71,564 research outputs found

    On k-Walk-Regular Graphs

    Get PDF
    Considering a connected graph GG with diameter DD, we say that it is \emph{kk-walk-regular}, for a given integer kk (0kD)(0\leq k \leq D), if the number of walks of length \ell between vertices uu and vv only depends on the distance between them, provided that this distance does not exceed kk. Thus, for k=0k=0, this definition coincides with that of walk-regular graph, where the number of cycles of length \ell rooted at a given vertex is a constant through all the graph. In the other extreme, for k=Dk=D, we get one of the possible definitions for a graph to be distance-regular. In this paper we present some algebraic characterizations of kk-walk-regularity, which are based on the so-called local spectrum and predistance polynomials of GG. Moreover, some results, concerning some parameters of a geometric nature, such as the cosines, and the spectrum of walk-regular graphs are presented

    Graph Partitioning Induced Phase Transitions

    Full text link
    We study the percolation properties of graph partitioning on random regular graphs with N vertices of degree kk. Optimal graph partitioning is directly related to optimal attack and immunization of complex networks. We find that for any partitioning process (even if non-optimal) that partitions the graph into equal sized connected components (clusters), the system undergoes a percolation phase transition at f=fc=12/kf=f_c=1-2/k where ff is the fraction of edges removed to partition the graph. For optimal partitioning, at the percolation threshold, we find SN0.4S \sim N^{0.4} where SS is the size of the clusters and N0.25\ell\sim N^{0.25} where \ell is their diameter. Additionally, we find that SS undergoes multiple non-percolation transitions for f<fcf<f_c

    On the structure of graphs without short cycles

    Get PDF
    The objective of this thesis is to study cages, constructions and properties of such families of graphs. For this, the study of graphs without short cycles plays a fundamental role in order to develop some knowledge on their structure, so we can later deal with the problems on cages. Cages were introduced by Tutte in 1947. In 1963, Erdös and Sachs proved that (k, g) -cages exist for any given values of k and g. Since then, large amount of research in cages has been devoted to their construction. In this work we study structural properties such as the connectivity, diameter, and degree regularity of graphs without short cycles. In some sense, connectivity is a measure of the reliability of a network. Two graphs with the same edge-connectivity, may be considered to have different reliabilities, as a more refined index than the edge-connectivity, edge-superconnectivity is proposed together with some other parameters called restricted connectivities. By relaxing the conditions that are imposed for the graphs to be cages, we can achieve more refined connectivity properties on these families and also we have an approach to structural properties of the family of graphs with more restrictions (i.e., the cages). Our aim, by studying such structural properties of cages is to get a deeper insight into their structure so we can attack the problem of their construction. By way of example, we studied a condition on the diameter in relation to the girth pair of a graph, and as a corollary we obtained a result guaranteeing restricted connectivity of a special family of graphs arising from geometry, such as polarity graphs. Also, we obtained a result proving the edge superconnectivity of semiregular cages. Based on these studies it was possible to develop the study of cages. Therefore obtaining a relevant result with respect to the connectivity of cages, that is, cages are k/2-connected. And also arising from the previous work on girth pairs we obtained constructions for girth pair cages that proves a bound conjectured by Harary and Kovács, relating the order of girth pair cages with the one for cages. Concerning the degree and the diameter, there is the concept of a Moore graph, it was introduced by Hoffman and Singleton after Edward F. Moore, who posed the question of describing and classifying these graphs. As well as having the maximum possible number of vertices for a given combination of degree and diameter, Moore graphs have the minimum possible number of vertices for a regular graph with given degree and girth. That is, any Moore graph is a cage. The formula for the number of vertices in a Moore graph can be generalized to allow a definition of Moore graphs with even girth (bipartite Moore graphs) as well as odd girth, and again these graphs are cages. Thus, Moore graphs give a lower bound for the order of cages, but they are known to exist only for very specific values of k, therefore it is interesting to study how far a cage is from this bound, this value is called the excess of a cage. We studied the excess of graphs and give a contribution, in the sense of the work of Biggs and Ito, relating the bipartition of girth 6 cages with their orders. Entire families of cages can be obtained from finite geometries, for example, the graphs of incidence of projective planes of order q a prime power, are (q+1, 6)-cages. Also by using other incidence structures such as the generalized quadrangles or generalized hexagons, it can be obtained families of cages of girths 8 and 12. In this thesis, we present a construction of an entire family of girth 7 cages that arises from some combinatorial properties of the incidence graphs of generalized quadrangles of order (q,q)

    Vlastnosti síťových centralit

    Get PDF
    The need to understand the structure of complex networks increases as both their complexity and the dependency of human society on them grows. Network centralities help to recognize the key elements of these networks. Betweenness centrality is a network centrality measure based on shortest paths. More precisely, the contribution of a pair of vertices u, v to a vertex w ̸= u, v is the fraction of the shortest uv-paths which lead through w. Betweenness centrality is then given by the sum of contributions of all pairs of vertices u, v ̸= w to w. In this work, we have summarized known results regarding both exact values and bounds on betweenness. Additionally, we have improved an existing bound and obtained more exact formulation for r-regular graphs. We have made two major contributions about betweenness uniform graphs, whose vertices have uniform betweenness value. The first is that all betweenness uniform graphs of order n with maximal degree n − k have diameter at most k, by which we have solved a conjecture posed in the literature. The second major result is that betweenness uniform graphs nonisomorphic to a cycle that are either vertex- or edge-transitive are 3-connected, by which we have partially solved another conjecture. 1Potřeba porozumět komplexním sítím roste společně s jejich složitostí a mírou závis- losti lidstva na těchto sítích. Síťové centrality pomáhají rozpoznávat klíčové prvky kom- plexních sítí. Mezilehlostní (angl. betweenness) centralita je síťová centralita založená na nejkratších cestách. Přesněji řečeno, příspěvěk dvojice vrcholů u, v vrcholu w ̸= u, v je zlomek nejkratších uv-cest vedoucích vrcholem w. Mezilehlostní centralita je potom součet příspěvků vrcholu w od všech dvojic vrcholů u, v ̸= w. V této práci shrnujeme výsledky o přesných hodnotách mezilehlosti a odhadech na její hodnoty. Dále zlepšu- jeme jeden již existující odhad a formulujeme jeho přesnější znění pro r-regulární grafy. Hlavními přínosy této práce jsou dva výsledky týkající se mezilehlostně uniformních grafů, jejichž vrcholy mají stejnou hodnotu mezilehlosti. Přinášíme důkaz tvrzení, že všechny mezilehlostně uniformní grafy řádu n s maximálním stupněm n − k mají průměr ne- jvýše k, čímž jsme vyřešili domněnku uvedenou v literatuře. Dále dokazujeme tvrzení, že mezilehlostně uniformní grafy neisomorfní cyklům, které jsou zároveň buď vrcholově nebo hranově transitivní, jsou 3-souvislé, čímž jsme částečně vyřešili další domněnku. 1Computer Science Institute of Charles UniversityInformatický ústav Univerzity KarlovyMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    Spread of Information and Diseases via Random Walks in Sparse Graphs

    Get PDF
    We consider a natural network diffusion process, modeling the spread of information or infectious diseases. Multiple mobile agents perform independent simple random walks on an n-vertex connected graph G. The number of agents is linear in n and the walks start from the stationary distribution. Initially, a single vertex has a piece of information (or a virus). An agent becomes informed (or infected) the first time it visits some vertex with the information (or virus); thereafter, the agent informs (infects) all vertices it visits. Giakkoupis et al. (PODC'19) have shown that the spreading time, i.e., the time before all vertices are informed, is asymptotically and w.h.p. the same as in the well-studied randomized rumor spreading process, on any d-regular graph with d=Ω(logn). The case of sub-logarithmic degree was left open, and is the main focus of this paper. First, we observe that the equivalence shown by Giakkoupis et al. does not hold for small d: We give an example of a 3-regular graph with logarithmic diameter for which the expected spreading time is Ω(log^2n/loglogn), whereas randomized rumor spreading is completed in time Θ(logn), w.h.p. Next, we show a general upper bound of O~(d⋅diam(G)+log^3n/d), w.h.p., for the spreading time on any d-regular graph. We also provide a version of the bound based on the average degree, for non-regular graphs. Next, we give tight analyses for specific graph families. We show that the spreading time is O(logn), w.h.p., for constant-degree regular expanders. For the binary tree, we show an upper bound of O(logn⋅loglogn), w.h.p., and prove that this is tight, by giving a matching lower bound for the cover time of the tree by n random walks. Finally, we show a bound of O(diam(G)), w.h.p., for k-dimensional grids, by adapting a technique by Kesten and Sidoravicius.Supported in part by ANR Project PAMELA (ANR16-CE23-0016-01). Gates Cambridge Scholarship programme. Supported by the ERC Grant `Dynamic March’

    Rotulações graciosas e rotulações semifortes em grafos

    Get PDF
    Orientador: Christiane Neme CamposTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Três problemas de rotulação em grafos são investigados nesta tese: a Conjetura das Árvores Graciosas, a Conjetura 1,2,3 e a Conjetura 1,2. Uma rotulação graciosa de um grafo simples G=(V(G),E(G)) é uma função injetora f de V(G) em {0,...,|E(G)|} tal que {|f(u)-f(v)|: uv em E(G)} = {1,...,|E(G)|}. A Conjetura das Árvores Graciosas, proposta por Rosa e Kotzig em 1967, afirma que toda árvore possui uma rotulação graciosa. Um problema relacionado à Conjetura das Árvores Graciosas consiste em determinar se, para todo vértice v de uma árvore T, existe uma rotulação graciosa de T que atribui o rótulo 0 a v. Árvores com tal propriedade são denominadas 0-rotativas. Nesta tese, apresentamos famílias infinitas de caterpillars 0-rotativos. Nossos resultados reforçam a conjetura de que todo caterpillar com diâmetro pelo menos cinco é 0-rotativo. Também investigamos uma rotulação graciosa mais restrita, chamada rotulação-alpha. Uma rotulação graciosa f de G é uma rotulação-alpha se existir um inteiro k, 0 <= k <= |E(G)|, tal que, para toda aresta uv em E(G), f(u) <= k < f(v) ou f(v) <= k < f(u). Nesta tese, apresentamos duas famílias de lobsters com grau máximo três que possuem rotulações-alpha. Nossos resultados contribuem para uma caracterização de todos os lobsters com grau máximo três que possuem rotulações-alpha. Na segunda parte desta tese, investigamos generalizações da Conjetura 1,2,3 e da Conjetura 1,2. Dado um grafo simples G = (V(G),E(G)) e um subconjunto L dos números reais, dizemos que uma função f de E(G) em L é uma L-rotulação de arestas de G e dizemos que uma função f da união de V(G) com E(G) em L é uma L-rotulação total de G. Para todo vértice v de G, a cor de v, C(v), é definida como a soma dos rótulos das arestas incidentes em v, se f for uma L-rotulação de arestas de G. Se f for uma L-rotulação total, C(v) é a soma dos rótulos das arestas incidentes no vértice v mais o valor f(v). O par (f,C) é uma L-rotulação de arestas semiforte (L-rotulação total semiforte) se f for uma rotulação de arestas (rotulação total) e C(u) for diferente de C(v) para quaisquer dois vértices adjacentes u,v de G. A Conjetura 1,2,3, proposta por Karónski et al. em 2004, afirma que todo grafo simples e conexo com pelo menos três vértices possui uma {1,2,3}-rotulação de arestas semiforte. A Conjetura 1,2, proposta por Przybylo e Wozniak em 2010, afirma que todo grafo simples possui uma {1,2}-rotulação total semiforte. Sejam a,b,c três reais distintos. Nesta tese, nós investigamos {a,b,c}-rotulações de arestas semifortes e {a,b}-rotulações totais semifortes para cinco famílias de grafos: as potências de caminho, as potências de ciclo, os grafos split, os grafos cobipartidos regulares e os grafos multipartidos completos. Provamos que essas famílias possuem tais rotulações para alguns valores reais a,b,c. Como corolário de nossos resultados, obtemos que a Conjetura 1,2,3 e a Conjetura 1,2 são verdadeiras para essas famílias. Além disso, também mostramos que nossos resultados em rotulações de arestas semifortes implicam resultados similares para outro problema de rotulação de arestas relacionadoAbstract: This thesis addresses three labelling problems on graphs: the Graceful Tree Conjecture, the 1,2,3-Conjecture, and the 1,2-Conjecture. A graceful labelling of a simple graph G=(V(G),E(G)) is an injective function f from V(G) to {0,...,|E(G)|} such that {|f(u)-f(v)| : uv in E(G)} = {1,...,|E(G)|}. The Graceful Tree Conjecture, posed by Rosa and Kotzig in 1967, states that every tree has a graceful labelling. A problem connected with the Graceful Tree Conjecture consists of determining whether, for every vertex v of a tree T, there exists a graceful labelling of T that assigns label 0 to v. Trees with such a property are called 0-rotatable. In this thesis, we present infinite families of 0-rotatable caterpillars. Our results reinforce a conjecture that states that every caterpillar with diameter at least five is 0-rotatable. We also investigate a stronger type of graceful labelling, called alpha-labelling. A graceful labelling f of G is an alpha-labelling if there exists an integer k with 0<= k <= |E(G)| such that, for each edge uv in E(G), either f(u) <= k < f(v) or f(v) <= k < f(u). In this thesis, we prove that the following families of lobsters have alpha-labellings: lobsters with maximum degree three, without Y-legs and with at most one forbidden ending; and lobsters T with a perfect matching M such that the contracted tree T/M has a balanced bipartition. These results point towards a characterization of all lobsters with maximum degree three that have alpha-labellings. In the second part of the thesis, we focus on generalizations of the 1,2,3-Conjecture and the 1,2-Conjecture. Given a simple graph G=(V(G),E(G)) and a subset L of real numbers, we call a function f from E(G) to L an L-edge-labelling of G, and we call a function f from V(G) union E(G) to L an L-total-labelling of G. For each vertex v of G, the colour of v, C(v), is defined as the sum of the labels of its incident edges, if f is an L-edge-labelling. If f is an L-total-labelling, C(v) is the sum of the labels of the edges incident with vertex v plus the label f(v). The pair (f,C) is a neighbour-distinguishing L-edge-labelling (neighbour-distinguishing L-total-labelling) if f is an edge-labelling (total-labelling) and C(u) is different from C(v), for every edge uv in E(G). The 1,2,3-Conjecture, posed by Kar\'onski et al. in 2004, states that every connected simple graph with at least three vertices has a neighbour-distinguishing {1,2,3}-edge-labelling. The 1,2-Conjecture, posed by Przybylo and Wozniak in 2010, states that every simple graph has a neighbour-distinguishing {1,2}-total-labelling. Let a,b,c be distinct real numbers. In this thesis, we investigate neighbour-distinguishing {a,b,c}-edge-labellings and neighbour-distinguishing {a,b}-total labellings for five families of graphs: powers of paths, powers of cycles, split graphs, regular cobipartite graphs and complete multipartite graphs. We prove that these families have such labellings for some real values a, b, and c. As a corollary of our results, we obtain that the 1,2,3-Conjecture and the 1,2-Conjecture are true for these families. Furthermore, we also show that our results on neighbour-distinguishing edge-labellings imply similar results on a closely related problem called detectable edge-labelling of graphsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2014/16861-8FAPESPCAPE

    Diâmetro de grafos fulerenes e transversalidade de ciclos ímpares de fuleróides-(3, 4, 5, 6)

    Get PDF
    Fullerene graphs are mathematical models for molecules composed exclusively of carbon atoms, discovered experimentally in the early 1980s by Kroto, Heath, O’Brien, Curl and Smalley. Many parameters associated to these graphs have been discussed, trying to describe the stability of the fullerene’s molecule. Formally, fulerene graphs are 3-connected, cubic, planar graphs with pentagonal and hexagonal faces. Andova and Škrekovski Conjecture [1] states that the diameter of all fullerene graph, on n vertices, is at least equal to jq 5n 3 k −1. This conjecture became relevant, since Andova and Škrekovski conceived it from the study of highly regular, spherical and symmetrical fullerene graphs. We introduce the concepts of combinatorial curvature of vertex and combinatorial curvature of face of a planar graph and then we define a specific class of fullerene graphs, called fullerene nanodiscs. We have shown that the Andova and Škrekovski Conjecture is not valid for any fullerene nanodisc with more than 300 vertices. However, we exhibit infinite classes of fullerene graphs, similar to the graphs studied by Andova and Škrekovski, which satisfy this conjecture. Adding to fullerene graphs, triangular and quadrangular faces we conceive fuleroid-(3, 4, 5, 6) graphs. We studied the bipartite edge frustration and the maximum independent set problems on the fuleroid-(3, 4, 5, 6) graphs, obtaining tight limits for both problems.Os grafos fulerenes são modelos matemáticos para moléculas compostas exclusivamente por átomos de carbono, descobertas experimentalmente no início da década de 80 por Kroto, Heath, O’Brien, Curl e Smalley. Muitos parâmetros associados a estes grafos vêm sendo discutidos, buscando descrever a estabilidade das moléculas de fulerene. Precisamente falando, grafos fulerenes são grafos cúbicos, planares, 3-conexos cujas faces são pentagonais e hexagonais. A Conjectura de Andova e Škrekovski [1] afirma que o diâmetro de todo grafo fulerene, contendo n vértices, é pelo menos igual a jq 5n 3 k − 1. Esta conjectura tornou-se relevante, pois Andova e Škrekovski conceberam-na a partir do estudo de grafos fulerenes altamente regulares, esféricos e simétricos. Introduzimos os conceitos de curvatura combinatória de vértice e curvatura combinatória de face de um grafo planar. Definimos, então, uma classe particular de grafos fulerenes, chamada de nanodiscos de fulerene. Mostramos que a Conjectura de Andova e Škrekovski não é válida para nenhum nanodisco de fulerene com mais de 300 vértices. No entanto, exibimos infinitas classes de grafos fulerenes, semelhantes aos grafos estudados por Andova e Škrekovski, que satisfazem a referida conjectura. Acrescentando, aos grafos fulerenes, faces triangulares e quadrangulares concebemos os grafos fuleróides-(3, 4, 5, 6). Estudamos os problemas da frustração bipartida de arestas e do conjunto independente máximo sobre os grafos fuleróides-(3, 4, 5, 6), obtendo limites apertados para ambos os problemas

    On Distance-Regular Graphs with Smallest Eigenvalue at Least m-m

    Full text link
    A non-complete geometric distance-regular graph is the point graph of a partial geometry in which the set of lines is a set of Delsarte cliques. In this paper, we prove that for fixed integer m2m\geq 2, there are only finitely many non-geometric distance-regular graphs with smallest eigenvalue at least m-m, diameter at least three and intersection number c22c_2 \geq 2
    corecore