
Live Migration on ARM-based Micro-datacentres
Ilias Avramidis∗, Michael Mackay∗, Fung Po Tso†, Takaaki Fukai‡, Takahiro Shinagawa§

∗Department of Computer Science, Liverpool John Moores University, UK
†Department of Computer Science, Loughborough University, UK
‡Department of Computer Science, University of Tsukuba, Japan
§Information Technology Center, The University of Tokyo, Japan

Email: {i.avramidis@2015.ljmu, m.i.mackay@ljmu, p.tso@lboro}.ac.uk; {fukai@osss.cs.tsukuba, shina@ecc.u-tokyo}.ac.jp

Abstract—Live migration, underpinned by virtualisation tech-
nologies, has enabled improved manageability and fault tolerance
for servers. However, virtualised server infrastructures suffer
from significant processing overheads, system inconsistencies,
security issues and unpredictable performance which makes them
unsuitable for low-power and resource-constraint computing
devices that processing latency-sensitive, ”Big-data”-type data.
Consequently, we ask: “How do we eliminate the overhead of
virtualisation whilst still retaining its benefits?”

Motivated by this question, we investigate a practical ap-
proach for a bare-metal live migration scheme for ARM-based
instances low-power servers and edge devices. In this paper, we
position ARM-based bare-metal live migration as a technique that
will underpin the efficiency on edge-computing and on Micro-
datacentres. We also introduce our early work on identifying
three key technical challenges and discuss their solutions.

Keywords—Edge Computing, Micro-datacentres, ARM Virtual-
isation, Hypervisor, Live Migration, Bare metal Clouds.

I. INTRODUCTION

For many years enterprise administrators have adopted
Cloud Computing paradigm and technologies as an efficient
alternative for hosting data, services and applications instead
of owning, managing and maintaining their own private data
centre infrastructures. Despite the broad utilization of Cloud
Computing, surveys have long shown that virtualised cloud
data centre infrastructures are unsuitable platforms for hosting
high-performance computing, latency-sensitive applications or
services due to the perceived lack of performance, unaccept-
able latency, location-awareness and security issues [8, 11].
Moreover, the rapid growth of IoT (Internet of Things) devices
connected to a network generates massive amounts of data and
information that need to be processed at highly centralized
resources on cloud data centres for storage and computation,
dramatically increasing the network latency. In addition, as the
physical distance between edge users and the cloud increases,
network transmission and response times increase too. As
such, many application and services like ”Big-data”-type, e-
commerce, live-streaming, real-time online gaming cannot
benefit from this paradigm.

In order to address these shortcomings, Cloud Service
Providers (CSPs) have begun to change the centralized data
centre model to a distributed, modular, decentralized architec-
ture by introducing edge computing solutions. Edge computing
is the shift of moving processing power nearer to the edge
of a network and closer to the user, minimizing the network
latency to maintain the performance of storage, processing
and computation time while improving the transmission and
response times between an edge user and Cloud [14, 18]. This
is achieved through the implementation of Micro-modular Data
Centres (Micro-DCs) which are containerised resource-rich

systems located at the edge of a network, collecting, analyzing
and processing the data generated by a variety of IoT devices.

As the same time, the hardware infrastructure of data
centres is changing to maximise energy efficiency and optimise
processing for ‘Big Data’-type applications. The emergence of
the new platforms called Bare-metal Clouds, aims to provide
high levels of native hardware performance by eliminating
the virtualisation layer whilst also offering better privacy and
security. Furthermore, in order to address these changing re-
quirements in the context of the move towards containerization
and micro-datacentre infrastructures, we have started to see a
move away from traditional architectures and the emergence
of new vendors such as ARM on the server market. Newer
generations of ARM architectures now have increased support
for virtualization and offer competitive performance while
minimizing costs and energy consumption. This combination
of ARM CPU architectures and micro-modular data centres can
provide a compelling combination of low cost, energy-efficient
and scalable processing with minimal overheads and far greater
service flexibility.

However, reducing the potential for a single point of
failure and supporting serivce mobility are two of the main
concerns of any administrator. Live migration therefore remains
a valuable tool for infrastructure management, affecting a range
of processes such as availability and accessibility, redundancy,
fault tolerance, proactive maintenance and load balancing. Also,
edge users now need the support for location-independence
whilst moving from one edge network to another without
affecting the connectivity and accessibility to applications,
services and resources.

This paper proposes the development of a practical approach
of a live migration process on ARM-based bare-metal micro-
datacentres, to migrate physical machine states without the need
for a virtualization layer. Such a platform would reinstate many
critical management features between and for edge-networks
and act as a catalyst for the deployment of a new range of
edge computing. Although, over the years, a lot of different
techniques and approaches have been proposed around native
live migration only a few are applicable to bare-metal instances.
However, this also poses a great number of challenging research
questions to be addressed including, how to effectively capture
the state of a running ARM server including the CPU, memory,
and connected peripherals, and how to dynamically transfer
and configure these in a new host to effect seamless migration.

The rest of this paper is organised as follows. Section 2
explores Micro-datacentres and bare-metal instances in more
detail and Section 3 presents the Live migration process on
micro-datacentres. In Section 4 we present our research proposal



and explore the technical challenges involved. Finally, we
conclude in Section 5.

II. MICRO-DATACENTRES AND BARE-METAL INSTANCES

With the rise of the IoT, the number of IP-connected
devices on a network is expected to continue increasing rapidly.
However, many of these will be strictly attached to services
and applications hosted on remote centralised locations like
Clouds. IoT devices generate a massive volume and variety of
data that must be processed and responded to in a very short
time. However, this data at first need to cross a number of
unknown gateways and other network devices until reach a
data centre for storage, analyzing, processing and computation
before responding back to the source. As a consequence,
network bandwidth may be exhausted while the transmission
and response times increase latency and service bottlenecks
[14, 18].

The edge computing paradigm aims to change the trend of
data-consolidation into one centralised data centre, by replacing
this centralised client/server communication model with a
decentralised, modular architecture by introducing Micro-Data
Centres. Edge computing brings the data centre processing
power nearer to the source of the data, and closer to the edge
consumer, saving time and network resources while speeding
up the processing and computation performance of data. Micro-
DCs are modular, containerized and much smaller in size than
traditional data centres and are typically located at the edge of
each network in crucial positions such as in Base Stations or
in apartment buildings. Each of them is integrated with storage,
networking, compute, power resources, generally in a density
of a rack-type size as illustrated on the left of Figure 1. Micro-
DCs designed to solve, handle and processing specific type of
data, important to the edge user. Thanks to their modular design
reduce power-consumption costs while offer the characteristics
of flexibility and mobility [14, 18].

Figure 1: Micro-DC and Bare-metal micro-DC

Virtualisation Technology plays a key role in edge-
computing, and especially in data centre management, by
reducing the cost overheads while optimizing utilisation through
maximising the capital investment in hardware resources,
reducing energy consumption and space floor requirements,
and a variety of consolidation schemes [8]. Even in Micro-
DCs, virtualisation retains a core functionality to enhance the
essential characteristics of scalability, elasticity and flexibility.
However, virtualised server infrastructures suffer by significant
performance degradation and security issues. Two of the
most common performance issues that we see in virtualised
environments are the processing overhead called ”Hypervisor
tax” and the symptom of ”Oversubscription” [8, 9]. Virtualized
servers are multi-tenant platforms, as a consequence, during

intensive operations edge users may have to compete with each
other for access to hardware resources, whilst all customers are
served through the same physical network interface card (NIC)
[7]. Consequently, all the available bandwidth is shared among
them, potentially causing bottlenecks, delays and network
inconsistency as well increasing the security risk. Moreover, in
a micro-datacentre paradigm, servers have to analyze, compute
and process a wide variety and high volume of data from a
large number of sources.

These issues led to the development of a new infrastructure
model, called Bare-metal Clouds, which aims to provide native
hardware performance capabilities and security whilst offering
better management by grouping or categorising the computation
process of the data, services and applications in more efficient
way. [9]. Bare-metal Clouds as illustrated in Figure 2 are simply
server boxes that do not utilize any form of Virtualisation
Technology but are still managed and provisioned in a similar
way. Bare-metal Clouds are becoming an attractive platform for
services and applications who demand extreme and predictable
processing performance, stability, network consistency, privacy
and security. For example, applications that have to manage and
process massive amounts of data in a short period of time and
to handle I/O-intensive requests like, Big-data DBMS (Database
Management System) applications, HPC (High Performance
Computing) applications, E-commerce, live streaming etc. are
natural candidates for this [9]. They are therefore a good
potential fit for Micro-DCs, as illustrated in the right side
of Figure 1.

Figure 2: Virtualized and Bare-metal Servers

III.LIVE MIGRATION ON MICRO-DATACENTRES

One of the key characteristics that makes Server virtu-
alisation so attractive is that VMs are highly portable and
administrators have the ability to transfer VMs between servers,
racks even among data centres located in different geograph-
ical locations to increase the efficiency and effectiveness
of virtualised server infrastructures. This is a powerful tool
that enhances fault tolerance whilst enabling a number of
proactive management and maintenance activities increasing the
availability, accessibility and efficiency of services. Moreover,
servers typically reach up to 70% of power consumption
rates, even at low levels of utilization, greatly increasing the
total expense for operators even for micro-datacentres. Live
migration permits Server consolidation by hosting the same
number of Virtual Machines in fewer physical servers and
putting others into an idle state, as illustrated in Figure 3 [6].

Conversely, the live migration process also allows operators
to maintain higher levels of Quality of Service (QoS) even

Page 2 of 6



Figure 3: VM Server Consolidation

during peak periods of load. Over-utilization of servers leads
to performance issues like congestion, latency and bottlenecks
which can in turn create delays or interruption of services. In
response, live migration can perform load balancing by sharing
the workload from an over-utilized host to an under-utilized
host as shown in Figure 4 [6].

Figure 4: VM QoS Live Migration

Micro-datacentre infrastructures change radically when we
consider bare-metal instances instead of virtualised server
machines. The density of the physical servers has to remain
low, into rack-size limits, which increase the importance of a
live migration tool between bare-metal instances, which poses
significant challenges for efficiency, scalability, redundancy
and fault tolerance. Furthermore, the consolidation and load
balancing techniques that take place in virtualised environments
is much more challenging as administrators are faced with the
task of performing live migration not only in the levels of
a single micro-datacentre but also among micro-datacentres
themselves as illustrates in the Figure 5. As already happens
in Cloud data centre infrastructures, live migration must be
seamlessly performed when edge users are moving from one
micro datacentre to another without affecting or loosing their
connectivity.

Figure 5: Live migration between Micro-datacentres

However, assuming that micro-datacentres are deployed with
homogeneous hardware among bare-metal instances, we can
envision a scenario whereby it is possible to capture, transfer,
and redeploy the state of the underlying hardware between
instances in the same way as is done with live migration. This
approach, called Bare-metal Live Migration (BMLM), restores

many of the key features of virtualisation including maximizing
the power utilization of a micro datacentre to consolidate and
power off unused bare-metal instances. However, while the
functionality to achieve and perform this on Bare-metal server
infrastructures is highly desirable, a live migration tool to
do this has not yet been fully developed to the best of our
knowledge.

The implementation of a live migration process on bare-
metal instances is not straightforward because one has to deal
with the states of the physical hardware resources and network
connections that have to been migrated from one physical server
to another. In bare-metal micro-DCs, to achieve the continuity
of a process or application we have to ensure that the hardware
states and connections of CPU, memory, storage, network and
peripheral devices are kept in place and unaltered. The best
way to achieve this is currently an active research issue.

As outlined above, an additional requirement of enabling
BMLM is for the hosts to be suitably small, cheap, and power-
efficient such that they can be deployed at scale in bare-metal
micro-datacentres. The adoption of the ARM chip architecture
therefore becomes a great potential solution to this issue.

A. ARM Architecture

For many years, Cloud Computing vendors have tried
to implement new ways to save energy and minimize the
overall power consumption rates in data centre infrastructures,
and the x86 architecture has dominated this space being
almost ubiquitously deployed in the Desktop and Server
enterprise world [15]. However, while big improvements in
power management have been made over the years, these chips
are fundamentally over-provisioned for future Micro-DC Bare-
metal Cloud hosts. To address this, ARM have introduced its
Cortex processor family to benefit by their small size, low-
cost of deployment, and power-efficiency, making them an
attractive alternative for these data centre infrastructures. [17].
Providers like Rackspace and Google have already expressed
an interest in adopting ARM-based servers into their data
centre premises as part of their future plans. ARM works
in a licensed manner, meaning that chip vendors have the
ability to buy a license for an ARM architecture set and then
develop, design and deploy their own custom cores based on
the instruction set. Chip vendors therefore have the advantage
to design and adjust custom processors for specific applications
making them very flexible. Qualcomm and Broadcom [15]
are two of the biggest ARM designers and have already
announced the production of 24 core ARMv8 CPUs to meet the
performance requirements of the data centre industry. Moreover,
the latest generation of ARM processors are further enhanced
with Virtualisation Extension capabilities (Cortex-A17 model
and later) and improved Security features [15, 17].

ARM introduced virtualization support extensions to its
architecture in the ARMv7 and latest ARMv8 processors.
A fundamental part of these extensions is the introduction
of a brand new exception layer (EL2) as well as a CPU
mode called Hyp mode. A hypervisor running in Hyp mode
has higher privileges than the kernel (EL1) and application
(EL0) modes and so can control OS access to the underlying
hardware. Furthermore, the ARM architecture introduced a
System Memory Management Unit (SMMU) and a 2-stage
page translation process handling the translation and mapping

Page 3 of 6



of a virtual address (VA) to a physical address (PA) via a
translation page table. In the first stage, the Virtual Address
(VA) is mapped to an Intermediate Physical Address (IPA)
which is controlled by the OS while at the second stage, the
hypervisor performs the translation of the IPA to the Physical
Address (PA) [5, 17, 12].

Although, the adoption of ARM-based servers show great
potential for bare-metal Clouds, a practical solution and
implementation of the bare-metal live migration process is
still needed. By leveraging the new features outlined above,
our aim is to develop a BMLM solution for ARM-based cloud
servers.

IV.RELATED WORK

Many different approaches for live migration have been
proposed by the research community which culminated with
the OS-layer live migration process through Virtualisation
architectures that we see today. As this is not suitable for
Bare-metal Clouds, we therefore revisit research that focuses
around the concept of Physical Machine hardware state Live
Migration (PMLM) by omitting the virtualization layer. The
PMLM process is still a challenging concept to the research
community with a lot of issues to overcome.

Chiang et al.[4, 3] have proposed two prototype schemes for
hardware state live migration, called PMSM (Physical Machine
State Migration) and its successor, BOMLO (BOotstrapped
Migration for Linux OS). Both schemes are based on the
hibernation technology which is common in modern OSs like
Linux and Windows. This enables taking a snapshot of the
hardware state and keeping them on the system hard disk
whilst the machine is powered off. When it powers up again,
it automatically reloads the OS and stored image into memory
and restores the system to its previous state. Their claim is
that by migrating the snapshot image from one machine to
another, the destination could resume execution of the system
at the same state that the first one was suspended in. However,
until now this approach does not have a practical and efficient
implementation. Their practical experiments are based on the
Linux hibernation feature called TuxOnIce. However, PMSM
as well BOMLO do not migrate I/O device states which is
critical for full machine migration [4, 3, 1].

Another research approach to PMLM was introduced by
Fukai et. al. [13] which, to our knowledge, is the only effective
implementation that also finds practical application on bare-
metal instances. Their approach is based on the development
and implementation of a thin, novel hypervisor layer named
BitVisor [2]. The BitVisor is a bare-metal software based on
x86 architecture and supports many OSs like Linux-based
kernels, Windows and Mac. As Fukai’s introduced on his
project, by taking advantage of Intel’s CPUs Virtualisation
Technology extensions features, can achieve live migration
of source CPU and memory as well as network and other
I/O peripheral device states. BitVisor runs and is executed
directly on the hardware prior to the OS booting, making it OS-
independent. It obtains and sets CPU states by leveraging the
hardware-assisted virtualization features that Intel virtualisation
offers, whilst memory states can be captured and set by reading
and writing them into the memory address directly. The most
challenging part that BitVisor accomplishes is the migration of
the peripheral devices states like network interface cards.

V. LIVE MIGRATION ON ARM-BASED BARE-METAL MDCS

A. Proposed Approach

By leveraging the advantages of modern ARMv8-A model
processors, our research goal is the development of a lightweight
hypervisor layer running directly on ARM architectures to
support live migration of Micro-DC bare-metal instances. This
will be a significant step forward because, as described in
section 3, ARM-based servers are a likely candidate for bare-
metal edge computing and most existing hypervisors are too
heavyweight and not suitable to be applied on this hardware.
The main goal of our hypervisor is to perform BMLM without
the need for isolation and complicated management operations
since we support only a single user per host, making it much
lighter.

Under normal operation of the server, the hypervisor is
transparent to the user, waiting for the live migration process
to be triggered without affecting the performance of the system.
By using a network boot protocol like PXE, the OS is booted
from shared network storage accessible via a network protocol
like iSCSI or NAS. The functionality of the hypervisor is
therefore independent of the OS, meaning that it does not need
the cooperation of the OS to capture hardware states of the
system. Our live migration scheme also therefore does not need
to consider storage migration, similar to a typical VM Live
migration where the content is maintained on a shared device.
During the Live migration process, first the hypervisor suspends
the OS and obtains all the physical machine state, sending them
to the hypervisor running on the destination machine. Then,
the hypervisor on the destination machine will apply the state
to the hardware, reconnect, and resume execution of the OS.

B. Challenges & Potential solutions

The Live migration process on bare-metal hosts is very
challenging since migration of physical hardware states needs
to be performed. A VM image is made up of the states of
CPU, memory, network and I/O peripherals device connections,
which are encapsulated in a file that is transferred when a live
migration takes place. In the same manner, but with a complete
different methodology, in order to achieve this we need to
determine how to capture and restore the states of CPU, memory
and I/O devices included networking connections. Although
Fukai et. al.[13] have already accomplished live migration on
bare-metal Clouds using the x86 architecture, to our knowledge
there is no similar work for ARM architectures. The main
challenges that we have to overcome are therefore how to
capture and set CPU states using the ARMv8 architecture,
handle the migration of memory contents based on a pre-copy
method [6], and capture and set the network and I/O device
states.

1) Migrating CPU states

The hardware-assisted virtualization features that most
modern processors are enhanced with, came to improve the
efficiency of software virtualization operations that hypervisors
like KVM, XEN, and ESXi offer. Intel first introduced a series
of Hardware Virtualisation Extensions (HVEs) consisting of
VT-x, VT-d and VT-c, offering virtualisation of CPU, memory,
I/O devices and networking infrastructure respectively. AMD
likewise soon introduced its hardware virtualisation features
(AMD-V and AMD-Vi) offering similar functionality but,
despite their similarities, there is no compatibility between

Page 4 of 6



those two architectures [16]. On Intel, when a processor enables
hardware virtualization it is entered into VMX operation. In
general, a hypervisor runs on a root operation whilst the guest
OS and software run on a non-root operation. The hypervisor
is responsible for managing transitions between guest VMs and
the host environment as well as handling interrupts that need an
operation to be taken by the hypervisor. These transitions are
controlled by a data structure called the Virtual Machine Control
Structure (VMCS) which is accessed through a pointer. A
VMCS is maintained per logical processor per virtual machine
which has a region in memory allocated to a VMCS to keep
track of the host and guest processor states [16]. So, by reading
the host CPU states from the VMCS of the source machine
and writing them to the VMCS at the destination machine, we
can achieve CPU state migration.

However, this kind of structure is not supported by ARM.
On ARM, Virtualization Extension capabilities were first
introduced on ARMv7 generation processors (Cortex-A15
and later) and were enhanced and improved in the latest
generation of ARM architecture (ARMv8), giving the ability
to run multiple unmodified Guest OSs. As discussed above,
ARMv8 introduced a brand new privilege layer (EL2) as well
a new CPU mode called Hyp mode, as illustrated in Figure 6.
A software running in Hyp mode has higher privileges than
kernel mode which is running in EL1 exception layer. That
permits us to install a hypervisor at EL2 layer controlling
with less complexity the communication of the underlying
hardware infrastructure and a Guest OS environment. Since
ARM hardware-assisted virtualisation features do not support
a VMCS memory structure, they do not automatically retain
all guest and host processor states. Instead, ARM architectures
enable the flexibility for software running on the EL2 exception
level to decide which processor state it wants to save [12, 10].

Figure 6: ARMv8 Exception Levels and CPU modes

On the ARMv8 architecture, interrupts and exceptions have
the same meaning and are used alternately. When an exception
occurs at a specific Exception level (ELn), the processor saves
and stores the current execution state as well as the return
address to that level. Each Exception level has its own bank
of registers giving flexibility to a software to obtain the state
at any time. This exception return state is held in dedicated
registers for each of the Exception levels except the EL0, ELR
and SPSR registers. As Figure 7 describes, the ELR register
contains the return address where the interrupt occurred whilst
the SPSR register holds the processor state. There is a bit in this
register called IL that keeps the PSTATE value which contains
the processor state before taking an exception and is used to
restore the value of PSTATE when executing an exception
return. We propose that software running on the EL2 Exception

layer will be able to perform a CPU migration process similar
to using VMCS functionality by obtaining and migrating the
states and contents of those two registers (ELR, SPSR) [12,
10].

Figure 7: ARMv8 - A model special registers

2) Migrating memory data

Migration of memory states from a source to a destination
machine is one of the most crucial components of a live
migration process. The amount of memory contents is far higher
than CPU state with capacities of up to 16GB of sensitive and
volatile data being typical in most server systems. Therefore, the
efficient and consistent migration of memory contents is very
important where applications and services should continue to
run without interruption. However, not all the assigned memory
of a VM is used in practise so current techniques try to achieve
better performance by transferring only the used contents of
memory, eliminating the downtime as well as the total migration
time. In general, the live migration of memory contents can
be described by three major phases, push phase, stop-and-copy
phase, and pull phase [6]. In the literature, two techniques
are identified for memory state migration, the post-copy and
pre-copy methods, with the most preferable being the pre-
copy technique. The pre-copy method is a combination of the
push and stop-and-copy phases that most hypervisors (KVM,
VMware and XEN) utilize and prefer for a Live migration
execution. As illustrated in Figure 8, first all the memory pages
are transferred in an iterative fashion whilst the source host is
still running. The process continues until only a small amount
of memory pages are left where the stop-and-copy phase takes
over; the source machine is then halted while the dirty pages
and CPU state are transferred to the destination host. After
that, operation continues at the destination machine [6].

Figure 8: Memory Live migration techniques

3) I/O device state and Interrupt Controller

The most challenging aspect of the BMLM process is
migration of the I/O and network device states. In general,
a device changes its state either by the OS changing the
operational configuration or by the devices themselves, like
a rebooting process, where a device changes status until it is
ready for use [13]. However, some of the device registers are
not readable or writable so a hypervisor, even if it can read
those registers, may not be able to write or modify their content
at the destination machine. Likewise, even if the hypervisor

Page 5 of 6



can write a value into a destination device register it may not
be able to read the content on the source in the first instance.

The ARM architecture introduces the Generic Interrupt
Controller architecture for handling all interrupt sources for
any processor connected to a GIC. GICv2 and later, includes
the GIC Virtualization extensions where a hypervisor can either
handle a physical interrupt itself or a virtual interrupt that is
signaled to a virtual machine. A GIC is composed by two major
components, the distributor and one or more CPU interfaces
as the number of the processors. The distributor performs
interrupt prioritization and distribution of the interrupt to the
corresponding CPU interface whilst a CPU interface performs
priority masking and preemption handling for a connected
processor on the system [12, 17].

In contrast to x86 architectures, ARM makes use of only the
MMIO (Memory-mapped I/O) method to perform and handle
input/output (I/O) requests between the CPU and peripheral
devices [17]. So, similar to the BitVisor approach, in our
implementation we will try to obtain any unreadable device
states by configuring the hypervisor to monitor communications
between the OS and peripheral devices. When the OS makes a
request to access or write into an I/O address, the hypervisor
will intercept this communication to obtain the value of those
registers. Moreover, to set the unwritable device registers, we
have to configure the hypervisor at the destination machine
to collaborate with the source machine in a way so we can
manipulate and control physical devices to change their state
to the desired settings.

VI.CONCLUSION

Edge computing solutions introduce a remarkable shift,
bringing processing power closer to the edge users and
increasing the performance of storage and computation of
latency-sensitive data, instead of consolidate it them into a
centralised data centre on Cloud. Micro-datacentres (MDCs)
are resources-rich rack-size systems located at the edge of
a network, processing the data that generated by a variety
of IoT devices. However, those micro-datacentres leverage
server virtualisation characteristics and benefits which creates
significant performance degradation making them unsuitable
platforms for ”Big-data”-type applications. Therefore, the
emergence of bare-metal edge servers, free of virtualisation,
offering native high performance processing dedicated to
specific tasks become an attractive alternative implementation
for micro-datacentre infrastructures. We introduced a proposal
for the development of a practical approach for live migration
performed on bare-metal micro-datacentres by leveraging the
capabilities of new ARM CPU architecture. Our goal is the
utilization of a very thin hypervisor to perform live migration
of the physical states without the need for a heavyweight
virtualization, eliminating the virtualization overhead.

ACKNOWLEDGMENT

The work has been supported in part by the UK Engineering
and Physical Sciences Research Council (EPSRC) grants
EP/P004407/1 and EP/P004024/1.

REFERENCES

[1] M.a. Kozuch, Michael Kaminsky, and M.P. Ryan. “Migra-
tion without virtualization”. In: Proceedings of the 12th
conference on Hot topics in operating systems (2009),
pp. 10–10.

[2] Takahiro Shinagawa et al. “BitVisor”. In: Proceedings
of the 2009 ACM SIGPLAN/SIGOPS international con-
ference on Virtual execution environments - VEE ’09
(2009), p. 121.

[3] Jui Hao Chiang, Maohua Lu, and Tzi Cker Chiueh.
“Physical machine state migration”. In: Proceedings of
the International Conference on Parallel and Distributed
Systems - ICPADS (2011), pp. 25–32.

[4] Jui-Hao Chiang, Maohua Lu, and Tzi-cker Chiueh.
“Bootstrapped Migration for Linux OS”. In: Proceedings
of the 8th ACM International Conference on Autonomic
Computing (2011), pp. 209–212.

[5] Prashant Varanasi and Gernot Heiser. “Hardware-
Supported Virtualization on ARM”. In: ApSys’11 (2011),
p. 11.

[6] P. Getzi Jeba Leelipushpam and J. Sharmila. “Live
VM migration techniques in cloud environment - A
survey”. In: 2013 IEEE Conference on Information
and Communication Technologies, ICT 2013 Ict (2013),
pp. 408–413.

[7] Bhanu Prakash Reddy Tholeti. Hypervisors, Virtualiza-
tion, and Networking. Elsevier Inc., 2013, pp. 387–416.

[8] Paul Burns. “The IT benefits of bare metal clouds”. In:
(2014).

[9] David S Linthicum and Virginia Senf. Leveraging bare
metal clouds. Tech. rep. 2014, p. 13.

[10] Kim. “Prototype of Light-weight Hypervisor for ARM
Server Virtualization Young-Woo Jung, Song-Woo Sok,
Gains Zulfa Santoso, Jung-Sub Shin, and Hag-Young”.
In: Embedded Systems and Applications 215 (2015).

[11] Yushi Omote, Takahiro Shinagawa, and Kazuhiko Kato.
“Improving Agility and Elasticity in Bare-metal Clouds”.
In: Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS ’15 50.4
(2015), pp. 145–159.

[12] Christoffer Dall et al. “ARM Virtualization: Performance
and Architectural Implications”. In: Proceedings - 2016
43rd International Symposium on Computer Architecture,
ISCA 2016 (2016), pp. 304–316.

[13] Takaaki Fukai et al. “OS-Independent Live Migration
Scheme for Bare-Metal Clouds”. In: Proceedings - 2015
IEEE/ACM 8th International Conference on Utility and
Cloud Computing, UCC 2015 (2016), pp. 80–89.

[14] Weisong Shi et al. “Edge Computing: Vision and Chal-
lenges”. In: IEEE INTERNET OF THINGS JOURNAL
3.5 (2016). URL: http://www.cs.wayne.edu/%7B∼%
7Dweisong/papers/shi16-edge-computing.pdf.

[15] Jeffrey Burt. ARM Server Chips Challenge X86 in the
Cloud. 2017. URL: https://www.nextplatform.com/2017/
02/01/arm-server-chips-challenge-x86-cloud/ (visited on
08/17/2017).

[16] Basic Architecture and Order. Intel R© 64 and IA-32
Architectures Software Developer’s Manual Volume 3C:
System Programming Guide, Part 3. 2536.

[17] ARM Information Center. URL: http://infocenter.arm.
com/help/index.jsp (visited on 08/13/2017).

[18] “Micro Data Center Solutions Micro Data Center Envi-
ronments”. In: (). URL: https://www.anixter.com/content/
dam/anixter/resources/brochures/anixter- micro- data-
center-brochure-en.pdf.

Page 6 of 6


