170 research outputs found

    Designing Universal Logic Module FPGA Architectures for Use With Ambipolar Transistor Technology

    Get PDF
    Recent publications show a rise of ambipolar transistor technology research and associated implementations of multi-function logic cells in these technologies. Special properties of these technologies enable implementations of Universal Logic Modules (ULMs) using few transistors, which draws renewed interest to use such ULMs as basic logic blocks for FPGA architectures. Unlike N-input Lookup Tables (LUTs), most ULMs only implement a fixed subset of the possible Boolean functions. In this work, we first adapt the Verilog-to-Routing (VTR) 8.0 toolflow to target such reduced-function ULM primitives. We then modify VTR\u27s flagship 40nm architecture to use an ULM primitive instead of LUTs, modeling the double-gate carbon nanotube FET 8-function logic gate CNT-DR8F published by Liu et al. Using VTR\u27s extensive benchmark framework, we analyze effects caused by the limited set of function offered by these primitives. To counter some of the observed effects, we present various clustered architectures, where multiple ULM cells are combined in a logic block. We conclude with an analysis of various parameters which affect performance of the different implementations

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Portable Waveform Development for Software Defined Radios

    Get PDF
    This work focuses on the question: "How can we build waveforms that can be moved from one platform to another?\u27\u27 Therefore an approach based on the Model Driven Architecture was evaluated. Furthermore, a proof of concept is given with the port of a TETRA waveform from a USRP platform to an SFF SDR platform

    Optoelectronic devices and packaging for information photonics

    Get PDF
    This thesis studies optoelectronic devices and the integration of these components onto optoelectronic multi chip modules (OE-MCMs) using a combination of packaging techniques. For this project, (1×12) array photodetectors were developed using PIN diodes with a GaAs/AlGaAs strained layer structure. The devices had a pitch of 250μm, operated at a wavelength of 850nm. Optical characterisation experiments of two types of detector arrays (shoe and ring) were successfully performed. Overall, the shoe devices achieved more consistent results in comparison with ring diodes, i.e. lower dark current and series resistance values. A decision was made to choose the shoe design for implementation into the high speed systems demonstrator. The (1x12) VCSEL array devices were the optical sources used in my research. This was an identical array at 250μm pitch configuration used in order to match the photodetector array. These devices had a wavelength of 850nm. Optoelectronic testing of the VCSEL was successfully conducted, which provided good beam profile analysis and I-V-P measurements of the VCSEL array. This was then implemented into a simple demonstrator system, where eye diagrams examined the systems performance and characteristics of the full system and showed positive results. An explanation was given of the following optoelectronic bonding techniques: Wire bonding and flip chip bonding with its associated technologies, i.e. Solder, gold stud bump and ACF. Also, technologies, such as ultrasonic flip chip bonding and gold micro-post technology were looked into and discussed. Experimental work implementing these methods on packaging the optoelectronic devices was successfully conducted and described in detail. Packaging of the optoelectronic devices onto the OEMCM was successfully performed. Electrical tests were successfully carried out on the flip chip bonded VCSEL and Photodetector arrays. These results verified that the devices attached on the MCM achieved good electrical performance and reliable bonding. Finally, preliminary testing was conducted on the fully assembled OE-MCMs. The aim was to initially power up the mixed signal chip (VCSEL driver), and then observe the VCSEL output

    Digital neural circuits : from ions to networks

    Get PDF
    PhD ThesisThe biological neural computational mechanism is always fascinating to human beings since it shows several state-of-the-art characteristics: strong fault tolerance, high power efficiency and self-learning capability. These behaviours lead the developing trend of designing the next-generation digital computation platform. Thus investigating and understanding how the neurons talk with each other is the key to replicating these calculation features. In this work I emphasize using tailor-designed digital circuits for exactly implementing bio-realistic neural network behaviours, which can be considered a novel approach to cognitive neural computation. The first advance is that biological real-time computing performances allow the presented circuits to be readily adapted for real-time closed-loop in vitro or in vivo experiments, and the second one is a transistor-based circuit that can be directly translated into an impalpable chip for high-level neurologic disorder rehabilitations. In terms of the methodology, first I focus on designing a heterogeneous or multiple-layer-based architecture for reproducing the finest neuron activities both in voltage-and calcium-dependent ion channels. In particular, a digital optoelectronic neuron is developed as a case study. Second, I focus on designing a network-on-chip architecture for implementing a very large-scale neural network (e.g. more than 100,000) with human cognitive functions (e.g. timing control mechanism). Finally, I present a reliable hybrid bio-silicon closed-loop system for central pattern generator prosthetics, which can be considered as a framework for digital neural circuit-based neuro-prosthesis implications. At the end, I present the general digital neural circuit design principles and the long-term social impacts of the presented work

    Unified Synchronized Data Acquisition Networks

    Full text link
    The permanently evolving technical area of communication technology and the presence of more and more precise sensors and detectors, enable options and solutions to challenges in science and industry. In high-energy physics, for example, it becomes possible with accurate measurements to observe particles almost at the speed of light in small-sized dimensions. Thereby, the enormous amounts of gathered data require modern high performance communication networks. Potential and efficient implementation of future readout chains will depend on new concepts and mechanisms. The main goals of this dissertation are to create new efficient synchronization mechanisms and to evolve readout systems for optimization of future sensor and detector systems. This happens in the context of the Compressed Baryonic Matter experiment, which is a part of the Facility for Antiproton and Ion Research, an international accelerator facility. It extends an accelerator complex in Darmstadt at the GSI Helmholtzzentrum für Schwerionenforschung GmbH. Initially, the challenges are specified and an analysis of the state of the art is presented. The resulting constraints and requirements influenced the design and development described within this dissertation. Subsequently, the different design and implementation tasks are discussed. Starting with the basic detector read system requirements and the definition of an efficient communication protocol. This protocol delivers all features needed for building of compact and efficient readout systems. Therefore, it is advantageous to use a single unified connection for processing all communication traffic. This means not only data, control, and synchronization messages, but also clock distribution is handled. Furthermore, all links in this system have a deterministic latency. The deterministic behavior enables establishing a synchronous network. Emerging problems were solved and the concept was successfully implemented and tested during several test beam times. In addition, the implementation and integration of this communication methodology into different network devices is described. Therefore, a generic modular approach was created. This enhances ASIC development by supporting them with proven hardware IPs, reducing design time, and risk of failure. Furthermore, this approach delivers flexibility concerning data rate and structure for the network system. Additionally, the design and prototyping for a data aggregation and concentrator ASIC is described. In conjunction with a dense electrical to optical conversion, this ASIC enables communication with flexible readout structures for the experiment and delivers the planned capacities and bandwidth. In the last part of the work, analysis and transfer of the created innovative synchronization mechanism into the area of high performance computing is discussed. Finally, a conclusion of all reached results and an outlook of possible future activities and research tasks within the Compressed Baryonic Matter experiment are presented

    An FPGA-based 77 GHzs RADAR signal processing system for automotive collision avoidance

    Get PDF
    An FPGA implementable Verilog HDL based signal processing algorithm has been developed to detect the range and velocity of target vehicles using a MEMS based 77 GHz LFMCW long range automotive radar. The algorithm generates a tuning voltage to control a GaAs based VCO to produce a triangular chirp signal, controls the operation of MEMS components, and finally processes the IF signal to determine the range and veolicty of the detected targets. The Verilog HDL code has been developed targeting the Xilinx Virtex-5 SX50T FPGA. The developed algorithm enables the MEMS radar to detect 24 targets in an optimum timespan of 6.42 ms in the range of 0.4 to 200 m with a range resolution of 0.19 m and a maximum range error 0.25 m. A maximum relative velocity of ±300 km/h can be determined with a velocity resolution in HDL of 0.95 m/s and a maximum velocity error of 0.83 m/s with a sweep duration of 1 ms

    High-Radix Formats for Enhancing Floating-Point FPGA Implementations

    Get PDF
    This article proposes a family of high-radix floating-point representation to efficiently deal with floating-point addition in FPGA devices with no native floating-point sup port. Since variable shifter implementation (required in any FP adder) has a very high cost in FPGA, high-radix formats considerably reduce the number of possible shifts, decreasing the execution time and area highly. Although the high-radix format pro duces also a significant penalty in the implementation of multipliers, the experimental results show that the adder improvement overweights the multiplication penalty for most of the practical and common cases (digital filters, matrix multiplications, etc.). We also provide the designer with guidelines on selecting a suitable radix as a funcition of the ratio between the number of additions and multiplications of the targeted algorithm. For applications with similar numbers of additions and multiplications, the high-radix version may be up to 26% faster and even having a wider dynamic range and using higher number of significant bits. Furthermore, thanks to the proposed effi cient converters between the standard IEEE-754 format and our internal high-radix format, the cost of the input/output conversions in FPGA accelerators is negligible.This research has been partially funded by the Spanish Ministry of Science, Innovation and Universities through the projects PID2019-105396RBI00 and by Junta de Andalucía through P18-FR 3130. Funding Open Access funding provided thanks to the CRUE-CSIC. Funding for open access charge: Universidad de Málaga / CBU

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    Mittausalusta Konekäskytason Energiamallintamiseen

    Get PDF
    Energy efficiency is a rising concern in today's society and also affects information technology and software. This concern becomes highlighted in battery powered embedded systems like portable multimedia and smart devices as the available energy is limited. Energy efficiency in information technology is often thought as energy-efficient hardware although it should rather be thought as a joint effort between hardware and software. The energy consumption of hardware depends on what software is running on top of it and how that software uses the hardware. Reciprocally, the software energy consumption depends on the energy efficiency of the hardware. Instruction-level energy models are used for analysing and optimising the energy efficiency of software. The models in turn rely on accurate measurements of energy consumed by individual machine instructions. Low-energy processors are usually used in embedded systems. Measuring their energy consumption is a challenging task, due to the small currents and noise. It is a challenge to develop a measurement platform for conducting accurate measurements as well as minimising the noise affecting the measurements. In this thesis, four different circuits were examined to assess their suitability for a measurement platform. A printed circuit board was designed and constructed in order to identify and investigate solutions concerning the challenges in designing such a platform. Within this process a suitable processor was selected to act as the measurement target. A survey of low-energy processors targeted at embedded systems was conducted as part of this work. As a result a prototype measurement platform was constructed.Energiatehokkuus on kasvava huolenaihe nyky-yhteiskunnassa ja koskettaa myös tietotekniikkaa ja ohjelmistoja. Tämä korostuu erityisesti akkukäyttöisissä sulautetuissa järjestelmissä, kuten kannettavissa medialaitteissa ja älylaitteissa, joissa käytettävän energian määrä on rajattu. Energiatehokkuuden tietotekniikassa ajatellaan yleisesti viittaavaan energiatehokkaaseen laitteistoon, vaikka itse asiassa pitäisi puhua pikemminkin laitteiston ja ohjelmiston yhteispelistä. Laitteiston energiankulutus riippuu laitteiston päällä ajettavasta ohjelmistosta ja tavasta, miten ohjelmisto laitteistoa käyttää. Vastavuoroisesti ohjelmiston energiankulutus riippuu laitteiston energiatehokkuudesta. Ohjelmiston energiatehokkuuden analysointiin ja optimointiin käytetään konekäskytason energiamalleja. Mallit puolestaan perustuvat tarkkoihin mittauksiin yksittäisten konekäskyjen käyttämästä energiasta. Sulautetuissa järjestelmissä käytetään yleisesti energiapihejä prosessoreita. Niiden energiankulutuksen mittaaminen on haasteellista pienten virtojen ja ulkoisten häiriöiden takia. Haasteena on sellaisen mittausalustan kehittämien, jolla mahdollistetaan tarkat energiamittaukset ja minimoidaan mittauksiin vaikuttavat häiriötekijät. Työssä tutkittiin neljän eri virtapiirin soveltumista mittausalustaksi. Tämän lisäksi suunniteltiin ja valmistettiin piirilevy suunnitteluun liittyvien ongelmien tunnistamiseksi ja ratkaisuvaihtoehtojen selvittämiseksi. Tähän liittyy myös oikeanlaisen mittauskohteen valinta. Samalla tehtiin kartoitus energiapiheistä prosessoreista, jotka on suunnattu sulautettuihin järjestelmiin. Lopputuloksena on rakennettu prototyyppi mittausalustasta
    corecore