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Abstract In virtual desktop cloud computing, user applications are executed
in virtual desktops on remote servers. This offers great advantages in terms of
usability and resource utilization; however, handling a large amount of clients
in the most efficient manner poses important challenges. Especially deciding
how many clients to handle on one server, and where to execute the user
applications at each time is important. Assigning too many users to one server
leads to customer dissatisfaction, while assigning too little leads to higher
investments costs. We study different aspects to optimize the resource usage
and customer satisfaction. The results of the paper indicate that the resource
utilization can increase with 29% by applying the proposed optimizations. Up
t0 36.6% energy can be saved when the size of the online server pool is adapted
to the system load by putting redundant hosts into sleep mode.

Keywords cloud computing - resource overbooking - resource allocation -
resource reallocation - consolidation

1 Introduction

In virtual desktop computing, a major part of computation and storage com-
ponents are shifted from the client device (e.g. desktop PC, laptop, PDA or
smartphone) to the network. User applications are executed in a virtual desk-
top (VD) on a remote server and the client device only deals with user inter-
action and the presentation of the audiovisual output.

The concept of virtual desktop cloud computing is very attractive for sev-
eral reasons, for example, lower client hardware investments are required, the
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Fig. 1 System architecture to support remote desktops as a cloud service

end-user is no longer bothered with regular updates and often difficult in-
stallation and configuration of applications or anti-virus software, lower IT
management costs for companies thanks to central management of desktops
and applications. Furthermore, since the processing power of servers in the
network is used, virtual desktop cloud computing enables access to advanced
applications (e.g., computer-aided design (CAD) applications) from any de-
vice, for example from a tablet PC. Mobile users would no longer need to use
restricted mobile versions of their applications.

Current virtual desktop computing deployments are typically operational
in corporate local area network (LAN) environments, which are highly con-
trolled environments offering fixed and stable bandwidth availability to a rel-
ative small, well-known user base. Extending virtual desktop computing to
wide area network (WAN) environments, which comprise a large, geographi-
cally distributed customer base, where users are potentially connected through
unreliable wireless network connections, involves a number of novel challenges.
Strategies are needed to improve resource utilization and/or customer satis-
faction in WAN environments in the most efficient manner.

Cloud computing [1] is an enabler for this kind of service. Unlike most cur-
rent cloud services, the applications are not accessed through a web browser
(e.g. Google Apps Cloud Service[2]), but through a thin client protocol (e.g.,
Microsoft Remote Desktop Protocol (RDP) [3] or Virtual Network Comput-
ing (VNC) [4]). This way, legacy applications must not be rebuilt to be offered
by the envisioned service.

In Figure 1, the system architecture to support remote desktops as a cloud
service is illustrated. When a user connects to the cloud service, the provider’s
service manager handles authentication, authorization and accounting (AAA)
related functions and when access is granted, the user’s virtual desktop is
allocated to a host selected based on the available user profile information.
Therefore, we assume that the cloud service provider has a database with user
profiles, derived from monitoring information, describing the resource require-



ments of the users’ virtual desktops. Finally, a thin client protocol session is
started between the user and his virtual desktop.

For the envisioned service, it is extremely important to provide crisp in-
teractivity of the service to all clients at all times, which is not the case in
traditional supercomputing topics such as job/batch processing where it is
possible to postpone a job until resources are available. The client’s virtual
desktop needs sufficient resources immediately to ensure quick responses; there
is no possibility to delay the execution of a virtual desktop. The interactiv-
ity of the envisioned services brings important challenges not yet covered by
existing algorithms. The focus in this paper is on the design of optimization
algorithms for maximizing the quality and profits of the cloud service both
for the customers and the provider. To evaluate the performance of the algo-
rithms presented in this paper, an objective metric to represent the quality
experienced by the user is needed. In the context of this paper, the metric is
the probability that the user’s virtual desktop requires more resources than
it receives from the host, which we will refer to as the probability on SLA
violations.

Note that an SLA violation in this context does not represent an SLA
contract violation. In practice, an SLA contract will most probably contain a
certain number of resources that is promised to the customer and/or a proba-
bilistic guarantee that this number of resources is available for the customer.
Only when this guarantee is not met, an SLA contract violation occurs and a
potential penalty has to be paid to the customer.

The contributions of this paper are: (i) a resource overbooking technique,
(i) a resource allocation algorithm, (7) a resource reallocation algorithm and
(iv) a consolidation algorithm to reduce the energy consumption of the hosts.
The remainder of this paper is structured as follows. Related work is discussed
in section 2. The parameters of the model of the envisioned cloud service are
described in section 3, together with a description of the simulation environ-
ment used to evaluate the performance of the proposed optimizations. Before
discussing the optimization algorithms in detail, a resource overbooking tech-
nique to increase the average resource utilization of the system is introduced
and evaluated in section 4. Next, the optimization algorithms, i.e. a resource
allocation algorithm, a resource reallocation algorithm and a consolidation al-
gorithm, are briefly discussed and evaluated respectively in section 5, 6 and 7.
Finally, conclusions are drawn in section 8.

2 Related Work
2.1 Resource overbooking

Resource overbooking is a technique that can establish an increase of the
average utilization of hosts in a data center by reserving less resources than
required in worst case; at the cost of a larger probability that a virtual desktop
does not receive all requested resources. Since more virtual desktops can be



allocated to a host, the cost for the service provider related to investment in
hardware equipment, server maintenance cost and energy cost can be reduced.

The acquisition of the resource requirements of a virtual desktop, i.e. the
user profile information, is an important aspect for resource overbooking but
this is not the main topic of the paper; hence we assume profiling information is
available in this paper. One approach to implement this functionality however,
is to cluster the resource requirements of VDs offline into a finite number of
profiles. At subscription time, a user could be assigned one of those predefined
profiles. An online clustering algorithm such as the decentralized clustering
algorithm presented by Quiroz et al. [5] could be used to map the current
resource requirements (retrieved from monitoring information) of a user’s VD
to one of the cluster profiles. This online mapping can be used to adapt the
current resource allocation or even the user’s profile when appropriate.

Resource overbooking techniques have been studied in various contexts,
e.g., in the field of video-on-demand servers [6] and ATM networks [7]. The
importance of resource overbooking and application profiling in a shared in-
ternet hosting platform is demonstrated in [8]. The target is to maximize the
revenue of the resource provider. The virtual machines never receive more re-
sources than agreed on in the SLA because this does not increase the revenue
for the resource provider. An important difference with our vision, is that in
this paper, the resources that a virtual desktop can consume are not limited
to the reserved resources. This can improve the user satisfaction when there
are enough free resources available.

2.2 Resource allocation

Resource allocation algorithms for static workloads of web applications in a
virtualized service hosting platform are presented in [9]. The metric used in
these algorithms is the yield which is defined as the ratio between the resource
fraction allocated and the maximum resource fraction potentially used. For
example, if the service can be allocated maximum 60% of the host’s CPU
and the service consumes 30% of the CPU than the yield is 30%/60%=0.5.
The algorithms assume static workloads, i.e., workloads that do not change
throughout time. It is addressed in [9] that this assumption does not hold in
practice and it is suggested to run the algorithms periodically to recompute
the resource allocations. However, the new allocation scheme could differ a
lot from the previous allocation scheme, leading to an enormous amount of
reallocations which is not recommended in practice.

In [10], a framework is presented to offer remote desktop sessions in utility
or service grids. When a request to launch a remote desktop session arrives, the
site admission control system checks which servers have enough free resources
to host the session. At runtime, a session admission control system checks if
there are enough resources on the host to execute an additional application
inside the remote desktop session. If not enough resources are available, the



application is put in a queue and can only start when there are enough re-
sources on the host. Instead of waiting until resources become available on the
current host, we propose to start the application immediately and to reallocate
the remote desktop session to another host which does has enough resources.

2.3 Resource reallocation

In the context of object load balancing, the impact of monitoring the objects to
collect data and rebalancing the problem cannot be neglected. In [11], a flexible
method to invoke load balancers has been presented to achieve adaptivity and
to avoid interferences from the load balancer at fixed intervals, which may
diminish the performance. The target of their load balancer is to reduce the
execution time of a job by taking into account the localization of the objects.
The difference with our system is that we cannot reduce the execution time of
a virtual desktop because it is an interactive user session.

Charm++ is a framework for parallel computing using object-oriented pro-
gramming language [12]. Based on object migration, efficient dynamic load
balancing is supported. The framework also deals with external factors that
cause load imbalance. However, these load balancing strategies are mainly
based on the dependency and locality of objects and the methods, which is
fundamentally different from the independent execution of the virtual desk-
tops.

In [13], a system is presented that monitors virtual machines, detects over-
loaded servers and initiates necessary migrations. Two strategies for migra-
tions or reallocations are discussed: a black-box approach which is completely
independent of the OS and applications, and a gray-box approach which ex-
ploits OS and application level statistics. In the black-box approach, the re-
source requirements of the virtual machine are observed externally. In case
of an overloaded virtual machine, it is hard to decide how many resources
should be allocated to the virtual machine to solve the overloaded state. In
the gray-box approach, monitoring details on application level (e.g. applica-
tion response time) are available which allows a more accurate estimation of
the resource needs of the virtual machine. To avoid needless migrations due to
small transient spikes, migrations are only initiated when thresholds or SLAs
are exceeded for a sustained time. It is suggested that this sustained time ap-
proximates the time period of about three migrations before migrations are
initiated. While this approach focuses on migrating VMs due to overloaded
servers, we also focus on migrating VMs to reduce the energy consumption in
the data center.

2.4 Energy-efficiency

Energy-efficient resource management in cloud data centers is very impor-
tant [14-18], not only to reduce the cost of the energy consumption of the
data centers, but also to reduce the carbon dioxide footprint of a data center.



This includes increasing the power efficiency at the architectural level of
microprocessor design with technologies like asymmetric multicores [19] and
the ability to scale the performance of the CPU according to the needs and as
such save energy when possible (e.g., Intel SpeedStep).

In [16], heuristics are presented for dynamic reallocation of VMs with work-
loads originating from web applications and online services. The main idea of
the policies is to set upper and lower utilization thresholds and keep the to-
tal CPU utilization of a node between these bounds. How adaptive upper and
lower bounds can further improve the energy-efficiency of the cloud data center
is investigated in [20]. When the upper bound is exceeded, VMs are reallocated
for load balancing and when the utilization of a host drops below the lower
bound, VMs are reallocated for consolidation. Nevertheless, a significant part
of the consolidation algorithm, namely the decision when hosts should be pow-
ered on again to cope with increasing load, is missing in [16,20]. In section 7,
we show that our consolidation algorithm can save even more energy than the
approach described in [20].

In [21], a trace-based workload placement controller uses historical infor-
mation to periodically and proactively reassign workloads to servers subject
to their QoS objectives. A reactive migration controller is introduced that de-
tects server overload and underload conditions. This controller initiates the
migration of workloads when appropriate. In our work, we detect even more
opportunities to shutdown hosts by combining the virtual desktops of hosts
with low load without waiting for the total system load to drop below a pre-
defined threshold.

3 System model

The different parameters of the system model are introduced in this section.
For maintaining the overview, table 1 summarizes the abbreviations and pa-
rameters used through this paper. After describing the model of the virtual
desktop cloud service, details on the simulation environment used to evalu-
ate the performance of the algorithms are discussed and the scenario of the
simulations is described.

3.1 Model description

We assume that there are M hosts in the data center and N users are sub-
scribed to the virtual desktop cloud service. All hosts in the cloud are con-
sidered identical and have limited processing power, which is modeled by the
number of FLOPS (Floating Point Operations Per Second) F' a host can exe-
cute.

We assume that two user types can be distinguished: normal users and
heavy users. Based on the planning guide described in [22], a single host is
able to execute on average 10 normal virtual desktops or 4 heavy virtual



Symbol Description

Bandwidth of network link [

Number of FLOPS available in a host

Set of virtual desktops assigned to host ¢

Number of hosts

j Memory assigned to virtual desktop of user j

N Number of users

n; Number of virtual desktops on host 4

Pyyn(u) | Dynamic power consumption of a host as a function
of the utilization u of the host

SEERB

Pstat Static power consumption of a host

R Minimum amount of additional resources that a VD can receive from RP

T Number of FLOPS reserved for user j

regq;(t) Number of FLOPS requested by user j on time ¢

RP Resource pool

tonline Time to have an additional host in online mode

toffline | Time to put a host in offline mode

Ts Parameter of the exponential distribution of virtual desktop
service times

VD; Virtual Desktop of user j

Iy Average number of FLOPS requested by user j taken from:

for normal users the folded normal distribution N (10000, 3500)

for heavy users the folded normal distribution N (25000, 5000)

oj Standard deviation of the number of FLOPS requested by user j taken from:
for normal users the folded normal distribution N (3500, (2/3 x 3500)2)

for heavy users the folded normal distribution N (5000, (2/3 x 5000)2)

Table 1 An overview of the parameters and abbreviations used in the model description
and in the algorithms

desktops. The ratio of heavy users to normal users is assumed to be 25%.
We assume that every client has been assigned a personal profile based on
historical data. The average memory consumption for a normal user’s vir-
tual desktop varies between 768MB and 4GB, while for a heavy user’s virtual
desktop it varies between 2GB and 4GB [22]. We can assume that current
server equipment has at least 16GB of memory installed; thus the memory
consumption is not considered to be a bottleneck. Therefore, the user profile
only contains a FLOPS requirement distribution. Based on the observation
that the FLOPS requirement of a virtual desktop depends on many factors
such as several active applications and events in the operating system, we
assume that the central limit theorem [23] can be applied and the FLOPS
requirement distribution for a virtual desktop V.D; can be approximated by
a normal distribution N (y;, OJQ-). The service time of user’s virtual desktop is
assumed to be exponentially distributed with parameter T%.

The following parameters are introduced concerning the power consump-
tion of a host. The power consumption model of a host is assumed to consist
of a static power consumption component Py, i.e. the power consumption
of a host in idle mode, and a dynamic power consumption Pgyy,(u) which is
assumed to be a linear function of the utilization u of the host [24]. In idle
mode, the power consumption of a host is on average 70% of the power P,



consumed when the host is fully utilized [20]. The power consumption of a
host can thus be defined as

P = Pstat + den(u)
=0.7TX Pz +0.3 X Pz Xu
= Pras X (0.7 4 0.3 x u)

The time needed to have an additional online host, either wakening up from
sleep mode or booting from standby mode, is represented by t,niine. The time
needed to put a host in offline state, either in sleep mode or in standby mode,
is represented by %, fiine. Experiments learned that the power consumption
of a host in sleep mode is only slightly higher compared to a host in standby
mode. Therefore, the power consumption of a host in sleep mode is neglected.
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Fig. 2 Percentage of arrivals during a day according to the Lublin model [25]. The regions
with the highest impact of the optimization algorithms presented in this paper are indicated
in the graph.

The arrival process is modeled by a Lublin model [25] with interactive
job types. The Lublin model takes the daily cycle of arrivals into account as
can be seen in Figure 2. Each optimization algorithm proposed in this article
tackles a specific part of the complete scenario with arrivals according to the
Lublin model. In Figure 2, for each algorithm, the part of the scenario with
the strongest impact is illustrated. During the morning, a lot of users want to
start their virtual desktop and the system load transits from low load to high
load. The allocation algorithm selects for every virtual desktop an appropriate
host from the active host group and reserves an amount of resources based on
the user’s profile and on the applied overbooking degree (see section 4). When
convenient, the consolidation algorithm can decide to wake up additional hosts



to serve and satisfy more clients. To the end of the day, the amount of active
users decreases. When users depart, the system becomes in a state with some
hosts still heavily loaded while other hosts are (almost) idle. To increase the
quality experienced by the users, the reallocation algorithm rebalances the
load of the virtual desktop by moving load from high loaded hosts to low
loaded hosts. Finally, the consolidation algorithm comes again into play to
regroup the remaining virtual desktops on a smaller amount of hosts and put
redundant hosts into sleep mode to save energy.

3.2 Simulation environment

Our simulation environment is an extension of the CloudSim 2.0 toolkit [26].
CloudSim is a discrete event simulator for modeling and simulating cloud
computing infrastructures and services. In the context of this paper, virtual
desktops are migrated regularly. CloudSim contains a realistic model to mi-
grate virtual desktops from one host to another. The duration of a migration
in CloudSim takes as long as it needs to migrate the memory assigned to the
virtual desktop, m;, over the network links with bandwidth B; between the
original and the target host. In our simulations, all links are 1 Gbps network
links.

In the CloudSim toolkit, a simple VM scheduler is implemented to dis-
tribute the available resources of a host among the involved VMs. The re-
sources of a host are simply distributed in a first-come, first-served manner. In
other words, the first VM on the host’s list receives the requested resources,
then the second VM is served and so on. In this paper, an advanced sched-
uler is proposed to distribute the host’s resources. For each VM, a number
of FLOPS is reserved based on the user profile and the applied overbooking
technique. It is guaranteed that the VM always has at least this amount of
FLOPS at its disposal. When the VM consumes less FLOPS than reserved, the
remaining FLOPS are collected in a resource pool (RP) as shown in Figure 3.
The resources available in the resource pool can be shared in a second phase
among virtual desktops requesting more FLOPS than reserved.

When enough resources are available to give all virtual desktops the re-
sources they request, there is no issue. However, when not all resource requests
can be met by exhausting the resource pool, a choice has to be made on how
to distribute the resources among the remaining virtual desktops. Both for the
users and the service provider, it is most profitable to minimize the amount
of virtual desktops encountering an SLA violation in such case. Therefore, the
following policy is applied (a flowchart of the resource sharing policy can be
found in Figure 4).

The minimum amount of additional resources that every involved virtual
desktop could get, R, is calculated as

- 3] RP
R #resources in

- #additional resources requested by remaining VMs’
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Fig. 3 Non consumed reserved resources are collected in the host’s resource pool. These
resources can be shared among virtual desktops requesting more resources than reserved.

To distribute the resources among the virtual desktops, the virtual desktops
are sorted by ascending amount of additional requested resources.

When the first virtual desktop in the list requests less additional resources
than R, it receives all the resources it needs and this VD does not encounter
an SLA violation. The remaining resources are again collected in the resource
pool. The value of R is updated. This approach is continued, until the first
virtual desktop in the row requests more additional resources than R. At that
point, none of the remaining virtual desktops can receive all of its requested
resources. Instead, all remaining virtual desktops are given the same amount of
additional resources, R, and thus encounter an SLA violation. This approach
results in fewer SLA violations compared to adopting a simple scheduler as
will be shown in the simulation results in the next section.

4 Resource overbooking

The target of the resource overbooking technique presented in this section is
to increase the system utilization with little impact on the user experience.
This can be achieved by reserving a certain amount of resources for the virtual
desktop based on its profile. First, the term overbooking degree is defined to
depict how many resources should be reserved based on the profile of a vir-
tual desktop.The impact of resource overbooking on the user satisfaction is
discussed and a realistic scenario is evaluated by means of simulations.

4.1 Definition overbooking degree

The overbooking degree is defined as the percentage of resources that are not
reserved for a virtual desktop. For example, when the 90-th percentile of the
resource consumption distribution from the virtual desktop profile is reserved,
the overbooking degree is 10%.
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Fig. 4 Flowchart of the advanced resource sharing policy: an extension of the CloudSim
simple resource sharing policy

4.2 Tmpact of overbooking on user satisfaction

For the customer, it is important that the negative impact of overbooking on
the amount of SLA violations experienced is acceptable. Applying a certain
overbooking degree and the advanced resource scheduler essentially means
that a virtual desktop never encounters an SLA violation when the requested
resources do not exceed the reserved resources. When the virtual desktop re-
quests more resources than reserved, it can encounter an SLA violation de-
pending on the resource requests of other virtual desktops executed on the
same host.

The impact of resource overbooking on the user experience can be rep-
resented by the number of SLA violations experienced by the user’s virtual
desktop. When a host does not have sufficient resources available to fulfill all
requests, at least one virtual desktop will experience an SLA violation. Deduc-
ing the exact amount of virtual desktops experiencing an SLA violation - when
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the advanced resource scheduler is applied - is complicated. An analytical de-
duction for a simplified use case can be found in appendix A. However, when
the number of VDs on a host increases, it becomes hard to analytically deduce
the probability that a virtual desktop experiences SLA violations. Therefore,
simulations are used to further discuss the impact of overbooking in a realistic
scenario.

In the simulations, only one host is considered, which is fully reserved. It
does not really matter how the host got fully loaded. Therefore, we do not take
into account a specific arrival process but only assure that the host is fully
reserved with VDs from normal users. Every timestamp, a virtual desktop
requests a number of FLOPS picked from the associated FLOPS requirement
distribution of the user profile of this virtual desktop. This is repeated until
the measurement of the averages does not significantly change between two
timestamps. The reader is referred to section 3 and Table 1 where the param-
eters of VDs belonging to normal users were described. The main results of
the average of 15 simulations can be found in Figure 5.
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Fig. 5 Simulation results to evaluate the performance of the overbooking strategy for both
the simple scheduler delivered with CloudSim and the advanced scheduler introduced in
section 3.2.
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In Figure 5(a), the average utilization of the host is shown for different
overbooking degrees. For smaller overbooking degrees, less virtual desktops
are accepted for execution on the same host and hence the average utilization
decreases from 96% to 67.3% when the overbooking degree decreases from
50% to 10%. Because the same virtual desktops are accepted for execution
on the host, independent of the applied scheduler type, there is no significant
difference in average utilization of the host. The graph depicted in Figure 5(b)
shows that the average probability at least one of the virtual desktops on the
host encounters an SLA decreases exponentially from 50% to 0.07% when the
applied overbooking degree decreases from 50% to 10%. Again, there is no
significant difference between the two studied schedulers for the same reason
as above: the same virtual desktops are executed on the host, thus the same
probability exists that the sum of the resource requirements of those virtual
desktops exceeds the available resources of the host and at least one of the
virtual desktops encounters an SLA violation.

Nevertheless, in Figure 5(c) an important difference between the simple and
advanced scheduler can be noticed. By adopting the advanced scheduler and
thus assuring that every virtual desktop always receives at least the reserved
amount of resources, a virtual desktop encounters a significantly lower amount
of SLA violations. For example, when an overbooking degree of 50% is applied,
the probability that a virtual desktop encounters an SLA violation can be
decreased from 50% to 19.1% by adopting the advanced scheduler instead of
the simple scheduler. On the other hand, as can be seen in Figure 5(d), the
size of the SLA violation (i.e., the ratio of unallocated resources to the total
requested resources) is larger when the advanced scheduler is applied: 18.9%
compared to 12.1% for an overbooking degree of 50%. Larger SLA violations
mean lower quality experienced by the user and could lead to less revenues
for the service provider depending on the agreement between the user and the
service provider.

For a user, high QoS means few SLA violations which can be reached by
adopting a small overbooking degree. For the service provider, small over-
booking degrees are less attractive, because they lead to an overdimensioning
of the equipment. To accept the same number of VDs, the service provider
would have to invest a lot more in hardware equipment and pay a lot more
for energy consumption. Therefore, it is likely that a service provider uses
higher overbooking degrees and adopt an SLA with the users to guarantee
a minimum service level. Our simulations can be used by a service provider
to set a target on the adopted resource overbooking degree depending on the
maximum probability on SLA violations that a service provider can tolerate.

5 Allocating virtual desktops

When there N online hosts available in the system, it has to be decided on
which host the virtual desktop of an arriving user request should be allocated.
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After describing the allocation algorithm, its performance is evaluated with
our simulator.

5.1 Allocation algorithm

The allocation algorithm is a classical bin-packing problem [27] which is known
to be NP-hard. Therefore, a cost-based heuristic is proposed to select an appro-
priate host when a user request to start V D; arrives. The allocation algorithm
(i) calculates for every host 4 the associated cost ¢; and (ii) selects the host
with the best cost.

We propose a cost that takes into account both the objectives of the cus-
tomers (i.e., few SLA violations) and the objectives of the service provider
(i.e., serve many customers) and is calculated as:

¢; = a X Prob[#SLA violations on host ¢ > 1| VD; € H, |
+08 x Prob[next user rejected by host i | VD; € H;] (1)
with o, 8 > 0.
The host for which the cost ¢; is minimal, is selected to execute the user’s
virtual desktop.
The first term in (1) can be calculated as the probability that the sum of

the resource requirements of virtual desktops executed on the host is larger
than the total amount of resources available on the host:

ng
Prob[#SLA violation(s) on host ¢ > 1] = Prob Zreq]— >F
§=0

= [ N
F

n;
with Un = Z‘uj and oj, =
j=0

The second term in (1) actually depends on several parameters: on the
arrival rate, on the amount of resources the users request and on the current
distribution of virtual desktops among the available hosts. The first two pa-
rameters are not controlled by the allocation algorithm. Therefore, we propose
to distribute the resources according to the best-fit strategy. This heuristic se-
lects the host for which the amount of available resources is closest to the
requested amount of resources. This way, virtual desktops are gathered as
much as possible on a single host, leaving other hosts more or less idle. In case
the system is not overloaded, the probability that at least one host can be
found with enough unreserved resources to execute a user’s virtual desktop is
higher compared to, for example, a random allocation algorithm.
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The probability that the next user is rejected can be calculated as the
average amount of unreserved resources on the host after accepting the current
user’s virtual desktop. The cost ¢; (equation (1)) becomes then:

ci:ax/FooN(umoz)—i—ﬁx;(F— Z rj).

VD;eH;

Note the trade-off between both objectives in the cost function: the first
term in (5.1) aims to equally distribute virtual desktops to prevent overloaded
hosts which would involve higher probabilities on SLA violations, and the
second term in (5.1) aims to collect the virtual desktops as much as possible
on the same host(s) to maximize the probability that a host can be found for
the next arriving user request.

The cost-based allocation algorithm has to calculate the cost ¢; for every
host 7 and select the host for which ¢; is minimal. Therefore, the complexity of
the cost-based allocation algorithm is O(Zi]\io #H;) with #H; the cardinality
of the set H; or in other words the number of VDs allocated to host i.

5.2 Simulation results

To evaluate the performance of the presented cost-based allocation algorithm,
the following simulations have been conducted by studying the transition from
a non utilized system to a high utilized system. An overbooking degree of 50%
has been chosen. The performance of the allocation algorithm should not be
measured when the system is fully loaded, because in that case, it does not
matter how the system got in this state, it is simply overloaded and the per-
formance would be approximately independent of the adopted allocation algo-
rithm. Rather, it is interesting to evaluate the performance of the algorithms
for a nearly overloaded system. Therefore, in the simulations, the transition
from a not-utilized system to a system with an average utilization of 90% is
studied. The allocation algorithm allocates VDs from both normal and heavy
users, in a ratio of respectively 3 to 1, to a host selected out of 10 available
hosts. The inter-arrival time is not important for the current performance eval-
uation because the evaluation of the probability on SLA violations of the final
placement of the VDs is important.

The performance of the cost-based allocation algorithm for relevant ratios
of o/ is compared with the performance of a random allocation algorithm.
The average results of 15 simulations are shown in Figure 6.

The average utilization of the hosts is approximately independent of the
allocation algorithm and reaches 88.5% in the simulations. However, the pro-
bability on SLA violations clearly differs depending on the adopted allocation
algorithm as can be seen in Figure 6. For small ratios of log(«/f), the cost is
dominated by the second term in (1), which means that the cost-based alloca-
tion algorithm tries to gather the virtual desktops as much as possible on the
same host. In other words, the allocation algorithm first fills host 1 with vir-
tual desktops, then host 2 and so on. This leads, already for a small amount
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Fig. 6 Average probability that a virtual desktop experiences an SLA violation for different
allocation algorithms and interesting ratios o/

of active virtual desktops, to a system with overloaded hosts on which the
probability that SLA violations occur is high. On the other hand, the virtual
desktops of all users in the simulations were accepted for execution. When
the first term of the cost function (1) becomes more and more important —
in other words when «/f increases — the average probability that SLA viola-
tions occur decreases from 12% to 2%, at the cost of 0% to 0.6% user requests
being rejected. When the random allocation algorithm is applied, the average
probability SLA violations occur is 6.3% and the average blocking probability
is 0.3%. For well-chosen ratios of a/3, the cost-based allocation algorithm can
thus outperform the random allocation algorithm.

The service providers can set the values of a and 8 to a meaningful value,
namely the cost associated to an SLA violation («) and the cost associated
to a rejected user (). By tuning the ratio between these costs based on our
simulations, the service providers can increase their revenues by minimizing
the costs related to violating SLA agreements.

6 Reallocating virtual desktops

Virtual desktops can be reallocated during operation to optimize the quality
experienced by the users. To implement this optimization, two problems need
to be tackled. First, the reallocation algorithm itself has to be designed tak-
ing into account the cost of reallocating a virtual desktop. The reallocation
algorithm has to decide which virtual desktops should be reallocated; the allo-
cation algorithm presented in the previous section can be used to decide where
to reallocate those virtual desktops. Secondly, it has to be defined when the
reallocation algorithm should be activated.

6.1 Reallocation Algorithm

Reallocating a virtual desktop involves live migrating the virtual desktop from
the original host to the target host. There is a cost associated to this migration
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process [28]. The user can experience a small downtime depending on the kind
of applications executed inside the virtual desktop [29]. The duration of the
migration process depends on the memory used by the virtual desktop. It is
thus important to reallocate as less virtual desktops as needed.

Sort hosts by descending Prob[SLA
violation without VDs migrating away]

]

Get first host H from the list

]

Sort VDs of host H by ascending
Prob[SLA violation occurs without the
current VM] and secondly by
ascending assigned memory

]

‘ Get first VD v from the list ‘

l

‘ Select the best host H’ for v with Select next VD v from the list

‘ Select next host H from the
‘ sorted host list

allocation algorithm Hosts remaining?

Calculate:

p = Prob[SLA violation on H without
VDs migrating away and without v]
p’ = Prob[SLA violation on H’ after
allocating v without VMs migrating
out]

minimum and
maximum Prob[SLA
violation without VMs

NO
VDs remaining?
different?

Finished
migrating out]

‘ Migrate vm from H to H’ ‘

l

Resort the host list by descending
Prob[SLA violation without VDs
migrating away]

Resort the host list.
Is host H still in the same
place?

Fig. 7 Flowchart reallocation algorithm to reduce the Prob[SLA violation] on the hosts in
the data center

A detailed flow-chart of the reallocation algorithm is presented in Figure 7.

By rebalancing virtual desktops among the available hosts, the probability
on SLA violations can be reduced. In this algorithm, we do not adapt the
number of FLOPS reserved for the virtual desktops, we only migrate them to
hosts which has more free resources than the current host. This means that
the target hosts have more free resources that can be shared among virtual
desktops requesting more resources than reserved. This can result in even
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faster responses of the applications executed in the virtual desktop and hence
a better user experience.

The target of the reallocation algorithm is to achieve a smaller probability
on SLA violations in the data center with as less reallocations as possible.
Therefore, the algorithm starts with sorting the hosts by descending proba-
bility of SLA violations on the host. The first host in the list, H, is the host
with the highest probability on SLA violations. To reduce the load on this
host, VDs should be moved to other hosts with as few reallocations as possi-
ble. Therefore, for every virtual desktop on host H, the probability on SLA
violations without that virtual desktop is calculated. The virtual desktop that
can reduce the load on the host the most when it would be moved to another
host, is selected for reallocation. Next, the cost-based allocation algorithm in-
troduced in the previous section is used to select a new host for this virtual
desktop. Since the target is to minimize the probability on SLA violations, a
high ratio for o/ is advised. It only makes sense to reallocate the virtual desk-
top, when the probability on SLA violations on the target host appears smaller
than the probability on SLA violations on the current host. When comparing
these probabilities, the virtual desktops migrating away from the hosts are not
counted, because in the near future, these virtual desktops disappear from the
hosts and will not cause any SLA violations on that host anymore. When it
is decided not to migrate this virtual desktop, the next virtual desktop in the
list is considered for reallocation. When it was decided to migrate the virtual
desktop, the migration process is initiated and the sorted host list is updated.
The algorithm continues until either all hosts reach the same probability on
SLA violations or until no more reallocations are possible that can improve
the quality of the service.

The complexity of the presented reallocation algorithm can be calculated
as follows. We assume that the actual values for the probability on SLA vi-
olations with VDs migrating out are available in memory. The complexity
of the algorithm used to sort an array is O(n x log(n)) with n the size of
the array to sort. Therefore, the complexity of the first step in the realloca-
tion algorithm is O(N X log(N)). The second step involves another sorting
step which is repeated at most once for every host, thus the complexity of
this step is O(Zio #H; x log(#H;)). At most once for every VD allocated
to a host, the allocation algorithm is executed, which has a complexity of
O(Zil\io #H,) as calculated in the previous section. So the complexity of this
step is O (Zf-vzo #H; x (ZZ]-VZO #HZ>) In the next step, the probability on
SLA violations is recalculated for the original host ¢ and the selected target
host i’. The complexity for this step is O(Zij\;o #H; x (#H; + #H;)). To
resort the host list, only the position of two involved hosts must be checked,
because only for the original and target host of the reallocated VD, the pro-
bability on SLA violations can be changed. Therefore, the complexity of this
resorting is O(Zio #H; x N). The total complexity of the reallocation algo-
rithm is the sum of the complexities calculated above and can be simplified to

) (N x log(N) + TN, [#Hl- x (zjvzo #Hl-) #H,; x ND
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6.2 Simulation results

In the scenario of the simulations conducted in this section, the transition from
a fully utilized system to a low utilized system is studied. The simulation starts
with a fully reserved system of 10 hosts. The service times of the accepted vir-
tual desktops are exponentially distributed with parameter Ty = 600. The
results of the simulations for an overbooking degree of 50% and 60% are mea-
sured from the start of the simulation to a third of the total simulation time
because the reallocation algorithm has the largest impact in that part of the
scenario. Indeed, after a while the system is not overloaded anymore and thus
the probability on SLA violations decreases automatically so the reallocation
algorithm cannot further optimize the quality of the service.
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Fig. 8 Improvement of the quality of the service through reallocating virtual desktops once
every 5 minutes, once every minute or every second

As stated in the introduction of this section, besides the reallocation algo-
rithm itself, the activation frequency of the reallocation algorithm is evaluated.
When the activation frequency of the reallocation algorithm increases, more
opportunities are created to increase the quality of the service by reallocat-
ing virtual desktops. The results of the simulations can be found in Figure 8.
By activating the reallocation algorithm every timestamp, a reduction in the
probability on SLA violations from 14.4% to 4.65% and from 29.5% to 14.8%
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can be reached for an overbooking degree of respectively 50% and 60% when
only normal VDs are allocated (see Figures 8(a) and 8(b)). To achieve this
reduction, respectively 34 and 41 reallocations are required. Because the pro-
bability on SLA violations is higher at the start of the simulation for higher
overbooking degree, a larger reduction in the probability on SLA violations
can be reached. The results when a mix of normal and heavy VDs is allocated
can be found in Figures 8(c¢) and 8(d) for an overbooking degree of respectively
50% and 60%. The average probability on SLA violations is a lot smaller com-
pared to the case where only normal VDs were allocated. The relative increase
in performance is then also smaller compared to the case where only normal
VDs were allocated.

Depending on the cost of migrations, the service provider can tune the
frequency of activating this optimization algorithm.

7 Consolidating virtual desktops

The number of online hosts should be dynamically adapted to the system load
to reduce the energy cost and carbon dioxide footprint of the virtual desktop
cloud service, naturally with minimal impact on the user experience. In this
section, a consolidation algorithm is presented and evaluated.

7.1 Consolidation algorithm

An important part of the consolidation algorithm, is to determine how the
system load is varying over time. Based on a prediction of the system load,
the consolidation algorithm has to decide whether (i) additional hosts are
required to cope with an increasing system load, or (i) redundant hosts can
be put offline to save energy, or (%ii) the current amount of hosts is sufficient.

The time between two iterations of the consolidation algorithm is called
the time window. During a time window, monitoring information of the service
is collected. Based on this information and the assumption that the system
load during the next time window will vary in a similar way, the system load



21

is predicted by means of linear extrapolation. This is illustrated in Figure 9.
The difference between the maximum utilization of time window 7 (Umqz,r)
and the utilization at the start of that time window (u,_1) determines the
expected extra load in time window 7+ 1. The expected maximum utilization
for the next time window, w;az,r+1, can be calculated as:

Umaz,r+1 = Ur + (umam,T - u'r—l)-
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reallocated?

Save reallocations in
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Fig. 10 Flowchart of the consolidation algorithm

Based on the predicted system utilization, the required amount of hosts is
deduced by dividing the required FLOPS of the predicted system utilization
by the amount of FLOPS available on a single host. The details of the consoli-
dation algorithm are presented in the flowchart in Figure 10. When additional
hosts are required to handle the predicted system utilization, the hosts are
woken up by means of for example Wake-on-LAN or through a management
interface available in the hosts. When no additional hosts are required nor re-
dundant hosts can be put offline, the algorithm finishes. When the algorithm
decides there are redundant hosts, more elaboration is required to decide which
hosts should be put offline. When there are idle hosts, those are the best choice
to put offline since no virtual desktops have to be reallocated before the hosts
can be put offline. Otherwise, to minimize the amount of reallocations, the
hosts are sorted by ascending amount of virtual desktops. The algorithm tries
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to reallocate the virtual desktops from the hosts in the sorted list until enough
hosts are put offline, or until no hosts are remaining in the list to try to reallo-
cate its virtual desktops. When not all virtual desktops can be reallocated to
other hosts, it makes no sense to reallocate any of the virtual desktops from
that host and the algorithm should continue with the next host from the list.

Besides executing the consolidation algorithm on a regular basis, an op-
timization is implemented to react fast to a wrong prediction of the system
utilization. When a user is rejected, an urgent request for an additional host
is fired to the consolidation component, which will immediately try to wake
up an additional host, without waiting for the next time window.

The complexity of the presented consolidation algorithm is deduced as
follows. When additional hosts are required based on the predicted system
load, the run time of the algorithm can be neglected compared to the com-
plexity of the algorithm when redundant hosts should be put offline. In that
case, the algorithm starts with sorting the host list by ascending amount of
VDs. The complexity of the sorting algorithm is O(N x log(N)). For every
redundant host ¢, it has to be checked whether all VDs allocated to host
i can be reallocated to another host by means of the allocation algorithm
which has a complexity of O(vazo #H;). The complexity of this step is thus

O(Zi]\io #H; x Zio #H;). The total complexity of the consolidation algo-
rithm is then O(N x log(N) + 2N #H; x YN #H,).

7.2 Simulation results

To evaluate the performance of the consolidation algorithm, the complete sce-
nario of user requests arriving according to the Lublin model as described in
section 3.1 is used. This scenario takes into account the daily cycle of many
user requests during the day and less user requests during the night. This is
a realistic scenario which introduces opportunities to put hosts online/offline
according to the system load. The allocation algorithm presented in section 5
is applied in the simulations with log(a/8) = 3.

To evaluate the performance of the consolidation algorithm presented in
this article, the results of the simulations are compared with the results of
the adaptive thresholds algorithm proposed in [20]. In the adaptive thresholds
algorithm, an adaptive upper and lower bound for the utilization of host is
calculated. The aim is to keep the utilization of the hosts in the data center
between these boundaries. When the utilization exceeds the upper bound, the
algorithm tries to reallocate virtual desktops to other hosts as needed. When
the utilization is below the lower bound, the algorithms tries to reallocate all
virtual desktops of the host to be able to put the host offline. In [20], it is
not described when to wake up hosts. In our implementation of the adaptive
thresholds algorithm, we have decided to wake up hosts when a user is rejected.

The results of the simulations can be found in Figure 11 and in Table 2.
When no optimization algorithms are enabled, all 40 hosts are continuously
online and no reallocations are executed. The trade-off between maximizing
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Enabled algorithms #migrations average blocking
#online hosts | probability [%)]
none 0 40 5.24%
adaptive thresholds 178687 34.2 34.35%
consolidation and reallocation 4237 24.1 5.72%
consolidation 1405 24.1 5.66%

Table 2 Performance evaluation for consolidation algorithms

the quality experienced by the users — in other words minimizing the probabi-
lity on SLA violations — and minimizing the energy consumption of the system
can be seen in Figure 11. By enabling the adaptive thresholds algorithm, no
savings in energy consumption are noticeable. Nevertheless, for this algorithm,
the average number of online hosts is 34.2 instead of 40. Due to the enormous
amount of reallocations there is no reduction in the energy consumption of
the hosts because during the reallocation process, a virtual desktop consumes
resources on both the original host and on the target host. When there are
a lot of reallocations, the overhead of the reallocations negates the target of
reducing the energy consumption of the system. When the consolidation pre-
sented in this paper is enabled, a significant reduction of 36.6% of the energy
consumption of the system can be reached compared to the reference case
where no optimization algorithms are enabled. The average amount of online
hosts is 24.1 in this case. By enabling both the consolidation algorithm and
the reallocation algorithm presented in the previous section, still a significant
reduction of the energy consumption of 21.8% can be reached. The reduction
of the energy consumption is smaller when both optimization algorithms are
enabled, because more reallocations are scheduled: 4237 compared to 1405.
As explained above, more reallocations lead to temporarily higher utilization
and thus temporarily higher energy consumption of the system. On the other
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hand, as the target of the reallocation algorithm is to increase the quality ex-
perienced by the users, a smaller probability on SLA violations can be reached
when both algorithms are enabled. In the reference case, the probability on
SLA violations is 3.38%. When the adaptive thresholds algorithm is enabled,
the probability on SLA violations is 3.49%, but the blocking probability (i.e.
the probability that an user request is refused) is unacceptably high: 34.35%
compared to 5.24% in the reference case. The reason is again the enormous
amount of reallocations and the fact that during a reallocation, two reserva-
tions are required for a single VD. Therefore, less resources are available for
new user requests and the probability a client has to be rejected increases.
When the consolidation algorithm is enabled, the probability on SLA viola-
tions is 5.12%, while the blocking probability is only 5.66%. When also the
reallocation algorithm is enabled, a decrease of 0.6% of the probability on SLA
violations can be reached, while the blocking probability increases with 0.06%
because of the increase in performed reallocations.

8 Conclusion

The concept of virtual desktop cloud computing, i.e. executing applications
in virtual desktops on remote servers, is very interesting because it enables
access to any kind of application from any device. Current virtual desktop
systems are mainly installed in LAN environments. Extending this to WAN
environments involves important challenges to efficiently handle the typical
large amount of geographically distributed and potential mobile users.

These challenges include to optimize the number of customers that can be
served by a single host and thus minimize the investment costs for the service
provider, to optimize the quality experienced by the customers by optimizing
the distribution of the customers among the available hosts and to optimize the
energy consumption of the hosts by shutting down redundant servers during
quiet periods and thus saving energy costs for the service provider.

First, an optimization has been introduced to increase the average utiliza-
tion on a single host. It was shown that the proposed overbooking approach,
together with an advanced scheduler, can increase the average utilization of
the resources with 29% at the cost of a probability that virtual desktops on
the host cannot receive the requested resources (i.e. a probability on SLA
violations) of 19%.

In practice, several hosts are available to execute the users’ virtual desk-
tops. A cost-based allocation algorithm has been presented that aims to maxi-
mize the quality of the service both for the customers and the service provider.
Depending on the ratio of the two cost parameters, the probability on SLA
violations varies between 2% and 12%, while the probability on SLA violations
when applying a random allocation algorithm is 6.3%.

To further optimize the quality of the service, a reallocation algorithm has
been proposed to rebalance the virtual desktops among the available hosts after
a busy period. After a busy period, some hosts could still be fully loaded while
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other hosts are almost not loaded and therefore, reallocating virtual desktops
from fully loaded hosts to not loaded hosts can minimize the probability on
SLA violations. By activating the reallocation algorithm every timestamp, in
the simulations, the probability on SLA violations can be reduced from 14.4%
to 4.65%.

The last optimization presented in this paper concerns an optimization of
the energy consumption (and thus also an optimization of the costs for the
service provider) by dynamically adapting the amount of powered-on hosts
to the actual system load. By powering off hosts during quiet periods and
powering on additional hosts during busy periods, the energy consumption
can be decreased with 36.6% while the probability on SLA violations increases
from 3.38% to 5.12%.

In this manuscript, we have shown that the probability on SLA violations
can be influenced by our optimization algorithms. When a target or an objec-
tive is placed on the maximum probability on SLA violations, the parameters
of our algorithms can be tuned so the target user experience can be delivered
to the customers while optimizing the energy efficiency and utilization of the
server infrastructure. Future work includes subjective user acceptance tests
to investigate which probability on SLA violations is still acceptable for the
customers.
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A Appendix: Impact of overbooking on user satisfaction: analytical
use case

For the customer, it is important that the negative impact of overbooking on the amount
of SLA violations experienced is acceptable. Applying a certain overbooking degree and the
advanced resource scheduler essentially means that a virtual desktop never encounters an
SLA violation when the requested resources do not exceed the reserved resources. When the
virtual desktop requests more resources than reserved, it can encounter an SLA violation
depending on the resource requests of other virtual desktops executed on the same host.
Only when the total amount of requested resources exceeds the available resources (F') of
the host at least one virtual desktop experiences an SLA violation. The probability that this
occurs is calculated as

Prob[#SLA violations on host ¢ > 1]
ni

1= [N 3

=0

Deducing the amount of virtual desktops experiencing an SLA violation - when the
advanced resource scheduler is applied - is complicated. To make an analytical deduction
of the probability that a virtual desktop encounters an SLA violation treatable, the follow-
ing assumptions are made. We assume that the distributions of the resource consumption
of the virtual desktops are identical and independent normal distributions: N(u,o2). The
deduction below treats a fully reserved host with three VDs and an overbooking degree of
50% (i.e., pu resources are reserved for each VD).

It is obvious that when all three virtual desktops request less resources than reserved,
no SLA violations occur on the host. The domain in which all three virtual desktops re-
quest less resources than reserved is called Do = {Vreqi, reqz, reqs : reqi,reqz,reqs <
u}. On the other hand, when all three virtual desktops request more resources than re-
served, all three virtual desktops experience an SLA violation. This domain is called D3 =
{Vreqi, reqz, reqs : reqi,rega,reqs > p}. When some virtual desktops request more
resources than reserved and others request less resources than reserved, elaborations are
required to determine the probability that a virtual desktop encounters an SLA violation.
In this deduction, two cases can be distinguished: (i) the combination of one VD requesting
less resources than reserved and two VDs requesting more resources than reserved (domain
Dy = {Vreqi, reqe, reqs : reqi < p&reqe,reqs > pu}) and (i) the combination of two VDs
requesting less resources than reserved and one VD requesting more resources than reserved
(domain Dy = {Vreqi, reqa, reqs : reqi,reqz < p& reqs > p}).

In the first case, i.e. in domain Dq, either 0, 1 or 2 virtual desktops experience an SLA
violation. The probability that no SLA violations occur is calculated as the probability that
the amount of additional resources requested by reqs and reqs are smaller than the amount
of resources put in the resource pool by reqi. The probability that two SLA violations
occur is calculated as the probability that both rega and reqs request more than half of the
resources put in the resource pool by reqi. Finally, the probability that exactly one virtual
desktop encounters an SLA violation can be deduced from the previous probabilities.

In the second case, i.e. in domain Da, either 0 or 1 virtual desktop experiences an SLA
violation. Similar to the first case, the probability that no SLA violations occur is calculated
as the probability that the amount of additional resources requested by reqs is smaller than
the amount of resources put in the resource pool by req; and regs. The probability that one
SLA violation occurs is easily deduced from the previous probability.

Discussing the calculation of all above probabilities in detail might be superfluous. Basic

statistical methods can be applied to calculate the probabilities. As an example, the main
steps of the first case (i.e., domain D;) are presented below.
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The probability that no SLA violations occur is calculated as

Prob[#SLA violations = 0 | domain D1]
= Prob[req1 < pu — (E[reqz +regs] — 2p) | domain D1]

3u—E[reqa+reqs]
= / freql (:El) dxq (2)
0

with freq, (z1) the density function of the distribution of req: in domain Dj.

To calculate the expected value of the sum of reqa and reqs, the density function of
the sum of those resource requests has to be composed first. In the case of identically and
independently distributions, the density function for y = req2 + reqs is

=gt () v (- (52

Substituting the expected value E[y] = E[reqa + req3] of the density function fy(y) in
equation (2) allows to calculate the probability that no SLA violations occur in domain Dj.

Next, the probability that two SLA violations occur is elaborated - under the assumption
that the distributions of the resource requests are identical and independent - as

Prob[#SLA violations = 2 | domain D1]

- F
= Prob[regz > p+ Mf[reql] | domain D1] (3)
—FE
x Prob[reqs > p + ,uf[reql] | domain D1]
—E 2
= (Prob[rqu > p+ uf[?"eql] | domain Dl]) . (4)

The average number of SLA violations in domain D is then calculated as

2
Zi x Prob[ ¢ SLA violations | domain Dq].
i=0

In general, the average number of SLA violations on a host with n; virtual desktops is
calculated as:

n; x
Z Prob[requests € domain D] X Zz x Prob[ ¢ SLA violations | domain D]
x=0 =0
. . 1
with Prob[requests € domain D] = 27( ) for 0 < z < n;.
i\zg

The general approach of the analytical deduction presented above is applicable when
the number of VDs on a host increases, however it becomes hard to analytically deduce the
density distribution of the sum of a large amount of resource requests.

Therefore, simulations are used to determine the average amount of SLA violations on a
host when more VDs are executed on the host. The results of the simulations can be found
in Figure 12. In each simulation, the resource requests of a VD are distributed according to
a normal distribution N (10000, 1500) and the total amount of FLOPS of the host is equal
to the total amount of reserved resources. Each simulation has been conducted until there
was no significantly difference between the running average of two consecutive iterations.

The results of Figure 12 show that applying an overbooking degree of 50% does not
necessarily lead to a probability on SLA violations of 50% when the advanced resource
scheduler is used.
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Fig. 12 Probability that a virtual desktop experiences an SLA violation for different
amounts of simultaneous virtual desktops on a host with an overbooking degree of 50%.
In each case, the total amount of available FLOPS of the host is completely reserved by the
virtual desktops. The results are compared for the simple scheduler (i.e. standard scheduler
in CloudSim) and the advanced scheduler discussed in section 3.2.



