1,329 research outputs found

    On the use of Wireless Sensor Networks in Preventative Maintenance for Industry 4.0

    Get PDF
    The goal of this paper is to present a literature study on the use of Wireless Sensor Networks (WSNs) in Preventative Maintenance applications for Industry 4.0. Requirements for industrial applications are discussed along with a comparative of the characteristics of the existing and emerging WSN technology enablers. The design considerations inherent to WSNs becoming a tool to drive maintenance efficiencies are discussed in the context of implementations in the research literature and commercial solutions available on the market

    Vibration characterisation for fault detection and isolation in linear synchronous motor based conveyor systems

    Get PDF
    Linear synchronous motor (LSM) based transport systems are increasingly deployed in automated manufacturing environments. The aim of the study is to establish the feasibility of employing low power and low-cost vibration sensing cyber physical systems to perform near real-time fault detection and isolation for passive LSM vehicles. Empirical data capture was conducted on an LSM test-bed where vehicle velocity was varied to determine how changes in velocity would impact the vibration profile of the LSM vehicle. The recorded data was analyzed, and peak accelerations were examined for each of the velocities under study. Frequency domain analysis was conducted on the collated accelerometer data and frequencies of interest were identified. The findings are shown to concur with the manufacturer's operating specifications (0-30 Hz). A relationship between LSM vehicle speed and vibration frequency was established. The results presented provide the basis for the establishment of low-cost condition based preventative maintenance, deployed to a LSM based transport system for high volume manufacturing

    On the potential for Electromagnetic Energy Harvesting for a Linear Synchronous Motor based Transport System in Factory Automation

    Get PDF
    Transport systems incorporating linear synchronous motors (LSMs) enable linear motion at high speed for emerging factory automation applications. The goal of this work is to determine the feasibility of harvesting energy directly from an operational LSM transport system employed in high volume manufacturing. Microelectromechanical (MEMs) based sensor technology, deployed as part of a wireless cyber physical system (CPS), perform near real-time magnetic field measurement for a mobile LSM vehicle. The vehicle under study is purposed for mobile factory automation and is not wired for communications nor does it have an onboard power source. A series of experiments were designed and conducted to establish the magnetic profile of the system. Empirical data capture was conducted on a cycled LSM test-bed comprising of 2 shuttles and 2 x 3 meter lengths of LSM track (MagneMotion QuickStick®100). Varying vehicle speeds were incorporated in the experimental regime to determine how changes in velocity would impact the magnetic profile of the vehicle. The recorded magnetic field data was analysed and a relationship between LSM vehicle speed and magnetic field frequency was established. The study highlights the potential to employ a single receiving coil to enable energy recovery which in turn could power a cyber-physical system (CPS) tasked with performing condition based monitoring of the LSM transport vehicles. This in turn can form the basis for the development of a predictive maintenance system, deployed to an LSM based transport layer in high volume manufacturing environments

    The intelligent industry of the future: A survey on emerging trends, research challenges and opportunities in Industry 4.0

    Get PDF
    Strongly rooted in the Internet of Things and Cyber-Physical Systems-enabled manufacturing, disruptive paradigms like the Factory of the Future and Industry 4.0 envision knowledge-intensive industrial intelligent environments where smart personalized products are created through smart processes and procedures. The 4th industrial revolution will be based on Cyber-Physical Systems that will monitor, analyze and automate business processes, transforming production and logistic processes into smart factory environments where big data capabilities, cloud services and smart predictive decision support tools are used to increase productivity and efficiency. This survey provides insights into the latest developments in these domains, and identifies relevant research challenges and opportunities to shape the future of intelligent manufacturing environments.status: publishe

    Standards-based wireless sensor networks for power system condition monitoring

    Get PDF
    This paper assesses the industrial needs motivating interest in wireless monito ring within the power industry, and reviews applications of WSN technology for substation condition monitoring (Section 2). A key contribution is the identification of a set of technical requirements for substation - based WSNs, focused around security requi rements, robustness to RF noise, and other utility - specific concerns (Section 3). Section 4 comprehensively assesses the suitability of various IWSN protocols for substation environments, using these requirements. A case study implementation of one standar d, ISA100.11a, is reported in Section 5, along with deployment experience. The paper concludes by describing future research challenges for WSN protocols which are specific to this domain

    Industry 4.0 – LabVIEW Based Industrial IoT Condition Monitoring System

    Get PDF
    As a result of a substantial shift in focus towards a more digital industry, multiple sectors of industry are now realising the potential of Industry 4.0 and Internet of Things (IoT) technology. The manufacturing industry in particular is subject to unexpected machine downtime from component wear over an extended period. With Industrial IoT (IIoT) technology implemented, there is the potential for gathering large quantities of data, which can be used for preventative maintenance. This research article addresses some of the technological requirements for developing an IoT industrial condition monitoring network, whose composition makes use of wireless devices along with conventional wired methods to enable a series of data capture and control operations in amongst a network of nodes. To provide a platform to host these operations, the industry standard fieldbus protocol Modbus TCP was used in conjunction with the LabVIEW development environment, where a bespoke graphical user interface was developed to provide control and a visual representation of the data collected. In addition, one of the nodes acted as the output for hardware displays, which in turn correlated the alarm status of the user interface. By using industry standard communication protocols, it was also possible to enable connectivity between real industry hardware, further extending the capabilities of the system
    • …
    corecore