60,763 research outputs found

    On-Line Discovery of Hot Motion Paths

    Get PDF
    We consider an environment of numerous moving objects, equipped with location-sensing devices and capable of communicating with a central coordinator. In this setting, we investigate the problem of maintaining hot motion paths, i.e., routes frequently followed by multiple objects over the recent past. Motion paths approximate portions of objects' movement within a tolerance margin that depends on the uncertainty inherent in positional measurements. Discovery of hot motion paths is important to applications requiring classification/profiling based on monitored movement patterns, such as targeted advertising, resource allocation, etc. To achieve this goal, we delegate part of the path extraction process to objects, by assigning to them adaptive lightweight filters that dynamically suppress unnecessary location updates and, thus, help reducing the communication overhead. We demonstrate the benefits of our methods and their efficiency through extensive experiments on synthetic data sets

    Vainu Bappu Memorial Lecture: What is a sunspot?

    Full text link
    Sunspots have been known in the West since Galileo Galilei and Thomas Harriot first used telescopes to observe the Sun nearly four centuries ago; they have been known to the Chinese for more than two thousand years. They appear as relatively dark patches on the surface of the Sun, and are caused by concentrations of magnetism which impede the flow of heat from deep inside the Sun up to its othewise brilliant surface. The spots are not permanent: the total number of spots on the Sun varies cyclically in time, with a period of about eleven years, associated with which there appear to be variations in our climate. When there are many spots, it is more dangerous for spacecraft to operate. The cause of the spots is not well understood; nor is it known for sure how they die. Their structure beneath the surface of the Sun is in some dispute, although much is known about their properties at the surface, including an outward material flow which was discovered by John Evershed observing the Sun from Kodaikanal a hundred years ago. I shall give you a glimpse of how we are striving to deepen our understanding of these fascinating features, and of some of the phenomena that appear to be associated with them.Comment: Lecture delivered at the Indian Institute of Astrophysics, December 2008 Typing errors corrected To appear in Magnetic Coupling between the Interior and the Atmosphere of the Sun, ed. S.S. Hasan & R.J. Rutten, Astr. Sp. Sci. Pro

    Detection and Characterization of Extrasolar Planets through Doppler Spectroscopy

    Full text link
    Over 300 extrasolar planets have been found since 1992, showing that planetary systems are common and exhibit an outstanding variety of characteristics. As the number of detections grows and as models of planet formation progress to account for the existence of these new worlds, statistical studies and confrontations of observation with theory allow to progressively unravel the key processes underlying planet formation. In this chapter we review the dominant contribution of Doppler spectroscopy to the present discoveries and to our general understanding of planetary systems. We also emphasize the synergy of Doppler spectroscopy and transit photometry in characterizing the physical properties of transiting extrasolar planets. As we will see, Doppler spectroscopy has not reached its limits yet and it will undoubtly play a leading role in the detection and characterization of the first Earth-mass planets.Comment: 50 pages, 16 figures, to appear in the proceedings of the Les Houches Winter School "Physics and Astrophysics of Planetary Systems" (EDP Sciences: EAS Publications Series

    Near infrared flares of Sagittarius A*: Importance of near infrared polarimetry

    Full text link
    We report on the results of new simulations of near-infrared (NIR) observations of the Sagittarius A* (Sgr A*) counterpart associated with the super-massive black hole at the Galactic Center. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope and CIAO NIR camera on the Subaru telescope (13 June 2004, 30 July 2005, 1 June 2006, 15 May 2007, 17 May 2007 and 28 May 2008). We used a model of synchrotron emission from relativistic electrons in the inner parts of an accretion disk. The relativistic simulations have been carried out using the Karas-Yaqoob (KY) ray-tracing code. We probe the existence of a correlation between the modulations of the observed flux density light curves and changes in polarimetric data. Furthermore, we confirm that the same correlation is also predicted by the hot spot model. Correlations between intensity and polarimetric parameters of the observed light curves as well as a comparison of predicted and observed light curve features through a pattern recognition algorithm result in the detection of a signature of orbiting matter under the influence of strong gravity. This pattern is detected statistically significant against randomly polarized red noise. Expected results from future observations of VLT interferometry like GRAVITY experiment are also discussed.Comment: 26 pages, 38 figures, accepted for publication by A&

    Is there a Supermassive Black Hole at the Center of the Milky Way?

    Full text link
    This review outlines the observations that now provide an overwhelming scientific case that the center of our Milky Way Galaxy harbors a supermassive black hole. Observations at infrared wavelength trace stars that orbit about a common focal position and require a central mass (M) of 4 million solar masses within a radius of 100 Astronomical Units. Orbital speeds have been observed to exceed 5,000 km/s. At the focal position there is an extremely compact radio source (Sgr A*), whose apparent size is near the Schwarzschild radius (2GM/c^2). This radio source is motionless at the ~1 km/s level at the dynamical center of the Galaxy. The mass density required by these observations is now approaching the ultimate limit of a supermassive black hole within the last stable orbit for matter near the event horizon.Comment: Invited review submitted to International Journal of Modern Physics D; 23 pages; 10 figure

    Asteroseismology and evolution of EHB stars

    Full text link
    The properties of the Extreme Horizontal Branch stars are quite well understood, but much uncertainty surrounds the many paths that bring a star to this peculiar configuration. Asteroseismology of pulsating EHB stars has been performed on a number of objects, bringing us to the stage where comparisons of the inferred properties with evolutionary models becomes feasible. In this review I outline our current understanding of the formation and evolution of these stars, with emphasis on recent progress. The aim is to show how the physical parameters derived by asteroseismology can enable the discrimination between different evolutionary models.Comment: 13 pages, 6 figures, invited review to appear in Communications in Asteroseismology vol.159, "Proceedings of the JENAM 2008 Symposium No 4: Asteroseismology and Stellar Evolution

    The Agulhas Ridge, South Atlantic: the peculiar structure of a fracture zone

    Get PDF
    The Agulhas Ridge is a prominent topographic feature that parallels the Agulhas-Falkland Fracture Zone (AFFZ). Seismic reflection and wide angle/refraction data have led to the classification of this feature as a transverse ridge. Changes in spreading rate and direction associated with ridge jumps, combined with asymmetric spreading within the Agulhas Basin, modified the stress field across the fracture zone. Moreover, passing the Agulhas Ridges location between 80 Ma and 69 Ma, the Bouvet and Shona Hotspots may have supplied excess material to this part of the AFFZ thus altering the ridges structure.The low crustal velocities and overthickened crust of the northern Agulhas Ridge segment indicate a possible continental affinity that suggests it may be formed by a small continental sliver, which was severed off the Maurice Ewing Bank during the opening of the South Atlantic.In early Oligocene times the Agulhas Ridge was tectono-magmatically reactivated, as documented by the presence of basement highs disturbing and disrupting the sedimentary column in the Cape Basin. We consider the Discovery Hotspot, which distributes plume material southwards across the AAFZ, as a source for the magmatic material
    corecore