clinical practice,
both fHR and uterine contractions are monitored by CTG dur-
ing electronic fetal monitoring. In the case of an ECG-based
system, the electrical signal produced by the contracting
uterus could be recorded by a method known as electro-
hysterography (EHG), whose efficacy has been verified in
e.g. [137]–[140]. For future research, it is necessary to incor-
porate measurement and filtration of uterine contractions into
a complex NI-fECG-based fetal monitoring system.

The proposed hybrid system could be improved by mod-
ifying its individual parts. The adaptive algorithms could
be upgraded or replaced by different adaptive methods. For
example, in the future research, we aim to test LMS, normal-
ized LMS, QR-RLS, or adaptive linear neuron (ADALINE).
Most of these algorithms are part of MATLAB digital signal
processing toolbox. The advantage of using an adaptive algo-
rithm as a major part of a hybrid system is that it compensates
delays and the inference.

Another part that can be modified is the initial block of the
extraction system for estimation of the mECG input to the
adaptive algorithm. The currently used ICA algorithm could
be replaced by another method able to estimate the maternal
component, such as the PCA algorithm. The advantage of
using the ICA algorithm (or PCA algorithm) is that it only

requires abdominal electrodes as an input (the chest elec-
trodes are not needed).

In terms of the WT algorithm, it is necessary to mention
that its utilization influences the morphology of the ECG
waveform and thus disables the morphological analysis. So,
in our future research we will only use WT algorithm to
find correct R-peak positions (for fHR monitoring) while the
morphological analysis will be performed only on the signals
that were not processed by the WT algorithm.

The approach introduced in this paper is only an example
of possible hybrid fECG extraction systems. There is a large
variety of the hybrid systems among the literature [97]. Most
of the currently available hybrid methods utilize the ICA
algorithm. Very interesting hybrid methods are for example
combination of ICA, ensemble empirical mode decomposi-
tion (EEMD) and wavelet shrinkage (WS) [98], combination
of ICA and adaptive fECG enhancer (AFE) [99], combination
of ICA and projective filtering (PF) [100], combination of
ICA and PCA [101], combination of singular value decom-
position (SVD) and ICA [102], etc. In our future research,
we aim to test some of the most promising methods and
modify our system according to the results.
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