

Towards a Common
Software/Hardware Methodology
for Future Advanced Driver
Assistance Systems

The DESERVE Approach

RIVER PUBLISHERS SERIESIN TRANSPORT
TECHNOLOGY

Series Editors

HAIM ABRAMOVICH THILO BEIN
Technion - Israel Institute of Technology Fraunhofer LBF
Israel Germany

Indexing: All books published in this series are submitted to Thomson Reuters
Book Citation Index (BKCI), CrossRef and to Google Scholar.

The “River Publishers Series in Transport Technology” is a series of com-
prehensive academic and professional books which focus on theory and
applications in the various disciplines within Transport Technology, namely
Automotive and Aerospace. The series will serve as a multi-disciplinary
resource linking Transport Technology with society. The book series fulfils
the rapidly growing worldwide interest in these areas.

Books published in the series include research monographs, edited vol-
umes, handbooks and textbooks. The books provide professionals, researchers,
educators, and advanced students in the field with an invaluable insight into
the latest research and developments.

Topics covered in the series include, but are by no means restricted to the
following:

e Automotive

e Aerodynamics

e Aerospace Engineering

e Aeronautics

e Multifunctional Materials
e Structural Mechanics

For a list of other books in this series, visit www.riverpublishers.com

Towards a Common
Software/Hardware Methodology
for Future Advanced Driver
Assistance Systems

The DESERVE Approach

Editors

Guillermo Paya-Vaya

Leibniz Universitat Hannover
Germany

Holger Blume

Leibniz Universitat Hannover
Germany

Routledge

Taylor &Francis Group

River Publishers LONDON AND NEW YORK

R

Published 2017 by River Publishers
River Publishers
Alsbjergvej 10, 9260 Gistrup, Denmark
www.riverpublishers.com

Distributed exclusively by Routledge
4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN
605 Third Avenue, New York, NY 10017, USA

Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance
Systems The DESERVE Approach /by Guillermo Payéi-Vay4, Holger Blume.

© The Editor(s) (if applicable) and The Author(s) 2017. This book is published open access.

Open Access

This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial
4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/licenses/by/4.0/), which
permits use, duplication, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, a link is provided to
the Creative Commons license and any changes made are indicated. The images or other third
party material in this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative Commons
license and the respective action is not permitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper.

Routledge is an imprint of the Taylor & Francis Group, an informa business

ISBN 978-87-93519-14-5 (print)

While every effort is made to provide dependable information, the publisher, authors, and editors
cannot be held responsible for any errors or omissions.

Contents

Preface

List of Contributors
List of Figures

List of Tables

List of Abbreviations

1 TheDESERVE Project: Towards Future ADAS Functions

Matti Kutila and Nereo Pallaro

1.1 Project Aim
1.2 Project Structure
1.3 DESERVE Platform Design
1.4 The Project Innovation Summary
15 Conclusions

PART I: ADAS Development Platform

The DESERVE Platform: A Flexible Development Framewor k

to Seemlessly Support the ADAS Development L evels

Frank Badstibner, Ralf Kodel, Wilhelm Maurer, Martin Kunert,

André Rolfsmeier, Joshué Pérez, Florian Giesemann,

Guillermo Paya-Vaya, Holger Blume and Gideon Reade

2.1 Introduction to the DESERVE Platform Concept.

2.2 The DESERVE Platform — A Flexible Development
Framework to Seamlessly Support the ADAS
DevelopmentLevels

Xiii

XVii

XXi

XXXiii

XXXV

1

o 0101~

Vi

Contents

2.3 DESERVE Platform Requirements 16
2.3.1 DESERVE Platform Framework 16
2.3.2 Generic DESERVE Platform Requirements
(Relevant to all Development Levels) 18
2.3.3 Rapid Prototyping Framework Requirements
(DevelopmentLevel 2) 21
2.3.4 Additional Requirements for Embedded Multicore
Platform with FPGA (Development Level 3) 22
2.4 DESERVE Platform Specification and Architecture 23
241 DESERVE Platform Architecture 23
2.4.1.1 Hardware architecture 25
2.4.1.2 Software architecture 26
2.4.2 DESERVE Platform Interface Definition 30
2.4.2.1 Definition of DESERVE interface
architecture 30
2422 Existing ADAS interfaces 32
2.4.2.3 Definition of next generation interfaces . . 33
2.5 Safety Standards and Certification Concepts 35
2.5.1 Safety Impactof DESERVE 36
2.5.2 Functional Safety of Road Vehicles (1SO 26262) . . 36
2.5.3 Guidelines Related to ISO 26262 37
254 Safetyand AUTOSAR 38
2.5.,5 Safety Mechanisms for DESERVE Platform 39
References. e 43
Driver Modelling 45
Jens Klimke and Lutz Eckstein
3.1 Introduction 45
3.2 DriverModelling, 48
3.3 Requirements for DESERVE 50
3.4 GenericStructure L 52
34.1 Model Structure 52
3.4.2 Parameter Structure L 56
3.5 Implementation 59
3.6 Applicationsin DESERVE andResults 61
3.7 Conclusionsand Outlook 62

References. 63

Contents Vii

4 Component Based Middleware for Rapid Development
of Multi-Modal Applications 65

Gwenaél Dunand

4.1 Introduction 65
4.2 UsingaMiddleware. 65
4.3 The Multisensor Problem 66
4.3.1 Knowing the Date and Time of Your Data 67
4.3.2 Component-basedGUI 68
4.3.3 The Off-the-Shelf Component Library 69
4.3.4 CustomExtensions 71
435 AboutPerformance 71
4.4 Compatibility with Other Tools 72
4.4.1 dSPACE Prototyping Systems 72
442 Simulators 73
443 OtherStandards. 74
45 Conclusion 74
References. 75
5 Tuning of ADAS Functions Using Design Space Exploration 77

Abhishek Ravi, Hans Michael Koegeler and Andrea Saroldi
5.1 Introduction 77
5.1.1 Parameter Tuning: An Overview 77

5.1.2 Industrial Tuning Applications: Challenges

and Opportunities 78
5.1.3 Model-based Tuning 81
5.1.4 Model-based Validation 83
5.2 Demonstrative Example. 84
5.2.1 Function:AnOverview 84
522 DesignVariables 85
5.2.3 Key Performance Indicators (KPI) 88
524 TestManeuver 89
525 TestRunOverview 89
5.2.6 Raw Data Plausibility Check 91
527 MetaModelling. 92
52.8 Optimization 95
5.2.9 \Verification 97
5.3 Model-based Validation 98

viii

6

Contents

54 Conclusions
Acknowledgement,
References.

PART Il: Test Case Functions

Deep Learning for Advanced Driver Assistance Systems

Florian Giesemann, Guillermo Pay&-Vay4, Holger Blume,
Matthias Limmer and Werner R. Ritter
6.1 Introduction oo
6.2 Scene Labeling in Advanced Driver Assistance Systems . . .
6.3 Convolutional Neural Networks and Deep Learning
6.3.1 Introduction to Neural Networks
6.3.2 Supervised Learning
6.3.3 Convolutional Neural Networks
6.4 CNN for Scene Labeling
6.4.1 Exemplary Network for Scene Labeling
6.4.2 Evaluation,
6.5 Hardware Platforms for Scene Labeling
6.5.1 Theoretical Performance Requirements
6.5.2 CPU-based Platforms.
6.5.3 GPU-based Platforms.
6.5.4 FPGA-based Platforms
6.6 Summary
References.

Real-Time Data Preprocessing for High-Resolution

MIMO Radar Sensors

Frank Meinl, Eugen Schubert, Martin Kunert

and Holger Blume

7.1 Introduction

7.2 Signal Processing for Automotive Radar Sensors
7.2.1 FMCW Radar System Architecture
7.2.2 Two-Dimensional Spectrum Analysis for Range

and Velocity Estimation

7.2.3 Thresholding and Target Detection
7.24 Angle Estimation

7.3 Hardware Accelerators for MIMO Radar Systems

105

105
106
107
108
109
112
115
116
116
120
121
125
125
125
127
127

133

7.4

Contents ix

7.3.1 Basic Structure of a Streaming Hardware

Accelerator L 145
7.3.2 Pipelined FFT Accelerator 146
7.3.3 Rank-Only OS-CFAR Accelerator 151
Conclusion 153
References. 154

Self-Calibration of Wide Baseline Stereo Camera Systems
for Automotive Applications 157

Nico Mentzer, Guillermo Pay&-Vayé, Holger Blume,
Nora von Egloffstein and Lars Kruger

8.1

8.2

8.3

8.4
8.5
8.6

8.7

8.8

Introduction 157
8.1.1 Extraction of Image Features 158
8.1.2 Matching of Image Features 161
8.1.3 Extrinsic Online Self-Calibration 161
Algorithmic Overview 162
8.2.1 Survey of Image Features Extraction. 162
8.2.1.1 Detection of features. 162
8.2.1.2 Description of features 167
8.2.1.3 Characteristics of features 169
8.2.2 Feature Matching 172
8.2.3 Survey of Feature-based Self-Calibration 176
Extraction of Image Features 177
8.3.1 Detection of SIFT-Feature Points 177
8.3.2 Description of SIFT-Image Features 178
Matching of Image Features 179
Extrinsic Online Self-Calibration 181
Application-Specific Algorithmic Parameterization 182
8.6.1 Decreasing Bit Depth of Input Images for Extraction
of SIFT-features 182
8.6.2 Threshold-based Feature Matching 186
8.6.3 Parameterization of Matching Methods 188
Hardware Based SIFT-Feature Extraction 192
8.7.1 Challenges of SIFT-Feature Extraction. 193
8.7.2 Existing Systems for Hardware Based SIFT-Feature
Extraction 194
Conclusion 196

References. 197

X

Contents

9 Arbitration and Sharing Control Strategies

10

in the Driving Process

David Gonzdlez, Joshué Pérez, Vicente Milanés, Fawzi Nashashibi,
Marga Saez Tort and Angel Cuevas
9.1 Introduction
9.2 ADAS Functions Available in the Market
9.2.1 Longitudinal Control Systems
9.2.2 Lateral Control Systems
9.2.3 Other Control Systems
9.2.4 Control SolutioninADAS
9.24.1 Perception platform
9.2.4.2 Application platform.
9.2.4.3 Information Warning Intervention (IWI)
platform
9.3 Survey on Arbitration and Control Solutions in ADAS
9.4 Human-\Vehicle Interaction
9.5 DriverMonitoring.
9.5.1 Legal and Liability Aspects
9.6 Sharing and Arbitration Strategies: DESERVE Approach
9.7 Conclusions
References.

PART Ill: Validation and Evaluation

The HMI of Preventing War ning Systems:

The DESERVE Approach

Caterina Calefato, Chiara Ferrarini, Elisa Landini,

Roberto Montanari, Fabio Tango, Marga Séez Tort

and Eva M. Garcia Quinteiro

10.1 Introduction

10.2 Prevent Imminent Accidents: The Role of Humans,
the Role of Technology
10.2.1 From Passive to Preventive Safety
10.2.2 The Role of Driver Model in ADAS Design

10.3 HMI Design Flow: The DESERVE Approach
10.3.1 Different Approaches in the HMI of the Preventing

Warning Systems: A State of Art in a Glance

201

227

10.4 HMI Concepts Design

10.4.1 Concept 1: HolisticHMI

10.4.2 Concept 2: Immersive HMI

10.4.3 Concept 3: SmartHMI
10.5 Preliminary Testing by Focus Group
10.5.1 Participants
1052 Results

10.5.3 List of the Winning Features and Redesign
Recommendations

10.6 Users Test at Driving Simulator
10.6.1 Participants
10.6.2 Procedure
106.3 Results

10.7 Conclusions
Acknowledgments.
References.

11 Vehicle Hardware-In-the-Loop System for ADAS
Virtual Testing
Romain Rossi, Clément Galko, Hariharan Narasimman
and Xavier Savatier

11.1 Introduction

11.2 State of the Art
11.3 Proposed System
11.4 Hardware Implementation

11.4.1 Sensors Stimulation Solutions
11.4.2 Software Implementation.
11.5 Experimental Setup
116 Results.
11.7 Conclusion and Future Work
Acknowledgment
References.

Index

About the Editors

Contents Xi

http://taylorandfrancis.com

Preface

The European research project DESERVE (DEvelopment platform for Safe
and Efficient dRiVE, 2012-2015) had the aim of designing and developing a
platform tool to cope with the continuously increasing complexity and the
simultaneous need to reduce costs for future embedded Advanced Driver
Assistance Systems (ADAS). For this purpose, the DESERVE platform profits
from cross-domain software reuse, standardization of automotive software
component interfaces, and easy but safety-compliant integration of hetero-
geneous modules. This enables the development of a new generation of
ADAS applications, which challengingly combine different functions, sensors,
actuators, hardware platforms, and Human Machine Interfaces (HMI).

This book provides a detailed overview of the different research activities
conducted in the course of the DESERVE project. After introducing the aims of
the DESERVE project in Chapter 1, selected achievements of the DESERVE
project are presented in three different parts. Part | is dedicated to the ADAS
development platform developed during the DESERVE project.

e Chapter 2 covers the methodology and concepts that are part of the
generic DESERVE platform as the basis and key enabler for the devel-
opment of new assistance systems. It describes the entire spectrum of
aspects, e.g., modularity, interfaces, and standards, to be considered for
the use of the DESERVE platform.

e Chapter 3 describes the development of realistic models for driver
behavior as part of the DESERVE tool-chain needed for the evaluation
of complex ADAS systems and driver-vehicle-environment interactions.
The modelling system was used to simulate two different driving
scenarios.

e Chapter 4 presents component based middleware, e.g., RTMaps and
ADTF, for supporting the developer of complex systems with typical
challenges like multi-sensor support, synchronization issues, and modu-
larity. By means of different exemplary applications, in which modules
like simulators or prototyping systems are connected to the middleware,
the flexibility of the DESERVE tool-chain is demonstrated.

Xiii

Xiv Preface

e Chapter 5 describes a model-in-the-loop approach for tuning ADAS
parameters. Using the AVL CAMEO tool, model-based design space
exploration and validation of a complex ADAS function is performed.

In Part 11, ADAS applications used as test functions in the DESERVE project
are explained.

e Chapter 6 presents an application of deep-learning techniques for
semantic segmentation of camera images (i.e., Scene Labeling). After
explaining the algorithmic basics, an FPGA-based implementation is
presented and evaluated.

e Chapter 7 covers a system coupling an FPGA-based signal process-
ing architecture for MIMO radar with a PC-based ADTF data post-
processing. The hardware-software combination maximizes processing
performance and minimizes development time of complex systems.

e Chapter 8 describes a design space exploration for online calibration
of wide baseline stereo camera systems using sparse feature corre-
spondences in stereo images. Challenges in hardware implementations
of feature matching are presented and hardware-specific solutions are
discussed.

e Chapter 9 presents a first approach of arbitration and sharing vehicle
control between driver and assistance system based on modelling vehicles
and driver behavior and intentions. Fuzzy logic techniques are used
to implement the control sharing and simulations allow testing of the
systems.

Part 111 covers the validation and evaluation of two exemplary applications of
the DESERVE platform.

e Chapter 10 aims at exploring effective design of Human Machine Inter-
face (HMI). During the DESERVE project, in-vehicle HMI solutions
for different functions were developed. The HMI design process for an
exemplary function is described in this chapter.

e Chapter 11 shows a prototype system for vehicle-in-the-loop testing of
ADAS functions that additionally analyzes the energy efficiency of the
prototyped system. Combined with multi-sensor simulation, a virtual
environment for testing ADAS functions is provided.

Further detailed information about the contributions of DESERVE can be
found in the list of project deliverables referenced in each chapter.

This work was supported by the European Commission under the Artemis
Joint Undertaking in the scope of the DESERVE project. We would like to

Preface Xxv

thank all authors and co-authors for their excellent contributions. Special
thanks to Matti Kutila for the efficient managing of the complete DESERVE
project over three years. Further thanks to Martin Kunert who well-coordinated
subprojects and who actively supported our work. Furthermore we want to
thank the River Publishers Team, in particularly Mr. Mark de Jongh and
Ms. Junko Nakajima for their great support.

We hope that you will enjoy reading this book.

Guillermo Paya Vaya
Holger Blume

March 22th, 2017
Hannover (Germany)

http://taylorandfrancis.com

List of Contributors

Abhishek Ravi, AVL List Gmbh, Austria

André Rolfsmeier, dSpace GmbH, Germany

Andrea Saroldi, C.R.F. S.C.p.A, ltaly

Angel Cuevas, CTAG — Centro Tecnol6gico de Automocion de Galicia, Spain

Caterina Calefato, Unimore — University of Modena and Reggio Emilia —
Italy

ChiaraFerrarini, Unimore — University of Modena and Reggio Emilia— Italy

Clément Galko, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000
Rouen, France

David Gonzalez, INRIA, France
Elisa Landini, RE:Lab srl, Italy

Eugen Schubert, Advanced Engineering Sensor Systems, Robert Bosch
GmbH, Leonberg, Germany

Eva M. Garcia Quinteiro, CTAG — Centro Tecnolégico de Automocion de
Galicia, Spain

Fabio Tango, CRF — Centro Ricerche Fiat, Italy
Fawzi Nashashibi, INRIA, France

Florian Giesemann, Institute of Microelectronic Systems, Leibniz Universitat
Hannover, Hannover, Germany

XVii

xviii List of Contributors
Frank BadstUbner, Infineon Technologies AG, Germany

Frank Meinl, Advanced Engineering Sensor Systems, Robert Bosch GmbH,
Leonberg, Germany

Gideon Reade, ASL, U.K.

Guillermo Paya-Vaya, Institute of Microelectronic Systems, Leibniz Univer-
sitat Hannover, Hannover, Germany

Gwenagl Dunand, Intempora, France
Hans Michael K oegeler, AVL List Gmbh, Austria

Hariharan Narasimman, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM
76000 Rouen, France

Holger Blume, Institute of Microelectronic Systems, Leibniz Universitat
Hannover, Hannover, Germany

JensKlimke, Institute for Automotive Engineering, RWTH Aachen University,
Steinbachstrafe 7, 52074 Aachen, Germany

Joshué Pérez, INRIA, France
LarsKruger, Daimler AG, Vision Enhancement, Ulm, Germany

Lutz Eckstein, Institute for Automotive Engineering, RWTH Aachen Univer-
sity, Steinbachstrafe 7, 52074 Aachen, Germany

Marga Saez Tort, CTAG — Centro Tecnologico de Automocion de Galicia,
Spain

Martin Kunert, Advanced Engineering Sensor Systems, Robert Bosch
GmbH, Leonberg, Germany

Matthias Limmer, Vision Enhancement, Daimler AG, Germany

Matti Kutila, VTT Technical Research Center of Finland Ltd., Finland

List of Contributors XiX
Nereo Pallaro, Centro Ricerche Fiat, Italy

Nico Mentzer, Institute of Microelectronic Systems, Leibniz Universitat
Hannover, Hannover, Germany

Nora von Egloffstein, Daimler AG, Vision Enhancement, Ulm, Germany
Ralf Kodel, Infineon Technologies AG, Germany
Roberto Montanari, RE:Lab srl, Italy

Romain Rossi, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000
Rouen, France

Vicente Milanés, INRIA, France
Werner R. Ritter, Vision Enhancement, Daimler AG, Germany
Wilhelm Maurer, Infineon Technologies AG, Germany

Xavier Savatier, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000
Rouen, France

http://taylorandfrancis.com

List of Figures

Figurel.l The DESERVE V-shape development process. . . .
Figurel.2 DESERVE platform concept for speeding

up the ADAS function development time.
Figure2.1 The DESERVE Platform — the enabler for next

generation ADAS systems.
Figure2.2 DESERVE platform enabled design

and development process.
Figure2.3 ADAS developmentprocess.
Figure2.4 DESERVE platform framework.
Figure2.5 Perception platform functional architecture. .
Figure2.6 Application platform functional architecture.
Figure2.7 DESERVE IWI platform.
Figure2.8 DESERVE platform (e.g. for development

Level 2 — rapid prototyping system based on mixed

PC and embedded controller framework).
Figure2.9 DESERVE approach — use of common platform

forall ADASmodules.
Figure2.10 DESERVE platform architecture.
Figure2.11 Overview on the principles of virtual interaction

using the AUTOSAR.
Figure2.12 Message box principle for intra-unit

communication.
Figure2.13 AUTOSAR application software concept.
Figure2.14 Camera Interface (CIF) overview.
Figure2.15 Module interaction implies changes

in system behavior.
Figure2.16 SEooC safety mechanisms.
Figure2.17 Top level safety requirements.
Figure2.18 Fault tolerant time interval (FTTI) definition.
Figure2.19 Generic elements of safe computation

hardware platform.

XXi

XXii

List of Figures

Figure3.1

Figure 3.2

Figure 3.3

Figure3.4

Figure3.5
Figure 3.6

Figure3.7

Figure 3.8

Figure 3.9

Figure4.l

Figure4.2
Figure 4.3
Figure4.4
Figure4.5
Figure 4.6
Figure4.7
Figure4.8

Primary driving tasks which are implemented

in the driver model within the DESERVE project
separated by longitudinal and lateral control.
Manoeuvres which are implemented in the driver
model within the DESERVE project.
Driver model structure in the context of environment
and vehicle: the structure includes perception,
processing and action blocks including its functional
modules and the regarded dynamic
informationflow.
Process variables for the four basic driving
motivations free moving, following, lane keeping
andstanding.
Process variables for the three manoeuvres

lane change, stopping and Safe Passing.
Sketch of the parameter blocks (brown) and model
blocks (blue) of the driver model.
Distribution of lower following time gaps for real
drivers (blue bars) and the modelled distribution
dependent on a normal distributed need for safety
parameter (red line).
Stateflow model for a two-phase lane change
including decision (A), progress control (B)

and sequence control (C).
Trajectories (velocity over x- and y-position) for left
turn including the simulation results for different
parameter sets. The real driver data is measured

on one intersection with 136 different drivers
duringdaytime.
ADAS function requires many different type
ofsensor.
Synchronisationissues.
The RTMaps Studio.
Components and interfaces.
Inspecting data with the data viewer.
Developing a new component.
dSPACE MicroAutobox and RTMaps Bridge. . . .
ProSivic working together with RTMaps.

Figureb5.1

Figure5.2
Figure5.3

Figure5.4
Figure5.5

Figure5.6

Figure5.7
Figureb5.8

Figureb.9
Figure5.10
Figure5.11

Figure5.12
Figure5.13

Figure5.14
Figure5.15
Figure5.16
Figure5.17
Figure5.18
Figure5.19

Figure5.20
Figure5.21

Figure5.22
Figure5.23

Figure6.1

List of Figures

Separation of software and tuning parameters
inacontrolunit.
History of powertrain tuning (calibration).
Ilustration of a generalized development
environment and manual tuning process.
Model-based tuning task illustrated.
Velocity profiles for a sample test run using

the control function.
Function developed using IPG carmaker

and MATLAB simulink.
Functionoverview.
Illustration of the kinematic variables A MAX

andJ MAX.
Illustration of the design variable (variation)
J_HOR.
Key performance indicators.
IPG Carmaker test environment.
Test run overview illustrating the work flow.
Left image illustrates the test preparation window
while the right image illustrates the test
runwindow.
Checking for outliers in the measured variables. . .
Check of DoE design and the boundaries

of variation parameters.
Figure depicting the quality of empirical

modeling.
Intersection plot highlighting the influence

of each variation on the output variables

and their interaction.
Optimization setting window in AVL CAMEO.
Trade-off plot between comfort and speed.
Sporty mode vs comfort mode.
Verification plot to see how well the measured
results from the verification run fit the model
results.
Digitized road used for the validationrun.
Measurements comparison when run on comfort
mode (in blue) and sporty mode (inred).
Model of an artificial neuron.

XXiv List of Figures

Figure 6.2

Figure 6.3

Figure6.4

Figure6.5

Figure 6.6

Figure7.1

Exemplary activation functions used in neural

networks. 109
Example of a fragmentation after a 2 x 2 pooling.

The naive approach would only produce the bright

pixels, while an overlapping pooling produces

all other possible pixels (purple, green, and blue).

These pixels must be reordered to be able to correctly
continue with the forward propagation of the neural
network. 114
The complete processing chain from input image

to a scene labeled image is displayed. After building

an image pyramid of 3 layers and the local

normalization every scale is fed to its own processing

chain. This produces 6 class membership probability

maps. They can be interpreted and augmented

as seenin the outputimage. 116
The image pyramid construction layer produces

3 scales that are locally normalized in 15 x 15

windows. Every scale is propagated independently.

There are in total 2 convolution layers with 16 x 7 x 7

filter kernels using the ReL.U activation function.

After activation a 2 x 2 max-pooling is performed
followed by a fragmentation in the first pooling

layer. A second fragmentation is not necessary since

the second pooling layer is followed by

a defragmentation. The small scaled feature maps

are sampled up and fed to a classification layer, being

a6 x 1 x 1 convolution layer. Finally, a pixel

wise softmax isapplied. 117
Displayed are the learn curves of three different

network topologies. Each topology was trained

three times and the learn curves were averaged.

The averaged learn curves are displayed as solid

lines while the standard deviation for 50 epochs

is displayed as the area around the lines. 118
FMCW ramp waveform shown as frequency

over time f(t). The solid line represents

the transmitted signal (TX) while the dashed line

is the received signal (RX). 135

Figure7.2
Figure7.3

Figure7.4
Figure7.5
Figure 7.6
Figure7.7
Figure7.8

Figure7.9
Figure7.10

Figure7.11
Figure7.12
Figure7.13
Figure7.14
Figure7.15

Figure8.1

Figure 8.2

List of Figures

Chirp-sequence modulation.
Possible MIMO antenna array design: The physical
receiver array (blue) is extended by several virtual
antennas (red squares) due to the second
transmitter TX2.
CA-CFAR sliding window implementation.
Rank-only OS-CFAR implementation.
Additive white Gaussian noise model.
Histogram of a noise measurement showing

the chi-squared distribution before and after NCI. .
Uniform linear antenna array with spacing

d and resulting steering vector v(a).
Architecture of a streaming hardware accelerator.
Radix-2 FFT implementation based on a multi-path
delay commutator (MDC) pipeline.
Radix-2 FFT implementation based

ona SDF pipeline.
Effects of different word lengths on the amount

of quantizationnoise.
Architecture of the rank-only OS-CFAR
accelerator.
Resource usage against number of channels

for a constant window size (128 cells).
Resource usage against window size for different
number of channels.
Algorithmic overview. Input of the processing chain
is a stereo image pair, in which sparse pixel
correspondences are extracted for online camera
calibration. After the calibration, rectification

is performed as a preprocessing step for disparity
estimation.o
Left (top) and right (bottom) image from a stereo
camera system showing detected SIFT-image
features. Detected feature points of the left/right
image are displayed in red/green, matches

are displayed in blue. Scale and rotation

of the SIFT-features are illustrated by the circle
properties.

XXV

136

137
139
141
143

143

144
145

150

XXVi List of Figures

Figure 8.3

Figure8.4

Figure8.5

Figure 8.6

Figure 8.7

Figure 8.8

Figure8.9

Figure8.10

Detection of edges and corners by image gradients.
The blue circle shows a possible feature point,
surrounded by a local neighborhood. (a) Low image
gradients in two spatial directions represent texture
free image areas. (b) A high image gradient

in one spatial direction indicates a possible edge,
(c) in two spatial directions a possible corner.
Intensity comparisons of pixel, which are located
on a Bresenham Circle. The central pixel

is determined as a corner if a certain number

of continuous pixel intensities is brighter or darker
than the central pixel. This is combined

with an adoptable threshold to avoid

instabilities.
Detection of corners of different image scales.

With strongly different object sizes in the image,

a corresponding corner is not detectable (red circle),
but by a repeated image scaling.
Blob detector. The detected blobs are displayed

as red circles. The blob’s size is displayed

as the diameter of thecircle.
Blob detection based on circular image region
forascene with a large viewpoint change. The region
on which the blob feature extraction is based only
partially covers the corresponding region

and thus, will lead to non-matching image

features. oL
Affine-Invariant Interest Point Detection.

The circular point neighborhood is replaced

with an ellipse in order to achieve independent
orthogonal varying detection scales for interest point
detection. Before applying a detection algorithm,
the local neighborhood is affine normalized, which
results in a circular neighborhood and a transformed
imagepatch.
Sampling grids for generating different descriptors:
(@) SIFT, (b) Shape Context, (c) DAISY.
Sampling pattern. (a) BRISK descriptor, (b) FREAK
descriptor. Sampling patterns define

163

167

Figure8.11

Figure8.12

Figure8.13

Figure8.14

Figure8.15

Figure 8.16

List of Figures xxvii

a set of sampling locations (blue circles),

of whose image information is smoothed

with spatial-dependent filter kernels (red circles).
Out of the sampling pattern the sampling pairs

for the binary tests for the descriptor generation
areselected. L.
Two variations of sampling pairs of the FREAK
descriptor. A fixed combination of sampling
locations is selected as descriptor specific sampling
pairs, with which the binary tests for the descriptor
generation is performed.
Rotation invariance is achieved by rotating

the sampling grid by the main orientation

before extracting the descriptor.
Scale-space. An input image is down sampled

to achieve multiple scales of the image. On each
scale, feature candidates are found, whereas
repeated candidates are removed. The scale

with the highest information content

for the feature candidate is selected

asthe featurescale.
Multi-scale approach for blob detection.

The same blob with differing scales

in two images and the related response

(normalized Laplacian of Gaussian)

over scales is shown. The scale

with the highest information content
ischosenasablob.
Image pyramid. The scale-space is constructed

by different octaves, which consists of multiple
intervals. Each interval indicates a specific

variant of the used Gaussian kernel. In order

to approximate the Laplace scale-space,

the Difference of Gaussian

isdetermined.
Generation of feature descriptor. The local
neighborhood is subdivided into independent
subregions, which are combined into individual
histograms. After a weighting and smoothing,

177

XXviii List of Figures

Figure8.17

Figure8.18

Figure8.19

Figure 8.20

Figure8.21

the feature descriptor is generated by concatenating
the single histograms to as a resulting feature
VECION.
Extracted SIFT-features with exemplary
geometry-based restriction of matching

candidates. By restricting possible matching
candidates geometrically, the problem

size is significantly reduced.
Exemplary results of feature matching. The left

and right stereo images are overlaid; features

of the left/right image are displayed in red/green.
Correct matches are depicted in yellow; false
matches are shown in blue. The upper image shows
the results of the initial brute force matching,
whereas the lower image shows the results

of the enhanced matching process.
Verification of match positions with disparity maps.
For rectified images, the horizontal difference

of feature positions of a corresponding pixel pair
equals the related value of the disparity map.

With this technique, it is possible to validate
resulting matching lists for datasets with ground
truth disparity maps.
Comparison of the resulting SIFT-features of the left
input image for 12 bpp images and 8 bpp images.
In the 12 bpp input image, an overall number

of 1,069 features have been detected, whereas

in the 8 bpp input image 1,056 features have been
determined. A subset of 1,045 features (97.8%)

is identical in both images (blue). There are

14 (1.3%) exclusive 8 bpp feature positions

(red) detected and 24 (2.2%) exclusive

12 bpp feature positions (orange).
Comparison of the resulting pixel correspondences
for the 8 bpp and 12 bpp input images.

In the 12 bpp input image, an overall number

of 611 pixel pairs has been detected, whereas

in the 8 bpp input image 608 correspondences

have been determined. A subset of 587 pairs (96.1%)

180

Figure 8.22

Figure 8.23

Figure8.24

Figure 8.25

Figure 8.26

List of Figures XxXix

is identical in both images (blue lines).
Furthermore, there are 23 (3.8%) exclusive

8 bpp pairs (red lines) and 24 (3.9%)

exclusive 12 bpp pixel correspondences
(orangelines).
Histogram of random generated SIFT-descriptor
distances of an idealized NNB feature matching.
The right distribution with mean .o displays the
distances of wrong matches, whereas the left
distribution with mean . illustrates the correct
matches.
Histogram of descriptor distances for a NNB
SIFT-feature matching with the extracted threshold
according to Otsu. Distances of correct/wrong
matches are displayed in blue/orange. The complete
distribution is shown inpurple.
Histograms of descriptor distances for different
NNB feature matching case studies

with the extracted threshold according to Otsu.
Distances of correct/wrong matches are displayed
in blue/orange. The complete distribution

is shown in purple. Due to different descriptors

and resulting matching distances, various

axis scales for clear presentation

areused.
Exemplary histogram for the distribution

of matching candidates for the geometry-based
feature matching (see Table 8.4). The average
number of candidates is 7 candidates

per matchingevent.
Rates of disparity verified pixel correspondences
for different offsets € and three matching methods.
For all methods, the rate of correct matches runs into
saturation. The NNB matching method performs
best over all offsets €. (TB: Threshold-Based
Matching; NNB: Nearest-Neighbor-Based
Matching; NNDR: Nearest-Neighbor Distance
Ratio Matching).

190

Figure 8.27

Figure9.l
Figure 9.2
Figure 9.3
Figure9.4
Figure 9.5
Figure 9.6
Figure9.7
Figure9.8
Figure9.9
Figure9.10
Figure9.11
Figure9.12

Figure9.13
Figure10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7

Figure 10.8

XXX List of Figures

Break down of SIFT-feature extraction into four
algorithmic steps and relating qualitatively quota
of control complexity and complexity (i.e., regular
arithmetic).
ACCSystems.
Stages on the longitudinal control of the vehicle. . .
CSW system.
TSRsystem.
LDWsystem.
BSD/LCAsystem.
Top view of a parking assistance system.
Aided park system.
Automatic park systems.
DESERVE platform.
DESERVE platform framework.
SAE J3016 standards of driving automation levels
for on-road vehicles.
Arbitration and control sharing application:
General diagram.
Total number of fatalities in road traffic accidents
inEurope.
Holistic HMI concept, that shows: IPC display 12”;
SW commands; left stalk commands; buttons;
knobs.
Holistic HMI layout.
Holistic HMI layout with the user menu
inthecentralarea.
Holistic HMI layout with the lane change assist
inthecentralarea.
Holistic HMI layout with the rear view camera
inthecentralarea.
Holistic HMI layout with the night vision system
inthecentralarea.
(A-B-C-D) Holistic HMI left area with: lane
departure warning, collision warning, Rear
approaching vehicle system, pedestrian

safety system.

229

238

Figure 10.9

Figure 10.10
Figure 10.11
Figure 10.12

Figure 10.13
Figure 10.14

Figure 10.15

Figure 10.16

Figure 10.17
Figure 10.18

Figure 10.19
Figure11.1
Figure11.2
Figure11.3
Figure11.4
Figure11.5
Figure 11.6
Figure11.7

Figure 11.8
Figure 11.9

Figure11.10
Figure11.11

List of Figures

Immersive HMI concept shows: 3,5” IPC display;
touch display 8,5” in the dashboard; head-up
display for the windscreen; SW commands;

left stalk commands; buttons; knobs.
Immersive HMI concept: instrument panel
clusterdisplay..
Immersive HMI concept: dashboard

display.,
Immersive HMI concept: head-up display

details.
Smart HMlconcept.
Smart HMI concept: Nomadic device with night
visionsystem.
Radar chart summarizing HMI evaluation

for the 6 HMI concepts. Bis concepts are concept

1, 2, 3 with implicit drowsiness.
Proposed change to create the final DESERVE
HMlconcept.
Final DESERVE HMI concept: warning area.

Final DESERVE HMI concept: rear

viewcamera.
Final DESERVE HMI concept: navigation. .
Overview of the SERBER VeHIL system.
Block diagram of the SERBER system.
Sample video output of Pro-Sivic.
RTMAPS diagram of the system (extract).
Mobileye 560 aftermarket vision-based ADAS. . .
RTMAPS diagram of the V2V task.
The Biocar test vehicle on the Horiba chassis
dynamometer.
Overview of the urban environment

inPro-Sivic.
Inner view of the vehicle.
Lane departure warning triggered.
V2V Communication HMI.

XXXi

http://taylorandfrancis.com

List of Tables

Table1.1
Table5.1

Table 5.2
Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.5

Table7.1

Table 8.1
Table 8.2
Table 8.3

Scientific and technical objectives
Range of variation parameters used
inthetuningtask
Variations values for comfort and sporty mode

The confusion matrix of topology 3-2-32

and the respective FNR, FPR and IU for each class.
The classes are background (Bg), road (Rd),

vehicle (\Veh), sky, vulnerable road users (VRU)

and infrastructure (Inf). Each cell shows

the percentage (from all pixels in the dataset)

of actual class (row) predicted as class (column)
Displayed are the measures Accuracy (ACC), mean
Intersection over Union (mlU), Matthews Correlation
Coefficient (MCC) and mean False Negative Rate
(mFNR) for 3topologies
Input image sizes for three different scales

in the exemplary convolutional neural network . . .
Number of operations for the exemplary
convolutional neural network
Comparison of different implementations

of convolutional neural networks on different
platforms,
Resource usage of different pipelined FFT
implementations
Overview of feature detectors
Overview of feature descriptors
Numbers of extracted SIFT-features and detected
matches for 8 bpp input images and 12 bpp images.
The number of the geometry-based (GB)
nearest-neighbor distance ratio matches (NNDR)
drops significantly but ensures a high explicitness

of matches. The algorithmic parameters of the

XXXiii

118

XXXiv List of Tables

Table 8.4

Table 8.5

Table 8.6

SIFT-feature extraction of the two test cases

are adjusted in order to extract a similar number

of features, which lead to an identical number

of verified matches 184
Results for a SIFT-feature matching for a global

matching and a geometry-based feature matching.

The window size for the geometry-based feature

matching is 4/ —4 pixel in y-direction

and +100/—4 pixel in x-direction 190
Results of disparity verified feature correspondences

for different combinations of global and spatial

restriction matching methods. In addition to a high

rate of correct matches, a minimal number of pixel
correspondences has to be given for a reliable

subsequent image processing. The total numbers

of detected matches for selected algorithmic

combinations are given in brackets. The number

of correct matches and wrong matches do not result

in 100% because of missing values in the ground truth
disparity maps. Those values are skipped

forevaluation 191
Overview of existing systems for SIFT-feature

extraction 194

List of Abbreviations

ABS
ACC
ADAS
ADC
AEB
AR
ASIC
ASIP
avg
BASt
bpp
BRIEF
BRISK
BSD
CA-CFAR
CAN Bus
CDMA
CenSurE
CFAR
CM4SL
CMbB
CMOS
CNN
COR
CPU
CRF
CUT
DAISY
DAS
DBC
DIF

Anti-lock Breaking System

Adaptive Cruise Control

Advanced Driver Assistance Systems
Analog-to-digital converter
Automatic/Autonomous Emergency Braking
Autoregressive

Application-Specific Integrated Circuit
Application-Specific Instruction-Set Processor
Average

German Federal Highway Research Institute
Bit per pixel

Binary Robust Independent Elementary Features
Binary Robust Invariant Scalable Keypoints
Blind Spot Detection

Cell-averaging constant false alarm rate
Controller Area Network

Code division multiple access

Center Surround Extremas

Constant false alarm rate

Carmaker for simulink

Collision Mitigation by Braking
Complementary Metal-Oxide-Semiconductor
Convolutional Neural Network

Customized Output Range

Central Processing Unit

Conditional Random Field

Cell under test

Name of a feature descriptor

Driver assistance systems

data base CAN

Decimation-in-frequency

XXXV

XXXVi List of Abbreviations

DMA driving monitoring automotive

DOA Direction of arrival

DoE Design of Experiment

DoG Difference of Gaussian

DRAM Dynamic random-access memory

ECU Electronic Control Unit

ESC Electronic Stability Control

ESPRIT Estimation of signal parameters via rotational invariant
techniques

FAST Features from Accelerated Segment Test

FCW Frontal Collision Warning or Forward Collision Warning

FDM Frequency-division multiplexing

FFT Fast Fourier transform

FIR Finite impulse response

FMCW Frequency-modulated continuous-wave
FN(R) False Negative (Rate)

FP(R) False Positive (Rate)

FPGA Field-Programmable Gate Array

fps Frames per second
FREAK Fast Retina Keypoint
GB Geometry-based

GOPS Billion Operations Per Second
GPGPU General Purpose Graphics Processing Unit

GPP General Purpose Processor

GPU Graphics Processing Unit

HD High-definition, 1280 x 720 pixel
HiL Hardware in the Loop

HMI Human-machine interface

HW Hardware

1/0 input/output

12C Inter-Integrated Circuit

IMU Inertial measurement unit

IU Intersection over Union

IWI information-warning-intervention
KD-Tree K-dimensional tree

KPI Key Performance Indicator

LCA Lane Change Assistant

LDW Lane Departure Warning

List of Abbreviations Xxxvii

LKA Lane Keeping Assistance

LoG Laplacian of Gaussian

LSB Least significant bit

LUT Lookup table

MCC Matthews Correlation Coefficient
MDC Multi-path delay commutator
MiL Model in the Loop

MIMO Multiple-input multiple-output
MLP Multi Layer Perceptron

MOPS Million Operations Per Second
MUSIC Multiple signal classification

NCI Non-coherent integration

NHTSA National Highway Traffic Safety Administration
NMEA National Marine Electronics Association

NNB Nearest-Neighbor-Based

NNDR Nearest-Neighbor Distance Ratio
OpenCL Open Computing Language
OpenGL Open Graphics Library

ORB Oriented FAST and Rotated BRIEF
OS-CFAR Ordered-statistic constant false alarm rate
PCA Principal Component Analysis

PID proportional, integral, derivative controller
QVGA Quarter Video Graphics Array, 320x 240 pixel
RCS Radar cross-section

RDE Reak Driving Emissions

ReLU Rectifier Linear Unit

RMS Root Mean Square

RPM Revolution per minute

RTSP Real Time Streaming Protocol

SAE Society of Automotive Engineers

SDF Single-path delay feedback

SIFT Scale-Invariant Feature Transform

SIP Session Initialization Protocol

SLA Speed Limit Assistant

SNR Signal-to-noise ratio

SoP Start of Production

SONR Signal-to-quantization-noise ratio

SRAM Static random-access memory

XXXViii List of Abbreviations

SURF
sw
B
TDM
TP
uuT
VGA

Speeded Up Robust Features
Software

Threshold-Based

Time-division multiplexing

True Positive

Unit Under Test

Video Graphics Array, 640x480 pixel

1

The DESERVE Project: Towards Future
ADAS Functions

Matti Kutila! and Nereo Pallaro?

LWTT Technical Research Center of Finland Ltd., Finland
2Centro Ricerche Fiat, Italy

1.1 Project Aim

This book aims to outline the major innovations introduced by the DESERVE
(DEvelopment platform for Safe and Efficient dRiVe) project. The project
started in September 2012 and finished on February 2015 after 3,5 years
heavy working and was coordinated by VTT Technical Research Centre of
Finland Ltd. The project was co-funded by the European Commission under
the ECSEL EU-Horizon 2020 programme. The project was a joint effort
of major vehicle manufacturers (Molvo, Daimler, Fiat), component suppliers
(Continental, Ficosa, AVL, Bosch, NXP, Infineon, dSPACE, ASL Vision, Ram-
boll, TTS, Technolution), research institutes (VTT, ICOOR, ReLab, INRIA,
CTAG) and universities (VisLab, IRSEEM, ARMENIS, IKA, INTEMPORA,
Leibniz Universitat Hannover).

The main research question was to identify the optimal sensor solutions for
the DESERVE platform which are required by the selected ADAS functions

2 The DESERVE Project: Towards Future ADAS Functions

for supporting transition to automated vehicles. 22 different modules were
selected to be implemented to 11 driver support applications according to user
needs when starting development process:

e Lane change assistance system
Pedestrian safety systems
Forward/rearward looking system (distant range)
Adaptive light control

Park assistance

e Night vision system

e Cruise control system

o Traffic sign and traffic light recognition
e Map-supported systems

¢ \khicle interior observation

e Driver monitoring

The project created the methodology framework for integrating embedded
hardware and software modules was created which enables better interoper-
ability of automotive industry products and third party aftersales components.
This approach is also beneficial to comprise the problem for guaranteeing
safety and security problems when new components are added to the complex
software and hardware stacks.

The initial project objective has been defined in the Table 1.1 with having
measurable verification of the expected results.

Table 1.1 Scientific and technical objectives

Scientific and Technical Objectives Measurable and Verifiable Form

The definition and implementation of a By defining an analysis methodology to
model-driven process for the compositional establish an industrially applicable
development of safety critical systems that process for exploration of design spaces

allows the smooth integration of existing and multi-criteria constraint satisfaction,
components and functions in a new with particular regard to safety properties.
framework.

Verification: 90% or more of the
applications identified could be
developed with the proposed platform.

The development of an innovative By implementing demonstrators for
embedded vehicle platform capable of active and passive safety of drivers and all
supporting the fast and reliable road users in the three macro-areas in the
development of ADAS and efficient automotive domain such as:

Eco-driving functions.

1.1 Project Aim 3

Table 1.1 Continued

e Technical, safety and efficiency impact
assessment of resulting prototypes
following the evaluation methodologies
identified in project PREVAL and in
line with INTERACTIVE evaluation
methodologies.

e Cost-Benefits analysis.

e Evaluation of cost reduction in
comparison with conventional Driver
Assistance Systems.

Verification: 90% or more of the developed
applications showed more than 15% of
reduction in development time and cost.

The integration of existing vehicle
sensors and actuators in a unified SW
framework for multiple safety and
Eco-driving applications.

Existence of a cost-effective and flexible SW
platform, able to be used with available
sensors/actuators.

Verification: 90% or more of the developed
applications show more than 15%
reduction in development duration and
cost.

The adaptation of the current data
fusion, HMI and driver’s behaviour
modules to provide suitable and
harmonised middleware for the different
safety and Eco-driving functions.

By applying the V-model and developing high
level services and Application Protocol
Interface (API) that can be used in a wide
range of safety-related use cases. Via
multi-modal HMI with user related and driver
behaviour assessment through tests in driving
simulator and in prototype vehicles.

Verification: Statistical evidence of
improvement of driver acceptance between
existing (on the market) and
DESERVE-developed functions. Subjective
evaluation through questionnaires.

The implementation of a new method
and relative tools for ADAS functions
development.

Existence of new tools for development of
Driver Assistance Systems, including data
fusion visualisation, algorithm development,
actuation simulation, etc.

Verification: Evidence that the method is
suitable for effective ADAS developments:

e Results of the test case development

e Results of workshops with main
stakeholders, OEMs and automotive
suppliers.

4 The DESERVE Project: Towards Future ADAS Functions

The developed applications are tested and validated in different demon-
stration vehicles for showing that DESERVE methodology is not limited to
one single vehicle type. The project demonstration vehicles are:

e two medium class passenger cars from Fiat
e research passenger car from VTT

e luxury passenger car from Daimler

e heavy goods vehicle from Volvo

e driver training truck from TTS

Additionally, tests will also be conducted in simulators, e.g. a simulator for
driver monitoring functions and a simulator for cruise control systems.

1.2 Project Structure

The project was divided into 8 sub-projects (see Figure 1.1) in order to keep
the whole development chain manageable and taking different automotive
orientated technical challenges into account.

This project workflow also enabled professional development process
starting from the requirements and finishing to the validation phase. One sub-
project was engaged with specifying and designing the DESERVE platform
and three sub-projects for doing implementation.

Figure 1.1 The DESERVE V-shape development process.

1.4 The Project Innovation Summary 5

1.3 DESERVE Platform Design

The project developed the framework methodology (see Figure 1.2) to
integrate new software components to car environment. In practise, the
methodology verified with implementing two alternative solutions which were
adapted to fit to the project framework design. The one bases on ADTF which
is mainly utilised by the German automotive industry and RTMaps which
is implemented by the other demonstrators. Since the aim is to introduce a
solution which will be exploited in real vehicles both solutions this gives good
bases to bring the specified framework to cars in future within next 5 years.

1.4 The Project Innovation Summary

The project was not limited to the framework design but was also further
developing the current in-vehicle technology. The specific areas where steps
were taken forward are:

Figure 1.2 DESERVE platform concept for speeding up the ADAS function development
time.

6 The DESERVE Project: Towards Future ADAS Functions

e Night time environment perception

e Driver monitoring topics: Drowsiness and distraction detection

e Embedded in-vehicle computing system: Setting up FPGA based auto-
motive CPUs

e \ehicle blind spot detection

e \ehicle surrounding awareness

e New human-machine interface concept

However, these are kind of by-products since main intention was to develop
common methodology for automotive software implementation. The project
therefore, took steps forward in developing common framework (i.e. metho-
dology) to bring new functions to the vehicles. These are not limited to above
functionalities but they are the first steps.

The one DESERVE platform allows the co-design of software and hard-
ware for applications and algorithms. The whole application or algorithm can
be implemented in software using for example ADTF, RTMaps or Simulink
interfaces which allows reusability, flexibility and fast verification of the
implemented hardware modules.

1.5 Conclusions

The original project target was to develop a common software platform for
modern vehicles. The expected outcome is that the platform fits up to 90 % of
all new applications introduced in the new cars. The novel ADAS functions are
becoming more and more complex and the new features are software-based
instead of mechanical solutions like they were 10 to15 years ago. However,
software is always prone to errors which may have serious consequences if
e.g. the vehicle accelerates when emergency braking is expected. Therefore, a
proper evaluation procedure is needed by using proper performance indicators,
in order to verify the correct functionality of the platform.

As the final concluding remark, the DESERVE methodology pushes
forward the situation compared to the current approaches in the automotive
industry. The used architecture for the DESERVE platform is flexible and
modular and enables to add new software components, devices, modules and
functions even if the set of vehicle sensors, actuators and HMI remains.

PART I

ADAS Development Platform

http://taylorandfrancis.com

2

The DESERVE Platform: A Flexible
Development Framework to Seemlessly
Support the ADAS Development Levels

Frank Badstiibner!, Ralf Kodel', Wilhelm Maurer?!, Martin Kunert?,
André Rolfsmeier3, Joshué Pérez?, Florian Giesemann®,
Guillermo Paya-Vaya®, Holger Blume® and Gideon Reade®

Infineon Technologies AG, Germany
2Robert Bosch GmbH, Germany
3dSpace GmbH, Germany

4INRIA, France

5IMS/Hannover University, Germany
6ASL, UK.

2.1 Introduction to the DESERVE Platform Concept

Asoutlined by Figure 2.1, the DESERVE platform is the key enabler for speed-
ing up the development of next generation ADAS systems. The DESERVE
platform represents an open platform to be used by anyone. This chapter
therefore covers the entire spectrum of aspects to be considered for the use of
this generic DESERVE platform.

Please kindly note that the extensive work on the DESERVE platform can-
not be completely described here. Thus, reference to a manifold of DESERVE
deliverables are made. As most of these deliverables are not publicly available,
essential findings in these deliverable reports were included here to provide a
complete view on the DESERVE platform.

The DESERVE platform relies on model-based design and virtual testing
tools. Its openness is based on the compliance with AUTOSAR standards. All
AUTOSAR members have access to these standardized interfaces.

10 The DESERVE Platform: A Flexible Development Framework

"SWAISAS SV uolelauab 1xau 1oy Jajgeus ayl — wioyield 3AY3SIA 9yl T'Z a4nbiH

2.1 Introduction to the DESERVE Platform Concept 11

The DESERVE platform is not related to any specific hardware or software.
In contrast, it is generic and represents a new methodology and concept
to develop future ADAS systems more efficient and more flexible with
maximum reuse of modules and components due to well-defined processes
and standardizations on architecture and encapsulated module levels.

Requirements engineering is applied for next generation ADAS systems.
By means of model-based design (e.g. Matlab/Simulink/ ADTF/RTMaps)
fast implementation in ADAS rapid prototyping framework is achieved
(development level 2). Rapid prototyping results are evaluated by Hardware-
in-the-Loop (HIL), Model-in-the-Loop (MIL) or Processor-in-the-Loop (PIL)
test bench. In parallel, by making use of model based design space explo-
ration, specifications and requirements for System-on-Chip (SoC) can be
derived at a very early development phase, which supports cost predic-
tion on basis of silicon area, throughput etc. Both, validation by virtual
testing and cost prediction indicate important improvement potentials that
need to be implemented in the next cycle of the iterative development
process.

The situation before DESERVE can be characterized by the absence of
model-based access to perception and fusion algorithms, missing AUTOSAR
compatibility, there is no library with available algorithms (for composing and
evaluating new algorithms). Rather, testing the application on real vehicles in
real traffic scenarios is the approach followed, together with some recording
feature to allow the capturing of the critical situations, where the solution fails
for example, in order to reproduce them in some way later in laboratory.

The objectives of the DESERVE platform are driven by the market needs,
which are enabling a further growth of embedded systems and more specifi-
cally advanced driver assistance systems (ADAS), mastering the complexity
(both in system architecture and processing power) of ADAS, reducing costs
of components and development time of ADAS as well as the seamless integra-
tion of the growing amount of functions within ADAS and the corresponding
vehicle.

DESERVE strives to meet these markets needs by aiming at a novel
design and more efficient development process that is enabled by a platform.
A platform that provides a flexible development framework, reaching from
early PC-based pre-developments down to close-to-production hardware
implementations on final target systems on chip, to seamlessly support the
ADAS development levels; that constructs a tool chain to allow for modelling
and evaluation via virtual testing of new sensors, algorithms, applications
and actuators during the whole design and development process; a platform;
that forms a common in-vehicle platform for future ADAS functions based

12 The DESERVE Platform: A Flexible Development Framework

Figure 2.2 DESERVE platform enabled design and development process.

on a modular approach and an architecture and interface specifications that
are compatible with AUTOSAR (access and easy-to-use also for non-project-
partners); a platform that enables the integration of safety mechanisms for
pre-certification (generic safety requirements e.g. for testing on public roads)
and full requirements for ASIL D according to ISO 26262 (to prepare certifi-
cation of later target platform) and security mechanisms for pre-certification
of connected ADAS according to 1SO 27001.

The novel design and efficient development process is based on the well-
known V-model and fully DESERVE platform supported during all phases in
the process. This is illustrated in Figure 2.2.

2.2 The DESERVE Platform — A Flexible Development
Framework to Seamlessly Support the ADAS
Development Levels

This section introduces into the development methods and guidelines asso-
ciated with the DESERVE platform and outlines the benefits in terms of
development cost and time savings from the OEM perspective. Basically, the

2.2 The DESERVE Platform — A Flexible Development Framework 13

platform concept is based on three pillars which reflect the different develop-
ment levels and the transition of ADAS algorithms from the prototyping to
production phase in the automotive industry (see Figure 2.3).

The DESERVE platform is a generic platform that supports all develop-
ment levels illustrated in Figure 2.3 as seamless as possible — from feasibility
study to product development.

Level 1: PC platform

In the research and pre-development phase users typically require highly
flexible tools with an intuitive user interface and the implementation of ADAS
algorithms may not satisfy hard real-time requirements. Here, PC-based tools
such as ADTF and RTMaps for data fusion often constitute the basis for ADAS
development.

Such tools provide a high user comfort and allow developers to implement
and verify algorithms directly on a standard MS Windows or Linux PC.
Different kinds of sensors/actuators and vehicle bus interfaces are available
so that the algorithms can directly be tested in a real environment. However,
real-time calculation is not guaranteed, especially with complex perception,
fusion and tracking algorithms. In addition, there is no direct support of
Matlab/Simulink, AUTOSAR and the model-based design approach for appli-
cation functions. Finally, PC platforms as described above are typically not
tailored for stand-alone, in-vehicle use cases.

Figure 2.3 ADAS development process.

14 The DESERVE Platform: A Flexible Development Framework

To avoid a time-consuming redesign of perception, fusion or tracking
algorithms when implementing them on the final ECU hardware (production
ECU), engineers are looking for ways to evaluate different target hardware
architectures according to given cost criteria already in early development
stages. This request is met by the design space exploration (DSE) methodology
and the SoC modelling approach.

Level 2: Rapid prototyping platform including software superstructure

(e.g. embedded PC/embedded controller with realtime

operating system and FPGA)

In the second development stage engineers go one step closer to a real-
time implementation. Complex and computationally intensive algorithms are
shifted to a powerful FPGA to improve the realtime capability. In parallel
to this, the FPGA platform allows different target hardware architectures
to be evaluated in combination with the selected algorithms. To ensure a
rapid implementation of the above mentioned perception, fusion, and tracking
algorithmsinthe FPGA, basic building blocks in terms of a library are provided
by the DSE framework. By means of this block-based modeling approach the
time and effort for implementing the associated algorithms can significantly
be reduced.

Using an embedded system platform in this stage featuring both an FPGA
and an embedded controller also allows ADAS application algorithms to be
designed by means of models so that the associated development time can
further be reduced. Compared to the purely PC based framework real-time
performance is almost guaranteed, though the user comfort with programming
the FPGA may be restricted.

Level 3: Fully embedded, AUTOSAR compatible architecture

(e.q. multicore controller with FPGA) for the evaluation of algorithms

in realtime and implementation of safety requirements according

to I1SO 26262 (e.q. pre-certification for testing on public roads)

The goal of this stage is to go one step further to the final target hardware
and to provide a stand-alone, in-vehicle rapid prototyping platform which, for
example, can even be used during test drives. This stage reflects the users’
need to evaluate and experience the driver assistance system directly in the
vehicle itself.

The standard PC is replaced by an embedded PC that is qualified for in-
vehicle use in terms of shock, vibration and temperature, similar to the other
parts of the system. This platform also allows the integration of hardware
accelerators so that even highly computational intensive algorithms may be
tested in the vehicle. It is also possible to interface target microcontrollers of

2.2 The DESERVE Platform — A Flexible Development Framework 15

production ECUs and to run certain algorithms there. The complete platform
behaves like a prototype ECU which can be operated by test drivers which are
not specifically instructed. For example, the platform can be started and shut
down via the vehicle’s ignition key.

The development platforms of all stages can be used together with the
model-based design space exploration approach for system on chip and
libraries of basic building blocks for the FPGA. By means of this the
gap is closed when transferring perception, fusion and tracking algorithms
from prototyping to production, similar to the model-based design approach
with application functions using Simulink. Being able to use already tested
and validated building blocks and software modules greatly facilitates and
expedites the development process.

To support the model-based development of algorithms at all processing
layers (perception, decision making, warning and control strategies) and to
execute these algorithms in the vehicle, the DESERVE platform level 3 needs
to be fully compatible to the AUTOSAR standard (note: as of today, no certified
AUTOSAR 4.0 real-time operating system including memory protection is
available; its development is not subject of DESERVE).

In addition, at this development level, safety mechanisms need to be
developed: According to 1SO 26262 the DAS system needs to be classified
concerning the Automotive Safety Integrity Level (ASIL). Many DAS systems
require the highest classification ASIL D. Suitable measures are required to
fulfil the related strong requirements. As the certification process is very much
related to the hardware, just pre-certification (e.g. for testing of the new DAS
on public roads) is possible at this development level.

As aresult, OEMs are able to define early and precise enough the distinct
requirements for the final ECU hard- and software (e.g. required interfaces —
which 1/O and bus system; computational power; memory requirements),
including the safety mechanisms (e.g. memory protection, lockstep operation).

Level 4: Target production platform (e.q. multicore controller ECU

with integrated custom ASIC/FPGA/hardware accelerator)

On basis of the production hardware, the final certification of the ADAS takes
place. Within the DESERVE project, the generic DESERVE platform concept
was validated. Starting with purely PC-based development, algorithms can
be outsourced step by step to an FPGA or embedded controller prototyping
system. In addition to the hardware concept, a design space exploration
and an analytical modelling approach for system on chip is proposed. This
software framework allows different target hardware architectures for the
implementation of perception algorithms to be evaluated according to given

16 The DESERVE Platform: A Flexible Development Framework

cost criteria in early development phases. The software framework is coupled
to the FPGA of the DESERVE platform. The associated workflow will be
supported by a library of basic building blocks for the FPGA by means of
which perception algorithms can be composed and implemented quickly.

To validate the platform concept, three different realization instances of
the generic DESERVE platform are considered in the project:

e Level 1: Purely PC based solution

e Level 2: Mixed PC/embedded control based on dSpace Micro Autobox
with FPGA framework (this platform will be extensively used for the
ADAS vehicle demonstrators)

e Level 3: Fully embedded platform based on multicore controller plus
FPGA. This instance of the DESERVE platform provides realtime
operating system and basis software fully compatible to the AUTOSAR
standard. Thus it is open and easy to use for all AUTOSAR members. It
will also feature safety concepts required for ASIL D and consider new
radar/camera interfaces.

2.3 DESERVE Platform Requirements

The next step in the definition process for the DESERVE platform concerned
the translation of the previously defined platform needs into generic require-
ments for the DESERVE platform based on common software architecture
and suitable for the development and simulation of the 33 DAS functions
investigated in the beginning.

The generic requirements for the DESERVE platform were defined
utilizing the following approach (see deliverables D1.2.1 [1]).

The DESERVE development platform has been defined taking into account
that general requirements such as AUTOSAR compatibility [6], SPICE com-
pliance and functional safety (ISO 26262) [7, 8] are mandatory for industrial
use. These requirements apply for the “industrialized platform”. The generic
DESERVE platform addresses a functional software architecture based on
Perception, Application and IWI platforms.

2.3.1 DESERVE Platform Framework

The DESERVE platform has been defined taking into account general require-
ments such as AUTOSAR compatibility, SPICE compliance and functional
safety (1SO 26262), which are mandatory for the later industrial use. The
AUTOSAR standard comprises a set of specifications describing software

2.3 DESERVE Platform Requirements 17

architecture components and defining their interfaces. DESERVE aims at
using AUTOSAR to integrate applications from different suppliers inside a
single processing unit.

DESERVE addressed also to be compliant with the SPICE standard, which
represents a set of technical standards documents for the computer software
development process and related business management functions. The ISO
26262 standard was considered in the implementation of DESERVE platform
in order to improve the safety in the development of methods and tools.
The 1SO 26262 standard defines the “Functional Safety Assessment” at the
completion of the item development with the scope to assess the functional
safety that is achieved by the element under safety analysis.

The baseline for DESERVE is represented by the results of past and on-
going research projects [9, 10], and in particular of interactlVe addressing
the development of a common perception framework for multiple safety
applications with unified output interface from the perception layer to the
application layer [11].

Figure 2.4 presents the DESERVE platform framework. In this generic
architecture the perception platform processes the data received from the
sensors that are available on the ego vehicle and sends them to the application
platform in order to develop control functions and to decide the actuation

Figure 2.4 DESERVE platform framework.

18 The DESERVE Platform: A Flexible Development Framework

strategies. Finally, the output is sent to the IWI platform informing the
driver in case of warning conditions and activating the systems related to
the longitudinal and/or lateral dynamics.

2.3.2 Generic DESERVE Platform Requirements
(Relevant to all Development Levels)

Different clusters of requirements were defined following the structure of
the DESERVE platform framework. Please note that each of the following
requirements was divided in sub-requirements, which are described in detail
in DESERVE deliverable D1.2.1.

General software requirements

General software requirements: Among others, these cover the previously
mentioned software requirements for modularity, reusability, AUTOSAR,
SPICE process assessment (ISO/IEC 15504), functional safety (1SO 26262),
platform independence (the application software needs to be independent
from the processing hardware), standardized interfaces (i.e. the software
needs to have interfaces to sensors and actuators that are standardized
and published), operating system independence (cross platform libraries are
recommended), programming language, communication technologies inde-
pendence, automatic start-up/shut-down, configuration of sensors position,
software versioning and licenses.

General hardware platform requirements
These cover the aspects power supply, list of supported sensors, processing
unit, unit size and number of included components etc.

Perception module requirements
These requirements include 3D reconstruction of the scene in front of the
vehicle, ADASIS horizon, assignment of objects to lanes, detection of the free
space, driver monitoring, enhanced vehicle positioning, environment, front
near range perception, frontal object perception, lane course, lane recogni-
tion, moving object classification, occupant monitoring, parking lot detector,
recognition of unavoidable crash situations, relative positioning of the ego
vehicle to the road, road data fusion, road edge detection, scene labelling, self-
calibration, side/rear object perception, traffic sign detector, vehicle filter/state,
vehicle light detector, vehicle trajectory calculation, vulnerable road users
detection and classification.

The functional architecture of the perception layer is illustrated in
Figure 2.5. Depending on the ADAS system to be realized, some of the

2.3 DESERVE Platform Requirements 19

Figure 2.5 Perception platform functional architecture.

components in the generic perception platform architecture may be omitted
(without losing generality). The modules developed in the project to build the
demonstrators are highlighted by thicker boxes.

The number and variety of the different perception sources is manifold
and requires special care and precaution to transport the available information
in the subsequent data processing modules. Two main aspects have to be
taken into consideration when connecting perception sources to the DESERVE
platform: The information content may differ from sensor to sensor even
when the same technique (e.g. radar, video camera or ultrasonic sensor) is
used. Based on the physical concept used the individual sensors may have an
intrinsic lack of information that can never be provided, independent of the

20 The DESERVE Platform: A Flexible Development Framework

effort spent to improve the sensor performance (e.g. radar sensors can never
“visually” read the road signs content while video sensors can never provide
direct speed measurements).

By using the general interface descriptor approach the data input structure
for the perception layer processing module becomes independent from the real
sensors connected to the DESERVE platform. This kind of concept is used
in PC architecture since several years under the term hardware abstraction
layer that completely decouples data information from the physical hardware
in use.

The flexibility and scalability of the overall system is much better
and reusability of SW components that are already developed is higher.
Improvements and changes within the subgroups (i.e. environmental sensors
or perception input processing module) can be conducted on a standalone basis
without modifying or adapting the whole data processing chain at all. General
adoption of the whole data processing chain is thus only needed in the case
that the interference descriptors between the modules have to be updated or
modified due to recently emerging needs.

As the diversity of the already existing environmental sensors is already
huge and many products are already in series production, the change of the
sensor output signals is often not possible at all. To connect already existing
sensing devices or sensors with an IP-protected signal output to the open
DESERVE platform, a work-around with converter or breakout boxes can
be applied. Using such interface converter/breakout boxes almost any kind
of sensor system can be attached to the standardized and abstracted input
channels of the generic DESERVE platform.

Application module requirements

The application module needs to consider the following requirements: ACC
control, activation control, advance warning generator, calculation of required
evasion trajectory, decision unit, driver intention detection, driving strategy,
intervention path determination, IWI manager, reference maneuver, situation
analysis, target selection, threat assessment, trajectory control, trajectory
planning, vehicle model and vehicle motion control.

The functional scheme of the application platform modules is depicted
in Figure 2.6. The modules are divided in clusters having the same scope.
Some of them have mainly the objective to select the driver intention and the
most dangerous target. Other modules execute control operations and make
an evaluation about the current situation of warning and eventually decide
specific actions. Then the type of information to provide to the driver and the

2.3 DESERVE Platform Requirements 21

Figure 2.6 Application platform functional architecture.

intervention strategy are decided. Finally, the kind of actuation to adopt is
provided to the IWI Platform modules.

IWI module requirements
The IWI module is dedicated to suit requirements regarding the HMI (acoustic,
displays, telltales, haptic steering wheel, haptic accelerator pedal, haptic safety
belt), actuation of external lights, lateral actuation (steering angle and steering
torque controller) and longitudinal actuation (engine acceleration controller).
The functional architecture of the IWI platform is depicted in Figure 2.7.
Different levels in the development process of ADAS require different
instances (i.e. realizations) of the generic DESERVE platform —from PC based
(development level 1) to production hardware (development level 4). With
increasing development levels, additional requirements need to be addressed.
This principle shall be explained in the next two subsections.

2.3.3 Rapid Prototyping Framework Requirements
(Development Level 2)

This section shortly outlines the main requirements for the DESERVE rapid
prototyping platform. The main intention here is to specify a flexible and

22 The DESERVE Platform: A Flexible Development Framework

Figure 2.7 DESERVE IWI platform.

modular rapid prototyping environment allowing ADAS related perception,
application and intervention algorithms to be developed in short iteration
cycles and to be prototyped directly in the vehicle. In order to do so, there isa
need to connect different kinds of sensors to the development framework, to
pre-process and fuse the sensor data, to calculate the actual ADAS applications
and to finally drive the respective actuators.

The structure for the generic requirements in the previous section, the
rapid prototyping system requirements are structured in hardware, software
and FPGA code requirements. In addition, a distinction is made between
perception (i.e. sensor data processing) and application algorithms.

2.3.4 Additional Requirements for Embedded Multicore
Platform with FPGA (Development Level 3)

While the main focus of development level 2 is on evaluation of algorithms
in real-time on public roads, thus on ADAS functionalities and use in the
DESERVE DAS function demonstrators, levels 3 (and 4) go significantly
ahead in terms of fulfilling “critical” requirements like AUTOSAR com-
patibility, SPICE compliance and functional safety (1SO 26262) which are
mandatory for industrial use of the platform. Due to limited resources and

2.4 DESERVE Platform Specification and Architecture 23

limited project duration, these requirements cannot be fully implemented
in DESERVE. Nevertheless all the work done for the “non-industrialized”
DESERVE platform can be (partly) reused or carried over to the industrialized
version of the DESERVE platform (level 4).

2.4 DESERVE Platform Specification and Architecture

The generic platform requirements were translated into specifications, which
represent the starting point for the development of modules for the DESERVE
platform. The specifications were included into an Excel file which is acces-
sible to all project partners via the project server. By means of an iterative
process, both specifications and software design were refined and improved.
Asummary of the specification approach and of the specifications derived from
the DESERVE platform requirements is provided in deliverable D1.3.1 [2].

2.4.1 DESERVE Platform Architecture

The architecture of the DESERVE development platform shall follow both the
principle of standard DAS development cycles and the mappings of applica-
tion building blocks to final, often heterogeneous hardware implementations.
To date there is no tool or framework available that covers both requirements
at the same time on the same platform.

In the early concept and implementation phase the basic development,
specification and validation (e.g. with MIL, SIL or HIL) is often done with
another development framework (both for SW and HW) than the one applied
for the final target platform. Little is known or taken into account from the
final embedded system characteristics when first application algorithms are
programmed and very often the SW modules written in this first development
environment have to be reprogrammed from the scratch when porting it to
the embedded system on chip. If the software, mostly written in a high-level
programming language, finally fits the target system one has selected for series
production, is a game of pure chance and not rarely during the series product
development cycle a larger target system or some “add-ons” have to be chosen.
With the new design space exploration methodology the certainty to select the
suitable embedded target system at first time is significantly increased.

The DESERVE development platform architecture has to comply with the
following basic needs:

e Enough flexibility to encompass different development environments
in a common, seamless framework for both the high-level algorithm

24 The DESERVE Platform: A Flexible Development Framework

development and the easy porting of these SW modules to the embedded
target platform.

e Real time recording and playback capabilities for both the high-level and
embedded system implementations.

e A communication architecture that is capable to shift SW portions
from the high-level development side to the embedded target system
as required (i.e. bypassing with HW accelerators).

e A seamless interoperability and replacement between the high-level
(i.e. PC-based) and embedded target systems both for development and
validation purposes.

The basic idea and intention of this hardware architecture is to standardize the
interfaces between the three different development concept levels as good as
possible.

Inputs from proprietary ADAS sensor systems and information sources
are analyzed via a generic interface no. 1 to the PC based development
environment. Here the ADTF tool with its filter programming concept is
used to develop or improve SW modules on a high-level programming
language. The partitioning and optimization of parts of the SW modules is
consecutively done by shifting such portions over the generic interface no. 2
to the embedded controller framework that is already much nearer to the final
commercial product. Via this bidirectional interface bypassing techniques like
PIL (embedded Processor Inthe Loop) can be realized. Inafinal step, dedicated
HW accelerators can be linked in via the generic interface no. 3 by applying
the same bypassing concept. Especially computationally intensive tasks can
so be “outsourced”, so that even the PC-based platform is capable to keep the
stringent real-time constraints.

Depending on the performance of the PC either all or only specific parts of
the SW modules can be executed there. During the development process more
and more SW parts are transferred to the HW-Accelerator level, which, in
the final development stage, results in the next generation embedded ADAS
target system. At this last development step, the level 1 (PC) and level 2
(embedded controller) platform will only serve as a shell to keep up the overall
development framework.

Reuse of already existing components from former ADAS generations
may be used in the early development phase as HW accelerators for compu-
tational intensive calculations. Mainly standard algorithms that are fixed and
receive no further modifications are preferred candidates for such specific HW
accelerators.

2.4 DESERVE Platform Specification and Architecture 25

Figure 2.8 DESERVE platform (e.g. for development Level 2 — rapid prototyping system
based on mixed PC and embedded controller framework).

This section summarizes the DESERVE platform architecture aspects. It
considers hard- and software architecture aspects. The platform architecture
is described in detail in deliverable D25.2 [4].

2.4.1.1 Hardware architecture

DESERVE has to be flexible enough to be implemented in a distributed and
scalable architecture (several modules, each of them able to sense and/or
process and/or actuate) or a concentrated one (sensors and actuators all linked
with a single unit of processing and control). Task 2.5.1 identifies which
conditions have to be satisfied by the individual subsystem architectures in
order to be compliant with the DESERVE generic hardware platform.

For maximum reusability the DESERVE concept and hardware architec-
ture was designed in such a way that subsystems of different generations
(or respectively the kernels of it) can be used in parallel, thereby enabling
the rapid and effective creation of next-generation innovative ADAS systems
by using well tested and certified kernel functions of the “old” system which
partly could be already implemented as SoC (System on Chip). The DESERVE
development platform can be seen as a flexible rapid-prototyping environment
that enables fast and efficient development of next generation ADAS functions
in a continuous iteration cycle between the current and next-generation
embedded subsystem components.

Furthermore, the DESERVE concept is flexible enough for different
DESERVE partners to make different implementations. These would be of
forms that might in future be interoperable, although DESERVE will not

26 The DESERVE Platform: A Flexible Development Framework

attempt to define detailed standards which would be necessary for actual
interoperability.

The main DESERVE idea concerns the use of one common platform
system (Figure 2.9) for all ADAS functional modules, instead of the current
approach to have one platform for each individual ADAS system. Basically,
three main hardware architecture challenges arise from this idea:

e Automotive quality: The platform needs to provide high reliability over
the complete automotive temperature range, power supply and environ-
mental conditions. ASADAS systems address safety aspects, the platform
should implement as far as possible the SO 26262 requirements, i.e. at
least the hardware components that are near to the final product unit shall
support the required ASIL level.

e Possibility to extend hardware capabilities: The platform needs to be
designed up-front to support the possibility to include additional hard-
ware into the system. Standard sensor interfaces are needed, for instance,
but also standardized interfacing to external FPGA/DSP for performance
enhancement is required. For scalability purposes, such external devices
need to be cascadable. Similar considerations hold for the memory
interface capability.

e A special case of hardware extension capabilities is the reuse of serial
parts from earlier generations to speed up the development process or to
increase the sensor perception by placing more sensors on the car.

e Finally, a seamless environment tool chain is needed. One key require-
ment lies in the reuse of the existing tool ecosystem over several
platform generations. Further, we should target adaptability of the
tools to the broad industry use cases, e.g. next generation video
and radar sensors. Additionally, real-time monitoring and debugging
of interface and processing for development purposes represent key
challenges.

2.4.1.2 Software architecture

As for hardware architecture, the characteristics and constraints that the
software architecture has to fulfill to accept an application based on modules
developed inside the DESERVE platform (Figure 2.10) were identified.
AUTOSAR standards were considered?.

!Note: Being a research project, the development work conducted in DESERVE is dis-
charged from being fully compliant with the AUTOSAR standard. Where possible and easy
to implement, inputs from AUTOSAR were considered, of course. A mandatory request for
AUTOSAR compliance is, however, not up for discussion.

2.4 DESERVE Platform Specification and Architecture 27

'sa|npow SYAV |[e 1oj wiojejd uowwod Jo asn — yoroidde 3AHISIA 6°Z 94nbi4

28 The DESERVE Platform: A Flexible Development Framework

Figure 2.10 DESERVE platform architecture.

The key architecture challenges are;: AUTOSAR Standards Architecture
for the full platform system including performance accelerators, request for
high SW re-usability/testability including re-use of older generation software
blocks, fast time to market, highly optimized library for optimal performance,
automatic code generation, standard compiler/tool chain and finally, hardware
tool software support for realtime debugging, high speed parallel sensor data
capture for validation and on-system debugging is required.

Application Software Modules

On the base of AUTOSAR standard, the general software architecture can
be represented in three main layers: low level (basic software: this level
abstracts from the hardware, provides basic and complex drivers and services
for high level, i.e. memory, 1/0), middle level (virtual function bus and runtime
infrastructure) and high level (application software components).

The AUTOSAR standard introduces two architectural concepts (respects
to other embedded software architectures) that facilitate infrastructure inde-
pendent software development. Namely, these are the Virtual Function Bus
(VFB) and the Runtime Infrastructure (RTE) that are closely related to each
other.

2.4 DESERVE Platform Specification and Architecture 29

In order to realize this degree of flexibility against the underlying infras-
tructure, the AUTOSAR software architecture follows several abstraction
principles. In general, any piece of software within an AUTOSAR infras-
tructure can be seen as an independent component while each AUTOSAR
application is a set of inter-connected AUTOSAR components.

Further, the different layers of abstraction allow the application designer
to disregard several aspects of the physical system on which the appli-
cation will later be deployed on, like type of micro controller, type of
ECU hardware, physical location of interconnected components, networking
technology/buses or instantiation of components/number of instances.

The middle level, VFB (Figure 2.11), provides generic communication
services that can be consumed by any existing AUTOSAR software com-
ponent. Although any of these services are virtual. They will in a later
development phase be mapped to actual implemented methods that are specific
for the underlying hardware infrastructure. The RTE (runtime environment)
provides an actual representation of the virtual concepts of the VFB for one
specific ECU.

An AUTOSAR software component in general is the core of any
AUTOSAR application. It is built as a hierarchical composition of atomic
software components. The AUTOSAR software component can be divided in
Application Software Component and AUTOSAR Interface. It is important
for DESERVE to preserve (and build up during the prototyping phase of the
applications) the AUTOSAR modularity concept. Consequently, DESERVE
focuses on the development of modular Application Software Components.

Figure 2.11 Overview on the principles of virtual interaction using the AUTOSAR.

30 The DESERVE Platform: A Flexible Development Framework

Multi-task option to permit adding and removing of functionalities

The modularity is one the most important directive in the design of a global
architecture, their functions and modules for embedded systems. Different
multi-tasks (called processes) can be executed by sharing common processing
resources in the same CPU. In this line, multi-thread languages as C++ are
used by different developers around the world.

The software environments used in the DESERVE platforms (e.g. ADTF
and RTMaps) are able to transfer functions already programmed in C and
C++. These tools are multi-sensory software, designed for fast and robust
implementation in multitask systems. They use functional blocks (called
components) for data flowing between different types of modules: video,
audio, byte streams, CAN frames, among others.

This multi-threaded architecture allows the use of multiple asynchronous
sensors within the same application (see RTMaps and ADTF sectionsin D1.3.2
[3]). Moreover, they take advantage of multi-processor architecture for more
computing power.

Based on the Development Platform Requirements [1], there are three main
stages in the control architecture: perception, application and IWI platform.
The goal of the DESERVE approach is to add different functions (Multi-task)
in the same platform.

2.4.2 DESERVE Platform Interface Definition

The definition of the DESERVE interface architecture is described together
with state of the art ADAS interfaces and next generation interfaces in
deliverable D2.5.4 [5]. Due to the high relevance of the interface architecture
for the DESERVE platform concept, a brief description is included in the next
paragraphs.

2.4.2.1 Definition of DESERVE interface architecture

The definitions of the interface architecture plays a central role for the
communication and data exchange between the different DESERVE platform
modules and sensor components. In the DESERVE deliverable D2.2.1 [12]
the abstracted interface descriptors are already defined on a content-based
hierarchical level. With standardized information data flow between the
numerous platform modules both the development time and the extension
in performance and scope of the encapsulated modules can be realized very
efficiently and in a well-structured way. The architecture of the interface has

2.4 DESERVE Platform Specification and Architecture 31

to be defined individually for each of the existing OSI layers, starting from
the physical layer up to the application layer.

For modules that only communicate within the same hardware unit the
physical data and communication layer are no longer needed. Instead, a
message box oriented data transfer link is proposed for usage in the DESERVE
project. The data to be transmitted is written in a predefined message box
descriptor field and message flags trigger the synchronization and data
updates in the concerned modules. The message box principle is sketched in
Figure 2.12.

The interfacing concept of the AUTOSAR standard is considered and
incorporated in the DESERVE platform where useful and appropriate. The
AUTOSAR mode of operation, as depicted in Figure 2.13, fits already quite
well with the general DESERVE approach proposed in this document.

In order to achieve a good reusability of embedded software functions, it
has proven to be efficient in the industry to separate the “function software”
from parameters defining the behavior of the software (= calibration data). This
allows generating embedded systems with generic software functionalities
by “embedded systems suppliers” (e.g. Continental, Bosch or others). Such
systems are bought by OEMs for building their ADAS systems. The OEM
can adapt the generic function to the individual behavior significant for his
customers “just by calibration”. In this process via an application system
(market leader is INCA for example), the calibration data can be changed
while the embedded system is running — regardless if simulated on a PC or

Figure 2.12 Message box principle for intra-unit communication.

32 The DESERVE Platform: A Flexible Development Framework

Figure 2.13 AUTOSAR application software concept.

running already on the target hardware. The separation of calibration date and
function software is also allowed according to the AUTOSAR concept.

2.4.2.2 Existing ADAS interfaces
All electronic embedded systems used to control vehicle functions (specifically
ADAS) need communications networks and protocols to manage all the
process information. The modules receive input information from a network
of sensors (e.g. for engine speed, lasers, cameras, etc.) and send commands
to the control stage (Application platform in DESERVE), and finally to the
actuators or warning systems that execute the commands (IWI platform) [1].
Due to the increasing complexity of modern ADAS applications, point-
to-point wiring has been replaced by multiple networks and communications
protocols. These protocols use different physical media to provide safe
connection among components on the vehicle. These include single wires,
twisted wire pairs, optical fiber cables, and communication over the vehicle’s
power lines.

Communication protocols
Some of the most known and used communication protocols and standards
used in nowadays vehicles are:

e CAN (controller area network)
e VAN (vehicle area network)

2.4 DESERVE Platform Specification and Architecture 33

FlexRay

LIN (local interconnect network)
SAE-J1939 and 1SO 11783

MOST (Media-Oriented Systems Transport)
Keyword Protocol 2000 (KWP2000)

Recent vehicles have installed multiple networks (with different protocols) to
communicate among electronic control units (ECU) onboard. The networks
are isolated from one another for several reasons, including bandwidth and
integration concerns.

Existing interface standards

Current ADAS systems are designed and built to provide a dedicated answer
to specific functionalities. Most ADAS are including in the same box the
sensor itself and the processing unit. So, the raw data provided by the sensor
(camera, radar) are directly loaded inside the ECU unit and processed. Only
high level (processed) information is available on the communication buses.
Raw data (e.g. pixel information of images) is not available.

The ADAS modules are dedicated products which communicate mainly
within the same hardware unit. Nevertheless, to adjust the algorithms in
function of the vehicle status, it’s necessary to provide the ADAS modules with
some vehicle information as: speed, yaw rate, direction indicator status, etc.

To manage the vehicle information acquisition and sending of the outputs,
various communication interfaces are available, depending on the product,
e.g. CAN or FlexRay communication interfaces.

The communication bandwidth requirements increase more and more with
more and more complex applications, the existing network are not specified to
cover the increasing demands for bandwidth, and the Ethernet price. Ethernet
seems to be an alternative to the existing communication hardware.

2.4.2.3 Definition of next generation interfaces

The definition of next generation high speed sensor interfaces is the key
to enable the improvement for next generation driver assistant systems. An
optimized interface leads to optimized dataflow and system performance. For
each sensor family (Camera/RADAR) there is a dedicated interfacing needed.

Parallel camera interface (CIF)

The Camera Interface (CIF) represents a complete video and still picture input
interface transferring data from an image sensor into video memory. Further-
more, several hardware blocks — performing image processing operations on
the incoming data — are provided (Figure 2.14).

34 The DESERVE Platform: A Flexible Development Framework

Figure 2.14 Camera Interface (CIF) overview.

Apart from providing the physical interfacing to various types of camera
sensor modules, the CIF block implements image processing and encoding
functionalities. The integrated image processing unit supports image sensors
with integrated YCbCr processing. Additionally, the CIF also supports the
transfer of RAW (e.g. Bayer Pattern) images and non-frame synchronized
data packets. The CIF block features a 16 bit parallel interface. All output
data are transmitted via the memory interface to a BBB (Back Bone Bus)
system using the master interface. Programming of the CIF is done by register
read/write transactions using a BBB slave interface.

The CIF provides a sensor/camera interface for a wide variety of video
applications and it is optimized for high speed data transmission under terms of
low power consumption. This module is designed to be used for the following
use cases: video capturing/encoding, still image capturing in YCbCr with
on-the-fly JPEG encoding and RAW frame data capturing.

The CIF requires fast system memory for image storage in either planar,
semi-planar or interleaved YCbCr or RAW planar format or as JPEG com-
pressed data. The iIJPEG encoding engine should be able to generate a full
JFIF 1.02 compliant JPEG file that can be displayed directly by any image
viewer. Important YCbCr formats — which are used for video compression
(e.g. MPEG4) for instance — are supported. For on-the-fly encoding macro
block line interrupts are generated to trigger video encoding.

Serial RADAR interface (RIF)

Analog-to-digital converter (ADC) sample rates have been increasing steadily
for years to accommodate newer bandwidth-hungry applications in commu-
nication, instrumentation, and consumer markets. Coupled with the need to

2.5 Safety Standards and Certification Concepts 35

digitize signals early in the signal chain to take advantage of digital signal
processing techniques, this has motivated the development of high-speed ADC
cores that can digitize at clock rates higher than 100 MHz to 200 MHz with 8
to 12 bit resolution.

In standalone converters, the ADC needs to be able to drive receiving logic
and accompanying PCB trace capacitance. Current switching transients due
to driving the load can couple back to the ADC analog front end, adversely
affecting performance. One approach to minimize this effect has been to
provide the output data at one-half the clock rate by multiplexing two output
ports, reducing required edge rates, and increasing available settling time
between switching instants.

Use of LVDS for ADC high speed data output

A new approach to providing high-speed data outputs while minimizing
performance limitations in ADC applications is the use of LVDS (low voltage
differential signaling). Infineon is incorporating LVDS output capability in
new RF devices ADCs—and will include LVDS input capability in its new
micro-controller designs.

Standards

Two standards have been written to define LVDS. One is the ANSI/TIA/EIA-
644 which is titled “Electrical Characteristics of Low Voltage Differential
Signaling (LVDS) Interface Circuits.” The other is IEEE Standard 1596.3
which is titled “IEEE Standard for Low-\oltage Differential Signals (LVDS)
for Scalable Coherent Interface” (SCI).

Generic interface to communicate between ADTF project

and FPGA based hardware platform

In order to allow an easy and standard communication between an ADTF-
Project and the FPGA-based hardware platform, a generic interface is used.
The generic interface realizes the communication with different processing
elements implemented in the FPGA-based hardware platform transparent to
the user.

2.5 Safety Standards and Certification Concepts

Some concepts related to modular certification have already been adopted by
current standards and thus have found their way into the state of the practice.
This is particularly true for the fields of automotive systems because the trend
towards modularized architectures has been particularly strong in this field.

36 The DESERVE Platform: A Flexible Development Framework

2.5.1 Safety Impact of DESERVE

Modularization of a common ADAS platform comes with a clear impact on
safety. Modules will interact, for example on Missed Trigger Interaction,
Shared Trigger Interaction, Sequential Action Interaction and/or Looping
Interaction.

Module interaction implies that any change in operation of one mod-
ule (feature) can be attributed in part or in whole to the presence of any
other module (feature) in the operational environment, as illustrated in the
Figure 2.15.

2.5.2 Functional Safety of Road Vehicles (ISO 26262)

The international standard 1SO 26262 for the functional safety of street vehi-
cles contains the so-called concept of Safety Element out of Context (SEooC).

Figure 2.15 Module interaction implies changes in system behavior.

2.5 Safety Standards and Certification Concepts 37

A SEooC is defined as a component for which there is no single predestinated
application in a specific system. Therefore, the SEooC developer does not
know the concrete role the product has to play in the safety concept. Sub-
systems, hardware components, and software components may be developed
as SEooCs. Typical software SE00Cs are reusable, application independent
components such as operating systems, libraries, or middleware in general.

For SEooC development, the standard suggests specifying assumed safety
requirements and developing the system according to these requirements.
When the SE0oC is to be used in a specific system, the system developer has
to specify the demanded requirements, which can subsequently be checked
against the assumed requirements. If there is a match between the demanded
and the guaranteed (assumed) requirements, system and component are
compatible.

The standard does not provide any suggestions or methods on how to
identify safety requirements such as to increase the chance that assumed
and real requirements will actually match. The standard specifies a relatively
coarse-grained process for embedding a SEooC development into the stan-
dard’s safety lifecycle. This approach deals with hierarchical modularization
since it focuses on the SEo0C’s role as a sub-component of a system.

In general, integration of the SE0oC is expected to be done at development
time and thus there is no explicit support for open systems where components
are to be integrated dynamically.

2.5.3 Guidelines Related to ISO 26262

ISO 26262 is a derivative of IEC 61508, the generic functional safety standard
for electrical and electronic (E/E) systems. Ten volumes make up ISO 26262.
It is designed for series production cars, and contains sections specific for
management, concept and development phase, production, operation, service
and decommission.

The ISO 26262 requires the application of a “functional safety approach”,
starting from the preliminary vehicle development phases and continuing
throughout the whole product lifecycle.

The DESERVE project focuses on the concept and development (at system,
hardware and software level) phases of the lifecycle. During these phases, the
main steps defined by the Standard are:

Item definition: the Item has to be identified and described. To have a
satisfactory understanding of the item, it is necessary to know about its
functionality, interfaces, and any relevant environmental conditions.

38 The DESERVE Platform: A Flexible Development Framework

Hazard analysis and risk assessment: to evaluate the risk associated
with the item under safety analysis, a risk assessment is required. The risk
assessment considers the functionality of the item and a relevant set of
scenarios. This step produces the ASIL (Automotive Safety Integrity Level)
level and the top level safety requirements.

The ASIL is one of the key concepts in the ISO 26262. The intended
functions of the system are analyzed with respect to possible hazards. The
ASIL asks the question: “If a failure arises, what will happen to the driver and
to associated road users?”.

The risk of each hazardous event is evaluated on the basis of frequency of
the situation (or “exposure™), impact of possible damage (or “severity”) and
controllability.

The ASIL level is standardized in the scale: QM: quality management,
no-risk and A, B, C, D: increasing risk with D being the most demanding. The
ASIL shall be determined without taking into account the technologies used
in the system. It is purely based on the harm to the driver and to the other road
users.

Identification of technical safety requirements: the top level safety
requirements are detailed and allocated to system components.

Identification of Software and Hardware safety requirements: The tech-
nical safety requirements are divided into hardware and software safety
requirements. The specification of the software safety requirements consid-
ers constraints of the hardware and the impact of these constraints on the
software.

To take into account the functional safety approach, the DESERVE
applications should consider the application of the following main points:
analyze risk early in the development process; establish the appropriate
safety requirements and consider these requirements in software and hardware
development.

The impact of the standard is different for the development of warning
functions, control functions or automated driving functions.

2.5.4 Safety and AUTOSAR

In the automotive domain, Ostberg and Bengtsson [14] propose an extension
to AUTomotive Open System Architecture (AUTOSAR) which consists of a
safety manager that actively enforces the safety rules described in dynamic
safety contracts. Their main contribution is a conceptual model of safety

2.5 Safety Standards and Certification Concepts 39

architecture suitable for runtime based safety assessment. Openness and
Adaptivity were both addressed.

Also in the automotive domain, Frtunikj et al. [15] present a runtime
qualitative safety assessment that considers Automotive Safety Integrity Level
(ASIL) and its decompositions in open automotive systems. In their solution,
the authors consider the modularization of safety-assessment using Safety
Elements out of Context (SEooC) from ISO 26262. In their approach, the
SEooC was extended and the safety-assessment is done at runtime by a Safety
Manager component.

2.5.5 Safety Mechanisms for DESERVE Platform

As an example, this paragraph summarizes some features of the safety
mechanisms that are available by Infineon’s multi-core platform AURIX
which represents a potential instance of DESERVE platform (development
level 3). Its safety documentation includes:

e Safety case report providing the arguments with evidence that the objec-
tives of the 1SO 26262 and the safety requirements for a component are
complete and satisfactory.

e FMEDA (customer and Infineon proprietary document)

e Safety manual including an overview of the assumed application use
cases and guidance for the application level, a summary of safety features
and mechanisms and their recommended use as well as the summary of
achieved safety metrics and resulting ASIL compliance [13].

The AURIX microcontroller platform is developed as a SEooC (Safety
Element out of Context) and provides the safety mechanisms summarized
in Figure 2.16. It provides a Safe Computation Backbone compliant with
ISO 26262 ASIL D (this includes Single Point Fault Metric fully supported
by HW mechanisms and Latent Fault Metric supported by SW (SafeTlib),
Logic MIST, MBIST). Support criteria for coexistence of elements are enabled
through a layered protection system (covering CPU tasks, Shared Memories,
Peripherals), CPU supervisor/user privileges, Safety Task Attribute and a rich
set of counters & watchdogs for program flow & temporal monitoring. SEooC
deliverables are the Safety Library (SafeTlib), Safety Manual to support
SEooC integration and FMEDA to support computation of the ISO 26262
Metrics.

Top Level Safety Requirements (TLSR) related to the Microcontroller
I/0 sub-system are specified by the system integrator, as these vary for

40 The DESERVE Platform: A Flexible Development Framework

Figure 2.16 SEo0C safety mechanisms.

each application. TLSR1 (ASIL D) requires to avoid false output of the
microcontroller for longer than the FTTI (Fault Tolerance Time Interval,
Figure 2.17), while TLSR2 (ASIL B) only require to avoid unavailability
of a safety mechanism for longer than one driving cycle.

The Fault Tolerant Time Interval is more precisely defined by Figure 2.18.
The application dependent fault detection time worst case is the diagnostic
time interval. The fault detection time depends on the safety mechanism. The
fault reaction time is the sum of failure signaling time and failure reaction
time. Failure signaling time depends on the microcontroller architecture, while
failure reaction time depends on the application. The failure signaling time is
composed by the alarm forwarding time plus the alarm processing time plus
the failure signaling time.

Safety requirements

With the AURIX as basis for DESERVE platform realization, it fulfils the
targets according to 1ISO 26262-5, 8.4.5, which defines requirements for ISO
26262 metrics. To achieve ASIL D, for instance, the single point failure metric
(SPFM) needs to reach minimum 99% and the latent fault metric (LFM)
needs to reach 90% or above. The minimum values of SPFM and LFM shall

2.5 Safety Standards and Certification Concepts 41

Figure 2.17 Top level safety requirements.

Figure 2.18 Fault tolerant time interval (FTTI) definition.

be reached by every vital part. The SPFM threshold levels shall be reached
both for permanent and for transient faults. For a given ADAS application
SPFM, LFM and PMHF (probabilistic metric related to hardware failures)
metrics are estimated based on the vital, critical and application-dependent
parts utilization.

42 The DESERVE Platform: A Flexible Development Framework

In terms of PMHF for ASIL D safety goal, 1SO 26262-5 requires a metric
of less than 10 FIT (failure in time, referring to 1079 hours). ISO 26262-5
9.4.3.6 and 9.4.3.7 specify the relationship between ASIL and FCR and DC
(Residual Faults). To meet ASIL D requirements the diagnostic coverage for a
FCRS part shall be > 99.99%. The safety mechanisms are designed to achieve
coverage of 99.99%.

Safety architecture

The safety architecture goal is to provide a safe computation platform for
up to ASIL D safety applications according to I1ISO 26262, as this ASIL
level is required for most next generation ADAS. To achieve this level, safe
computation hardware and software, safe operating system as well as safe
software architectures are required.

The generic elements (vital parts) of a safe computation hardware platform
are summarized in Figure 2.19. Safe CPU requires hardware redundancy,
realized by delayed lockstep CPU with enhanced timing and design diversity.
Safe SRAMs allows information redundancy (realized by standard SECDED
ECC, address signatures). Also safe Flash memory is needed for information
redundancy (realized by an enhanced ECC with more than 99% coverage
of arbitrary multiple-bit fault). Enhanced error detection codes for covering
data & addressing faults lead to safe interconnects and support informa-
tion redundancy. The clock system frequency range monitors using internal
high precision independent clock source, internal & external watchdogs.

Figure 2.19 Generic elements of safe computation hardware platform.

2.5 Safety Standards and Certification Concepts 43

Finally power supply range monitoring is implemented for the internal
regulators.

To achieve a safe computation software platform an ASIL D compliant
operating system needs to be used featuring memory protection and time
protection. Further it needs to provide services for program flow monitoring,
end-to-end communication safety protocols as well as safe interrupt vector
generation. ASIL D compliant software is required to be developed according
to 1ISO 26262 part 6.

The AURIX platform ensures freedom of interference at software level
by means of SW isolation, while freedom of interference at hardware level
is guaranteed by HW isolation. The CPU MPU (memory protection unit)
monitors the direct access to the local memories, applies to software tasks and
allows dynamic re-configuration. The bus MPU monitors the SRAM accesses
viainterconnect. Finally register access protection monitors write access rights
to module registers.

References

[1] DESERVE deliverable D1.2.1 — Development platform requirements.
[2] DESERVE deliverable D1.3.1 — Development platform specification.
[3] DESERVE deliverable D1.3.2 — Method and tools specifications.

[4] DESERVE deliverable D2.5.2 — Platform system architecture.

[5] DESERVE deliverable D2.5.4 — Standard interfaces definition.

[6] AUTOSAR, http://lwww.autosar.org

[7] 1SO 26262, Road vehicles — Functional safety (www.iso.org).

[8] A. Sandberg, D. J. Chen, H. Lonn, R. Johansson, L. Feng, M. Torn-
gren, S. Torchiaro, R. Tavakoli-Kolagari, A. Abele — Model-based
Safety Engineering of Interdependent Functions in Automotive Vehicles
Using EAST-ADL2, Lecture Notes in Computer Science, Volume 6351,
Series: Computer Safety, Reliability, and Security (SAFECOMP), Pages
332-346. Springer Berlin/Heidelberg, 2011. ISSN 0302-9743.

[9] www.interactive-ip.eu

[10] www.haveit-eu.org

[11] S. Durekovic (NAVTEQ), Perception Horizon: Approach to Accident
Avoidance by Active Intervention, Workshop “How can new sensor
technologies impact next generation safety systems?” IEEE IV 2011,
June 5 2011, Baden—Baden.

[12] DESERVE Deliverable D2.2.1 — Perception layer Preliminary Release.

44 The DESERVE Platform: A Flexible Development Framework

[13] AURIX Safety Manual, Infineon confidential document, no. AP32224,
v1.1, dated Sept. 2014.

[14] K. Ostberg und M. Bengtsson, “Run time safety analysis for automotive
systems in an open and adaptive environment,” in SAFECOMP 2013 -
Workshop ASCoMS (Architecting Safety in Collaborative Mobile Sys-
tems), Toulouse, France, 2013.

[15] J. Frtunikj, M. Asmbruster und A. Knoll, “Data-Centric Middleware
support for ASIL assessment and decomposition in open automotive
systems”.

3

Driver Modelling

Jens Klimke and Lutz Eckstein

Institute for Automotive Engineering, RWTH Aachen University,
Steinbachstrale 7, 52074 Aachen, Germany

3.1 Introduction

Traffic simulations become more and more relevant for the development of
Advanced Driver Assistant Systems (ADAS) and algorithms for automated
driving. They are used to evaluate the functions concerning important impact
factors like safety, efficiency, mobility or costs. Therefore, the system is
tested and evaluated as a component of the virtual vehicle in simulations.
The factors manageability and acceptance of the users regarding the tested
system are prospected and evaluated in driving simulators, where the real
driver can be part of the virtual environment. Both, in traffic simulations
and in simulators, the realistic behaviour of the surrounding virtual road
users to the equipped vehicle is an important requirement for a suitable
evaluation of the system because this behaviour influences the reaction of
ADAS and driver significantly. Moreover, it is necessary, that the behaviour
of the traffic can be adjusted systematically in order to generate defined traffic
situations of relevant constellations and in different nuances of criticality.
As in real traffic, small changes in the initial conditions can produce a
large difference in the result. This phenomenon can only be reproduced in a
simulation if the driving behaviour patterns reflect the human driver behaviour
closely.

The basis of this driver model and its possible functionality or ability
is the underlying simulation environment. To determine the risk of conges-
tion for example, a traffic simulation environment with macroscopic, e.g.,
fluid dynamic based traffic behaviour, is suitable. The easiest macroscopic
representation of virtual traffic could be an equation with the result of an
average velocity dependent on the density of traffic. This might be a complex

45

46 Driver Modelling

mathematical relation producing suitable results for some purposes but it is
impossible to understand the specific inner traffic effects like congestion waves
and traffic collapses. For such effects, the influences of the traffic elements on
the driver models have to be understood.

These are basically the interactions between the driver-vehicle-units
among each other and the reactions of the units to the traffic environment like
traffic light systems or the road curvature. In this kind of traffic simulation,
called microscopic traffic simulation, the desired controlling reaction of the
driver or the automated function is calculated and implemented directly into
the vehicle. This is done in form of a change of the dynamic state of the
vehicle, e.g., a desired acceleration, which consequently results a change of
velocity and position. The driver and the vehicle represent an inseparable unit,
but entirely with a unit-specific behaviour. The behaviour might respect some
dynamic restrictions of the vehicle and in some cases of the driver, but does
not depict the driver-vehicle-interaction.

For the analysis of modern ADAS this kind of simulation is not suitable,
as a driver has, e.g., to be able to override the system by using the control
elements, like pedals, steering wheel or switches. An ACC for example can be
switched off in critical situation by using the brake pedal or can be overridden
by using the accelerator pedal to further increase or keep the acceleration.
These effects can only be simulated if vehicle and driver are implemented as
separate models and if the interfaces between driver model and vehicle model
are used to implement the driver’s wish to the vehicle. Thus, this concept can
be called sub-microscopic or nanoscopic.

Another specific application for sub-microscopic traffic simulations is the
exploration of detailed effects related to the vehicle, like fuel consumption
analysis in specific traffic situations or environments. Within these analyses a
very detailed vehicle model is needed. But it is not only the specific application
which let us chose a higher level of traffic simulation. Obviously, the higher the
level of detail, the more effects can be depicted with a single traffic simulation
environment and model set-up but at the expense of computing time up to the
loss of the real-time capability. Additionally, the effort of setting up the models
increases due to the increase of model parameters. For the same reason the
validation of the models is much more complex, too.

In the past decades many driver models where developed with special
focuses on different specific elements of the driving task. Some try to show
an optimal behaviour, without taking into account the physical and cognitive
abilities and limitations of the human driver. Others focus on these restrictions
or on the information process in the driver’s brain and body and the capability

3.1 Introduction 47

of the driver to process different information in parallel. In literature many
categories of driver models are published. Jirgensohn defines in [1] two basic
categories of driver models, formal and non-formal models. Formal models
have a fixed description but a changeable inner value. The result of formal
models is reproducible, that means, the same conditions lead to the same
output. Non-formal models are not described by those fixed dependencies
(like equations or lingual definition) or they have a non-changeable (constant)
character. Examples of formal models are descriptive models, which have a
fixed description but have a character which is not defined by an input-output
structure. In the European research project ASPECSS [2] and in Deliverable
D3.1.1[3] of the DESERVE project the definition is different. In these sources
descriptive models are clearly defined (fixed, but not constant) and generate
a numeric, quantitative output dependent on different numerical influences.
This output is reproducible but can anyway contain stochastic elements.
Functional models describe physical and psychological aspects of driving, like
the information processes, the human structure of thinking and acting. They
do not generate a numeric output but draw a picture of the elements of driving.
The difference between functional and descriptive models in this definition
is not unique and not complete; there are hybrid models and models which
can’t be matched to any of these categories. In this chapter, the distinction
between formal and functional models is used to avoid the conflict of the two
definitions of descriptive models.

In complex traffic simulations the usage of both kinds of models is
needed to depict realistic traffic flow and driving behaviour. Formal models
describe algorithms for a driver model how to reach its goal by setting
defined reference values dependent on the input. Functional models can help to
understand the driver’s wishes and to create an eligible structure and decision
algorithm.

Inthe DESERVE project, arapid prototyping platform for the development
of ADAS was created and a suitable tool-chain for the development process
was outlined. The traffic simulation is an important tool in the development
process of ADAS and thus is part of the DESERVE tool-chain. As described
above, a realistic driver model is needed for the development and evaluation
of modern ADAS. In the next sections, the way of modelling the driving
behaviour is described, followed by the requirements for the DESERVE driver
model. On the basis of the requirements the structure of a sophisticated driver
model is developed and the used implementation techniques and strategies are
explained. In the last section two different applications of the driver models
are presented.

48 Driver Modelling

3.2 Driver Modelling

Driving is not just a single decision and a single action at once. It is rather a
complex interoperation of different motivations, perceptions, decisions and
states with continuous and discrete changes. To create a realistic driver
model, a strict delimitation between these elements has to be done and it
is helpful to create a suitable structure with a unique and logical naming of
the elements and well-defined interfaces. To develop such a structure, driving
has to be analysed on the basis of typical driving scenarios, manoeuvres and
actions.

Besides the perception and the handling or action, the information
processing is the most important part of driving. Within the information
processing, the driver estimates desired values for different future vehi-
cle states he wants to achieve, like a desired speed, a desired following
distance, and distance to stop. These inner desired states are called driver-
variables or briefly variables. Often a driver has multiple desired values
for the same variable, generated by different motivations, between which
a decision is needed. As an example the desired speed shall be used: The
driver can have multiple causes of choosing a desired speed. For example
the following three: First, to reach the destination as soon as possible.
Second, the speed limits on the road. Third, the curvature of the road
combined with the need for safety. For each motivation, a desired speed can be
determined. The speed limit for the first mentioned motivation is the maximum
speed the driver would choose on a free, straight road. If there are no further
influences like other road-users or speed limits, the driver would travel with
this speed. Situations, which do not allow travelling with this speed, do not
imply that it is not the driver’s wish (the driver wants to, but can’t). For the
second motivation, a speed in an interval around the speed limit, dependent
on the law-abiding is desired. This can be higher or lower or exactly the speed
limit. The third motivation results in a desired speed which allows the driver
to pass a curve in a comfortable and safe manner.

All described motivations lead to different speeds, so the driver is in a
dilemma: She/he has to decide for one speed to accelerate or decelerate to.
The decision in this case is taken in a pragmatic way: The lowest speed wins,
because on the one hand there is a comfort and safety limit, on the other hand
there is a limit because the driver accepts the given speed limits or at least
wants to avoid fees for driving too fast.

The described example shows two input types to the driving behaviour,
the driver’s character (here: need for safety, need for comfort and law-abiding)
and the current situation described by the state of the own vehicle and other

3.2 Driver Modelling 49

vehicles as well as the road and environmental structure. Moreover, not only
the local situation influences driving. A good driver reacts before approaching
to a discrete situation to reach the desired value in time. In the curve speed
example above, a real driver would estimate the comfortable and safe speed
based on the visual perception of the road’s curvature before reaching the
curve. On that perception, the driver decelerates with a rate which leads to
the desired speed at the moment the curve is reached. Within the curve the
driver corrects this estimation to satisfy the desired safety and comfort. The
predictive behaviour is called anticipatory driving. The correction is called
compensatory driving [4]. This phenomenon also has to be regarded in the
development of driver models.

Of course the driver has more responsibilities than the decision of the
desired speed. According to Rasmussen [5], the driving task can be seen in
three levels: The strategic level where the driver plans and creates strategic
values like a route, the manoeuvring level, where the driver processes the
decisions and determines desired values and value sequences, the strategy can
be implemented with. This behaviour is conscious: The driver knows exactly
how to solve the driving task and creates a strategy. The driver is able to
reflect decisions and actions he/she took in this level. In the control level
the driver implements these conscious values into the vehicle by using the
steering wheel, the accelerator and brake pedal and other control elements
of the vehicle. This operation is not done in a single step. Often the driver
determines a subconsciously desired value, like a desired acceleration, which
is then transferred into the actual vehicle input. This value is not reflected
by an experienced driver. It is an automatism by the driver to reach the
conscious desired value. The desired speed shall be used for an illustration:
After the decision to move freely, because no other road-user is influencing
the driver, the desired speed is detected, which is a conscious value. To
reach this speed, the driver accelerates with the desired acceleration, which
is a subconscious value because the driver cannot quantify this value and it
is not part of the strategy. The final implementation is done by using the
vehicle’s controls to reach this acceleration. The advantage of using this
subconscious step is that the regarded values can be set, manipulated and
limited dependent on realistic driver’s needs independent of the conscious
behaviour. Often the desired acceleration and yaw rate or curvature is used
as an output of macroscopic driver models. In this definition these variables
represent subconscious variables. Thus, without the implementation by using
steering wheel and pedals, the model can be seen as a macroscopic driver
model.

50 Driver Modelling

3.3 Requirements for DESERVE

Before creating a driver model, an analysis of the requirements for this model
based on the field of application has to be done. In DESERVE, a rapid
prototyping platform and development process has been created. The details of
the platform can be found in Chapter 2. This requirements section concentrates
on the applications of the DESERVE platform. In the first year of the project,
the needs for the driver model were analysed in D3.1.1 [3]. There are two kinds
of driver models identified in the project: the virtual driver for the usage in
traffic simulations like described above and the driver intention and distraction
model, which is used as a component of an ADAS to detect the real driver’s
state.

The literature review, the analysis of existing driver model concepts and
in particular the research work in the DESERVE project shows that it is not
possible to create one holistic driver model to satisfy all scientific needs.
Nevertheless it would be very attractive, if there was one basic structure
combining the ideas of the previous research, in which the algorithms can be
added as independent modules. The connections of all modules —with properly
defined affiliation and interfaces and in conjunction with a suitable parameter
set — will produce the expected results. For that reason, a generic module-
based structure needs to be developed which is well-defined and flexible
for amendments. Most of the integrated algorithms can be used for several
applications while others are specific to one. The generic structure should fit
to all applications of driver modelling in an open way.

Another important issue is the implementation. Many driver models are
implemented in native programming languages. This fact has a significant
disadvantage: It becomes very muddled due to the one dimensional struc-
ture of programming code. Often driver model structures are shown in a
two dimensional representation with levels in the up-down dimension and
sequence of the information processing in the left-right direction (time related).
An implementation of the driver model in an analogous structure could be
very helpful to create a clear and well-arranged model. Thus, a graphical
implementation would be aspired. Furthermore, it should be possible to
structure or capsulate the content properly as well as the definition of the
interfaces to take the advantage of modern programming techniques like
object oriented programming or code reuse to avoid redundancy. Next to
the structural requirements, the system shall be able to hold values or states
over one or more time steps to implement the memory of the driver. Another
requirement is the possibility to connect the driver model to the traffic

3.3 Requirements for DESERVE 51

simulation environment. This can be done by communication interfaces or by
the native integration of the compiled driver model, for example as a dynamic
linked library or similar techniques.

The driver model (virtual driver) in DESERVE shall be used in different
traffic simulation environments for testing and evaluating ADAS functions in
the process of the development. Within the project, the driver model shall be
implemented and tested for a control function which is designed to show the
advantages and benefits of the DESERVE platform. Therefore, an Advanced
Cruise Control system (ACC) is combined with a Heading Control (HC).
The system shall assist the driver on inter-urban road scenarios and increase
the safety within the full speed range (WP 4.2, [6, 7]). The decision for
demonstrating the system for the inter-urban area is made, because this area
is a very important research field for the usage of ADAS functions of the next
generation; especially those who reach the next level of driving automation
(cf. SAE automation level 2 — partial automation, [8]). Also the evaluation
of ADAS for the increase of safety is important in the inter-urban area.
Therefore, detailed driver models are needed with the claim to be valid for the
intended purpose. In particular, the modelling of realistic human behaviour
on intersections and junctions is one of the most important developments for
today’s traffic simulations in order to develop ADAS with the goal to reduce
the high number of accidents on intersections.

Analysing the application in DESERVE, the driver model requirements
can be briefly defined:

e Inter-urban driving behaviour including safe-passing of slow, right-
moving vehicles has to be implemented.

e The driver model needs the capability of route-following within multi-
lane roads and complex but flexible transport networks.

e Full intersection and traffic light behaviour has to be implemented.

e Anticipatory driving behaviour, like early speed adaption needs to be
reflected.

e Re-use of validated driving behaviour algorithms and driver model
approaches is required.

The driver model is implemented and connected to the simulation environment
PELOPS [9]. The inter-urban ACC and HC developed in DESERVE is tested
in virtual traffic scenarios containing units controlled by the here described
driver model. These scenarios include straight and curvy multi-lane roads,
complex intersections with traffic lights and right-of-the-way controls by
signs and structure, different speed limits, rare and dense traffic with different

52 Driver Modelling

parameterisations and slow moving vehicles (e.g. mopeds). This testing set-
up leads to a set of manoeuvres and primary driving tasks which have to be
implemented:

Figure 3.1 Primary driving tasks which are implemented in the driver model within the
DESERVE project separated by longitudinal and lateral control.

Figure 3.2 Manoeuvres which are implemented in the driver model within the DESERVE
project.

There are several other manoeuvres which can be implemented like U-
turning or stopping on the road side. These manoeuvres are not implemented
within DESERVE. Nevertheless, the structure of the model shall offer the
possibility to enhance the functionality.

3.4 Generic Structure

In this chapter the ika driver model is introduced. Within the DESERVE
project, a suitable and generic driver model structure was developed and
implemented which fulfils the requirements from the previous section. The
interfaces and driver parameters are defined and described in this chapter.

3.4.1 Model Structure

From literature review, two generic structures can be identified: The three
levels of driving by Rasmussen and the three blocks of perception, information
processing and action, which can be found in several formal and non-formal
model approaches (e.g. [10]). This leads to a matrix-form model shown
in Figure 3.3. The modules (blue boxes) in the matrix represent model
implementations or parts of those. The arrows, in different shades of grey,
describe the information flow between the blocks and represent the internal

3.4 Generic Structure 53

Figure 3.3 Driver model structure in the context of environment and vehicle: the structure
includes perception, processing and action blocks including its functional modules and the
regarded dynamic information flow.

interfaces. The blue arrows show the information flow through the three
levels and represent the needed information (variables) for the driving tasks
and manoeuvres. A central functional block of the model is the State block,
where the driver-specific values are stored. The Memory module represents
the driver’s knowledge about the current situation, the manoeuvre states, the
destination or route, etc. The memory is used to keep information for the
following time steps, during the manoeuvre or for the whole simulation cycle.
This information can be extrapolated to estimate current states of the ego-
vehicle or other road-user even if the driver model does not sense the regarded
information at the current time step. Thus, the memory has an interface to the
Perception block and constitutes an input of this block besides the inputs of the
environment and the vehicle. Current manoeuvre states and important values,
which have to be known in the next time step, are also saved in the memory and
are passed by the interface between the State and the Processing block where
the driving calculation is implemented. The parameters represent the driver’s
character and are defined in two layers: qualitative and physical parameters

54 Driver Modelling

(see Subsection 3.4.2). The Parameters block serves its values to all blocks
of the driver model, for example by manipulating the handling time delay
(reaction time). The Action block controls the handling or the conversion of
the driver’s wish into physical actions like the manipulation of the pedals, the
steering wheel, shifting and using the HMI control elements.

As it can be seen in Figure 3.3, a strict assignment of all modules to a
unique level is not possible. In the following the modules shall be explained
in detail.

In the Planning module, route specific calculations are executed. In
general, the units have a fixed route calculated or set in the initialisation of
the simulation. In reality a driver changes the route under circumstances, e.g.,
traffic jams or road blocks. If such functionalities are needed, appropriate
algorithms can be implemented in the Planning module. In the current
implementation the route is stored in the memory. The Planning module
calculates a value for each lane in the environment around the unit, which gives
a quantitative value of how far the lane and its successors can be followed
on the given route. Thus, the Manoeuvre Decision module can decide which
lane the driver wants to take. The Manoeuvre Decision module processes all
discrete manoeuvres and discrete decisions. That means on the one hand to
decide for a manoeuvre and on the other hand to control the manoeuvre but
not to calculate the related Guidance Values. The Decision module returns
different states within the manoeuvre and process variables, which can be
used by the following modules to perform the manoeuvre (in the figure briefly
named Manoeuvre). An example is described in Section 3.5. Another output
of the module is a set of Discrete Secondary Actions which are needed or
desired at the beginning or during the manoeuvre. This can be for example
switching the turning indicators in case of turning or lane changes. On the basis
of the decision with its states and process values, a local strategy to perform
these manoeuvres and continuous driving tasks is calculated in the Conscious
Guidance module. Continuous driving tasks are performed during the whole
simulation time without the need of a discrete decision. Of course, the output
values of these tasks can be overridden by other results. An example is the
motivation to keep the lane: This task is continuous because the driver always
wants to stay in the lane but can be forced to leave the lane during an overtaking
manoeuvre. Within the Conscious Guidance module the Guidance Variables
are filled with values (guidance values), which the driver wants to reach.
An example was given in Section 3.2 (desired speed during free moving).
Several guidance values are calculated and passed to the Subconscious Stabil-
isation module. Within this module, desired stabilisation values are calculated.

3.4 Generic Structure 55

In general, these values are the desired acceleration and the desired yaw rate
for the longitudinal and lateral control respectively. Based on all motivations
the stabilisation value with the highest benefit for the driver is taken. Besides
the desired values, some real physical values, which are states of the vehicle,
can be directly sensed by the driver. Thus, the driver is able to implement
these values subconsciously by using the vehicle control elements (pedals
and steering wheel). This implementation is done in the Continuous Primary
Actions module.

To define the interfaces between the modules it is helpful to create a
manoeuvre and driving task table. For the DESERVE implementation the
following tables (Figure 3.4 and Figure 3.5) were developed, derived from
Figure 3.1 and Figure 3.2.

In the motivation of free moving, the desired velocity of the driver
is calculated. This velocity depends on the speed limit, the curvature
of the road ahead and the maximum desired velocity of the driver. To
reach the velocity, the driver model accelerates (subconsciously) depen-
dent on the current velocity and the desired velocity. A suitable model
approach is part of the Intelligent Driver Model (IDM) by Treiber, Hen-
necke and Helbing in [11]. An adaption of that approach for the usage in
complex driving simulations is published in [12]. The following motivation
is mainly influenced by a desired following distance which bases on a driver
specific following time gap. To reach this distance the driver needs to accel-
erate or decelerate. The lane-keeping is performed by the usage of fix-points
based on the Two-Point Visual Control Model published in [13]. This model
can be adapted, so that the fix-points cause a yaw rate, which the driver wants
to implement. The adaption is published in [14]. The yaw rate is chosen as the
desired subconscious stabilisation value because it physically implies both,
the curvature and the velocity. During standing, the driver model maintains a
brake pedal value which results in a vehicle that does not move. This means
that the pedal value is a subconscious value, different to the other longitudinal
tasks.

Figure 3.4 Process variables for the four basic driving motivations free moving, following,
lane keeping and standing.

56 Driver Modelling

Figure 3.5 Process variables for the three manoeuvres lane change, stopping and Safe
Passing.

In Figure 3.5, the manoeuvre turning is missing. In this model turning is
implemented in the decision module, at least to control the turning indicators,
but does not require a process implementation due to the given features: A
lateral and longitudinal turning manoeuvre can be seen as a ‘normal’ street
following motivation if the turning path is known and a turning speed is
calculated by the given curvature. In the case of conflicts with ‘right of way’
road-users (e.g. at left turns), the driver model stops with the manoeuvre
stopping. If the conflict is resolved, the stop manoeuvre is aborted, so the
driver model switches to free moving or following.

The perception is partly done in the simulation environment: All perceived
information is transformed to the driver’s coordinate system by the simulation
environment. The driver model adapts the information with driver specific per-
ception errors, like perception limits, continuous noise, sporadic disturbances
or fluctuations and accuracy limits.

3.4.2 Parameter Structure

In many driver model approaches, physical parameters are used to influence
the driver behaviour and generate heterogeneous or driver specific results
like in the IDM [11]. Examples of physical parameters are the maximum
comfortable acceleration and deceleration or a constant following time gap to
the leading vehicle. These parameters are well measurable for a single driver
or a group of drivers, represent a direct input to the model approaches and
are mostly independent of each other. To describe the character of a driver,
a big set of physical parameters has to be defined. In other driver models
humanised parameters on a higher level are used which are not directly
measurable. These parameters have a meaning which can be described as
a characteristic or a constant attribute of a human driver. In general, the
parameters are used to generate driver specific physical parameters, which

3.4 Generic Structure 57

are then dependent on each other by this humanised characteristic. With
these parameters a characterisation of the driver is easier because the number
of parameters is reduced to a smaller number. The challenge is to create
a mathematical dependency which returns realistic results based on these
fictive parameters. The humanised parameters used in the driver model for
the DESERVE platform are named sportiness, need for safety, law-abiding
and estimation ability. However, these parameters have no scientific physical
or psychological meaning; they only represent groups of drivers and influence
the underlying parameter block of physical parameters like desired following
time gap, acceleration profile and many more. In Figure 3.6, the parameter
concept of the DESERVE platform is shown: In the first block, the humanised
parameters are shown. These parameters influence the physical parameters of
the driver model. In this example, the need for safety parameter influences the
lower and upper following time gap (see [15]) and the acceleration profile of
the driver model. Parameters are not influenced by the dynamic inputs.

The set-up of a suitable parameter concept influencing all models in a
realistic way is difficult and extremely dependent on the implemented model

Figure 3.6 Sketch of the parameter blocks (brown) and model blocks (blue) of the driver
model.

58 Driver Modelling

approaches. A concept to solve this problem could be to measure a large set
of reference data and run an optimization to find the best fitting parameters.
After that a validation has to be done with another set of data to prove the
concept.

To create a traceable connection between the parameter blocks, in the
DESERVE model, cubic polynomial functions are used. In a review of floating
car data for example, the distribution of lower following time gaps of the
Wiedemann model was generated. Basis of the distribution of these time gaps
is a Gaussian distribution of the need for safety parameter with u = 0.5 and
o = 0.15 as described in [15]. With the polynomial

ATower (PNFs) = 1.4 - pipg + 0.9 - pips + 0.9 - pars (3.1)

with
ATower: LOwer following time gap [s]
pnrs: Need for safety; Gaussian distributed (0.5, 0.15) [-],

Figure 3.7 Distribution of lower following time gaps for real drivers (blue bars) and the
modelled distribution dependent on a normal distributed need for safety parameter (red line).

3.5 Implementation 59

the distribution of the lower following time gap returns a result shown as red
curve in Figure 3.7. The blue bars show the floating car data which is the basis
of the polynomial curve in this example.

This principle can be used and optimised analogously for the other physical
parameters.

3.5 Implementation

The graphical programming tool Matlab/Simulink provides the implementa-
tion features described in the requirements in Section 3.3. The 2D graphical
GUI allows a clear and well-arranged implementation close to the visual struc-
ture of the model. The implementation is easy to understand and easy to debug.
In the university environment, many students and scientific assistance work
with the driver model for a limited time range (e.g. Bachelor/master theses or
PhD theses). Thus, a further important requirement is the comprehensibility
of the model. Programming in Simulink is easy to learn also without deep
knowledge of classic programming languages. The code can be capsulated in
subsystems with defined inputs and outputs and several storage concepts can
be used to implement the driver’s memory. The data connection between the
model and other tools can be established by using UDP or TCP/IP or other
versatile techniques.

For the DESERVE example implementation, PELOPS is used as the
simulation kernel with the support of environmental structures (road network,
traffic lights, etc.) and vehicle models. The core of the new version of PELOPS
is implemented in Java. The integration of a Simulink model is possible
with the UPD communication interface. For the simulation of one vehicle
this solution is suitable and is real-time capable in the current version of
the ika driver model and PELOPS. If multiple vehicles use the same driver
model instance with their specific inputs, at least time-dependent and memory-
containing modules do not work properly. For the simulation of at least two
vehicles, the Simulink-model needs to be duplicated to have an independent
copy (second instance) of the driver model. This becomes difficult for a high
or flexible number of vehicles in a simulation. Another problem is the high
execution time due to the UDP connection and the Simulink model itself. A
native execution combined with direct data exchange, e.g. by shared memory,
is much faster. The Matlab/Simulink tool-chain brings the possibility of code
generation: The desired model can be converted to C or C++ code which
can be integrated in other C/C++ or FORTRAN code or can be compiled
to a shared library in almost all computing platforms. In DESERVE this

60 Driver Modelling

solution is used to integrate the driver model into PELOPS. For that purpose,
a class wrapper is used around the generated code. That allows the simulation
environment to create almost infinite numbers of independent driver model
instances. Multiple test cases have been performed to show the capability of
running traffic simulations with the full functionality of the driver models and
a large number of traffic units in real time.

Except for the decision module, all modules are implemented in standard
Simulink subsystems with mathematical blocks. The decision module isimple-
mented in Stateflow, which is an integrated Simulink feature. Stateflow allows
implementing state machines, which is a suitable implementation technique
for discrete decision structures. To demonstrate a possible implementation of a
manoeuvre decision the lane change shall be used as an example: In Figure 3.8,
a state machine implementation is shown for a lane change decision including
the progress and sequence control. The progress describes the state or the
‘position” in the lane change like initialisation (init), origin lane, lane crossing
(LC), target lane and termination (term). The phases describe the phase control
of the lane change by the driver. In this example the driver uses two phases
to perform the lane change: In the first phase the driver accelerates laterally
to a desired lateral velocity (anticipatory) dependent on the lateral offset. In
the second phase, the driver ‘switches’ to the lane-keeping mode with the
focus on the target lane (compensatory) by using the fix-point approach (see
Figure 3.5). Dependent on the phase and the progress, the conscious guidance
module, calculates the reference values which are needed to steer the vehicle
to the desired lane. The transition A denotes the decision to perform the lane
change, which is valid if there is a lane next to the ego driving path with

Figure 3.8 Stateflow model for a two-phase lane change including decision (A), progress
control (B) and sequence control (C).

3.6 Applications in DESERVE and Results 61

higher correlation to the route and some other conditions, like distance to the
end of the lane, preference lane and a hysteresis. The basis for the decision is
described in [16]. A decision for a lane change does not mean an immediate
reaction. The driver model can decide before the lane or the desired gap is
reached. In the case of a positive decision, the lane change is initialized. This
is a continuous process as long as the active lane change is not started. The
transitions B control the progress of the lane change and transition C represents
the transition from the first phase to the second one in this example.

3.6 Applications in DESERVE and Results

Within the DESERVE project, the driver model was used for two different
applications: The validation of left turn simulations within the full parameter
range and the prediction of a real driver regarding the acceleration during free
driving, approaching and following.

For the validation of left turn simulations (in this example without
stopping), real traffic data from laser scanners were used to measure the
trajectories of 136 vehicles on a junction in Alsdorf, close to Aachen in
Germany. Figure 3.9 shows the results of the simulations for different
parameter sets (coloured curves). The measured real-driver data are shown

Figure 3.9 Trajectories (velocity over x- and y-position) for left turn including the simulation
results for different parameter sets. The real driver data is measured on one intersection with
136 different drivers during day time.

62 Driver Modelling

in grey and the boundaries (extreme driver) as well as the average driver
are included. The extreme drivers are generated by choosing respectively,
the maximum and the minimum, of the need-for-safety and law-abiding
parameters. For this example, the upper extreme driver is created by setting
the need-for-safety and the law-abiding parameters to zero and the lower
extreme driver is created by setting these parameters to one. As it can also
be seen in the figure, the law-abiding parameter influences the speed the
driver reaches before and after passing the intersection but not the velocity
during the turning (red lines). Opposite to this, the need-for-safety parameter
influences the speed within the turning only (blue line). This result depicts
the statement that the turning speed is mainly driven by the safety and
comfort motivations of the driver and the speed on straight roads is defined
by the acceptance of speed limits. The phases between approaching and
turning are representing a mixture of all motivations and result in a transition
of the speed. In this example, the other parameters are set to the average
value (0.5).

To predict the driving behaviour of a real driver in a vehicle, the driver
model was integrated as a module on a real-time system in the car, equipped
with real sensor data by radar and camera sensors. A five second simulation
is calculated in each prediction step and the result is written to the CAN-Bus.
With that data ADAS like ACC can react dependent on the estimated wish of
the driver. The system and the results are published in [12].

3.7 Conclusions and Outlook

In the DESERVE project a driver model structure was developed with the
focus on the realistic generation of driver-vehicle-environment interactions.
For the usage in traffic simulations the driver model has been implemented in
Matlab/Simulink and exemplarily been integrated in PELOPS. The addressed
traffic area covered the inter-urban road network including generic inter-
sections. Therefore, common driver model approaches but also conceived
approaches to create the modules needed in DESERVE were used to obtain
realistic driving behaviour. The elementary interactions between the driver
models, the associated vehicles and the surrounded environment result in
realistic traffic phenomena and effects occurring in equivalent real traffic sit-
uations which was shown by comparing the simulation results with measured
data on a real intersection. The model behaviour is tuneable via parameters on
two levels, a humanized and a physical level, which have indirect and direct
influence on the model behaviour.

References 63

The structure of the model was designed to offer the possibility of enhanc-
ing the driver model by using different model approaches or expanding it
with the capability of performing yet unimplemented manoeuvres and driving
tasks. In those cases, the challenge is to tune the added model approaches
while maintaining the realistic influence of the parameters. To simplify and
partly automate the tuning process a tool can be implemented which uses real
data to optimize the mathematical influence of the parameters to the model.
This work will be done in the future to increase the usability of the driver
model for the simulative analysis of traffic situations. The traffic simulation
and thus the driver model shall be an inherent part of the tool chain used in
the development of ADAS and functions of automated driving.

References

[1] T. Jurgensohn and K.-P. Timpe, Kraftfahrzeugfiihrung. Berlin, Heidel-
berg, Springer, 2001.

[2] D. Raudszus, M. Ranovona, S. Geronimi, M. Kunert, E. Schubert, and
T. Schaller, “Report on Driver and Pedestrian Reaction Models”, Project
Deliverable, ASPECSS, 2013.

[3] S. Fruttaldo, G. Piccinini, D. Pinotti, R. Tadei, G. Perboli, L. Gobbato,
A. Zlocki, J. Klimke, F. Christen, N. Pallaro, F. Palma, and F. Tango,
“D3.1.1 — Standard Driver Model definition”, Project Deliverable,
DESERVE, 2013.

[4] E. Donges, “A two-level model of driver steering behavior,” Human
Factors, Vol. 20, No. 6, Dec 1978, pp. 691-707, 1978.

[5] J. Rasmussen, “Skills, rules, and knowledge; signals, signs, and symbols,
and other distinctions in human performance models,” IEEE Transac-
tions on Systems, Man and Cybernetics, Vol. SMC-13, no. 3, pp. 257-266,
1983.

[6] J. Klimke, F. Christen, N. Pallaro, A. Kyytinen, P. van Koningsbruggen,
E. Nordin, and X. Savatier, “D4.2.1 — Control functions solution design”,
Project Deliverable, DESERVE, 2013.

[7] J. Klimke, F. Christen, and L. Eckstein, “Definition of a Microscopic
Traffic Simulations Driver Model for Inter-urban Intersections for 21st
World Congress,” in ITS World Congress 2014, Detroit, 2014.

[8] SAE International, Taxonomy and definitions for terms related to on-road
motor vehicle automated driving systems. SAE International Standard
J3016, 2014.

64 Driver Modelling

[9] “PELOPS Whitepaper,” Forschungsgesellschaft Kraftfahrwesen Aachen
mbH (fka), Aachen, 2014 http://www.fka.de/pdf/pelops_whitepaper.pdf.

[10] L. Eckstein, Active Vehicle Safety and Driver Assistance Systems,
Automotive Engineering Ill. Lecture Notes, Institute for Automotive
Engineering (ika), Aachen, 2015.

[11] M. Treiber, A. Hennecke, and D. Helbing, “Congested Traffic States in
Empirical Observations and Microscopic Simulations,” Rev. E 62, Issue,
\ol. 62, p. 2000, 2000.

[12] J. Klimke, P. Themann, C. Klas, and L. Eckstein, “Definition of an embed-
ded driver model for driving behavior prediction within the DESERVE
platform,” in International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS XI1V), 2014, 2014,
pp. 343-350.

[13] D. D. Salvucci and R. Gray, “A two-point visual control model of
steering,” Perception, Vol. 33, No. 10 (2004), p. 1233-1248, 2004.

[14] J. Klimke, C. Klas, and L. Eckstein, “Konzept zur Strukturierung eines
generischen Fahrermodells anhand des realen Informationsflusses,” in
VDI-Fortschritt-Berichte: Reihe 22, Mensch-Maschine-Systeme, 2015.

[15] R. Wiedemann, Simulation des StraBenverkehrsflusses. Karlsruhe: Insti-
tut fur Verkehrswesen, 1974.

[16] D. Ehmanns, Modellierung des taktischen Fahrerverhaltens bei Spur-
wechselvorgangen. Dissertation, Institute for Automotive Engineering
(ika), Aachen, 2003.

A4

Component Based Middleware for Rapid
Development of Multi-Modal Applications

Gwenaél Dunand

Intempora, France

4.1 Introduction

Developing multi-modal applications starting from scratch is a tough issue.
On the one hand, there are algorithms challenges such as detecting drowsiness
or pedestrians in every possible situation. On the other hand, there are
programming challenges such as handling multiple sensors data with dif-
ferent frequencies and different nature (video streams, GPS data, laser scans,
etc.), as well as implementation details, such as synchronization techniques,
multithreading and memory management, for only naming a few.

Moreover, the time required to develop the software is often underesti-
mated [1]. Using an already existing middleware helps to keep on schedule
and focus mainly on business problems while decreasing the real-time
programming complexity.

There are several middleware that fit all those previous descriptions
(ADTF, PolySync, BaseLabs and RTMaps). As RTMaps is the official mid-
dleware chosen for the DESERVE project and the author is very familiar with
this one, this chapter will sometimes be focused on RTMaps, but other tools
might apply as well.

4.2 Using a Middleware

Considering software as layered, middleware incorporates many of these
layers vertically. A middleware provides a full, or partial, solution to an area
within the application and supplies more than the basic library, it also supplies
associated tools like logging, debugging and performance measurement.

65

66 Component Based Middleware for Rapid Development

Because middleware is vertical system, it may compete or duplicate other
parts of the application.

4.3 The Multisensor Problem

The number of sensors used for ADAS applications has increased in the last
few years. Now applications use radars, lidars, GPS, high definition stereo
cameras, lasers, IMU, CAN Bus, eye trackers, V2V and V21 communication,
etc... The problem is how to read all of them within the same application
and especially how to synchronize them despite their very different nature
(Figure 4.1).

As a matter of fact, most algorithms need to use several sensors to reach
a good level of detection. The problem is that those sensors might have
different sampling rates, or even worse, event-based outputs. Reading from
those sensors simultaneously can be a tricky problem to solve. Let’s illustrate
this with an example with three signals.

In the Figure 4.2, signal A (orange) and signal B (green) are periodic with
a different period while signal C (red) is an event-based signal. One solution
would be to use the least common denominator of all sampling rates to perform
the reading. While this approach may work with periodic signals like A and
B, it won’t work with the event-based C signal.

To achieve reading from multi-modal sensors, RTMaps middleware is
fully asynchronous — each component runs in its own thread — so that any

Figure 4.1 ADAS function requires many different type of sensor.

4.3 The Multisensor Problem 67

Figure 4.2 Synchronisation issues.

component can react to any data stream, whatever sampling rate it may have.
This is the only way to follow the natural pace of each data. This design uses
internally blocking calls, removing any extra latency that could happen when
using polling methods. RTMaps middleware also defines reading policies to
synchronize data streams. While the default policy — reactive —works perfectly
fine in most case, the user can use one of those:

e Reactive reading: a component with multiple inputs will read every time
a new data sample is made available on any one of its inputs.

e Synchronized reading: a component with multiple inputs will process
one sample from each input when data sample with the same timestamps
(plus or minus some configurable tolerance) are available on its inputs.
This behaviour is made for data fusion and allows re-synchronization of
the data streams at any point downstream in the diagram, whatever the
latency of the various upstream data channels.

e Triggered reading: a component with multiple inputs will read when a
new data sample is made available on a given input. It will then resample
the data on its other inputs through non-blocking reading.

To sum-up, not only the middleware provides a common platform to build the
ADAS application, but it also does take care of the tricky data synchronisation
mechanism.

4.3.1 Knowing the Date and Time of Your Data

Using a middleware allows to be very accurate about the timing of your data.
For example, RTMaps affects two timestamps to the data: the timestamp and
the time of issue.

e The timestamp is the intrinsic date of the sample. It is as close as possible
to the date of occurrence of the real data which the sample corresponds

68 Component Based Middleware for Rapid Development

to. It is often supplied by the first component that created the sample (i.e.
the acquisition component). The timestamp remains unmodified while the
sample goes through the different components of the processing chain.
The timestamp often corresponds to the date where the data is available
in system memory.

e The time of issue is the date corresponding to the last time the sample
was output from a component. Therefore, this date increases as long as
the sample runs through the different processing components.

Knowing with precision the time and date of your data is essential to perform
synchronized readings (see previous section), but it is also useful to estimate
the latency of your data or know the processing time of a component which
is really vital in real-time applications.

4.3.2 Component-based GUI

RTMaps middleware comes with a user-friendly graphical interface which
allows building an application using components (seen as blocks) connected
to each other. The Figure 4.3 shows RTMaps studio with a diagram open and
a few components in it.

Figure 4.3 The RTMaps Studio.

4.3 The Multisensor Problem 69

The advantage of using a graphical user interface is twofold. Firstly,
it allows the user to quickly construct an application by using drag and
drop techniques and wiring components to each other. Realizing a simple
demonstration with a camera and an IMU only takes a few minutes [2]
whereas using only hand-written code with dedicated libraries would take
weeks.

Secondly, it allows the team to focus on interfaces. This is a very important
point since it defines boundaries and clarifies the work between teams. In
big projects like the DESERVE project, strict definitions about interfaces are
necessary due to the number of partners. The interface for components is
composed of inputs, outputs and properties. Once the interface of a task is
defined, changing an algorithm for another is not a problem anymore, one
component can be replaced by another and the work is done! In the Figure 4.4,
the face detection component has one fixed detection interface. The input is
YUV image and the output is a vector of rectangle representing the faces
found.

Furthermore, the use of macro-components can definitely simplify the
diagram by splitting the global problem into sub-problems (Figure 4.4). All
the implementation is hidden in first appearance to simplify the reading, but
of course looking under the mask would reveal all the internal details.

4.3.3 The Off-the-Shelf Component Library

The off-the-self component library represents all the already available com-
ponents in the middleware. This is an important part of it because it
allows accelerating the application development by using and reusing already
developed component. Here are a few categories of components:

e Sensor interface: This category represents all the components that allow
to read/write from/to a sensor. When a sensor is present in the library, the
user has just to drop a corresponding component on the current diagram
and configure it to retrieve the data. That work can be done easily with a
consequent time benefit.

Figure 4.4 Components and interfaces.

70 Component Based Middleware for Rapid Development

e Data generators: When comes the time of testing a component, it might
be useful to emulate a missing sensor with random generated data
(vectors, CAN frames, images). This does not replace real sensors but it
can be enough sometimes.

e Viewers: Very important libraries, which allow displaying informa-
tion about data stream during the execution (images, vectors, CAN
frames...). As an example, the DataViewer (Figure 4.5) can display
generic information (timestamps, size, etc.) and specific ones (width and
height of an image if current data is an image) as a tree. This is very useful
to inspect data along a processing chain and check that such component
behaves correctly.

e Player and Recorder: Those components allow to record and replay any
data stream. Using a recorder, the user is able to record any scenario
(outdoor session, motorway driving test, automatic car parking, etc.) and
replay it at the office with the exact same data and timestamps.

Figure 4.5 Inspecting data with the data viewer.

4.3 The Multisensor Problem 71

4.3.4 Custom Extensions

Extending the component library is done through the SDK, whose purpose is to
expand the capabilities of the middleware by the creation of new components.
In RTMaps for example, the SDK is available for both C++ and Python
(Figure 4.6). Thanks to this SDK, the user can integrate his own code into
a component and use it directly in this diagram.

Once a new component has been created, it can be shared with others.
When using C++, each component is compiled code which means that only
the binary code is used in the middleware and so the IP is preserved. Anybody
can share his work while keeping the source secret.

4.3.5 About Performance

Using a high performance middleware is still essential nowadays. Indeed,
even if the power of the computer tends to increase continuously, the trend is
to run applications on embedded systems with the smallest footprint possible.
The explanation of this trend is quite simple: the prototype vehicle has to be as
close as possible as the real vehicle. In many companies, no desktop computer

Figure 4.6 Developing a new component.

72 Component Based Middleware for Rapid Development

in the trunk of the car are allowed anymore, all systems have to be (or at least
look) embedded.

Furthermore, the middleware is pushed further and further in the devel-
opment chain. A few years ago, most of the middleware were assigned to do
only prototyping and once the prototype application was finished, all the work
had to be done again on dedicated hardware. This not the case anymore, now
the middleware should be able to run on low consumption cards that equip
pre-series cars.

Consequently, OEMs are looking for high performance middleware that
runs on small form factor cards as well as on Personal Computer so that
working on lab or real scenarios makes no difference.

4.4 Compatibility with Other Tools
4.4.1 dSPACE Prototyping Systems

Inthe frame of the DESERVE project, a bridge has been developed between the
dSPACE MicroAutoBox and RTMaps (Figure 4.7). The dSPACE MicroAuto-
box is the de facto standard for real-time control loop such as chassis control,
body control and powertrain. Combining this dSPACE prototyping system to
the RTMaps middleware provides an extremely powerful framework capable
of doing multisensor acquisition, data processing and controlling actuators in
a hard real-time way.

The MicroAutoBox typically serves as an embedded controller to process
the ADAS application algorithms in real-time and to interface the vehicle bus,
sensors and actuators. It is a prototyping ECU with a predefined set of 1/O
which is qualified for in-vehicle use.

In the context of the DESERVE project this platform was extended by an
Embedded PC and an FPGA Board. The embedded PC features a multi-core
Intel® Core™ i7 processor running at 2.5/3.2 GHz and the connection to the
actual embedded controller is implemented via an internal Gigabit Ethernet

Figure 4.7 dSPACE MicroAutobox and RTMaps Bridge.

4.4 Compatibility with Other Tools 73

interface. The embedded PC integrated in the MicroAutoBox can be used to
flexibly run any x86 based development framework available for prototyping
perception and fusion algorithms, such as RTMaps, and to exchange easily
data with the embedded controller [3].

4.4.2 Simulators

ADAS are becoming more and more promoted because several key functions
permit to increase the level of vehicle safety. Most of the time, it is a challenge
to access to the equipment and sensors information on vehicles, making
difficult to design and test these new algorithms. Some of the applications
are based on perception sensors embarked on the vehicle, which interact with
the vehicle, driver and environment through electronic control units. For those
reasons, the simulations of the algorithms and the analysis of existing solutions
for virtual testing are very important tasks.

Using simulators has many advantages: tune the scenario at will (add rain
or fog like in Figure 4.8), test dangerous situations where real data is hard to
get, use the output of any algorithm to modify the scenario of the simulator
(close the loop), etc. It’s pretty much a fact now; virtual testing allows massive

Figure 4.8 ProSivic working together with RTMaps.

74 Component Based Middleware for Rapid Development

reduction cost. In the DESERVE project, many simulators have been used in
collaboration with RTMaps: ProSivic [4], dSPACE ASM [5], etc.

4.4.3 Other Standards

Middleware supports other standards as well. RTMaps implements the DDS
[6] standard interface via the Prismtech OpenSpliceDDS implementation.
This is very convenient to stream data from RTMaps to anywhere and vice-
versa. This DDS interface was developed in the frame of the DESERVE
project.

Other standard protocols are also supported, like XIL or XCP, which allow
manipulating RTMaps with off-the-self tools that implements those protocols
themselves.

Of course, most of the middleware on the market will also support NMEA,
CAN/DBC, RTSP, 12C, GPS, SIP, TCP and UDP as well. The compatibility
with major industry standards is essential so that the middleware interacts
painlessly with other tools.

4.5 Conclusion

Most DESERVE partners have been using RTMaps and ADTF middleware
as the common perception platform to speed up their development processes
and exchange components between each other.

Indeed, partners like Continental, FICOSA, Vislab and CTAG have
encapsulated their acquisition routines and custom algorithms into RTMaps
components, which in turn have been integrated into a global acquisition and
processing diagram by other partners (OEMs most of the time). This modular
approach made the collaboration easier between a large number of partners,
which was one of the difficulties of the DESERVE project.

Another example, CRF (Centro Ricerche Fiat) has used RTMaps and the
bridge to the MicroAutoBox — developed in the frame of the DESERVE
project — for their emergency breaking application. The sensor acquisition,
the pedestrian detection, information display and the breaking order are done
via RTMaps.

As a conclusion, in the DESERVE project, having a middleware has
allowed engineers to focus on their main activity — obviously ADAS functions
here — and not on advanced programming issues, but it was also very helpful
to exchange components between partners.

References 75

References

[1] Software Engineering 8th Edition, p. 109, ISBN-13:; 978-0321313799,
2006.

[2] Intempora. (2012, February 20). RTMaps4 demo [Video File]. Retrieved
from https://www.youtube.com/watch?v=HBxFq04S91g

[3] Joshué Pérez Rastelli, David Gonzalez Bautista, Fawzi Nashashibi, Fabio
Tango, Nereo Pallaro, et al. Development and Design of a Platform for
Avrbitration and Sharing Control Applications — a DESERVE approach-.
IEEE SAMOS Conference, Jul 2014, Samos, Greece, pp. 322-328.

[4] Prosivic. (2016, June 21). Retrieved from http://www.civitec.com/

[5] dSPACE. (2016, July 12). Simulation tool suite. Retrieved from https://
www.dspace.com/en/inc/home/products/sw/automotive_simulation_
models.cfm

[6] OMG. (2016, July 11). DDS: the proven data connectivity standard for
the loT. Retrieved from http://portals.omg.org/dds/

http://taylorandfrancis.com

5

Tuning of ADAS Functions Using Design
Space Exploration

Abhishek Ravi', Hans Michael Koegeler! and Andrea Saroldi?

LAVL List Gmbh, Austria
2C.R.F.S.C.p.A, ltaly

5.1 Introduction

AnADAS function developed within the DESERVE platform and the tuning of
this function for a particular application is discussed in this chapter. Based on
separating the software and tuning data, according to the standards described
in detail in Chapter 2, such a function can also be used for an alternate vehicle
or application use case. The opportunities as well as the potential challenges
are described, using a real world example, developed within the DESERVE
Project.

5.1.1 Parameter Tuning: An Overview

Tuning or calibration of vehicle components is essentially determining the
optimum attributes, which fulfill the legislative standards as well as refine the
car’s character to meet all the expectations of the driver for drivability and
comfort. Besides the comfort and legislative issues the vehicle tuning also
helps in brand differentiation and helps to determine the vehicle character.

In the tuning task for a specific component (e.g.: engine), the software and
the tuning data in the application layer of an Electronic Control Unit (ECU)
is separated which is illustrated in Figure 5.1. The resulting code is a hex file,
which can be flashed to the defined controller hardware which gives a big
flexibility in powertrain development. As an example, one engine hardware
can be put into more than 200 vehicle variants fitting for different countries,
different vehicles and/or different transmission systems — just by flashing a
different appropriate controller software.

77

78 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.1 Separation of software and tuning parameters in a control unit.

5.1.2 Industrial Tuning Applications: Challenges
and Opportunities

The engine — ECU has been the first mechatronic application in the automotive
world. It makes sense to have a short view on the historical development of
the tuning task in this field as illustrated in Figure 5.2.

In the past decades, the improving technology in the automotive sector
can be seen with cars having better engine performance, less consumption,
better handling and reduced emissions. But the improvement in technology
has come with increased complexity, especially in the tuning task.

Figure 5.2 History of powertrain tuning (calibration).

5.1 Introduction 79

As can be seen in Figure 5.2, initially there used to be around 500
parameters which needed to be tuned, which was carried out by a single
engineer using the unit to be tested, which was then tested on a single test
vehicle. Initially, the powertrain was quite simple and the Engine — ECU was
the only one being considered.

With increasing legislative and user demands; the complexity of the tech-
nology, the number of involved interacting components (engine, gearbox and
electric engine) and also the number of functions controlling the interactions
between all the variable components increased dramatically. Further the tuning
allowed the derivation of many more vehicle variants with the same hardware
components but differing in the ECU-SW, wherein the functions in the SW
stay the same, just the tuning data are specifically developed.

This effect is also seen in the number of tuning parameters to be defined
in an engine calibration project, where around 50 k parameters have to be
defined — clearly assigned to many functions. So it is no longer possible to
have one person, who understands all the functions implemented and teams
of specialized persons are necessary, partly working in different areas of the
world. Thus the industry was confronted with several challenges and found
Some responses.

For example, the management of tuning data becomes an issue. It must
be possible to track all the changes made to the tuning data by the different
engineers involved and bring all the tuning results into a single final tuning
result. The company should be able to ensure at Start of Production (SoP)
that:

1. All the tuning data are calibrated.
2. All the tuning data are calibrated with the correct settings to optimally
fulfill the desired, derivative use case.

These two requirements are very challenging, which explains the need of
“Tuning Data Management”. This topic itself is not further elaborated in this
chapter, but is supported by valuable literature [1, 2].

Another challenge lies in the tuning for single use cases: For example,
the emission tuning of an engine in a certain vehicle configuration for the
legislation of a specific country. There are about 5 to 10 strongly interacting
tuning parameters. E.g. an engine map to define the start of the combustion as
function of speed and load is counted as one of these parameters, and exhaust
gas recirculation rate, rail pressure, boost pressure, split patterns of the injected
fuel quantity are others, all either reducing the different kinds of emissions or
changing fuel consumption or noise.

80 Tuning of ADAS Functions Using Design Space Exploration

S0 one can imagine, that it is just not possible to measure the emissions
and the fuel consumption of all the feasible combinations of say 8 of such
parameters on an engine. (A similar issue faced with ADAS functionality)

Such tasks are typically performed on engine test beds and chassis dynos
and have to be finally validated on the road again. With the latest legislation
(Real Driving Emissions, RDE) even the certification will be done on the road
giving additional challenge [3-5].

Figure 5.3 illustrates the generalized development environment, which
allows the engineer to reproduce maneuvers and then double check the results
of tuning work. In the manual tuning method, the engineer operates the UUT
with a certain setting of control parameters in certain maneuvers. The engineer
observes the behavior of the UUT and performs a judgment according to
his experience. Then the next setting is defined with the intention to better
approach the desired behavior. This process becomes complex when there are
many relevant tuning parameters [6].

In this trial and error method, the quality of tuning and the optimization
results depend on whether the engineer considers all the parameters that are
relevant for the desired behavior and the relevant start point. There is a strong
dependence on the experience of the engineer. There are also limitation on the
number of tests that can be conducted, due to the testing time, complexity and
cost factors. The final results are highly subjective, as the decision making

Figure 5.3 |lllustration of a generalized development environment and manual tuning
process.

5.1 Introduction 81

process lacks traceability and a reuse is not possible for future projects, e.g.
tuning an ADAS setup for a different drive mode. As a result, a methodology
to increase the efficiency and the quality of the tuning work at the same time,
the so called “Design of Experiment” method (DoE) was adapted accordingly.

Within the DESERVE context this methodology was applied as “Design
Space Exploration” for Simulation environments, which are excellent devel-
opment environments for tuning of ADAS Functions.

The model-based approach was used with two objectives:

e Firstly, to find an optimum tuning result.
e Secondly, to validate an existing tuning result under a big variety of use
cases, which will happen during the lifetime of a vehicle.

5.1.3 Model-based Tuning

Model-based tuning is a statistical, model-based approach which reduces
the amount of actual experiments/test runs needed to accurately describe the
behavior of the UUT within the design space. This method helps to choose the
position of the test data points in order to generate behavior models with
an efficient low number of measurements. Such models are then utilized
to develop an accurate and robust tuning according to specific optimization
target(s). In Figure 5.4 the entire method is illustrated again for the generalized
development environment.

Figure 5.4 Model-based tuning task illustrated.

82 Tuning of ADAS Functions Using Design Space Exploration

In a model-based tuning task the below steps are followed:

e The user begins with a task planning for the measurement series, where
the targets for the tuning task are determined. Based on the targets, the
relevant input parameters which are considered to influence the observed
UUT response are selected. AVL CAMEO is used for the test plan
generation. This is based on a one time set up process, in which CAMEO
is connected to the development environment. Thus CAMEO gets access
to set tuning parameters in the UUT, observe responses of the UUT and
to start/stop maneuvers and to take measurements after maneuver. The
development environment hosting the UUT could be in the form of a test
bed, a hardware-in-the-loop (HiL) or even a vehicle simulation software
like IPG Carmaker in combination with an ADAS-function prototype
programmed in MATLAB.

e Once the targets have been defined the next important step is to make
the test matrix. In order to get a full picture of the area to be investi-
gated, the Design of Experiments (DoE) is used [7]. It is a systematic
technique which allows varying all the parameters simultaneously while
answering the two important questions of every tuning activity: Firstly,
how many tests are needed to cover the entire design space? And
secondly, at which locations in the design space test points are needed
to effectively get modelling equations valid throughout the entire design
space. There are many DoE designs available to us in AVL CAMEDO,
but COR DoE methodology [8] was used in the current example exer-
cise. Besides setting up the test design, it is also important to set the
limits for the test and appropriate actions when the limit is violated.
These topics are addressed further on in the example discussed in
Subsection 6.2.1.

e With the test plan and limits decided the tests are run, where the necessary
parameter settings are uploaded to the UUT by CAMEOQO, and after the
test, the required measurement results were stored in CAMEOQ. The raw
measured data check is then carried out in order to check the plausibility
and feasibility of measurement. It is a necessary check to get a rough
idea of how the measurements compare against expected values, and
also observe possible errors which could have occurred during the test
execution.

e The measurements are modeled empirically to obtain behavior models of
the UUT. In this content, modeling means more or less to fit a function —
like a polynomial equation for example — into the measured responses in
order to estimate the response function of any point in the design space.

5.1 Introduction 83

Such a model helps understand the reaction of the UUT to the parameter
tuning, and the interaction of the different tuning input parameters and
the output measurements. The confidence and prediction intervals of the
empirical models are observed to evaluate the model quality. Models in
CAMEQ also allow extrapolation in defined ranges beyond the design
space covered by measurements to observe the UUT behavior at points
where tests could not be run based on equipment limitations or time/cost
constraints.

e Based on the optimization target, optimization algorithms can be imple-
mented for a single objective or multiple objectives. The engineer can
decide ifthe results meet the targets and constraints and in case of multiple
objectives decide on a suitable tradeoff between the different desired
targets (Pareto front).

e Before, the results from the analysis are accepted a final verification test is
carried out. Tests are run at least on the point of the decided optimum, but
can also be extended on parameters settings of ten or more points spread
across the Pareto front. If these verification measurements match the
modeled results then the empirical models are accepted and the engineer
can use the optimization results as the desired tuning setting.

5.1.4 Model-based Validation

A model-based validation is a task carried out to test and evaluate the
robustness of the results from the tuning task. The UUT is run at the parameters
settings obtained from the tuning task, but tested for an alternate use case
and the response is evaluated. For example; if say a diesel engine was tuned
to operate at an economy mode and a sport mode with strong limits set on
NOXx emissions. Economy mode encourages the engine to conserve fuel while
sacrificing power, while the Sport mode encourages the engine to provide
greater power while making compromises on fuel economy, with the engine
running more at the higher RPMs. The engine is initially tuned at driving
conditions imitating an urban environment and lower altitudes, and from the
tuning tasks the input parameters settings like the rail pressure, injection
pressure, injection timing etc. are selected to operate the engine at the two
targeted modes while sticking to the NOx limits. In the validation test run the
engine is first run at the economic mode and then sport mode, but now the use
case is in hilly road conditions and higher altitude. The engine performance is
evaluated with respect to power and emissions, while the road and altitude of
operation is varied. The target is to see if tuning settings could be extrapolated

84 Tuning of ADAS Functions Using Design Space Exploration

or extended to alternate use cases. It also gives further information on how the
engine tuned for urban conditions would perform on rugged hilly conditions.

5.2 Demonstrative Example

A map-based ACC-Function (developed by the DESERVE Partner CRF)
running in a commercially available MiL Environment (IPG-Carmaker +
MATLAB Simulink) has been used as an example. The calibration tool of
AVL CAMEO was connected to this environment in order to tune the function
for a Fiat 500L.

5.2.1 Function: An Overview
A map-adaptive autonomous cruise control (ACC) was developed to:

e Control the vehicle velocity in order to enter and exit curves in a
comfortable and safe manner.
e Complete the drive maneuver in the least amount of time.

The controller function controls the vehicle speed by sending jerk request
(see Figure 5.7). Jerk is the rate of change of acceleration. Hence the jerk
request signals from the controller function are converted into the vehicle
acceleration and speed. For the reference maneuver a digitized road was used
and a reference speed curve was determined, which is the maximum speed
at which this road can be safely maneuvered. The function tries to ensure
that, the vehicle follows this reference speed profile as closely as possible
without exceeding it. The target speed was set at 130 km/h for the ACC.
A demonstrative speed profile is shown in Figure 5.5 for a sample settings in

Figure 5.5 \elocity profiles for a sample test run using the control function.

5.2 Demonstrative Example 85

Figure 5.6 Function developed using IPG carmaker and MATLAB simulink.

the ACC function. It can be seen that the vehicle velocity tries to follow the
reference velocity while never exceeding it. The vehicle velocity is not able
to exactly replicate the reference velocity due the road conditions, the vehicle
limitations and the control function settings.

The function was developed using IPG Carmaker for Simulink and has
been illustrated in Figure 5.6. IPG Carmaker for Simulink is integrated into
MATLAB/Simulink and necessary modification were done by adding the
custom Simulink blocks developed for the current use case.

5.2.2 Design Variables

In order to tune the function for the reference maneuver, four input parameters
or design variables were selected (see Figure 5.7). As per the terminology used
in CAMEO these tunable input parameters will be referred to as the variation
parameters. The variation parameters selected for the tuning task are:

e Acceleration Maximum (A_MAX) limits the maximum positive accele-
ration the vehicle can have while safely completing the maneuver. The
negative acceleration is not limited in order for the vehicle to generate
the necessary breaking force in case of obstacles.

e Jerk Maximum (J_MAX) limits the maximum positive jerk request from
the controller function in order to meet the reference velocity curve. But
only the positive jerk given by the engine and responsible for positive
acceleration is limited, while there is no lower limit for the negative jerks
for reasons mentioned previously.

86 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.7 Function overview.

Figure 5.8 Illustration of the kinematic variables AAMAX and J_.MAX.

5.2 Demonstrative Example 87

Figure 5.8 illustrates the kinematic parameters, with acceleration being
the derivative of velocity and jerk the derivative of acceleration.

e Forward Time (FORWARD_TIME) is a gain factor to transform the
jerk request from the controller function to an acceleration request. Even
though the controller function is based on jerk and sends the desired
jerk requests for the vehicle, the interface to control vehicle motion is
based on acceleration. Hence to control the vehicle the desired value
of acceleration is required. In order to obtain the desired accelera-
tion from the request jerk, one has to look forward for a given time
which is called Forward Time. Mathematically it can be defined by the
formula.

Areq=A0+J.reg*FORWARD_TIME

A_req is the Acceleration request

A_0 is the current vehicle acceleration

J_req is the Jerk request generated by the controller function

e Jerk Horizon (J_HOR) is a parameter used to determine when the
controller function sends the necessary jerk requests and the required
jerk magnitude in response to an approaching curve. To define what
is “near” and “far” (with respect to the distance from the approaching
curve) for the controller function, the parameter J_.HOR s used, where
HOR stands for the horizon points (of the electronic horizon) to be
considered. J_ZHOR is always a negative value, and values closer to zero
make the controller respond to the approaching curve when it is further
away with a smaller deceleration demand. Higher negative value tells the
controller to respond when the approaching curve is closer in proximity
but with a larger deceleration. A pictorial representation is given in
Figure 5.9.

The black line represents the target velocity set for the controller and
the reference velocity curve is given in red. As explained previously the
controller tries to control the vehicle speed (in blue) as close as possible
to the reference speed.

The mathematical expression “A_MAX + J_ HOR*time” determines
the funnel of the vehicle velocity curve shape (shown in blue). More
negative J_HOR give the velocity curve a sharper shape, while values
closer to zero give the velocity curve a flatter shape.

The range of the variation parameters examined in the tuning task have been
shown in Table 5.1.

88 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.9 Illustration of the design variable (variation) J_-HOR.

Table 5.1 Range of variation parameters used in the tuning task

Design Variable From To
A_MAX (m/s"2) 1 5
FORWARD_TIME (s) 0.1 2
J_HOR (m/s"3) -5 -0.2
J_MAX (m/s"3) 1 3

5.2.3 Key Performance Indicators (KPI)

The output variables to demonstrate the effectiveness of our tuning task to
meet the targets are described below and illustrated in Figure 5.10:

e Mean Speed: The mean of the vehicle speed in each test run is indicative
of the sportiness of the driving experience. A higher mean speed helps
finish the test maneuver in less amount of time, and makes the driving
experience sportier.

e Speed below reference: The reference speed curve is the maximum speed
with which the vehicle (Fiat 500L) can maneuver the digital test track
without leaving the road for the reference use case. Hence to ensure
vehicle safety it was ensured that the vehicle speed during the tuning
task was always below the reference velocity.

5.2 Demonstrative Example 89

Figure 5.10 Key performance indicators.

e Jerk_RMS: Vehicle jerk which is the rate of change of vehicle acceler-
ation, is indicative of the driving comfort. Lower rate of change of jerk
gives a comfortable ride, so the root mean square of the jerk in a test run
is a good indication of the driving comfort.

5.2.4 Test Maneuver

The test maneuver consisted of 5000 m test run on a digitized road imitating
the road between Ceva and Savona in Italy run on IPG Carmaker for Simulink
(CM4SL). IPG Carmaker environment is illustrated in Figure 5.11. The top
left is the Carmaker for Simulink main GUI, showing details about the vehicle,
simulation speed, time and distance of maneuver etc. The bottom left imitates
the car instrumentation. The top right is time based plot of car speed and the
vehicle jerk. The bottom right is the IPG Movie which illustrates the overall
test run in a movie.

5.2.5 Test Run Overview

The test run overview is illustrated in Figure 5.12. The test parametrization
was done in AVL CAMEO, where a space filling DoE design with the four
variations was used. The variations were then uploaded to CM4SL through

90 Tuning of ADAS Functions Using Design Space Exploration

Figure 511 IPG Carmaker test environment.

Figure 5.12 Test run overview illustrating the work flow.

the CAMEO-Carmaker Interface, where the test maneuver was run for each
variations setting. AVL CAMEO then stores the measurement parameters
observed as the KPIs for further evaluation.

5.2 Demonstrative Example 91

During parametrization there were limits set on the minimum (-2 m/s"3)
and maximum (2 m/s~3) acceptable vehicle jerk values. Whenever the vehicle
jerk value violated the limits the test run at that test point was halted
and no measurements were recorded. This affected the overall DoE design
effectiveness with a reduced design space and as a result reduced measurement
points. To overcome this challenge a COR DoE (Customized Output Range)
method was utilized, which is an iterative method where first alternate test
points were added by CAMEO to maintain the DoE design. Then based on
these preliminary measurements the design space was further modified and
additional test points were added in the relevant variation space to improve
the final information from the measurements. Design space modification. The
AVL CAMEQ interface is illustrated in Figure 5.13, where the image to the
left illustrates the overall test parametrization while the image to the right
shows the test run window.

5.2.6 Raw Data Plausibility Check

Before the mathematical modeling of the selected output measured variables,
the raw measurements were checked for plausibility. Firstly, the measured
variables were checked for any outliers as shown in Figure 5.14 for mean

Figure5.13 Leftimage illustrates the test preparation window while the rightimage illustrates
the test run window.

92 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.14 Checking for outliers in the measured variables.

speed. The measured values were within the acceptable range. The figure also
shows that the repetition points (a select number of test conditions, usually the
start condition which are repeated to check the reproducibility of test results)
shown in green were perfectly reproduced.

The effect of design space modification, due to limit violations and the
design correction by COR DoE method can be seen in Figure 5.15. In a
certain range of variations for A MAX, J_.HOR and FORWARD _TIME there
are no test points. Limit violations encountered when tests were carried out at
these range of points are the reason why they were skipped by AVL CAMEO.
Conversely a greater density of test points in certain ranges of variations show
where the COR DoE added alternate or additional test points.

5.2.7 Meta Modelling

The raw data plausibility check was followed by empirical modeling of the
output variables. The automatic modeling in CAMEOQO gave reasonable results
with a neural networks model with local model order 2, as can be seen in
Figure 5.16 which is the Measured (Predicted) plot which shows the fit of the
model to the measurement points. If there is a perfect match all points will lie
along the black line, but in our case the measurement points are reasonably
close to the black line.

5.2 Demonstrative Example 93

Figure 5.15 Check of DoE design and the boundaries of variation parameters.

Figure 5.16 Figure depicting the quality of empirical modeling.

After checking the quality of modeling, the intersection plots were used
which represent a cut through the multidimensional model, showing the
influence of each variation depending on the values of the other variations.
In Figure 5.17 the influence of the variation parameters on Speed_Mean and

94 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.17 Intersection plot highlighting the influence of each variation on the output
variables and their interaction.

Jerk_LRMS can be observed. The confidence interval of the model is displayed
in the green dotted line and colored section. The narrow confidence interval
shows a high quality fit. The green bar on the x axis for each variation shows
the total design space, and as the confidence interval of the model in the
extrapolated region is also narrow, it shows good extrapolation capability of
the model. Now looking at the intersection plots, it can be noticed that J HOR
and ALMAX have a strong influence on the output parameters. The more

5.2 Demonstrative Example 95

negative the J_.HOR, the later the vehicle reacts to an approaching curve.
Hence it is still travelling at a high speed before decelerating to approach
the curve safely. Hence a higher mean speed is observed, but the resulting
braking produces higher vehicle jerk reducing the driving comfort. Influence
of A.MAX can be a bit counter intuitive but it can be seen that A MAX is
used to calculate J . HOR. The higher A MAX, the less negative is J.HOR.
Hence for higher AAMAX values J_HOR is closer to zero hence a smoother
and slower ride. It can also be observed that higher FORWARD _TIME allows
for a smoother and slower ride, which is because the controller can take more
time to achieve the desired acceleration.

5.2.8 Optimization

From the intersection plot, it is possible to manually find values of the
variations which give a comfortable ride or sporty ride or an acceptable com-
promise. But it is quite easy to miss the optimum or an acceptable compromise
when working with multiple input variations, hence the optimization tool in
CAMEO was used. In the current tuning scenario, the target was to be able
to isolate two modes of operation, comfort mode and sporty mode. Hence
a multi objective optimization was chosen with limits set on the minimum
desired mean speed of 115 Km/h and maximum acceptable JERK_RMS of
0.28 (Figure 5.18).

Figure 5.18 Optimization setting window in AVL CAMEO.

96 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.19 Trade-off plot between comfort and speed.

The result is plotted in a trade-off plot as shown in Figure 5.19, where
the steel blue is the pareto front, the blue points indicates the measurement
values and the other yellows points are random space filling points. The pareto
front shows the possible optimum trade-off solutions which can be considered
equally good as the only way to improve on objective would be to compromise
on the second objective. So by observing the pareto front it is possible to define
an optimum for comfort mode and an optimum for sporty mode of operation
Table 5.2.

In Figure 5.20: Sporty mode vs comfort mode: the vehicle performance
when operating at the two modes can be observed. The red velocity curve is
the reference velocity and blue velocity curve is the actual vehicle velocity.
It can be observed that the actual velocity is always below reference velocity
which was the safety requirement. Also the velocity changes in comfort mode

Table 5.2 Variations values for comfort and sporty mode
A_MAX FORWARD_TIME JHOR J.MAX SPEED_Mean JERK_RMS
Comfort 4.99 1.94 -0.84 1.0 115 0.09
Sporty 3.88 1.37 -1.84 3.36 120 0.28

5.2 Demonstrative Example 97

Figure 5.20 Sporty mode vs comfort mode.

is more gradual with no sharp peaks unlike in sporty mode where there are
rapid fluctuations in vehicle velocity. This behavior is also mirrored in the
acceleration values in both operation modes. The vehicle jerk curves (red plot
is the jerk request generated by the controller and blue the actual vehicle jerk
response) show much lower values in vehicle jerk for comfort mode while the
sporty mode show sharp and frequent peaks in jerk value.

5.2.9 Verification

The pareto front consists of points a majority of which are from the model
extrapolation. In order to verify the robustness of the model to accurately
extrapolate, ten random points were selected from the pareto front and for the
corresponding variation values the test runs were rerun. The results from these
test runs were evaluated as verification points in CAMEO. The Figure 5.21
shows the extrapolated model (in red) and its prediction interval (in blue), and
the measured verification points and its modeling (in green). The measured
verification points lie within the prediction interval of the model, showing the
extrapolation accuracy of the model.

98 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.21 \Vfrification plot to see how well the measured results from the verification run
fit the model results.

5.3 Model-based Validation

Once the reference tuning task is completed, it has to be tested, if the tuning
results are still acceptable, when not running the reference use case but
for varying road characteristics. Will the comfort mode still allow for a
comfortable drive also for different road situations? It would be unfeasible
to run simulations on thousands of different roads, besides making it difficult
to realize the influence of a specific road. In the current method the two tuning

5.3 Model-based Validation 99

modes are fixed and a system variation of a digitized road is performed using
the model based approach to validate our tuning results.

The digitized road is shown in Figure 5.22, where the lengths of the straight
sections (L1, L2, L3, and L4) and curvatures (R1, R2, R3) were varied while
keeping the total maneuver length to 5000 m. The controller settings were
fixed to run at first comfort mode and then sporty mode, and the resulting
measurement output variables are shown in Figure 5.23.

Figure 5.22 Digitized road used for the validation run.

100 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.23 Measurements comparison when run on comfort mode (in blue) and sporty
mode (in red).

It can be seen in Figure 5.23: Measurements comparison when run on
comfort mode (in blue) and sporty Mode (in red) that for the sporty mode the
resulting drive comfort is lower as indicated by the higher JERK_RMS. The
length of the straight portions do not influence the JERK_RMS for comfort
mode as strongly as in the sporty mode. The curvature of the turns seem to
influence the output in both the operation modes. A JERK_RMS limit of at
least 0.35 is expected, and it can be seen that the limit is maintained in both
the modes of operation for majority of the design space. In the sporty mode
the controller is set to maintain a higher vehicle speed and responds to the
oncoming curve only when itis close, hence the longer the straight sections, the
larger the jerk experienced when it decelerates rapidly to approach the curve
followed by a strong acceleration on leaving the curve. For the comfort mode,
the controller is set to focus on keeping the vehicle jerk close to minimum.
The validation task showed that, if the function (our UUT) is kept constant and
the simulation environment is changed, the function still manages to meet the
expected vehicle jerk targets. The influence of ‘L4’ on the jerk behavior needs
to be further investigated as it strongly increases the vehicle jerk fluctuations at
higher values especially for the sporty mode. To further explore and investigate

References 101

the influence of test track characteristics on the function response, it can be
tested on a variety of road types and test tracks. This assists in the further
improving the function performance.

5.4 Conclusions

Virtual tuning of an ADAS function developed on a MiL environment using
an optimization tool can be a powerful combination for the development of a
brands driver assistance system. The classical approach relies on a subjective
tuning of the ADAS function on a proving ground and public roads, which can
be supported and accelerated by using a virtual tuning environment. Using
DoE methods supported by AVL CAMEOQ, it was possible to increase the
number of tuning tests compared to a manual tuning, and also the number of
target parameters and tests needed to match them. The possibility to use the
developed function for alternate use cases by separating the software and the
tuning data is precondition for tuning works in general.

Independent of that also in the validation process a model-based approach
can be very helpful, as the test coverage for a certain use case can be extended
to a wide range of possibly occurring variants of that use case. The robustness
of the key performance indicators considered as relevant can be estimated.

Acknowledgement

We would like to thank Mr. Andreas Saroldi from CRF for providing the ADAS
function.

References

[1] M. Paulweber and K. Lebert: Instrumentation and Test Systems: Power
Train development, Hybridization and Electrification. Chapter 5.4.2
Application Data management, Springer View, 2016.

[2] AVL Tuning Data Management Software: http://www.avl.com/creta
(called at 2016 01 20).

[3] H.-M. Koegeler; A. Firrhapter; M. Mayer; K. Gschweitl: DGI-Engine Cal-
ibration, Using New Methodology with CAMEO. In SAE NA, Capri —Italy,
23-27. September 2001.

[4] E. Castagna; M. Biondo; J. Cottrell; H. Altenstrasser; Ch. Beidl;
H.-M. Koegeler; N. Schuch: Multiple Tier 3 Engine Applications based
on global modelling. In MTZ 6/2007.

102 Tuning of ADAS Functions Using Design Space Exploration

[5] T. Fortuna; H.-M. Koegeler; M. Kordon; V. Gianluca: DoE and Beyond-
Evolution of the Model based Development Approach, in ATZ world-
wide, Springer, 2015.

[6] H. M. Koegeler; B. Schick; P. E. Pfeffer; A. Contini; M. Lugert;
T. Schoning: Model Based Steering ECU Calibration on a Steering in
the Loop Test Bench, in Chassis Tech 2015.

[7] D. C. Montgomery: Design and Analysis of Experiments, John Wiley
and Sons.

[8] A. Rainer; H. M Koegeler; D. Rogers: Iterative DoE — Improved
emission models and better optimization results within a shortened
measurement time, in PMC, 2014.

PART II

Test Case Functions

http://taylorandfrancis.com

6

Deep Learning for Advanced Driver
Assistance Systems

Florian Giesemann?, Guillermo Paya-Vaya®, Holger Blume?,
Matthias Limmer? and Werner R. Ritter?

Linstitute of Microelectronic Systems, Leibniz Universitat Hannover,
Hannover, Germany
2Vision Enhancement, Daimler AG, Germany

6.1 Introduction

Today, vehicles contain a wide range of electronic driver assistance systems.
These systems, for example Anti-lock Braking System (ABS) or Electronic
Stability Control (ESC), increase car safety and on a more general level even
road safety. More complex Advanced Driver Assistance Systems (ADAS),
like Lane Departure Warning, Overtaking Assistant, Collision Warning or
Emergency Breaking do not only observe the parameters of the vehicle itself,
but also require information regarding the environment. Future applications,
which target autonomous driving, need an even more detailed understanding
of the vehicle’s environment and the current driving situation. Therefore,
vehicles are equipped with a number of sensors, which enable the perception
of the vehicle’s surroundings including other road users. But the sensors
generaly used deliver a huge amount of raw and unrefined data, from which the
necessary information needs to be extracted. For instance, for camera sensors,
an algorithm called Scene Labeling can be used to detect relevant objects in
camera images. It assigns every pixel of an input image to a semantic class
(e.g., road, car, free space etc.) and can therefore be used to extract detailed
information from the scene.

The increasing complexity of algorithms and the increasing amount of
data that has to be processed requires a high amount of processing power. At
the same time, processing hardware is subject to restrictions regarding power

105

106 Deep Learning for Advanced Driver Assistance Systems

consumption and size. These conditions make the field of embedded hardware
platforms for driver assistance systems challenging.

This chapter is organized as follows: Section 6.2 gives an introduction
to Scene Labeling techniques and their application in Advanced Driver
Assistance Systems. Section 6.3 explains the concepts of Convolutional Neural
Networks and Deep Learning. In Section 6.4, an exemplary CNN is presented
and evaluated. Section 6.5 describes different hardware platforms for Scene
Labeling. Finally, Section 6.6 summarizes the chapter.

6.2 Scene Labeling in Advanced Driver
Assistance Systems

Getting a thorough understanding of the vehicle’s environment is an important
step in the development of advanced driver assistance systems. Different
techniques for detection and classification of objects have been developed.
Literature offers a wide range of algorithms for detecting traffic signs,
traffic lights, driving lanes, and also other vehicles and pedestrians. In
order to build up a comprehensive understanding of the environment, not
only single objects have to be detected, but also the objects in relation to
each other have to be determined. This is commonly referred to as Scene
Labeling.

Scene Labeling is a technigque to classify images on different levels of
detail. Image-level Scene Labeling (e.g., [1]) is used to derive one or more
labels for the whole image that describe different scene types, e.g., urban, inter-
urban, or highway. On another level, labels are deduced for small sub regions
of an image, so called regions of interest. This allows for a more detailed
understanding of the scene in terms of objects, like pedestrians, vehicles,
driving lanes, traffic signs and so on. On a third level of detail, each pixel in an
input image is classified and provided with a semantic label. The information
provided by these labels can be used in different applications, for example in
pedestrian/obstacle detection, close range lane course estimation or relative
map positioning.

Scene Labeling can also be combined with other detection methods in
order to increase reliability and thereby increase the integrity level of safety
functions. Moreover, it can replace different detection modules in order to
save resources.

The Scene Labeling task is usually performed in two steps. The first
step extracts features from the input image; the second step computes a
classification of the image, the region, or the pixels from the extracted features.

6.3 Convolutional Neural Networks and Deep Learning 107

Several different features are used in order to perform image segmentation
and semantic labeling. Some algorithms rely on single, low-level features,
like color [2], texture [3, 4], shape [3, 5], geometry [6], and edge features
[7]. Object detection algorithms are used to extract high-level features, e.g.,
pedestrian detection [8], traffic sign detection [9], and lane detection [10].
Some algorithms perform labeling using image segmentation techniques, e.g.,
Super Pixels [11] or sliding windows using Boosting [12] to detect regions of
one certain class, e.g., pedestrians or traffic signs.

Classification of extracted features is performed using different tech-
niques, like Support Vector Machines [13], Genetic Algorithms [7], or Neural
Networks [14]. Probabilistic models like Conditional Random Fields (CRF)
[15] and graph-based optimization methods (e.g., Graph Cut [16]) are used
to combine different features and include smoothness constraints or neighbor
relationships.

Recent advances in the field of deep learning and neural networks yielded
a new technique for the scene labeling problem, which is described in the next
section.

6.3 Convolutional Neural Networks and Deep Learning

Typical systems for detection and recognition of objects or situations use a
two-step data processing scheme. In a first step, features are computed from
data gathered through different sensors, like cameras, radar, etc. Then, asecond
step uses the previously computed features in order to classify the candidates
into the object classes. The implementation of the classification step might
involve the use of machine learning techniques, i.e., the training of a classifier.
One difficulty in this scenario is the selection of features to be used. Often,
these features are hand-crafted and a lot of work might be involved in tuning
the parameters in order to find a set of features that can be used for reliable
detection and recognition of objects.

Another way of building recognition systems that evolved recently is the
use of learning techniques and especially the technique of deep learning with
close coupling between the feature extraction and feature classification steps.
Deep learning describes methods, in which feature extractors are not hand-
crafted but automatically learned from a set of training data. Multiple layers
of feature extractors can be used in a hierarchical structure in order to allow
deeper layers to extract features of higher order from previous layers. The
idea behind this technique is that the learning algorithm is capable of detec-
ting the best features for the following classification step itself. Commonly

108 Deep Learning for Advanced Driver Assistance Systems

used implementations of the deep learning methodology are artificial neural
networks.

6.3.1 Introduction to Neural Networks

Inspired by processes in the biological neural networks of the central nervous
systems and especially the brain, different computational models of artificial
neural networks have been developed [17]. Artificial neural networks are built
as a collection of relatively simple units, so called neurons, that are connected
together to form a network which can process a complicated task. One of
the first models of neural networks is called perceptron [18]. The simple
perceptron neurons perform binary decisions depending on their input values.
The input signals x; are weighted and accumulated. The neuron “fires”, i.e.,
produces an output signal y of 1, if the weighted sum of the input signal
exceeds a given threshold value, and outputs 0 otherwise. The first networks
had one single layer of neurons and were only capable of computing linear
classifications. More complex networks with multiple layers were capable
of computing more complex classifications. Nowadays, neural networks use
a different model for the artificial neurons [19, 20], as depicted in Figure 6.1.
The input values, which are now real numbered values, are weighted and
accumulated. Afterwards, a non-linear activation function is applied to the
sum. Commonly used activation functions are the sigmoid function, which
can be interpreted as a smoothed threshold. Recently, rectifier linear units
(ReLU) have been reported to have several advantages over the sigmoid
functions [21]. Some exemplary activation functions are shown in Figure 6.2.

Figure 6.1 Model of an artificial neuron.

6.3 Convolutional Neural Networks and Deep Learning 109

Figure 6.2 Exemplary activation functions used in neural networks.

The bias is another value summed up along with the weighted inputs. This
parameter influences the neuron’s general activity or the likelihood for an
output activation of the neuron. For simplicity, the bias can be interpreted as
the weight for a constant input value of 1, so that all parameters of the network
can be interpreted as weights. Therefore, a neuron with inputs z1, zs . . ., 2,
weights wy, . . ., wy, bias wy, (with g = 1) and activation function f can be
described mathematically as

y=1r (Z wzafz)
i=0

In so called Multi Layer Perceptrons (MLP), neurons are arranged in layers.
The neurons of one layer are connected to neurons in the following layers.
No connections exist between neurons of one layer and the graph formed by
the neurons and connections is a directed acyclic graph. Therefore, MLPs are
called feed forward networks.

The task performed by the neural network depends on the parameters,
namely the weights and biases. Therefore, the network parameters have to
be adjusted before the network produces the correct outputs. This adjustment
is called training. Different methods for training multi-layer feed-forward
networks have been devised. The most commonly used technique is the
backpropagation of error [22].

6.3.2 Supervised Learning

In a neural network, the internal parameters (weights of the neurons) are
also called trainable parameters, since they can be trained to approximate a
desired function. In case of Scene Labeling, this function would map a pixel of
an image to a specific label, using the pixel’s neighborhood. For classification

110 Deep Learning for Advanced Driver Assistance Systems

tasks with a given set of classes, supervised learning schemes are used. A set
of training samples contains input images together with the desired output. In
combination with an error function, the training set can be used to adjust the
internal parameters of the network.

The Cost Function and Backpropagation

Supervised learning for neural networks is performed by measuring the neural
net’s estimated output against the expected output with a so called cost
function. The goal of a supervised training is to find the internal parameters
which minimize this cost function regarding a set of training examples. Since
the network in general models a highly non-linear function, gradient descent
can be used as an optimization procedure. This is done by computing the
gradient of the cost function and leveraging the chain rule to propagate the
cost and the gradient back through each layer of the network. The weights in
each layer are updated according to the current gradient of the backpropagated
cost. This algorithm is therefore called backpropagation.

A successful training converges against the minimum value of the cost
function. It is important to choose the cost function suitable for the task that
the neural network needs to perform. For classification tasks, a combination of
the softmax function and (multinomial) logistic regression is often performed
to train the internal parameters. The softmax function serves as a normalization
function, which maps input values x; of arbitrary range to values in the range
(0, 1) that add up to 1. The maximum of the input values maps close to 1 while
the other values map close to 0. The function is defined by

e%i

25:1 etk

The softmax directly serves as the multinomial version of the logistic function
used in logistic regression. The resulting cost function is defined by

softmax(z;) = forj=1,.. K.

cost(z) = —In(softmax(x},)),

with z;, as the predicted output of the neural network for the actual class k.
The cost is therefore the negative log-likelihood of the expected class, which
minimizes, when the estimated probability for that class is 1.

Stochastic Gradient Descent

Gradient descent is an algorithm that finds a local minimum by following
iteratively the negative gradient of a function F'(z) at each point x. It can be
defined as

6.3 Convolutional Neural Networks and Deep Learning 111

Ti+1l = Tj — UIVF(I'z)

Here, n; is the so called learning rate at iteration 7. Choosing the right » in
every iteration of the algorithm is crucial for the success and the convergence
speed of the optimization. If 7 is too small, it takes many iterations to find
a local minimum. Furthermore, the detected local minimum might just be a
plateau with better local minima in the neighborhood. If the chosen learning
rate is too big, it is possible to jump repeatedly over the local minimum,
but never reaching it. In severe cases, it is even possible that the algorithm
diverges. There are several schemes for choosing the learning rate adaptively.
Resulting in most cases in a computational overhead, which is due to an
additional analysis step at the current point of the function. A fixed learning
rate is often used, which is scaled down in every iteration. Later iterations
are supposed to be close to a minimum and require therefore a finer grained
learning rate.

Given the basic gradient descent update rule, the term 7;V F'(x;) can be
called update v; of iteration 4. Since these updates only rely on the current
gradient, small bumps in the error function might lead to a jittering path in
the gradient descent, which increases the number of iterations until a local
minimum is found. This might especially occur in stochastic gradient descent,
which does not use every training sample in each iteration. To overcome this,
many learning schemes extend the update rule by a momentum term. The
update rule is then defined by

Tip1 = x; — (i VEF(2;) + pvi—1)
with a new definition for the update v;:
v; = VF(z;) + puvi—1 and 19 =0.

The parameter © € R(u > 0) denotes the influence of the update from the
previous iteration. If x = 0, no momentum is used to calculate the current
update. Update steps are stabilized and the *“velocity” in flat valleys of the
error function is increased by using a momentum. However, this property is
not always desired in all gradient descent schemes, because the momentum
might also cause the update to overshoot. Hence, the momentum term should
be used with care.

In a learning environment, a point = of the cost function is the set of
internal parameters unified with the expected net output. Since there is not
only one training example but many, there are also many expected output
points. The cost of more than one data point is therefore the sum of all costs.

112 Deep Learning for Advanced Driver Assistance Systems

This is called objective function. It follows, that in an iteration (epoch) of the
gradient descent algorithm, all data points need to be processed. This is called
batch gradient descent. In many cases though, processing all data points in one
epoch is not feasible because of the size of the dataset. In this case, stochastic
gradient descent is used. Instead of predicting all data points per epoch, a
random subset for each epoch is generated. If the subsampling is random
enough in each epoch, this method optimizes an approximation of the objective
function. Though each individual epoch might not sufficiently approximate
the objective function, the repeated random sampling does. Stochastic gradient
descent is therefore a common approach to train a neural network with big
datasets.

6.3.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is an extension to the common
MLP, originally designed for two-dimensional data, like images. As the name
suggests, it adds convolutional layers to the set of possible layers in an MLP.
There is an analogy here with the primary visual cortex of a cat, which
also uses convolution-like simple cells to extract information from spatially
close overlapping regions of the field of view [23]. In [24], the authors
showed that the backpropagation algorithm can be extended for the training of
CNNs by introducing an update and backpropagation rule for convolutional
layers.

Convolutional Layer

The convolution layer differs in two ways from the common fully connected
layer of an MLP:

1. Convolution layers only sum up a fixed window of the input signal. They
are therefore only locally connected. This connection window is called
receptive field of the layer.

2. Each possible position of a receptive field uses the same weights to
produce an output. This is called weight sharing.

The output signal is produced in a sliding window fashion, by applying a
weighted summation of the receptive field for each possible receptive field
position. The output contains as many values as possible positions. It is exactly
a convolution of the input signal, where the layer weights form the convolution
filter (kernel). A convolution layer can have several filters, thus forming a filter
bank, which is analogous to the amount of hidden units in this layer.

6.3 Convolutional Neural Networks and Deep Learning 113

Pooling Layer

Another important extension of the MLP is the pooling layer. A pooling layer
performs a subsampling of the input signal, by “combining” small windows
of the input signal into several singular values. A common pooling function
is max-pooling, which calculates the maximum of its receptive field. Another
pooling function is average-pooling which computes the average value in
its receptive field. A pooling can be seen as a convolution with a special
function and a stride that equals the filter size of the pooling kernel. Regular
convolutions have a stride of 1, meaning every pixel position is computed
in the convolution. A stride of 2 means that every other pixel position is
computed. The purpose of pooling is not only to reduce the spatial size of the
input signal, but also to increase the robustness of translational invariance of
the activations.

Multiscale CNN

A variation of convolutional neural networks is the Multiscale CNN. Instead
of processing an input signal as it is, the Multiscale CNN processes several
scaled down versions of the signal simultaneously. This approach increases the
ability to extract scale invariant features, without the need to increase the size
for the extracted pixel neighborhood patch windows. The extracted feature
maps of each scale are finally combined to produce a joint feature map. This
can be done by a fully connected layer that takes all feature maps as an input
to compute its output. For the Scene Labeling application, an image pyramid
has to be created prior to the extraction of image patches for each scale, which
are then fed to the Multiscale CNN.

Patch Based and Image Based Application

Neural networks for image classification tasks were traditionally designed so
that they process a complete image of fixed size and produce classification
results of a fixed size as well. Big image sizes automatically implied that
the fully connected hidden layers had also a great amount of hidden units.
This resulted in the reduction of the input images sizes to keep the neural
networks scalable and computable. In order to apply neural networks in a
pixel classification scheme, image patches had to be extracted at each pixel
position that needs to be classified. In many cases, these extractions are applied
sparsely across the image to produce a coarse pixel classification.

A patch based application of CNNs for pixel classification tasks is com-
putationally very inefficient, because image patches for neighboring pixels
overlap. Therefore, the same convolutions are computed multiple times.

114 Deep Learning for Advanced Driver Assistance Systems

This redundancy can be omitted by applying CNNs in an image-based
fashion. This has an effect on several aforementioned components of the
neural network, since they have been designed in regard to a patched based
application. The fully connected layer especially is not applicable in an image
based application, because full connectivity is contrary to the local connectivity
of the convolution layers for arbitrary image sizes. The adequate translation
of a fully connected layer in a patch based approach is actually another
convolution layer, with a 1x1 convolution on all locally connected input
values.

Another layer type that works differently in an image based application
is the pooling layer. A naive translation would result in a huge loss of output
resolution, since pooling layers in patch based mode are designed to subsample
the input signal. A patch based application on every possible pixel location
though doesn’t share this subsampling property. This is why the patched
based approach really evaluates every pixel location, while an image based
approach implicitly only fully evaluates a subset of all pixel location due to the
subsampling. To remove the subsampling property, a pooling must be applied
in a convolutional manner (overlapping pooling). Looking at the output maps
of such an overlapping pooling, it is clear, that they differ from maps of a non-
overlapping pooling. In particular, neighboring pixels from a non-overlapping
pooling are not neighbors anymore. If a convolution layer follows, it results
in awrong calculation of the output maps. This can be corrected by reordering
the pixels after the pooling layer into n subimages, where n is the size of the
pooling kernel or the stride, and apply the following layers on each subimage
independently [25]. The reordering is hence defined as fragmentation, because
the input map is fragmented into smaller output maps. Figure 6.3 shows such
a fragmentation after the application of a 2 x 2 pooling producing 2 x 2
subimages.

Figure 6.3 Example of a fragmentation after a 2 x 2 pooling. The naive approach would
only produce the bright pixels, while an overlapping pooling produces all other possible pixels
(purple, green, and blue). These pixels must be reordered to be able to correctly continue with
the forward propagation of the neural network.

6.4 CNN for Scene Labeling 115

For Multiscale CNNs, an image based application introduces another
difficulty, which needs to be solved. In a patch based approach, the image
patches for each scale have to be extracted and each patch has the same
size. In an image based approach however, the feature maps for different
scales are of different size. This becomes a challenge in the fully connected
layer, which combines the feature maps of all scales. Since there are no fully
connected layers in the image based approach, the feature maps of each scale
need to be transformed so that a regular convolution layer can handle them.
The simplest solution is to scale the smaller maps up so that they all match
in size. If the maps have been fragmented because of a pooling layer, they
need to be defragmented before they are scaled up. Defragmentation is the
reverse function of fragmentation, turning multiple smaller maps into one
bigger map.

6.4 CNN for Scene Labeling

There are many ways to perform Scene Labeling on images. CNNs have
proven themselves useful on this task, because they achieve state of the art
performance without the need to develop complex multi cue frameworks that
combine different inputs and sensors. Additionally, many frameworks for
modeling, training and execution of CNNs exist, e.g., Caffe [26], Torch7 [27],
Theano [28], Pylearn2 which is built on top of Theano, and cuda-convnet
[29]. These frameworks exploit the CNN’s parallelizability to provide fast
and time efficient implementations using General Purpose GPUs (GPGPU).
Furthermore, the research community is actively training and publishing mod-
els, which can often be adapted to a specific task by resuming the training with
corresponding data. Most frequently used models are AlexNet [30], GoogleNet
[31] or VGG [32]. They differ in complexity and run time efficiency, but
reached state of the art performance during their time of publishing for certain
challenges on datasets like ImageNet [33]. A high network capacity is heeded
to achieve a high accuracy on such complex tasks. So the trained models are
rather big and need a huge amount of computational power. Incorporating
this into an embedded system with low power consumption, as is needed for
ADAS, is still a great challenge.

The following section describes one possible model with reduced com-
plexity, selected for implementation in the course of the DESERVE project.
Its purpose is to detect the road, vehicles and vulnerable road users, which can
then be utilized for lane prediction and pedestrian detection.

116 Deep Learning for Advanced Driver Assistance Systems

6.4.1 Exemplary Network for Scene Labeling

The proposed model is derived from the Multiscale CNN used in [34]. It
consists of 2 convolutional layers and 2 pooling layers. The activation function,
used after the convolutional layers, is the ReLU function (see Figure 6.2).
Each convolution layer contains a bank of 16 x (7 x 7) filter kernels. These
four layers are applied on three scales of the input image and combined by a
fully connected layer, producing 6 output channels: background, road, vehicle
(including cars, trucks, busses, ...), vru (vulnerable road users: pedestrians,
cyclists, ...), sky and infrastructure (buildings, signs, barriers, traffic lights,
...). Those channels are normalized by a softmax layer to produce class
probability maps for each class. By applying an argmax on these maps a
class membership map is produced returning the most probable class for each
pixel. The input images are preprocessed by transforming them into an image
pyramid and locally normalizing them afterwards to zero mean unit variance
in a 15 x 15 neighborhood. Figure 6.4 shows the complete toolchain and
Figure 6.5 the network topology in more detail.

6.4.2 Evaluation

The topology described in subsection 6.4.1 was trained with 6895 labeled
night time images of a near infrared camera used in the NV3 night vision
system of a Mercedes Benz S-Class. The images show mainly rural, but also
urban, road scenes under different weather conditions and different seasons.
To augment the heavily under-represented vru class, 15174 images are added
to the aforementioned set of images, where only the pedestrian and cyclist
labels are used. This is called the learn set. The training scheme is stochastic
gradient descent with the logistic regression objective function for 6 classes.

Figure 6.4 The complete processing chain from input image to a scene labeled image is
displayed. After building an image pyramid of 3 layers and the local normalization every scale
is fed to its own processing chain. This produces 6 class membership probability maps. They
can be interpreted and augmented as seen in the output image.

6.4 CNN for Scene Labeling 117

Figure 6.5 The image pyramid construction layer produces 3 scales that are locally nor-
malized in 15 x 15 windows. Every scale is propagated independently. There are in total 2
convolution layers with 16 x 7 x 7 filter kernels using the ReLU activation function. After
activation a 2 x 2 max-pooling is performed followed by a fragmentation in the first pooling
layer. A second fragmentation is not necessary since the second pooling layer is followed by
a defragmentation. The small scaled feature maps are sampled up and fed to a classification
layer, being a6 x 1 x 1 convolution layer. Finally, a pixel wise softmax is applied.

It is trained 10.000 epochs with 40960 balanced training examples (patches)
per epoch. The learning rate was determined following several short runs of
100 epochs with different learning rates. The best progressing learning rate
was then chosen. During training, the learning rate was linearly reduced after
5000 epochs by a factor of 0.995 per epoch. Figure 6.6 shows the training
progress (2-2-16 topology) in relation to the objective function on the learn
set. Two other topologies were also trained in the same way. One introduced
a third convolution layer including the ReLU activation function after the
second pooling (3-2-16 topology). The third topology is similar to the 3-2-16
topology, but uses 32 filters per convolution (3-2-32 topology). Figure 6.6
shows that the topology with the least trainable parameters (2-2-16 topology)
performed worst during training. The introduction of another convolution
layer (3-2-16 topology) resulted in a better learn curve. However, doubling
the amount of filters (3-2-32 topology) increased the learn performance yet
again.

Since the classifier of topology 3-2-32 appears to have the best perfor-
mance, it is evaluated on the evaluation set of images containing 200 images
that have not been part of the learn set, called the eval set. Evaluation in
multiclass problems is done by analyzing the confusion matrix. The confusion
matrix for topology 3-2-32 is displayed in Table 6.1. It shows the class
predictions in relation to the actual class. The diagonal entries form the true
positives (pixels that were classified correctly, TP) for each class, while the
remaining entries of a line or column display the individual false negatives

118 Deep Learning for Advanced Driver Assistance Systems

Figure 6.6 Displayed are the learn curves of three different network topologies. Each
topology was trained three times and the learn curves were averaged. The averaged learn
curves are displayed as solid lines while the standard deviation for 50 epochs is displayed as
the area around the lines.

Table 6.1 The confusion matrix of topology 3-2-32 and the respective FNR, FPR and U for
each class. The classes are background (Bg), road (Rd), vehicle (Veh), sky, vulnerable road
users (VRU) and infrastructure (Inf). Each cell shows the percentage (from all pixels in the
dataset) of actual class (row) predicted as class (column)

Act~Fredl gy Rd \eh Sky VRU Inf

Bg 24.9349° 1.9409 11226 2.1282 0.3359° 5.8754
Rd 15685 29.4059° 1.0226 0.0034 0.1269 0.3226
Veh 0.1042 0.0829 3.6523° 0.0051 0.1156 0.7749
Sky 1.7298 0.0080 0.1744 7.1476* 0.0083 0.9632
VRU 0.0058 0.0032 0.0740° 0.0001 0.0733* 0.0777"
Inf 1.6244 0.0459 1.0077 03351 0.3538° 12.8450°
FNR 31.38 9.38° 2287 2875 68.68° 20.77
FPR 16.79 6.61° 48.22¢ 2570 92.77° 38.42
U 60.27 85.16° 44.89° 57.17 6.24° 53.02

(pixels not classified as the desired class, FN) and false positives (pixels falsely
classified as the desired class, FP). Therefore, the sum over one row of the
table gives the percentage of the respective class in the whole training set.
The quality measures of binary classification problems can therefore be
applied for each class individually in a “one versus all” fashion. Classic
measures contain the False Negative Rate (FNR), the False Positive Rate
(FPR) and the Intersection over Union (1U). Those are defined as follows:

6.4 CNN for Scene Labeling 119

FN FP TP
ENR=— FPR=" U= 50 rpurn
N denotes the number of all pixels evaluated. FNR and FPR are 0, if the
classification is correct and get bigger, if more pixels are classified incorrectly.
The U has a value of 1 in case of a perfect classification and the value gets
smaller, if more pixels are classified incorrectly.
Table 6.1 shows the percentage of pixels classified as one of the 6 classes.
The last 3 rows display the class-wise FNR, FPR and IU. The confusion matrix
shows several interesting features:

a. The diagonal entries show the true positives, the correctly classified
pixels. Since the total amount of pixels in the evaluation dataset for each
class varies, the maximum possible number for each entry varies as well.

b. For the class vulnerable road users (VRU) the classifier performs badly.
There are more pixels classified as vehicles (Veh) or infrastructure (Inf)
than VRUSs, resulting in a bad FNR. Even worse is the FPR, since the
amount of background (Bg) or infrastructure (Inf) pixels classified as
VRU is far greater than the amount of correctly classified pixels. This
results in a bad 1U.

c. The best performing class is the class road (Rd). It has comparatively
few false positives and negatives, which results in a good FNR, FPR and
IU.

d. The class vehicle (Veh) shows an arbitrary performance. Though the FNR
is quite good and better than the class background (Bg), its FPR is second
to last. So the IU is greatly affected.

After analyzing each class by itself the question arises of how good this clas-
sifier is compared to classifiers, which contain other well and bad performing
classes. A common measure to describe the overall performance of a classifier
is the accuracy (ACC). Itis the ratio of correctly classified pixels to all pixels.
Let N be the amount of classes and C; ; be the amount of pixels from class i
classified as class j. In a multiclass setup, the accuracy can then be defined as:

ACC — > iy Ok
N
Zz’,j:l Ci;

This measure captures in a straight forward way the correctness of a classifier.
The value is in the range [0, 1], where a perfect classifier reaches 1. If
one or more classes are under-represented in the evaluation dataset, the

120 Deep Learning for Advanced Driver Assistance Systems

expressiveness of this measure suffers, since it does not normalize the amount
of samples per class. Other ways to increase the sensitivity to underperforming
classes is to average the FNR, FPR or IU over the classes. The Matthews
Correlation Coefficient (MCC) was designed for binary classifications and
computes a correlation between the actual and predicted classifications. It
was extended to incorporate more than two classes and is defined by [35] as
follows:

Zﬁ{z,mzl Crk,kCm,i — Ci,kCr,m
J Zszl |:(Z;\L1 Cl,k) (Z}\{gzl Cg,f>:| Zszl |:(Z{V:1 Ck,l) (szy,gzl Cf=9>:|
f#k f#k

The Matthews Correlation Coefficient is in the range [—1, 1]. An MCC of 1
is a perfect classifier, while —1 is the total contradiction. An MCC of 0 is a
random classifier. Table 6.2 shows the ACC, mean IU, MCC and mean FNR
for the classifiers trained in Figure 6.6. It can be seen that topology 3-2-32
outperforms the topologies in all defined measures.

MCC =

6.5 Hardware Platforms for Scene Labeling

Embedded hardware platforms for Advanced Driver Assistance Systems face
several challenges. They have to provide a huge amount of processing power to
keep up with the rising complexity of applications and the increasing amount
of data they have to process. However, the platforms should have low power
consumption.

At one end of the spectrum of hardware architectures, General Purpose
Processors (GPPs) usually do not fulfill all the requirements and restrictions of
embedded systems in advanced driver assistance systems. They offer a high
degree of flexibility due to the arbitrary programmability, but they cannot
usually comply with the high demand on processing power while holding the
restrictions in power consumption.

Table 6.2 Displayed are the measures Accuracy (ACC), mean Intersection over Union
(mlU), Matthews Correlation Coefficient (MCC) and mean False Negative Rate (mFNR) for
3 topologies

Topology ACC mlU MCC mFNR
2-2-16 0.60 035 0.50 0.44
3-2-16 0.69 042 0.60 0.37
3-2-32 0.78 051 071 0.30

6.5 Hardware Platforms for Scene Labeling 121

At the other end of the spectrum, Application Specific Integrated Circuits
(ASICs) provide a high degree of processing power and excellent power
efficiency. However, they are not flexible as they are fixed after manufacturing
and cannot be programmed.

There is a wide range of hardware platforms in between these two
extremes, which provide a trade-off between the different characteristics. For
example, Graphical Processing Units (GPUs) have been used to accelerate the
execution of complex algorithms. They provide a certain degree of flexibility,
as they are programmable and they achieve high processing power due to a
high degree of parallelism. However, the power consumption of GPUs is fairly
high and they are therefore not suitable for use in personal cars.

Adapting processor architectures to a given application is a promising
approach for designing hardware platforms. Application-Specific Instruction-
Set Processors (ASIPs) are based on programmable processor architectures.
These are adapted to a specific application or a class of similar applications,
e.g., by extending the instruction set, by adding dedicated hardware acceler-
ators for frequently used operations, or by changing architectural parameters
in order to bypass bottlenecks.

Scene labeling has been implemented on several platforms including
CPUs, GPUs, FPGAs, and ASICs. This section gives an overview of recent
implementations of convolutional neural networks on different types of
computing platforms. At first, the computational complexity of convolutional
neural networks is discussed, by deriving a measure of the total number of
operations needed in order to compute the forward propagation of one frame
through the network. This also serves as a basis for the comparison of different
implementations, which is presented later.

6.5.1 Theoretical Performance Requirements

This section describes the computational complexity of convolutional neural
networks in terms of operations needed in the forward propagation of a frame.
This number of operations clearly depends on the topology of the network.

The most computational intensive task is the convolution, especially, as
many convolution layers contain a huge number of filters. For an input image
of size w x h and a convolution kernel of size n x n, the kernel is applied
(w—(n—1))(h—(n—1)) times. Each time, n? multiplications are performed
and the results accumulated. Counting the multiply and accumulate operations
as two, this leads to a total count of

122 Deep Learning for Advanced Driver Assistance Systems

Neonw(w, hy n) =2(w —(n—1))(h— (n — 1))n2

operations for a single convolution.

The activation function is applied to each output pixel of the input layer.
Therefore, the total number of operations for an input image of size w x h is
given as

Nact(wa h7 Cact) = thacta

where ¢, describes the cost of applying the activation function to one pixel.
In case of the ReLU (Rectified Linear Unit), the operation determines the
maximum of the input value and 0. Therefore, cgreriy = 1.

For the pooling layer, the number of operations depends not only on the
size w x h of the input frame, but also on the kernel size n x n and the stride s.
In some cases, the stride equals the kernel size, but in overlapped pooling, a
stride of 1 might be used. In general, the number of operations performed in
a pooling layer can be described as

wh+ (s—n)((s —n)+w+h)

52

Npool(w7 h7 n, 5) = Cpool ,
where ¢y is the number of operations per pooling window. For a max-
pooling, the number of operations is c,,.x = n? — 1, for an average-pooling,
the number of operations is caye = n? + 1.

For the exemplary convolutional neural network described in
subsection 6.4.1, which is named 2-2-16 in Table 6.2, the following remarks
give the numbers of operations for the single layers. The image preprocessing,
i.e., the construction of the image pyramid and the normalization, is not
counted in this section.

In this exemplary case, the input image has 1024 x 512 pixels. In the
preprocessing step, an image pyramid is generated by an iterative process. In
each iteration, the image dimensions are halved by subsampling. Afterwards,
the three scaled images from the pyramid are padded by replicating the border
pixels in order to maintain the correct output size after the convolutions. The
resulting image sizes are listed in Table 6.3.

The first convolution layer performs 16 convolutions with a 7 x 7 kernel
and generates 16 output images. The convolution is only performed for pixels
where the convolution kernel fits into the input image, so that the resulting
image is reduced by 6 pixels in width and height. The convolution layer is
followed by an activation layer, which applies the activation function to each

6.5 Hardware Platforms for Scene Labeling 123

Table 6.3 Input image sizes for three different scales in the exemplary convolutional neural
network

Scale Pyramid Output Padded

S 512 x 256 534 x 278
M 256 x 128 278 x 150
L 128 x 64 150 x 86

of the 16 output images of the convolutions. The following max-pooling layer
uses a 2 x 2 patch and a stride of 1 (overlapped pooling). It does not change the
total number of pixels but separates one image into four sub images of quarter
size. The fragmentation of the images does not contribute to the number of
operations since it can be hidden in the other layers. The second convolution
layer performs 16 convolutions of size 7 x 7 on each of the 16 fragmented
images and then accumulates them to 16 fragmented output images. The
following activation function and pooling layers work the same as after the
first convolution layer.

This flow of images through two convolution layers with activation
functions and two pooling layers is performed independently for the three
scales of the input image. The resulting images are scaled to the same size
before they are fed into the classification layer.

The classification layer at the end performs one convolution of size 1 x 1
per output class, of which there are six in the exemplary convolutional neural
network.

With these image and filter sizes, the computational complexity of the
convolutional neural network can be estimated using the equations above.
Table 6.4 gives the operation counts for the three scales by layer type.

The total number of operations performed for one input image is
4.796.792.784. As expected, the convolution layers contribute the biggest
share in the number of operations, with a proportion of 99.2 percent. In order
to reach a processing rate of 30 frames per second, 144 billion operations have
to be performed per second.

Table 6.4 Number of operations for the exemplary convolutional neural network

Scale Convolution Activation Pooling Classif. Operations
S 3.590.995.968 4.444.416 13.220.592 12582912 3.621.243.888
M 922.435.584 1.175.808 3.470.064 3.145.728 930.227.184
L 243.253.248 327.936 954.096 786.432 245.321.712

Ops. 4.756.684.800 5.948.160 17.644.752 16.515.072 4.796.792.784

124 Deep Learning for Advanced Driver Assistance Systems

Table 6.5 lists implementations of convolutional neural networks on differ-
ent platforms and gives the performance in terms of performed operations per
second. When available, two numbers are given for each implementation. The
peak performance gives the theoretical maximum number of operations per
second that the platform can perform. The real performance gives the number
of operations per second for CNNs of different topologies on the platform. Not
all implementations listed in the table are used for scene labeling, but perform
other image based detection and classification tasks with convolutional neural
networks. Therefore, the networks that are used in the applications may differ
in size. This is mentioned, because some implementations do not scale up
to bigger networks easily. The subsequent sections give more details to the
entries in the table.

Table 6.5 Comparison of different implementations of convolutional neural networks on
different platforms

Perf. [GOPs]

Author Year Device Peak Real
CPU Implementations

Farabet et al. [39] 2011 Intel Core 2 Duo 10 1.1

Dundar et al. [40] 2013 Intel Core i7 4-core 200 90

Jin et al. [41] 2014 Intel Core i5 45 30

Zhang et al. [42] 2015 Intel Xeon - 12.87
GPU Implementations

Farabet et al. [39] 2011 nVidia GTX 480 1350 294

Dundar et al. [40] 2013 nVidia GTX 780 3977 620

Jinetal. [41] 2014 nVidia GTX 690 5622 530

Cavigelli et al. [43] 2015 nVidia GTX 780 3977 1781

Mobile GPU Implementations

Farabet et al. [39] 2011 nVidia GT335m 182 54

Dundar et al. [40] 2013 nVidia GTX650m 182 54

Cavigelli et al. [43] 2015 nVidia Tegra K1 326 76
FPGA Implementations

Farabet et al. [39] 2011 Virtex 6 VLX240T 160 147

Dundar et al. [40] 2013 Zync ZC706 - 36

Gokhale et al. [44] 2014 Zync ZC706 - 227

Zhang et al. [42] 2015 Virtex 7 485t - 61.62
ASIC Implementations

Pham et al. [45] 2012 neuFlow in IBM 45 nm 320 294

Chen et al. [46] 2015 Accelerator in 65 nm - 452

Cavigelli et al. [47] 2015 Accelerator in 65 nm 274 203

6.5 Hardware Platforms for Scene Labeling 125

6.5.2 CPU-based Platforms

As discussed before, running convolutional neural networks for scene labeling
or other image processing tasks incorporates a huge amount of computation.
For the use in ADAS, CPUs cannot provide the necessary processing power
while also complying to the power budget restrictions. Active work is per-
formed in order to speed up the implementations (e.g., [36]). Also, algorithmic
research is conducted in order to speed up the convolutions, e.g., [37, 38].

Areference implementation of the exemplary CNN from subsection 6.4.1
was written using C++. It is worth mentioning that the focus in this implemen-
tation was not speed or efficiency. Instead, it was intended as a reference for the
assembler implementation described later. The implementations of the image
processing operations and the different layers of the convolutional neural
network make use of templates. This provides the flexibility to use different
data types for the pixel values and coefficients. The templates enabled the use
of fixed-point data types in order to analyze the compromise of data width and
accuracy.

On an Intel Core i5-2400 with 3.1 GHz, the computations for one input
image of size 1024 x 512 with double precision values and coefficients
require about 11 seconds, which corresponds to about 436 MOPS. This
implementation does not use multiple cores for computation.

6.5.3 GPU-based Platforms

Modern GPUs provide a huge amount of computing power that can be used
for general purpose computing (GPGPU). The use of GPUs is most beneficial,
if the application provides a high degree of parallelism and regularity. CNNs
fall into this category. Therefore, most deep learning frameworks mentioned
in the previous section accelerate evaluation and training of networks with
GPUs using CUDA, and there are also frameworks specifically developed for
GPUs, e.g., cuda-convnet2 [29] and Marvin [48].

A downside of using the powerful GPUs is the amount of power they
consume, which makes the use of GPUs in mobile devices infeasible. Never-
theless, GPUs can be used for training the networks, as the training is
performed offline. Recently, mobile or embedded GPUs have emerged, aiming
to provide low-power high-performance computing platforms.

6.5.4 FPGA-based Platforms

AFPGA, a configurable hardware platform, provides a compromise between
the flexibility of a GPU and the efficiency of an ASIC. The high degree of

126 Deep Learning for Advanced Driver Assistance Systems

parallelism that is possible in a FPGA, allows for high performance signal
processing. As double precision arithmetic is costly for a hardware-based
implementation, the C++ implementation of the algorithm was used to analyze
the quality of the classification depending on the data width of pixel values
and coefficients. For 32-bit data with 22 fractional bits, the computations are
exact and no errors appear. If 16-bit data with 11 fractional bits are used, about
1.4 percent of the pixels are classified incorrectly, which was acceptable in
this scenario.

The use of a soft core processor that is mapped to the FPGA also provides
software programmability of the design. In order to raise the computational
performance, the soft core processor can be extended with dedicated hardware
modules (application-specific instruction-set processor, ASIP). For example,
the instruction-set can be extended by new functional units for complex
operations which are placed in the processor’s pipeline and perform as quick
as the default operations. Additionally, more complex operations taking more
execution cycles can be added as external accelerators tightly coupled with
the processor’s data path.

In the course of the DESERVE project, an ASIP implementation for
convolutional neural networks has been developed. It is based on the TUKU-
TURI processor [49, 50], which was developed for image processing and
video coding implementations. It is a Very Long Instruction Word (VLIW)
processor with two issue slots and 64 bit wide registers that can be split
up into subwords of 8, 16, 32, or 64 bits. These subwords are processed
in parallel (microSIMD) by all default functional units. Additional features
include conditional execution in order to reduce control overhead, and a DMA
controller for memory transfer between external and internal memory.

As derived from the CPU-based reference implementation (see
subsection 6.5.2), 16 bit wide data is used for the pixel values and the network’s
coefficients. Therefore, the SIMD-feature can be used to process four values
in parallel, which gives a significant speed-up.

As seen in subsection 6.5.1, the convolution is the most computing
intensive task in the whole process. Therefore, the TUKUTURI processor was
extended with a co-processor that performs 16 convolutions of four pixels at
once.

The internal memory of the TUKUTURI is not capable of holding a whole
input image. Therefore, the images are processed in blocks. The DMA module
supports block transfers, so that a rectangular subsection of the image can be
transferred between internal and external memory. The module holds a queue
of memory transfers, which are processed independently from the TUKUTURI

References 127

processor. This allows the TUKUTURI to program several transfers and
process data blocks transferred previously, while the DMA transfers the next
blocks in the background.

The first implementation of the exemplary convolutional neural network
on the TUKUTURI processor processed one input frame in about 1.2 x 10°
cycles. With a clock frequency of 100 MHz, this corresponds to about 0.08
fps. Using the convolution co-processor, the cycle count could be reduced to
about 243 x 106 cycles, corresponding to a frame rate of about 0.411 fps. This
is a speed-up of factor 5.1. Using the capabilities for background transfers,
the total cycle count was reduced to about 101 x 10° cycles per frame, which
is an additional speed-up of factor 2.4, leading to about 0.99 fps. According
to Table 6.4, we need about 4.8 x 10° operations per frame. Therefore, this
implementation reaches about 4.8 GOPs.

6.6 Summary

Convolutional neural networks and methods of deep learning have been used
in image processing, segmentation and classification tasks successfully. The
huge amount of processing power needed for CNNs for Scene Labeling tasks
in advanced driver assistance systems combined with the resource restrictions
in embedded systems pose a challenge for hardware architects. FPGASs have
been shown as a suitable platform for the implementation of CNNs for Scene
Labeling.

References

[1] G. Carneiro and N. Vasconcelos, “Formulating semantic image annota-
tion as a supervised learning problem,” in 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05),
2005, pp. 163-168.

[2] E. Saber, A. Tekalp, R. Eschbach and K. Knox, “Automatic Image
Annotation Using Adaptive Color Classification,” Graphical Models and
Image Processing, 1996.

[3] J. Shotton, J. Winn, C. Rother and A. Criminisi, “TextonBoost for Image
Understanding: Multi-Class Object Recognition and Segmentation by
Jointly Modeling Texture, Layout, and Context,” International Journal
of Computer Vision, 2009.

128 Deep Learning for Advanced Driver Assistance Systems

[4] M. Pietikdinen, T. Nurmela, T. M&enpaad and M. Turtinen, “View-based
recognition of real-world textures,” Journal of Pattern Recognition,
2004.

[5] X. Ren, L. Bo and D. Fox, “RGB-(D) scene labeling: Features and
algorithms,” Computer Vision and Pattern Recognition (CVPR), 2012.

[6] P. F. Felzenszwalb and O. Veksler, “Tiered scene labeling with dynamic
programming,” Computer Vision and Pattern Recognition (CVPR),
2010.

[7] S. M. Bhandarkarand H. Zhang, “Image segmentation using evolutionary
computation,” IEEE Transactions on Evolutionary Computation, 1999.

[8] A.Ess, B. Leibe, K. Schindlerand L. V. Gool, “Amobile vision system for
robust multi-person tracking,” Computer Vision and Pattern Recognition,
2008.

[9] A. Broggi, P. Cerri, P. Medici, P. P. Porta and G. Ghisio, “Real Time Road
Signs Recognition,” 2007 IEEE Intelligent Vehicles Symposium, 2007.

[10] J. C. McCall and M. M. Trivedi, “Video-based lane estimation and
tracking for driver assistance: survey, system, and evaluation,” Intelligent
Transportation Systems, 2006.

[11] B. Fulkerson, A. Vedaldi and S. Soatto, “Class segmentation and object
localization with superpixel neighborhoods,” in Computer Vision, 2009
IEEE 12th International Conference on, 2009.

[12] A. Torralba, K. P. Murphy and W. T. Freeman, “Sharing Visual Features
for Multiclass and Multiview Object Detection,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, Vol. 29, No. 5, pp. 854-
869, May 2007.

[13] M. Turtinen and M. Pietikdinen, “Contextual Analysis of Textured Scene
Images,” British Machine Vision Conference, 2006.

[14] B. Hariharan, P. Arbelaez, R. Girshick and J. Malik, “Simultaneous
Detection and Segmentation,” Computer Vision — ECCV, 2014.

[15] X.He, R. S. Zemel and M. A. Carreira-Perpinan, “Multiscale conditional
random fields for image labeling,” in Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, 2004.

[16] X. Liu, O. Veksler and J. Samarabandu, “Order-Preserving Moves for
Graph-Cut-Based Optimization,” Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, \ol. 32, No. 7, pp. 1182-1196, July
2010.

References 129

[17] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, Vol. 5,
No. 4, pp. 115-133, 1943.

[18] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, Vol. 65,
No. 6, 1958.

[19] C. von der Malsburg, “Self-organization of orientation sensitive cells in
the striate cortex,” Kybernetik, \Vol. 14, No. 2, pp. 85-100, 1973.

[20] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, Vol. 79, No. 8, pp. 2554-2558, 1982.

[21] X. Glorot, A. Bordes and Y. Bengio, “Deep sparse rectifier neural
networks,” Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics, 2011.

[22] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Lerning representa-
tions by back-propagating errors,” in Nature, Vol. 323, Nature Publishing
Group, 1986, pp. 533-536.

[23] K. Fukushima and S. Miyake, “Neocognitron: A new algorithm for
pattern recognition tolerant of deformations and shifts in position,”
Pattern Recognition, Vol. 15, No. 6, pp. 455-469, 1982.

[24] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, \Vol. 86,
No. 11, pp. 2278-2324, Nov 1998.

[25] A. Giusti, D. Ciresan, J. Masci, L. Gambardellaand J. Schmidhuber, “Fast
image scanning with deep max-pooling convolutional neural networks,”
in Image Processing (ICIP), 2013 20th IEEE International Conference
on, 2013.

[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” in Proceedings of the 22nd ACM International
Conference on Multimedia, New York, NY, USA, 2014.

[27] R. Collobert, K. Kavukcuoglu and C. Farabet, “Torch7: A Matlab-like
Environment for Machine Learning,” in BigLearn, NIPS Workshop, 2011.

[28] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley and Y. Bengio, “Theano: A
CPU and GPU Math Compiler in Python,” in 9th Pytthon in Science
Conference (SCIPY 2010), Proceedings of the, 2010.

130 Deep Learning for Advanced Driver Assistance Systems

[29] A. Krizhevsky, “cuda-convnet2,” 2014. [Online]. Available: https://code.
google.com/archive/p/cuda-convnet2/. [Accessed Marz 2016].

[30] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. Burges, L. Bottou and
K. Weinberger, Eds., Curran Associates, Inc., 2012, pp. 1097-1105.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, “Going Deeper with Convolutions,”
in CVPR 2015, 2015.

[32] K.Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” CoRR, vol. abs/1409.1556, 2014.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. Berg and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of
Computer Vision, Vol. 115, No. 3, pp. 211-252, 2015.

[34] C. Farabet, C. Couprie, L. Najman and Y. LeCun, “Learning Hierarchical
Features for Scene Labeling,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 35, No. 8, pp. 1915-1929, 2013.

[35] G. Jurman, S. Riccadonna and C. Furlanello, “A Comparison of MCC
and CEN Error Measures in Multi-Class Prediction,” PLoS ONE, \Vol. 7,
No. 8, p. 41882, 08 2012.

[36] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A.
Bergeron, N. Bouchard, D. Warde-Farley and Y. Bengio, “Theano: new
features and speed improvements,” CoRR, vol. abs/1211.5590, 2012.

[37] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets and V. S. Lempit-
sky, “Speeding-up Convolutional Neural Networks Using Fine-tuned
CP-Decomposition,” CoRR, vol. abs/1412.6553, 2014.

[38] J. Cong and B. Xiao, “Minimizing Computation in Convolutional Neural
Networks,” in Artificial Neural Networks and Machine Learning —
ICANN 2014: 24th International Conference on Artificial Neural Net-
works, Hamburg, Germany, September 15-19, 2014. Proceedings, S.
Wermter, C. Weber, W. Duch, T. Honkela, P. Koprinkova-Hristova, S.
Magg, G. Palmand A. E. P. Villa, Eds., Springer International Publishing,
2014, pp. 281-290.

[39] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello and
Y. LeCun, “NeuFlow: A runtime reconfigurable dataflow processor
for vision,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on, 2011.

References 131

[40] A. Dundar, J. Jin, V. Gokhale, B. Krishnamurthy, A. Canziani,
B. Martini and E. Culurciello, “Accelerating deep neural networks
on mobile processor with embedded programmable logic,” in Neural
information processing systems conference (NIPS), 2013.

[41] J. Jin, V. Gokhale, A. Dundar, B. Krishnamurthy, B. Martini and E.
Culurciello, “An efficient implementation of deep convolutional neural
networks on a mobile coprocessor,” in Circuits and Systems (MWSCAS),
2014 IEEE 57th International Midwest Symposium on, 2014.

[42] C.Zhang,P.Li,G.Sun,Y.Guan, B. XiaoandJ. Cong, “Optimizing FPGA-
based Accelerator Design for Deep Convolutional Neural Networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, New York, NY, USA, 2015.

[43] L. Cavigelli, M. Magno and L. Benini, “Accelerating Real-time Embed-
ded Scene Labeling with Convolutional Networks,” in Proceedings of
the 52nd Annual Design Automation Conference, New York, NY, USA,
2015.

[44] V. Gokhale, J. Jin, A. Dundar, B. Martini and E. Culurciello, “A 240
G-ops/s Mobile Coprocessor for Deep Neural Networks,” in Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE
Conference on, 2014.

[45] P.-H. Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun and E.
Culurciello, “NeuFlow: Dataflow vision processing system-on-a-chip,”
in Circuits and Systems (MWSCAS), 2012 IEEE 55th International
Midwest Symposium on, 2012,

[46] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen and O. Temam, “A
High-Throughput Neural Network Accelerator,” Micro, IEEE, Vol. 35,
No. 3, pp. 24-32, May 2015.

[47] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim and L. Benini,
“Origami: A Convolutional Network Accelerator,” in Proceedings of the
25th Edition on Great Lakes Symposium on VLSI, New York, NY, USA,
2015.

[48] “Marvin: A minimalist GPU-only N-dimensional ConvNet framework,”
[Online]. Available: http://marvin.is. [Accessed 2015].

[49] G. Paya-Vaya, R. Burg and H. Blume, “Dynamic Data-Path Self-
Reconfiguration of a VLIW-SIMD Soft-Processor Architecture,” Work-
shop on Self-Awareness in Reconfigurable Computing Systems (SRCS)
in conjunction with the 2012 International Conference on Field Pro-
grammable Logic and Applications (FPL 2012), 2012.

132 Deep Learning for Advanced Driver Assistance Systems

[50] S. Nolting, G. Paya-Vaya and H. Blume, “Optimizing VLIW-SIMD
Processor Architectures for FPGA Implementation,” Proceedings of the
ICT.OPEN 2011 Conference (Veldhoven, Netherlands), 2011.

[51] A.Ess, T. Mueller, H. Grabner and L. v. Gool, “Segmentation-based urban
traffic scene understanding,” in Proceedings of the British Machine Vision
Conference, 2009.

[52] Y. LeCun, K. Kavukcuoglu and C. Farabet, “Convolutional networks and
applications in vision,” in Circuits and Systems (ISCAS), Proceedings of
2010 IEEE International Symposium on, 2010.

7

Real-Time Data Preprocessing
for High-Resolution MIMO Radar Sensors

Frank Meinl', Eugen Schubert!, Martin Kunert!
and Holger Blume?

! Advanced Engineering Sensor Systems, Robert Bosch GmbH,
Leonberg, Germany

2Institute of Microelectronic Systems, Leibniz Universitat Hannover,
Hannover, Germany

7.1 Introduction

The progress in resolution of automotive radar sensors involves a considerable
increase in data-rate and computational throughput. Dedicated processing
architectures have to be investigated in order to manage the tremendous
amount of data. Even for early prototype development platforms, the per-
formance of existing PC-based frameworks and tools is no longer sufficient
to cope with the data processing of many parallel radar receiver channels at
very high sampling rates.

This chapter presents a FPGA-based signal processing architecture capable
of handling 16 parallel MIMO radar receiving channels with a sampling
frequency of 250 MHz each. Raw data is transferred from the AD-Converters
to the FPGA where subsequent processing steps are performed, involving FIR-
filtering and decimation, two-dimensional FFT transform, local noise level
estimation and subsequent target detection. An external DRAM is used for
storing multiple radar measurements which are finally evaluated altogether
(so-called chirp-sequence modulation).

Data post-processing is outsourced onto a PC running with ADTF, an
automotive framework for graph-based real-time data processing. The combi-
nation of a fast, FPGA-based preprocessing unit with a more flexible, PC-based
development platform maximizes processing performance and minimizes

133

134 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

development time. The less mature angular MIMO processing algorithms can
thus be evaluated with the help of C-based algorithms running in ADTF, while
the simple, but calculation intensive FFT processing is implemented entirely
as a hardware accelerator in a Virtex-7 FPGA device from Xilinx.

7.2 Signal Processing for Automotive Radar Sensors

After AD-conversion, the raw radar signals enter the processing unit, consecu-
tively passing through all necessary signal processing steps. Different levels
of data abstraction and representation can be identified, which range from low
level time signals up to complex environmental models.

In this chapter, only the extraction of discrete scattering centers will be
considered. The result is a list of reflections, each having multiple features,
like for instance Cartesian coordinates, radar-cross-section (RCS), relative
velocity or signal-to-noise ratio. Further processing of these reflections would
incorporate clustering, classification and environment modeling.

An intermediate state is the extraction of relevant targets from the two-
dimensional frequency spectrum (cf. Subsection 7.2.2). At this point, the
range and velocity of the targets have already been determined, while
the angular information is not evaluated yet. Nevertheless, the data rates
are already reduced by a significant amount, so that at this stage the data
transfer interface between FPGA and PC-based signal processing can be
established.

7.2.1 FMCW Radar System Architecture

The usage of frequency-modulated continuous-wave (FMCW) radar sensors
can be advantageous in short range applications, especially due to their high
range resolution capability and much lower peak power requirements. In
contrast to a pulsed radar system, the transmitter and receiver operate at the
same time, which imposes some constraints on the transmitted signals. In order
to measure the time-of-flight, i.e. the range towards an object, some kind of
time-varying information needs to be added to the transmitted waveforms.
The signal has to be modulated in an unambiguous, non-repetitive fashion. A
constant sine wave, for instance, can’t be used for range estimation, due to its
ambiguity after the phase has increased by one cycle or 27, respectively.
One widely used modulation scheme consists of linear modulated fre-
quency chirps (cf. Figure 7.1). Two important parameters are the used
bandwidth £ and the modulation time 7" which determine the slope £ of

7.2 Signal Processing for Automotive Radar Sensors 135

Figure 7.1 FMCW ramp waveform shown as frequency over time f(t). The solid line
represents the transmitted signal (TX) while the dashed line is the received signal (RX).

the frequency ramp. Besides, other kinds of modulation schemes exist, e.g.
frequency shift keying, various phase modulation or pseudo-noise coding
principles.

In the case of a linear frequency modulation, the time-of-flight At can be
directly translated into a frequency difference (so called beat frequency f3).
With the help of a mixer device in the receiver, this frequency difference can
be measured efficiently and estimated by subsequent signal processing blocks.
Finally, the target range r can be obtained from the estimated beat frequency
value. However, as moving targets engender an additional frequency shift f,
(Doppler frequency), the measured frequency will consist of a superposition
of a range and a velocity dependent component.

2r F 2uv,

fb:fr—ﬁ-fd:?f— \

With the help of advanced modulation waveforms, the occurrence of range-
Doppler ambiguities can be significantly reduced, while being able to estimate
both frequency components individually at the same time [1]. This can be
achieved by using multiple, aligned FMCW chirps. Furthermore, these ramp
signals should have a very steep slope, so that the range dependent frequency
part f. dominates in the beat frequency f,. For a sufficient small target
velocity, the Doppler frequency f; is likewise small enough so that the range
estimation can be carried out directly from f; by simply neglecting the minor
fa contribution. However, the Doppler information is not completely lost and
can be regained from the inherent phase measurement which is present in
the consecutive frequency ramps. For this purpose, it is necessary that the

136 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

ramp sequence is strictly aligned and that the data sampling occurs always at
the same time instant w.r.t. the chirp modulation. The underlying processing
technique is shown in Figure 7.2 and relies on a two-dimensional spectrum
analysis. The big advantage is the unambiguous determination of both the
range and velocity frequency component of each target.

For the angle estimation, two different measurement principles can be
used. One possibility is a steerable antenna, which has a high directivity.
Only targets which reside inside the antenna beam will contribute to the
received signal in a significant manner. The detection space has to be scanned
individually, i.e. each possible direction of arrival (DOA) will be measured
separately. An alternative to a mechanical steered antenna is the use of an
antenna array, where each antenna element is fed by a time delayed version
of the transmit signal. The phase shift of the antenna feeds can be changed
electronically. Depending on the phase relationships of the antenna elements,
the directivity can be swiveled, which is also referred to as electronic beam
steering or phased array.

The second class of angle estimation relies on a phase measurement of the
received signals. Within a static antenna array, the measured phase differences
will depend on the DOA of the target reflections. This property is exploited
by many different algorithms in the field of array processing [2]. A major

Figure 7.2 Chirp-sequence modulation.

7.2 Signal Processing for Automotive Radar Sensors 137

advantage of a fixed antenna array is the simultaneous measurement over a
wide opening angle. The region of interest does not have to be scanned and data
can be collected in a single, instantaneous snapshot. In general, the achievable
angular resolution and separability depends on the number of channels as well
as on the aperture size of the array.

In the case of a receiving array, each channel will require a dedicated
frequency mixer, amplifier and AD-converter, which increases the total cost
of the system. Hence, the usage of advanced algorithms can be considered in
order to increase resolution without additional receiving channels [3]. These
algorithms are often said to achieve a superresolution because they perform
better than a conventional Bartlett beamscan algorithm (cf. [2], pp. 1142).
Another possibility is the usage of multiple transmitting channels (multiple
input — multiple output — MIMO). A MIMO system has a better efficiency
because the number of virtual channels is larger than the real number of
channels, thus resulting in lower hardware effort.

In Figure 7.3, a linear MIMO antenna array is shown with two transmitter
antennas, which are depicted as circles on the left. The physical receiving
array (blue) is extended by several virtual antenna positions. The underlying
signal processing remains the same as in the single transmitter case, however
the full virtual array can be used resulting in an increased accuracy and
object separation capability. In order to separate the signals originating from
different transmitting antennas at the receiver side, some kind of orthogonality
has to be introduced. A straight forward approach is to use a time-division
multiplexing (TDM) approach, i.e. only one transmitter operates at the same
time. Other possible techniques comprise frequency-division multiplexing
(FDM) or code-division multiple access (CDMA).

Figure 7.3 Possible MIMO antenna array design: The physical receiver array (blue) is
extended by several virtual antennas (red squares) due to the second transmitter TX 2.

138 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

7.2.2 Two-Dimensional Spectrum Analysis for Range
and Velocity Estimation

Multi-target scenarios are usually encountered in automotive radar applica-
tions. Especially static targets are often present in the field of view arising
from roadside structures, e.g. guardrails and reflector posts. Furthermore,
with increased resolution, multiple scattering centers are visible from single
objects, e.g. the shape of car bodies is seen as a large cloud consisting of many
reflections [4].

In order to resolve and separate proximate targets, a good range resolution
and thus frequency resolution is required. One widely used technique provid-
ing a fast and robust frequency estimation is the fast Fourier transform (FFT).
For a further increase in range resolution, advanced frequency estimation
algorithms like autoregressive (AR) models or multiple signal classification
(MUSIC) can be employed [5, 6]. Beside the higher computational require-
ments, they suffer from the fact that the number of detections needs to be
known prior to the estimation. For this reason, the presented system relies on
the more convenient FFT-based spectrum analysis.

The Doppler frequency estimation is carried out by a second FFT. Instead
of the raw time signals, the frequency bins of the first FFT are used as input
signal. In other words, the second FFT measures the ramp-to-ramp phase
offset for each target. This offset depends solely on the Doppler shift of the
target, because the radar system ensures a coherent sampling of the transmitted
frequency chirps. Only if the target is moving relatively to the sensor, the
measured phase value will vary between the consecutive chirp ramps.

As depicted in Figure 7.2, targets with different ranges and different
velocities are separated after this step. In contrast to many other FMCW
modulation forms, a matching step to find corresponding ranges and velocities
is no longer required, because the values are directly obtained from the two-
dimensional indices. Furthermore, the computational effort stays constant and
is thus independent from the number of prevailing targets. This property plays
a key role in scenarios with many scattering points as often encountered with
high resolution automotive radar sensors.

Another benefit of the two-dimensional spectral processing is the higher
sensitivity. Particularly small targets with a low radar cross-section (RCS) can
be masked by the noise floor of the first FFT. These targets become visible
only by the help of the additional processing gain of the second FFT. Thus,
each output bin of the first FFT shall be taken into account and the full 2D
matrix should be evaluated before any target detection takes place.

7.2 Signal Processing for Automotive Radar Sensors 139

7.2.3 Thresholding and Target Detection

Acrucial point in the signal processing chain is the separation of different target
reflections in the two-dimensional power spectrum. With the help of this step,
data of relevant objects will be isolated from the random noise components.
This leads to a significant reduction of data rate and thus lowers the com-
putational performance requirements for the downstream signal processing
steps.

The target detection is carried out with the help of an adaptive threshold,
reducing the effects of local noise and clutter components. With the means
of a constant false alarm rate (CFAR) processing, the probability of false
alarm remains constant, irrespective of varying operational and environmental
conditions.

Different types of CFAR processors can be used for noise level estimation.
Two variants are presented in this section, the cell-averaging (CA-CFAR) and
the ordered-statistic (OS-CFAR), two of the most extensively used variants.

Cell-Averaging CFAR (CA-CFAR)
The basic task of a CFAR detector is to provide an adaptive threshold, which
is then used for the subsequent detection step, i.e. the decision if a specific
cell contains a present target or just irrelevant noise components. In contrast
to a fixed threshold, an estimate of the local background noise level is used as
threshold, which has to be obtained automatically and separately for each cell
under test (CUT). Many different methods exist to provide such an estimate,
each leading to different classes and variants of CFAR detectors.

A simple yet powerful approach is the mean value of a number of window
cells in proximity to the CUT (see Figure 7.4). This variant is known as cell

Figure 7.4 CA-CFAR sliding window implementation.

140 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

averaging CFAR, or CA-CFAR. The assumption made in this case is that all
window cells contain only noise components and thus the mean value is a
good estimate of the noise variance. In the case of white Gaussian noise, the
value is corresponding to the maximum likelihood estimator. However, for
many radar systems the assumption of normal distributed noise turns out to
be inaccurate [7].

When designing a CFAR detector, an important parameter is the window
size around the CUT. On the one hand, a larger window size reduces the
statistical estimation error; on the other hand, local differences in the noise
level can be blurred by a large window. A tradeoff has to be made between the
deviation from the requested false alarm rate due to the estimation error and
the local sensitivity of the adaptive threshold which results from smoothing.
Furthermore, the computational effort becomes more relevant with increasing
window sizes.

Ordered-Statistic CFAR (OS-CFAR)
In the case of white Gaussian noise, the CA-CFAR performs very well in
single target scenarios. However, in a multi-target environment, the estimated
noise level will deviate due to interfering targets inside the window cells.
Robust statistics can be used in order to suppress outliers arising from other
targets inside the window. A commonly used variant is the ordered-statistic
(OS-CFAR) which relies on a sortation of the values inside the window, similar
to a median filter.

The algorithm performs the following steps for each cell under test
(CUT):

e Sort all cells inside the window by their absolute square value

e Take out the k-th value of the sorted list. This value serves as an estimate
for the local noise level

e Apply a scaling factor to the noise estimate

e Compare the scaled estimated noise value against the CUT

e Decide whether the CUT is a valid target

Especially in the field of high-resolution radar, big window sizes are required,
because large and widespread targets will easily occupy multiple window cells.
The complete sortation of the whole window is not a very efficient solution.
Only a single value of the sorted list is of interest, while all other values are
discarded. Furthermore, when evaluating neighboring CUTSs, the previously
sorted list can be used as starting point.

7.2 Signal Processing for Automotive Radar Sensors 141

Several optimizations of the algorithm aim at these specific sortation
characteristics. For instance, a “k-th maximum search” can be performed
which finds the greatest value and removes it from the set. This step is repeated
until the k-th value has been found [8]. Another efficient realization uses a
sliding window approach which keeps a sorted list in memory [9]. Now, when
moving the window one step further, the insertion of a single value requires
at most N comparisons.

Besides, if one is only interested in the decision result, the complete
sortation of the list can be bypassed and the detection step can be per-
formed in a “rank-only” manner [10]. Therefore, the inverse threshold is
applied to the CUT and the result is compared to each cell inside the
window. The binary comparison results, i.e. 1 if the value is bigger — 0
if not, can be summed up to get a rank. Only if the rank is greater than
k, the CUT is considered as valid detection. This approach is depicted in
Figure 7.5.

In contrast to a complete sortation, this algorithm depends only on
N comparisons. The complexity is thus linear for growing window sizes. The
target decision result is exactly the same, i.e. there is no performance loss.
The only disadvantage is the lack of the k-th value, which is unknown in the
rank-only case. This value can serve as an estimate for the local noise level
and can be required by subsequent signal processing blocks. A supplementary
estimation of this value can be considered, e.g. the mean value of all cells
which have been classified as noise.

Figure 7.5 Rank-only OS-CFAR implementation.

142 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

Non-Coherent Integration (NCI)

Even though the detection takes place before the angular processing, the
data of multiple receiving channels can be used to further improve detection
performance. An integration of all channels prior to the detection step turns
out to be beneficial, assuming that the noise components are independent and
identically distributed (i.i.d.). However, the phase relationship of the signals
between adjacent channels is not known prior to the angle estimation and can
take any value. When summing up the complex values of each channel, the
signals can interfere either constructively or destructively. In order to avoid
a cancellation of the signal power, the integration takes place in the power
spectra, which is also known as non-coherent integration (NCI).

In the following, the noise components are modeled as additive-white
Gaussian noise which means that a zero-mean normal distributed signal n[t]
is added to the received signal s[t].

It can be shown, that both the real and imaginary parts of the noise
components follow a zero-mean normal distribution after transformation into
the frequency space [11]. The variance of N[k] depends on the input variance as
well as on the length of the input signal, i.e. the length of the FFT. When taking
longer signal sequences, the signal-to-noise ratio can be improved (so-called
processing gain).

8[t] = s[t] + nlt]

!

S[k] = S[k] + N[k]

The power spectrum can be calculated by summing up the squared values of
real and imaginary part. As a sum of two squared, i.i.d. Gaussian variables,
it results a chi-squared distribution x?(n) with n = 2 degrees of freedom for
the squared magnitude | N [k]|?:

INK]* = Nge[k]* + Npn[k]?
INKIPP ~ x*(2)
When summing up multiple receiving channels, i.e. multiple i.i.d. random

variables, the result will again be chi-squared distributed but with a higher
degree of freedom.

m

Nyorlk) =Y INi[F][* ~ x*(2m)
=1

7.2 Signal Processing for Automotive Radar Sensors 143

Figure 7.6 Additive white Gaussian noise model.

In contrast to the FFT, the mean value of the noise power scales linearly
with the number of channels in the same way the signal power does. Therefore,
the signal to noise ratio is not improved. However, the variance is decreasing
which has an effect on the possibility of false alarm. An example measurement
is depicted in Figure 7.7, comparing the noise distribution of one channel and
the distribution after the integration of 32 channels. It can be observed that for
the same threshold level, a lower probability of false alarm can be achieved
due to the lower variance of the blue histogram. The other way round, for the
same probability of false alarm, a lower threshold level can be used, which
increases the detection rate.

7.2.4 Angle Estimation

In Subsection 7.2.1 the measurement principle of antenna arrays has been
introduced briefly. In general, the angle estimation is based on the measured
phase offset ¢,, between different antenna positions (cf. Figure 7.8).

Figure 7.7 Histogram of a noise measurement showing the chi-squared distribution before
and after NCI.

144 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

Figure 7.8 Uniform linear antenna array with spacing d and resulting steering vector v(c).

Since the antenna positions are known, a conclusion may be drawn on the
direction of arrival. For this purpose, the introduction of a steering vector v(«)
can be useful. This vector contains the expected phase offsets, equivalent to
an ideal incident signal from a certain angle «:

v(a) = [§91(0) gid2(e) cits(@) | eién(@)]

In the case of a linear array with IV elements, the steering vector is simply
constructed from the distance d between two antenna elements, the wavelength
A and the incident angle «. The phase of the first element is normalized to
zero and the amplitudes are assumed to be all equal one:

’U(Oé) — [1 eJ2md sina /A eJ2m2d sina /A o ej27r-(N—1)d sina/)\]

Similar to the spectral estimation, different classes of algorithms can be
identified. Some procedures like the Bartlett beamformer just calculate a
weighted sum of the received signal vector x. This is done for each possible
DOA and results in an angular spectrum:

P(a) = [27v(a)[*

The magnitude P represents the correlation between the received signal and
the steering vector. A subsequent maximum search extracts the estimated target
angle. The separation of two targets is also possible by simply extracting
the two largest peaks, however attention has to be paid to the occurrence of
sidelobes. Furthermore, the width of the mainlobe determines the separability
which is often not satisfactory.

7.3 Hardware Accelerators for MIMO Radar Systems 145

More sophisticated methods to mention are the Capon beamformer, also
known as minimum variance estimator, which achieves a better angular
separability. Another important class is known as subspace based methods,
incorporating MUSIC and ESPRIT as the most prominent examples. Finally,
maximume-likelihood estimators exist, which need to know the model order
in advance, i.e. the number of targets. However, if the targets have already
been separated by different ranges and velocities, the estimation of the model
order is feasible because only few targets will be present, in most of the cases
only one. A comprehensive overview of existing methods and algorithms is
given in [2].

7.3 Hardware Accelerators for MIMO Radar Systems

7.3.1 Basic Structure of a Streaming Hardware Accelerator

Figure 7.9 shows the overview of a hardware-accelerator for high-resolution
MIMO radar sensors. Obviously, a high degree of parallelism can be observed,
due to the pair wise independence of the receiving channels. Up to the NCI
step, each data stream is processed for its own.

The spectral analysis is carried out with the help of a FFT, whose efficient
implementation in streaming applications is well understood. A critical step in
the design process of this block is the specification of the maximum FFT
lengths, as this parameter determines essentially resource usage. Further-
more, when using fixed-point arithmetic, the word length and data scaling
behavior can have major effects on performance and efficiency. This aspect is
investigated in Subsection 7.3.2.

Regarding the two-dimensional FFT, a concept for data storage and
transfer has to be developed. The storage of a complete chirp sequence,
i.e. a set of K ramps is required in order to perform the second dimension
FFT processing. This dictates mainly the size of the memory, which grows
rapidly due to the influence of further key parameters. In general, increasing
the resolution in range, in velocity or in the angular domain, also increases
the required memory size. It turns out, that this size exceeds rapidly several

Figure 7.9 Architecture of a streaming hardware accelerator.

146 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

MBytes. Thus, the usage of large DRAMS becomes necessary since the size
of an on-chip SRAM cache memory is not sufficient anymore. An analysis for
different modulation and system parameters can be found in [12].

Regarding the throughput of the memory, the addressing scheme affects
heavily the performance in the case of a DRAM. The row opening and closing
delays, as well as the read and write transfers can be completely hidden due
to the streaming nature of the application. The problem of transforming large
two-dimensional matrices with the help of DRAMSs has been inves