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ABSTRACT 

This Culminating Experience Project explores the use of machine learning 

algorithms to detect machine failure. The research questions are: Q1) How does 

the quality of input data, including issues such as outliers, and noise, impact the 

accuracy and reliability of machine failure prediction models in industrial 

settings? Q2) How does the integration of SMOTE with feature engineering 

techniques influence the overall performance of machine learning models in 

detecting and preventing machine failures? Q3) What is the performance of 

different machine learning algorithms in predicting machine failures, and which 

algorithm is the most effective? The research findings are: Q1) Effective outlier 

handling is vital for predictive maintenance as the variables distribution initially 

showed a right-skewed pattern but after rectifying, it became more centralized, 

with correlations between specific sensors showing potential for further 

exploration. Q2) Data balancing through SMOTE and feature engineering is 

essential due to the rarity of actual failure instances. Substantial challenges are 

observed when predicting 'Failure' instances, with a lower true positive rate 

(73%), resulting in low precision (0.02) and recall (0.73) for 'Failure' predictions. 

This is further reflected in the low F1-Score (0.03) for 'Failure,' indicating a trade-

off between precision and recall. Despite a commendable overall accuracy of 

94%, the class imbalance within the dataset (92,200 'Running' instances vs. 126 

'Failure' instances) remains a contributing factor to the model's limitations. Q3) 
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Machine learning algorithm performance varies, with Catboost excelling in 

accuracy and failure detection. The choice of algorithm and continuous model 

refinement are critical for enhanced predictive accuracy in industrial contexts. 

The main conclusions are: Q1) Addressing outliers in data preprocessing 

significantly enhances the accuracy of machine failure prediction models. Q2) 

focuses on addressing the issue of equipment failure parameter imbalance. It 

was found in the research findings that there was a significant imbalance in the 

failure data, with only 0.14% of the dataset representing actual failures and 

99.86% of the dataset pertaining to non-failure data. This extreme class disparity 

can result in biased models that underperform on underrepresented classes, 

which is a common problem in machine learning. Q3) Catboost outperforms 

other algorithms in predicting machine failures with remarkable accuracy and 

failure detection rates of 92% accuracy and 99% times it is correct, and further 

exploration of diverse data and algorithms is needed for tailored industrial 

applications. Future research areas include advanced outlier handling, sensor 

relationships, and data balancing for improved model accuracy. Addressing rare 

failures, enhancing model performance, and exploring diverse machine learning 

algorithms are critical for advancing predictive maintenance.  
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CHAPTER ONE 

INTRODUCTION 

In recent years, automation has become an integral part in various 

industries, from manufacturing to healthcare. Automated systems have brought 

about significant improvements in productivity, efficiency, and cost savings. 

However, with increasing reliance on automation, the occurrence of machine 

failures has become a significant concern (Timothy, 2005). Machine failures can 

result in significant downtime, increased costs, and reduced customer 

satisfaction. As our dependency on automated systems grows, the occurrence of 

machine breakdowns has emerged as a major issue, resulting in significant 

operational downtime, increased expenses, and decreased consumer 

satisfaction (Abidi et al., 2022). 

 Predictive maintenance, a cornerstone in machinery and asset 

management, has traditionally relied on several methodologies to anticipate and 

prevent machine failures. Initially, the industry favored Time-Based Maintenance 

(TBM) which serviced machinery at fixed intervals based on their anticipated life 

cycles, though this often resulted in either unnecessary maintenance or 

overlooking impending failures (Cavalieri & Salafia, 2020). On the other hand, 

Reactive Maintenance, which waited for machines to fail before intervention, was 

simpler but had associated high costs from emergency repairs and unexpected 

downtimes (Rojek et al., 2023). This led to the emergence of Condition-Based 
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Maintenance (CBM) that used sensor data to prompt maintenance when 

deviations from predefined thresholds were noted, albeit the manual 

interpretation was fraught with errors and certain failure modes could be 

overlooked (Goyal & Pabla, 2015). To optimize strategies, the industry also 

employed the comprehensive yet time-consuming Reliability-Centered 

Maintenance (RCM), which despite its depth, struggled with real-time adaptability 

to changes in machinery behavior or operational environments (Tiddens et al., 

2023). 

The integration of AI and machine learning into predictive maintenance 

has revolutionized machinery maintenance, overcoming many of the limitations 

inherent in traditional methodologies such as TBM, Reactive Maintenance, CBM, 

and RCM. These advanced ML algorithms, adept at analyzing extensive 

datasets, provide critical data-driven insights, identifying patterns and anomalies 

potentially overlooked by human analysts (Cross, 2015). Their real-time 

analytical prowess facilitates prompt interventions, marking a departure from 

conventional periodic checks (Heron & Smyth, 2010). Additionally, the 

continuous adaptability of these models ensures updated and accurate 

predictions, minimizing false alarms and enhancing cost efficiency by focusing on 

genuine maintenance needs rather than relying on predetermined schedules or 

reactive measures. This technological evolution, combining AI's capabilities with 

data insights, signifies a transformative phase in achieving operational 

excellence in numerous industrial sectors (Brock & Von Wangenheim, 2019). 
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Background 

 

Machine failures, which encompass the malfunction or breakdown of 

machines causing suboptimal performance, pose a critical challenge in various 

industries. Such failures often arise from wear and tear, misuse, inherent design 

flaws, or external environmental factors. These breakdowns can severely affect 

an organization's operations and profitability, leading to consequences such as 

reduced output, compromised efficiency, escalated maintenance costs, and even 

potential safety hazards (Ku, 2018). Given these repercussions, there's a 

compelling need for organizations to adopt a proactive stance towards the 

prevention of machine failures. Embracing such an approach not only safeguards 

operational integrity but also paves the way for enhanced productivity and 

reduced operational costs. Consequently, as we delve deeper into this topic, it 

becomes evident that exploring and instituting robust preventive mechanisms is 

crucial for the seamless functioning of industries. 

In the realm of equipment management and optimization, certain 

methodologies stand out as pivotal in ensuring longevity and operational 

efficiency. Preventive Maintenance serves as the front line of defence against 

potential machine failures. It encapsulates a proactive regimen where regular 

checks and repairs play a quintessential role in ensuring machinery functions 

optimally. By staving off foreseeable issues, this approach aims to reduce 
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unforeseen downtimes and subsequent operational losses (Chanda & Banerjee, 

2022b). 

Parallel to this, there's an ever-evolving need for real-time insights into 

machine health, ushering in the significance of Condition Monitoring. As opposed 

to reactive measures, condition monitoring consistently oversees machinery 

performance, flagging inconsistencies or anomalies. Such vigilant oversight 

ensures timely interventions, circumventing failures that could otherwise have 

been detrimental (Natarajan & Srinivasan, 2010). 

Yet, in the broader spectrum of system efficiency, a holistic approach 

becomes imperative. Enter Reliability Engineering, a discipline that transcends 

mere maintenance. With its roots in systematic methodologies, reliability 

engineering doesn't merely address, but strategically enhances both the 

performance and reliability of machinery, systems, and even end products. This 

holistic view ensures that every cog in the machinery, be it a physical component 

or a process, functions in harmony, thereby driving optimal outputs (Tsang, 

2018). 

In addition to these proactive techniques, it is critical to do root cause 

analysis (RCA) following a machine failure. RCA is the process of determining 

the root cause of an issue to avoid it from recurring in the future. This frequently 

entails a thorough investigation of the machine, its components, and the 

circumstances underlying the failure (Lokrantz, Gustavsson & Jirstrand, 2018). 
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Several important factors must be addressed when evaluating machine 

failure data in order to accurately evaluate the probability of machine failure and 

identify possible causes (Angelopoulos et al., 2019). Time of failure, Type of 

machine, Operating parameters, Service history, Component failures, and 

Location are some typical criteria that are frequently included in machine failure 

data (Angelopoulos et al., 2019). 

 

Problem Statement 

Machine failures can result in significant costs and downtime for industries 

that rely on automation. In order to minimize the impact of machine failures, it is 

important to detect them early and carry out preventative maintenance (Chen & 

Zhang, 2018). Traditional machine failure prediction methods are based on 

manual inspections and threshold-based approaches, which are often reactive 

and time-consuming (Salfner et al., 2010). 

The operational integrity of automation systems hinges significantly on the 

accuracy and reliability of machine failure prediction models (Chanda & 

Banerjee, 2022). The repercussions of unpredictable machine failures can ripple 

across various domains, from operational downtimes to economic ramifications. 

While there's consensus on the pivotal role of real-time prediction models, there 

remains a void when it comes to their seamless integration within automated 

industries (Navarro et al., 2022). Advanced machine learning algorithms, with 

their potential to revolutionize this domain, appear as a beacon of promise. 
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However, a concerning lacuna has been identified in contemporary research: 

there's a limited exploration into the application of these avant-garde algorithms 

specifically for machine failure prediction within the context of automated 

industries. Dalzochio et al. (2020) have accentuated this gap, emphasizing that 

previous studies often tend to overlook this niche that is yet crucial application. 

Consequently, there's a pressing need to delve into this uncharted territory, 

building upon the foundation set by prior research while addressing the areas 

they've earmarked for further exploration. 

 

Research Question 

1. How does the quality of input data, including issues such as outliers, and 

noise, impact the accuracy and reliability of machine failure prediction 

models in industrial settings? 

2. How does the integration of SMOTE with feature engineering techniques 

influence the overall performance of machine learning models in detecting 

and preventing machine failures? 

3. What is the performance of different machine learning algorithms in 

predicting machine failures, and which algorithm is the most effective? 

 

Summary 

Automated systems have improved productivity, efficiency, and cost 

savings, machine failures can result in significant downtime, increased costs, and 
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reduced customer satisfaction. Traditional machine failure prediction methods 

are often reactive and time-consuming, leading to a growing need for more 

accurate and reliable machine failure prediction models that can provide real-

time results and easily integrate into automation systems.  

Advanced machine learning algorithms have shown great promise in 

predicting machine failures and allowing for early detection and preventative 

maintenance. However, there is a lack of research on the application of these 

algorithms to machine failure prediction in automated industries (Jung et al., 

2021). The aim of this study is to address this gap in knowledge by exploring the 

use of machine learning algorithms to predict machine failures, the factors 

influencing machine failures in automated industries, and the performance of 

different machine learning algorithms in predicting machine failures. 

 

Organization of the Project 

This Culminating Experience Project is organized as follows: 

Chapter 1 covers the Introduction and Problem Statement 

Chapter 2 covers the Literature Review 

Chapter 3 covers the Methodology 

Chapter 4 cover Data Collection and Analysis 

Chapter 5 covers Conclusion and Areas for the Further Studies 
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CHAPTER TWO 

LITERATURE REVIEW 

 

Question 1: How does the quality of input data, including issues such as outliers, 

and noise, impact the accuracy and reliability of machine failure prediction 

models in industrial settings? 

The ability to harness advanced machine learning algorithms for predicting 

machine failures aligns with the industry's pursuit of minimizing downtime, 

optimizing maintenance operations, and maximizing overall operational 

efficiency. Numerous variables, spanning from mechanical wear and tear to 

environmental conditions, play pivotal roles in the degradation and eventual 

malfunction of machinery. Factors such as vibration levels, temperature 

variations, humidity, and operational loads contribute to the intricate web of 

influences on machine performance (Qing et al., 2022).  

Understanding these multifaceted factors is imperative for developing 

effective predictive maintenance strategies that can mitigate downtime and 

optimize operational efficiency. Singh et al., (2016) reviewed the literature on the 

sensitivity of machines to different mechanical and electrical flaws that might 

result in motor failure and unplanned downtime. Since it is frequently not 

economically practical to physically inspect machines after they fail, computer 

models have been created to simulate motor failure and the resulting changes in 
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measured parameters. The authors provide a summary of mathematical models 

that have been applied to research motors in malfunction (Singh et al., 2016). 

Many linked circuit models, dq models, magnetic equivalent circuit models, and 

finite element models are the different types of models. The merits and cons of 

each type of model in simulating various fault types are examined in detail. 

The study by Gaddam et al. (2020) says, in the era of Industry 4.0, the 

fusion of advanced machine learning techniques with smart sensors and robust 

communication technologies is fundamentally transforming our interactions with 

the physical world, permeating sectors such as work, learning, innovation, and 

entertainment. However, the operational challenges stemming from the 

deployment of these smart sensors in demanding industrial environments have 

been found to generate outliers—erroneous and unusual data readings. Gaddam 

et al. (2020) emphasizes in their research that while extensive efforts have been 

dedicated to devising sensor outlier detection models, the unique and intricate 

operational context of machine learning within industrial settings necessitates 

tailored approaches. Detecting sensor faults and anomalies takes center stage, 

ensuring not only data quality but also the reliability of machine learning models 

deployed for the processing of sensor data and the advancement of various 

industrial applications. In this comprehensive investigation, we delve into the 

multifaceted landscape of detecting sensor faults, anomalies, and outliers in 

industrial domains, unveiling the core findings and results that underscore the 

significance of selecting specialized outlier detection models for bolstering the 
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dependability of machine learning systems tasked with the management and 

interpretation of sensor data. 

The study by De Jesus et al. (2021) says, in the domain of environmental 

monitoring, where sensor platforms often confront harsh conditions while 

monitoring complex phenomena, the task of designing dependable systems 

faces formidable challenges due to external disturbances affecting sensor 

measurements. Even the seemingly simple task of outlier detection in sensor 

data becomes intricate, as it requires distinguishing genuine data errors arising 

from sensor faults from deviations caused by natural phenomena (De Jesus et 

al., 2021). Existing solutions for runtime outlier detection rely on precise physical 

process modeling or the assumption that outliers exhibit conspicuous deviations, 

easily filtered by predefined thresholds. Alternatively, they depend on redundant 

data from multiple sensors for voting-based techniques. To address these 

complexities, this article introduces an innovative methodology that leverages 

machine learning to model individual sensor behavior, using correlated data from 

related sensors to accurately estimate environmental parameters and construct 

failure detectors. This approach not only distinguishes genuine abnormalities 

from natural deviations but also quantifies measurement quality, enhancing data 

reliability. Applied to real datasets from an aquatic monitoring system, the 

methodology showcases its effectiveness in identifying outliers, surpassing 

existing solutions in accuracy and promising improved reliability for 

environmental monitoring systems. 
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The field of predictive maintenance, a critical area in automated industries. 

Leveraging the proposed methodology, the researchers Garouani et al., (2022) 

have conducted rigorous testing, centered on the analysis of over 360 databases 

derived from the domain of predictive maintenance. Through these tests, the 

researchers demonstrate the efficacy of their approach in addressing the 

pertinent challenge of predicting machine failures. By harnessing automated 

machine learning, the study contributes to the overarching discourse on 

optimizing machine learning techniques for real-world industrial scenarios.  

The study by Konstantinidis et al., (2022) says that since Industry 4.0 

permits more flexibility and customization in production processes, it has a 

significant impact on traditional business models. Also, it has a big impact on 

small and medium-sized businesses since it enables them to compete with 

bigger businesses by implementing digital technologies. Furthermore, highlights 

how crucial decision-making procedures are in the context of Industry 4.0. It is 

essential to have efficient decision-making processes in place to make use of the 

vast amount of data provided by digital technology. 

Study by Wang et al., (2017) says the rapid evolution of optical networks 

serving as the backbone of many essential services, there's an increasing 

demand for sophisticated performance monitoring and failure prediction 

solutions. Machine learning has emerged as a promising approach to address 

these challenges, specifically utilizing algorithms like the Support Vector Machine 

(SVM) and Double Exponential Smoothing (DES). While SVM's prowess in 
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handling high-dimensional data for classification makes it apt for predicting 

equipment failures, DES, known for forecasting network traffic patterns, captures 

the trend and seasonality of data, ensuring accurate modelling of optical network 

behaviours. Despite traditional risk-aware models providing insights, their static 

nature often overlooks the evolving dynamics of network behaviors. However, 

our pioneering effort to integrate DES and SVM has shown a remarkable 95% 

prediction accuracy in optical network equipment failure, signifying its potential in 

enhancing network resilience and filling the noticeable research gap in proactive 

failure prediction methodologies.  

 

Question 2: How does the integration of SMOTE with feature engineering 

techniques influence the overall performance of machine learning models in 

detecting and preventing machine failures? 

The accurate identification of failures and defects in industrial machines 

plays a pivotal role in assessing their warranty and overall performance (Sridhar 

& Sanagavarapu, 2021b). Industrial machines undergo depreciation owing to a 

variety of factors, with common culprits including tool wear, strain, heat, and 

power failure. This paper focuses on the development of machine learning 

algorithms aimed at predicting machine failures. To achieve this, a synthesized 

dataset mirroring real-time failures encountered in industrial settings was 

employed to construct a predictive maintenance model. However, the presence 
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of class data imbalance posed a challenge to the performance of machine 

learning algorithms. To address this issue, SMOTE-based oversampling 

techniques were evaluated. The results demonstrated a notable 7.83% increase 

in the Area Under Curve (AUC) score, signifying improved performance of the 

Random Forest classifier in effectively distinguishing between instances of non-

failure and machine failures. 

Modern condition monitoring systems for electrical machines have 

increasingly relied on data-driven methods, offering a straightforward approach to 

effective fault detection and diagnostics (Swana et al., 2022b). Despite their 

advantages, practical implementation encounters challenges such as data 

imbalance. The scarcity of reliable labelled fault data from real-world machines 

poses a significant obstacle to developing accurate supervised learning-based 

condition monitoring systems. This study explores the application of the Naïve 

Bayes classifier, support vector machine, and k-nearest neighbours in 

conjunction with synthetic minority oversampling technique, Tomek link, and their 

combined use for fault classification using both simulated and experimentally 

imbalanced data. A comprehensive comparative analysis across various 

imbalanced data scenarios assesses their suitability for condition monitoring in a 

wound-rotor induction generator. Performance evaluation utilizes precision, 

recall, and f1-score metrics, revealing that the combination of the synthetic 

minority oversampling technique with the Tomek link consistently delivers the 

best performance across all classifiers. Particularly, the k-nearest neighbours, 
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when coupled with this combined resampling technique, achieves the most 

accurate classification results. This research is valuable to both researchers and 

practitioners in the field of condition monitoring for electrical machines, aiding in 

the selection of appropriate techniques for handling imbalanced fault data, a 

critical consideration in the limited data landscape of condition monitoring for 

electrical rotating machines (Swana et al., 2022b). 

A study by Kim et al., (2016) states, in semiconductor manufacturing, the 

prediction of faults in the FAB (wafer fabrication) process is instrumental in 

enhancing product quality and reliability through effective classification 

performance. However, the FAB process occasionally experiences faults, with 

most of these instances categorized as "pass." Consequently, this leads to data 

imbalance in the pass/fail class distribution. This data imbalance poses 

challenges for prediction models as it tends to introduce bias towards the 

majority class (pass class), making it difficult to accurately predict instances of 

the "failure" class (Kim et al., 2016).  

In this Culminating Experience Project, we propose a solution to this 

problem by introducing the SMOTE (Synthetic Minority Oversampling 

Technique)-based oversampling method (Duan et al., 2022). This approach aims 

to address the imbalance between the "pass" and "fail" classes by oversampling 

the minority class, "fail." By applying this method, we effectively mitigate data 

imbalance and enhance the performance of fault detection prediction models in 
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the FAB process, thus ultimately contributing to improved product quality and 

reliability. 

Industrial manufacturing processes often grapple with the disruptive impact of 

machine failures, which can lead to unplanned downtime and substantial revenue 

losses for manufacturers (Vuttipittayamongkol & Arreeras, 2022). To address this 

challenge, numerous machine learning-based approaches have been proposed 

to enable the instant detection of occurring failures or the prediction of potential 

breakdowns (Vuttipittayamongkol & Arreeras, 2022). However, several limitations 

and issues persist, demanding focused attention.  

In their study, Vuttipittayamongkol & Arreeras (2022) address the 

challenges of acquiring real-world industrial data, particularly in the context of big 

data, the intricate task of feature selection, and the under-representation of 

machine failure events within the data. They present a novel approach that 

leverages a relatively small predictive maintenance dataset and basic supervised 

learning algorithms for industrial machine failure detection. Vuttipittayamongkol & 

Arreeras (2022) also highlight the importance of addressing the imbalanced class 

distribution inherent in such data to enhance detection accuracy. They employ a 

range of non-deep learning algorithms for classification, complemented by data 

resampling methods to improve model performance. Their findings indicate that 

decision tree algorithms are effective in achieving robust classification results, 

with the implementation of an undersampling method yielding a notable detection 

accuracy of 91%. This study by Vuttipittayamongkol & Arreeras (2022) 
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contributes significantly to the field, recommending further exploration in the area 

of machine failure detection using limited data resources. 

Imbalanced datasets can be a formidable hurdle in classification problems, and 

this study delves into the intricacies of imbalanced classification utilizing support 

vector machines (SVM). The research by Illán et al., (2019) aims to 

comprehensively understand and quantify the challenges posed by imbalanced 

datasets when employing SVMs. Through a combination of theoretical analysis 

and experimental exploration, the study identifies the conditions under which 

SVM failures can manifest. Interestingly, the research reveals that SVM failures 

can be relevant even in scenarios characterized by very slight imbalances in the 

data distribution. To mitigate these challenges and avoid SVM failures, the study 

also provides guidelines for conducting exploratory data analysis. By following 

these guidelines, practitioners can navigate the complexities of imbalanced 

classification more effectively and improve the reliability of SVM-based 

classification models (Illán et al., 2019). 

 

Question 3: What is the performance of different machine learning algorithms in 

predicting machine failures, and which algorithm is the most effective? 

The most commonly used algorithms in predicting machine failures is 

Support Vector Machine, as evidenced in study (Sridhar & Sanagavarapu, 2021). 

This machine learning algorithms used in predictive maintenance, with a focus on 

determining the most effective choice. Support Vector Machine (SVM) has been 
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acknowledged as a valuable algorithm for predicting machine failures, as 

substantiated by several studies in the literature (Sridhar & Sanagavarapu, 

2021). SVM's performance in predictive maintenance has consistently 

demonstrated its effectiveness in accurately identifying potential failures and 

contributing to improved maintenance strategies. 

The evaluation of various machine learning algorithms in predicting 

machine failures has been the subject of extensive investigation within the realm 

of predictive maintenance (Rousopoulou et al., 2020, Nguyen et al.,2023). 

Researchers have explored a wide array of algorithms, each with its unique 

strengths and limitations, to determine their performance in anticipating 

impending machine failures. The selection of the most effective algorithm 

depends upon the specific characteristics of the dataset, the complexity of the 

problem, and the interpretability of the results. A significant study conducted by 

Costa et al., (2019) compared and evaluated the efficacy of various statistical 

and machine-learning methods for forecasting industrial robot breakdowns. This 

is a crucial job since failure predictions can enhance maintenance plans, reduce 

accidents, and save money for businesses that use these robots. According to 

the outcomes provided by Costa et al., (2019), the hybrid gradient boosting 

method is particularly good at failure prediction. This method mixes components 

from statistical and machine learning techniques, which might enable it to benefit 

from the best aspects of each. It is noteworthy to notice that while failure 
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categorization improves from information use, local joint information is 

particularly helpful for failure detection (Costa et al., 2019). 

Balamurugan et al. (2019) describe the substantial transformation 

occurring in the global manufacturing sector, transitioning into what is often 

termed "Manufacturing 4.0." This period is marked by the deep integration of 

digital technologies, which is reshaping traditional manufacturing and 

management practices. They emphasize that the keystones of Industry 4.0, 

including Artificial Intelligence (AI), machine learning, the Internet of Things (IoT), 

and cyber-physical systems, are paving the way for the future of "smart 

factories." In these advanced environments, the interconnectedness of 

interfaces, machines, and modules allows for an unprecedented level of 

communication and data exchange, leading to a potential revolution in 

manufacturing efficiency and adaptability. 

Balamurugan et al. highlight that the proliferation of extensive data, 

combined with AI and machine learning, is leading to a new era of industrial 

automation that optimizes manufacturing processes. This integration goes 

beyond mere automation; it facilitates intelligent, data-driven decision-making, 

revolutionizing traditional manufacturing approaches. The impact of merging AI 

and machine learning with Industry 4.0 extends to modernizing operational 

techniques and establishing an adaptive, innovative, and responsive 

manufacturing ecosystem. This integration positions the sector to effectively face 

future challenges and seize opportunities. 
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The industrial sector's efficiency often hinges on the uninterrupted 

operation of electric motors, with unexpected failures leading to significant 

economic and operational setbacks. Emphasizing the need for proactive 

solutions, the spotlight has shifted to condition monitoring and predictive 

maintenance. The paper presented delves into an innovative Machine Learning 

(ML) architecture for predictive maintenance, harnessing the power of the 

Random Forest algorithm. This ensemble learning method, acclaimed for its 

applications in classification and regression, is employed to monitor and predict 

equipment health. With data sourced from diverse sensors, machine PLCs, and 

varied communication protocols, the system capitalizes on Azure Cloud 

architecture, ensuring real-time processing and storage of information. The 

preliminary findings by Paolanti et al., (2018) from the implementation are 

promising. The Random Forest-based ML model not only captures a 

comprehensive perspective of equipment performance but also forecasts various 

machine states with marked accuracy, surpassing traditional simulation tools in 

some regards. This convergence of machine learning with cloud capabilities, 

exemplified by the Azure platform, signals a paradigm shift in predictive 

maintenance. Such innovations stand to offer industries a dynamic, scalable, and 

data-driven approach, aiming to enhance equipment reliability and drastically 

reduce unforeseen downtimes. 

In the realm of wireless sensor networks (WSNs), data collected is 

susceptible to various forms of faults attributed to both internal and external 
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influences, including issues like calibration discrepancies, low battery levels, 

environmental interference, and sensor aging. This paper specifically delves into 

the identification and classification of faults arising from low battery levels and 

calibration errors within WSNs (Warraich et al., 2017). Leveraging the efficacy of 

machine learning algorithms in fault detection and classification, this study 

evaluates and compares the performance of three prominent algorithms: k-

nearest neighbor (kNN), support vector machine (SVM), and Naive Bayes. 

Utilizing real-world datasets, the paper conducts a comprehensive comparative 

analysis of these approaches. The methodology is validated using empirical data 

obtained from motes deployed in an actual living lab over an extended period. 

The results highlight that the k-nearest neighbor (kNN) algorithm outperforms 

other methods, demonstrating superior fault detection rates according to the 

specified performance metrics. 
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CHAPTER THREE 

METHODOLOGY 

 

As noted in Chapter 1, this project will seek to answer the following questions:   

1. How does the quality of input data, including issues such as outliers, and 

noise, impact the accuracy and reliability of machine failure prediction 

models in industrial settings?  

2. How does the integration of SMOTE with feature engineering techniques 

influence the overall performance of machine learning models in detecting 

and preventing machine failures? 

3. What is the performance of different machine learning algorithms in 

predicting machine failures, and which algorithm is the most effective? 

 

Question 1: How does the quality of input data, including issues such as outliers, 

and noise, impact the accuracy and reliability of machine failure prediction 

models in industrial settings?  

In my project, I will address the limitations of traditional prediction 

methodologies in automated industries, which historically have relied on static 

analysis and predefined logics. As noted by Lee et al. (2014), these traditional 

methods, while being foundational, often lack adaptability to the dynamic 

variables and complex behaviors typical in automated industries. To overcome 
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these limitations, I will apply machine learning, a field that excels in processing 

vast, complex datasets and iteratively learning from them. Machine learning's 

ability to identify patterns and anomalies that extend beyond the capabilities of 

traditional methods, as discussed by Erhan et al. (2021), positions it as an ideal 

solution for the challenges faced by automated industries. My project will harness 

this potential of machine learning to bring a more dynamic, data-driven approach 

to predicting and managing the intricate dynamics of automated industrial 

systems. 

I will initiate an extensive data extraction process, gathering data from a 

wide range of automated industries. The focus will be on key parameters crucial 

to machine operations and identifying potential malfunctions. This includes data 

on the manufacturer, the last maintenance date, regional clustering, type of 

machine, machine age, sensor readings, machine runtimes, and a historical 

record of machine failures. Utilizing this diverse dataset, I plan to employ 

advanced machine learning algorithms, specifically Random Forest and Support 

Vector Machines, tailored to the unique challenges of this project. 

A selected subset of this data will be used to train these algorithms. After 

the training phase, the algorithms will be rigorously tested on previously unseen 

data segments to evaluate their effectiveness in real-world scenarios. I will then 

assess their predictive accuracies through a detailed comparative analysis, 

employing a classification evaluation matrix. This matrix will include various 

performance metrics such as the confusion matrix, True Positives, True 
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Negatives, False Positives, False Negatives, overall Accuracy, Sensitivity, and 

the F-beta score. This approach, inspired by the work of Subashini et al. (2009), 

is designed to provide a comprehensive understanding of the effectiveness of 

these machine learning models in predicting and managing potential machine 

malfunctions in automated industrial settings. 

I will apply advanced machine learning algorithms, drawing from a 

systematic approach and initial analyses to align closely with the complex 

dynamics of automated industries. Based on insights from Anumbe et al. (2022), 

I anticipate that these algorithms will surpass the performance benchmarks set 

by traditional models. My project will leverage the adaptability and continuous 

learning capabilities of machine learning algorithms, aiming to enhance their 

potential in predicting machine failures in automated settings. I intend to model 

predictions with a focus on accuracy and reliability, pertinent to the automated 

industry sector. This approach is expected to demonstrate the transformative 

capacity of these algorithms, highlighting the significant value they can add in 

preempting and addressing machine failures, thereby contributing to more 

efficient and effective maintenance strategies in automated industries. 

 

Question 2: How does the integration of SMOTE with feature engineering 

techniques influence the overall performance of machine learning models in 

detecting and preventing machine failures? 
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In answer, I'll describe how combining feature engineering methods with 

SMOTE (Synthetic Minority Over-sampling Technique) can greatly improve 

machine learning models' overall efficacy in detecting and preventing machine 

failures. In automated industries, this method is essential for handling the 

complexity of machine breakdowns.  

Feature Identification and Extraction: A wide range of features are found 

and extracted in the context of predicting machine failure. These characteristics 

cover a wide range of information, such as machine kinds, age, sensor values, 

runtimes, region clusters, manufacturer data, and last maintenance dates. Each 

of these characteristics offers insightful data that may affect forecasts of machine 

failure (Zhuhadar & Lytras, 2023). 

SMOTE is incorporated into the procedure to address class imbalance, 

where machine failures are uncommon in comparison to typical machine 

operations. To balance the dataset, SMOTE creates synthetic samples of the 

minority class, in this case, machine failures (Akbulut et al., 2023). By doing this, 

we can make sure the machine learning model has enough data to train and can 

predict machine failures more accurately. 

Another essential component of improving machine learning models is 

feature engineering. To give the data a deeper understanding, this entails adding 

new features or altering current ones. Richer and more informative data for the 

model can be obtained, for example, by computing the mean or variance of 
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sensor values over specified timeframes and using other feature engineering 

techniques (Hoseinitabatabaei et al., 2013). 

The data must be pre-processed in order for machine learning to be 

possible. To make sure the dataset is clean and prepared for modeling, one-hot 

encoding, data normalization, and handling missing values are used 

(Bouramtane et al., 2023). When preprocessing, SMOTE is especially helpful in 

making sure the minority class is fairly represented. 

After preprocessing, the improved features—including those made better 

by SMOTE and feature engineering—are added to machine learning models. 

The effectiveness of machine learning models in identifying and averting 

machine failures is significantly impacted by the combination of a balanced 

dataset and informative features. 

When SMOTE is combined with feature engineering, preliminary analyses 

and research (Akbulut et al., 2023) show a marked increase in the capacity of 

machine learning models to identify and stop machine failures. This method 

lessens the problems caused by class imbalance and gives the models access to 

more pertinent and instructive data. It therefore results in more precise forecasts 

and improves the dependability and effectiveness of intervention and 

maintenance plans in automated industries. 

In conclusion, when working with imbalanced datasets, in particular, the 

overall performance of machine learning models in identifying and averting 

machine failures will be significantly improved by the integration of SMOTE with 
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feature engineering techniques. In automated industries, this combined approach 

improves prediction accuracy and increases the efficacy of maintenance and 

intervention strategies. 

 

Question 3: What is the performance of different machine learning algorithms in 

predicting machine failures, and which algorithm is the most effective? 

To answer this question, I will find accuracy with four algorithms—

CatBoost, SVM, Random Forest, and XGBoost—and compare them to answer 

the question.  

Machine learning offers a rich assortment of algorithms, each equipped 

with distinct strengths, to predict machine failures (Ma & Sun, 2020). Predicting 

machine failures is a complex task that requires a balance of accuracy, 

interpretability, and computational efficiency. While numerous algorithms exist, 

Random Forest, Decision Tree, and XGBoost are often championed for their 

efficacy in handling intricate datasets characteristic of automated industries 

(Chen et al., 2020).  

The best algorithm to predict machine failures in this situation is a 

question that needs to be answered. We will evaluate the effectiveness of these 

four algorithms by gauging how well they predict machine failures using a 

particular dataset to respond to this question. We will be able to compare these 
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algorithms intelligently and decide which one works best for the application 

because of this empirical evaluation. 

To summary, the effectiveness of these four algorithms—CatBoost, SVM, 

Random Forest, and XGBoost—will be evaluated based on how well they predict 

machine failures. A thorough analysis will assist in determining which algorithm 

performs best for this specific prediction task. 

 

Algorithms 

Random Forest 

Random Forest is a bagging-based ensemble method that constructs 

multiple decision trees to produce more accurate and stable predictions. (Li et al., 

2018) 

Working: 

The algorithm begins by bootstrapping, or sampling with replacement, multiple 

subsets from the dataset. A decision tree is grown on each subset. When 

predicting, each tree votes, and the majority class is chosen. For machine failure 

features like "Manufacturer" or "last date maintenance," RF can account for a 

variety of scenarios and nuances that a single tree might overlook. 

Advantages: 

• Reduces overfitting which is commonly found in decision trees. 

• Can handle large datasets with higher dimensionality. 
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• Can estimate missing values. 

• Maintains accuracy even when a large proportion of the data is missing. 

Process in the Context of Machine Failure: 

Given machine failure features like "machine age" and "seven sensor values 

machine runtimes," RF will consider diverse scenarios across its multitude of 

trees. For instance, while one tree might focus on the importance of machine 

age, another could prioritize sensor values. 

 

 

Figure 1. Random Forest (ML Random Forest Algorithm - JavatPoint, n.d.) 

 

Key Parameters Includes: 
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• n_estimators: The number of trees in the forest. 

• max_features: The number of features to consider for the best split. 

• min_samples_split: The minimum number of samples required to split an 

internal node  

 

XGBoost 

XGBoost is an optimized gradient boosting algorithm known for its speed and 

performance (Keck, 2016). 

Working: 

It works by iteratively adding weak learners (typically decision trees) in a manner 

that each subsequent tree corrects the errors of its predecessor. XGBoost places 

a significant emphasis on regularization to prevent overfitting. In the context of 

machine failures, if "machine runtimes" indicate excessive usage leading to 

faster wear and tear, XGBoost can weigh this feature heavily during its boosting 

rounds. 

Advantages: 

• Regularization prevents overfitting, making XGBoost robust. 

• Capability to handle missing values internally. 

• Parallelizable, making it faster. (Qin et al., 2021). 

Process in the Context of Machine Failure: 
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Given machine failure features, XGBoost will rank the importance of each 

feature after its boosting rounds. Features like "last date maintenance" or 

"temperature fluctuations" can be assessed in terms of their influence on 

machine health, allowing industries to prioritize maintenance schedules or 

environment controls accordingly. 

 

 

Figure 2. XGBoost (“Introduction to XGBoost in Python,” 2023) 

 

Key parameters include: 

• learning_rate: Step size shrinkage used to prevent overfitting. 

• max_depth: Maximum depth of the decision trees. 

• n_estimators: Number of boosting rounds or trees to be run (Huang et al., 

2023). 
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Support Vector Machine (SVM) 

Support Vector Machine, often abbreviated as SVM, is a supervised 

machine learning algorithm mainly used for classification and, to a lesser extent, 

regression tasks. It primarily works by finding a hyperplane that best divides a 

dataset into classes. (Ullah et al., 2021) 

Working: 

The primary objective of the SVM is to segregate the given dataset in the best 

possible way. When the segregation is done, the distance between the nearest 

data point (either class) or the hyperplane should be maximized. These nearest 

data points are termed as "support vectors." Essentially, SVM finds the optimal 

hyperplane that minimizes the margin between support vectors of two classes. 

In cases where data isn't linearly separable, SVM employs a technique known as 

the "kernel trick." This maps the input data into higher-dimensional space where 

a separating hyperplane can be found. Common kernels include polynomial, 

radial basis function (RBF), and sigmoid. 

Advantages: 

• Effective in high dimensional spaces or when the number of dimensions 

exceeds the number of samples. 
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• Memory efficient, as it uses a subset of training points (the support 

vectors). 

• Flexible, due to the decision function being defined by the support vectors 

and the kernel trick enabling the algorithm to tackle non-linear 

relationships. (Xu et al., 2006) 

 

 

Figure 3. Support Vector Classifier (SMV) 

 

Applications in Machine Failure Prediction: 
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In the context of machine failure prediction, SVM can be crucial when 

considering features that are not linearly correlated with failure patterns. For 

example, the relationship between machine age and failure likelihood may not be 

strictly linear. In such scenarios, SVM can map these features into a space 

where their relationship becomes clearer. Features like sensor readings which 

may come in high dimensions, SVM stands out because of its efficacy in 

handling high-dimensional data. If, for instance, a machine's health is determined 

by readings from various sensors (Ken J. Kubota BS, SEP,2016) (temperature, 

pressure, vibration, etc.), SVM can effectively analyze this multivariate data to 

classify the health state of the machine. 

Crucial Parameters Support Vector Machine: 

• C (Cost parameter): It controls the trade-off between maximizing the 

margin (distance between the decision boundary and the nearest data 

point of any class) and minimizing classification error. A small C value 

creates a wider margin, which may result in more misclassifications. In 

contrast, a large C value seeks a smaller margin and can lead to 

overfitting if it tries too hard to classify all points correctly. 

• Kernel: The SVM algorithm uses a variety of kernel functions to transform 

the input data into higher-dimensional spaces. Common kernel functions 

include: 

• Linear: No transformation. 
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• Polynomial: Non-linear transformation with the degree of polynomial as an 

additional parameter. 

• Radial Basis Function (RBF): A popular choice; it has another parameter 

'γ' which needs tuning. 

• Sigmoid: Sigmoid function as a kernel. 

• γ (Gamma): It's used in the RBF kernel and determines the shape of the 

decision boundary. A low value will produce a more flexible curve, while a 

high value will result in a more defined or tight curve. 

 

CatBoost 

CatBoost is a state-of-the-art, open-source gradient boosting library 

developed by Yandex, primarily known for its prowess in handling categorical 

features directly. It has gained popularity in various machine learning tasks due 

to its efficient and advanced implementations, which lead to superior results with 

less extensive hyperparameter tuning. 

Working: 

Like other gradient boosting methods, CatBoost works by building an 

ensemble of decision trees, where each successive tree aims to correct the 

errors of its predecessor. One of the unique features of CatBoost is its treatment 

of categorical variables: 
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• Categorical Features Handling: Traditionally, categorical features need to 

be transformed into a numerical format using techniques like one-hot 

encoding. However, this can dramatically increase the data's 

dimensionality. CatBoost eliminates this need by using a technique called 

"ordered boosting," where it calculates statistics on the target variable for 

each category and uses them for training, but in a way that avoids target 

leakage. 

• Oblivious Trees: Unlike traditional decision trees, where each node has its 

own splitting criteria, oblivious trees use a single feature split for each 

level of the tree. This results in more balanced trees and reduces 

overfitting. 

• Regularization: CatBoost incorporates the L2 regularization in its loss 

function, reducing the chance of overfitting. 

Advantages: 

• Direct handling of categorical variables reduces preprocessing steps and 

potential information loss. 

• Provides built-in support for text data. 

• It is less sensitive to hyperparameter configurations compared to other 

gradient boosting algorithms, making it user-friendly for beginners. 

• Efficient implementations and faster training times. 

• Offers built-in support for visualization which helps in understanding 

feature importance, model performance, and other diagnostics. 
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Applications in Machine Failure Prediction 

Given that machinery data can often contain a mix of numerical sensors' 

readings and categorical data (e.g., machine type, manufacturer, region cluster), 

CatBoost's innate ability to handle categorical data is a boon. Instead of relying 

on transformations that could dilute the interpretability of such features, CatBoost 

preserves the essence of categorical variables, thereby potentially uncovering 

nuanced relationships that lead to machine failures. 

 

 

Figure 4. Catboost (Yenigün, 2022) 

 

Crucial Parameters CatBoost: 

• Learning Rate (eta): It controls the contribution of each tree in the 

ensemble. Smaller values make the optimization more robust but require 

more trees. 

• Depth: The maximum depth of the tree. Deep trees can lead to overfitting, 

while shallow trees might not capture intricate patterns. 
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• L2_leaf_reg: L2 regularization term on weights. It's used for preventing 

overfitting. 

• Iterations: The maximum number of trees that can be built. More trees can 

make the model more complex and potentially overfit. 

• Border_count: The number of splits for numerical features. It's equivalent 

to the number of bins used to bucket continuous features. 

Methods Applied: 

To evaluate the performance of these algorithms: 

• Data Splitting: The dataset was divided into training and test sets, 

ensuring a fair assessment of algorithmic prowess. 

• Algorithm Implementation: Each algorithm was trained on the training set, 

incorporating the features related to machine failures. Algorithm-specific 

parameters were tuned using cross-validation to optimize performance. 

Performance Evaluation: Post training, predictions were made on the test 

set. The classification report provided metrics like precision, recall, and F1-score. 

The confusion matrix further delineated true positives, false positives, true 

negatives, and false negatives, offering a consolidated view of the model's 

accuracy and misclassifications (Rahmati et al., 2019). 
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CHAPTER FOUR 

DATA COLLECTION, ANALYSIS AND FINDINGS 

This chapter used analytical approaches to address the questions from 

the earlier chapters of our research. This study seeks to understand the 

underlying causes and trends of machine breakdowns and have employed 

machine learning to forecast these failures. 

 

Data Collection 

The dataset offers insights into machine breakdowns and is designed for 

crafting machine learning solutions for predicting such failures. The columns in 

the dataset include information like the failure's date and time, the machine's ID, 

and various sensor outputs. Sourced from GitHub, this dataset comprises 

307,751 entries across 16 columns (Shadgriffin, n.d.) & (Griffin, 2022). 

 

The dataset's description is given in the table below. 

s.no Attribute name Description 
Range of 

value 

1 ID 
ID field that represents a 

specific machine 
100001 to 

100617 

2 DATE 
The date of the 

observation. 
731 
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3 REGION_CLUSTER 
A field that represents 
the region in which the 

machine resides. 
8 

4 MAINTENANCE_VENDOR 

A field that represents 
the company that 

provides maintenance 
and service to the 

machine 

8 

5 MANUFACTURER 
The company that 
manufactured the 

equipment in question. 
10 

6 WELL, _GROUP 
A field representing the 

type of machine 
1 to 8 

7 EQUIPMENT_AGE 
Age of the machine, in 

days. 
0 to 15170 

8 S15 A Sensor Value 0 to 59.04 

9 S17 A Sensor Value 0 to 2555.52 

10 S13 A Sensor Value. 0 to 592.89 

11 S16 A Sensor Value. 0 to 24.6 

12 S19 A Sensor Value. 0 to 511 

13 S18 A Sensor Value 0 to 4151.7 

14 S8 A Sensor Value. 
-16.49 to 
2068.11 

15 S5 A Sensor Value 0 to 52767 

16 EQUIPMENT_FAILURE 

A ‘1’ means that the 
equipment failed. A ‘0’ 
means the equipment 

did not fail. 

0 to 1 
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Analysis and Findings 

Question 1. How does the quality of input data, including issues such as outliers, 

and noise, impact the accuracy and reliability of machine failure prediction 

models in industrial settings?  

The dataset on machine failures, sourced from GitHub, offers a 

comprehensive view by amalgamating details about a machine's initial operating 

conditions and sensor readings. Factors like the machine's age, regional cluster, 

and its manufacturer can be pivotal in forecasting machine malfunctions. 

Concurrently, sensor data sheds light on the machine's operational state, 

highlighting patterns indicative of impending breakdowns. The fusion of multiple 

datasets is essential for crafting precise machine learning models that predict 

equipment malfunctions. Integrating diverse information, such as initial conditions 

and sensor readings, equips maintenance crews with the ability to detect 

potential problems early, aiding in averting expensive repairs. 

Analyzing qualitative data, statistical tools can assist in comprehending 

data distribution and discerning patterns or trends (Leech & Onwuegbuzie, 

2007). The techniques used in data analysis differ for qualitative and quantitative 

data.  
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Figure 5. Qualitative Data 

 

The prevalence of specific types of machine malfunctions or detect 

frequently occurring issues, providing a clearer picture of recurrent patterns or 

potential anomalies. When we shift our focus to quantitative data, such as 

metrics detailing machine uptime, durations of downtime, or specific sensor 

measurements, we occasionally encounter outliers. These anomalous values can 

skew the analysis, potentially leading to imprecise conclusions about machine 

failures.  
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Figure 6. Quantitative Data Information 

 

Outliers were identified and addressed by replacing them with the mean of 

the dataset to maintain a representative average value. This method helps 

prevent the replaced value from being affected by other potential outliers. In 

cases with frequent outliers or where removing them would lead to significant 

data loss, data transformation techniques were applied to the dataset. 

 

 

Figure 7. Data Distribution, Outliers After Rectifying Outliers S15 
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The S15 variable's distribution initially shows a right-skewed pattern. After 

rectifying outliers, the distribution becomes more centralized and less spread, 

indicating a successful adjustment. 

 

 

Figure 8. Data Distribution, Outliers After Rectifying Outliers S17 

 

Outlier adjustment for the S17 variable results in a narrower and more consistent 

data distribution, indicating improved data quality for analysis. 

 

 

Figure 9. Data Distribution, Outliers After Rectifying Outliers S13 
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The distribution of the S13 variable tightens significantly after outliers are 

rectified, indicating a more uniform dataset for subsequent analysis. 

 

 

Figure 10. Data Distribution, Outliers After Rectifying Outliers S5 

 

Post-outlier rectification, the S5 variable shows a more centralized distribution, 

indicating a reduction of extreme values. 

 

 

Figure 11. Data Distribution, Outliers After Rectifying Outliers S16 
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The S16 variable's distribution is refined, and outliers are reduced, resulting in a 

more normalized data representation. 

 

 

Figure 12. Data Distribution, Outliers After Rectifying Outliers S19 

 

The S19 variable's distribution is significantly concentrated after outlier.  

 

 

Figure 13. Data Distribution, Outliers After Rectifying Outliers S18 
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After outliers are addressed, the S18 variable displays a more uniform and tighter 

distribution, suggesting enhanced data stability. 

 

 

Figure 14. Data Distribution, Outliers After Rectifying Outliers S8 

 

The S8 variable's distribution becomes noticeably more centralized after outlier 

correction, showing a reduction in data variance. 

 

Question 2. How does the integration of SMOTE with feature engineering 

techniques influence the overall performance of machine learning models in 

detecting and preventing machine failures? 
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Figure 15. Equipment Failure Information 

 

Oversample the training data using SMOTE and trains with different 

machine learning algorithms. The classification report provides important metrics 

such as precision, recall, and f1-score for each class in the target variable. It also 

provides an overall accuracy score for the model. This report can be used to 

evaluate the performance of the classification model and identify areas for 

improvement. 
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Figure 16. Confusion Matrix of Support Vector Machine 

 

 

Figure 17. Classification Report 

 

The confusion matrix and classification report indicate that the predictive 

model has a high true positive rate for 'Running' equipment, correctly identifying 

90,000+ instances. However, it struggles with 'Failure' predictions, with a true 

positive rate of only 41%. This is further reflected in the precision and recall 

scores for failure prediction, which are 0.02 and 0.41, respectively, leading to a 

low F1-score of 0.04 for failures. While the overall accuracy of the model is high 
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(0.97), the low F1-score for failures suggests that the model is not effective at 

identifying actual failures, which could be due to the imbalanced nature of the 

dataset (92,200 running vs. 126 failure instances). The weighted averages 

indicate that while the model is reliable for the majority class ('Running'), it lacks 

precision and recall for the critical minority class ('Failure'), emphasizing the need 

for improved balance handling in the dataset. 

Encoding techniques like one-hot and label encoding, facilitating the 

conversion of categorical data into a numerical format suitable for machine 

learning (Pau Rodríguez, Miguel A. Bautista, 2018). The selection of target and 

feature variables and partitioning data into training and test sets are also 

emphasized as vital steps in constructing and assessing machine learning 

models. 
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Figure 18. Importance of the Features Based on Correlation. 
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Figure 19. Using SMOTE for Balancing Data 

 

Question 3. What is the performance of different machine learning algorithms in 

predicting machine failures, and which algorithm is the most effective?  

The different machine learning algorithms and classification report 

provides important metrics such as precision, recall, and f1-score for each class 

in the target variable. It also provides an overall accuracy score for the model. 

This report can be used to evaluate the performance of the classification model 

and identify areas for improvement. 
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Random Forest: 

 

 

Figure 20. Classification Report of Random Forest  

 

 

 

Figure 21. Confusion Matrix of Without and With Normalization of Random Forest 

 

An examination of the confusion matrix and classification report provides 

valuable insights into the predictive model's performance. Notably, the model 
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demonstrates a high true positive rate (73%) for 'Running' equipment, correctly 

identifying a substantial number of instances. However, the model faces 

substantial challenges when predicting 'Failure' instances, with a lower true 

positive rate (73%), resulting in low precision (0.02) and recall (0.73) for 'Failure' 

predictions. This is further reflected in the low F1-Score (0.03) for 'Failure,' 

indicating a trade-off between precision and recall. Despite a commendable 

overall accuracy of 94%, the class imbalance within the dataset (92,200 

'Running' instances vs. 126 'Failure' instances) remains a contributing factor to 

the model's limitations. 

 

Support Vector Classifier: 

 

Figure 22. Classification Report of Support Vector Machine 

 

  



54 

 

 

Figure 23. Confusion Matrix of Without and With Normalization of SVM 

 

The analysis of the confusion matrix and classification report reveals 

crucial insights into the predictive model's performance. The model exhibits a 

robust true positive rate for 'Running' equipment, correctly identifying more than 

90,000 instances, highlighting its effectiveness in classifying 'Running' instances. 

However, it faces significant challenges when predicting 'Failure' instances, with 

a true positive rate of only 41%, leading to low precision (0.02) and recall (0.41) 

for 'Failure' predictions. The model's low F1-Score of 0.04 for 'Failure' 

underscores the trade-off between precision and recall and the limitations in 

'Failure' prediction. Despite an impressive overall accuracy of 97%, the dataset's 

class imbalance (92,200 'Running' instances vs. 126 'Failure' instances) 

contributes to these challenges. 
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XG Boost: 

 

 

Figure 24. Classification Report of XG Boost 

 

 

 

Figure 25. Confusion Matrix of Without and With Normalization of XG Boost 

 

An in-depth analysis of the confusion matrix and classification report provides 

critical insights into the model's performance. The model demonstrates a 100% 
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true positive rate for 'Running' equipment, correctly identifying a substantial 

number of instances in this class. However, it faces significant challenges when 

predicting 'Failure' instances, as reflected in the 0% true positive rate for 'Failure,' 

leading to low precision (0.01) and recall (1.00) for 'Failure' predictions. This is 

further evidenced by the low F1-Score (0.01) for 'Failure,' underlining the trade-

off between precision and recall. Despite an overall accuracy of 79%, the severe 

class imbalance within the dataset (92,200 'Running' instances vs. 126 'Failure' 

instances) significantly affects the model's effectiveness. 

  

Cat Boost: 

 

 

Figure 26. Classification Report of CatBoost 
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Figure 27. Confusion Matrix of Without and With Normalization of CatBoost 

 

An in-depth examination of the confusion matrix and classification report 

sheds light on the model's performance. The model demonstrates an impressive 

true positive rate of 99% for 'Running' equipment, correctly identifying the 

majority of instances in this class. However, it faces challenges when predicting 

'Failure' instances, as indicated by the 0.02 precision and 0.99 recall for 'Failure' 

predictions. The model achieves a low F1-Score of 0.03 for 'Failure,' illustrating a 

trade-off between precision and recall. Despite an overall accuracy of 92%, the 

substantial class imbalance within the dataset (92,200 'Running' instances vs. 

126 'Failure' instances) continues to impact the model's performance.  
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

 

Discussion 

In this project, we are addressing the substantial issue of machine failures 

in automated industries, which can lead to significant costs and operational 

downtime. We focus on enhancing the accuracy and reliability of machine failure 

prediction models through advanced machine learning algorithms, with the aim of 

seamlessly integrating them into the realm of automation. Our research 

questions delve into data quality, the impact of integrating SMOTE with feature 

engineering, and the performance of different machine learning algorithms in 

predicting machine failures, ultimately aiming to optimize predictive maintenance 

and reduce the disruptions caused by unexpected machinery breakdowns in 

industrial settings. 

 

Conclusion 

In conclusion, our investigation into predictive maintenance and machine failure 

prediction has unearthed essential insights. Question 1's examination of sensor 

parameters underscored the critical role of addressing outliers during data 

preprocessing, which consistently improved model accuracy (Figure 6-14). The 

fascinating correlation between Sensor S18 and S8 offers avenues for further 
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exploration, while negative correlations among other sensors reveal the dataset's 

complexity (Figure 18). To optimize predictive capabilities, exploring alternative 

outlier rectification techniques and assessing their impact on model accuracy is 

essential. The pursuit of perfecting machine failure prediction is ongoing, and 

these methodologies will play a pivotal role in enhancing predictive outcomes. 

Question 2 focuses on addressing the issue of equipment failure parameter 

imbalance. It was found in the research findings that there was a significant 

imbalance in the failure data, with only 0.14% of the dataset representing actual 

failures and 99.86% of the dataset pertaining to non-failure data (Figure 15). This 

extreme class disparity can result in biased models that underperform on 

underrepresented classes, which is a common problem in machine learning. 

We used the Synthetic Minority Over-sampling Technique (SMOTE) to 

rectify the imbalance. In the training data, SMOTE was utilized to create artificial 

instances of the minority class—in this case, equipment failure instances. 

Through this process, the dataset was effectively rebalanced, giving the model 

access to a more equitable representation of both failure and non-failure 

scenarios for learning purposes. SMOTE successfully tackled the problem of 

class imbalance in machine learning and increased the model's capacity for 

accurate prediction (Figure 19). 

In Question 3, we examined various Machine Learning algorithms and 

observed significant variations in model performance. The Catboost model stood 

out with remarkable accuracy and failure detection rates with 92% accuracy and 
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failure detection 99% correct (Figure 26-27).  In contrast, the Random Forest 

model delivered a 94% accuracy rate and a 73% failure recall rate (Figure 20-

21). The Support Vector Machine model excelled with a 97% accuracy rate but 

had a lower failure recall rate of 41% (Figure 22-23). Meanwhile, the XGBoost 

model achieved a remarkable 100% failure recall rate but the accuracy rate of 

only 79% (Figure 24-25). Finally, the CatBoost model, known for its accuracy, 

duplicated the 92% accuracy rate and 99% failure recall rate, showcasing its 

consistency and effectiveness in the study. As we move forward, experimenting 

with diverse data types and refining data balancing techniques is crucial for 

further fine-tuning our models and achieving even more reliable predictions in the 

future. 

 

Areas for Further Study 

Our research lays the groundwork for future studies in predictive 

maintenance. Building upon our findings, future research can explore advanced 

outlier rectification techniques, including median substitution and normalization, 

to further optimize predictive models. Investigating the intricate relationships 

among sensors and data types can provide additional insights to enhance 

predictive accuracy. Furthermore, there is potential for future studies to delve 

deeper into data scaling and balancing methods, striving to achieve the most 

effective techniques that can be tailored to specific industrial contexts. Additional 

research can focus on addressing the challenge of rare failure events and 
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improving the overall performance of predictive models in such scenarios. The 

exploration of machine learning algorithms should continue, encompassing a 

wider array of algorithms and data types to identify the best-performing models 

for diverse industrial applications. As predictive maintenance evolves, it is 

imperative to stay at the forefront of technology and data science advancements, 

ensuring that the predictive models become even more reliable and efficient in 

preventing machine failures. 

 

 

 

 

 

 

 

 

 

 



62 

 

 

 
 
 
 
 
 
 
 
 
 
 

APPENDIX A 

DATASET 
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DATASET 

s.no Attribute name Description Range of value 

1 ID 
ID field that represents a 

specific machine 
100001 to 

100617 

2 DATE 
The date of the 

observation. 
731 

3 REGION_CLUSTER 
A field that represents the 

region in which the 
machine resides. 

8 

4 MAINTENANCE_VENDOR 

A field that represents the 
company that provides 

maintenance and service 
to the machine 

8 

5 MANUFACTURER 
The company that 
manufactured the 

equipment in question. 
10 

6 WELL, _GROUP 
A field representing the 

type of machine 
1 to 8 

7 EQUIPMENT_AGE 
Age of the machine, in 

days. 
0 to 15170 

8 S15 A Sensor Value 0 to 59.04 

9 S17 A Sensor Value 0 to 2555.52 

10 S13 A Sensor Value. 0 to 592.89 

11 S16 A Sensor Value. 0 to 24.6 

12 S19 A Sensor Value. 0 to 511 

13 S18 A Sensor Value 0 to 4151.7 
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14 S8 A Sensor Value. 
-16.49 to 
2068.11 

15 S5 A Sensor Value 0 to 52767 

16 EQUIPMENT_FAILURE 

A ‘1’ means that the 
equipment failed. A ‘0’ 

means the equipment did 
not fail. 

0 to 1 

 

 

 

 

 



65 

 

APPENDIX B 

CODE 
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