1,418 research outputs found

    Cloud-based desktop services for thin clients

    Get PDF
    Cloud computing and ubiquitous network availability have renewed people's interest in the thin client concept. By executing applications in virtual desktops on cloud servers, users can access any application from any location with any device. For this to be a successful alternative to traditional offline applications, however, researchers must overcome important challenges. The thin client protocol must display audiovisual output fluidly, and the server executing the virtual desktop should have sufficient resources and ideally be close to the user's current location to limit network delay. From a service provider viewpoint, cost reduction is also an important issue

    Cloud engineering is search based software engineering too

    Get PDF
    Many of the problems posed by the migration of computation to cloud platforms can be formulated and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud software engineering involves problems of optimisation: performance, allocation, assignment and the dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and business objectives. SBSE is concerned with the application of computational search and optimisation to solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud computing challenges in ways that can be addressed using SBSE

    Dynamic edge-caching for mobile users: minimising inter-AS traffic by moving cloud services and VMs

    Get PDF
    In recent years, Cloud technology has revolutionized the way services are delivered to end-users. The advent of truly mobile computing in the form of smart phones and tablets has also driven the demand for Cloud resources in order to compensate for the inherent lack of local resources on these devices. Furthermore, modern mobile devices are equipped with multiple network interfaces and in combination with the rapid deployment of wireless networks, it is expected that they will always have Internet connectivity and access to Cloud resources. In this paper we will focus on traffic management for interactive multimedia services accessed by a mobile user by means of dynamic migration of a Virtual Machine. Network performance measurements are taken from a network of virtualization-enabled hosts that perform live migrations of a Virtual Machine which hosts multimedia content. The data is used as input to an equation that determines whether a migration would be beneficial in terms of traffic localization based on a user's mobility characteristics and network usage patterns. The contribution of this paper lies in the proposed mechanism of managing traffic for interactive services in the context of mobile cloud computing. This helps alleviate the increased network costs introduced by dynamic migrations driven by Quality of Service parameters and may result in increased network traffic for the benefit of improved QoS

    A Literature Survey on Resource Management Techniques, Issues and Challenges in Cloud Computing

    Get PDF
    Cloud computing is a large scale distributed computing which provides on demand services for clients. Cloud Clients use web browsers, mobile apps, thin clients, or terminal emulators to request and control their cloud resources at any time and anywhere through the network. As many companies are shifting their data to cloud and as many people are being aware of the advantages of storing data to cloud, there is increasing number of cloud computing infrastructure and large amount of data which lead to the complexity management for cloud providers. We surveyed the state-of-the-art resource management techniques for IaaS (infrastructure as a service) in cloud computing. Then we put forward different major issues in the deployment of the cloud infrastructure in order to avoid poor service delivery in cloud computing

    Efficient resource management for virtual desktop cloud computing

    Get PDF
    In virtual desktop cloud computing, user applications are executed in virtual desktops on remote servers. This offers great advantages in terms of usability and resource utilization; however, handling a large amount of clients in the most efficient manner poses important challenges. Especially deciding how many clients to handle on one server, and where to execute the user applications at each time is important. Assigning too many users to one server leads to customer dissatisfaction, while assigning too little leads to higher investments costs. We study different aspects to optimize the resource usage and customer satisfaction. The results of the paper indicate that the resource utilization can increase with 29% by applying the proposed optimizations. Up to 36.6% energy can be saved when the size of the online server pool is adapted to the system load by putting redundant hosts into sleep mode

    Survey on dynamic resource allocation strategy in cloud computing enviornment

    Get PDF
    Abstract-Cloud computing becomes quite popular among cloud users by offering a variety of resources. This is an on demand service because it offers dynamic flexible resource allocation and guaranteed services in pay as-you-use manner to public. In this paper, we present the several dynamic resource allocation techniques and its performance. This paper provides detailed description of the dynamic resource allocation technique in cloud for cloud users and comparative study provides the clear detail about the different techniques

    Live migration on ARM-based micro-datacentres

    Get PDF
    Live migration, underpinned by virtualisation technologies, has enabled improved manageability and fault tolerance for servers. However, virtualised server infrastructures suffer from significant processing overheads, system inconsistencies, security issues and unpredictable performance which makes them unsuitable for low-power and resource-constraint computing devices that processing latency-sensitive, 'Big-data'-type data. Consequently, we ask: 'How do we eliminate the overhead of virtualisation whilst still retaining its benefits?' Motivated by this question, we investigate a practical approach for a bare-metal live migration scheme for ARM-based instances low-power servers and edge devices. In this paper, we position ARM-based bare-metal live migration as a technique that will underpin the efficiency on edge-computing and on Micro-datacentres. We also introduce our early work on identifying three key technical challenges and discuss their solutions
    • …
    corecore