

Towards a Common
Software/Hardware Methodology

for Future Advanced Driver
Assistance Systems
The DESERVE Approach

RIVER PUBLISHERS SERIES IN TRANSPORT
TECHNOLOGY

Series Editors

HAIM ABRAMOVICH THILO BEIN
Technion - Israel Institute of Technology Fraunhofer LBF
Israel Germany

Indexing: All books published in this series are submitted to Thomson Reuters
Book Citation Index (BkCI), CrossRef and to Google Scholar.

The “River Publishers Series in Transport Technology” is a series of com-
prehensive academic and professional books which focus on theory and
applications in the various disciplines within Transport Technology, namely
Automotive and Aerospace. The series will serve as a multi-disciplinary
resource linking Transport Technology with society. The book series fulfils
the rapidly growing worldwide interest in these areas.

Books published in the series include research monographs, edited vol-
umes, handbooks and textbooks.The books provide professionals, researchers,
educators, and advanced students in the field with an invaluable insight into
the latest research and developments.

Topics covered in the series include, but are by no means restricted to the
following:

• Automotive
• Aerodynamics
• Aerospace Engineering
• Aeronautics
• Multifunctional Materials
• Structural Mechanics

For a list of other books in this series, visit www.riverpublishers.com

The NEC and You Perfect Together:
A Comprehensive Study of the

National Electrical Code

Gregory P. Bierals
Electrical Design Institute, USA

River Publishers

Towards a Common
Software/Hardware Methodology

for Future Advanced Driver
Assistance Systems
The DESERVE Approach

Editors

Guillermo Payá-Vayá
Leibniz Universität Hannover

Germany

Holger Blume
Leibniz Universität Hannover

Germany

Published 2017 by River Publishers
River Publishers

Alsbjergvej 10, 9260 Gistrup, Denmark
www.riverpublishers.com

Distributed exclusively by Routledge
4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

605 Third Avenue, New York, NY 10017, USA

Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance
Systems The DESERVE Approach / by Guillermo Payá-Vayá, Holger Blume.

© The Editor(s) (if applicable) and The Author(s) 2017. This book is published open access.

Open Access
This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial
4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/licenses/by/4.0/), which
permits use, duplication, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, a link is provided to
the Creative Commons license and any changes made are indicated. The images or other third
party material in this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative Commons
license and the respective action is not permitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.
Printed on acid-free paper.

Routledge is an imprint of the Taylor & Francis Group, an informa business

ISBN 978-87-93519-14-5 (print)

While every effort is made to provide dependable information, the publisher, authors, and editors
cannot be held responsible for any errors or omissions.

Contents

Preface xiii

List of Contributors xvii

List of Figures xxi

List of Tables xxxiii

List of Abbreviations xxxv

1 The DESERVE Project: Towards Future ADAS Functions 1
Matti Kutila and Nereo Pallaro
1.1 Project Aim . 1
1.2 Project Structure . 4
1.3 DESERVE Platform Design 5
1.4 The Project Innovation Summary 5
1.5 Conclusions . 6

PART I: ADAS Development Platform

2 The DESERVE Platform: A Flexible Development Framework
to Seemlessly Support the ADAS Development Levels 9
Frank Badstübner, Ralf Ködel, Wilhelm Maurer, Martin Kunert,
André Rolfsmeier, Joshué Pérez, Florian Giesemann,
Guillermo Payá-Vayá, Holger Blume and Gideon Reade
2.1 Introduction to the DESERVE Platform Concept 9
2.2 The DESERVE Platform – A Flexible Development

Framework to Seamlessly Support the ADAS
Development Levels . 12

v

vi Contents

2.3 DESERVE Platform Requirements 16
2.3.1 DESERVE Platform Framework 16
2.3.2 Generic DESERVE Platform Requirements

(Relevant to all Development Levels) 18
2.3.3 Rapid Prototyping Framework Requirements

(Development Level 2) 21
2.3.4 Additional Requirements for Embedded Multicore

Platform with FPGA (Development Level 3) 22
2.4 DESERVE Platform Specification and Architecture 23

2.4.1 DESERVE Platform Architecture 23
2.4.1.1 Hardware architecture 25
2.4.1.2 Software architecture 26

2.4.2 DESERVE Platform Interface Definition 30
2.4.2.1 Definition of DESERVE interface

architecture 30
2.4.2.2 Existing ADAS interfaces 32
2.4.2.3 Definition of next generation interfaces . . 33

2.5 Safety Standards and Certification Concepts 35
2.5.1 Safety Impact of DESERVE 36
2.5.2 Functional Safety of Road Vehicles (ISO 26262) . . 36
2.5.3 Guidelines Related to ISO 26262 37
2.5.4 Safety and AUTOSAR 38
2.5.5 Safety Mechanisms for DESERVE Platform 39
References . 43

3 Driver Modelling 45
Jens Klimke and Lutz Eckstein
3.1 Introduction . 45
3.2 Driver Modelling . 48
3.3 Requirements for DESERVE 50
3.4 Generic Structure . 52

3.4.1 Model Structure 52
3.4.2 Parameter Structure 56

3.5 Implementation . 59
3.6 Applications in DESERVE and Results 61
3.7 Conclusions and Outlook 62

References . 63

Contents vii

4 Component Based Middleware for Rapid Development
of Multi-Modal Applications 65
Gwenaël Dunand
4.1 Introduction . 65
4.2 Using a Middleware . 65
4.3 The Multisensor Problem 66

4.3.1 Knowing the Date and Time of Your Data 67
4.3.2 Component-based GUI 68
4.3.3 The Off-the-Shelf Component Library 69
4.3.4 Custom Extensions 71
4.3.5 About Performance 71

4.4 Compatibility with Other Tools 72
4.4.1 dSPACE Prototyping Systems 72
4.4.2 Simulators . 73
4.4.3 Other Standards . 74

4.5 Conclusion . 74
References . 75

5 Tuning of ADAS Functions Using Design Space Exploration 77
Abhishek Ravi, Hans Michael Koegeler and Andrea Saroldi
5.1 Introduction . 77

5.1.1 Parameter Tuning: An Overview 77
5.1.2 Industrial Tuning Applications: Challenges

and Opportunities 78
5.1.3 Model-based Tuning 81
5.1.4 Model-based Validation 83

5.2 Demonstrative Example . 84
5.2.1 Function: An Overview 84
5.2.2 Design Variables 85
5.2.3 Key Performance Indicators (KPI) 88
5.2.4 Test Maneuver . 89
5.2.5 Test Run Overview 89
5.2.6 Raw Data Plausibility Check 91
5.2.7 Meta Modelling . 92
5.2.8 Optimization . 95
5.2.9 Verification . 97

5.3 Model-based Validation . 98

viii Contents

5.4 Conclusions . 101
Acknowledgement . 101
References . 101

PART II: Test Case Functions

6 Deep Learning for Advanced Driver Assistance Systems 105
Florian Giesemann, Guillermo Payá-Vayá, Holger Blume,
Matthias Limmer and Werner R. Ritter
6.1 Introduction . 105
6.2 Scene Labeling in Advanced Driver Assistance Systems . . . 106
6.3 Convolutional Neural Networks and Deep Learning 107

6.3.1 Introduction to Neural Networks 108
6.3.2 Supervised Learning 109
6.3.3 Convolutional Neural Networks 112

6.4 CNN for Scene Labeling 115
6.4.1 Exemplary Network for Scene Labeling 116
6.4.2 Evaluation . 116

6.5 Hardware Platforms for Scene Labeling 120
6.5.1 Theoretical Performance Requirements 121
6.5.2 CPU-based Platforms 125
6.5.3 GPU-based Platforms 125
6.5.4 FPGA-based Platforms 125

6.6 Summary . 127
References . 127

7 Real-Time Data Preprocessing for High-Resolution
MIMO Radar Sensors 133
Frank Meinl, Eugen Schubert, Martin Kunert
and Holger Blume
7.1 Introduction . 133
7.2 Signal Processing for Automotive Radar Sensors 134

7.2.1 FMCW Radar System Architecture 134
7.2.2 Two-Dimensional Spectrum Analysis for Range

and Velocity Estimation 138
7.2.3 Thresholding and Target Detection 139
7.2.4 Angle Estimation 143

7.3 Hardware Accelerators for MIMO Radar Systems 145

Contents ix

7.3.1 Basic Structure of a Streaming Hardware
Accelerator . 145

7.3.2 Pipelined FFT Accelerator 146
7.3.3 Rank-Only OS-CFAR Accelerator 151

7.4 Conclusion . 153
References . 154

8 Self-Calibration of Wide Baseline Stereo Camera Systems
for Automotive Applications 157
Nico Mentzer, Guillermo Payá-Vayá, Holger Blume,
Nora von Egloffstein and Lars Krüger
8.1 Introduction . 157

8.1.1 Extraction of Image Features 158
8.1.2 Matching of Image Features 161
8.1.3 Extrinsic Online Self-Calibration 161

8.2 Algorithmic Overview . 162
8.2.1 Survey of Image Features Extraction 162

8.2.1.1 Detection of features 162
8.2.1.2 Description of features 167
8.2.1.3 Characteristics of features 169

8.2.2 Feature Matching 172
8.2.3 Survey of Feature-based Self-Calibration 176

8.3 Extraction of Image Features 177
8.3.1 Detection of SIFT-Feature Points 177
8.3.2 Description of SIFT-Image Features 178

8.4 Matching of Image Features 179
8.5 Extrinsic Online Self-Calibration 181
8.6 Application-Specific Algorithmic Parameterization 182

8.6.1 Decreasing Bit Depth of Input Images for Extraction
of SIFT-features 182

8.6.2 Threshold-based Feature Matching 186
8.6.3 Parameterization of Matching Methods 188

8.7 Hardware Based SIFT-Feature Extraction 192
8.7.1 Challenges of SIFT-Feature Extraction 193
8.7.2 Existing Systems for Hardware Based SIFT-Feature

Extraction . 194
8.8 Conclusion . 196

References . 197

x Contents

9 Arbitration and Sharing Control Strategies
in the Driving Process 201
David González, Joshué Pérez, Vicente Milanés, Fawzi Nashashibi,
Marga Sáez Tort and Angel Cuevas
9.1 Introduction . 201
9.2 ADAS Functions Available in the Market 202

9.2.1 Longitudinal Control Systems 203
9.2.2 Lateral Control Systems 207
9.2.3 Other Control Systems 209
9.2.4 Control Solution in ADAS 211

9.2.4.1 Perception platform 212
9.2.4.2 Application platform 214
9.2.4.3 Information Warning Intervention (IWI)

platform 214
9.3 Survey on Arbitration and Control Solutions in ADAS 215
9.4 Human-Vehicle Interaction 216
9.5 Driver Monitoring . 217

9.5.1 Legal and Liability Aspects 219
9.6 Sharing and Arbitration Strategies: DESERVE Approach . . 220
9.7 Conclusions . 221

References . 222

PART III: Validation and Evaluation

10 The HMI of Preventing Warning Systems:
The DESERVE Approach 227
Caterina Calefato, Chiara Ferrarini, Elisa Landini,
Roberto Montanari, Fabio Tango, Marga Sáez Tort
and Eva M. García Quinteiro
10.1 Introduction . 227
10.2 Prevent Imminent Accidents: The Role of Humans,

the Role of Technology . 228
10.2.1 From Passive to Preventive Safety 228
10.2.2 The Role of Driver Model in ADAS Design 230

10.3 HMI Design Flow: The DESERVE Approach 233
10.3.1 Different Approaches in the HMI of the Preventing

Warning Systems: A State of Art in a Glance 233

Contents xi

10.4 HMI Concepts Design . 234
10.4.1 Concept 1: Holistic HMI 235
10.4.2 Concept 2: Immersive HMI 238
10.4.3 Concept 3: Smart HMI 239

10.5 Preliminary Testing by Focus Group 240
10.5.1 Participants . 241
10.5.2 Results . 241
10.5.3 List of the Winning Features and Redesign

Recommendations 242
10.6 Users Test at Driving Simulator 243

10.6.1 Participants . 244
10.6.2 Procedure . 244
10.6.3 Results . 244

10.7 Conclusions . 246
Acknowledgments . 247
References . 247

11 Vehicle Hardware-In-the-Loop System for ADAS
Virtual Testing 251
Romain Rossi, Clément Galko, Hariharan Narasimman
and Xavier Savatier
11.1 Introduction . 251
11.2 State of the Art . 252
11.3 Proposed System . 254
11.4 Hardware Implementation 256

11.4.1 Sensors Stimulation Solutions 256
11.4.2 Software Implementation 258

11.5 Experimental Setup . 260
11.6 Results . 262
11.7 Conclusion and Future Work 265

Acknowledgment . 266
References . 267

Index 269

About the Editors 271

http://taylorandfrancis.com

Preface

The European research project DESERVE (DEvelopment platform for Safe
and Efficient dRiVE, 2012–2015) had the aim of designing and developing a
platform tool to cope with the continuously increasing complexity and the
simultaneous need to reduce costs for future embedded Advanced Driver
Assistance Systems (ADAS). For this purpose, the DESERVE platform profits
from cross-domain software reuse, standardization of automotive software
component interfaces, and easy but safety-compliant integration of hetero-
geneous modules. This enables the development of a new generation of
ADAS applications, which challengingly combine different functions, sensors,
actuators, hardware platforms, and Human Machine Interfaces (HMI).

This book provides a detailed overview of the different research activities
conducted in the course of the DESERVE project.After introducing the aims of
the DESERVE project in Chapter 1, selected achievements of the DESERVE
project are presented in three different parts. Part I is dedicated to the ADAS
development platform developed during the DESERVE project.

• Chapter 2 covers the methodology and concepts that are part of the
generic DESERVE platform as the basis and key enabler for the devel-
opment of new assistance systems. It describes the entire spectrum of
aspects, e.g., modularity, interfaces, and standards, to be considered for
the use of the DESERVE platform.

• Chapter 3 describes the development of realistic models for driver
behavior as part of the DESERVE tool-chain needed for the evaluation
of complex ADAS systems and driver-vehicle-environment interactions.
The modelling system was used to simulate two different driving
scenarios.

• Chapter 4 presents component based middleware, e.g., RTMaps and
ADTF, for supporting the developer of complex systems with typical
challenges like multi-sensor support, synchronization issues, and modu-
larity. By means of different exemplary applications, in which modules
like simulators or prototyping systems are connected to the middleware,
the flexibility of the DESERVE tool-chain is demonstrated.

xiii

xiv Preface

• Chapter 5 describes a model-in-the-loop approach for tuning ADAS
parameters. Using the AVL CAMEO tool, model-based design space
exploration and validation of a complex ADAS function is performed.

In Part II, ADAS applications used as test functions in the DESERVE project
are explained.

• Chapter 6 presents an application of deep-learning techniques for
semantic segmentation of camera images (i.e., Scene Labeling). After
explaining the algorithmic basics, an FPGA-based implementation is
presented and evaluated.

• Chapter 7 covers a system coupling an FPGA-based signal process-
ing architecture for MIMO radar with a PC-based ADTF data post-
processing. The hardware-software combination maximizes processing
performance and minimizes development time of complex systems.

• Chapter 8 describes a design space exploration for online calibration
of wide baseline stereo camera systems using sparse feature corre-
spondences in stereo images. Challenges in hardware implementations
of feature matching are presented and hardware-specific solutions are
discussed.

• Chapter 9 presents a first approach of arbitration and sharing vehicle
control between driver and assistance system based on modelling vehicles
and driver behavior and intentions. Fuzzy logic techniques are used
to implement the control sharing and simulations allow testing of the
systems.

Part III covers the validation and evaluation of two exemplary applications of
the DESERVE platform.

• Chapter 10 aims at exploring effective design of Human Machine Inter-
face (HMI). During the DESERVE project, in-vehicle HMI solutions
for different functions were developed. The HMI design process for an
exemplary function is described in this chapter.

• Chapter 11 shows a prototype system for vehicle-in-the-loop testing of
ADAS functions that additionally analyzes the energy efficiency of the
prototyped system. Combined with multi-sensor simulation, a virtual
environment for testing ADAS functions is provided.

Further detailed information about the contributions of DESERVE can be
found in the list of project deliverables referenced in each chapter.

This work was supported by the European Commission under the Artemis
Joint Undertaking in the scope of the DESERVE project. We would like to

Preface xv

thank all authors and co-authors for their excellent contributions. Special
thanks to Matti Kutila for the efficient managing of the complete DESERVE
project over three years. Further thanks to Martin Kunert who well-coordinated
subprojects and who actively supported our work. Furthermore we want to
thank the River Publishers Team, in particularly Mr. Mark de Jongh and
Ms. Junko Nakajima for their great support.

We hope that you will enjoy reading this book.

Guillermo Payá Vayá
Holger Blume

March 22th, 2017
Hannover (Germany)

http://taylorandfrancis.com

List of Contributors

Abhishek Ravi, AVL List Gmbh, Austria

André Rolfsmeier, dSpace GmbH, Germany

Andrea Saroldi, C.R.F. S.C.p.A , Italy

Angel Cuevas, CTAG – Centro Tecnológico de Automoción de Galicia, Spain

Caterina Calefato, Unimore – University of Modena and Reggio Emilia –
Italy

Chiara Ferrarini, Unimore – University of Modena and Reggio Emilia – Italy

Clément Galko, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000
Rouen, France

David González, INRIA, France

Elisa Landini, RE:Lab srl, Italy

Eugen Schubert, Advanced Engineering Sensor Systems, Robert Bosch
GmbH, Leonberg, Germany

Eva M. García Quinteiro, CTAG – Centro Tecnológico de Automoción de
Galicia, Spain

Fabio Tango, CRF – Centro Ricerche Fiat, Italy

Fawzi Nashashibi, INRIA, France

Florian Giesemann, Institute of Microelectronic Systems, Leibniz Universität
Hannover, Hannover, Germany

xvii

xviii List of Contributors

Frank Badstübner, Infineon Technologies AG, Germany

Frank Meinl, Advanced Engineering Sensor Systems, Robert Bosch GmbH,
Leonberg, Germany

Gideon Reade, ASL, U.K.

Guillermo Payá-Vayá, Institute of Microelectronic Systems, Leibniz Univer-
sität Hannover, Hannover, Germany

Gwenaël Dunand, Intempora, France

Hans Michael Koegeler, AVL List Gmbh, Austria

Hariharan Narasimman, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM
76000 Rouen, France

Holger Blume, Institute of Microelectronic Systems, Leibniz Universität
Hannover, Hannover, Germany

Jens Klimke, Institute forAutomotive Engineering, RWTHAachen University,
Steinbachstraße 7, 52074 Aachen, Germany

Joshué Pérez, INRIA, France

Lars Krüger, Daimler AG, Vision Enhancement, Ulm, Germany

Lutz Eckstein, Institute for Automotive Engineering, RWTH Aachen Univer-
sity, Steinbachstraße 7, 52074 Aachen, Germany

Marga Sáez Tort, CTAG – Centro Tecnológico de Automoción de Galicia,
Spain

Martin Kunert, Advanced Engineering Sensor Systems, Robert Bosch
GmbH, Leonberg, Germany

Matthias Limmer, Vision Enhancement, Daimler AG, Germany

Matti Kutila, VTT Technical Research Center of Finland Ltd., Finland

List of Contributors xix

Nereo Pallaro, Centro Ricerche Fiat, Italy

Nico Mentzer, Institute of Microelectronic Systems, Leibniz Universität
Hannover, Hannover, Germany

Nora von Egloffstein, Daimler AG, Vision Enhancement, Ulm, Germany

Ralf Ködel, Infineon Technologies AG, Germany

Roberto Montanari, RE:Lab srl, Italy

Romain Rossi, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000
Rouen, France

Vicente Milanés, INRIA, France

Werner R. Ritter, Vision Enhancement, Daimler AG, Germany

Wilhelm Maurer, Infineon Technologies AG, Germany

Xavier Savatier, Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000
Rouen, France

http://taylorandfrancis.com

List of Figures

Figure 1.1 The DESERVE V-shape development process. . . . 4
Figure 1.2 DESERVE platform concept for speeding

up the ADAS function development time. 5
Figure 2.1 The DESERVE Platform – the enabler for next

generation ADAS systems. 10
Figure 2.2 DESERVE platform enabled design

and development process. 12
Figure 2.3 ADAS development process. 13
Figure 2.4 DESERVE platform framework. 17
Figure 2.5 Perception platform functional architecture. 19
Figure 2.6 Application platform functional architecture. 21
Figure 2.7 DESERVE IWI platform. 22
Figure 2.8 DESERVE platform (e.g. for development

Level 2 – rapid prototyping system based on mixed
PC and embedded controller framework). 25

Figure 2.9 DESERVE approach – use of common platform
for all ADAS modules. 27

Figure 2.10 DESERVE platform architecture. 28
Figure 2.11 Overview on the principles of virtual interaction

using the AUTOSAR. 29
Figure 2.12 Message box principle for intra-unit

communication. 31
Figure 2.13 AUTOSAR application software concept. 32
Figure 2.14 Camera Interface (CIF) overview. 34
Figure 2.15 Module interaction implies changes

in system behavior. 36
Figure 2.16 SEooC safety mechanisms. 40
Figure 2.17 Top level safety requirements. 41
Figure 2.18 Fault tolerant time interval (FTTI) definition. . . . 41
Figure 2.19 Generic elements of safe computation

hardware platform. 42

xxi

xxii List of Figures

Figure 3.1 Primary driving tasks which are implemented
in the driver model within the DESERVE project
separated by longitudinal and lateral control. 52

Figure 3.2 Manoeuvres which are implemented in the driver
model within the DESERVE project. 52

Figure 3.3 Driver model structure in the context of environment
and vehicle: the structure includes perception,
processing and action blocks including its functional
modules and the regarded dynamic
information flow. 53

Figure 3.4 Process variables for the four basic driving
motivations free moving, following, lane keeping
and standing. 55

Figure 3.5 Process variables for the three manoeuvres
lane change, stopping and Safe Passing. 56

Figure 3.6 Sketch of the parameter blocks (brown) and model
blocks (blue) of the driver model. 57

Figure 3.7 Distribution of lower following time gaps for real
drivers (blue bars) and the modelled distribution
dependent on a normal distributed need for safety
parameter (red line). 58

Figure 3.8 Stateflow model for a two-phase lane change
including decision (A), progress control (B)
and sequence control (C). 60

Figure 3.9 Trajectories (velocity over x- and y-position) for left
turn including the simulation results for different
parameter sets. The real driver data is measured
on one intersection with 136 different drivers
during day time. 61

Figure 4.1 ADAS function requires many different type
of sensor. 66

Figure 4.2 Synchronisation issues. 67
Figure 4.3 The RTMaps Studio. 68
Figure 4.4 Components and interfaces. 69
Figure 4.5 Inspecting data with the data viewer. 70
Figure 4.6 Developing a new component. 71
Figure 4.7 dSPACE MicroAutobox and RTMaps Bridge. . . . 72
Figure 4.8 ProSivic working together with RTMaps. 73

List of Figures xxiii

Figure 5.1 Separation of software and tuning parameters
in a control unit. 78

Figure 5.2 History of powertrain tuning (calibration). 78
Figure 5.3 Illustration of a generalized development

environment and manual tuning process. 80
Figure 5.4 Model-based tuning task illustrated. 81
Figure 5.5 Velocity profiles for a sample test run using

the control function. 84
Figure 5.6 Function developed using IPG carmaker

and MATLAB simulink. 85
Figure 5.7 Function overview. 86
Figure 5.8 Illustration of the kinematic variables A MAX

and J MAX. 86
Figure 5.9 Illustration of the design variable (variation)

J HOR. 88
Figure 5.10 Key performance indicators. 89
Figure 5.11 IPG Carmaker test environment. 90
Figure 5.12 Test run overview illustrating the work flow. 90
Figure 5.13 Left image illustrates the test preparation window

while the right image illustrates the test
run window. 91

Figure 5.14 Checking for outliers in the measured variables. . . 92
Figure 5.15 Check of DoE design and the boundaries

of variation parameters. 93
Figure 5.16 Figure depicting the quality of empirical

modeling. 93
Figure 5.17 Intersection plot highlighting the influence

of each variation on the output variables
and their interaction. 94

Figure 5.18 Optimization setting window in AVL CAMEO. . . 95
Figure 5.19 Trade-off plot between comfort and speed. 96
Figure 5.20 Sporty mode vs comfort mode. 97
Figure 5.21 Verification plot to see how well the measured

results from the verification run fit the model
results. 98

Figure 5.22 Digitized road used for the validation run. 99
Figure 5.23 Measurements comparison when run on comfort

mode (in blue) and sporty mode (in red). 100
Figure 6.1 Model of an artificial neuron. 108

xxiv List of Figures

Figure 6.2 Exemplary activation functions used in neural
networks. 109

Figure 6.3 Example of a fragmentation after a 2 × 2 pooling.
The naïve approach would only produce the bright
pixels, while an overlapping pooling produces
all other possible pixels (purple, green, and blue).
These pixels must be reordered to be able to correctly
continue with the forward propagation of the neural
network. 114

Figure 6.4 The complete processing chain from input image
to a scene labeled image is displayed. After building
an image pyramid of 3 layers and the local
normalization every scale is fed to its own processing
chain. This produces 6 class membership probability
maps. They can be interpreted and augmented
as seen in the output image. 116

Figure 6.5 The image pyramid construction layer produces
3 scales that are locally normalized in 15 × 15
windows. Every scale is propagated independently.
There are in total 2 convolution layers with 16×7×7
filter kernels using the ReLU activation function.
After activation a 2 × 2 max-pooling is performed
followed by a fragmentation in the first pooling
layer. A second fragmentation is not necessary since
the second pooling layer is followed by
a defragmentation. The small scaled feature maps
are sampled up and fed to a classification layer, being
a 6 × 1 × 1 convolution layer. Finally, a pixel
wise softmax is applied. 117

Figure 6.6 Displayed are the learn curves of three different
network topologies. Each topology was trained
three times and the learn curves were averaged.
The averaged learn curves are displayed as solid
lines while the standard deviation for 50 epochs
is displayed as the area around the lines. 118

Figure 7.1 FMCW ramp waveform shown as frequency
over time f(t). The solid line represents
the transmitted signal (TX) while the dashed line
is the received signal (RX). 135

List of Figures xxv

Figure 7.2 Chirp-sequence modulation. 136
Figure 7.3 Possible MIMO antenna array design: The physical

receiver array (blue) is extended by several virtual
antennas (red squares) due to the second
transmitter TX 2. 137

Figure 7.4 CA-CFAR sliding window implementation. 139
Figure 7.5 Rank-only OS-CFAR implementation. 141
Figure 7.6 Additive white Gaussian noise model. 143
Figure 7.7 Histogram of a noise measurement showing

the chi-squared distribution before and after NCI. . 143
Figure 7.8 Uniform linear antenna array with spacing

d and resulting steering vector v(α). 144
Figure 7.9 Architecture of a streaming hardware accelerator. . 145
Figure 7.10 Radix-2 FFT implementation based on a multi-path

delay commutator (MDC) pipeline. 146
Figure 7.11 Radix-2 FFT implementation based

on a SDF pipeline. 147
Figure 7.12 Effects of different word lengths on the amount

of quantization noise. 150
Figure 7.13 Architecture of the rank-only OS-CFAR

accelerator. 152
Figure 7.14 Resource usage against number of channels

for a constant window size (128 cells). 152
Figure 7.15 Resource usage against window size for different

number of channels. 153
Figure 8.1 Algorithmic overview. Input of the processing chain

is a stereo image pair, in which sparse pixel
correspondences are extracted for online camera
calibration. After the calibration, rectification
is performed as a preprocessing step for disparity
estimation. 158

Figure 8.2 Left (top) and right (bottom) image from a stereo
camera system showing detected SIFT-image
features. Detected feature points of the left/right
image are displayed in red/green, matches
are displayed in blue. Scale and rotation
of the SIFT-features are illustrated by the circle
properties. 159

xxvi List of Figures

Figure 8.3 Detection of edges and corners by image gradients.
The blue circle shows a possible feature point,
surrounded by a local neighborhood. (a) Low image
gradients in two spatial directions represent texture
free image areas. (b) A high image gradient
in one spatial direction indicates a possible edge,
(c) in two spatial directions a possible corner. . . . 163

Figure 8.4 Intensity comparisons of pixel, which are located
on a Bresenham Circle. The central pixel
is determined as a corner if a certain number
of continuous pixel intensities is brighter or darker
than the central pixel. This is combined
with an adoptable threshold to avoid
instabilities. 164

Figure 8.5 Detection of corners of different image scales.
With strongly different object sizes in the image,
a corresponding corner is not detectable (red circle),
but by a repeated image scaling. 164

Figure 8.6 Blob detector. The detected blobs are displayed
as red circles. The blob’s size is displayed
as the diameter of the circle. 165

Figure 8.7 Blob detection based on circular image region
for a scene with a large viewpoint change. The region
on which the blob feature extraction is based only
partially covers the corresponding region
and thus, will lead to non-matching image
features. 165

Figure 8.8 Affine-Invariant Interest Point Detection.
The circular point neighborhood is replaced
with an ellipse in order to achieve independent
orthogonal varying detection scales for interest point
detection. Before applying a detection algorithm,
the local neighborhood is affine normalized, which
results in a circular neighborhood and a transformed
image patch. 166

Figure 8.9 Sampling grids for generating different descriptors:
(a) SIFT, (b) Shape Context, (c) DAISY. 167

Figure 8.10 Sampling pattern. (a) BRISK descriptor, (b) FREAK
descriptor. Sampling patterns define

List of Figures xxvii

a set of sampling locations (blue circles),
of whose image information is smoothed
with spatial-dependent filter kernels (red circles).
Out of the sampling pattern the sampling pairs
for the binary tests for the descriptor generation
are selected. 168

Figure 8.11 Two variations of sampling pairs of the FREAK
descriptor. A fixed combination of sampling
locations is selected as descriptor specific sampling
pairs, with which the binary tests for the descriptor
generation is performed. 169

Figure 8.12 Rotation invariance is achieved by rotating
the sampling grid by the main orientation
before extracting the descriptor. 170

Figure 8.13 Scale-space. An input image is down sampled
to achieve multiple scales of the image. On each
scale, feature candidates are found, whereas
repeated candidates are removed. The scale
with the highest information content
for the feature candidate is selected
as the feature scale. 170

Figure 8.14 Multi-scale approach for blob detection.
The same blob with differing scales
in two images and the related response
(normalized Laplacian of Gaussian)
over scales is shown. The scale
with the highest information content
is chosen as a blob. 171

Figure 8.15 Image pyramid. The scale-space is constructed
by different octaves, which consists of multiple
intervals. Each interval indicates a specific
variant of the used Gaussian kernel. In order
to approximate the Laplace scale-space,
the Difference of Gaussian
is determined. 177

Figure 8.16 Generation of feature descriptor. The local
neighborhood is subdivided into independent
subregions, which are combined into individual
histograms. After a weighting and smoothing,

xxviii List of Figures

the feature descriptor is generated by concatenating
the single histograms to as a resulting feature
vector. 178

Figure 8.17 Extracted SIFT-features with exemplary
geometry-based restriction of matching
candidates. By restricting possible matching
candidates geometrically, the problem
size is significantly reduced. 179

Figure 8.18 Exemplary results of feature matching. The left
and right stereo images are overlaid; features
of the left/right image are displayed in red/green.
Correct matches are depicted in yellow; false
matches are shown in blue. The upper image shows
the results of the initial brute force matching,
whereas the lower image shows the results
of the enhanced matching process. 180

Figure 8.19 Verification of match positions with disparity maps.
For rectified images, the horizontal difference
of feature positions of a corresponding pixel pair
equals the related value of the disparity map.
With this technique, it is possible to validate
resulting matching lists for datasets with ground
truth disparity maps. 183

Figure 8.20 Comparison of the resulting SIFT-features of the left
input image for 12 bpp images and 8 bpp images.
In the 12 bpp input image, an overall number
of 1,069 features have been detected, whereas
in the 8 bpp input image 1,056 features have been
determined. A subset of 1,045 features (97.8%)
is identical in both images (blue). There are
14 (1.3%) exclusive 8 bpp feature positions
(red) detected and 24 (2.2%) exclusive
12 bpp feature positions (orange). 185

Figure 8.21 Comparison of the resulting pixel correspondences
for the 8 bpp and 12 bpp input images.
In the 12 bpp input image, an overall number
of 611 pixel pairs has been detected, whereas
in the 8 bpp input image 608 correspondences
have been determined. A subset of 587 pairs (96.1%)

List of Figures xxix

is identical in both images (blue lines).
Furthermore, there are 23 (3.8%) exclusive
8 bpp pairs (red lines) and 24 (3.9%)
exclusive 12 bpp pixel correspondences
(orange lines). 185

Figure 8.22 Histogram of random generated SIFT-descriptor
distances of an idealized NNB feature matching.
The right distribution with mean μ2 displays the
distances of wrong matches, whereas the left
distribution with mean μ1 illustrates the correct
matches. 186

Figure 8.23 Histogram of descriptor distances for a NNB
SIFT-feature matching with the extracted threshold
according to Otsu. Distances of correct/wrong
matches are displayed in blue/orange. The complete
distribution is shown in purple. 187

Figure 8.24 Histograms of descriptor distances for different
NNB feature matching case studies
with the extracted threshold according to Otsu.
Distances of correct/wrong matches are displayed
in blue/orange. The complete distribution
is shown in purple. Due to different descriptors
and resulting matching distances, various
axis scales for clear presentation
are used. 189

Figure 8.25 Exemplary histogram for the distribution
of matching candidates for the geometry-based
feature matching (see Table 8.4). The average
number of candidates is 7 candidates
per matching event. 190

Figure 8.26 Rates of disparity verified pixel correspondences
for different offsets ε and three matching methods.
For all methods, the rate of correct matches runs into
saturation. The NNB matching method performs
best over all offsets ε. (TB: Threshold-Based
Matching; NNB: Nearest-Neighbor-Based
Matching; NNDR: Nearest-Neighbor Distance
Ratio Matching). 192

xxx List of Figures

Figure 8.27 Break down of SIFT-feature extraction into four
algorithmic steps and relating qualitatively quota
of control complexity and complexity (i.e., regular
arithmetic). 193

Figure 9.1 ACC Systems. 204
Figure 9.2 Stages on the longitudinal control of the vehicle. . . 205
Figure 9.3 CSW system. 206
Figure 9.4 TSR system. 206
Figure 9.5 LDW system. 208
Figure 9.6 BSD/LCA system. 208
Figure 9.7 Top view of a parking assistance system. 210
Figure 9.8 Aided park system. 210
Figure 9.9 Automatic park systems. 211
Figure 9.10 DESERVE platform. 212
Figure 9.11 DESERVE platform framework. 213
Figure 9.12 SAE J3016 standards of driving automation levels

for on-road vehicles. 215
Figure 9.13 Arbitration and control sharing application:

General diagram. 220
Figure 10.1 Total number of fatalities in road traffic accidents

in Europe. 229
Figure 10.2 Holistic HMI concept, that shows: IPC display 12”;

SW commands; left stalk commands; buttons;
knobs. 236

Figure 10.3 Holistic HMI layout. 236
Figure 10.4 Holistic HMI layout with the user menu

in the central area. 237
Figure 10.5 Holistic HMI layout with the lane change assist

in the central area. 237
Figure 10.6 Holistic HMI layout with the rear view camera

in the central area. 237
Figure 10.7 Holistic HMI layout with the night vision system

in the central area. 238
Figure 10.8 (A-B-C-D) Holistic HMI left area with: lane

departure warning, collision warning, Rear
approaching vehicle system, pedestrian
safety system. 238

List of Figures xxxi

Figure 10.9 Immersive HMI concept shows: 3,5” IPC display;
touch display 8,5” in the dashboard; head-up
display for the windscreen; SW commands;
left stalk commands; buttons; knobs. 239

Figure 10.10 Immersive HMI concept: instrument panel
cluster display. 239

Figure 10.11 Immersive HMI concept: dashboard
display. 240

Figure 10.12 Immersive HMI concept: head-up display
details. 240

Figure 10.13 Smart HMI concept. 241
Figure 10.14 Smart HMI concept: Nomadic device with night

vision system. 241
Figure 10.15 Radar chart summarizing HMI evaluation

for the 6 HMI concepts. Bis concepts are concept
1, 2, 3 with implicit drowsiness. 243

Figure 10.16 Proposed change to create the final DESERVE
HMI concept. 245

Figure 10.17 Final DESERVE HMI concept: warning area. . . . 245
Figure 10.18 Final DESERVE HMI concept: rear

view camera. 245
Figure 10.19 Final DESERVE HMI concept: navigation. 246
Figure 11.1 Overview of the SERBER VeHIL system. 254
Figure 11.2 Block diagram of the SERBER system. 258
Figure 11.3 Sample video output of Pro-Sivic. 259
Figure 11.4 RTMAPS diagram of the system (extract). 260
Figure 11.5 Mobileye 560 aftermarket vision-based ADAS. . . 261
Figure 11.6 RTMAPS diagram of the V2V task. 261
Figure 11.7 The Biocar test vehicle on the Horiba chassis

dynamometer. 262
Figure 11.8 Overview of the urban environment

in Pro-Sivic. 263
Figure 11.9 Inner view of the vehicle. 264
Figure 11.10 Lane departure warning triggered. 264
Figure 11.11 V2V Communication HMI. 265

http://taylorandfrancis.com

List of Tables

Table 1.1 Scientific and technical objectives 2
Table 5.1 Range of variation parameters used

in the tuning task 88
Table 5.2 Variations values for comfort and sporty mode . . . 96
Table 6.1 The confusion matrix of topology 3-2-32

and the respective FNR, FPR and IU for each class.
The classes are background (Bg), road (Rd),
vehicle (Veh), sky, vulnerable road users (VRU)
and infrastructure (Inf). Each cell shows
the percentage (from all pixels in the dataset)
of actual class (row) predicted as class (column) . . 118

Table 6.2 Displayed are the measures Accuracy (ACC), mean
Intersection over Union (mIU), Matthews Correlation
Coefficient (MCC) and mean False Negative Rate
(mFNR) for 3 topologies 120

Table 6.3 Input image sizes for three different scales
in the exemplary convolutional neural network . . . 123

Table 6.4 Number of operations for the exemplary
convolutional neural network 123

Table 6.5 Comparison of different implementations
of convolutional neural networks on different
platforms . 124

Table 7.1 Resource usage of different pipelined FFT
implementations 147

Table 8.1 Overview of feature detectors 172
Table 8.2 Overview of feature descriptors 172
Table 8.3 Numbers of extracted SIFT-features and detected

matches for 8 bpp input images and 12 bpp images.
The number of the geometry-based (GB)
nearest-neighbor distance ratio matches (NNDR)
drops significantly but ensures a high explicitness
of matches. The algorithmic parameters of the

xxxiii

xxxiv List of Tables

SIFT-feature extraction of the two test cases
are adjusted in order to extract a similar number
of features, which lead to an identical number
of verified matches 184

Table 8.4 Results for a SIFT-feature matching for a global
matching and a geometry-based feature matching.
The window size for the geometry-based feature
matching is +/−4 pixel in y-direction
and +100/−4 pixel in x-direction 190

Table 8.5 Results of disparity verified feature correspondences
for different combinations of global and spatial
restriction matching methods. In addition to a high
rate of correct matches, a minimal number of pixel
correspondences has to be given for a reliable
subsequent image processing. The total numbers
of detected matches for selected algorithmic
combinations are given in brackets. The number
of correct matches and wrong matches do not result
in 100% because of missing values in the ground truth
disparity maps. Those values are skipped
for evaluation . 191

Table 8.6 Overview of existing systems for SIFT-feature
extraction . 194

List of Abbreviations

ABS Anti-lock Breaking System
ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems
ADC Analog-to-digital converter
AEB Automatic/Autonomous Emergency Braking
AR Autoregressive
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-Set Processor
avg Average
BASt German Federal Highway Research Institute
bpp Bit per pixel
BRIEF Binary Robust Independent Elementary Features
BRISK Binary Robust Invariant Scalable Keypoints
BSD Blind Spot Detection
CA-CFAR Cell-averaging constant false alarm rate
CAN Bus Controller Area Network
CDMA Code division multiple access
CenSurE Center Surround Extremas
CFAR Constant false alarm rate
CM4SL Carmaker for simulink
CMbB Collision Mitigation by Braking
CMOS Complementary Metal-Oxide-Semiconductor
CNN Convolutional Neural Network
COR Customized Output Range
CPU Central Processing Unit
CRF Conditional Random Field
CUT Cell under test
DAISY Name of a feature descriptor
DAS Driver assistance systems
DBC data base CAN
DIF Decimation-in-frequency

xxxv

xxxvi List of Abbreviations

DMA driving monitoring automotive
DOA Direction of arrival
DoE Design of Experiment
DoG Difference of Gaussian
DRAM Dynamic random-access memory
ECU Electronic Control Unit
ESC Electronic Stability Control
ESPRIT Estimation of signal parameters via rotational invariant

techniques
FAST Features from Accelerated Segment Test
FCW Frontal Collision Warning or Forward Collision Warning
FDM Frequency-division multiplexing
FFT Fast Fourier transform
FIR Finite impulse response
FMCW Frequency-modulated continuous-wave
FN(R) False Negative (Rate)
FP(R) False Positive (Rate)
FPGA Field-Programmable Gate Array
fps Frames per second
FREAK Fast Retina Keypoint
GB Geometry-based
GOPS Billion Operations Per Second
GPGPU General Purpose Graphics Processing Unit
GPP General Purpose Processor
GPU Graphics Processing Unit
HD High-definition, 1280×720 pixel
HiL Hardware in the Loop
HMI Human-machine interface
HW Hardware
I/O input/output
I2C Inter-Integrated Circuit
IMU Inertial measurement unit
IU Intersection over Union
IWI information-warning-intervention
KD-Tree K-dimensional tree
KPI Key Performance Indicator
LCA Lane Change Assistant
LDW Lane Departure Warning

List of Abbreviations xxxvii

LKA Lane Keeping Assistance
LoG Laplacian of Gaussian
LSB Least significant bit
LUT Lookup table
MCC Matthews Correlation Coefficient
MDC Multi-path delay commutator
MiL Model in the Loop
MIMO Multiple-input multiple-output
MLP Multi Layer Perceptron
MOPS Million Operations Per Second
MUSIC Multiple signal classification
NCI Non-coherent integration
NHTSA National Highway Traffic Safety Administration
NMEA National Marine Electronics Association
NNB Nearest-Neighbor-Based
NNDR Nearest-Neighbor Distance Ratio
OpenCL Open Computing Language
OpenGL Open Graphics Library
ORB Oriented FAST and Rotated BRIEF
OS-CFAR Ordered-statistic constant false alarm rate
PCA Principal Component Analysis
PID proportional, integral, derivative controller
QVGA Quarter Video Graphics Array, 320×240 pixel
RCS Radar cross-section
RDE Reak Driving Emissions
ReLU Rectifier Linear Unit
RMS Root Mean Square
RPM Revolution per minute
RTSP Real Time Streaming Protocol
SAE Society of Automotive Engineers
SDF Single-path delay feedback
SIFT Scale-Invariant Feature Transform
SIP Session Initialization Protocol
SLA Speed Limit Assistant
SNR Signal-to-noise ratio
SoP Start of Production
SQNR Signal-to-quantization-noise ratio
SRAM Static random-access memory

xxxviii List of Abbreviations

SURF Speeded Up Robust Features
SW Software
TB Threshold-Based
TDM Time-division multiplexing
TP True Positive
UUT Unit Under Test
VGA Video Graphics Array, 640×480 pixel

1
The DESERVE Project:Towards Future

ADAS Functions

Matti Kutila1 and Nereo Pallaro2

1VTT Technical Research Center of Finland Ltd., Finland
2Centro Ricerche Fiat, Italy

1.1 Project Aim

This book aims to outline the major innovations introduced by the DESERVE
(DEvelopment platform for Safe and Efficient dRiVe) project. The project
started in September 2012 and finished on February 2015 after 3,5 years
heavy working and was coordinated by VTT Technical Research Centre of
Finland Ltd. The project was co-funded by the European Commission under
the ECSEL EU-Horizon 2020 programme. The project was a joint effort
of major vehicle manufacturers (Volvo, Daimler, Fiat), component suppliers
(Continental, Ficosa,AVL, Bosch, NXP, Infineon, dSPACE,ASLVision, Ram-
boll, TTS, Technolution), research institutes (VTT, ICOOR, ReLab, INRIA,
CTAG) and universities (VisLab, IRSEEM, ARMENIS, IKA, INTEMPORA,
Leibniz Universität Hannover).

The main research question was to identify the optimal sensor solutions for
the DESERVE platform which are required by the selected ADAS functions

1

2 The DESERVE Project: Towards Future ADAS Functions

for supporting transition to automated vehicles. 22 different modules were
selected to be implemented to 11 driver support applications according to user
needs when starting development process:

• Lane change assistance system
• Pedestrian safety systems
• Forward/rearward looking system (distant range)
• Adaptive light control
• Park assistance
• Night vision system
• Cruise control system
• Traffic sign and traffic light recognition
• Map-supported systems
• Vehicle interior observation
• Driver monitoring

The project created the methodology framework for integrating embedded
hardware and software modules was created which enables better interoper-
ability of automotive industry products and third party aftersales components.
This approach is also beneficial to comprise the problem for guaranteeing
safety and security problems when new components are added to the complex
software and hardware stacks.

The initial project objective has been defined in the Table 1.1 with having
measurable verification of the expected results.

Table 1.1 Scientific and technical objectives

Scientific and Technical Objectives Measurable and Verifiable Form

The definition and implementation of a
model-driven process for the compositional
development of safety critical systems that
allows the smooth integration of existing
components and functions in a new
framework.

By defining an analysis methodology to
establish an industrially applicable
process for exploration of design spaces
and multi-criteria constraint satisfaction,
with particular regard to safety properties.

Verification: 90% or more of the
applications identified could be
developed with the proposed platform.

The development of an innovative
embedded vehicle platform capable of
supporting the fast and reliable
development of ADAS and efficient
Eco-driving functions.

By implementing demonstrators for
active and passive safety of drivers and all
road users in the three macro-areas in the
automotive domain such as:

1.1 Project Aim 3

Table 1.1 Continued

• Technical, safety and efficiency impact
assessment of resulting prototypes
following the evaluation methodologies
identified in project PREVAL and in
line with INTERACTIVE evaluation
methodologies.

• Cost-Benefits analysis.
• Evaluation of cost reduction in

comparison with conventional Driver
Assistance Systems.

Verification: 90% or more of the developed
applications showed more than 15% of
reduction in development time and cost.

The integration of existing vehicle
sensors and actuators in a unified SW
framework for multiple safety and
Eco-driving applications.

Existence of a cost-effective and flexible SW
platform, able to be used with available
sensors/actuators.

Verification: 90% or more of the developed
applications show more than 15%
reduction in development duration and
cost.

The adaptation of the current data
fusion, HMI and driver’s behaviour
modules to provide suitable and
harmonised middleware for the different
safety and Eco-driving functions.

By applying the V-model and developing high
level services and Application Protocol
Interface (API) that can be used in a wide
range of safety-related use cases. Via
multi-modal HMI with user related and driver
behaviour assessment through tests in driving
simulator and in prototype vehicles.

Verification: Statistical evidence of
improvement of driver acceptance between
existing (on the market) and
DESERVE-developed functions. Subjective
evaluation through questionnaires.

The implementation of a new method
and relative tools for ADAS functions
development.

Existence of new tools for development of
Driver Assistance Systems, including data
fusion visualisation, algorithm development,
actuation simulation, etc.

Verification: Evidence that the method is
suitable for effective ADAS developments:

• Results of the test case development
• Results of workshops with main

stakeholders, OEMs and automotive
suppliers.

4 The DESERVE Project: Towards Future ADAS Functions

The developed applications are tested and validated in different demon-
stration vehicles for showing that DESERVE methodology is not limited to
one single vehicle type. The project demonstration vehicles are:

• two medium class passenger cars from Fiat
• research passenger car from VTT
• luxury passenger car from Daimler
• heavy goods vehicle from Volvo
• driver training truck from TTS

Additionally, tests will also be conducted in simulators, e.g. a simulator for
driver monitoring functions and a simulator for cruise control systems.

1.2 Project Structure

The project was divided into 8 sub-projects (see Figure 1.1) in order to keep
the whole development chain manageable and taking different automotive
orientated technical challenges into account.

This project workflow also enabled professional development process
starting from the requirements and finishing to the validation phase. One sub-
project was engaged with specifying and designing the DESERVE platform
and three sub-projects for doing implementation.

Figure 1.1 The DESERVE V-shape development process.

1.4 The Project Innovation Summary 5

1.3 DESERVE Platform Design

The project developed the framework methodology (see Figure 1.2) to
integrate new software components to car environment. In practise, the
methodology verified with implementing two alternative solutions which were
adapted to fit to the project framework design. The one bases on ADTF which
is mainly utilised by the German automotive industry and RTMaps which
is implemented by the other demonstrators. Since the aim is to introduce a
solution which will be exploited in real vehicles both solutions this gives good
bases to bring the specified framework to cars in future within next 5 years.

1.4 The Project Innovation Summary

The project was not limited to the framework design but was also further
developing the current in-vehicle technology. The specific areas where steps
were taken forward are:

Figure 1.2 DESERVE platform concept for speeding up the ADAS function development
time.

6 The DESERVE Project: Towards Future ADAS Functions

• Night time environment perception
• Driver monitoring topics: Drowsiness and distraction detection
• Embedded in-vehicle computing system: Setting up FPGA based auto-

motive CPUs
• Vehicle blind spot detection
• Vehicle surrounding awareness
• New human-machine interface concept

However, these are kind of by-products since main intention was to develop
common methodology for automotive software implementation. The project
therefore, took steps forward in developing common framework (i.e. metho-
dology) to bring new functions to the vehicles. These are not limited to above
functionalities but they are the first steps.

The one DESERVE platform allows the co-design of software and hard-
ware for applications and algorithms. The whole application or algorithm can
be implemented in software using for example ADTF, RTMaps or Simulink
interfaces which allows reusability, flexibility and fast verification of the
implemented hardware modules.

1.5 Conclusions

The original project target was to develop a common software platform for
modern vehicles. The expected outcome is that the platform fits up to 90 % of
all new applications introduced in the new cars. The novelADAS functions are
becoming more and more complex and the new features are software-based
instead of mechanical solutions like they were 10 to15 years ago. However,
software is always prone to errors which may have serious consequences if
e.g. the vehicle accelerates when emergency braking is expected. Therefore, a
proper evaluation procedure is needed by using proper performance indicators,
in order to verify the correct functionality of the platform.

As the final concluding remark, the DESERVE methodology pushes
forward the situation compared to the current approaches in the automotive
industry. The used architecture for the DESERVE platform is flexible and
modular and enables to add new software components, devices, modules and
functions even if the set of vehicle sensors, actuators and HMI remains.

PART I

ADAS Development Platform

http://taylorandfrancis.com

2
The DESERVE Platform: A Flexible

Development Framework to Seemlessly
Support the ADAS Development Levels

Frank Badstübner1, Ralf Ködel1, Wilhelm Maurer1, Martin Kunert2,
André Rolfsmeier3, Joshué Pérez4, Florian Giesemann5,

Guillermo Payá-Vayá5, Holger Blume5 and Gideon Reade6

1Infineon Technologies AG, Germany
2Robert Bosch GmbH, Germany
3dSpace GmbH, Germany
4INRIA, France
5IMS/Hannover University, Germany
6ASL, U.K.

2.1 Introduction to the DESERVE Platform Concept

As outlined by Figure 2.1, the DESERVE platform is the key enabler for speed-
ing up the development of next generation ADAS systems. The DESERVE
platform represents an open platform to be used by anyone. This chapter
therefore covers the entire spectrum of aspects to be considered for the use of
this generic DESERVE platform.

Please kindly note that the extensive work on the DESERVE platform can-
not be completely described here. Thus, reference to a manifold of DESERVE
deliverables are made.As most of these deliverables are not publicly available,
essential findings in these deliverable reports were included here to provide a
complete view on the DESERVE platform.

The DESERVE platform relies on model-based design and virtual testing
tools. Its openness is based on the compliance with AUTOSAR standards. All
AUTOSAR members have access to these standardized interfaces.

9

10 The DESERVE Platform: A Flexible Development Framework

F
ig

ur
e

2.
1

T
he

D
E

SE
R

V
E

Pl
at

fo
rm

–
th

e
en

ab
le

r
fo

r
ne

xt
ge

ne
ra

tio
n

A
D

A
S

sy
st

em
s.

2.1 Introduction to the DESERVE Platform Concept 11

The DESERVE platform is not related to any specific hardware or software.
In contrast, it is generic and represents a new methodology and concept
to develop future ADAS systems more efficient and more flexible with
maximum reuse of modules and components due to well-defined processes
and standardizations on architecture and encapsulated module levels.

Requirements engineering is applied for next generation ADAS systems.
By means of model-based design (e.g. Matlab/Simulink/ADTF/RTMaps)
fast implementation in ADAS rapid prototyping framework is achieved
(development level 2). Rapid prototyping results are evaluated by Hardware-
in-the-Loop (HIL), Model-in-the-Loop (MIL) or Processor-in-the-Loop (PIL)
test bench. In parallel, by making use of model based design space explo-
ration, specifications and requirements for System-on-Chip (SoC) can be
derived at a very early development phase, which supports cost predic-
tion on basis of silicon area, throughput etc. Both, validation by virtual
testing and cost prediction indicate important improvement potentials that
need to be implemented in the next cycle of the iterative development
process.

The situation before DESERVE can be characterized by the absence of
model-based access to perception and fusion algorithms, missing AUTOSAR
compatibility, there is no library with available algorithms (for composing and
evaluating new algorithms). Rather, testing the application on real vehicles in
real traffic scenarios is the approach followed, together with some recording
feature to allow the capturing of the critical situations, where the solution fails
for example, in order to reproduce them in some way later in laboratory.

The objectives of the DESERVE platform are driven by the market needs,
which are enabling a further growth of embedded systems and more specifi-
cally advanced driver assistance systems (ADAS), mastering the complexity
(both in system architecture and processing power) of ADAS, reducing costs
of components and development time ofADAS as well as the seamless integra-
tion of the growing amount of functions within ADAS and the corresponding
vehicle.

DESERVE strives to meet these markets needs by aiming at a novel
design and more efficient development process that is enabled by a platform.
A platform that provides a flexible development framework, reaching from
early PC-based pre-developments down to close-to-production hardware
implementations on final target systems on chip, to seamlessly support the
ADAS development levels; that constructs a tool chain to allow for modelling
and evaluation via virtual testing of new sensors, algorithms, applications
and actuators during the whole design and development process; a platform;
that forms a common in-vehicle platform for future ADAS functions based

12 The DESERVE Platform: A Flexible Development Framework

Figure 2.2 DESERVE platform enabled design and development process.

on a modular approach and an architecture and interface specifications that
are compatible with AUTOSAR (access and easy-to-use also for non-project-
partners); a platform that enables the integration of safety mechanisms for
pre-certification (generic safety requirements e.g. for testing on public roads)
and full requirements for ASIL D according to ISO 26262 (to prepare certifi-
cation of later target platform) and security mechanisms for pre-certification
of connected ADAS according to ISO 27001.

The novel design and efficient development process is based on the well-
known V-model and fully DESERVE platform supported during all phases in
the process. This is illustrated in Figure 2.2.

2.2 The DESERVE Platform – A Flexible Development
Framework to Seamlessly Support the ADAS
Development Levels

This section introduces into the development methods and guidelines asso-
ciated with the DESERVE platform and outlines the benefits in terms of
development cost and time savings from the OEM perspective. Basically, the

2.2 The DESERVE Platform – A Flexible Development Framework 13

platform concept is based on three pillars which reflect the different develop-
ment levels and the transition of ADAS algorithms from the prototyping to
production phase in the automotive industry (see Figure 2.3).

The DESERVE platform is a generic platform that supports all develop-
ment levels illustrated in Figure 2.3 as seamless as possible – from feasibility
study to product development.

Level 1: PC platform
In the research and pre-development phase users typically require highly
flexible tools with an intuitive user interface and the implementation ofADAS
algorithms may not satisfy hard real-time requirements. Here, PC-based tools
such asADTF and RTMaps for data fusion often constitute the basis forADAS
development.

Such tools provide a high user comfort and allow developers to implement
and verify algorithms directly on a standard MS Windows or Linux PC.
Different kinds of sensors/actuators and vehicle bus interfaces are available
so that the algorithms can directly be tested in a real environment. However,
real-time calculation is not guaranteed, especially with complex perception,
fusion and tracking algorithms. In addition, there is no direct support of
Matlab/Simulink,AUTOSAR and the model-based design approach for appli-
cation functions. Finally, PC platforms as described above are typically not
tailored for stand-alone, in-vehicle use cases.

Figure 2.3 ADAS development process.

14 The DESERVE Platform: A Flexible Development Framework

To avoid a time-consuming redesign of perception, fusion or tracking
algorithms when implementing them on the final ECU hardware (production
ECU), engineers are looking for ways to evaluate different target hardware
architectures according to given cost criteria already in early development
stages.This request is met by the design space exploration (DSE) methodology
and the SoC modelling approach.

Level 2: Rapid prototyping platform including software superstructure
(e.g. embedded PC/embedded controller with realtime
operating system and FPGA)
In the second development stage engineers go one step closer to a real-
time implementation. Complex and computationally intensive algorithms are
shifted to a powerful FPGA to improve the realtime capability. In parallel
to this, the FPGA platform allows different target hardware architectures
to be evaluated in combination with the selected algorithms. To ensure a
rapid implementation of the above mentioned perception, fusion, and tracking
algorithms in the FPGA, basic building blocks in terms of a library are provided
by the DSE framework. By means of this block-based modeling approach the
time and effort for implementing the associated algorithms can significantly
be reduced.

Using an embedded system platform in this stage featuring both an FPGA
and an embedded controller also allows ADAS application algorithms to be
designed by means of models so that the associated development time can
further be reduced. Compared to the purely PC based framework real-time
performance is almost guaranteed, though the user comfort with programming
the FPGA may be restricted.

Level 3: Fully embedded, AUTOSAR compatible architecture
(e.g. multicore controller with FPGA) for the evaluation of algorithms
in realtime and implementation of safety requirements according
to ISO 26262 (e.g. pre-certification for testing on public roads)
The goal of this stage is to go one step further to the final target hardware
and to provide a stand-alone, in-vehicle rapid prototyping platform which, for
example, can even be used during test drives. This stage reflects the users’
need to evaluate and experience the driver assistance system directly in the
vehicle itself.

The standard PC is replaced by an embedded PC that is qualified for in-
vehicle use in terms of shock, vibration and temperature, similar to the other
parts of the system. This platform also allows the integration of hardware
accelerators so that even highly computational intensive algorithms may be
tested in the vehicle. It is also possible to interface target microcontrollers of

2.2 The DESERVE Platform – A Flexible Development Framework 15

production ECUs and to run certain algorithms there. The complete platform
behaves like a prototype ECU which can be operated by test drivers which are
not specifically instructed. For example, the platform can be started and shut
down via the vehicle’s ignition key.

The development platforms of all stages can be used together with the
model-based design space exploration approach for system on chip and
libraries of basic building blocks for the FPGA. By means of this the
gap is closed when transferring perception, fusion and tracking algorithms
from prototyping to production, similar to the model-based design approach
with application functions using Simulink. Being able to use already tested
and validated building blocks and software modules greatly facilitates and
expedites the development process.

To support the model-based development of algorithms at all processing
layers (perception, decision making, warning and control strategies) and to
execute these algorithms in the vehicle, the DESERVE platform level 3 needs
to be fully compatible to theAUTOSAR standard (note: as of today, no certified
AUTOSAR 4.0 real-time operating system including memory protection is
available; its development is not subject of DESERVE).

In addition, at this development level, safety mechanisms need to be
developed: According to ISO 26262 the DAS system needs to be classified
concerning theAutomotive Safety Integrity Level (ASIL). Many DAS systems
require the highest classification ASIL D. Suitable measures are required to
fulfil the related strong requirements.As the certification process is very much
related to the hardware, just pre-certification (e.g. for testing of the new DAS
on public roads) is possible at this development level.

As a result, OEMs are able to define early and precise enough the distinct
requirements for the final ECU hard- and software (e.g. required interfaces –
which I/O and bus system; computational power; memory requirements),
including the safety mechanisms (e.g. memory protection, lockstep operation).

Level 4: Target production platform (e.g. multicore controller ECU
with integrated custom ASIC/FPGA/hardware accelerator)
On basis of the production hardware, the final certification of the ADAS takes
place. Within the DESERVE project, the generic DESERVE platform concept
was validated. Starting with purely PC-based development, algorithms can
be outsourced step by step to an FPGA or embedded controller prototyping
system. In addition to the hardware concept, a design space exploration
and an analytical modelling approach for system on chip is proposed. This
software framework allows different target hardware architectures for the
implementation of perception algorithms to be evaluated according to given

16 The DESERVE Platform: A Flexible Development Framework

cost criteria in early development phases. The software framework is coupled
to the FPGA of the DESERVE platform. The associated workflow will be
supported by a library of basic building blocks for the FPGA by means of
which perception algorithms can be composed and implemented quickly.

To validate the platform concept, three different realization instances of
the generic DESERVE platform are considered in the project:

• Level 1: Purely PC based solution
• Level 2: Mixed PC/embedded control based on dSpace Micro Autobox

with FPGA framework (this platform will be extensively used for the
ADAS vehicle demonstrators)

• Level 3: Fully embedded platform based on multicore controller plus
FPGA. This instance of the DESERVE platform provides realtime
operating system and basis software fully compatible to the AUTOSAR
standard. Thus it is open and easy to use for all AUTOSAR members. It
will also feature safety concepts required for ASIL D and consider new
radar/camera interfaces.

2.3 DESERVE Platform Requirements

The next step in the definition process for the DESERVE platform concerned
the translation of the previously defined platform needs into generic require-
ments for the DESERVE platform based on common software architecture
and suitable for the development and simulation of the 33 DAS functions
investigated in the beginning.

The generic requirements for the DESERVE platform were defined
utilizing the following approach (see deliverables D1.2.1 [1]).

The DESERVE development platform has been defined taking into account
that general requirements such as AUTOSAR compatibility [6], SPICE com-
pliance and functional safety (ISO 26262) [7, 8] are mandatory for industrial
use. These requirements apply for the “industrialized platform”. The generic
DESERVE platform addresses a functional software architecture based on
Perception, Application and IWI platforms.

2.3.1 DESERVE Platform Framework

The DESERVE platform has been defined taking into account general require-
ments such as AUTOSAR compatibility, SPICE compliance and functional
safety (ISO 26262), which are mandatory for the later industrial use. The
AUTOSAR standard comprises a set of specifications describing software

2.3 DESERVE Platform Requirements 17

architecture components and defining their interfaces. DESERVE aims at
using AUTOSAR to integrate applications from different suppliers inside a
single processing unit.

DESERVE addressed also to be compliant with the SPICE standard, which
represents a set of technical standards documents for the computer software
development process and related business management functions. The ISO
26262 standard was considered in the implementation of DESERVE platform
in order to improve the safety in the development of methods and tools.
The ISO 26262 standard defines the “Functional Safety Assessment” at the
completion of the item development with the scope to assess the functional
safety that is achieved by the element under safety analysis.

The baseline for DESERVE is represented by the results of past and on-
going research projects [9, 10], and in particular of interactIVe addressing
the development of a common perception framework for multiple safety
applications with unified output interface from the perception layer to the
application layer [11].

Figure 2.4 presents the DESERVE platform framework. In this generic
architecture the perception platform processes the data received from the
sensors that are available on the ego vehicle and sends them to the application
platform in order to develop control functions and to decide the actuation

Figure 2.4 DESERVE platform framework.

18 The DESERVE Platform: A Flexible Development Framework

strategies. Finally, the output is sent to the IWI platform informing the
driver in case of warning conditions and activating the systems related to
the longitudinal and/or lateral dynamics.

2.3.2 Generic DESERVE Platform Requirements
(Relevant to all Development Levels)

Different clusters of requirements were defined following the structure of
the DESERVE platform framework. Please note that each of the following
requirements was divided in sub-requirements, which are described in detail
in DESERVE deliverable D1.2.1.

General software requirements
General software requirements: Among others, these cover the previously
mentioned software requirements for modularity, reusability, AUTOSAR,
SPICE process assessment (ISO/IEC 15504), functional safety (ISO 26262),
platform independence (the application software needs to be independent
from the processing hardware), standardized interfaces (i.e. the software
needs to have interfaces to sensors and actuators that are standardized
and published), operating system independence (cross platform libraries are
recommended), programming language, communication technologies inde-
pendence, automatic start-up/shut-down, configuration of sensors position,
software versioning and licenses.

General hardware platform requirements
These cover the aspects power supply, list of supported sensors, processing
unit, unit size and number of included components etc.

Perception module requirements
These requirements include 3D reconstruction of the scene in front of the
vehicle, ADASIS horizon, assignment of objects to lanes, detection of the free
space, driver monitoring, enhanced vehicle positioning, environment, front
near range perception, frontal object perception, lane course, lane recogni-
tion, moving object classification, occupant monitoring, parking lot detector,
recognition of unavoidable crash situations, relative positioning of the ego
vehicle to the road, road data fusion, road edge detection, scene labelling, self-
calibration, side/rear object perception, traffic sign detector, vehicle filter/state,
vehicle light detector, vehicle trajectory calculation, vulnerable road users
detection and classification.

The functional architecture of the perception layer is illustrated in
Figure 2.5. Depending on the ADAS system to be realized, some of the

2.3 DESERVE Platform Requirements 19

Figure 2.5 Perception platform functional architecture.

components in the generic perception platform architecture may be omitted
(without losing generality). The modules developed in the project to build the
demonstrators are highlighted by thicker boxes.

The number and variety of the different perception sources is manifold
and requires special care and precaution to transport the available information
in the subsequent data processing modules. Two main aspects have to be
taken into consideration when connecting perception sources to the DESERVE
platform: The information content may differ from sensor to sensor even
when the same technique (e.g. radar, video camera or ultrasonic sensor) is
used. Based on the physical concept used the individual sensors may have an
intrinsic lack of information that can never be provided, independent of the

20 The DESERVE Platform: A Flexible Development Framework

effort spent to improve the sensor performance (e.g. radar sensors can never
“visually” read the road signs content while video sensors can never provide
direct speed measurements).

By using the general interface descriptor approach the data input structure
for the perception layer processing module becomes independent from the real
sensors connected to the DESERVE platform. This kind of concept is used
in PC architecture since several years under the term hardware abstraction
layer that completely decouples data information from the physical hardware
in use.

The flexibility and scalability of the overall system is much better
and reusability of SW components that are already developed is higher.
Improvements and changes within the subgroups (i.e. environmental sensors
or perception input processing module) can be conducted on a standalone basis
without modifying or adapting the whole data processing chain at all. General
adoption of the whole data processing chain is thus only needed in the case
that the interference descriptors between the modules have to be updated or
modified due to recently emerging needs.

As the diversity of the already existing environmental sensors is already
huge and many products are already in series production, the change of the
sensor output signals is often not possible at all. To connect already existing
sensing devices or sensors with an IP-protected signal output to the open
DESERVE platform, a work-around with converter or breakout boxes can
be applied. Using such interface converter/breakout boxes almost any kind
of sensor system can be attached to the standardized and abstracted input
channels of the generic DESERVE platform.

Application module requirements
The application module needs to consider the following requirements: ACC
control, activation control, advance warning generator, calculation of required
evasion trajectory, decision unit, driver intention detection, driving strategy,
intervention path determination, IWI manager, reference maneuver, situation
analysis, target selection, threat assessment, trajectory control, trajectory
planning, vehicle model and vehicle motion control.

The functional scheme of the application platform modules is depicted
in Figure 2.6. The modules are divided in clusters having the same scope.
Some of them have mainly the objective to select the driver intention and the
most dangerous target. Other modules execute control operations and make
an evaluation about the current situation of warning and eventually decide
specific actions. Then the type of information to provide to the driver and the

2.3 DESERVE Platform Requirements 21

Figure 2.6 Application platform functional architecture.

intervention strategy are decided. Finally, the kind of actuation to adopt is
provided to the IWI Platform modules.

IWI module requirements
The IWI module is dedicated to suit requirements regarding the HMI (acoustic,
displays, telltales, haptic steering wheel, haptic accelerator pedal, haptic safety
belt), actuation of external lights, lateral actuation (steering angle and steering
torque controller) and longitudinal actuation (engine acceleration controller).
The functional architecture of the IWI platform is depicted in Figure 2.7.

Different levels in the development process of ADAS require different
instances (i.e. realizations) of the generic DESERVE platform – from PC based
(development level 1) to production hardware (development level 4). With
increasing development levels, additional requirements need to be addressed.
This principle shall be explained in the next two subsections.

2.3.3 Rapid Prototyping Framework Requirements
(Development Level 2)

This section shortly outlines the main requirements for the DESERVE rapid
prototyping platform. The main intention here is to specify a flexible and

22 The DESERVE Platform: A Flexible Development Framework

Figure 2.7 DESERVE IWI platform.

modular rapid prototyping environment allowing ADAS related perception,
application and intervention algorithms to be developed in short iteration
cycles and to be prototyped directly in the vehicle. In order to do so, there is a
need to connect different kinds of sensors to the development framework, to
pre-process and fuse the sensor data, to calculate the actualADAS applications
and to finally drive the respective actuators.

The structure for the generic requirements in the previous section, the
rapid prototyping system requirements are structured in hardware, software
and FPGA code requirements. In addition, a distinction is made between
perception (i.e. sensor data processing) and application algorithms.

2.3.4 Additional Requirements for Embedded Multicore
Platform with FPGA (Development Level 3)

While the main focus of development level 2 is on evaluation of algorithms
in real-time on public roads, thus on ADAS functionalities and use in the
DESERVE DAS function demonstrators, levels 3 (and 4) go significantly
ahead in terms of fulfilling “critical” requirements like AUTOSAR com-
patibility, SPICE compliance and functional safety (ISO 26262) which are
mandatory for industrial use of the platform. Due to limited resources and

2.4 DESERVE Platform Specification and Architecture 23

limited project duration, these requirements cannot be fully implemented
in DESERVE. Nevertheless all the work done for the “non-industrialized”
DESERVE platform can be (partly) reused or carried over to the industrialized
version of the DESERVE platform (level 4).

2.4 DESERVE Platform Specification and Architecture

The generic platform requirements were translated into specifications, which
represent the starting point for the development of modules for the DESERVE
platform. The specifications were included into an Excel file which is acces-
sible to all project partners via the project server. By means of an iterative
process, both specifications and software design were refined and improved.
Asummary of the specification approach and of the specifications derived from
the DESERVE platform requirements is provided in deliverable D1.3.1 [2].

2.4.1 DESERVE Platform Architecture

The architecture of the DESERVE development platform shall follow both the
principle of standard DAS development cycles and the mappings of applica-
tion building blocks to final, often heterogeneous hardware implementations.
To date there is no tool or framework available that covers both requirements
at the same time on the same platform.

In the early concept and implementation phase the basic development,
specification and validation (e.g. with MIL, SIL or HIL) is often done with
another development framework (both for SW and HW) than the one applied
for the final target platform. Little is known or taken into account from the
final embedded system characteristics when first application algorithms are
programmed and very often the SW modules written in this first development
environment have to be reprogrammed from the scratch when porting it to
the embedded system on chip. If the software, mostly written in a high-level
programming language, finally fits the target system one has selected for series
production, is a game of pure chance and not rarely during the series product
development cycle a larger target system or some “add-ons” have to be chosen.
With the new design space exploration methodology the certainty to select the
suitable embedded target system at first time is significantly increased.

The DESERVE development platform architecture has to comply with the
following basic needs:

• Enough flexibility to encompass different development environments
in a common, seamless framework for both the high-level algorithm

24 The DESERVE Platform: A Flexible Development Framework

development and the easy porting of these SW modules to the embedded
target platform.

• Real time recording and playback capabilities for both the high-level and
embedded system implementations.

• A communication architecture that is capable to shift SW portions
from the high-level development side to the embedded target system
as required (i.e. bypassing with HW accelerators).

• A seamless interoperability and replacement between the high-level
(i.e. PC-based) and embedded target systems both for development and
validation purposes.

The basic idea and intention of this hardware architecture is to standardize the
interfaces between the three different development concept levels as good as
possible.

Inputs from proprietary ADAS sensor systems and information sources
are analyzed via a generic interface no. 1 to the PC based development
environment. Here the ADTF tool with its filter programming concept is
used to develop or improve SW modules on a high-level programming
language. The partitioning and optimization of parts of the SW modules is
consecutively done by shifting such portions over the generic interface no. 2
to the embedded controller framework that is already much nearer to the final
commercial product. Via this bidirectional interface bypassing techniques like
PIL(embedded Processor In the Loop) can be realized. In a final step, dedicated
HW accelerators can be linked in via the generic interface no. 3 by applying
the same bypassing concept. Especially computationally intensive tasks can
so be “outsourced”, so that even the PC-based platform is capable to keep the
stringent real-time constraints.

Depending on the performance of the PC either all or only specific parts of
the SW modules can be executed there. During the development process more
and more SW parts are transferred to the HW-Accelerator level, which, in
the final development stage, results in the next generation embedded ADAS
target system. At this last development step, the level 1 (PC) and level 2
(embedded controller) platform will only serve as a shell to keep up the overall
development framework.

Reuse of already existing components from former ADAS generations
may be used in the early development phase as HW accelerators for compu-
tational intensive calculations. Mainly standard algorithms that are fixed and
receive no further modifications are preferred candidates for such specific HW
accelerators.

2.4 DESERVE Platform Specification and Architecture 25

Figure 2.8 DESERVE platform (e.g. for development Level 2 – rapid prototyping system
based on mixed PC and embedded controller framework).

This section summarizes the DESERVE platform architecture aspects. It
considers hard- and software architecture aspects. The platform architecture
is described in detail in deliverable D25.2 [4].

2.4.1.1 Hardware architecture
DESERVE has to be flexible enough to be implemented in a distributed and
scalable architecture (several modules, each of them able to sense and/or
process and/or actuate) or a concentrated one (sensors and actuators all linked
with a single unit of processing and control). Task 2.5.1 identifies which
conditions have to be satisfied by the individual subsystem architectures in
order to be compliant with the DESERVE generic hardware platform.

For maximum reusability the DESERVE concept and hardware architec-
ture was designed in such a way that subsystems of different generations
(or respectively the kernels of it) can be used in parallel, thereby enabling
the rapid and effective creation of next-generation innovative ADAS systems
by using well tested and certified kernel functions of the “old” system which
partly could be already implemented as SoC (System on Chip).The DESERVE
development platform can be seen as a flexible rapid-prototyping environment
that enables fast and efficient development of next generationADAS functions
in a continuous iteration cycle between the current and next-generation
embedded subsystem components.

Furthermore, the DESERVE concept is flexible enough for different
DESERVE partners to make different implementations. These would be of
forms that might in future be interoperable, although DESERVE will not

26 The DESERVE Platform: A Flexible Development Framework

attempt to define detailed standards which would be necessary for actual
interoperability.

The main DESERVE idea concerns the use of one common platform
system (Figure 2.9) for all ADAS functional modules, instead of the current
approach to have one platform for each individual ADAS system. Basically,
three main hardware architecture challenges arise from this idea:

• Automotive quality: The platform needs to provide high reliability over
the complete automotive temperature range, power supply and environ-
mental conditions.AsADAS systems address safety aspects, the platform
should implement as far as possible the ISO 26262 requirements, i.e. at
least the hardware components that are near to the final product unit shall
support the required ASIL level.

• Possibility to extend hardware capabilities: The platform needs to be
designed up-front to support the possibility to include additional hard-
ware into the system. Standard sensor interfaces are needed, for instance,
but also standardized interfacing to external FPGA/DSP for performance
enhancement is required. For scalability purposes, such external devices
need to be cascadable. Similar considerations hold for the memory
interface capability.

• A special case of hardware extension capabilities is the reuse of serial
parts from earlier generations to speed up the development process or to
increase the sensor perception by placing more sensors on the car.

• Finally, a seamless environment tool chain is needed. One key require-
ment lies in the reuse of the existing tool ecosystem over several
platform generations. Further, we should target adaptability of the
tools to the broad industry use cases, e.g. next generation video
and radar sensors. Additionally, real-time monitoring and debugging
of interface and processing for development purposes represent key
challenges.

2.4.1.2 Software architecture
As for hardware architecture, the characteristics and constraints that the
software architecture has to fulfill to accept an application based on modules
developed inside the DESERVE platform (Figure 2.10) were identified.
AUTOSAR standards were considered1.

1Note: Being a research project, the development work conducted in DESERVE is dis-
charged from being fully compliant with the AUTOSAR standard. Where possible and easy
to implement, inputs from AUTOSAR were considered, of course. A mandatory request for
AUTOSAR compliance is, however, not up for discussion.

2.4 DESERVE Platform Specification and Architecture 27

F
ig

ur
e

2.
9

D
E

SE
R

V
E

ap
pr

oa
ch

–
us

e
of

co
m

m
on

pl
at

fo
rm

fo
r

al
lA

D
A

S
m

od
ul

es
.

28 The DESERVE Platform: A Flexible Development Framework

Figure 2.10 DESERVE platform architecture.

The key architecture challenges are: AUTOSAR Standards Architecture
for the full platform system including performance accelerators, request for
high SW re-usability/testability including re-use of older generation software
blocks, fast time to market, highly optimized library for optimal performance,
automatic code generation, standard compiler/tool chain and finally, hardware
tool software support for realtime debugging, high speed parallel sensor data
capture for validation and on-system debugging is required.

Application Software Modules
On the base of AUTOSAR standard, the general software architecture can
be represented in three main layers: low level (basic software: this level
abstracts from the hardware, provides basic and complex drivers and services
for high level, i.e. memory, I/O), middle level (virtual function bus and runtime
infrastructure) and high level (application software components).

The AUTOSAR standard introduces two architectural concepts (respects
to other embedded software architectures) that facilitate infrastructure inde-
pendent software development. Namely, these are the Virtual Function Bus
(VFB) and the Runtime Infrastructure (RTE) that are closely related to each
other.

2.4 DESERVE Platform Specification and Architecture 29

In order to realize this degree of flexibility against the underlying infras-
tructure, the AUTOSAR software architecture follows several abstraction
principles. In general, any piece of software within an AUTOSAR infras-
tructure can be seen as an independent component while each AUTOSAR
application is a set of inter-connected AUTOSAR components.

Further, the different layers of abstraction allow the application designer
to disregard several aspects of the physical system on which the appli-
cation will later be deployed on, like type of micro controller, type of
ECU hardware, physical location of interconnected components, networking
technology/buses or instantiation of components/number of instances.

The middle level, VFB (Figure 2.11), provides generic communication
services that can be consumed by any existing AUTOSAR software com-
ponent. Although any of these services are virtual. They will in a later
development phase be mapped to actual implemented methods that are specific
for the underlying hardware infrastructure. The RTE (runtime environment)
provides an actual representation of the virtual concepts of the VFB for one
specific ECU.

An AUTOSAR software component in general is the core of any
AUTOSAR application. It is built as a hierarchical composition of atomic
software components. The AUTOSAR software component can be divided in
Application Software Component and AUTOSAR Interface. It is important
for DESERVE to preserve (and build up during the prototyping phase of the
applications) the AUTOSAR modularity concept. Consequently, DESERVE
focuses on the development of modular Application Software Components.

Figure 2.11 Overview on the principles of virtual interaction using the AUTOSAR.

30 The DESERVE Platform: A Flexible Development Framework

Multi-task option to permit adding and removing of functionalities
The modularity is one the most important directive in the design of a global
architecture, their functions and modules for embedded systems. Different
multi-tasks (called processes) can be executed by sharing common processing
resources in the same CPU. In this line, multi-thread languages as C++ are
used by different developers around the world.

The software environments used in the DESERVE platforms (e.g. ADTF
and RTMaps) are able to transfer functions already programmed in C and
C++. These tools are multi-sensory software, designed for fast and robust
implementation in multitask systems. They use functional blocks (called
components) for data flowing between different types of modules: video,
audio, byte streams, CAN frames, among others.

This multi-threaded architecture allows the use of multiple asynchronous
sensors within the same application (see RTMaps andADTF sections in D1.3.2
[3]). Moreover, they take advantage of multi-processor architecture for more
computing power.

Based on the Development Platform Requirements [1], there are three main
stages in the control architecture: perception, application and IWI platform.
The goal of the DESERVE approach is to add different functions (Multi-task)
in the same platform.

2.4.2 DESERVE Platform Interface Definition

The definition of the DESERVE interface architecture is described together
with state of the art ADAS interfaces and next generation interfaces in
deliverable D2.5.4 [5]. Due to the high relevance of the interface architecture
for the DESERVE platform concept, a brief description is included in the next
paragraphs.

2.4.2.1 Definition of DESERVE interface architecture
The definitions of the interface architecture plays a central role for the
communication and data exchange between the different DESERVE platform
modules and sensor components. In the DESERVE deliverable D2.2.1 [12]
the abstracted interface descriptors are already defined on a content-based
hierarchical level. With standardized information data flow between the
numerous platform modules both the development time and the extension
in performance and scope of the encapsulated modules can be realized very
efficiently and in a well-structured way. The architecture of the interface has

2.4 DESERVE Platform Specification and Architecture 31

to be defined individually for each of the existing OSI layers, starting from
the physical layer up to the application layer.

For modules that only communicate within the same hardware unit the
physical data and communication layer are no longer needed. Instead, a
message box oriented data transfer link is proposed for usage in the DESERVE
project. The data to be transmitted is written in a predefined message box
descriptor field and message flags trigger the synchronization and data
updates in the concerned modules. The message box principle is sketched in
Figure 2.12.

The interfacing concept of the AUTOSAR standard is considered and
incorporated in the DESERVE platform where useful and appropriate. The
AUTOSAR mode of operation, as depicted in Figure 2.13, fits already quite
well with the general DESERVE approach proposed in this document.

In order to achieve a good reusability of embedded software functions, it
has proven to be efficient in the industry to separate the “function software”
from parameters defining the behavior of the software (= calibration data).This
allows generating embedded systems with generic software functionalities
by “embedded systems suppliers” (e.g. Continental, Bosch or others). Such
systems are bought by OEMs for building their ADAS systems. The OEM
can adapt the generic function to the individual behavior significant for his
customers “just by calibration”. In this process via an application system
(market leader is INCA for example), the calibration data can be changed
while the embedded system is running – regardless if simulated on a PC or

Figure 2.12 Message box principle for intra-unit communication.

32 The DESERVE Platform: A Flexible Development Framework

Figure 2.13 AUTOSAR application software concept.

running already on the target hardware. The separation of calibration date and
function software is also allowed according to the AUTOSAR concept.

2.4.2.2 Existing ADAS interfaces
All electronic embedded systems used to control vehicle functions (specifically
ADAS) need communications networks and protocols to manage all the
process information. The modules receive input information from a network
of sensors (e.g. for engine speed, lasers, cameras, etc.) and send commands
to the control stage (Application platform in DESERVE), and finally to the
actuators or warning systems that execute the commands (IWI platform) [1].

Due to the increasing complexity of modern ADAS applications, point-
to-point wiring has been replaced by multiple networks and communications
protocols. These protocols use different physical media to provide safe
connection among components on the vehicle. These include single wires,
twisted wire pairs, optical fiber cables, and communication over the vehicle’s
power lines.

Communication protocols
Some of the most known and used communication protocols and standards
used in nowadays vehicles are:

• CAN (controller area network)
• VAN (vehicle area network)

2.4 DESERVE Platform Specification and Architecture 33

• FlexRay
• LIN (local interconnect network)
• SAE-J1939 and ISO 11783
• MOST (Media-Oriented Systems Transport)
• Keyword Protocol 2000 (KWP2000)

Recent vehicles have installed multiple networks (with different protocols) to
communicate among electronic control units (ECU) onboard. The networks
are isolated from one another for several reasons, including bandwidth and
integration concerns.

Existing interface standards
Current ADAS systems are designed and built to provide a dedicated answer
to specific functionalities. Most ADAS are including in the same box the
sensor itself and the processing unit. So, the raw data provided by the sensor
(camera, radar) are directly loaded inside the ECU unit and processed. Only
high level (processed) information is available on the communication buses.
Raw data (e.g. pixel information of images) is not available.

The ADAS modules are dedicated products which communicate mainly
within the same hardware unit. Nevertheless, to adjust the algorithms in
function of the vehicle status, it’s necessary to provide theADAS modules with
some vehicle information as: speed, yaw rate, direction indicator status, etc.

To manage the vehicle information acquisition and sending of the outputs,
various communication interfaces are available, depending on the product,
e.g. CAN or FlexRay communication interfaces.

The communication bandwidth requirements increase more and more with
more and more complex applications, the existing network are not specified to
cover the increasing demands for bandwidth, and the Ethernet price. Ethernet
seems to be an alternative to the existing communication hardware.

2.4.2.3 Definition of next generation interfaces
The definition of next generation high speed sensor interfaces is the key
to enable the improvement for next generation driver assistant systems. An
optimized interface leads to optimized dataflow and system performance. For
each sensor family (Camera/RADAR) there is a dedicated interfacing needed.

Parallel camera interface (CIF)
The Camera Interface (CIF) represents a complete video and still picture input
interface transferring data from an image sensor into video memory. Further-
more, several hardware blocks – performing image processing operations on
the incoming data – are provided (Figure 2.14).

34 The DESERVE Platform: A Flexible Development Framework

Figure 2.14 Camera Interface (CIF) overview.

Apart from providing the physical interfacing to various types of camera
sensor modules, the CIF block implements image processing and encoding
functionalities. The integrated image processing unit supports image sensors
with integrated YCbCr processing. Additionally, the CIF also supports the
transfer of RAW (e.g. Bayer Pattern) images and non-frame synchronized
data packets. The CIF block features a 16 bit parallel interface. All output
data are transmitted via the memory interface to a BBB (Back Bone Bus)
system using the master interface. Programming of the CIF is done by register
read/write transactions using a BBB slave interface.

The CIF provides a sensor/camera interface for a wide variety of video
applications and it is optimized for high speed data transmission under terms of
low power consumption. This module is designed to be used for the following
use cases: video capturing/encoding, still image capturing in YCbCr with
on-the-fly JPEG encoding and RAW frame data capturing.

The CIF requires fast system memory for image storage in either planar,
semi-planar or interleaved YCbCr or RAW planar format or as JPEG com-
pressed data. The iJPEG encoding engine should be able to generate a full
JFIF 1.02 compliant JPEG file that can be displayed directly by any image
viewer. Important YCbCr formats – which are used for video compression
(e.g. MPEG4) for instance – are supported. For on-the-fly encoding macro
block line interrupts are generated to trigger video encoding.

Serial RADAR interface (RIF)
Analog-to-digital converter (ADC) sample rates have been increasing steadily
for years to accommodate newer bandwidth-hungry applications in commu-
nication, instrumentation, and consumer markets. Coupled with the need to

2.5 Safety Standards and Certification Concepts 35

digitize signals early in the signal chain to take advantage of digital signal
processing techniques, this has motivated the development of high-speedADC
cores that can digitize at clock rates higher than 100 MHz to 200 MHz with 8
to 12 bit resolution.

In standalone converters, theADC needs to be able to drive receiving logic
and accompanying PCB trace capacitance. Current switching transients due
to driving the load can couple back to the ADC analog front end, adversely
affecting performance. One approach to minimize this effect has been to
provide the output data at one-half the clock rate by multiplexing two output
ports, reducing required edge rates, and increasing available settling time
between switching instants.

Use of LVDS for ADC high speed data output
A new approach to providing high-speed data outputs while minimizing
performance limitations in ADC applications is the use of LVDS (low voltage
differential signaling). Infineon is incorporating LVDS output capability in
new RF devices ADCs—and will include LVDS input capability in its new
micro-controller designs.

Standards
Two standards have been written to define LVDS. One is the ANSI/TIA/EIA-
644 which is titled “Electrical Characteristics of Low Voltage Differential
Signaling (LVDS) Interface Circuits.” The other is IEEE Standard 1596.3
which is titled “IEEE Standard for Low-Voltage Differential Signals (LVDS)
for Scalable Coherent Interface” (SCI).

Generic interface to communicate between ADTF project
and FPGA based hardware platform
In order to allow an easy and standard communication between an ADTF-
Project and the FPGA-based hardware platform, a generic interface is used.
The generic interface realizes the communication with different processing
elements implemented in the FPGA-based hardware platform transparent to
the user.

2.5 Safety Standards and Certification Concepts

Some concepts related to modular certification have already been adopted by
current standards and thus have found their way into the state of the practice.
This is particularly true for the fields of automotive systems because the trend
towards modularized architectures has been particularly strong in this field.

36 The DESERVE Platform: A Flexible Development Framework

2.5.1 Safety Impact of DESERVE

Modularization of a common ADAS platform comes with a clear impact on
safety. Modules will interact, for example on Missed Trigger Interaction,
Shared Trigger Interaction, Sequential Action Interaction and/or Looping
Interaction.

Module interaction implies that any change in operation of one mod-
ule (feature) can be attributed in part or in whole to the presence of any
other module (feature) in the operational environment, as illustrated in the
Figure 2.15.

2.5.2 Functional Safety of Road Vehicles (ISO 26262)

The international standard ISO 26262 for the functional safety of street vehi-
cles contains the so-called concept of Safety Element out of Context (SEooC).

Figure 2.15 Module interaction implies changes in system behavior.

2.5 Safety Standards and Certification Concepts 37

A SEooC is defined as a component for which there is no single predestinated
application in a specific system. Therefore, the SEooC developer does not
know the concrete role the product has to play in the safety concept. Sub-
systems, hardware components, and software components may be developed
as SEooCs. Typical software SEooCs are reusable, application independent
components such as operating systems, libraries, or middleware in general.

For SEooC development, the standard suggests specifying assumed safety
requirements and developing the system according to these requirements.
When the SEooC is to be used in a specific system, the system developer has
to specify the demanded requirements, which can subsequently be checked
against the assumed requirements. If there is a match between the demanded
and the guaranteed (assumed) requirements, system and component are
compatible.

The standard does not provide any suggestions or methods on how to
identify safety requirements such as to increase the chance that assumed
and real requirements will actually match. The standard specifies a relatively
coarse-grained process for embedding a SEooC development into the stan-
dard’s safety lifecycle. This approach deals with hierarchical modularization
since it focuses on the SEooC’s role as a sub-component of a system.

In general, integration of the SEooC is expected to be done at development
time and thus there is no explicit support for open systems where components
are to be integrated dynamically.

2.5.3 Guidelines Related to ISO 26262

ISO 26262 is a derivative of IEC 61508, the generic functional safety standard
for electrical and electronic (E/E) systems. Ten volumes make up ISO 26262.
It is designed for series production cars, and contains sections specific for
management, concept and development phase, production, operation, service
and decommission.

The ISO 26262 requires the application of a “functional safety approach”,
starting from the preliminary vehicle development phases and continuing
throughout the whole product lifecycle.

The DESERVE project focuses on the concept and development (at system,
hardware and software level) phases of the lifecycle. During these phases, the
main steps defined by the Standard are:

Item definition: the Item has to be identified and described. To have a
satisfactory understanding of the item, it is necessary to know about its
functionality, interfaces, and any relevant environmental conditions.

38 The DESERVE Platform: A Flexible Development Framework

Hazard analysis and risk assessment: to evaluate the risk associated
with the item under safety analysis, a risk assessment is required. The risk
assessment considers the functionality of the item and a relevant set of
scenarios. This step produces the ASIL (Automotive Safety Integrity Level)
level and the top level safety requirements.

The ASIL is one of the key concepts in the ISO 26262. The intended
functions of the system are analyzed with respect to possible hazards. The
ASIL asks the question: “If a failure arises, what will happen to the driver and
to associated road users?”.

The risk of each hazardous event is evaluated on the basis of frequency of
the situation (or “exposure”), impact of possible damage (or “severity”) and
controllability.

The ASIL level is standardized in the scale: QM: quality management,
no-risk and A, B, C, D: increasing risk with D being the most demanding. The
ASIL shall be determined without taking into account the technologies used
in the system. It is purely based on the harm to the driver and to the other road
users.

Identification of technical safety requirements: the top level safety
requirements are detailed and allocated to system components.

Identification of Software and Hardware safety requirements: The tech-
nical safety requirements are divided into hardware and software safety
requirements. The specification of the software safety requirements consid-
ers constraints of the hardware and the impact of these constraints on the
software.

To take into account the functional safety approach, the DESERVE
applications should consider the application of the following main points:
analyze risk early in the development process; establish the appropriate
safety requirements and consider these requirements in software and hardware
development.

The impact of the standard is different for the development of warning
functions, control functions or automated driving functions.

2.5.4 Safety and AUTOSAR

In the automotive domain, Östberg and Bengtsson [14] propose an extension
to AUTomotive Open System Architecture (AUTOSAR) which consists of a
safety manager that actively enforces the safety rules described in dynamic
safety contracts. Their main contribution is a conceptual model of safety

2.5 Safety Standards and Certification Concepts 39

architecture suitable for runtime based safety assessment. Openness and
Adaptivity were both addressed.

Also in the automotive domain, Frtunikj et al. [15] present a runtime
qualitative safety assessment that considersAutomotive Safety Integrity Level
(ASIL) and its decompositions in open automotive systems. In their solution,
the authors consider the modularization of safety-assessment using Safety
Elements out of Context (SEooC) from ISO 26262. In their approach, the
SEooC was extended and the safety-assessment is done at runtime by a Safety
Manager component.

2.5.5 Safety Mechanisms for DESERVE Platform

As an example, this paragraph summarizes some features of the safety
mechanisms that are available by Infineon’s multi-core platform AURIX
which represents a potential instance of DESERVE platform (development
level 3). Its safety documentation includes:

• Safety case report providing the arguments with evidence that the objec-
tives of the ISO 26262 and the safety requirements for a component are
complete and satisfactory.

• FMEDA (customer and Infineon proprietary document)
• Safety manual including an overview of the assumed application use

cases and guidance for the application level, a summary of safety features
and mechanisms and their recommended use as well as the summary of
achieved safety metrics and resulting ASIL compliance [13].

The AURIX microcontroller platform is developed as a SEooC (Safety
Element out of Context) and provides the safety mechanisms summarized
in Figure 2.16. It provides a Safe Computation Backbone compliant with
ISO 26262 ASIL D (this includes Single Point Fault Metric fully supported
by HW mechanisms and Latent Fault Metric supported by SW (SafeTlib),
Logic MIST, MBIST). Support criteria for coexistence of elements are enabled
through a layered protection system (covering CPU tasks, Shared Memories,
Peripherals), CPU supervisor/user privileges, Safety Task Attribute and a rich
set of counters & watchdogs for program flow & temporal monitoring. SEooC
deliverables are the Safety Library (SafeTlib), Safety Manual to support
SEooC integration and FMEDA to support computation of the ISO 26262
Metrics.

Top Level Safety Requirements (TLSR) related to the Microcontroller
I/O sub-system are specified by the system integrator, as these vary for

40 The DESERVE Platform: A Flexible Development Framework

Figure 2.16 SEooC safety mechanisms.

each application. TLSR1 (ASIL D) requires to avoid false output of the
microcontroller for longer than the FTTI (Fault Tolerance Time Interval,
Figure 2.17), while TLSR2 (ASIL B) only require to avoid unavailability
of a safety mechanism for longer than one driving cycle.

The Fault Tolerant Time Interval is more precisely defined by Figure 2.18.
The application dependent fault detection time worst case is the diagnostic
time interval. The fault detection time depends on the safety mechanism. The
fault reaction time is the sum of failure signaling time and failure reaction
time. Failure signaling time depends on the microcontroller architecture, while
failure reaction time depends on the application. The failure signaling time is
composed by the alarm forwarding time plus the alarm processing time plus
the failure signaling time.

Safety requirements
With the AURIX as basis for DESERVE platform realization, it fulfils the
targets according to ISO 26262-5, 8.4.5, which defines requirements for ISO
26262 metrics. To achieveASIL D, for instance, the single point failure metric
(SPFM) needs to reach minimum 99% and the latent fault metric (LFM)
needs to reach 90% or above. The minimum values of SPFM and LFM shall

2.5 Safety Standards and Certification Concepts 41

Figure 2.17 Top level safety requirements.

Figure 2.18 Fault tolerant time interval (FTTI) definition.

be reached by every vital part. The SPFM threshold levels shall be reached
both for permanent and for transient faults. For a given ADAS application
SPFM, LFM and PMHF (probabilistic metric related to hardware failures)
metrics are estimated based on the vital, critical and application-dependent
parts utilization.

42 The DESERVE Platform: A Flexible Development Framework

In terms of PMHF for ASIL D safety goal, ISO 26262-5 requires a metric
of less than 10 FIT (failure in time, referring to 10ˆ9 hours). ISO 26262-5
9.4.3.6 and 9.4.3.7 specify the relationship between ASIL and FCR and DC
(Residual Faults). To meet ASIL D requirements the diagnostic coverage for a
FCR5 part shall be > 99.99%. The safety mechanisms are designed to achieve
coverage of 99.99%.

Safety architecture
The safety architecture goal is to provide a safe computation platform for
up to ASIL D safety applications according to ISO 26262, as this ASIL
level is required for most next generation ADAS. To achieve this level, safe
computation hardware and software, safe operating system as well as safe
software architectures are required.

The generic elements (vital parts) of a safe computation hardware platform
are summarized in Figure 2.19. Safe CPU requires hardware redundancy,
realized by delayed lockstep CPU with enhanced timing and design diversity.
Safe SRAMs allows information redundancy (realized by standard SECDED
ECC, address signatures). Also safe Flash memory is needed for information
redundancy (realized by an enhanced ECC with more than 99% coverage
of arbitrary multiple-bit fault). Enhanced error detection codes for covering
data & addressing faults lead to safe interconnects and support informa-
tion redundancy. The clock system frequency range monitors using internal
high precision independent clock source, internal & external watchdogs.

Figure 2.19 Generic elements of safe computation hardware platform.

2.5 Safety Standards and Certification Concepts 43

Finally power supply range monitoring is implemented for the internal
regulators.

To achieve a safe computation software platform an ASIL D compliant
operating system needs to be used featuring memory protection and time
protection. Further it needs to provide services for program flow monitoring,
end-to-end communication safety protocols as well as safe interrupt vector
generation. ASIL D compliant software is required to be developed according
to ISO 26262 part 6.

The AURIX platform ensures freedom of interference at software level
by means of SW isolation, while freedom of interference at hardware level
is guaranteed by HW isolation. The CPU MPU (memory protection unit)
monitors the direct access to the local memories, applies to software tasks and
allows dynamic re-configuration. The bus MPU monitors the SRAM accesses
via interconnect. Finally register access protection monitors write access rights
to module registers.

References

[1] DESERVE deliverable D1.2.1 – Development platform requirements.
[2] DESERVE deliverable D1.3.1 – Development platform specification.
[3] DESERVE deliverable D1.3.2 – Method and tools specifications.
[4] DESERVE deliverable D2.5.2 – Platform system architecture.
[5] DESERVE deliverable D2.5.4 – Standard interfaces definition.
[6] AUTOSAR, http://www.autosar.org
[7] ISO 26262, Road vehicles – Functional safety (www.iso.org).
[8] A. Sandberg, D. J. Chen, H. Lönn, R. Johansson, L. Feng, M. Törn-

gren, S. Torchiaro, R. Tavakoli-Kolagari, A. Abele – Model-based
Safety Engineering of Interdependent Functions in Automotive Vehicles
Using EAST-ADL2, Lecture Notes in Computer Science, Volume 6351,
Series: Computer Safety, Reliability, and Security (SAFECOMP), Pages
332–346. Springer Berlin/Heidelberg, 2011. ISSN 0302-9743.

[9] www.interactive-ip.eu
[10] www.haveit-eu.org
[11] S. Durekovic (NAVTEQ), Perception Horizon: Approach to Accident

Avoidance by Active Intervention, Workshop “How can new sensor
technologies impact next generation safety systems?” IEEE IV 2011,
June 5 2011, Baden–Baden.

[12] DESERVE Deliverable D2.2.1 – Perception layer Preliminary Release.

44 The DESERVE Platform: A Flexible Development Framework

[13] AURIX Safety Manual, Infineon confidential document, no. AP32224,
v1.1, dated Sept. 2014.

[14] K. Östberg und M. Bengtsson, “Run time safety analysis for automotive
systems in an open and adaptive environment,” in SAFECOMP 2013 –
Workshop ASCoMS (Architecting Safety in Collaborative Mobile Sys-
tems), Toulouse, France, 2013.

[15] J. Frtunikj, M. Asmbruster und A. Knoll, “Data-Centric Middleware
support for ASIL assessment and decomposition in open automotive
systems”.

3
Driver Modelling

Jens Klimke and Lutz Eckstein

Institute for Automotive Engineering, RWTH Aachen University,
Steinbachstraße 7, 52074 Aachen, Germany

3.1 Introduction

Traffic simulations become more and more relevant for the development of
Advanced Driver Assistant Systems (ADAS) and algorithms for automated
driving. They are used to evaluate the functions concerning important impact
factors like safety, efficiency, mobility or costs. Therefore, the system is
tested and evaluated as a component of the virtual vehicle in simulations.
The factors manageability and acceptance of the users regarding the tested
system are prospected and evaluated in driving simulators, where the real
driver can be part of the virtual environment. Both, in traffic simulations
and in simulators, the realistic behaviour of the surrounding virtual road
users to the equipped vehicle is an important requirement for a suitable
evaluation of the system because this behaviour influences the reaction of
ADAS and driver significantly. Moreover, it is necessary, that the behaviour
of the traffic can be adjusted systematically in order to generate defined traffic
situations of relevant constellations and in different nuances of criticality.
As in real traffic, small changes in the initial conditions can produce a
large difference in the result. This phenomenon can only be reproduced in a
simulation if the driving behaviour patterns reflect the human driver behaviour
closely.

The basis of this driver model and its possible functionality or ability
is the underlying simulation environment. To determine the risk of conges-
tion for example, a traffic simulation environment with macroscopic, e.g.,
fluid dynamic based traffic behaviour, is suitable. The easiest macroscopic
representation of virtual traffic could be an equation with the result of an
average velocity dependent on the density of traffic. This might be a complex

45

46 Driver Modelling

mathematical relation producing suitable results for some purposes but it is
impossible to understand the specific inner traffic effects like congestion waves
and traffic collapses. For such effects, the influences of the traffic elements on
the driver models have to be understood.

These are basically the interactions between the driver-vehicle-units
among each other and the reactions of the units to the traffic environment like
traffic light systems or the road curvature. In this kind of traffic simulation,
called microscopic traffic simulation, the desired controlling reaction of the
driver or the automated function is calculated and implemented directly into
the vehicle. This is done in form of a change of the dynamic state of the
vehicle, e.g., a desired acceleration, which consequently results a change of
velocity and position. The driver and the vehicle represent an inseparable unit,
but entirely with a unit-specific behaviour. The behaviour might respect some
dynamic restrictions of the vehicle and in some cases of the driver, but does
not depict the driver-vehicle-interaction.

For the analysis of modern ADAS this kind of simulation is not suitable,
as a driver has, e.g., to be able to override the system by using the control
elements, like pedals, steering wheel or switches. An ACC for example can be
switched off in critical situation by using the brake pedal or can be overridden
by using the accelerator pedal to further increase or keep the acceleration.
These effects can only be simulated if vehicle and driver are implemented as
separate models and if the interfaces between driver model and vehicle model
are used to implement the driver’s wish to the vehicle. Thus, this concept can
be called sub-microscopic or nanoscopic.

Another specific application for sub-microscopic traffic simulations is the
exploration of detailed effects related to the vehicle, like fuel consumption
analysis in specific traffic situations or environments. Within these analyses a
very detailed vehicle model is needed. But it is not only the specific application
which let us chose a higher level of traffic simulation. Obviously, the higher the
level of detail, the more effects can be depicted with a single traffic simulation
environment and model set-up but at the expense of computing time up to the
loss of the real-time capability.Additionally, the effort of setting up the models
increases due to the increase of model parameters. For the same reason the
validation of the models is much more complex, too.

In the past decades many driver models where developed with special
focuses on different specific elements of the driving task. Some try to show
an optimal behaviour, without taking into account the physical and cognitive
abilities and limitations of the human driver. Others focus on these restrictions
or on the information process in the driver’s brain and body and the capability

3.1 Introduction 47

of the driver to process different information in parallel. In literature many
categories of driver models are published. Jürgensohn defines in [1] two basic
categories of driver models, formal and non-formal models. Formal models
have a fixed description but a changeable inner value. The result of formal
models is reproducible, that means, the same conditions lead to the same
output. Non-formal models are not described by those fixed dependencies
(like equations or lingual definition) or they have a non-changeable (constant)
character. Examples of formal models are descriptive models, which have a
fixed description but have a character which is not defined by an input-output
structure. In the European research project ASPECSS [2] and in Deliverable
D3.1.1 [3] of the DESERVE project the definition is different. In these sources
descriptive models are clearly defined (fixed, but not constant) and generate
a numeric, quantitative output dependent on different numerical influences.
This output is reproducible but can anyway contain stochastic elements.
Functional models describe physical and psychological aspects of driving, like
the information processes, the human structure of thinking and acting. They
do not generate a numeric output but draw a picture of the elements of driving.
The difference between functional and descriptive models in this definition
is not unique and not complete; there are hybrid models and models which
can’t be matched to any of these categories. In this chapter, the distinction
between formal and functional models is used to avoid the conflict of the two
definitions of descriptive models.

In complex traffic simulations the usage of both kinds of models is
needed to depict realistic traffic flow and driving behaviour. Formal models
describe algorithms for a driver model how to reach its goal by setting
defined reference values dependent on the input. Functional models can help to
understand the driver’s wishes and to create an eligible structure and decision
algorithm.

In the DESERVE project, a rapid prototyping platform for the development
of ADAS was created and a suitable tool-chain for the development process
was outlined. The traffic simulation is an important tool in the development
process of ADAS and thus is part of the DESERVE tool-chain. As described
above, a realistic driver model is needed for the development and evaluation
of modern ADAS. In the next sections, the way of modelling the driving
behaviour is described, followed by the requirements for the DESERVE driver
model. On the basis of the requirements the structure of a sophisticated driver
model is developed and the used implementation techniques and strategies are
explained. In the last section two different applications of the driver models
are presented.

48 Driver Modelling

3.2 Driver Modelling

Driving is not just a single decision and a single action at once. It is rather a
complex interoperation of different motivations, perceptions, decisions and
states with continuous and discrete changes. To create a realistic driver
model, a strict delimitation between these elements has to be done and it
is helpful to create a suitable structure with a unique and logical naming of
the elements and well-defined interfaces. To develop such a structure, driving
has to be analysed on the basis of typical driving scenarios, manoeuvres and
actions.

Besides the perception and the handling or action, the information
processing is the most important part of driving. Within the information
processing, the driver estimates desired values for different future vehi-
cle states he wants to achieve, like a desired speed, a desired following
distance, and distance to stop. These inner desired states are called driver-
variables or briefly variables. Often a driver has multiple desired values
for the same variable, generated by different motivations, between which
a decision is needed. As an example the desired speed shall be used: The
driver can have multiple causes of choosing a desired speed. For example
the following three: First, to reach the destination as soon as possible.
Second, the speed limits on the road. Third, the curvature of the road
combined with the need for safety. For each motivation, a desired speed can be
determined. The speed limit for the first mentioned motivation is the maximum
speed the driver would choose on a free, straight road. If there are no further
influences like other road-users or speed limits, the driver would travel with
this speed. Situations, which do not allow travelling with this speed, do not
imply that it is not the driver’s wish (the driver wants to, but can’t). For the
second motivation, a speed in an interval around the speed limit, dependent
on the law-abiding is desired. This can be higher or lower or exactly the speed
limit. The third motivation results in a desired speed which allows the driver
to pass a curve in a comfortable and safe manner.

All described motivations lead to different speeds, so the driver is in a
dilemma: She/he has to decide for one speed to accelerate or decelerate to.
The decision in this case is taken in a pragmatic way: The lowest speed wins,
because on the one hand there is a comfort and safety limit, on the other hand
there is a limit because the driver accepts the given speed limits or at least
wants to avoid fees for driving too fast.

The described example shows two input types to the driving behaviour,
the driver’s character (here: need for safety, need for comfort and law-abiding)
and the current situation described by the state of the own vehicle and other

3.2 Driver Modelling 49

vehicles as well as the road and environmental structure. Moreover, not only
the local situation influences driving. A good driver reacts before approaching
to a discrete situation to reach the desired value in time. In the curve speed
example above, a real driver would estimate the comfortable and safe speed
based on the visual perception of the road’s curvature before reaching the
curve. On that perception, the driver decelerates with a rate which leads to
the desired speed at the moment the curve is reached. Within the curve the
driver corrects this estimation to satisfy the desired safety and comfort. The
predictive behaviour is called anticipatory driving. The correction is called
compensatory driving [4]. This phenomenon also has to be regarded in the
development of driver models.

Of course the driver has more responsibilities than the decision of the
desired speed. According to Rasmussen [5], the driving task can be seen in
three levels: The strategic level where the driver plans and creates strategic
values like a route, the manoeuvring level, where the driver processes the
decisions and determines desired values and value sequences, the strategy can
be implemented with. This behaviour is conscious: The driver knows exactly
how to solve the driving task and creates a strategy. The driver is able to
reflect decisions and actions he/she took in this level. In the control level
the driver implements these conscious values into the vehicle by using the
steering wheel, the accelerator and brake pedal and other control elements
of the vehicle. This operation is not done in a single step. Often the driver
determines a subconsciously desired value, like a desired acceleration, which
is then transferred into the actual vehicle input. This value is not reflected
by an experienced driver. It is an automatism by the driver to reach the
conscious desired value. The desired speed shall be used for an illustration:
After the decision to move freely, because no other road-user is influencing
the driver, the desired speed is detected, which is a conscious value. To
reach this speed, the driver accelerates with the desired acceleration, which
is a subconscious value because the driver cannot quantify this value and it
is not part of the strategy. The final implementation is done by using the
vehicle’s controls to reach this acceleration. The advantage of using this
subconscious step is that the regarded values can be set, manipulated and
limited dependent on realistic driver’s needs independent of the conscious
behaviour. Often the desired acceleration and yaw rate or curvature is used
as an output of macroscopic driver models. In this definition these variables
represent subconscious variables. Thus, without the implementation by using
steering wheel and pedals, the model can be seen as a macroscopic driver
model.

50 Driver Modelling

3.3 Requirements for DESERVE

Before creating a driver model, an analysis of the requirements for this model
based on the field of application has to be done. In DESERVE, a rapid
prototyping platform and development process has been created. The details of
the platform can be found in Chapter 2. This requirements section concentrates
on the applications of the DESERVE platform. In the first year of the project,
the needs for the driver model were analysed in D3.1.1 [3]. There are two kinds
of driver models identified in the project: the virtual driver for the usage in
traffic simulations like described above and the driver intention and distraction
model, which is used as a component of an ADAS to detect the real driver’s
state.

The literature review, the analysis of existing driver model concepts and
in particular the research work in the DESERVE project shows that it is not
possible to create one holistic driver model to satisfy all scientific needs.
Nevertheless it would be very attractive, if there was one basic structure
combining the ideas of the previous research, in which the algorithms can be
added as independent modules. The connections of all modules – with properly
defined affiliation and interfaces and in conjunction with a suitable parameter
set – will produce the expected results. For that reason, a generic module-
based structure needs to be developed which is well-defined and flexible
for amendments. Most of the integrated algorithms can be used for several
applications while others are specific to one. The generic structure should fit
to all applications of driver modelling in an open way.

Another important issue is the implementation. Many driver models are
implemented in native programming languages. This fact has a significant
disadvantage: It becomes very muddled due to the one dimensional struc-
ture of programming code. Often driver model structures are shown in a
two dimensional representation with levels in the up-down dimension and
sequence of the information processing in the left-right direction (time related).
An implementation of the driver model in an analogous structure could be
very helpful to create a clear and well-arranged model. Thus, a graphical
implementation would be aspired. Furthermore, it should be possible to
structure or capsulate the content properly as well as the definition of the
interfaces to take the advantage of modern programming techniques like
object oriented programming or code reuse to avoid redundancy. Next to
the structural requirements, the system shall be able to hold values or states
over one or more time steps to implement the memory of the driver. Another
requirement is the possibility to connect the driver model to the traffic

3.3 Requirements for DESERVE 51

simulation environment. This can be done by communication interfaces or by
the native integration of the compiled driver model, for example as a dynamic
linked library or similar techniques.

The driver model (virtual driver) in DESERVE shall be used in different
traffic simulation environments for testing and evaluating ADAS functions in
the process of the development. Within the project, the driver model shall be
implemented and tested for a control function which is designed to show the
advantages and benefits of the DESERVE platform. Therefore, an Advanced
Cruise Control system (ACC) is combined with a Heading Control (HC).
The system shall assist the driver on inter-urban road scenarios and increase
the safety within the full speed range (WP 4.2, [6, 7]). The decision for
demonstrating the system for the inter-urban area is made, because this area
is a very important research field for the usage of ADAS functions of the next
generation; especially those who reach the next level of driving automation
(cf. SAE automation level 2 – partial automation, [8]). Also the evaluation
of ADAS for the increase of safety is important in the inter-urban area.
Therefore, detailed driver models are needed with the claim to be valid for the
intended purpose. In particular, the modelling of realistic human behaviour
on intersections and junctions is one of the most important developments for
today’s traffic simulations in order to develop ADAS with the goal to reduce
the high number of accidents on intersections.

Analysing the application in DESERVE, the driver model requirements
can be briefly defined:

• Inter-urban driving behaviour including safe-passing of slow, right-
moving vehicles has to be implemented.

• The driver model needs the capability of route-following within multi-
lane roads and complex but flexible transport networks.

• Full intersection and traffic light behaviour has to be implemented.
• Anticipatory driving behaviour, like early speed adaption needs to be

reflected.
• Re-use of validated driving behaviour algorithms and driver model

approaches is required.

The driver model is implemented and connected to the simulation environment
PELOPS [9]. The inter-urban ACC and HC developed in DESERVE is tested
in virtual traffic scenarios containing units controlled by the here described
driver model. These scenarios include straight and curvy multi-lane roads,
complex intersections with traffic lights and right-of-the-way controls by
signs and structure, different speed limits, rare and dense traffic with different

52 Driver Modelling

parameterisations and slow moving vehicles (e.g. mopeds). This testing set-
up leads to a set of manoeuvres and primary driving tasks which have to be
implemented:

Figure 3.1 Primary driving tasks which are implemented in the driver model within the
DESERVE project separated by longitudinal and lateral control.

Figure 3.2 Manoeuvres which are implemented in the driver model within the DESERVE
project.

There are several other manoeuvres which can be implemented like U-
turning or stopping on the road side. These manoeuvres are not implemented
within DESERVE. Nevertheless, the structure of the model shall offer the
possibility to enhance the functionality.

3.4 Generic Structure

In this chapter the ika driver model is introduced. Within the DESERVE
project, a suitable and generic driver model structure was developed and
implemented which fulfils the requirements from the previous section. The
interfaces and driver parameters are defined and described in this chapter.

3.4.1 Model Structure

From literature review, two generic structures can be identified: The three
levels of driving by Rasmussen and the three blocks of perception, information
processing and action, which can be found in several formal and non-formal
model approaches (e.g. [10]). This leads to a matrix-form model shown
in Figure 3.3. The modules (blue boxes) in the matrix represent model
implementations or parts of those. The arrows, in different shades of grey,
describe the information flow between the blocks and represent the internal

3.4 Generic Structure 53

Figure 3.3 Driver model structure in the context of environment and vehicle: the structure
includes perception, processing and action blocks including its functional modules and the
regarded dynamic information flow.

interfaces. The blue arrows show the information flow through the three
levels and represent the needed information (variables) for the driving tasks
and manoeuvres. A central functional block of the model is the State block,
where the driver-specific values are stored. The Memory module represents
the driver’s knowledge about the current situation, the manoeuvre states, the
destination or route, etc. The memory is used to keep information for the
following time steps, during the manoeuvre or for the whole simulation cycle.
This information can be extrapolated to estimate current states of the ego-
vehicle or other road-user even if the driver model does not sense the regarded
information at the current time step. Thus, the memory has an interface to the
Perception block and constitutes an input of this block besides the inputs of the
environment and the vehicle. Current manoeuvre states and important values,
which have to be known in the next time step, are also saved in the memory and
are passed by the interface between the State and the Processing block where
the driving calculation is implemented. The parameters represent the driver’s
character and are defined in two layers: qualitative and physical parameters

54 Driver Modelling

(see Subsection 3.4.2). The Parameters block serves its values to all blocks
of the driver model, for example by manipulating the handling time delay
(reaction time). The Action block controls the handling or the conversion of
the driver’s wish into physical actions like the manipulation of the pedals, the
steering wheel, shifting and using the HMI control elements.

As it can be seen in Figure 3.3, a strict assignment of all modules to a
unique level is not possible. In the following the modules shall be explained
in detail.

In the Planning module, route specific calculations are executed. In
general, the units have a fixed route calculated or set in the initialisation of
the simulation. In reality a driver changes the route under circumstances, e.g.,
traffic jams or road blocks. If such functionalities are needed, appropriate
algorithms can be implemented in the Planning module. In the current
implementation the route is stored in the memory. The Planning module
calculates a value for each lane in the environment around the unit, which gives
a quantitative value of how far the lane and its successors can be followed
on the given route. Thus, the Manoeuvre Decision module can decide which
lane the driver wants to take. The Manoeuvre Decision module processes all
discrete manoeuvres and discrete decisions. That means on the one hand to
decide for a manoeuvre and on the other hand to control the manoeuvre but
not to calculate the related Guidance Values. The Decision module returns
different states within the manoeuvre and process variables, which can be
used by the following modules to perform the manoeuvre (in the figure briefly
named Manoeuvre). An example is described in Section 3.5. Another output
of the module is a set of Discrete Secondary Actions which are needed or
desired at the beginning or during the manoeuvre. This can be for example
switching the turning indicators in case of turning or lane changes. On the basis
of the decision with its states and process values, a local strategy to perform
these manoeuvres and continuous driving tasks is calculated in the Conscious
Guidance module. Continuous driving tasks are performed during the whole
simulation time without the need of a discrete decision. Of course, the output
values of these tasks can be overridden by other results. An example is the
motivation to keep the lane: This task is continuous because the driver always
wants to stay in the lane but can be forced to leave the lane during an overtaking
manoeuvre. Within the Conscious Guidance module the Guidance Variables
are filled with values (guidance values), which the driver wants to reach.
An example was given in Section 3.2 (desired speed during free moving).
Several guidance values are calculated and passed to the Subconscious Stabil-
isation module. Within this module, desired stabilisation values are calculated.

3.4 Generic Structure 55

In general, these values are the desired acceleration and the desired yaw rate
for the longitudinal and lateral control respectively. Based on all motivations
the stabilisation value with the highest benefit for the driver is taken. Besides
the desired values, some real physical values, which are states of the vehicle,
can be directly sensed by the driver. Thus, the driver is able to implement
these values subconsciously by using the vehicle control elements (pedals
and steering wheel). This implementation is done in the Continuous Primary
Actions module.

To define the interfaces between the modules it is helpful to create a
manoeuvre and driving task table. For the DESERVE implementation the
following tables (Figure 3.4 and Figure 3.5) were developed, derived from
Figure 3.1 and Figure 3.2.

In the motivation of free moving, the desired velocity of the driver
is calculated. This velocity depends on the speed limit, the curvature
of the road ahead and the maximum desired velocity of the driver. To
reach the velocity, the driver model accelerates (subconsciously) depen-
dent on the current velocity and the desired velocity. A suitable model
approach is part of the Intelligent Driver Model (IDM) by Treiber, Hen-
necke and Helbing in [11]. An adaption of that approach for the usage in
complex driving simulations is published in [12]. The following motivation
is mainly influenced by a desired following distance which bases on a driver
specific following time gap. To reach this distance the driver needs to accel-
erate or decelerate. The lane-keeping is performed by the usage of fix-points
based on the Two-Point Visual Control Model published in [13]. This model
can be adapted, so that the fix-points cause a yaw rate, which the driver wants
to implement. The adaption is published in [14]. The yaw rate is chosen as the
desired subconscious stabilisation value because it physically implies both,
the curvature and the velocity. During standing, the driver model maintains a
brake pedal value which results in a vehicle that does not move. This means
that the pedal value is a subconscious value, different to the other longitudinal
tasks.

Figure 3.4 Process variables for the four basic driving motivations free moving, following,
lane keeping and standing.

56 Driver Modelling

Figure 3.5 Process variables for the three manoeuvres lane change, stopping and Safe
Passing.

In Figure 3.5, the manoeuvre turning is missing. In this model turning is
implemented in the decision module, at least to control the turning indicators,
but does not require a process implementation due to the given features: A
lateral and longitudinal turning manoeuvre can be seen as a ‘normal’ street
following motivation if the turning path is known and a turning speed is
calculated by the given curvature. In the case of conflicts with ‘right of way’
road-users (e.g. at left turns), the driver model stops with the manoeuvre
stopping. If the conflict is resolved, the stop manoeuvre is aborted, so the
driver model switches to free moving or following.

The perception is partly done in the simulation environment:All perceived
information is transformed to the driver’s coordinate system by the simulation
environment. The driver model adapts the information with driver specific per-
ception errors, like perception limits, continuous noise, sporadic disturbances
or fluctuations and accuracy limits.

3.4.2 Parameter Structure

In many driver model approaches, physical parameters are used to influence
the driver behaviour and generate heterogeneous or driver specific results
like in the IDM [11]. Examples of physical parameters are the maximum
comfortable acceleration and deceleration or a constant following time gap to
the leading vehicle. These parameters are well measurable for a single driver
or a group of drivers, represent a direct input to the model approaches and
are mostly independent of each other. To describe the character of a driver,
a big set of physical parameters has to be defined. In other driver models
humanised parameters on a higher level are used which are not directly
measurable. These parameters have a meaning which can be described as
a characteristic or a constant attribute of a human driver. In general, the
parameters are used to generate driver specific physical parameters, which

3.4 Generic Structure 57

are then dependent on each other by this humanised characteristic. With
these parameters a characterisation of the driver is easier because the number
of parameters is reduced to a smaller number. The challenge is to create
a mathematical dependency which returns realistic results based on these
fictive parameters. The humanised parameters used in the driver model for
the DESERVE platform are named sportiness, need for safety, law-abiding
and estimation ability. However, these parameters have no scientific physical
or psychological meaning; they only represent groups of drivers and influence
the underlying parameter block of physical parameters like desired following
time gap, acceleration profile and many more. In Figure 3.6, the parameter
concept of the DESERVE platform is shown: In the first block, the humanised
parameters are shown. These parameters influence the physical parameters of
the driver model. In this example, the need for safety parameter influences the
lower and upper following time gap (see [15]) and the acceleration profile of
the driver model. Parameters are not influenced by the dynamic inputs.

The set-up of a suitable parameter concept influencing all models in a
realistic way is difficult and extremely dependent on the implemented model

Figure 3.6 Sketch of the parameter blocks (brown) and model blocks (blue) of the driver
model.

58 Driver Modelling

approaches. A concept to solve this problem could be to measure a large set
of reference data and run an optimization to find the best fitting parameters.
After that a validation has to be done with another set of data to prove the
concept.

To create a traceable connection between the parameter blocks, in the
DESERVE model, cubic polynomial functions are used. In a review of floating
car data for example, the distribution of lower following time gaps of the
Wiedemann model was generated. Basis of the distribution of these time gaps
is a Gaussian distribution of the need for safety parameter with µ = 0.5 and
σ = 0.15 as described in [15]. With the polynomial

ΔTlower (pNFS) = 1.4 · p3
NFS + 0.9 · p2

NFS + 0.9 · pNFS (3.1)

with
ΔTlower: Lower following time gap [s]
pNFS: Need for safety; Gaussian distributed (0.5, 0.15) [–],

Figure 3.7 Distribution of lower following time gaps for real drivers (blue bars) and the
modelled distribution dependent on a normal distributed need for safety parameter (red line).

3.5 Implementation 59

the distribution of the lower following time gap returns a result shown as red
curve in Figure 3.7. The blue bars show the floating car data which is the basis
of the polynomial curve in this example.

This principle can be used and optimised analogously for the other physical
parameters.

3.5 Implementation

The graphical programming tool Matlab/Simulink provides the implementa-
tion features described in the requirements in Section 3.3. The 2D graphical
GUI allows a clear and well-arranged implementation close to the visual struc-
ture of the model. The implementation is easy to understand and easy to debug.
In the university environment, many students and scientific assistance work
with the driver model for a limited time range (e.g. Bachelor/master theses or
PhD theses). Thus, a further important requirement is the comprehensibility
of the model. Programming in Simulink is easy to learn also without deep
knowledge of classic programming languages. The code can be capsulated in
subsystems with defined inputs and outputs and several storage concepts can
be used to implement the driver’s memory. The data connection between the
model and other tools can be established by using UDP or TCP/IP or other
versatile techniques.

For the DESERVE example implementation, PELOPS is used as the
simulation kernel with the support of environmental structures (road network,
traffic lights, etc.) and vehicle models. The core of the new version of PELOPS
is implemented in Java. The integration of a Simulink model is possible
with the UPD communication interface. For the simulation of one vehicle
this solution is suitable and is real-time capable in the current version of
the ika driver model and PELOPS. If multiple vehicles use the same driver
model instance with their specific inputs, at least time-dependent and memory-
containing modules do not work properly. For the simulation of at least two
vehicles, the Simulink-model needs to be duplicated to have an independent
copy (second instance) of the driver model. This becomes difficult for a high
or flexible number of vehicles in a simulation. Another problem is the high
execution time due to the UDP connection and the Simulink model itself. A
native execution combined with direct data exchange, e.g. by shared memory,
is much faster. The Matlab/Simulink tool-chain brings the possibility of code
generation: The desired model can be converted to C or C++ code which
can be integrated in other C/C++ or FORTRAN code or can be compiled
to a shared library in almost all computing platforms. In DESERVE this

60 Driver Modelling

solution is used to integrate the driver model into PELOPS. For that purpose,
a class wrapper is used around the generated code. That allows the simulation
environment to create almost infinite numbers of independent driver model
instances. Multiple test cases have been performed to show the capability of
running traffic simulations with the full functionality of the driver models and
a large number of traffic units in real time.

Except for the decision module, all modules are implemented in standard
Simulink subsystems with mathematical blocks.The decision module is imple-
mented in Stateflow, which is an integrated Simulink feature. Stateflow allows
implementing state machines, which is a suitable implementation technique
for discrete decision structures. To demonstrate a possible implementation of a
manoeuvre decision the lane change shall be used as an example: In Figure 3.8,
a state machine implementation is shown for a lane change decision including
the progress and sequence control. The progress describes the state or the
‘position’ in the lane change like initialisation (init), origin lane, lane crossing
(LC), target lane and termination (term). The phases describe the phase control
of the lane change by the driver. In this example the driver uses two phases
to perform the lane change: In the first phase the driver accelerates laterally
to a desired lateral velocity (anticipatory) dependent on the lateral offset. In
the second phase, the driver ‘switches’ to the lane-keeping mode with the
focus on the target lane (compensatory) by using the fix-point approach (see
Figure 3.5). Dependent on the phase and the progress, the conscious guidance
module, calculates the reference values which are needed to steer the vehicle
to the desired lane. The transition A denotes the decision to perform the lane
change, which is valid if there is a lane next to the ego driving path with

Figure 3.8 Stateflow model for a two-phase lane change including decision (A), progress
control (B) and sequence control (C).

3.6 Applications in DESERVE and Results 61

higher correlation to the route and some other conditions, like distance to the
end of the lane, preference lane and a hysteresis. The basis for the decision is
described in [16]. A decision for a lane change does not mean an immediate
reaction. The driver model can decide before the lane or the desired gap is
reached. In the case of a positive decision, the lane change is initialized. This
is a continuous process as long as the active lane change is not started. The
transitions B control the progress of the lane change and transition C represents
the transition from the first phase to the second one in this example.

3.6 Applications in DESERVE and Results

Within the DESERVE project, the driver model was used for two different
applications: The validation of left turn simulations within the full parameter
range and the prediction of a real driver regarding the acceleration during free
driving, approaching and following.

For the validation of left turn simulations (in this example without
stopping), real traffic data from laser scanners were used to measure the
trajectories of 136 vehicles on a junction in Alsdorf, close to Aachen in
Germany. Figure 3.9 shows the results of the simulations for different
parameter sets (coloured curves). The measured real-driver data are shown

Figure 3.9 Trajectories (velocity over x- and y-position) for left turn including the simulation
results for different parameter sets. The real driver data is measured on one intersection with
136 different drivers during day time.

62 Driver Modelling

in grey and the boundaries (extreme driver) as well as the average driver
are included. The extreme drivers are generated by choosing respectively,
the maximum and the minimum, of the need-for-safety and law-abiding
parameters. For this example, the upper extreme driver is created by setting
the need-for-safety and the law-abiding parameters to zero and the lower
extreme driver is created by setting these parameters to one. As it can also
be seen in the figure, the law-abiding parameter influences the speed the
driver reaches before and after passing the intersection but not the velocity
during the turning (red lines). Opposite to this, the need-for-safety parameter
influences the speed within the turning only (blue line). This result depicts
the statement that the turning speed is mainly driven by the safety and
comfort motivations of the driver and the speed on straight roads is defined
by the acceptance of speed limits. The phases between approaching and
turning are representing a mixture of all motivations and result in a transition
of the speed. In this example, the other parameters are set to the average
value (0.5).

To predict the driving behaviour of a real driver in a vehicle, the driver
model was integrated as a module on a real-time system in the car, equipped
with real sensor data by radar and camera sensors. A five second simulation
is calculated in each prediction step and the result is written to the CAN-Bus.
With that data ADAS like ACC can react dependent on the estimated wish of
the driver. The system and the results are published in [12].

3.7 Conclusions and Outlook

In the DESERVE project a driver model structure was developed with the
focus on the realistic generation of driver-vehicle-environment interactions.
For the usage in traffic simulations the driver model has been implemented in
Matlab/Simulink and exemplarily been integrated in PELOPS. The addressed
traffic area covered the inter-urban road network including generic inter-
sections. Therefore, common driver model approaches but also conceived
approaches to create the modules needed in DESERVE were used to obtain
realistic driving behaviour. The elementary interactions between the driver
models, the associated vehicles and the surrounded environment result in
realistic traffic phenomena and effects occurring in equivalent real traffic sit-
uations which was shown by comparing the simulation results with measured
data on a real intersection. The model behaviour is tuneable via parameters on
two levels, a humanized and a physical level, which have indirect and direct
influence on the model behaviour.

References 63

The structure of the model was designed to offer the possibility of enhanc-
ing the driver model by using different model approaches or expanding it
with the capability of performing yet unimplemented manoeuvres and driving
tasks. In those cases, the challenge is to tune the added model approaches
while maintaining the realistic influence of the parameters. To simplify and
partly automate the tuning process a tool can be implemented which uses real
data to optimize the mathematical influence of the parameters to the model.
This work will be done in the future to increase the usability of the driver
model for the simulative analysis of traffic situations. The traffic simulation
and thus the driver model shall be an inherent part of the tool chain used in
the development of ADAS and functions of automated driving.

References

[1] T. Jürgensohn and K.-P. Timpe, Kraftfahrzeugführung. Berlin, Heidel-
berg, Springer, 2001.

[2] D. Raudszus, M. Ranovona, S. Geronimi, M. Kunert, E. Schubert, and
T. Schaller, “Report on Driver and Pedestrian Reaction Models”, Project
Deliverable, ASPECSS, 2013.

[3] S. Fruttaldo, G. Piccinini, D. Pinotti, R. Tadei, G. Perboli, L. Gobbato,
A. Zlocki, J. Klimke, F. Christen, N. Pallaro, F. Palma, and F. Tango,
“D3.1.1 – Standard Driver Model definition”, Project Deliverable,
DESERVE, 2013.

[4] E. Donges, “A two-level model of driver steering behavior,” Human
Factors, Vol. 20, No. 6, Dec 1978, pp. 691–707, 1978.

[5] J. Rasmussen, “Skills, rules, and knowledge; signals, signs, and symbols,
and other distinctions in human performance models,” IEEE Transac-
tions on Systems, Man and Cybernetics, Vol. SMC-13, no. 3, pp. 257–266,
1983.

[6] J. Klimke, F. Christen, N. Pallaro, A. Kyytinen, P. van Koningsbruggen,
E. Nordin, and X. Savatier, “D4.2.1 – Control functions solution design”,
Project Deliverable, DESERVE, 2013.

[7] J. Klimke, F. Christen, and L. Eckstein, “Definition of a Microscopic
Traffic Simulations Driver Model for Inter-urban Intersections for 21st
World Congress,” in ITS World Congress 2014, Detroit, 2014.

[8] SAE International, Taxonomy and definitions for terms related to on-road
motor vehicle automated driving systems. SAE International Standard
J3016, 2014.

64 Driver Modelling

[9] “PELOPS Whitepaper,” Forschungsgesellschaft Kraftfahrwesen Aachen
mbH (fka), Aachen, 2014 http://www.fka.de/pdf/pelops whitepaper.pdf.

[10] L. Eckstein, Active Vehicle Safety and Driver Assistance Systems,
Automotive Engineering III. Lecture Notes, Institute for Automotive
Engineering (ika), Aachen, 2015.

[11] M. Treiber, A. Hennecke, and D. Helbing, “Congested Traffic States in
Empirical Observations and Microscopic Simulations,” Rev. E 62, Issue,
Vol. 62, p. 2000, 2000.

[12] J. Klimke, P. Themann, C. Klas, and L. Eckstein, “Definition of an embed-
ded driver model for driving behavior prediction within the DESERVE
platform,” in International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS XIV), 2014, 2014,
pp. 343–350.

[13] D. D. Salvucci and R. Gray, “A two-point visual control model of
steering,” Perception, Vol. 33, No. 10 (2004), p. 1233–1248, 2004.

[14] J. Klimke, C. Klas, and L. Eckstein, “Konzept zur Strukturierung eines
generischen Fahrermodells anhand des realen Informationsflusses,” in
VDI-Fortschritt-Berichte: Reihe 22, Mensch-Maschine-Systeme, 2015.

[15] R. Wiedemann, Simulation des Straßenverkehrsflusses. Karlsruhe: Insti-
tut für Verkehrswesen, 1974.

[16] D. Ehmanns, Modellierung des taktischen Fahrerverhaltens bei Spur-
wechselvorgängen. Dissertation, Institute for Automotive Engineering
(ika), Aachen, 2003.

4
Component Based Middleware for Rapid
Development of Multi-Modal Applications

Gwenaël Dunand

Intempora, France

4.1 Introduction

Developing multi-modal applications starting from scratch is a tough issue.
On the one hand, there are algorithms challenges such as detecting drowsiness
or pedestrians in every possible situation. On the other hand, there are
programming challenges such as handling multiple sensors data with dif-
ferent frequencies and different nature (video streams, GPS data, laser scans,
etc.), as well as implementation details, such as synchronization techniques,
multithreading and memory management, for only naming a few.

Moreover, the time required to develop the software is often underesti-
mated [1]. Using an already existing middleware helps to keep on schedule
and focus mainly on business problems while decreasing the real-time
programming complexity.

There are several middleware that fit all those previous descriptions
(ADTF, PolySync, BaseLabs and RTMaps). As RTMaps is the official mid-
dleware chosen for the DESERVE project and the author is very familiar with
this one, this chapter will sometimes be focused on RTMaps, but other tools
might apply as well.

4.2 Using a Middleware

Considering software as layered, middleware incorporates many of these
layers vertically. A middleware provides a full, or partial, solution to an area
within the application and supplies more than the basic library, it also supplies
associated tools like logging, debugging and performance measurement.

65

66 Component Based Middleware for Rapid Development

Because middleware is vertical system, it may compete or duplicate other
parts of the application.

4.3 The Multisensor Problem

The number of sensors used for ADAS applications has increased in the last
few years. Now applications use radars, lidars, GPS, high definition stereo
cameras, lasers, IMU, CAN Bus, eye trackers, V2V and V2I communication,
etc. . . The problem is how to read all of them within the same application
and especially how to synchronize them despite their very different nature
(Figure 4.1).

As a matter of fact, most algorithms need to use several sensors to reach
a good level of detection. The problem is that those sensors might have
different sampling rates, or even worse, event-based outputs. Reading from
those sensors simultaneously can be a tricky problem to solve. Let’s illustrate
this with an example with three signals.

In the Figure 4.2, signal A (orange) and signal B (green) are periodic with
a different period while signal C (red) is an event-based signal. One solution
would be to use the least common denominator of all sampling rates to perform
the reading. While this approach may work with periodic signals like A and
B, it won’t work with the event-based C signal.

To achieve reading from multi-modal sensors, RTMaps middleware is
fully asynchronous – each component runs in its own thread – so that any

Figure 4.1 ADAS function requires many different type of sensor.

4.3 The Multisensor Problem 67

Figure 4.2 Synchronisation issues.

component can react to any data stream, whatever sampling rate it may have.
This is the only way to follow the natural pace of each data. This design uses
internally blocking calls, removing any extra latency that could happen when
using polling methods. RTMaps middleware also defines reading policies to
synchronize data streams. While the default policy – reactive – works perfectly
fine in most case, the user can use one of those:

• Reactive reading: a component with multiple inputs will read every time
a new data sample is made available on any one of its inputs.

• Synchronized reading: a component with multiple inputs will process
one sample from each input when data sample with the same timestamps
(plus or minus some configurable tolerance) are available on its inputs.
This behaviour is made for data fusion and allows re-synchronization of
the data streams at any point downstream in the diagram, whatever the
latency of the various upstream data channels.

• Triggered reading: a component with multiple inputs will read when a
new data sample is made available on a given input. It will then resample
the data on its other inputs through non-blocking reading.

To sum-up, not only the middleware provides a common platform to build the
ADAS application, but it also does take care of the tricky data synchronisation
mechanism.

4.3.1 Knowing the Date and Time of Your Data

Using a middleware allows to be very accurate about the timing of your data.
For example, RTMaps affects two timestamps to the data: the timestamp and
the time of issue.

• The timestamp is the intrinsic date of the sample. It is as close as possible
to the date of occurrence of the real data which the sample corresponds

68 Component Based Middleware for Rapid Development

to. It is often supplied by the first component that created the sample (i.e.
the acquisition component).The timestamp remains unmodified while the
sample goes through the different components of the processing chain.
The timestamp often corresponds to the date where the data is available
in system memory.

• The time of issue is the date corresponding to the last time the sample
was output from a component. Therefore, this date increases as long as
the sample runs through the different processing components.

Knowing with precision the time and date of your data is essential to perform
synchronized readings (see previous section), but it is also useful to estimate
the latency of your data or know the processing time of a component which
is really vital in real-time applications.

4.3.2 Component-based GUI

RTMaps middleware comes with a user-friendly graphical interface which
allows building an application using components (seen as blocks) connected
to each other. The Figure 4.3 shows RTMaps studio with a diagram open and
a few components in it.

Figure 4.3 The RTMaps Studio.

4.3 The Multisensor Problem 69

The advantage of using a graphical user interface is twofold. Firstly,
it allows the user to quickly construct an application by using drag and
drop techniques and wiring components to each other. Realizing a simple
demonstration with a camera and an IMU only takes a few minutes [2]
whereas using only hand-written code with dedicated libraries would take
weeks.

Secondly, it allows the team to focus on interfaces. This is a very important
point since it defines boundaries and clarifies the work between teams. In
big projects like the DESERVE project, strict definitions about interfaces are
necessary due to the number of partners. The interface for components is
composed of inputs, outputs and properties. Once the interface of a task is
defined, changing an algorithm for another is not a problem anymore, one
component can be replaced by another and the work is done! In the Figure 4.4,
the face detection component has one fixed detection interface. The input is
YUV image and the output is a vector of rectangle representing the faces
found.

Furthermore, the use of macro-components can definitely simplify the
diagram by splitting the global problem into sub-problems (Figure 4.4). All
the implementation is hidden in first appearance to simplify the reading, but
of course looking under the mask would reveal all the internal details.

4.3.3 The Off-the-Shelf Component Library

The off-the-self component library represents all the already available com-
ponents in the middleware. This is an important part of it because it
allows accelerating the application development by using and reusing already
developed component. Here are a few categories of components:

• Sensor interface: This category represents all the components that allow
to read/write from/to a sensor. When a sensor is present in the library, the
user has just to drop a corresponding component on the current diagram
and configure it to retrieve the data. That work can be done easily with a
consequent time benefit.

Figure 4.4 Components and interfaces.

70 Component Based Middleware for Rapid Development

• Data generators: When comes the time of testing a component, it might
be useful to emulate a missing sensor with random generated data
(vectors, CAN frames, images). This does not replace real sensors but it
can be enough sometimes.

• Viewers: Very important libraries, which allow displaying informa-
tion about data stream during the execution (images, vectors, CAN
frames. . .). As an example, the DataViewer (Figure 4.5) can display
generic information (timestamps, size, etc.) and specific ones (width and
height of an image if current data is an image) as a tree. This is very useful
to inspect data along a processing chain and check that such component
behaves correctly.

• Player and Recorder: Those components allow to record and replay any
data stream. Using a recorder, the user is able to record any scenario
(outdoor session, motorway driving test, automatic car parking, etc.) and
replay it at the office with the exact same data and timestamps.

Figure 4.5 Inspecting data with the data viewer.

4.3 The Multisensor Problem 71

4.3.4 Custom Extensions

Extending the component library is done through the SDK, whose purpose is to
expand the capabilities of the middleware by the creation of new components.
In RTMaps for example, the SDK is available for both C++ and Python
(Figure 4.6). Thanks to this SDK, the user can integrate his own code into
a component and use it directly in this diagram.

Once a new component has been created, it can be shared with others.
When using C++, each component is compiled code which means that only
the binary code is used in the middleware and so the IP is preserved. Anybody
can share his work while keeping the source secret.

4.3.5 About Performance

Using a high performance middleware is still essential nowadays. Indeed,
even if the power of the computer tends to increase continuously, the trend is
to run applications on embedded systems with the smallest footprint possible.
The explanation of this trend is quite simple: the prototype vehicle has to be as
close as possible as the real vehicle. In many companies, no desktop computer

Figure 4.6 Developing a new component.

72 Component Based Middleware for Rapid Development

in the trunk of the car are allowed anymore, all systems have to be (or at least
look) embedded.

Furthermore, the middleware is pushed further and further in the devel-
opment chain. A few years ago, most of the middleware were assigned to do
only prototyping and once the prototype application was finished, all the work
had to be done again on dedicated hardware. This not the case anymore, now
the middleware should be able to run on low consumption cards that equip
pre-series cars.

Consequently, OEMs are looking for high performance middleware that
runs on small form factor cards as well as on Personal Computer so that
working on lab or real scenarios makes no difference.

4.4 Compatibility with Other Tools

4.4.1 dSPACE Prototyping Systems

In the frame of the DESERVE project, a bridge has been developed between the
dSPACE MicroAutoBox and RTMaps (Figure 4.7). The dSPACE MicroAuto-
box is the de facto standard for real-time control loop such as chassis control,
body control and powertrain. Combining this dSPACE prototyping system to
the RTMaps middleware provides an extremely powerful framework capable
of doing multisensor acquisition, data processing and controlling actuators in
a hard real-time way.

The MicroAutoBox typically serves as an embedded controller to process
the ADAS application algorithms in real-time and to interface the vehicle bus,
sensors and actuators. It is a prototyping ECU with a predefined set of I/O
which is qualified for in-vehicle use.

In the context of the DESERVE project this platform was extended by an
Embedded PC and an FPGA Board. The embedded PC features a multi-core
Intel r© CoreTM i7 processor running at 2.5/3.2 GHz and the connection to the
actual embedded controller is implemented via an internal Gigabit Ethernet

Figure 4.7 dSPACE MicroAutobox and RTMaps Bridge.

4.4 Compatibility with Other Tools 73

interface. The embedded PC integrated in the MicroAutoBox can be used to
flexibly run any x86 based development framework available for prototyping
perception and fusion algorithms, such as RTMaps, and to exchange easily
data with the embedded controller [3].

4.4.2 Simulators

ADAS are becoming more and more promoted because several key functions
permit to increase the level of vehicle safety. Most of the time, it is a challenge
to access to the equipment and sensors information on vehicles, making
difficult to design and test these new algorithms. Some of the applications
are based on perception sensors embarked on the vehicle, which interact with
the vehicle, driver and environment through electronic control units. For those
reasons, the simulations of the algorithms and the analysis of existing solutions
for virtual testing are very important tasks.

Using simulators has many advantages: tune the scenario at will (add rain
or fog like in Figure 4.8), test dangerous situations where real data is hard to
get, use the output of any algorithm to modify the scenario of the simulator
(close the loop), etc. It’s pretty much a fact now; virtual testing allows massive

Figure 4.8 ProSivic working together with RTMaps.

74 Component Based Middleware for Rapid Development

reduction cost. In the DESERVE project, many simulators have been used in
collaboration with RTMaps: ProSivic [4], dSPACE ASM [5], etc.

4.4.3 Other Standards

Middleware supports other standards as well. RTMaps implements the DDS
[6] standard interface via the Prismtech OpenSpliceDDS implementation.
This is very convenient to stream data from RTMaps to anywhere and vice-
versa. This DDS interface was developed in the frame of the DESERVE
project.

Other standard protocols are also supported, like XIL or XCP, which allow
manipulating RTMaps with off-the-self tools that implements those protocols
themselves.

Of course, most of the middleware on the market will also support NMEA,
CAN/DBC, RTSP, I2C, GPS, SIP, TCP and UDP as well. The compatibility
with major industry standards is essential so that the middleware interacts
painlessly with other tools.

4.5 Conclusion

Most DESERVE partners have been using RTMaps and ADTF middleware
as the common perception platform to speed up their development processes
and exchange components between each other.

Indeed, partners like Continental, FICOSA, Vislab and CTAG have
encapsulated their acquisition routines and custom algorithms into RTMaps
components, which in turn have been integrated into a global acquisition and
processing diagram by other partners (OEMs most of the time). This modular
approach made the collaboration easier between a large number of partners,
which was one of the difficulties of the DESERVE project.

Another example, CRF (Centro Ricerche Fiat) has used RTMaps and the
bridge to the MicroAutoBox – developed in the frame of the DESERVE
project – for their emergency breaking application. The sensor acquisition,
the pedestrian detection, information display and the breaking order are done
via RTMaps.

As a conclusion, in the DESERVE project, having a middleware has
allowed engineers to focus on their main activity – obviouslyADAS functions
here – and not on advanced programming issues, but it was also very helpful
to exchange components between partners.

References 75

References

[1] Software Engineering 8th Edition, p. 109, ISBN-13: 978-0321313799,
2006.

[2] Intempora. (2012, February 20). RTMaps4 demo [Video File]. Retrieved
from https://www.youtube.com/watch?v=HBxFq04S91g

[3] Joshué Pérez Rastelli, David Gonzalez Bautista, Fawzi Nashashibi, Fabio
Tango, Nereo Pallaro, et al. Development and Design of a Platform for
Arbitration and Sharing Control Applications – a DESERVE approach-.
IEEE SAMOS Conference, Jul 2014, Samos, Greece, pp. 322–328.

[4] Prosivic. (2016, June 21). Retrieved from http://www.civitec.com/
[5] dSPACE. (2016, July 12). Simulation tool suite. Retrieved from https://

www.dspace.com/en/inc/home/products/sw/automotive simulation
models.cfm

[6] OMG. (2016, July 11). DDS: the proven data connectivity standard for
the IoT. Retrieved from http://portals.omg.org/dds/

http://taylorandfrancis.com

5
Tuning of ADAS Functions Using Design

Space Exploration

Abhishek Ravi1, Hans Michael Koegeler1 and Andrea Saroldi2

1AVL List Gmbh, Austria
2C.R.F. S.C.p.A , Italy

5.1 Introduction

AnADAS function developed within the DESERVE platform and the tuning of
this function for a particular application is discussed in this chapter. Based on
separating the software and tuning data, according to the standards described
in detail in Chapter 2, such a function can also be used for an alternate vehicle
or application use case. The opportunities as well as the potential challenges
are described, using a real world example, developed within the DESERVE
Project.

5.1.1 Parameter Tuning: An Overview

Tuning or calibration of vehicle components is essentially determining the
optimum attributes, which fulfill the legislative standards as well as refine the
car’s character to meet all the expectations of the driver for drivability and
comfort. Besides the comfort and legislative issues the vehicle tuning also
helps in brand differentiation and helps to determine the vehicle character.

In the tuning task for a specific component (e.g.: engine), the software and
the tuning data in the application layer of an Electronic Control Unit (ECU)
is separated which is illustrated in Figure 5.1. The resulting code is a hex file,
which can be flashed to the defined controller hardware which gives a big
flexibility in powertrain development. As an example, one engine hardware
can be put into more than 200 vehicle variants fitting for different countries,
different vehicles and/or different transmission systems – just by flashing a
different appropriate controller software.

77

78 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.1 Separation of software and tuning parameters in a control unit.

5.1.2 Industrial Tuning Applications: Challenges
and Opportunities

The engine – ECU has been the first mechatronic application in the automotive
world. It makes sense to have a short view on the historical development of
the tuning task in this field as illustrated in Figure 5.2.

In the past decades, the improving technology in the automotive sector
can be seen with cars having better engine performance, less consumption,
better handling and reduced emissions. But the improvement in technology
has come with increased complexity, especially in the tuning task.

Figure 5.2 History of powertrain tuning (calibration).

5.1 Introduction 79

As can be seen in Figure 5.2, initially there used to be around 500
parameters which needed to be tuned, which was carried out by a single
engineer using the unit to be tested, which was then tested on a single test
vehicle. Initially, the powertrain was quite simple and the Engine – ECU was
the only one being considered.

With increasing legislative and user demands; the complexity of the tech-
nology, the number of involved interacting components (engine, gearbox and
electric engine) and also the number of functions controlling the interactions
between all the variable components increased dramatically. Further the tuning
allowed the derivation of many more vehicle variants with the same hardware
components but differing in the ECU-SW, wherein the functions in the SW
stay the same, just the tuning data are specifically developed.

This effect is also seen in the number of tuning parameters to be defined
in an engine calibration project, where around 50 k parameters have to be
defined – clearly assigned to many functions. So it is no longer possible to
have one person, who understands all the functions implemented and teams
of specialized persons are necessary, partly working in different areas of the
world. Thus the industry was confronted with several challenges and found
some responses.

For example, the management of tuning data becomes an issue. It must
be possible to track all the changes made to the tuning data by the different
engineers involved and bring all the tuning results into a single final tuning
result. The company should be able to ensure at Start of Production (SoP)
that:

1. All the tuning data are calibrated.
2. All the tuning data are calibrated with the correct settings to optimally

fulfill the desired, derivative use case.

These two requirements are very challenging, which explains the need of
“Tuning Data Management”. This topic itself is not further elaborated in this
chapter, but is supported by valuable literature [1, 2].

Another challenge lies in the tuning for single use cases: For example,
the emission tuning of an engine in a certain vehicle configuration for the
legislation of a specific country. There are about 5 to 10 strongly interacting
tuning parameters. E.g. an engine map to define the start of the combustion as
function of speed and load is counted as one of these parameters, and exhaust
gas recirculation rate, rail pressure, boost pressure, split patterns of the injected
fuel quantity are others, all either reducing the different kinds of emissions or
changing fuel consumption or noise.

80 Tuning of ADAS Functions Using Design Space Exploration

So one can imagine, that it is just not possible to measure the emissions
and the fuel consumption of all the feasible combinations of say 8 of such
parameters on an engine. (A similar issue faced with ADAS functionality)

Such tasks are typically performed on engine test beds and chassis dynos
and have to be finally validated on the road again. With the latest legislation
(Real Driving Emissions, RDE) even the certification will be done on the road
giving additional challenge [3–5].

Figure 5.3 illustrates the generalized development environment, which
allows the engineer to reproduce maneuvers and then double check the results
of tuning work. In the manual tuning method, the engineer operates the UUT
with a certain setting of control parameters in certain maneuvers. The engineer
observes the behavior of the UUT and performs a judgment according to
his experience. Then the next setting is defined with the intention to better
approach the desired behavior. This process becomes complex when there are
many relevant tuning parameters [6].

In this trial and error method, the quality of tuning and the optimization
results depend on whether the engineer considers all the parameters that are
relevant for the desired behavior and the relevant start point. There is a strong
dependence on the experience of the engineer. There are also limitation on the
number of tests that can be conducted, due to the testing time, complexity and
cost factors. The final results are highly subjective, as the decision making

Figure 5.3 Illustration of a generalized development environment and manual tuning
process.

5.1 Introduction 81

process lacks traceability and a reuse is not possible for future projects, e.g.
tuning an ADAS setup for a different drive mode. As a result, a methodology
to increase the efficiency and the quality of the tuning work at the same time,
the so called “Design of Experiment” method (DoE) was adapted accordingly.

Within the DESERVE context this methodology was applied as “Design
Space Exploration” for Simulation environments, which are excellent devel-
opment environments for tuning of ADAS Functions.

The model-based approach was used with two objectives:

• Firstly, to find an optimum tuning result.
• Secondly, to validate an existing tuning result under a big variety of use

cases, which will happen during the lifetime of a vehicle.

5.1.3 Model-based Tuning

Model-based tuning is a statistical, model-based approach which reduces
the amount of actual experiments/test runs needed to accurately describe the
behavior of the UUT within the design space. This method helps to choose the
position of the test data points in order to generate behavior models with
an efficient low number of measurements. Such models are then utilized
to develop an accurate and robust tuning according to specific optimization
target(s). In Figure 5.4 the entire method is illustrated again for the generalized
development environment.

Figure 5.4 Model-based tuning task illustrated.

82 Tuning of ADAS Functions Using Design Space Exploration

In a model-based tuning task the below steps are followed:

• The user begins with a task planning for the measurement series, where
the targets for the tuning task are determined. Based on the targets, the
relevant input parameters which are considered to influence the observed
UUT response are selected. AVL CAMEO is used for the test plan
generation. This is based on a one time set up process, in which CAMEO
is connected to the development environment. Thus CAMEO gets access
to set tuning parameters in the UUT, observe responses of the UUT and
to start/stop maneuvers and to take measurements after maneuver. The
development environment hosting the UUT could be in the form of a test
bed, a hardware-in-the-loop (HiL) or even a vehicle simulation software
like IPG Carmaker in combination with an ADAS-function prototype
programmed in MATLAB.

• Once the targets have been defined the next important step is to make
the test matrix. In order to get a full picture of the area to be investi-
gated, the Design of Experiments (DoE) is used [7]. It is a systematic
technique which allows varying all the parameters simultaneously while
answering the two important questions of every tuning activity: Firstly,
how many tests are needed to cover the entire design space? And
secondly, at which locations in the design space test points are needed
to effectively get modelling equations valid throughout the entire design
space. There are many DoE designs available to us in AVL CAMEO,
but COR DoE methodology [8] was used in the current example exer-
cise. Besides setting up the test design, it is also important to set the
limits for the test and appropriate actions when the limit is violated.
These topics are addressed further on in the example discussed in
Subsection 6.2.1.

• With the test plan and limits decided the tests are run, where the necessary
parameter settings are uploaded to the UUT by CAMEO, and after the
test, the required measurement results were stored in CAMEO. The raw
measured data check is then carried out in order to check the plausibility
and feasibility of measurement. It is a necessary check to get a rough
idea of how the measurements compare against expected values, and
also observe possible errors which could have occurred during the test
execution.

• The measurements are modeled empirically to obtain behavior models of
the UUT. In this content, modeling means more or less to fit a function –
like a polynomial equation for example – into the measured responses in
order to estimate the response function of any point in the design space.

5.1 Introduction 83

Such a model helps understand the reaction of the UUT to the parameter
tuning, and the interaction of the different tuning input parameters and
the output measurements. The confidence and prediction intervals of the
empirical models are observed to evaluate the model quality. Models in
CAMEO also allow extrapolation in defined ranges beyond the design
space covered by measurements to observe the UUT behavior at points
where tests could not be run based on equipment limitations or time/cost
constraints.

• Based on the optimization target, optimization algorithms can be imple-
mented for a single objective or multiple objectives. The engineer can
decide if the results meet the targets and constraints and in case of multiple
objectives decide on a suitable tradeoff between the different desired
targets (Pareto front).

• Before, the results from the analysis are accepted a final verification test is
carried out. Tests are run at least on the point of the decided optimum, but
can also be extended on parameters settings of ten or more points spread
across the Pareto front. If these verification measurements match the
modeled results then the empirical models are accepted and the engineer
can use the optimization results as the desired tuning setting.

5.1.4 Model-based Validation

A model-based validation is a task carried out to test and evaluate the
robustness of the results from the tuning task. The UUT is run at the parameters
settings obtained from the tuning task, but tested for an alternate use case
and the response is evaluated. For example; if say a diesel engine was tuned
to operate at an economy mode and a sport mode with strong limits set on
NOx emissions. Economy mode encourages the engine to conserve fuel while
sacrificing power, while the Sport mode encourages the engine to provide
greater power while making compromises on fuel economy, with the engine
running more at the higher RPMs. The engine is initially tuned at driving
conditions imitating an urban environment and lower altitudes, and from the
tuning tasks the input parameters settings like the rail pressure, injection
pressure, injection timing etc. are selected to operate the engine at the two
targeted modes while sticking to the NOx limits. In the validation test run the
engine is first run at the economic mode and then sport mode, but now the use
case is in hilly road conditions and higher altitude. The engine performance is
evaluated with respect to power and emissions, while the road and altitude of
operation is varied. The target is to see if tuning settings could be extrapolated

84 Tuning of ADAS Functions Using Design Space Exploration

or extended to alternate use cases. It also gives further information on how the
engine tuned for urban conditions would perform on rugged hilly conditions.

5.2 Demonstrative Example

A map-based ACC-Function (developed by the DESERVE Partner CRF)
running in a commercially available MiL Environment (IPG-Carmaker +
MATLAB Simulink) has been used as an example. The calibration tool of
AVL CAMEO was connected to this environment in order to tune the function
for a Fiat 500L.

5.2.1 Function: An Overview

A map-adaptive autonomous cruise control (ACC) was developed to:

• Control the vehicle velocity in order to enter and exit curves in a
comfortable and safe manner.

• Complete the drive maneuver in the least amount of time.

The controller function controls the vehicle speed by sending jerk request
(see Figure 5.7). Jerk is the rate of change of acceleration. Hence the jerk
request signals from the controller function are converted into the vehicle
acceleration and speed. For the reference maneuver a digitized road was used
and a reference speed curve was determined, which is the maximum speed
at which this road can be safely maneuvered. The function tries to ensure
that, the vehicle follows this reference speed profile as closely as possible
without exceeding it. The target speed was set at 130 km/h for the ACC.
A demonstrative speed profile is shown in Figure 5.5 for a sample settings in

Figure 5.5 Velocity profiles for a sample test run using the control function.

5.2 Demonstrative Example 85

Figure 5.6 Function developed using IPG carmaker and MATLAB simulink.

the ACC function. It can be seen that the vehicle velocity tries to follow the
reference velocity while never exceeding it. The vehicle velocity is not able
to exactly replicate the reference velocity due the road conditions, the vehicle
limitations and the control function settings.

The function was developed using IPG Carmaker for Simulink and has
been illustrated in Figure 5.6. IPG Carmaker for Simulink is integrated into
MATLAB/Simulink and necessary modification were done by adding the
custom Simulink blocks developed for the current use case.

5.2.2 Design Variables

In order to tune the function for the reference maneuver, four input parameters
or design variables were selected (see Figure 5.7).As per the terminology used
in CAMEO these tunable input parameters will be referred to as the variation
parameters. The variation parameters selected for the tuning task are:

• Acceleration Maximum (A MAX) limits the maximum positive accele-
ration the vehicle can have while safely completing the maneuver. The
negative acceleration is not limited in order for the vehicle to generate
the necessary breaking force in case of obstacles.

• Jerk Maximum (J MAX) limits the maximum positive jerk request from
the controller function in order to meet the reference velocity curve. But
only the positive jerk given by the engine and responsible for positive
acceleration is limited, while there is no lower limit for the negative jerks
for reasons mentioned previously.

86 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.7 Function overview.

Figure 5.8 Illustration of the kinematic variables A MAX and J MAX.

5.2 Demonstrative Example 87

Figure 5.8 illustrates the kinematic parameters, with acceleration being
the derivative of velocity and jerk the derivative of acceleration.

• Forward Time (FORWARD TIME) is a gain factor to transform the
jerk request from the controller function to an acceleration request. Even
though the controller function is based on jerk and sends the desired
jerk requests for the vehicle, the interface to control vehicle motion is
based on acceleration. Hence to control the vehicle the desired value
of acceleration is required. In order to obtain the desired accelera-
tion from the request jerk, one has to look forward for a given time
which is called Forward Time. Mathematically it can be defined by the
formula.

A req = A 0 + J req*FORWARD TIME
A req is the Acceleration request
A 0 is the current vehicle acceleration
J req is the Jerk request generated by the controller function

• Jerk Horizon (J HOR) is a parameter used to determine when the
controller function sends the necessary jerk requests and the required
jerk magnitude in response to an approaching curve. To define what
is “near” and “far” (with respect to the distance from the approaching
curve) for the controller function, the parameter J HOR is used, where
HOR stands for the horizon points (of the electronic horizon) to be
considered. J HOR is always a negative value, and values closer to zero
make the controller respond to the approaching curve when it is further
away with a smaller deceleration demand. Higher negative value tells the
controller to respond when the approaching curve is closer in proximity
but with a larger deceleration. A pictorial representation is given in
Figure 5.9.

The black line represents the target velocity set for the controller and
the reference velocity curve is given in red. As explained previously the
controller tries to control the vehicle speed (in blue) as close as possible
to the reference speed.

The mathematical expression “A MAX + J HOR*time” determines
the funnel of the vehicle velocity curve shape (shown in blue). More
negative J HOR give the velocity curve a sharper shape, while values
closer to zero give the velocity curve a flatter shape.

The range of the variation parameters examined in the tuning task have been
shown in Table 5.1.

88 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.9 Illustration of the design variable (variation) J HOR.

Table 5.1 Range of variation parameters used in the tuning task
Design Variable From To
A MAX (m/sˆ2) 1 5
FORWARD TIME (s) 0.1 2
J HOR (m/sˆ3) –5 –0.2
J MAX (m/sˆ3) 1 3

5.2.3 Key Performance Indicators (KPI)

The output variables to demonstrate the effectiveness of our tuning task to
meet the targets are described below and illustrated in Figure 5.10:

• Mean Speed: The mean of the vehicle speed in each test run is indicative
of the sportiness of the driving experience. A higher mean speed helps
finish the test maneuver in less amount of time, and makes the driving
experience sportier.

• Speed below reference: The reference speed curve is the maximum speed
with which the vehicle (Fiat 500L) can maneuver the digital test track
without leaving the road for the reference use case. Hence to ensure
vehicle safety it was ensured that the vehicle speed during the tuning
task was always below the reference velocity.

5.2 Demonstrative Example 89

Figure 5.10 Key performance indicators.

• Jerk RMS: Vehicle jerk which is the rate of change of vehicle acceler-
ation, is indicative of the driving comfort. Lower rate of change of jerk
gives a comfortable ride, so the root mean square of the jerk in a test run
is a good indication of the driving comfort.

5.2.4 Test Maneuver

The test maneuver consisted of 5000 m test run on a digitized road imitating
the road between Ceva and Savona in Italy run on IPG Carmaker for Simulink
(CM4SL). IPG Carmaker environment is illustrated in Figure 5.11. The top
left is the Carmaker for Simulink main GUI, showing details about the vehicle,
simulation speed, time and distance of maneuver etc. The bottom left imitates
the car instrumentation. The top right is time based plot of car speed and the
vehicle jerk. The bottom right is the IPG Movie which illustrates the overall
test run in a movie.

5.2.5 Test Run Overview

The test run overview is illustrated in Figure 5.12. The test parametrization
was done in AVL CAMEO, where a space filling DoE design with the four
variations was used. The variations were then uploaded to CM4SL through

90 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.11 IPG Carmaker test environment.

Figure 5.12 Test run overview illustrating the work flow.

the CAMEO-Carmaker Interface, where the test maneuver was run for each
variations setting. AVL CAMEO then stores the measurement parameters
observed as the KPIs for further evaluation.

5.2 Demonstrative Example 91

During parametrization there were limits set on the minimum (–2 m/sˆ3)
and maximum (2 m/sˆ3) acceptable vehicle jerk values. Whenever the vehicle
jerk value violated the limits the test run at that test point was halted
and no measurements were recorded. This affected the overall DoE design
effectiveness with a reduced design space and as a result reduced measurement
points. To overcome this challenge a COR DoE (Customized Output Range)
method was utilized, which is an iterative method where first alternate test
points were added by CAMEO to maintain the DoE design. Then based on
these preliminary measurements the design space was further modified and
additional test points were added in the relevant variation space to improve
the final information from the measurements. Design space modification. The
AVL CAMEO interface is illustrated in Figure 5.13, where the image to the
left illustrates the overall test parametrization while the image to the right
shows the test run window.

5.2.6 Raw Data Plausibility Check

Before the mathematical modeling of the selected output measured variables,
the raw measurements were checked for plausibility. Firstly, the measured
variables were checked for any outliers as shown in Figure 5.14 for mean

Figure 5.13 Left image illustrates the test preparation window while the right image illustrates
the test run window.

92 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.14 Checking for outliers in the measured variables.

speed. The measured values were within the acceptable range. The figure also
shows that the repetition points (a select number of test conditions, usually the
start condition which are repeated to check the reproducibility of test results)
shown in green were perfectly reproduced.

The effect of design space modification, due to limit violations and the
design correction by COR DoE method can be seen in Figure 5.15. In a
certain range of variations for A MAX, J HOR and FORWARD TIME there
are no test points. Limit violations encountered when tests were carried out at
these range of points are the reason why they were skipped by AVL CAMEO.
Conversely a greater density of test points in certain ranges of variations show
where the COR DoE added alternate or additional test points.

5.2.7 Meta Modelling

The raw data plausibility check was followed by empirical modeling of the
output variables. The automatic modeling in CAMEO gave reasonable results
with a neural networks model with local model order 2, as can be seen in
Figure 5.16 which is the Measured (Predicted) plot which shows the fit of the
model to the measurement points. If there is a perfect match all points will lie
along the black line, but in our case the measurement points are reasonably
close to the black line.

5.2 Demonstrative Example 93

Figure 5.15 Check of DoE design and the boundaries of variation parameters.

Figure 5.16 Figure depicting the quality of empirical modeling.

After checking the quality of modeling, the intersection plots were used
which represent a cut through the multidimensional model, showing the
influence of each variation depending on the values of the other variations.
In Figure 5.17 the influence of the variation parameters on Speed Mean and

94 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.17 Intersection plot highlighting the influence of each variation on the output
variables and their interaction.

Jerk RMS can be observed. The confidence interval of the model is displayed
in the green dotted line and colored section. The narrow confidence interval
shows a high quality fit. The green bar on the x axis for each variation shows
the total design space, and as the confidence interval of the model in the
extrapolated region is also narrow, it shows good extrapolation capability of
the model. Now looking at the intersection plots, it can be noticed that J HOR
and A MAX have a strong influence on the output parameters. The more

5.2 Demonstrative Example 95

negative the J HOR, the later the vehicle reacts to an approaching curve.
Hence it is still travelling at a high speed before decelerating to approach
the curve safely. Hence a higher mean speed is observed, but the resulting
braking produces higher vehicle jerk reducing the driving comfort. Influence
of A MAX can be a bit counter intuitive but it can be seen that A MAX is
used to calculate J HOR. The higher A MAX, the less negative is J HOR.
Hence for higher A MAX values J HOR is closer to zero hence a smoother
and slower ride. It can also be observed that higher FORWARD TIME allows
for a smoother and slower ride, which is because the controller can take more
time to achieve the desired acceleration.

5.2.8 Optimization

From the intersection plot, it is possible to manually find values of the
variations which give a comfortable ride or sporty ride or an acceptable com-
promise. But it is quite easy to miss the optimum or an acceptable compromise
when working with multiple input variations, hence the optimization tool in
CAMEO was used. In the current tuning scenario, the target was to be able
to isolate two modes of operation, comfort mode and sporty mode. Hence
a multi objective optimization was chosen with limits set on the minimum
desired mean speed of 115 Km/h and maximum acceptable JERK RMS of
0.28 (Figure 5.18).

Figure 5.18 Optimization setting window in AVL CAMEO.

96 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.19 Trade-off plot between comfort and speed.

The result is plotted in a trade-off plot as shown in Figure 5.19, where
the steel blue is the pareto front, the blue points indicates the measurement
values and the other yellows points are random space filling points. The pareto
front shows the possible optimum trade-off solutions which can be considered
equally good as the only way to improve on objective would be to compromise
on the second objective. So by observing the pareto front it is possible to define
an optimum for comfort mode and an optimum for sporty mode of operation
Table 5.2.

In Figure 5.20: Sporty mode vs comfort mode: the vehicle performance
when operating at the two modes can be observed. The red velocity curve is
the reference velocity and blue velocity curve is the actual vehicle velocity.
It can be observed that the actual velocity is always below reference velocity
which was the safety requirement. Also the velocity changes in comfort mode

Table 5.2 Variations values for comfort and sporty mode
A MAX FORWARD TIME J HOR J MAX SPEED Mean JERK RMS

Comfort 4.99 1.94 –0.84 1.0 115 0.09
Sporty 3.88 1.37 –1.84 3.36 120 0.28

5.2 Demonstrative Example 97

Figure 5.20 Sporty mode vs comfort mode.

is more gradual with no sharp peaks unlike in sporty mode where there are
rapid fluctuations in vehicle velocity. This behavior is also mirrored in the
acceleration values in both operation modes. The vehicle jerk curves (red plot
is the jerk request generated by the controller and blue the actual vehicle jerk
response) show much lower values in vehicle jerk for comfort mode while the
sporty mode show sharp and frequent peaks in jerk value.

5.2.9 Verification

The pareto front consists of points a majority of which are from the model
extrapolation. In order to verify the robustness of the model to accurately
extrapolate, ten random points were selected from the pareto front and for the
corresponding variation values the test runs were rerun. The results from these
test runs were evaluated as verification points in CAMEO. The Figure 5.21
shows the extrapolated model (in red) and its prediction interval (in blue), and
the measured verification points and its modeling (in green). The measured
verification points lie within the prediction interval of the model, showing the
extrapolation accuracy of the model.

98 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.21 Verification plot to see how well the measured results from the verification run
fit the model results.

5.3 Model-based Validation

Once the reference tuning task is completed, it has to be tested, if the tuning
results are still acceptable, when not running the reference use case but
for varying road characteristics. Will the comfort mode still allow for a
comfortable drive also for different road situations? It would be unfeasible
to run simulations on thousands of different roads, besides making it difficult
to realize the influence of a specific road. In the current method the two tuning

5.3 Model-based Validation 99

modes are fixed and a system variation of a digitized road is performed using
the model based approach to validate our tuning results.

The digitized road is shown in Figure 5.22, where the lengths of the straight
sections (L1, L2, L3, and L4) and curvatures (R1, R2, R3) were varied while
keeping the total maneuver length to 5000 m. The controller settings were
fixed to run at first comfort mode and then sporty mode, and the resulting
measurement output variables are shown in Figure 5.23.

Figure 5.22 Digitized road used for the validation run.

100 Tuning of ADAS Functions Using Design Space Exploration

Figure 5.23 Measurements comparison when run on comfort mode (in blue) and sporty
mode (in red).

It can be seen in Figure 5.23: Measurements comparison when run on
comfort mode (in blue) and sporty Mode (in red) that for the sporty mode the
resulting drive comfort is lower as indicated by the higher JERK RMS. The
length of the straight portions do not influence the JERK RMS for comfort
mode as strongly as in the sporty mode. The curvature of the turns seem to
influence the output in both the operation modes. A JERK RMS limit of at
least 0.35 is expected, and it can be seen that the limit is maintained in both
the modes of operation for majority of the design space. In the sporty mode
the controller is set to maintain a higher vehicle speed and responds to the
oncoming curve only when it is close, hence the longer the straight sections, the
larger the jerk experienced when it decelerates rapidly to approach the curve
followed by a strong acceleration on leaving the curve. For the comfort mode,
the controller is set to focus on keeping the vehicle jerk close to minimum.
The validation task showed that, if the function (our UUT) is kept constant and
the simulation environment is changed, the function still manages to meet the
expected vehicle jerk targets. The influence of ‘L4’on the jerk behavior needs
to be further investigated as it strongly increases the vehicle jerk fluctuations at
higher values especially for the sporty mode.To further explore and investigate

References 101

the influence of test track characteristics on the function response, it can be
tested on a variety of road types and test tracks. This assists in the further
improving the function performance.

5.4 Conclusions

Virtual tuning of an ADAS function developed on a MiL environment using
an optimization tool can be a powerful combination for the development of a
brands driver assistance system. The classical approach relies on a subjective
tuning of theADAS function on a proving ground and public roads, which can
be supported and accelerated by using a virtual tuning environment. Using
DoE methods supported by AVL CAMEO, it was possible to increase the
number of tuning tests compared to a manual tuning, and also the number of
target parameters and tests needed to match them. The possibility to use the
developed function for alternate use cases by separating the software and the
tuning data is precondition for tuning works in general.

Independent of that also in the validation process a model-based approach
can be very helpful, as the test coverage for a certain use case can be extended
to a wide range of possibly occurring variants of that use case. The robustness
of the key performance indicators considered as relevant can be estimated.

Acknowledgement

We would like to thank Mr.Andreas Saroldi from CRF for providing theADAS
function.

References

[1] M. Paulweber and K. Lebert: Instrumentation and Test Systems: Power
Train development, Hybridization and Electrification. Chapter 5.4.2
Application Data management, Springer View, 2016.

[2] AVL Tuning Data Management Software: http://www.avl.com/creta
(called at 2016 01 20).

[3] H.-M. Koegeler;A. Fürhapter; M. Mayer; K. Gschweitl: DGI-Engine Cal-
ibration, Using New Methodology with CAMEO. In SAE NA, Capri –Italy,
23–27. September 2001.

[4] E. Castagna; M. Biondo; J. Cottrell; H. Altenstrasser; Ch. Beidl;
H.-M. Koegeler; N. Schuch: Multiple Tier 3 Engine Applications based
on global modelling. In MTZ 6/2007.

102 Tuning of ADAS Functions Using Design Space Exploration

[5] T. Fortuna; H.-M. Koegeler; M. Kordon; V. Gianluca: DoE and Beyond-
Evolution of the Model based Development Approach, in ATZ world-
wide, Springer, 2015.

[6] H. M. Koegeler; B. Schick; P. E. Pfeffer; A. Contini; M. Lugert;
T. Schöning: Model Based Steering ECU Calibration on a Steering in
the Loop Test Bench, in Chassis Tech 2015.

[7] D. C. Montgomery: Design and Analysis of Experiments, John Wiley
and Sons.

[8] A. Rainer; H. M Koegeler; D. Rogers: Iterative DoE – Improved
emission models and better optimization results within a shortened
measurement time, in PMC, 2014.

PART II

Test Case Functions

http://taylorandfrancis.com

6
Deep Learning for Advanced Driver

Assistance Systems

Florian Giesemann1, Guillermo Payá-Vayá1, Holger Blume1,
Matthias Limmer2 and Werner R. Ritter2

1Institute of Microelectronic Systems, Leibniz Universität Hannover,
Hannover, Germany
2Vision Enhancement, Daimler AG, Germany

6.1 Introduction

Today, vehicles contain a wide range of electronic driver assistance systems.
These systems, for example Anti-lock Braking System (ABS) or Electronic
Stability Control (ESC), increase car safety and on a more general level even
road safety. More complex Advanced Driver Assistance Systems (ADAS),
like Lane Departure Warning, Overtaking Assistant, Collision Warning or
Emergency Breaking do not only observe the parameters of the vehicle itself,
but also require information regarding the environment. Future applications,
which target autonomous driving, need an even more detailed understanding
of the vehicle’s environment and the current driving situation. Therefore,
vehicles are equipped with a number of sensors, which enable the perception
of the vehicle’s surroundings including other road users. But the sensors
generaly used deliver a huge amount of raw and unrefined data, from which the
necessary information needs to be extracted. For instance, for camera sensors,
an algorithm called Scene Labeling can be used to detect relevant objects in
camera images. It assigns every pixel of an input image to a semantic class
(e.g., road, car, free space etc.) and can therefore be used to extract detailed
information from the scene.

The increasing complexity of algorithms and the increasing amount of
data that has to be processed requires a high amount of processing power. At
the same time, processing hardware is subject to restrictions regarding power

105

106 Deep Learning for Advanced Driver Assistance Systems

consumption and size. These conditions make the field of embedded hardware
platforms for driver assistance systems challenging.

This chapter is organized as follows: Section 6.2 gives an introduction
to Scene Labeling techniques and their application in Advanced Driver
Assistance Systems. Section 6.3 explains the concepts of Convolutional Neural
Networks and Deep Learning. In Section 6.4, an exemplary CNN is presented
and evaluated. Section 6.5 describes different hardware platforms for Scene
Labeling. Finally, Section 6.6 summarizes the chapter.

6.2 Scene Labeling in Advanced Driver
Assistance Systems

Getting a thorough understanding of the vehicle’s environment is an important
step in the development of advanced driver assistance systems. Different
techniques for detection and classification of objects have been developed.
Literature offers a wide range of algorithms for detecting traffic signs,
traffic lights, driving lanes, and also other vehicles and pedestrians. In
order to build up a comprehensive understanding of the environment, not
only single objects have to be detected, but also the objects in relation to
each other have to be determined. This is commonly referred to as Scene
Labeling.

Scene Labeling is a technique to classify images on different levels of
detail. Image-level Scene Labeling (e.g., [1]) is used to derive one or more
labels for the whole image that describe different scene types, e.g., urban, inter-
urban, or highway. On another level, labels are deduced for small sub regions
of an image, so called regions of interest. This allows for a more detailed
understanding of the scene in terms of objects, like pedestrians, vehicles,
driving lanes, traffic signs and so on. On a third level of detail, each pixel in an
input image is classified and provided with a semantic label. The information
provided by these labels can be used in different applications, for example in
pedestrian/obstacle detection, close range lane course estimation or relative
map positioning.

Scene Labeling can also be combined with other detection methods in
order to increase reliability and thereby increase the integrity level of safety
functions. Moreover, it can replace different detection modules in order to
save resources.

The Scene Labeling task is usually performed in two steps. The first
step extracts features from the input image; the second step computes a
classification of the image, the region, or the pixels from the extracted features.

6.3 Convolutional Neural Networks and Deep Learning 107

Several different features are used in order to perform image segmentation
and semantic labeling. Some algorithms rely on single, low-level features,
like color [2], texture [3, 4], shape [3, 5], geometry [6], and edge features
[7]. Object detection algorithms are used to extract high-level features, e.g.,
pedestrian detection [8], traffic sign detection [9], and lane detection [10].
Some algorithms perform labeling using image segmentation techniques, e.g.,
Super Pixels [11] or sliding windows using Boosting [12] to detect regions of
one certain class, e.g., pedestrians or traffic signs.

Classification of extracted features is performed using different tech-
niques, like Support Vector Machines [13], Genetic Algorithms [7], or Neural
Networks [14]. Probabilistic models like Conditional Random Fields (CRF)
[15] and graph-based optimization methods (e.g., Graph Cut [16]) are used
to combine different features and include smoothness constraints or neighbor
relationships.

Recent advances in the field of deep learning and neural networks yielded
a new technique for the scene labeling problem, which is described in the next
section.

6.3 Convolutional Neural Networks and Deep Learning

Typical systems for detection and recognition of objects or situations use a
two-step data processing scheme. In a first step, features are computed from
data gathered through different sensors, like cameras, radar, etc. Then, a second
step uses the previously computed features in order to classify the candidates
into the object classes. The implementation of the classification step might
involve the use of machine learning techniques, i.e., the training of a classifier.
One difficulty in this scenario is the selection of features to be used. Often,
these features are hand-crafted and a lot of work might be involved in tuning
the parameters in order to find a set of features that can be used for reliable
detection and recognition of objects.

Another way of building recognition systems that evolved recently is the
use of learning techniques and especially the technique of deep learning with
close coupling between the feature extraction and feature classification steps.
Deep learning describes methods, in which feature extractors are not hand-
crafted but automatically learned from a set of training data. Multiple layers
of feature extractors can be used in a hierarchical structure in order to allow
deeper layers to extract features of higher order from previous layers. The
idea behind this technique is that the learning algorithm is capable of detec-
ting the best features for the following classification step itself. Commonly

108 Deep Learning for Advanced Driver Assistance Systems

used implementations of the deep learning methodology are artificial neural
networks.

6.3.1 Introduction to Neural Networks

Inspired by processes in the biological neural networks of the central nervous
systems and especially the brain, different computational models of artificial
neural networks have been developed [17]. Artificial neural networks are built
as a collection of relatively simple units, so called neurons, that are connected
together to form a network which can process a complicated task. One of
the first models of neural networks is called perceptron [18]. The simple
perceptron neurons perform binary decisions depending on their input values.
The input signals xi are weighted and accumulated. The neuron “fires”, i.e.,
produces an output signal y of 1, if the weighted sum of the input signal
exceeds a given threshold value, and outputs 0 otherwise. The first networks
had one single layer of neurons and were only capable of computing linear
classifications. More complex networks with multiple layers were capable
of computing more complex classifications. Nowadays, neural networks use
a different model for the artificial neurons [19, 20], as depicted in Figure 6.1.
The input values, which are now real numbered values, are weighted and
accumulated. Afterwards, a non-linear activation function is applied to the
sum. Commonly used activation functions are the sigmoid function, which
can be interpreted as a smoothed threshold. Recently, rectifier linear units
(ReLU) have been reported to have several advantages over the sigmoid
functions [21]. Some exemplary activation functions are shown in Figure 6.2.

Figure 6.1 Model of an artificial neuron.

6.3 Convolutional Neural Networks and Deep Learning 109

Figure 6.2 Exemplary activation functions used in neural networks.

The bias is another value summed up along with the weighted inputs. This
parameter influences the neuron’s general activity or the likelihood for an
output activation of the neuron. For simplicity, the bias can be interpreted as
the weight for a constant input value of 1, so that all parameters of the network
can be interpreted as weights. Therefore, a neuron with inputs x1, x2 . . ., xn,
weights w1, . . ., wn, bias w0, (with x0 = 1) and activation function f can be
described mathematically as

y = f

(
n∑

i=0

wixi

)
.

In so called Multi Layer Perceptrons (MLP), neurons are arranged in layers.
The neurons of one layer are connected to neurons in the following layers.
No connections exist between neurons of one layer and the graph formed by
the neurons and connections is a directed acyclic graph. Therefore, MLPs are
called feed forward networks.

The task performed by the neural network depends on the parameters,
namely the weights and biases. Therefore, the network parameters have to
be adjusted before the network produces the correct outputs. This adjustment
is called training. Different methods for training multi-layer feed-forward
networks have been devised. The most commonly used technique is the
backpropagation of error [22].

6.3.2 Supervised Learning

In a neural network, the internal parameters (weights of the neurons) are
also called trainable parameters, since they can be trained to approximate a
desired function. In case of Scene Labeling, this function would map a pixel of
an image to a specific label, using the pixel’s neighborhood. For classification

110 Deep Learning for Advanced Driver Assistance Systems

tasks with a given set of classes, supervised learning schemes are used. A set
of training samples contains input images together with the desired output. In
combination with an error function, the training set can be used to adjust the
internal parameters of the network.

The Cost Function and Backpropagation

Supervised learning for neural networks is performed by measuring the neural
net’s estimated output against the expected output with a so called cost
function. The goal of a supervised training is to find the internal parameters
which minimize this cost function regarding a set of training examples. Since
the network in general models a highly non-linear function, gradient descent
can be used as an optimization procedure. This is done by computing the
gradient of the cost function and leveraging the chain rule to propagate the
cost and the gradient back through each layer of the network. The weights in
each layer are updated according to the current gradient of the backpropagated
cost. This algorithm is therefore called backpropagation.

A successful training converges against the minimum value of the cost
function. It is important to choose the cost function suitable for the task that
the neural network needs to perform. For classification tasks, a combination of
the softmax function and (multinomial) logistic regression is often performed
to train the internal parameters. The softmax function serves as a normalization
function, which maps input values xj of arbitrary range to values in the range
(0, 1) that add up to 1. The maximum of the input values maps close to 1 while
the other values map close to 0. The function is defined by

softmax(xj) =
exj∑K

k=1 exk

for j = 1, . . ., K.

The softmax directly serves as the multinomial version of the logistic function
used in logistic regression. The resulting cost function is defined by

cost(x) = −ln(softmax(x′
k)),

with x′
k as the predicted output of the neural network for the actual class k.

The cost is therefore the negative log-likelihood of the expected class, which
minimizes, when the estimated probability for that class is 1.

Stochastic Gradient Descent

Gradient descent is an algorithm that finds a local minimum by following
iteratively the negative gradient of a function F (x) at each point x. It can be
defined as

6.3 Convolutional Neural Networks and Deep Learning 111

xi+1 = xi − ηi∇F (xi).

Here, ηi is the so called learning rate at iteration i. Choosing the right η in
every iteration of the algorithm is crucial for the success and the convergence
speed of the optimization. If η is too small, it takes many iterations to find
a local minimum. Furthermore, the detected local minimum might just be a
plateau with better local minima in the neighborhood. If the chosen learning
rate is too big, it is possible to jump repeatedly over the local minimum,
but never reaching it. In severe cases, it is even possible that the algorithm
diverges. There are several schemes for choosing the learning rate adaptively.
Resulting in most cases in a computational overhead, which is due to an
additional analysis step at the current point of the function. A fixed learning
rate is often used, which is scaled down in every iteration. Later iterations
are supposed to be close to a minimum and require therefore a finer grained
learning rate.

Given the basic gradient descent update rule, the term ηi∇F (xi) can be
called update νi of iteration i. Since these updates only rely on the current
gradient, small bumps in the error function might lead to a jittering path in
the gradient descent, which increases the number of iterations until a local
minimum is found. This might especially occur in stochastic gradient descent,
which does not use every training sample in each iteration. To overcome this,
many learning schemes extend the update rule by a momentum term. The
update rule is then defined by

xi+1 = xi − (ηi∇F (xi) + μνi−1)

with a new definition for the update νi:

νi = ηi∇F (xi) + μνi−1 and ν0 = 0.

The parameter μ ∈ R(μ ≥ 0) denotes the influence of the update from the
previous iteration. If μ = 0, no momentum is used to calculate the current
update. Update steps are stabilized and the “velocity” in flat valleys of the
error function is increased by using a momentum. However, this property is
not always desired in all gradient descent schemes, because the momentum
might also cause the update to overshoot. Hence, the momentum term should
be used with care.

In a learning environment, a point x of the cost function is the set of
internal parameters unified with the expected net output. Since there is not
only one training example but many, there are also many expected output
points. The cost of more than one data point is therefore the sum of all costs.

112 Deep Learning for Advanced Driver Assistance Systems

This is called objective function. It follows, that in an iteration (epoch) of the
gradient descent algorithm, all data points need to be processed. This is called
batch gradient descent. In many cases though, processing all data points in one
epoch is not feasible because of the size of the dataset. In this case, stochastic
gradient descent is used. Instead of predicting all data points per epoch, a
random subset for each epoch is generated. If the subsampling is random
enough in each epoch, this method optimizes an approximation of the objective
function. Though each individual epoch might not sufficiently approximate
the objective function, the repeated random sampling does. Stochastic gradient
descent is therefore a common approach to train a neural network with big
datasets.

6.3.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is an extension to the common
MLP, originally designed for two-dimensional data, like images. As the name
suggests, it adds convolutional layers to the set of possible layers in an MLP.
There is an analogy here with the primary visual cortex of a cat, which
also uses convolution-like simple cells to extract information from spatially
close overlapping regions of the field of view [23]. In [24], the authors
showed that the backpropagation algorithm can be extended for the training of
CNNs by introducing an update and backpropagation rule for convolutional
layers.

Convolutional Layer

The convolution layer differs in two ways from the common fully connected
layer of an MLP:

1. Convolution layers only sum up a fixed window of the input signal. They
are therefore only locally connected. This connection window is called
receptive field of the layer.

2. Each possible position of a receptive field uses the same weights to
produce an output. This is called weight sharing.

The output signal is produced in a sliding window fashion, by applying a
weighted summation of the receptive field for each possible receptive field
position. The output contains as many values as possible positions. It is exactly
a convolution of the input signal, where the layer weights form the convolution
filter (kernel).Aconvolution layer can have several filters, thus forming a filter
bank, which is analogous to the amount of hidden units in this layer.

6.3 Convolutional Neural Networks and Deep Learning 113

Pooling Layer

Another important extension of the MLP is the pooling layer. A pooling layer
performs a subsampling of the input signal, by “combining” small windows
of the input signal into several singular values. A common pooling function
is max-pooling, which calculates the maximum of its receptive field. Another
pooling function is average-pooling which computes the average value in
its receptive field. A pooling can be seen as a convolution with a special
function and a stride that equals the filter size of the pooling kernel. Regular
convolutions have a stride of 1, meaning every pixel position is computed
in the convolution. A stride of 2 means that every other pixel position is
computed. The purpose of pooling is not only to reduce the spatial size of the
input signal, but also to increase the robustness of translational invariance of
the activations.

Multiscale CNN

A variation of convolutional neural networks is the Multiscale CNN. Instead
of processing an input signal as it is, the Multiscale CNN processes several
scaled down versions of the signal simultaneously. This approach increases the
ability to extract scale invariant features, without the need to increase the size
for the extracted pixel neighborhood patch windows. The extracted feature
maps of each scale are finally combined to produce a joint feature map. This
can be done by a fully connected layer that takes all feature maps as an input
to compute its output. For the Scene Labeling application, an image pyramid
has to be created prior to the extraction of image patches for each scale, which
are then fed to the Multiscale CNN.

Patch Based and Image Based Application

Neural networks for image classification tasks were traditionally designed so
that they process a complete image of fixed size and produce classification
results of a fixed size as well. Big image sizes automatically implied that
the fully connected hidden layers had also a great amount of hidden units.
This resulted in the reduction of the input images sizes to keep the neural
networks scalable and computable. In order to apply neural networks in a
pixel classification scheme, image patches had to be extracted at each pixel
position that needs to be classified. In many cases, these extractions are applied
sparsely across the image to produce a coarse pixel classification.

A patch based application of CNNs for pixel classification tasks is com-
putationally very inefficient, because image patches for neighboring pixels
overlap. Therefore, the same convolutions are computed multiple times.

114 Deep Learning for Advanced Driver Assistance Systems

This redundancy can be omitted by applying CNNs in an image-based
fashion. This has an effect on several aforementioned components of the
neural network, since they have been designed in regard to a patched based
application. The fully connected layer especially is not applicable in an image
based application, because full connectivity is contrary to the local connectivity
of the convolution layers for arbitrary image sizes. The adequate translation
of a fully connected layer in a patch based approach is actually another
convolution layer, with a 1×1 convolution on all locally connected input
values.

Another layer type that works differently in an image based application
is the pooling layer. A naïve translation would result in a huge loss of output
resolution, since pooling layers in patch based mode are designed to subsample
the input signal. A patch based application on every possible pixel location
though doesn’t share this subsampling property. This is why the patched
based approach really evaluates every pixel location, while an image based
approach implicitly only fully evaluates a subset of all pixel location due to the
subsampling. To remove the subsampling property, a pooling must be applied
in a convolutional manner (overlapping pooling). Looking at the output maps
of such an overlapping pooling, it is clear, that they differ from maps of a non-
overlapping pooling. In particular, neighboring pixels from a non-overlapping
pooling are not neighbors anymore. If a convolution layer follows, it results
in a wrong calculation of the output maps. This can be corrected by reordering
the pixels after the pooling layer into n subimages, where n is the size of the
pooling kernel or the stride, and apply the following layers on each subimage
independently [25]. The reordering is hence defined as fragmentation, because
the input map is fragmented into smaller output maps. Figure 6.3 shows such
a fragmentation after the application of a 2 × 2 pooling producing 2 × 2
subimages.

Figure 6.3 Example of a fragmentation after a 2 × 2 pooling. The naïve approach would
only produce the bright pixels, while an overlapping pooling produces all other possible pixels
(purple, green, and blue). These pixels must be reordered to be able to correctly continue with
the forward propagation of the neural network.

6.4 CNN for Scene Labeling 115

For Multiscale CNNs, an image based application introduces another
difficulty, which needs to be solved. In a patch based approach, the image
patches for each scale have to be extracted and each patch has the same
size. In an image based approach however, the feature maps for different
scales are of different size. This becomes a challenge in the fully connected
layer, which combines the feature maps of all scales. Since there are no fully
connected layers in the image based approach, the feature maps of each scale
need to be transformed so that a regular convolution layer can handle them.
The simplest solution is to scale the smaller maps up so that they all match
in size. If the maps have been fragmented because of a pooling layer, they
need to be defragmented before they are scaled up. Defragmentation is the
reverse function of fragmentation, turning multiple smaller maps into one
bigger map.

6.4 CNN for Scene Labeling

There are many ways to perform Scene Labeling on images. CNNs have
proven themselves useful on this task, because they achieve state of the art
performance without the need to develop complex multi cue frameworks that
combine different inputs and sensors. Additionally, many frameworks for
modeling, training and execution of CNNs exist, e.g., Caffe [26], Torch7 [27],
Theano [28], Pylearn2 which is built on top of Theano, and cuda-convnet
[29]. These frameworks exploit the CNN’s parallelizability to provide fast
and time efficient implementations using General Purpose GPUs (GPGPU).
Furthermore, the research community is actively training and publishing mod-
els, which can often be adapted to a specific task by resuming the training with
corresponding data. Most frequently used models areAlexNet [30], GoogleNet
[31] or VGG [32]. They differ in complexity and run time efficiency, but
reached state of the art performance during their time of publishing for certain
challenges on datasets like ImageNet [33]. A high network capacity is needed
to achieve a high accuracy on such complex tasks. So the trained models are
rather big and need a huge amount of computational power. Incorporating
this into an embedded system with low power consumption, as is needed for
ADAS, is still a great challenge.

The following section describes one possible model with reduced com-
plexity, selected for implementation in the course of the DESERVE project.
Its purpose is to detect the road, vehicles and vulnerable road users, which can
then be utilized for lane prediction and pedestrian detection.

116 Deep Learning for Advanced Driver Assistance Systems

6.4.1 Exemplary Network for Scene Labeling

The proposed model is derived from the Multiscale CNN used in [34]. It
consists of 2 convolutional layers and 2 pooling layers.The activation function,
used after the convolutional layers, is the ReLU function (see Figure 6.2).
Each convolution layer contains a bank of 16 × (7 × 7) filter kernels. These
four layers are applied on three scales of the input image and combined by a
fully connected layer, producing 6 output channels: background, road, vehicle
(including cars, trucks, busses, . . .), vru (vulnerable road users: pedestrians,
cyclists, . . .), sky and infrastructure (buildings, signs, barriers, traffic lights,
. . .). Those channels are normalized by a softmax layer to produce class
probability maps for each class. By applying an argmax on these maps a
class membership map is produced returning the most probable class for each
pixel. The input images are preprocessed by transforming them into an image
pyramid and locally normalizing them afterwards to zero mean unit variance
in a 15 × 15 neighborhood. Figure 6.4 shows the complete toolchain and
Figure 6.5 the network topology in more detail.

6.4.2 Evaluation

The topology described in subsection 6.4.1 was trained with 6895 labeled
night time images of a near infrared camera used in the NV3 night vision
system of a Mercedes Benz S-Class. The images show mainly rural, but also
urban, road scenes under different weather conditions and different seasons.
To augment the heavily under-represented vru class, 15174 images are added
to the aforementioned set of images, where only the pedestrian and cyclist
labels are used. This is called the learn set. The training scheme is stochastic
gradient descent with the logistic regression objective function for 6 classes.

Figure 6.4 The complete processing chain from input image to a scene labeled image is
displayed. After building an image pyramid of 3 layers and the local normalization every scale
is fed to its own processing chain. This produces 6 class membership probability maps. They
can be interpreted and augmented as seen in the output image.

6.4 CNN for Scene Labeling 117

Figure 6.5 The image pyramid construction layer produces 3 scales that are locally nor-
malized in 15 × 15 windows. Every scale is propagated independently. There are in total 2
convolution layers with 16 × 7 × 7 filter kernels using the ReLU activation function. After
activation a 2 × 2 max-pooling is performed followed by a fragmentation in the first pooling
layer. A second fragmentation is not necessary since the second pooling layer is followed by
a defragmentation. The small scaled feature maps are sampled up and fed to a classification
layer, being a 6 × 1 × 1 convolution layer. Finally, a pixel wise softmax is applied.

It is trained 10.000 epochs with 40960 balanced training examples (patches)
per epoch. The learning rate was determined following several short runs of
100 epochs with different learning rates. The best progressing learning rate
was then chosen. During training, the learning rate was linearly reduced after
5000 epochs by a factor of 0.995 per epoch. Figure 6.6 shows the training
progress (2-2-16 topology) in relation to the objective function on the learn
set. Two other topologies were also trained in the same way. One introduced
a third convolution layer including the ReLU activation function after the
second pooling (3-2-16 topology). The third topology is similar to the 3-2-16
topology, but uses 32 filters per convolution (3-2-32 topology). Figure 6.6
shows that the topology with the least trainable parameters (2-2-16 topology)
performed worst during training. The introduction of another convolution
layer (3-2-16 topology) resulted in a better learn curve. However, doubling
the amount of filters (3-2-32 topology) increased the learn performance yet
again.

Since the classifier of topology 3-2-32 appears to have the best perfor-
mance, it is evaluated on the evaluation set of images containing 200 images
that have not been part of the learn set, called the eval set. Evaluation in
multiclass problems is done by analyzing the confusion matrix. The confusion
matrix for topology 3-2-32 is displayed in Table 6.1. It shows the class
predictions in relation to the actual class. The diagonal entries form the true
positives (pixels that were classified correctly, TP) for each class, while the
remaining entries of a line or column display the individual false negatives

118 Deep Learning for Advanced Driver Assistance Systems

Figure 6.6 Displayed are the learn curves of three different network topologies. Each
topology was trained three times and the learn curves were averaged. The averaged learn
curves are displayed as solid lines while the standard deviation for 50 epochs is displayed as
the area around the lines.

Table 6.1 The confusion matrix of topology 3-2-32 and the respective FNR, FPR and IU for
each class. The classes are background (Bg), road (Rd), vehicle (Veh), sky, vulnerable road
users (VRU) and infrastructure (Inf). Each cell shows the percentage (from all pixels in the
dataset) of actual class (row) predicted as class (column)

�����Act
Pred

Bg Rd Veh Sky VRU Inf
Bg 24.9349a 1.9409 1.1226 2.1282 0.3359b 5.8754
Rd 1.5685 29.4059a 1.0226 0.0034 0.1269 0.3226
Veh 0.1042 0.0829 3.6523a 0.0051 0.1156 0.7749
Sky 1.7298 0.0080 0.1744 7.1476a 0.0083 0.9632
VRU 0.0058 0.0032 0.0740b 0.0001 0.0733a 0.0777b

Inf 1.6244 0.0459 1.0077 0.3351 0.3538b 12.8450a

FNR 31.38 9.38c 22.87d 28.75 68.68b 20.77
FPR 16.79 6.61c 48.22d 25.70 92.77b 38.42
IU 60.27 85.16c 44.89d 57.17 6.24b 53.02

(pixels not classified as the desired class, FN) and false positives (pixels falsely
classified as the desired class, FP). Therefore, the sum over one row of the
table gives the percentage of the respective class in the whole training set.

The quality measures of binary classification problems can therefore be
applied for each class individually in a “one versus all” fashion. Classic
measures contain the False Negative Rate (FNR), the False Positive Rate
(FPR) and the Intersection over Union (IU). Those are defined as follows:

6.4 CNN for Scene Labeling 119

FNR =
FN

N
, FPR =

FP

N
, IU =

TP

TP ∪ FP ∪ FN

N denotes the number of all pixels evaluated. FNR and FPR are 0, if the
classification is correct and get bigger, if more pixels are classified incorrectly.
The IU has a value of 1 in case of a perfect classification and the value gets
smaller, if more pixels are classified incorrectly.

Table 6.1 shows the percentage of pixels classified as one of the 6 classes.
The last 3 rows display the class-wise FNR, FPR and IU. The confusion matrix
shows several interesting features:

a. The diagonal entries show the true positives, the correctly classified
pixels. Since the total amount of pixels in the evaluation dataset for each
class varies, the maximum possible number for each entry varies as well.

b. For the class vulnerable road users (VRU) the classifier performs badly.
There are more pixels classified as vehicles (Veh) or infrastructure (Inf)
than VRUs, resulting in a bad FNR. Even worse is the FPR, since the
amount of background (Bg) or infrastructure (Inf) pixels classified as
VRU is far greater than the amount of correctly classified pixels. This
results in a bad IU.

c. The best performing class is the class road (Rd). It has comparatively
few false positives and negatives, which results in a good FNR, FPR and
IU.

d. The class vehicle (Veh) shows an arbitrary performance. Though the FNR
is quite good and better than the class background (Bg), its FPR is second
to last. So the IU is greatly affected.

After analyzing each class by itself the question arises of how good this clas-
sifier is compared to classifiers, which contain other well and bad performing
classes. A common measure to describe the overall performance of a classifier
is the accuracy (ACC). It is the ratio of correctly classified pixels to all pixels.
Let N be the amount of classes and Ci,j be the amount of pixels from class i
classified as class j. In a multiclass setup, the accuracy can then be defined as:

ACC =
∑N

k=1 Ck,k∑N
i,j=1 Ci,j

This measure captures in a straight forward way the correctness of a classifier.
The value is in the range [0, 1], where a perfect classifier reaches 1. If
one or more classes are under-represented in the evaluation dataset, the

120 Deep Learning for Advanced Driver Assistance Systems

expressiveness of this measure suffers, since it does not normalize the amount
of samples per class. Other ways to increase the sensitivity to underperforming
classes is to average the FNR, FPR or IU over the classes. The Matthews
Correlation Coefficient (MCC) was designed for binary classifications and
computes a correlation between the actual and predicted classifications. It
was extended to incorporate more than two classes and is defined by [35] as
follows:

MCC =

∑N
k,l,m=1 Ck,kCm,l − Cl,kCk,m√√√√ ∑N

k=1

[(∑N
l=1 Cl,k

)(∑N
f,g=1
f �=k

Cg,f

)]∑N
k=1

[(∑N
l=1 Ck,l

)(∑N
f,g=1
f �=k

Cf,g

)]

The Matthews Correlation Coefficient is in the range [−1, 1]. An MCC of 1
is a perfect classifier, while −1 is the total contradiction. An MCC of 0 is a
random classifier. Table 6.2 shows the ACC, mean IU, MCC and mean FNR
for the classifiers trained in Figure 6.6. It can be seen that topology 3-2-32
outperforms the topologies in all defined measures.

6.5 Hardware Platforms for Scene Labeling

Embedded hardware platforms for Advanced Driver Assistance Systems face
several challenges. They have to provide a huge amount of processing power to
keep up with the rising complexity of applications and the increasing amount
of data they have to process. However, the platforms should have low power
consumption.

At one end of the spectrum of hardware architectures, General Purpose
Processors (GPPs) usually do not fulfill all the requirements and restrictions of
embedded systems in advanced driver assistance systems. They offer a high
degree of flexibility due to the arbitrary programmability, but they cannot
usually comply with the high demand on processing power while holding the
restrictions in power consumption.

Table 6.2 Displayed are the measures Accuracy (ACC), mean Intersection over Union
(mIU), Matthews Correlation Coefficient (MCC) and mean False Negative Rate (mFNR) for
3 topologies

Topology ACC mIU MCC mFNR
2-2-16 0.60 0.35 0.50 0.44
3-2-16 0.69 0.42 0.60 0.37
3-2-32 0.78 0.51 0.71 0.30

6.5 Hardware Platforms for Scene Labeling 121

At the other end of the spectrum, Application Specific Integrated Circuits
(ASICs) provide a high degree of processing power and excellent power
efficiency. However, they are not flexible as they are fixed after manufacturing
and cannot be programmed.

There is a wide range of hardware platforms in between these two
extremes, which provide a trade-off between the different characteristics. For
example, Graphical Processing Units (GPUs) have been used to accelerate the
execution of complex algorithms. They provide a certain degree of flexibility,
as they are programmable and they achieve high processing power due to a
high degree of parallelism. However, the power consumption of GPUs is fairly
high and they are therefore not suitable for use in personal cars.

Adapting processor architectures to a given application is a promising
approach for designing hardware platforms. Application-Specific Instruction-
Set Processors (ASIPs) are based on programmable processor architectures.
These are adapted to a specific application or a class of similar applications,
e.g., by extending the instruction set, by adding dedicated hardware acceler-
ators for frequently used operations, or by changing architectural parameters
in order to bypass bottlenecks.

Scene labeling has been implemented on several platforms including
CPUs, GPUs, FPGAs, and ASICs. This section gives an overview of recent
implementations of convolutional neural networks on different types of
computing platforms. At first, the computational complexity of convolutional
neural networks is discussed, by deriving a measure of the total number of
operations needed in order to compute the forward propagation of one frame
through the network. This also serves as a basis for the comparison of different
implementations, which is presented later.

6.5.1 Theoretical Performance Requirements

This section describes the computational complexity of convolutional neural
networks in terms of operations needed in the forward propagation of a frame.
This number of operations clearly depends on the topology of the network.

The most computational intensive task is the convolution, especially, as
many convolution layers contain a huge number of filters. For an input image
of size w × h and a convolution kernel of size n × n, the kernel is applied
(w−(n−1))(h−(n−1)) times. Each time, n2 multiplications are performed
and the results accumulated. Counting the multiply and accumulate operations
as two, this leads to a total count of

122 Deep Learning for Advanced Driver Assistance Systems

Nconv(w, h, n) = 2(w − (n − 1))(h − (n − 1))n2

operations for a single convolution.
The activation function is applied to each output pixel of the input layer.

Therefore, the total number of operations for an input image of size w × h is
given as

Nact(w, h, cact) = whcact,

where cact describes the cost of applying the activation function to one pixel.
In case of the ReLU (Rectified Linear Unit), the operation determines the
maximum of the input value and 0. Therefore, cReLU = 1.

For the pooling layer, the number of operations depends not only on the
size w×h of the input frame, but also on the kernel size n×n and the stride s.
In some cases, the stride equals the kernel size, but in overlapped pooling, a
stride of 1 might be used. In general, the number of operations performed in
a pooling layer can be described as

Npool(w, h, n, s) = cpool
wh + (s − n)((s − n) + w + h)

s2 ,

where cpool is the number of operations per pooling window. For a max-
pooling, the number of operations is cmax = n2 − 1, for an average-pooling,
the number of operations is cavg = n2 + 1.

For the exemplary convolutional neural network described in
subsection 6.4.1, which is named 2-2-16 in Table 6.2, the following remarks
give the numbers of operations for the single layers. The image preprocessing,
i.e., the construction of the image pyramid and the normalization, is not
counted in this section.

In this exemplary case, the input image has 1024 × 512 pixels. In the
preprocessing step, an image pyramid is generated by an iterative process. In
each iteration, the image dimensions are halved by subsampling. Afterwards,
the three scaled images from the pyramid are padded by replicating the border
pixels in order to maintain the correct output size after the convolutions. The
resulting image sizes are listed in Table 6.3.

The first convolution layer performs 16 convolutions with a 7 × 7 kernel
and generates 16 output images. The convolution is only performed for pixels
where the convolution kernel fits into the input image, so that the resulting
image is reduced by 6 pixels in width and height. The convolution layer is
followed by an activation layer, which applies the activation function to each

6.5 Hardware Platforms for Scene Labeling 123

Table 6.3 Input image sizes for three different scales in the exemplary convolutional neural
network

Scale Pyramid Output Padded
S 512 × 256 534 × 278
M 256 × 128 278 × 150
L 128 × 64 150 × 86

of the 16 output images of the convolutions. The following max-pooling layer
uses a 2×2 patch and a stride of 1 (overlapped pooling). It does not change the
total number of pixels but separates one image into four sub images of quarter
size. The fragmentation of the images does not contribute to the number of
operations since it can be hidden in the other layers. The second convolution
layer performs 16 convolutions of size 7 × 7 on each of the 16 fragmented
images and then accumulates them to 16 fragmented output images. The
following activation function and pooling layers work the same as after the
first convolution layer.

This flow of images through two convolution layers with activation
functions and two pooling layers is performed independently for the three
scales of the input image. The resulting images are scaled to the same size
before they are fed into the classification layer.

The classification layer at the end performs one convolution of size 1 × 1
per output class, of which there are six in the exemplary convolutional neural
network.

With these image and filter sizes, the computational complexity of the
convolutional neural network can be estimated using the equations above.
Table 6.4 gives the operation counts for the three scales by layer type.

The total number of operations performed for one input image is
4.796.792.784. As expected, the convolution layers contribute the biggest
share in the number of operations, with a proportion of 99.2 percent. In order
to reach a processing rate of 30 frames per second, 144 billion operations have
to be performed per second.

Table 6.4 Number of operations for the exemplary convolutional neural network
Scale Convolution Activation Pooling Classif. Operations
S 3.590.995.968 4.444.416 13.220.592 12.582.912 3.621.243.888
M 922.435.584 1.175.808 3.470.064 3.145.728 930.227.184
L 243.253.248 327.936 954.096 786.432 245.321.712
Ops. 4.756.684.800 5.948.160 17.644.752 16.515.072 4.796.792.784

124 Deep Learning for Advanced Driver Assistance Systems

Table 6.5 lists implementations of convolutional neural networks on differ-
ent platforms and gives the performance in terms of performed operations per
second. When available, two numbers are given for each implementation. The
peak performance gives the theoretical maximum number of operations per
second that the platform can perform. The real performance gives the number
of operations per second for CNNs of different topologies on the platform. Not
all implementations listed in the table are used for scene labeling, but perform
other image based detection and classification tasks with convolutional neural
networks. Therefore, the networks that are used in the applications may differ
in size. This is mentioned, because some implementations do not scale up
to bigger networks easily. The subsequent sections give more details to the
entries in the table.

Table 6.5 Comparison of different implementations of convolutional neural networks on
different platforms

Perf. [GOPs]

Author Year Device Peak Real
CPU Implementations

Farabet et al. [39] 2011 Intel Core 2 Duo 10 1.1
Dundar et al. [40] 2013 Intel Core i7 4-core 200 90
Jin et al. [41] 2014 Intel Core i5 45 30
Zhang et al. [42] 2015 Intel Xeon – 12.87

GPU Implementations
Farabet et al. [39] 2011 nVidia GTX 480 1350 294
Dundar et al. [40] 2013 nVidia GTX 780 3977 620
Jin et al. [41] 2014 nVidia GTX 690 5622 530
Cavigelli et al. [43] 2015 nVidia GTX 780 3977 1781

Mobile GPU Implementations
Farabet et al. [39] 2011 nVidia GT335m 182 54
Dundar et al. [40] 2013 nVidia GTX650m 182 54
Cavigelli et al. [43] 2015 nVidia Tegra K1 326 76

FPGA Implementations
Farabet et al. [39] 2011 Virtex 6 VLX240T 160 147
Dundar et al. [40] 2013 Zync ZC706 – 36
Gokhale et al. [44] 2014 Zync ZC706 – 227
Zhang et al. [42] 2015 Virtex 7 485t – 61.62

ASIC Implementations
Pham et al. [45] 2012 neuFlow in IBM 45 nm 320 294
Chen et al. [46] 2015 Accelerator in 65 nm – 452
Cavigelli et al. [47] 2015 Accelerator in 65 nm 274 203

6.5 Hardware Platforms for Scene Labeling 125

6.5.2 CPU-based Platforms

As discussed before, running convolutional neural networks for scene labeling
or other image processing tasks incorporates a huge amount of computation.
For the use in ADAS, CPUs cannot provide the necessary processing power
while also complying to the power budget restrictions. Active work is per-
formed in order to speed up the implementations (e.g., [36]).Also, algorithmic
research is conducted in order to speed up the convolutions, e.g., [37, 38].

A reference implementation of the exemplary CNN from subsection 6.4.1
was written using C++. It is worth mentioning that the focus in this implemen-
tation was not speed or efficiency. Instead, it was intended as a reference for the
assembler implementation described later. The implementations of the image
processing operations and the different layers of the convolutional neural
network make use of templates. This provides the flexibility to use different
data types for the pixel values and coefficients. The templates enabled the use
of fixed-point data types in order to analyze the compromise of data width and
accuracy.

On an Intel Core i5-2400 with 3.1 GHz, the computations for one input
image of size 1024 × 512 with double precision values and coefficients
require about 11 seconds, which corresponds to about 436 MOPS. This
implementation does not use multiple cores for computation.

6.5.3 GPU-based Platforms

Modern GPUs provide a huge amount of computing power that can be used
for general purpose computing (GPGPU). The use of GPUs is most beneficial,
if the application provides a high degree of parallelism and regularity. CNNs
fall into this category. Therefore, most deep learning frameworks mentioned
in the previous section accelerate evaluation and training of networks with
GPUs using CUDA, and there are also frameworks specifically developed for
GPUs, e.g., cuda-convnet2 [29] and Marvin [48].

A downside of using the powerful GPUs is the amount of power they
consume, which makes the use of GPUs in mobile devices infeasible. Never-
theless, GPUs can be used for training the networks, as the training is
performed offline. Recently, mobile or embedded GPUs have emerged, aiming
to provide low-power high-performance computing platforms.

6.5.4 FPGA-based Platforms

A FPGA, a configurable hardware platform, provides a compromise between
the flexibility of a GPU and the efficiency of an ASIC. The high degree of

126 Deep Learning for Advanced Driver Assistance Systems

parallelism that is possible in a FPGA, allows for high performance signal
processing. As double precision arithmetic is costly for a hardware-based
implementation, the C++ implementation of the algorithm was used to analyze
the quality of the classification depending on the data width of pixel values
and coefficients. For 32-bit data with 22 fractional bits, the computations are
exact and no errors appear. If 16-bit data with 11 fractional bits are used, about
1.4 percent of the pixels are classified incorrectly, which was acceptable in
this scenario.

The use of a soft core processor that is mapped to the FPGA also provides
software programmability of the design. In order to raise the computational
performance, the soft core processor can be extended with dedicated hardware
modules (application-specific instruction-set processor, ASIP). For example,
the instruction-set can be extended by new functional units for complex
operations which are placed in the processor’s pipeline and perform as quick
as the default operations. Additionally, more complex operations taking more
execution cycles can be added as external accelerators tightly coupled with
the processor’s data path.

In the course of the DESERVE project, an ASIP implementation for
convolutional neural networks has been developed. It is based on the TUKU-
TURI processor [49, 50], which was developed for image processing and
video coding implementations. It is a Very Long Instruction Word (VLIW)
processor with two issue slots and 64 bit wide registers that can be split
up into subwords of 8, 16, 32, or 64 bits. These subwords are processed
in parallel (microSIMD) by all default functional units. Additional features
include conditional execution in order to reduce control overhead, and a DMA
controller for memory transfer between external and internal memory.

As derived from the CPU-based reference implementation (see
subsection 6.5.2), 16 bit wide data is used for the pixel values and the network’s
coefficients. Therefore, the SIMD-feature can be used to process four values
in parallel, which gives a significant speed-up.

As seen in subsection 6.5.1, the convolution is the most computing
intensive task in the whole process. Therefore, the TUKUTURI processor was
extended with a co-processor that performs 16 convolutions of four pixels at
once.

The internal memory of the TUKUTURI is not capable of holding a whole
input image. Therefore, the images are processed in blocks. The DMA module
supports block transfers, so that a rectangular subsection of the image can be
transferred between internal and external memory. The module holds a queue
of memory transfers, which are processed independently from theTUKUTURI

References 127

processor. This allows the TUKUTURI to program several transfers and
process data blocks transferred previously, while the DMA transfers the next
blocks in the background.

The first implementation of the exemplary convolutional neural network
on the TUKUTURI processor processed one input frame in about 1.2 × 109

cycles. With a clock frequency of 100 MHz, this corresponds to about 0.08
fps. Using the convolution co-processor, the cycle count could be reduced to
about 243×106 cycles, corresponding to a frame rate of about 0.411 fps. This
is a speed-up of factor 5.1. Using the capabilities for background transfers,
the total cycle count was reduced to about 101 × 106 cycles per frame, which
is an additional speed-up of factor 2.4, leading to about 0.99 fps. According
to Table 6.4, we need about 4.8 × 109 operations per frame. Therefore, this
implementation reaches about 4.8 GOPs.

6.6 Summary

Convolutional neural networks and methods of deep learning have been used
in image processing, segmentation and classification tasks successfully. The
huge amount of processing power needed for CNNs for Scene Labeling tasks
in advanced driver assistance systems combined with the resource restrictions
in embedded systems pose a challenge for hardware architects. FPGAs have
been shown as a suitable platform for the implementation of CNNs for Scene
Labeling.

References

[1] G. Carneiro and N. Vasconcelos, “Formulating semantic image annota-
tion as a supervised learning problem,” in 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05),
2005, pp. 163–168.

[2] E. Saber, A. Tekalp, R. Eschbach and K. Knox, “Automatic Image
Annotation UsingAdaptive Color Classification,” Graphical Models and
Image Processing, 1996.

[3] J. Shotton, J. Winn, C. Rother and A. Criminisi, “TextonBoost for Image
Understanding: Multi-Class Object Recognition and Segmentation by
Jointly Modeling Texture, Layout, and Context,” International Journal
of Computer Vision, 2009.

128 Deep Learning for Advanced Driver Assistance Systems

[4] M. Pietikäinen, T. Nurmela, T. Mäenpää and M. Turtinen, “View-based
recognition of real-world textures,” Journal of Pattern Recognition,
2004.

[5] X. Ren, L. Bo and D. Fox, “RGB-(D) scene labeling: Features and
algorithms,” Computer Vision and Pattern Recognition (CVPR), 2012.

[6] P. F. Felzenszwalb and O. Veksler, “Tiered scene labeling with dynamic
programming,” Computer Vision and Pattern Recognition (CVPR),
2010.

[7] S. M. Bhandarkar and H. Zhang, “Image segmentation using evolutionary
computation,” IEEE Transactions on Evolutionary Computation, 1999.

[8] A. Ess, B. Leibe, K. Schindler and L. V. Gool, “Amobile vision system for
robust multi-person tracking,” Computer Vision and Pattern Recognition,
2008.

[9] A. Broggi, P. Cerri, P. Medici, P. P. Porta and G. Ghisio, “Real Time Road
Signs Recognition,” 2007 IEEE Intelligent Vehicles Symposium, 2007.

[10] J. C. McCall and M. M. Trivedi, “Video-based lane estimation and
tracking for driver assistance: survey, system, and evaluation,” Intelligent
Transportation Systems, 2006.

[11] B. Fulkerson, A. Vedaldi and S. Soatto, “Class segmentation and object
localization with superpixel neighborhoods,” in Computer Vision, 2009
IEEE 12th International Conference on, 2009.

[12] A. Torralba, K. P. Murphy and W. T. Freeman, “Sharing Visual Features
for Multiclass and Multiview Object Detection,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, Vol. 29, No. 5, pp. 854–
869, May 2007.

[13] M. Turtinen and M. Pietikäinen, “Contextual Analysis of Textured Scene
Images,” British Machine Vision Conference, 2006.

[14] B. Hariharan, P. Arbelaez, R. Girshick and J. Malik, “Simultaneous
Detection and Segmentation,” Computer Vision – ECCV, 2014.

[15] X. He, R. S. Zemel and M. A. Carreira-Perpinan, “Multiscale conditional
random fields for image labeling,” in Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, 2004.

[16] X. Liu, O. Veksler and J. Samarabandu, “Order-Preserving Moves for
Graph-Cut-Based Optimization,” Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, Vol. 32, No. 7, pp. 1182–1196, July
2010.

References 129

[17] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, Vol. 5,
No. 4, pp. 115–133, 1943.

[18] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, Vol. 65,
No. 6, 1958.

[19] C. von der Malsburg, “Self-organization of orientation sensitive cells in
the striate cortex,” Kybernetik, Vol. 14, No. 2, pp. 85–100, 1973.

[20] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, Vol. 79, No. 8, pp. 2554–2558, 1982.

[21] X. Glorot, A. Bordes and Y. Bengio, “Deep sparse rectifier neural
networks,” Proceedings of the 14th International Conference onArtificial
Intelligence and Statistics, 2011.

[22] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Lerning representa-
tions by back-propagating errors,” in Nature, Vol. 323, Nature Publishing
Group, 1986, pp. 533–536.

[23] K. Fukushima and S. Miyake, “Neocognitron: A new algorithm for
pattern recognition tolerant of deformations and shifts in position,”
Pattern Recognition, Vol. 15, No. 6, pp. 455–469, 1982.

[24] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, Vol. 86,
No. 11, pp. 2278–2324, Nov 1998.

[25] A. Giusti, D. Ciresan, J. Masci, L. Gambardella and J. Schmidhuber, “Fast
image scanning with deep max-pooling convolutional neural networks,”
in Image Processing (ICIP), 2013 20th IEEE International Conference
on, 2013.

[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” in Proceedings of the 22nd ACM International
Conference on Multimedia, New York, NY, USA, 2014.

[27] R. Collobert, K. Kavukcuoglu and C. Farabet, “Torch7: A Matlab-like
Environment for Machine Learning,” in BigLearn, NIPS Workshop, 2011.

[28] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley and Y. Bengio, “Theano: A
CPU and GPU Math Compiler in Python,” in 9th Pytthon in Science
Conference (SCIPY 2010), Proceedings of the, 2010.

130 Deep Learning for Advanced Driver Assistance Systems

[29] A. Krizhevsky, “cuda-convnet2,” 2014. [Online]. Available: https://code.
google.com/archive/p/cuda-convnet2/. [Accessed März 2016].

[30] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. Burges, L. Bottou and
K. Weinberger, Eds., Curran Associates, Inc., 2012, pp. 1097–1105.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, “Going Deeper with Convolutions,”
in CVPR 2015, 2015.

[32] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” CoRR, vol. abs/1409.1556, 2014.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy,A. Khosla, M. Bernstein,A. Berg and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of
Computer Vision, Vol. 115, No. 3, pp. 211–252, 2015.

[34] C. Farabet, C. Couprie, L. Najman and Y. LeCun, “Learning Hierarchical
Features for Scene Labeling,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 35, No. 8, pp. 1915–1929, 2013.

[35] G. Jurman, S. Riccadonna and C. Furlanello, “A Comparison of MCC
and CEN Error Measures in Multi-Class Prediction,” PLoS ONE, Vol. 7,
No. 8, p. e41882, 08 2012.

[36] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A.
Bergeron, N. Bouchard, D. Warde-Farley and Y. Bengio, “Theano: new
features and speed improvements,” CoRR, vol. abs/1211.5590, 2012.

[37] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets and V. S. Lempit-
sky, “Speeding-up Convolutional Neural Networks Using Fine-tuned
CP-Decomposition,” CoRR, vol. abs/1412.6553, 2014.

[38] J. Cong and B. Xiao, “Minimizing Computation in Convolutional Neural
Networks,” in Artificial Neural Networks and Machine Learning –
ICANN 2014: 24th International Conference on Artificial Neural Net-
works, Hamburg, Germany, September 15-19, 2014. Proceedings, S.
Wermter, C. Weber, W. Duch, T. Honkela, P. Koprinkova-Hristova, S.
Magg, G. Palm and A. E. P. Villa, Eds., Springer International Publishing,
2014, pp. 281–290.

[39] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello and
Y. LeCun, “NeuFlow: A runtime reconfigurable dataflow processor
for vision,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on, 2011.

References 131

[40] A. Dundar, J. Jin, V. Gokhale, B. Krishnamurthy, A. Canziani,
B. Martini and E. Culurciello, “Accelerating deep neural networks
on mobile processor with embedded programmable logic,” in Neural
information processing systems conference (NIPS), 2013.

[41] J. Jin, V. Gokhale, A. Dundar, B. Krishnamurthy, B. Martini and E.
Culurciello, “An efficient implementation of deep convolutional neural
networks on a mobile coprocessor,” in Circuits and Systems (MWSCAS),
2014 IEEE 57th International Midwest Symposium on, 2014.

[42] C. Zhang, P. Li, G. Sun,Y. Guan, B. Xiao and J. Cong, “Optimizing FPGA-
based Accelerator Design for Deep Convolutional Neural Networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, New York, NY, USA, 2015.

[43] L. Cavigelli, M. Magno and L. Benini, “Accelerating Real-time Embed-
ded Scene Labeling with Convolutional Networks,” in Proceedings of
the 52nd Annual Design Automation Conference, New York, NY, USA,
2015.

[44] V. Gokhale, J. Jin, A. Dundar, B. Martini and E. Culurciello, “A 240
G-ops/s Mobile Coprocessor for Deep Neural Networks,” in Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE
Conference on, 2014.

[45] P.-H. Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun and E.
Culurciello, “NeuFlow: Dataflow vision processing system-on-a-chip,”
in Circuits and Systems (MWSCAS), 2012 IEEE 55th International
Midwest Symposium on, 2012.

[46] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen and O. Temam, “A
High-Throughput Neural Network Accelerator,” Micro, IEEE, Vol. 35,
No. 3, pp. 24–32, May 2015.

[47] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim and L. Benini,
“Origami: A Convolutional Network Accelerator,” in Proceedings of the
25th Edition on Great Lakes Symposium on VLSI, New York, NY, USA,
2015.

[48] “Marvin: A minimalist GPU-only N-dimensional ConvNet framework,”
[Online]. Available: http://marvin.is. [Accessed 2015].

[49] G. Payá-Vayá, R. Burg and H. Blume, “Dynamic Data-Path Self-
Reconfiguration of a VLIW-SIMD Soft-Processor Architecture,” Work-
shop on Self-Awareness in Reconfigurable Computing Systems (SRCS)
in conjunction with the 2012 International Conference on Field Pro-
grammable Logic and Applications (FPL 2012), 2012.

132 Deep Learning for Advanced Driver Assistance Systems

[50] S. Nolting, G. Payá-Vayá and H. Blume, “Optimizing VLIW-SIMD
Processor Architectures for FPGA Implementation,” Proceedings of the
ICT.OPEN 2011 Conference (Veldhoven, Netherlands), 2011.

[51] A. Ess, T. Mueller, H. Grabner and L. v. Gool, “Segmentation-based urban
traffic scene understanding,” in Proceedings of the British Machine Vision
Conference, 2009.

[52] Y. LeCun, K. Kavukcuoglu and C. Farabet, “Convolutional networks and
applications in vision,” in Circuits and Systems (ISCAS), Proceedings of
2010 IEEE International Symposium on, 2010.

7
Real-Time Data Preprocessing

for High-Resolution MIMO Radar Sensors

Frank Meinl1, Eugen Schubert1, Martin Kunert1

and Holger Blume2

1Advanced Engineering Sensor Systems, Robert Bosch GmbH,
Leonberg, Germany
2Institute of Microelectronic Systems, Leibniz Universität Hannover,
Hannover, Germany

7.1 Introduction

The progress in resolution of automotive radar sensors involves a considerable
increase in data-rate and computational throughput. Dedicated processing
architectures have to be investigated in order to manage the tremendous
amount of data. Even for early prototype development platforms, the per-
formance of existing PC-based frameworks and tools is no longer sufficient
to cope with the data processing of many parallel radar receiver channels at
very high sampling rates.

This chapter presents a FPGA-based signal processing architecture capable
of handling 16 parallel MIMO radar receiving channels with a sampling
frequency of 250 MHz each. Raw data is transferred from the AD-Converters
to the FPGAwhere subsequent processing steps are performed, involving FIR-
filtering and decimation, two-dimensional FFT transform, local noise level
estimation and subsequent target detection. An external DRAM is used for
storing multiple radar measurements which are finally evaluated altogether
(so-called chirp-sequence modulation).

Data post-processing is outsourced onto a PC running with ADTF, an
automotive framework for graph-based real-time data processing. The combi-
nation of a fast, FPGA-based preprocessing unit with a more flexible, PC-based
development platform maximizes processing performance and minimizes

133

134 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

development time. The less mature angular MIMO processing algorithms can
thus be evaluated with the help of C-based algorithms running in ADTF, while
the simple, but calculation intensive FFT processing is implemented entirely
as a hardware accelerator in a Virtex-7 FPGA device from Xilinx.

7.2 Signal Processing for Automotive Radar Sensors

After AD-conversion, the raw radar signals enter the processing unit, consecu-
tively passing through all necessary signal processing steps. Different levels
of data abstraction and representation can be identified, which range from low
level time signals up to complex environmental models.

In this chapter, only the extraction of discrete scattering centers will be
considered. The result is a list of reflections, each having multiple features,
like for instance Cartesian coordinates, radar-cross-section (RCS), relative
velocity or signal-to-noise ratio. Further processing of these reflections would
incorporate clustering, classification and environment modeling.

An intermediate state is the extraction of relevant targets from the two-
dimensional frequency spectrum (cf. Subsection 7.2.2). At this point, the
range and velocity of the targets have already been determined, while
the angular information is not evaluated yet. Nevertheless, the data rates
are already reduced by a significant amount, so that at this stage the data
transfer interface between FPGA and PC-based signal processing can be
established.

7.2.1 FMCW Radar System Architecture

The usage of frequency-modulated continuous-wave (FMCW) radar sensors
can be advantageous in short range applications, especially due to their high
range resolution capability and much lower peak power requirements. In
contrast to a pulsed radar system, the transmitter and receiver operate at the
same time, which imposes some constraints on the transmitted signals. In order
to measure the time-of-flight, i.e. the range towards an object, some kind of
time-varying information needs to be added to the transmitted waveforms.
The signal has to be modulated in an unambiguous, non-repetitive fashion. A
constant sine wave, for instance, can’t be used for range estimation, due to its
ambiguity after the phase has increased by one cycle or 2π, respectively.

One widely used modulation scheme consists of linear modulated fre-
quency chirps (cf. Figure 7.1). Two important parameters are the used
bandwidth F and the modulation time T which determine the slope F

T of

7.2 Signal Processing for Automotive Radar Sensors 135

Figure 7.1 FMCW ramp waveform shown as frequency over time f(t). The solid line
represents the transmitted signal (TX) while the dashed line is the received signal (RX).

the frequency ramp. Besides, other kinds of modulation schemes exist, e.g.
frequency shift keying, various phase modulation or pseudo-noise coding
principles.

In the case of a linear frequency modulation, the time-of-flight Δt can be
directly translated into a frequency difference (so called beat frequency fb).
With the help of a mixer device in the receiver, this frequency difference can
be measured efficiently and estimated by subsequent signal processing blocks.
Finally, the target range r can be obtained from the estimated beat frequency
value. However, as moving targets engender an additional frequency shift fd

(Doppler frequency), the measured frequency will consist of a superposition
of a range and a velocity dependent component.

fb = fr + fd =
2r
c

F

T
− 2vr

λ

With the help of advanced modulation waveforms, the occurrence of range-
Doppler ambiguities can be significantly reduced, while being able to estimate
both frequency components individually at the same time [1]. This can be
achieved by using multiple, aligned FMCW chirps. Furthermore, these ramp
signals should have a very steep slope, so that the range dependent frequency
part fr dominates in the beat frequency fb. For a sufficient small target
velocity, the Doppler frequency fd is likewise small enough so that the range
estimation can be carried out directly from fb by simply neglecting the minor
fd contribution. However, the Doppler information is not completely lost and
can be regained from the inherent phase measurement which is present in
the consecutive frequency ramps. For this purpose, it is necessary that the

136 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

ramp sequence is strictly aligned and that the data sampling occurs always at
the same time instant w.r.t. the chirp modulation. The underlying processing
technique is shown in Figure 7.2 and relies on a two-dimensional spectrum
analysis. The big advantage is the unambiguous determination of both the
range and velocity frequency component of each target.

For the angle estimation, two different measurement principles can be
used. One possibility is a steerable antenna, which has a high directivity.
Only targets which reside inside the antenna beam will contribute to the
received signal in a significant manner. The detection space has to be scanned
individually, i.e. each possible direction of arrival (DOA) will be measured
separately. An alternative to a mechanical steered antenna is the use of an
antenna array, where each antenna element is fed by a time delayed version
of the transmit signal. The phase shift of the antenna feeds can be changed
electronically. Depending on the phase relationships of the antenna elements,
the directivity can be swiveled, which is also referred to as electronic beam
steering or phased array.

The second class of angle estimation relies on a phase measurement of the
received signals. Within a static antenna array, the measured phase differences
will depend on the DOA of the target reflections. This property is exploited
by many different algorithms in the field of array processing [2]. A major

Figure 7.2 Chirp-sequence modulation.

7.2 Signal Processing for Automotive Radar Sensors 137

advantage of a fixed antenna array is the simultaneous measurement over a
wide opening angle. The region of interest does not have to be scanned and data
can be collected in a single, instantaneous snapshot. In general, the achievable
angular resolution and separability depends on the number of channels as well
as on the aperture size of the array.

In the case of a receiving array, each channel will require a dedicated
frequency mixer, amplifier and AD-converter, which increases the total cost
of the system. Hence, the usage of advanced algorithms can be considered in
order to increase resolution without additional receiving channels [3]. These
algorithms are often said to achieve a superresolution because they perform
better than a conventional Bartlett beamscan algorithm (cf. [2], pp. 1142).
Another possibility is the usage of multiple transmitting channels (multiple
input – multiple output – MIMO). A MIMO system has a better efficiency
because the number of virtual channels is larger than the real number of
channels, thus resulting in lower hardware effort.

In Figure 7.3, a linear MIMO antenna array is shown with two transmitter
antennas, which are depicted as circles on the left. The physical receiving
array (blue) is extended by several virtual antenna positions. The underlying
signal processing remains the same as in the single transmitter case, however
the full virtual array can be used resulting in an increased accuracy and
object separation capability. In order to separate the signals originating from
different transmitting antennas at the receiver side, some kind of orthogonality
has to be introduced. A straight forward approach is to use a time-division
multiplexing (TDM) approach, i.e. only one transmitter operates at the same
time. Other possible techniques comprise frequency-division multiplexing
(FDM) or code-division multiple access (CDMA).

Figure 7.3 Possible MIMO antenna array design: The physical receiver array (blue) is
extended by several virtual antennas (red squares) due to the second transmitter TX 2.

138 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

7.2.2 Two-Dimensional Spectrum Analysis for Range
and Velocity Estimation

Multi-target scenarios are usually encountered in automotive radar applica-
tions. Especially static targets are often present in the field of view arising
from roadside structures, e.g. guardrails and reflector posts. Furthermore,
with increased resolution, multiple scattering centers are visible from single
objects, e.g. the shape of car bodies is seen as a large cloud consisting of many
reflections [4].

In order to resolve and separate proximate targets, a good range resolution
and thus frequency resolution is required. One widely used technique provid-
ing a fast and robust frequency estimation is the fast Fourier transform (FFT).
For a further increase in range resolution, advanced frequency estimation
algorithms like autoregressive (AR) models or multiple signal classification
(MUSIC) can be employed [5, 6]. Beside the higher computational require-
ments, they suffer from the fact that the number of detections needs to be
known prior to the estimation. For this reason, the presented system relies on
the more convenient FFT-based spectrum analysis.

The Doppler frequency estimation is carried out by a second FFT. Instead
of the raw time signals, the frequency bins of the first FFT are used as input
signal. In other words, the second FFT measures the ramp-to-ramp phase
offset for each target. This offset depends solely on the Doppler shift of the
target, because the radar system ensures a coherent sampling of the transmitted
frequency chirps. Only if the target is moving relatively to the sensor, the
measured phase value will vary between the consecutive chirp ramps.

As depicted in Figure 7.2, targets with different ranges and different
velocities are separated after this step. In contrast to many other FMCW
modulation forms, a matching step to find corresponding ranges and velocities
is no longer required, because the values are directly obtained from the two-
dimensional indices. Furthermore, the computational effort stays constant and
is thus independent from the number of prevailing targets. This property plays
a key role in scenarios with many scattering points as often encountered with
high resolution automotive radar sensors.

Another benefit of the two-dimensional spectral processing is the higher
sensitivity. Particularly small targets with a low radar cross-section (RCS) can
be masked by the noise floor of the first FFT. These targets become visible
only by the help of the additional processing gain of the second FFT. Thus,
each output bin of the first FFT shall be taken into account and the full 2D
matrix should be evaluated before any target detection takes place.

7.2 Signal Processing for Automotive Radar Sensors 139

7.2.3 Thresholding and Target Detection

Acrucial point in the signal processing chain is the separation of different target
reflections in the two-dimensional power spectrum. With the help of this step,
data of relevant objects will be isolated from the random noise components.
This leads to a significant reduction of data rate and thus lowers the com-
putational performance requirements for the downstream signal processing
steps.

The target detection is carried out with the help of an adaptive threshold,
reducing the effects of local noise and clutter components. With the means
of a constant false alarm rate (CFAR) processing, the probability of false
alarm remains constant, irrespective of varying operational and environmental
conditions.

Different types of CFAR processors can be used for noise level estimation.
Two variants are presented in this section, the cell-averaging (CA-CFAR) and
the ordered-statistic (OS-CFAR), two of the most extensively used variants.

Cell-Averaging CFAR (CA-CFAR)
The basic task of a CFAR detector is to provide an adaptive threshold, which
is then used for the subsequent detection step, i.e. the decision if a specific
cell contains a present target or just irrelevant noise components. In contrast
to a fixed threshold, an estimate of the local background noise level is used as
threshold, which has to be obtained automatically and separately for each cell
under test (CUT). Many different methods exist to provide such an estimate,
each leading to different classes and variants of CFAR detectors.

A simple yet powerful approach is the mean value of a number of window
cells in proximity to the CUT (see Figure 7.4). This variant is known as cell

Figure 7.4 CA-CFAR sliding window implementation.

140 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

averaging CFAR, or CA-CFAR. The assumption made in this case is that all
window cells contain only noise components and thus the mean value is a
good estimate of the noise variance. In the case of white Gaussian noise, the
value is corresponding to the maximum likelihood estimator. However, for
many radar systems the assumption of normal distributed noise turns out to
be inaccurate [7].

When designing a CFAR detector, an important parameter is the window
size around the CUT. On the one hand, a larger window size reduces the
statistical estimation error; on the other hand, local differences in the noise
level can be blurred by a large window. A tradeoff has to be made between the
deviation from the requested false alarm rate due to the estimation error and
the local sensitivity of the adaptive threshold which results from smoothing.
Furthermore, the computational effort becomes more relevant with increasing
window sizes.

Ordered-Statistic CFAR (OS-CFAR)
In the case of white Gaussian noise, the CA-CFAR performs very well in
single target scenarios. However, in a multi-target environment, the estimated
noise level will deviate due to interfering targets inside the window cells.
Robust statistics can be used in order to suppress outliers arising from other
targets inside the window. A commonly used variant is the ordered-statistic
(OS-CFAR) which relies on a sortation of the values inside the window, similar
to a median filter.

The algorithm performs the following steps for each cell under test
(CUT):

• Sort all cells inside the window by their absolute square value
• Take out the k-th value of the sorted list. This value serves as an estimate

for the local noise level
• Apply a scaling factor to the noise estimate
• Compare the scaled estimated noise value against the CUT
• Decide whether the CUT is a valid target

Especially in the field of high-resolution radar, big window sizes are required,
because large and widespread targets will easily occupy multiple window cells.
The complete sortation of the whole window is not a very efficient solution.
Only a single value of the sorted list is of interest, while all other values are
discarded. Furthermore, when evaluating neighboring CUTs, the previously
sorted list can be used as starting point.

7.2 Signal Processing for Automotive Radar Sensors 141

Several optimizations of the algorithm aim at these specific sortation
characteristics. For instance, a “k-th maximum search” can be performed
which finds the greatest value and removes it from the set. This step is repeated
until the k-th value has been found [8]. Another efficient realization uses a
sliding window approach which keeps a sorted list in memory [9]. Now, when
moving the window one step further, the insertion of a single value requires
at most N comparisons.

Besides, if one is only interested in the decision result, the complete
sortation of the list can be bypassed and the detection step can be per-
formed in a “rank-only” manner [10]. Therefore, the inverse threshold is
applied to the CUT and the result is compared to each cell inside the
window. The binary comparison results, i.e. 1 if the value is bigger – 0
if not, can be summed up to get a rank. Only if the rank is greater than
k, the CUT is considered as valid detection. This approach is depicted in
Figure 7.5.

In contrast to a complete sortation, this algorithm depends only on
N comparisons. The complexity is thus linear for growing window sizes. The
target decision result is exactly the same, i.e. there is no performance loss.
The only disadvantage is the lack of the k-th value, which is unknown in the
rank-only case. This value can serve as an estimate for the local noise level
and can be required by subsequent signal processing blocks. A supplementary
estimation of this value can be considered, e.g. the mean value of all cells
which have been classified as noise.

Figure 7.5 Rank-only OS-CFAR implementation.

142 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

Non-Coherent Integration (NCI)
Even though the detection takes place before the angular processing, the
data of multiple receiving channels can be used to further improve detection
performance. An integration of all channels prior to the detection step turns
out to be beneficial, assuming that the noise components are independent and
identically distributed (i.i.d.). However, the phase relationship of the signals
between adjacent channels is not known prior to the angle estimation and can
take any value. When summing up the complex values of each channel, the
signals can interfere either constructively or destructively. In order to avoid
a cancellation of the signal power, the integration takes place in the power
spectra, which is also known as non-coherent integration (NCI).

In the following, the noise components are modeled as additive-white
Gaussian noise which means that a zero-mean normal distributed signal n[t]
is added to the received signal s[t].

It can be shown, that both the real and imaginary parts of the noise
components follow a zero-mean normal distribution after transformation into
the frequency space [11]. The variance of N[k] depends on the input variance as
well as on the length of the input signal, i.e. the length of the FFT. When taking
longer signal sequences, the signal-to-noise ratio can be improved (so-called
processing gain).

ŝ[t] = s[t] + n[t]

Ŝ[k] = S[k] + N [k]

The power spectrum can be calculated by summing up the squared values of
real and imaginary part. As a sum of two squared, i.i.d. Gaussian variables,
it results a chi-squared distribution χ2(n) with n = 2 degrees of freedom for
the squared magnitude |N [k]|2:

|N [k]|2 = NRe[k]2 + NIm[k]2

|N [k]|2 ∼ χ2(2)

When summing up multiple receiving channels, i.e. multiple i.i.d. random
variables, the result will again be chi-squared distributed but with a higher
degree of freedom.

NNCI [k] =
m∑

i=1

|Ni[k]|2 ∼ χ2(2m)

7.2 Signal Processing for Automotive Radar Sensors 143

Figure 7.6 Additive white Gaussian noise model.

In contrast to the FFT, the mean value of the noise power scales linearly
with the number of channels in the same way the signal power does. Therefore,
the signal to noise ratio is not improved. However, the variance is decreasing
which has an effect on the possibility of false alarm.An example measurement
is depicted in Figure 7.7, comparing the noise distribution of one channel and
the distribution after the integration of 32 channels. It can be observed that for
the same threshold level, a lower probability of false alarm can be achieved
due to the lower variance of the blue histogram. The other way round, for the
same probability of false alarm, a lower threshold level can be used, which
increases the detection rate.

7.2.4 Angle Estimation

In Subsection 7.2.1 the measurement principle of antenna arrays has been
introduced briefly. In general, the angle estimation is based on the measured
phase offset φn between different antenna positions (cf. Figure 7.8).

Figure 7.7 Histogram of a noise measurement showing the chi-squared distribution before
and after NCI.

144 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

Figure 7.8 Uniform linear antenna array with spacing d and resulting steering vector v(α).

Since the antenna positions are known, a conclusion may be drawn on the
direction of arrival. For this purpose, the introduction of a steering vector v(α)
can be useful. This vector contains the expected phase offsets, equivalent to
an ideal incident signal from a certain angle α:

v(α) = [ejφ1(α) ejφ2(α) ejφ3(α) . . . ejφN (α)]

In the case of a linear array with N elements, the steering vector is simply
constructed from the distance d between two antenna elements, the wavelength
λ and the incident angle α. The phase of the first element is normalized to
zero and the amplitudes are assumed to be all equal one:

v(α) = [1 ej2π·d sin α/λ ej2π·2d sin α/λ . . . ej2π·(N−1)d sin α/λ]

Similar to the spectral estimation, different classes of algorithms can be
identified. Some procedures like the Bartlett beamformer just calculate a
weighted sum of the received signal vector x. This is done for each possible
DOA and results in an angular spectrum:

P (α) = |xT v(α)|2

The magnitude P represents the correlation between the received signal and
the steering vector.Asubsequent maximum search extracts the estimated target
angle. The separation of two targets is also possible by simply extracting
the two largest peaks, however attention has to be paid to the occurrence of
sidelobes. Furthermore, the width of the mainlobe determines the separability
which is often not satisfactory.

7.3 Hardware Accelerators for MIMO Radar Systems 145

More sophisticated methods to mention are the Capon beamformer, also
known as minimum variance estimator, which achieves a better angular
separability. Another important class is known as subspace based methods,
incorporating MUSIC and ESPRIT as the most prominent examples. Finally,
maximum-likelihood estimators exist, which need to know the model order
in advance, i.e. the number of targets. However, if the targets have already
been separated by different ranges and velocities, the estimation of the model
order is feasible because only few targets will be present, in most of the cases
only one. A comprehensive overview of existing methods and algorithms is
given in [2].

7.3 Hardware Accelerators for MIMO Radar Systems

7.3.1 Basic Structure of a Streaming Hardware Accelerator

Figure 7.9 shows the overview of a hardware-accelerator for high-resolution
MIMO radar sensors. Obviously, a high degree of parallelism can be observed,
due to the pair wise independence of the receiving channels. Up to the NCI
step, each data stream is processed for its own.

The spectral analysis is carried out with the help of a FFT, whose efficient
implementation in streaming applications is well understood. A critical step in
the design process of this block is the specification of the maximum FFT
lengths, as this parameter determines essentially resource usage. Further-
more, when using fixed-point arithmetic, the word length and data scaling
behavior can have major effects on performance and efficiency. This aspect is
investigated in Subsection 7.3.2.

Regarding the two-dimensional FFT, a concept for data storage and
transfer has to be developed. The storage of a complete chirp sequence,
i.e. a set of K ramps is required in order to perform the second dimension
FFT processing. This dictates mainly the size of the memory, which grows
rapidly due to the influence of further key parameters. In general, increasing
the resolution in range, in velocity or in the angular domain, also increases
the required memory size. It turns out, that this size exceeds rapidly several

Figure 7.9 Architecture of a streaming hardware accelerator.

146 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

MBytes. Thus, the usage of large DRAMs becomes necessary since the size
of an on-chip SRAM cache memory is not sufficient anymore. An analysis for
different modulation and system parameters can be found in [12].

Regarding the throughput of the memory, the addressing scheme affects
heavily the performance in the case of a DRAM. The row opening and closing
delays, as well as the read and write transfers can be completely hidden due
to the streaming nature of the application. The problem of transforming large
two-dimensional matrices with the help of DRAMs has been investigated in
[13]. An addressing scheme suitable for the application to chirp-sequence
processing has been derived in [14].

Depending on the type of threshold estimation, the calculation can be a
simple mean value in the case of CA-CFAR, but it can also become very costly
in the case of a sorted list (OS-CFAR). Subsection 7.3.3 presents an efficient
architecture based on the rank-only OS-CFAR which avoids a complete sorting
of the values inside the window.

7.3.2 Pipelined FFT Accelerator

For streaming applications, pipelined FFT architectures provide a very high
throughput. The usage of dedicated hardware accelerators is especially useful
for real-time applications, where a high degree of capacity utilization can be
achieved. Many different implementation forms have been reported in the past
decades. One important parameter is the used butterfly architecture, which can
be based on a Radix-2, Radix-4 or Split-Radix decomposition, just to mention a
few. In practice, multiple butterflies are cascaded to achieve longer transform
lengths. Another important design decision is the use of a single-path vs.
multi-path implementation.

Astraight forward implementation of the Cooley and Tukey FFT algorithm
is shown in Figure 7.10 [15]. It is realized with Radix-2 butterflies which are
combined in a decimate-in-frequency (DIF) decomposition. This architecture
can process one sample per clock cycle and needs log N − 1 multipliers.

Figure 7.10 Radix-2 FFT implementation based on a multi-path delay commutator (MDC)
pipeline.

7.3 Hardware Accelerators for MIMO Radar Systems 147

Furthermore, several buffer memories are required which have the total size
3N/2.

When analyzing the data flow, it turns out that the butterflies and the
multipliers are only used half of the time. Furthermore, only half of the
memories store valid data at the same time. Several optimizations have been
proposed in order to increase the utilization of the multipliers and memories.
For example when using feedback networks, the efficiency in terms of memory
usage can be improved. This class of pipeline architectures is known as
single-path delay feedback (SDF) network (cf. Figure 7.11) [16].

When using Radix-4 butterflies, the number of multipliers can be reduced
as well, at the cost of more complicated butterflies requiring more dedicated
adders.

Another FFT algorithm for pipelined implementations has been proposed
by He and Torkelson [17] and is known as Radix-22 algorithm. This optimiza-
tion simplifies the traditional Radix-2 FFT decomposition by considering two
butterfly stages at once. When modifying some of the twiddle factors, all
multiplications after the first stage can be omitted or rather transformed into
a trivial multiplication by ±j. Adopting this modification to the presented
Radix-2 SDF architecture, half of the multipliers can be saved. Table 7.1
compares different implementations.

In the case of multiple parallel data streams, the utilization of the complex
adders and multipliers can be further increased to 100% by using a modified
MDC architecture with a proper scheduling of the different data streams [18].

Figure 7.11 Radix-2 FFT implementation based on a SDF pipeline.

Table 7.1 Resource usage of different pipelined FFT implementations [17]
No. of Multipliers No. of Adders Memory Size

Radix-2 MDC 2(log4 N − 1) 4 log4 N 3N/2 − 1
Radix-2 SDF 2(log4 N − 1) 4 log4 N N − 1
Radix-4 SDF log4 N − 1 8 log4 N N − 1
Radix-22 SDF log4 N − 1 4 log4 N N − 1

148 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

In the case of MIMO systems this approach outperforms the Radix-22 SDF
implementations which seem to be superior in single channel applications.

Even though not optimal in terms of butterfly utilization, a Radix-2 based
architecture provided by the Xilinx IP Core is used for the presented MIMO
radar system [19]. The principal reason is the faster implementation and
integration time. The efficiency in terms of resource usage can be improved
in future work.

Fixed-Point Noise

In digital signal processing systems, all computations are carried out with
discrete values. The majority of arithmetic units use fixed word lengths which
always have a limited accuracy. Consequently some amount of quantization
noise is added for each rounding operation. Often floating-point values are
used, because they work very well in most environments, regardless of the
input signal characteristics. However, if the dynamic range of the input signal
is known to a certain extent, fixed-point arithmetic can considerably reduce
the resource usage. Many FFT accelerators use integer operations and various
models for the engendered quantization noise have been developed.

The quantization noise due to truncation or rounding after a multiplication
is often modeled as additive white noise source with a uniform distribution.
Even though not accurate under all circumstances, this model is appropriate
if the input signal has a sufficiently large bandwidth and amplitude [20]. It
can thus be applied to a radar system, due to the wide bandwidth background
noise, which is always visible.

The quantization noise variance σ2 in the case of a uniform distribution
can be derived for a simple truncation [21]. The least significant bit (LSB)
after the truncation is denoted by q = 2−b, where b is the resulting integer
word length and k the number of truncated bits:

σ2 =
q2

12
(1 − 2−2k)

During the computation of the FFT, the variables grow with each butterfly
stage, resulting from the addition inside the butterflies. The complex multipli-
cation does not scale up the intermediate values, because they perform just a
rotation in the complex plane and the twiddle factors are all normalized. Thus,
the resulting word length of the FFT depends on the input data and grows by
1 bit with each stage. In order to maintain a certain word length, the values
can be scaled after each stage at the cost of additional quantization noise.

7.3 Hardware Accelerators for MIMO Radar Systems 149

A complete scaling of the input signal is disadvantageous and engenders an
even higher level of quantization noise [22].

Furthermore, a quantization error is introduced after the multiplication,
because the resulting word length is cut down by half and also the twiddle
factors are represented with limited accuracy. However, it turns out that the
coefficient errors are less severe than the round-off errors if the same word
length is used for both the coefficients and signals [22].

The following analysis is based on [22], and only the most severe round-off
errors are considered. The used noise model applies to a Radix-2 decimation-
in-frequency butterfly, which is used by the presented system. Furthermore,
the signals are not scaled directly after the addition, but only after the
multiplication. Therefore, only one noise source is present for each butterfly
output. For the sake of simplicity, the error variance for both outputs is
considered equal, even though only one output is the result of a multiplication.
This approximation acts as an upper bound because the real output variance
after the addition and the truncation will be slightly lower.

The variance of the quantization error σ2
e after the multiplication is derived

by decomposing the complex operation into four real multiplications, each
truncated individually. In this case, the uniform noise model is applied and
the number of truncated bits k is assumed to be sufficiently large:

σ2
e = 4

q2

12
=

q2

3

The total output variance is then calculated by adding all error variances
contributing to the respective output. When observing the butterfly graph,
a tree-like structure leads to each output, incorporating N −1 butterfly nodes.
However, if the signal is scaled after each stage, the accumulated noise
decreases just as well. In this case, the total noise variance σ2

N equals to:

σ2
N = σ2

e + 2
σ2

e

4
+ 4

σ2
e

16
+ · · · +

N

2
σ2

e

(N/2)2
=

σ2
N =

(
1 +

1
2

+
1
4

+ · · · +
1

N/2

)
σ2

e ≈ 2σ2
e

Remarkably, the total noise variance is independent of the length of the FFT.
However, when examining the signal-to-noise ratio (SNR) at the output, it
turns out that the SNR is decreasing for longer FFT lengths, because the
output is a scaled version of the FFT. Considering a random input signal,

150 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

Figure 7.12 Effects of different word lengths on the amount of quantization noise.

with all values i.i.d. and a variance σ2
s , then the variance for each output of

the FFT is scaled by 1
N2 :

σ2
s,fft =

1
N2 (Nσ2

s) =
σ2

s

N

Composing the signal-to-noise ratio at the output leads to the expected result:

SNR =
σ2

s, fft

σ2
N

=
σ2

s

2σ2
eN

=
3σ2

s

2Nq2

Consequently, if the FFT length N is doubled, the word length has to
be increased by half a bit also in order to maintain a constant signal-to-
quantization-noise ratio (SQNR). To illustrate the influence of the word length,
an exemplary radar measurement, processed with a scaled fixed-point FFT is
shown in Figure 7.12.

Different word lengths have been used in order to illustrate the effect of
the introduced quantization noise. The FFT is implemented in a Radix-2 DIF
decomposition. The values are rounded and scaled after each stage. The black
curve has been processed with double precision floating-point and acts as
reference.

It can be observed that the fixed point versions lie all above the reference.
The reason is that the quantization noise power is added to the signal

7.3 Hardware Accelerators for MIMO Radar Systems 151

and the amount of quantization noise should be the lowest for the floating
point version. Furthermore, it can be observed that the noise floor increases
significantly in regions with low signal power. The difference for 1bit word
length is about 6dB, which correlates with the derived noise model in the case
of a truncation or rounding operation. In regions with more signal power, for
instance around 5m target range, the quantization noise effect is less severe,
due to the higher SQNR.

For a radar system application, it should be ensured that the added
quantization noise does not deteriorate the total signal-to-noise ratio. The SNR
is a key parameter for reliable target detection. Noise components arising from
fixed-point computations should be clearly below the system noise floor in any
case. It is important to consider the processing gain when designing an optimal
word length, because the noise level drops for larger FFT lengths. Thus, the
maximum possible FFT length can be considered as worst-case scenario when
designing the word length of the FFT.

7.3.3 Rank-Only OS-CFAR Accelerator

The CFAR processing step requires the use of a local window for threshold
calculation. For a streaming application, a sliding window exploits the locality
of the data and can be used easily without excessive memory transfers. It is
implemented with the help of a shift register. Current FPGA devices offer
several different building blocks for this purpose, namely Block RAMs, lookup
tables (LUTs) and ordinary flip-flops. For the presented OS-CFAR architecture
all signal values inside the window need to be accessed at once. Hence, a data
tap is required at each position of the shift register and solely flip-flops can be
used for its realization.

As described in subsection 7.2.3, the rank-only detection step depends on
N comparisons, a binary sum and a comparison for the decision. Each register
of the sliding window is routed to a dedicated comparator, whose second input
is fed by the CUT with a threshold value applied. The comparison result is
routed to a binary adder with N inputs. Several LUTs are cascaded for this
step, which can impose an upper limit to the clock frequency. In order to
maximize performance, it is implemented in two steps, i.e. the lower and the
upper half of the window is summed up separately before the final rank is
computed.

The described architecture has been implemented on a Virtex-7 FPGA
and the engendered resource usage has been analyzed. For window sizes
up to 128, an operating frequency of 250 MHz could be achieved by this

152 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

Figure 7.13 Architecture of the rank-only OS-CFAR accelerator.

implementation. The LUT usage depending on the number of channels is
depicted in Figure 7.14.

As expected the CFAR-processing part (greenish blue color in Figure 7.14)
is practically independent from the number of channels, because the NCI step
is performed in advance. The NCI step by itself scales approximately with
log N , which is a result of the used tree structure. For a number of channels
above 32, the raw data buffer which compensates the pipeline delay consumes
more LUTs than the CFAR processing part. It grows linearly with the number
of channels and is thus the dominating part for large channel numbers. The

Figure 7.14 Resource usage against number of channels for a constant window size (128
cells).

7.4 Conclusion 153

Figure 7.15 Resource usage against window size for different number of channels.

usage of a dedicated Block RAM can be considered if the number of LUTs is
scarce.

The scaling behavior in relation to the window size turns out to be nearly
linear (cf. Figure 7.15). It is clearly dominated by the N comparators as well
as the data buffer equalizing the pipeline delay. The number of channels has a
much lower effect on LUT resource usage as the window size. For instance,
the resource usage is within the same order of magnitude when comparing one
and 32 channels. The architecture can be considered as very efficient for large
channel numbers and is thus suitable for MIMO systems. It can be concluded
that the usage of NCI before the actual CFAR processing is beneficial in two
ways. It improves detection performance and reduces resource requirements
at the same time.

7.4 Conclusion

A data processing architecture for future automotive MIMO radar systems has
been presented in this chapter. Beside the algorithmic background information,
a focus has been set on the target detection with the help of CFAR processing.
Attention has been paid to real-time requirements as well as resource usage.
The step between the target detection and the subsequent angular processing
could be identified as a good data interface between different processing units,
each optimized for different requirements on control flow complexity and data
throughput.

Furthermore, a FPGA based implementation of the raw data preprocessing
chain has been presented and investigated. As crucial points in the design
procedure, several parameters could be identified. Especially, the maximum
length of the FFTs and the expected dynamic range of the signals determine

154 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

basically the resource usage in terms of logic elements and memory size. These
parameters have a strong dependency on the used modulation waveform,
which is why the design of the signal processing architecture has to be
integrated into the overall radar system design process. With the help of
model-based design space exploration methods, the estimation of resource
requirements is feasible, even in an early development stage. The derivation
of appropriate models from the realized hardware implementation will be part
of future work.

The used design methodology which evolved from the DESERVE project
turned out to be very efficient in terms of performance and development time.
The usage of heterogeneous platforms, even in an early prototype system,
made it possible to handle the tremendous amount of data in real-time. Thanks
to the integration with established tools like ADTF and Matlab, the system is
ready to be integrated into a test vehicle with a multiplicity of sensors devices.
Finally, the early availability of such high resolution automotive radar sensors
can be an important step on the way towards automated driving.

References

[1] V. Winkler. “Range Doppler detection for automotive FMCW radars.”
IEEE 37th European Microwave Conference (EuMC), Munich,
Germany, 2007.

[2] H. L. van Trees. “Optimum Array Processing (Part IV of Detection,
Estimation, and Modulation Theory)” John Wiley & Sons, 2004.

[3] U. Nickel. “Angular superresolution with phased array radar: a review
of algorithms and operational constraints.” IEE Proceedings F: Commu-
nications, Radar and Signal Processing 134.1 (1987): 53–59.

[4] D. Kellner, M. Barjenbruch, J. Klappstein, J. Dickmann and
K. Dietmayer. “Wheel extraction based on micro doppler distribu-
tion using high-resolution radar.” IEEE MTT-S International Confer-
ence on Microwaves for Intelligent Mobility (ICMIM), Heidelberg,
Germany, 2015.

[5] M. Bouchard, D. Gingras, Y. De Villers and D. Potvin. “High resolution
spectrum estimation of FMCW radar signals.” IEEE 7th SP Workshop
on Statistical Signal and Array Processing, Québec, Canada, 1994.

[6] M.A.Abou-Khousa, D. L. Simms, S. Kharkovsky and R. Zoughi. “High-
resolution short-range wideband FMCW radar measurements based on
MUSIC algorithm.” IEEE Instrumentation and Measurement Technology
Conference (I2MTC), Singapore, 2009.

References 155

[7] J. B. Billingsley et al. “Statistical analyses of measured radar ground
clutter data.” IEEE Transactions on Aerospace and Electronic Systems
35.2 (1999): 579–593.

[8] B. Magaz and M. L. Bencheikh. “An efficient FPGA implementation of
the OS-CFAR processor.” IEEE International Radar Symposium (IRS),
Wroclaw, Poland, 2008.

[9] R. Perez-Andrade, R. Cumplido, C. Feregrino-Uribe and F. M.
Del Campo. “A versatile hardware architecture for a constant false
alarm rate processor based on a linear insertion sorter.” Digital Signal
Processing 20.6 (2010): 1733–1747.

[10] M. R. Bales, T. Benson, R. Dickerson, D. Campbell, R. Hersey and
E. Culpepper. “Real-time implementations of ordered-statistic CFAR.”
IEEE Radar Conference (RadarCon), Atlanta, USA, 2012.

[11] M. A. Richards. “The discrete-time Fourier transform and discrete
Fourier transform of windowed stationary white noise.” Georgia Institute
of Technology, Tech. Rep, 2007.

[12] F. Meinl, M. Kunert and H. Blume. “Massively parallel signal processing
challenges within a driver assistant prototype framework: first case study
results with a novel MIMO-radar.” IEEE International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), Samos, Greece, 2014.

[13] S. Langemeyer, P. Pirsch and H. Blume. “Using SDRAMs for two-
dimensional accesses of long 2n ×2m-point FFTs and transposing.” IEEE
International Conference on Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS), Samos, Greece, 2011.

[14] F. Meinl, E. Schubert, M. Kunert and H. Blume. “Realtime FPGA-based
processing unit for a high-resolution automotive MIMO radar platform.”
IEEE 12th European Radar Conference (EuRAD), Paris, France, 2015.

[15] L. R. Rabiner and B. Gold. “Theory and application of digital signal
processing.” Prentice-Hall, Inc., 1975.

[16] E. H. Wold and A. M. Despain. “Pipeline and parallel-pipeline FFT
processors forVLSI implementations.” IEEE Transactions on Computers
100.5 (1984): 414–426.

[17] S. He and M. Torkelson. “A new approach to pipeline FFT processor.”
IEEE 10th International Parallel Processing Symposium (IPPS),
Honolulu, USA, 1996.

[18] K. J. Yang, S. H. Tsai, and G. C. H. Chuang. “MDC FFT/IFFT processor
with variable length for MIMO-OFDM systems.” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 21.4 (2013): 720–731.

156 Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors

[19] Xilinx Inc. “LogiCORE IP FFT.” PG109 v9.0, October 2014.
[20] C. W. Barnes, B. N. Tran and S. H. Leung. “On the statistics of fixed-point

roundoff error.” IEEE Transactions on Acoustics, Speech and Signal
Processing 33.3 (1985): 595–606.

[21] D. Menard, D. Novo, R. Rocher, F. Catthoor and O. Sentieys. “Quan-
tization mode opportunities in fixed-point system design.” IEEE 18th
European Signal Processing Conference (EUSIPCO), Aalborg,
Denmark, 2010.

[22] C. J. Weinstein. “Quantization effects in digital filters.” Lincoln Labo-
ratory, Massachusetts Institute of Technology, Tech. Rep. No. TR-468,
1969.

8
Self-Calibration of Wide Baseline Stereo

Camera Systems for Automotive
Applications

Nico Mentzer1, Guillermo Payá Vayá1, Holger Blume1,
Nora von Egloffstein2 and Lars Krüger2

1Institute of Microelectronic Systems, Leibniz Universität Hannover,
Hannover, Germany
2Daimler AG, Vision Enhancement, Ulm, Germany

8.1 Introduction

Many car accidents involving vulnerable road users (e.g., pedestrians or
cyclists) occur on rural roads after dark, when the driver’s visibility is
restricted. Thus, the main objective of an augmented night vision is to assist
the driver, when driving on side roads (e.g., highways, country roads, or rural
roads) with poor or restricted visibility by alerting the driver to potential
obstacles ahead.

One possible augmentation of driver vision is to highlight potential
obstacles, hazards or vulnerable road users in the live video of the road ahead.
A classification of image content is mandatory for this application. As the
augmentation enables the driver to grasp the situation quickly, the distance to
the detected object has to be calculated by stereo vision to ensure accuracy
and speed of assessment.

As the range of distance resolution increases with the baseline of a
stereo system, a wide baseline stereo system is necessary to facilitate the
augmentation of objects in the desired range. Such a wide-baseline stereo
system is sometimes not practicable when rigidly coupled, therefore cameras
are mounted individually, e.g., to the windshield. Physically separated cameras
increase the camera baseline, however a moving car causes multiple vibration
sources [1] which misalign the images of the separated cameras. Therefore,

157

158 Self-Calibration of Wide Baseline Stereo Camera Systems

online camera calibration is indispensable for further image processing. This
online camera calibration covers the reconstruction of extrinsic camera param-
eters, which rely on a sparse pixel correspondence list from the two camera
images. The general overview of the algorithmic flow is depicted in Figure 8.1.
This chapter will focus on the search for sparse pixel correspondences and
extraction of camera calibration parameters.

The remaining chapter is set up as follows. Section 8.1 gives an introduc-
tion to the self-calibration of wide baseline stereo cameras. After a review of
the considered algorithms in Section 8.2, Section 8.3 details the class of image
feature detectors and extractors. Section 8.4 highlights the matching of image
features. An in-depth description of the bundle adjustment for the camera
calibration is given in Section 8.5. In Section 8.6, selected application-specific
aspects regarding the algorithmic parameterization are presented. Section 8.7
focuses on algorithmic-specific and hardware-specific implementation details
and gives an overview of existing implementations for the extraction of image
features.

8.1.1 Extraction of Image Features

Image feature extraction consists of two steps: the detection of image features
and the generation of the descriptor for those feature points, which results in
a unique signature as a representation for the detected feature points.

Figure 8.1 Algorithmic overview. Input of the processing chain is a stereo image pair, in
which sparse pixel correspondences are extracted for online camera calibration. After the
calibration, rectification is performed as a preprocessing step for disparity estimation.

8.1 Introduction 159

The image feature detection generates a list of distinctive invariant points
in images for the feature localization. Especially for camera calibration, a high
accuracy of localization is required [2] in order to ensure a correct functionality
of following algorithmic steps, e.g., the rectification of stereo image pairs. Due
to the similarity between the views of the scene, a rotation invariance or scale
invariance of the feature descriptors supports stability of the matches. This is
however, not mandatory, because characteristic points in image pairs of the
used stereo camera configuration rarely change their rotation or scale abruptly
from left to right stereo image.

In recent years, three different principles for feature detection have
proven employable. Corner or edge detectors extract characteristic corners
or edges in an image, which are defined by large gradient changes of image
intensities. So called blob detectors determine pixel positions, for which
a circular local neighborhood is approximately constant or similar for a
defined image property [3]. Furthermore, affine invariant detectors have been
adapted to be invariant to affine transformations, which are approximations
to perspective distortions in order to achieve invariance to large changes in
viewpoint [4]. The detected features of the exemplary SIFT-feature detector
are shown in Figure 8.2.

Figure 8.2 Left (top) and right (bottom) image from a stereo camera system showing detected
SIFT-image features. Detected feature points of the left/right image are displayed in red/green,
matches are displayed in blue. Scale and rotation of the SIFT-features are illustrated by the
circle properties.

160 Self-Calibration of Wide Baseline Stereo Camera Systems

The descriptor of an image feature characterizes the detected feature point.
Ideally, a feature descriptor of a world point is unique when compared to
other descriptors, but identical for the same world point in different views [5].
Two representations for descriptors have been established in recent years. So
called histogram-based or distribution-based descriptors represent the local
neighborhood of a feature point by histograms of local image properties like
pixel intensities, color, texture, edges etc. [3]. Furthermore, binary descriptors
represent a local pixel region by storing the binary result of predetermined
pixel-level intensity comparisons [6]. In contrast to distribution-based descrip-
tors, binary descriptors contain a more compact representation of the image
patch around a feature.

In general, extracted image features have to cope with various influences.
Firstly, there are disruptive effects related to the image quality, e.g., image
compression, image noise, image blur due to zoom or exposure. Secondly,
there are influences resulting from the content of the stereo image pair, e.g.,
illumination, difficult viewpoint conditions or occlusions, background clutter
and general content changes, perspective changes or changes in the view point
of planar and non-planar geometry [6, 7]. Finally, application specific factors
as scale and rotation of objects impact the algorithmic results dealing with
image features. Thus, extracted image features have be invariant to as many
disturbing influences of the named categories as possible.

The large variety of image feature detectors and descriptors clearly show
the manifold approaches to defining and describing characteristic points in
images.As S. Gauglitz mentioned before in [5], “there is no clear-cut definition
as to what makes a point interesting. Detection of such points is only an
intermediate step in any application”. There is no general answer for the
question, which detector or descriptor is performing the best. Therefore,
as J. Shi and C. Tomasi postulated in 1994, “the right features are exactly
those that make the tracker work best” [8]. Consequently, “any set of feature
points is acceptable, but the result ought to be consistent, e.g., in images
that show the same scene, the algorithm should detect the same points.”
[5]. In other words, for each application, the best performing combination of
image feature detector and extractor has to be found. Furthermore, application-
specific conditions (here: high localization accuracy with low requirements
to scale and rotation invariance) aggravate the possibilities of algorithmic
combinations.

A survey of existing image feature detectors and descriptors will be given
in Section 8.2. A more detailed presentation of an exemplary feature detector

8.1 Introduction 161

and descriptor called SIFT (Scale-Invariant Feature Transform) [9], which
shows good results in this application, will be given in Section 8.3.

8.1.2 Matching of Image Features

Matching image features results in a list of pixel correspondences between
the left and right input image of the stereo image pair. The main challenge
is on the one hand to find as many corresponding pixels as possible while
avoiding wrong pixel assignments on the other, even if there are several
similar regions in both input images. The assignment of image features to
pixel correspondences is based on feature descriptors, which are used to find
the maximum similarity between the extracted image features. Depending
on the representation of the features (histogram-based or binary descriptor),
the similarity is computed by various vector norms for the distance of
two matching candidates or the Hamming distance. Furthermore, different
matching methods have a significant impact on the resulting correspondence
lists [3].

In the case of global feature matching methods f : X̃ → Ỹ , two feature
points −→x ∈ X̃ and −→y ∈ Ỹ are assigned by local similarity, which is deter-
mined by the related descriptors

−→
dx and

−→
dy . For each descriptor in set Y , there

is a corresponding descriptor in set X with a minimal error criterion. After
the assignment of feature points, the correspondences are filtered by this error
criterion in order to avoid false correspondences, e.g., feature points which
are not detectable in both images because of occlusions in one image. Varying
matching methods differ in the error criterion for the evaluation of feature
similarity and the search algorithm during the matching step.

8.1.3 Extrinsic Online Self-Calibration

Common stereo algorithms for disparity estimation (e.g., [10]) rely on
exact knowledge about the intrinsic (e.g., focal length) and extrinsic camera
parameters (the transformation between two cameras). Calibration errors
lead to erroneous reconstruction values. The camera parameters enable the
rectification, which is the projection of the camera images to a common image
plane and they form the basis for further processing.

The intrinsic parameters may be assumed to be constant and identified
using an offline calibration procedure (e.g., [11]). As the cameras are not
rigidly coupled here, the extrinsic parameters vary due to vibrations in the
car and are assumed to change rapidly from frame to frame. Thus, a one-time

162 Self-Calibration of Wide Baseline Stereo Camera Systems

offline calibration procedure does not suffice to meet the accuracy require-
ments of stereo processing. Thus, an online calibration procedure is necessary.
While driving the use of calibration targets with known geometry is difficult.
Therefore, a self-calibration mechanism is needed.

The idea behind online self-calibration procedures is to estimate the camera
parameters based on what is perceived in both cameras. So a preprocessing
step to the calibration is a one-to-one identification of scene points visible in
both camera images, e.g., a list of sparse pixel correspondences of the stereo
camera images.

8.2 Algorithmic Overview

Many approaches have been proposed in recent years for the extraction and
matching of image features and for the feature-based camera self-calibration.
In the following section, selected aspects for each algorithmic step are
reviewed separately.

8.2.1 Survey of Image Features Extraction

The process of extracting image features is split into two algorithmic parts,
the detection of feature points and the generation of the feature descriptor. For
both steps, a large number of algorithms have been published. In this section,
typical examples of each algorithmic step are presented.

8.2.1.1 Detection of features
Which properties of distinctive image points are mandatory for a satisfactory
matching of image features depend on the finale application. There is no clear
definition as to which extraction strategy is best as it only needs to provide
sufficient algorithmic performance during retrieval in the same scene on image
sequences from different viewpoints. Therefore, what is characteristic for
highly distinctive points in images is an application-specific approach, which
has led to four basic methods for extracting retrievable points in images.

Edge detection
Edges are stable features, which are detectable over a range of viewpoints
and illumination changes [12]. An edge, e.g., the border of an object, is
defined by discontinuities in pixel intensities in a single image dimension (see
Figure 8.3(b)). Thus, the Canny detector [13] determines the gradient of
the input image with the Sobel operator and by evaluating magnitude and
orientation of the gradients, the edge’s direction and its strength are extractable.

8.2 Algorithmic Overview 163

Figure 8.3 Detection of edges and corners by image gradients. The blue circle shows a
possible feature point, surrounded by a local neighborhood. (a) Low image gradients in two
spatial directions represent texture free image areas. (b) A high image gradient in one spatial
direction indicates a possible edge, (c) in two spatial directions a possible corner.

Gradient and direction are used in a non-maximum suppression in order to
suppress equivocal edges in the local neighborhood of a possible edge.

The drawback of this method is the equivocalness of the detected fea-
ture points. As depicted in Figure 8.3(b), it is not distinct which detected
points are corresponding on the edge while matching two detected feature
points and therefore, it will lead to incorrect pixel correspondences.

Corner detection
Corners are defined as intersections of edges or as pixel continuities in two or
more image directions (see Figure 8.3(c)). In addition to simple corners, line
endings and cropped intensity changes are detected using this type of detector.

One early corner detector is the Harris corner detector [14] (1988), which
approximates the sum of squared differences of two image patches in order
to detect a difference in image intensities. The approximation results in the
second moment matrix, which represents the dominant directions of a local
neighborhood in the gradient image. With this approach it is not only possible
to detect corners, but edges as well.

To avoid such costly filters, a detector has been presented that does not
rely on discrete image derivatives, but on the number of intensity differences
between pixels [5], which are located on a Bresenham circle (see Figure 8.4).
Rosten [15] sped up this process by reducing the number of pixel tests with
machine learning techniques to find the fastest sequence of pixel comparisons
for rejecting a wrong corner candidate.

The matching of detected corners in different images of the same scene
provides correct pixel correspondences as long as the detected corners belong
to objects of the same size.Acorresponding corner is just detectable in different
images, if the regions for describing the corners have similar dimensions

164 Self-Calibration of Wide Baseline Stereo Camera Systems

Figure 8.4 Intensity comparisons of pixel, which are located on a Bresenham Circle. The
central pixel is determined as a corner if a certain number of continuous pixel intensities is
brighter or darker than the central pixel. This is combined with an adoptable threshold to avoid
instabilities.

(see Figure 8.5, red circle), which is dependent on the object size. To overcome
this problem, repeated image scaling is a possibility or an object size dependent
adjustment of the region for the descriptor generation.

Blob detection
A blob is a region of connected pixels, which share a common image property,
e.g., pixel intensities, and therefore stand out from surrounding regions. By
formulating image properties as a function of pixel positions, local maxima
and minima of the function are determinable.

Figure 8.5 Detection of corners of different image scales. With strongly different object sizes
in the image, a corresponding corner is not detectable (red circle), but by a repeated image
scaling.

8.2 Algorithmic Overview 165

Figure 8.6 Blob detector. The detected blobs are displayed as red circles. The blob’s size is
displayed as the diameter of the circle.

It has been shown, that the Laplacian of Gaussian (LoG) [16] has a strong
response to dark and bright image regions, which are detectable as blobs.
The response is highly dependent on the size of the filter kernel used (see
Figure 8.6).

Affine-invariant interest point detection
Images features based on a blob detector hardly match for large scale or
viewpoint changes [4], because circular image patches for blob feature
extraction will lead to large distance measures for blob feature matching due
to less covering of the circular regions (see Figure 8.7). By applying circular
image patches, the used image information is too different to ensure stable
pixel correspondences for large viewpoint changes. Therefore, Mikolajczyk
[7] extends blob detectors to affine invariance by estimating the affine shape of
a local neighborhood. For affine transformations, the scale of an image region
changes differently in each direction, which leads to differing local regions
for the blob detection and therefore to differing localization or to mistaken
detections.

Figure 8.7 Blob detection based on circular image region for a scene with a large viewpoint
change. The region on which the blob feature extraction is based only partially covers the
corresponding region and thus, will lead to non-matching image features.

166 Self-Calibration of Wide Baseline Stereo Camera Systems

In order to deal with affine transformation, Mikolajczyk [7] replaces the
blob detection scales, which are equal in all directions, by affine detection
scales, which vary independently in orthogonal directions. Hereby, the circular
point neighborhood is replaced by an ellipse, which is determined by the
second moment matrix. With the affine normalization, the ellipse is normalized
to a circle again and a blob is detectable within the transformed image patch
(see Figure 8.8).

Since the four presented methods provide large differences in quantity and
quality for detected interest points, a suitable algorithm has to be chosen with
regards to the application.

In 3D reconstruction, precise localization of interest points is one major
aspect [4], therefore a sub-pixel accuracy for feature detection is mandatory.
Self-occlusion occurs very frequently in real world scenes and typically
many interest points are found near occlusion boundaries. Accurate posi-
tioning of features is imperative. As has been shown in many publications,
center-oriented detectors (e.g., LoG, DoG or CenSurE) [5], provide a higher
and more stable repetition rate than corner or edge detectors. Furthermore,
affine-invariant interest point detectors have been adapted to be robust
to large changes in viewpoint [4], which is of minor importance even
for reliable image feature matching for a wider baseline stereo camera
system.

Taking into account the algorithmic robustness of the presented methods
for the detection of image features and the high requirements of ADAS
(Advanced Driver Assistance Systems), a blob detector is used for the
detection of features henceforth. In subsection 8.3.1 the SIFT-detector [9]
will be presented in detail as an exemplary blob detector.

Figure 8.8 Affine-Invariant Interest Point Detection. The circular point neighborhood is
replaced with an ellipse in order to achieve independent orthogonal varying detection scales
for interest point detection. Before applying a detection algorithm, the local neighborhood is
affine normalized, which results in a circular neighborhood and a transformed image patch
(from [7]).

8.2 Algorithmic Overview 167

8.2.1.2 Description of features
After the detection of interesting points, the descriptor as a unique represen-
tation of an image feature has to be generated. In addition to histogram-based
descriptors, which are memory greedy, binary descriptors have been estab-
lished as a more compact representation for image features. In addition,
compared to histogram-based descriptors, the distance of two binary descrip-
tors, which is required for feature matching, is faster to match. There are
other techniques to describe image features such as image patch correlation
or generalized moment invariants [3], however the focus of this section is
limited to the two mentioned descriptor types, due to their suitability for the
self-calibration of wide baseline stereo camera systems.

Histogram-based descriptors
A simple way to describe a detected blob in a histogram-based manner is the
distribution of pixel intensities of the local blob region. Due to the fact that
this technique is prone to illumination changes, more complex approaches
have been presented (see [3]), e.g., the distribution of gradient locations and
orientations in the local blob area instead of the distribution of pixel intensity
itself. In the case of the SIFT-descriptor, the coordinates of the descriptor
and the gradient orientations are rotated relative to the feature orientation and
afterwards, a histogram is generated based on orientation and magnitude of
the image gradient [9]. Furthermore, the quantization granularity of gradient
locations and orientations leads to a robust descriptor, which is stable to
small geometric distortions and small errors in the blob region. Besides
multiple techniques for histogram generation, different sampling grids have
been introduced (see Figure 8.9). The resulting descriptor is a multidimen-
sional vector with the histogram’s bins as components. In the case of SIFT,

Figure 8.9 Sampling grids for generating different descriptors: (a) SIFT [9], (b) Shape
Context [18], (c) DAISY [19].

168 Self-Calibration of Wide Baseline Stereo Camera Systems

each vector consists of 128 values of floating point precision. The size of a
feature vector is highly dependent on the algorithmic parameters, but never-
theless histogram-based descriptors usually have high memory requirements.
Therefore, techniques for a more compact descriptor representation have been
developed, e.g., principal component analysis for PCA-SIFT [17].

Binary descriptors
Due to the fact that histogram-based descriptors provide a large comple-
xity [3] and high memory requirements [6], a sped up generation and a
more compact representation for feature descriptors is desirable. Therefore,
binary descriptors are characterized by sampling patterns and predefined
sampling pairs. Sampling patterns define a set of potential sampling locations
(Figure 8.10, blue circles), whose image information are optionally smoothed
with spatial-dependent filter kernels (e.g., Gaussian smoothing) (Figure 8.10,
red circles). A fixed combination of the filtered intensities is selected in
advance as descriptor specific sampling pairs (see Figure 8.11, two variations
of sampling pairs for the FREAK descriptor).

For each sampling pair, a binary test τ is performed, e.g.,
(BRIEF [20]):

τ(p;x, y) :=

{
1 if I(p, x) < I(p, y)

0 otherwise

Figure 8.10 Sampling pattern. (a) BRISK descriptor, (b) FREAK descriptor [21]. Sampling
patterns define a set of sampling locations (blue circles), of whose image information is
smoothed with spatial-dependent filter kernels (red circles). Out of the sampling pattern the
sampling pairs for the binary tests for the descriptor generation are selected.

8.2 Algorithmic Overview 169

Figure 8.11 Two variations of sampling pairs of the FREAK descriptor [21]. A fixed
combination of sampling locations is selected as descriptor specific sampling pairs, with which
the binary tests for the descriptor generation is performed.

where I(p, x) is the pixel intensity in a smoothed image patch p around
an image position x = (u, v)T . On a set of nd precomputed pixel pairs,
such binary tests are performed. The resulting descriptor of dimension nd

ensues to ∑
1≤i≤nd

2i−1τ(p; ; xi, yi)

Typically, a binary descriptor has a maximal length of 512 Bit.

8.2.1.3 Characteristics of features
Invariances to rotation and scale increase the detection rate of features in
similar views of a scene and ensure the distinctiveness of the detected feature
points. By assigning a region based main orientation, a feature is rotated by this
orientation in order to match it with a corresponding feature from a different
orientation. Furthermore, objects often vary in size in different images, which
lead to variant image regions for the description of the same feature. To unify
the descriptor generation, Lindeberg’s [16] scale-space theory is applied.

Rotation invariance of a feature descriptor is achieved by rotating the
sampling grid or sampling pattern for the pixel area which is used for the
descriptor generation by the main orientation before the descriptor is extracted
(see Figure 8.12) or by rotating the descriptor itself. To determine the main
orientation, different approaches are available. Rublee et al. [22] use intensity
centroids to determine the main orientation of a patch, whereas Leutenegger
et al. [23] use the gradient of predefined sampling pairs to rotate the sampling
pattern. Further techniques are available in the literature (e.g., [9, 21, 24]).

170 Self-Calibration of Wide Baseline Stereo Camera Systems

Figure 8.12 Rotation invariance is achieved by rotating the sampling grid by the main
orientation before extracting the descriptor.

Scale invariance of image features is attained by applying Lindeberg’s
[16] scale-space theory for image processing to the input images while
detecting image features. The input image is subsampled multiple times to
generate different scales of the input image and the detection step is repeated.
If the same feature candidates are detected on multiple scales, the candidate on
the scale with the highest information content is selected in order to achieve
scale-invariance (see Figures 8.13 and 8.14). Lowe (SIFT, [9]) approximates

Figure 8.13 Scale-space. An input image is down sampled to achieve multiple scales of the
image. On each scale, feature candidates are found, whereas repeated candidates are removed.
The scale with the highest information content for the feature candidate is selected as the feature
scale (from [16]).

8.2 Algorithmic Overview 171

Figure 8.14 Multi-scale approach for blob detection. The same blob with differing scales in
two images and the related response (normalized Laplacian of Gaussian) over scales is shown.
The scale with the highest information content is chosen as a blob (from [7]).

Lindeberg’s LoG scale-space with different Gaussian smoothed images and
therefore, the complexity is reduced significantly.

A further approach for scale invariance is the detection and later suppres-
sion of feature candidates which are detected on multiple scales, but have the
same image position. Those repeated nominations are compensated by a non-
maximum suppression [6], which evaluates a predefined cornerness score and
selects the most unique feature point.

Image feature detection and description are not completely independent.
By choosing a certain feature detector, a specific local neighborhood is
used to detect interesting points. This specific local neighborhood has to be
also employed to extract the feature descriptor in order to ensure a reliable
description of the image patch.Although it seems to be a promising approach, it
is not advisable to combine any detector with any descriptor [4]. The following
overview (see Tables 8.1 and 8.2) of selected state-of-the-art feature extractors
and feature descriptors with references is not intended to be exhaustive,
but gives an impression of how many different detectors and extractors
are available and therefore combinable. For an appropriate performance,
each algorithm requires an application-specific parameterization, which may
depend on the previous and following processing step. Thus, this large number
of degrees of freedoms results in an algorithmic variety, which is hardly
ascertainable.

172 Self-Calibration of Wide Baseline Stereo Camera Systems

Table 8.1 Overview of feature detectors
Feature Detector Year Comment
SIFT [9] 1999 Scale-Invariant Feature Transform

Scale-space based, invariant to scale and rotation
SURF [25] 2008 Speeded Up Robust Features

Scale-space based, invariant to scale and rotation
KAZE [24] 2012 Non-linear scale-space based

Invariant to scale and rotation
A-KAZE [26] 2013 Accelerated-KAZE

Improved KAZE feature detector
BRISK [23] 2011 Binary Robust Invariant Scalable Keypoints

Scale-space based, invariant to scale and rotation
FAST [15] 2006 Features from Accelerated Segment Test

Segment based corner detector
ORB [22] 2011 Oriented FAST and Rotated BRIEF

Advanced from FAST and BRIEF (see descriptors)

Table 8.2 Overview of feature descriptors
Feature Descriptor Year Comment
SIFT [9] 1999 Scale-Invariant Feature Transform

Histogram-based descriptor
SURF [25] 2008 Speeded Up Robust Features

7 Histogram-based descriptor
KAZE [24] 2012 Non-linear scale-space based

Histogram-based descriptor
A-KAZE [26] 2013 Accelerated-KAZE

Binary descriptor
BRISK [23] 2011 Binary Robust Invariant Scalable Keypoints

Binary descriptor
BRIEF [20] 2012 Binary Robust Independent Elementary Features

Binary descriptor
ORB [22] 2011 Oriented FAST and Rotated BRIEF

Advanced from FAST and BRIEF (see detectors)
DAISY [19] 2010 Dense Descriptor for Wide Baseline Stereo Matching

Histogram-based descriptor
FREAK [21] 2012 Fast Retina Keypoint

Binary descriptor

8.2.2 Feature Matching

The final step in finding sparse pixel correspondences is the assignment of the
extracted image features in different image set ups, e.g., in time sequentially
images for sparse optical flow, in stereo image pairs for feature-based sparse
disparity estimation or in image patches for object detection.

8.2 Algorithmic Overview 173

As in the case of the previous algorithmic steps, many approaches for
descriptor matching have been presented in recent years [3]. In order to
determine the similarity of two image features, multiple correspondence
measures are available. In addition, various matching methods lead to sig-
nificant differences in matching results, which influences the resulting pixel
correspondence lists and finally, some matching methods require a list search
algorithm, for which again different approaches are available. Each aspect
will be briefly reviewed in the following subsection.

Correspondence measures for image features
For histogram-based descriptors

−→
d ∈ R

l, which are real-valued vectors of
dimension l ∈ N, multiple vector norms are applicable on matching difference
vectors as a similarity measure. The sum norm is defined as the accumulation
of the component wise sum of absolute differences:

‖−→
d x − −→

d y‖1 =
l∑

i=1

|dx,i − dy,i|

In order to weight large vector difference more than small differences, the
Euclidean norm is useable. The norm penalizes large vector differences more
than small vector differences by accumulating the component wise sum of
squared differences:

‖−→
d x − −→

d y‖2 =

√√√√ l∑
i=1

|dx,i − dy,i|2

Since only relative correspondence measures are used for feature matching,
the square root is skippable to avoid costly computations.

A further method for evaluating the distance of two vectors is the
normalized cross correlation:

distance = maxx∈X

⎛
⎝ ∑l

i=1 dx,i · dy,i√∑l
i=1 d2

x,i ·
√∑l

i=1 d2
y,i

⎞
⎠

The correlation yields good results for the matching of image features, but
leads to high computational complexity [3] and is therefore rarely used for
matching of image features in the field of advanced driver assistance systems.

For binary descriptors, which consist of a bit string of length n, that
represent the result of pixel wise test, the correspondence measure is the

174 Self-Calibration of Wide Baseline Stereo Camera Systems

Hamming distance, which is the accumulation of the bit wise XOR of
the bit strings:

ham −→
d x,

−→
d y

=
n∑

i=1

(dx,i ⊕ dy,i)

Due to the correspondence measure’s simplicity, typically the distance com-
putation of two binary descriptors is noticeably faster than the distance
computation of two histogram-based descriptors. Contrary, not every binary
descriptor has a comparable quality level as histogram-based descriptors
for certain applications. By selecting a specific descriptor type, the implicit
trade-off between execution time and descriptor quality has to be taken into
account.

Matching methods for image features
The quality of resulting pixel correspondences highly depends on the utilized
matching method. Three different methods have been established in the field
of feature matching for advanced driver assistance systems (from [3]), which
show different behavior in the matching inlier/outlier ratio:

1. Threshold-Based Matching (TB)
Two features match, if the distance between the descriptors is below a
predetermined threshold.Afeature may have several matches and several
of them may be correct.

2. Nearest-Neighbor-Based Matching (NNB)
Two features match, if the descriptor

−→
d y is the nearest neighbor to

−→
d x

and if the distance between the descriptors is below a threshold. A feature
only has one match

3. Nearest-Neighbor Distance Ratio Matching (NNDR)
Two features match, if the descriptor

−→
d y is the nearest neighbor to

−→
d x

and if a ratio ε between the first and the second nearest neighbor is below
a threshold:

ε =
‖−→

d x − −→
d y‖p

‖−→
d x − −→

d z‖p

where p indicates the type of norm. This ratio avoids ambiguous matches
in case there are potential matches with a similar distance.Again, a feature
has only one match.

The matching quality for both nearest-neighbor approaches are higher than for
the TB matching [3], because the probability of a correct match for the nearest

8.2 Algorithmic Overview 175

neighbor matchings is higher than the TB matching, although the distance
between similar descriptors possibly varies significantly. The nearest neighbor
matchings select only the best match below the threshold and rejects all
others and thus, there are few false matches. In addition, the NNDR matching
penalizes descriptors which have many similar matches, e.g., the distance
to the nearest neighbor is comparable to the distance of the second nearest
neighbor. This leads to further improvement in precision. The drawback of
the nearest neighbor matchings is the complexity when matching two large
pools of image features and the computative costly division for the NNDR
matching.

List search approaches for matching of image features
The matching of two large pools of image features to find pixel correspon-
dences in different images results in a costly process, because a correspondence
measure and the first two nearest neighbors have to be evaluated for each
possible feature combination. By restricting the pool of feature candidates for
the matching process, a significant reduction of problem size is achievable. A
possible restriction bases on feature properties, e.g., localization in the image,
orientation or scale. Constraining the feature candidates means, that the pool
of all image features has to be scanned for valid candidates, which is a list
search problem.

1. Sorted Linear Candidate Search
A prior sort of the pool regarding the restriction parameter enables a
reduction in search time. By using the iterative successively approxi-
mation, the list index of the first element which fulfills the restriction is
searched. The last candidate of the reduced list is searched with a linear
search.
After each iteration, the step size is halved and the search index is incre-
mented or decremented depending on whether the restriction criterion is
fullfilled. The initial step size is half the initial pool size.

2. KD-Tree Candidate Search
A KD-tree [27] based search is a search tree with two edges per vertex
and which divides the remaining set of feature candidates into two sets
of the same size. By stepping through the KD-tree, the index of the
first valid feature candidate is found efficiently. The disadvantage of
this search method is the time consuming a priori construction of the
KD-tree, which is not effective for small feature pools. In addition, if the

176 Self-Calibration of Wide Baseline Stereo Camera Systems

restriction search space has a low dimension, other search methods will
perform faster.

8.2.3 Survey of Feature-based Self-Calibration

Extrinsic camera self-calibration is about recovering the extrinsic camera
parameters using scene point correspondences only. Camera self-calibration is
still a wide field of active research with different approaches. Early approaches
are subdivided into aiming 3D reconstruction or not. The latter covers those
algorithms where no information about the scene in front of the cameras is
recovered during optimization.

One of the first approaches has been proposed by Longuet-Higgins [28].
The author introduced a linear method to recover the essential matrix, which
is decomposable into the extrinsic parameters. Due to the required number of
image point correspondences, it was introduced as the 8-point-algorithm.

Several following publications proposed optimizations regarding decom-
position [29], plausibility [30, 31], and outlier handling for the corresponding
image points [32]. As the linear approaches often lack the required accu-
racy, they are often followed by a non-linear refinement in a stratified
process.

On the other hand, there are algorithms where camera parameters and 3D
points of the scene are recovered simultaneously. One of those is bundle-
adjustment [33]. Here a good initialization is required as Gauss-Newton
optimization is involved. Thus, bundle adjustment is often chosen for the
non-linear refinement as mentioned before.

Regarding online calibration procedures, they are classifiable as recursive
or non-recursive. Recursive, or continuous self-calibration, means that tempo-
ral constraints are also optimized. Thus, image measurements in earlier time
steps influence the current calibration result. Dang et al. proposed a parameter
tracking system involving epipolar constraints and bundle adjustment [34]. In
contrast to non-recursive self-calibration, there are no temporal constraints.
Those are applied, in cases of a continuous decalibration or for active systems.
Bjorkmann and Eklundh [35] introduced a real-time update of a restricted
space of the extrinsic parameters. Pettersson and Petersson [36] extended
a robust essential matrix estimation with a fast and robust FPGA-feature
extraction. Parameter estimation for every new frame, beginning with rectified
images, optimizing the extrinsic rotation and using a Kalman-Filter to limit
overfitting was introduced by Hansen et al. [37].

8.3 Extraction of Image Features 177

8.3 Extraction of Image Features

Due to its stability and robustness, in respect of the requirements in advanced
driver assistance systems, the Scale-Invariant Feature Transform (SIFT) by
Lowe [9] is selected for this application as a state-of-the-art image feature
descriptor and extractor in order to find sparse pixel correspondences in image
pairs of a stereo camera system.

8.3.1 Detection of SIFT-Feature Points

Lowe’s SIFT (Scale-Invariant Feature Transform, [9]) is a blob detector, which
utilizes Lindeberg’s scale-space approach [16] to achieve scale invariance.
Blobs are detected by finding local maxima in the approximation of the
Laplacian scale-space. The approximation of the Laplace operator is realized
by the difference of two low pass filtered images, where both Gaussian ker-
nels consist of different variances. The resulting scale-space approximation,
the Difference of Gaussians (DoG), is constructed of several octaves with
different image scales (see Figure 8.15). Every octave is subdivided into
multiple intervals, which indicate the increasing variance of the Gaussian
kernels. The initial interval of each octave arises by subsampling a specific
interval of the previous octave. The DoG-pyramid, which represents the
edges on multiples scales and different granularities, is browsed for local
maxima in three dimensions (image position and intervals). After the detec-
tion of feature candidates in the discrete scale-space, their localization is
refined by a Taylor series in order to position the candidates with subpixel
accuracy and to approximate the extrema in the continuous scale-space.

Figure 8.15 Image pyramid. The scale-space is constructed by different octaves, which
consists of multiple intervals. Each interval indicates a specific variant of the used Gaussian
kernel. In order to approximate the Laplace scale-space, the Difference of Gaussian is
determined.

178 Self-Calibration of Wide Baseline Stereo Camera Systems

Candidates with a low contrast behavior and too edge like candidates are
discarded.

8.3.2 Description of SIFT-Image Features

The SIFT-descriptor is a histogram-based descriptor and provides rotation
invariance. Before histogram generation, the main orientation of each image
feature is determined in order to align the local image region. To ascertain the
main orientation for an image feature, a histogram of local image gradients is
generated. The contribution of a local gradient to its corresponding orientation
bin is defined by its magnitude and its distance to the feature point. After a
smoothing step, the maximal histogram bin represents the main orientation of
a feature point.

In addition to a reproducible detection of characteristic image points, a
distinctive and robust description of the local neighborhood of the detected
points is indispensable. For the description of image features, the gradient
magnitude and orientation of the DoG-pyramid is used. A squared pixel
area around the detected feature point is rotated by the feature orientation
(see Figure 8.12) and subdivided into a grid (see Figure 8.16). For each

Figure 8.16 Generation of feature descriptor. The local neighborhood is subdivided into
independent subregions, which are combined into individual histograms. After a weighting
and smoothing, the feature descriptor is generated by concatenating the single histograms to
as a resulting feature vector.

8.4 Matching of Image Features 179

Figure 8.17 Extracted SIFT-features with exemplary geometry-based restriction of matching
candidates. By restricting possible matching candidates geometrically, the problem size is
significantly reduced.

grid element, an independent histogram of gradients is generated using
orientation and magnitudes. The different histograms are weighted, smoothed
and combined in a vector, which represents the final feature descriptor.
The standard parameters of SIFT, which are suggested by Lowe [9], lead
to 128 dimensions with floating point precision for the feature vector.

An exemplary SIFT-feature extraction of a rectified automotive scene is
shown in Figure 8.17. The features of the left/right stereo camera are depicted
in red/green. The scale of the features is illustrated as the circle’s diameter,
the orientation of the features with the additional radius line.

8.4 Matching of Image Features

The application of feature matching for advanced driver assistance systems
favors correct pixel correspondences instead of a certain set of instable feature
matches. Therefore, the matching of image features follows a straight forward
approach with a significantly reduced problem size through matching of
selected candidates. In this context, it is of minor interest which feature
detector and extractor are used for the generation of image features.

Due to the fact, that SIFT is a histogram-based descriptor, a vector norm has
to be evaluated as correspondence metric. A trade-off between computational
complexity and conclusive results is the sum norm. The matching with sum
norm results in marginally lower matching quality compared to matching

180 Self-Calibration of Wide Baseline Stereo Camera Systems

with the Euclidean norm, but with a localization-based restriction of matching
candidates, the matching results yield sufficient accuracy.

By constraining the pool of possible matching candidates, the problem size
of feature matching is reduced significantly. The initial brute force matching
requires a computation of the correspondence measure between each features
of the left image and every feature of the right image. By taking into account
the geometric set up of the stereo camera system, the search space is reduced
to a fraction of the initial problem size, which results in a noticeable speed-
up of matching and less wrong pixel correspondences at the same time (see
Figure 8.17).

An exemplary result of the primarily brute force feature matching and
for the enhanced matching process using the mentioned algorithmic setup is
shown in Figure 8.18. Both stereo input images are overlaid and the image
related features are displayed in red/green for the left/right stereo image.
The significant increase of matching quality is expressed by the reduction
of detected false pixel correspondences (blue connections) in relation to the
correct pixel assignments (yellow connections). For the depicted results of
feature matching, the sum norm is applied as correspondence measure and a
localization-based restriction for choosing matching candidates is used.

Figure 8.18 Exemplary results of feature matching. The left and right stereo images are
overlaid; features of the left/right image are displayed in red/green. Correct matches are depicted
in yellow; false matches are shown in blue. The upper image shows the results of the initial
brute force matching, whereas the lower image shows the results of the enhanced matching
process.

8.5 Extrinsic Online Self-Calibration 181

8.5 Extrinsic Online Self-Calibration

Hartley and Zisserman present the fundamentals of extrinsic online self-
calibration in their book [38] about multiple view geometry. The extrinsic
parameters of a stereo system are described by the rotation RX ∈ SO(3)
and the translation vector tX ∈ R

3. Given the extrinsic parameters the
transformation of a point Xl ∈ R

3 in the left camera coordinate system into
the right camera coordinate system is described as

Xr = RX(Xl − tX).

Normally, extrinsic stereo camera calibration comes down to recovering RX
and tX. In the following, tX is assumed constant and only RX is recovered.
During rectification RX is broken down into

RX = R−1
r Rl

in order to determine the rotation of the left and right camera coordinate system
to the common image plane respectively.

As decalibration is assumed to vary within a small range of only a few
degrees, the recalibration is based on pre-rectified image point correspon-
dences. The images may be pre-rectified using the camera parameters from
the initial offline or a previous calibration run.

Given N as the corresponding pre-rectified image points P̃i and Q̃i for
i = 1, . . ., N and assuming pinhole camera matrices K for simplicity, the
image points are related to their unit directional image vectors

p̃i
∼= K−1P̃i

q̃i
∼= K−1Q̃i.

These vectors are related by the common epipolar constraint

0 = Q̃iK Ř K−1P̃i

whereas Ř denotes the rotation compensating the decalibration.
Since the decalibration is assumed to be small, optimization close to the

identity matrix has to be avoided due to overfitting. Thus, the image vectors
are re-rotated in the original camera coordinate systems via

pi = Rlp̃i; qi = Rrq̃i.

Projecting them onto their respective image planes yields

Pi = Kpi; Qi = Kqi.

182 Self-Calibration of Wide Baseline Stereo Camera Systems

Given the measured image vector pi, the depth di of the scene point Xl
and the decalibration Ř, the corresponding image point Qi may also be
modelled as

Q′
i(Ř, di) = KŘRX((pidi) − tX).

Due to noise there is no exact solution, the objective function has to minimize
the reprojection error ei between measured and modelled image points

ei = ‖Qi − Q
′
i(Ř, di)‖.

Thus, the objective function including all image point correspondences is to
minimize the sum of all squared reprojection errors and is formulated by

argmin
Ř, d

N∑
i=1

e2
i

with d = [d1. . .dN]. The solution is found by a non-linear optimization
method, e.g., Levenberg-Marquardt.

8.6 Application-Specific Algorithmic Parameterization

The manifold varieties of algorithmic parameterizations for feature-based
camera self-calibration lead to a sprawling design space, which is barely ascer-
tainable in its entirety. Two exemplary selected application-specific aspects
out of this design space are presented in this section. In subsection 8.6.1,
the impact of differing bit depth of input images on the extraction of SIFT-
features is shown. The parameterization of the presented matching methods
is discussed in subsection 8.6.2.

8.6.1 Decreasing Bit Depth of Input Images
for Extraction of SIFT-features

The availability of various cameras and the ongoing development of image
processor technology lead to stereo systems, which provide digital images
with a higher dynamic range. A higher bit depth of 8, 12 or 16 bit per pixel
(bpp) promises a higher degree of representable details. However, it is not
proven that a feature extractor will extract features of higher quality, when the
bit depth for the input images is increased. In case of SIFT-feature extraction
for a stereo camera self-calibration, this section shows, that the extracted
pixel correspondences for 8 bpp input images and 12 bpp input images lead
to identical pixel correspondences.

8.6 Application-Specific Algorithmic Parameterization 183

To ensure full accuracy during computations and to avoid effects of
application-specific optimizations, a floating point software version of the
SIFT-feature extraction is fed with 8 bpp and 12 bpp input images. Depending
on the pixel depth of the input images, a bit depth specific algorithmic
parameter set is configured.

After the SIFT-feature extraction, the nearest-neighbor distance ratio
matching in combination with a geometry-based restriction of matching
candidates (GB NNDR) is applied in order to find corresponding pixels. The
experiment is accomplished with a dataset for which rectified input images
and related disparity maps exist to validate the detected pixel combinations
(see Figure 8.19). By checking the disparity of a match position in the
left input image, it is possible to verify the corresponding match position
in the right image. A radius offset for the detected matches of ε = 0.5
pixels for the position is tolerated during this investigation. The quantities
for the extracted features and detected matches are shown in Table 8.3. The
algorithmic parameters for the different SIFT-feature extractions are chosen
to yield at least 1,000 features for both input images of the stereo camera
system.

Figure 8.19 Verification of match positions with disparity maps. For rectified images, the
horizontal difference of feature positions of a corresponding pixel pair equals the related value
of the disparity map. With this technique, it is possible to validate resulting matching lists for
datasets with ground truth disparity maps.

184 Self-Calibration of Wide Baseline Stereo Camera Systems

Table 8.3 Numbers of extracted SIFT-features and detected matches for 8 bpp input images
and 12 bpp images. The number of the geometry-based (GB) nearest-neighbor distance
ratio matches (NNDR) drops significantly but ensures a high explicitness of matches. The
algorithmic parameters of the SIFT-feature extraction of the two test cases are adjusted in
order to extract a similar number of features, which lead to an identical number of verified
matches

8 bpp Image 12 bpp Image
#SIFT-features left image 1,056 1,069
#SIFT-features right image 1,011 1,019
#GB NNB matches 1,013* 1,026*
#GB NNDR matches 608/60.0% 611/59.6%
#disparity verified matches 542/89.1% 544/89.0%
#matches not valid for evaluation 29/4.8% 28/4.9%
#matches wrong correspondences 37/6.1% 39/6.4%

*n features of the left image have matched with features of the right image;
duplicate assignments in the right image possible.

The significant difference between the number of geometry-based NNB
matches and geometry-based NNDR matches is caused by the ratio factor,
by which equivocal correspondences are rejected. A few correct pixel assign-
ments may be rejected as well using this method, but the matching difference
of those pixel pairs is not sufficient small. A valuation of the resulting absolute
numbers is beyond the focus of this chapter, but by comparing the differences
of the two versions of SIFT-feature extraction and matching it is clear, that
there is nearly no difference between using an 8 bpp input image or a
12 bpp input image. To guarantee identical pixel correspondences, a visual
inspection of the matching results is mandatory. In Figure 8.20 the result of
detected SIFT-features of the left input image (blue: identical matches, orange:
exclusive 12 bpp features, red: exclusive 8 bpp features) is shown. Out of
1,069 detected feature positions in the 12 bpp input image, 1,045 (97.8%)
identical feature positions are detected again in the 8 bpp input image. In
addition, there are 24 (2.2%) exclusive 12 bpp feature positions detected and
14 (1.3%) exclusive 8 bpp feature positions detected. Similar numbers are
revealed by comparison for the feature extraction of the different right input
images.

After the geometry-based NNDR matching of both feature sets, the
comparison of the resulting pairs of the matched pixel correspondences allows
a conclusion, if there is a difference between a feature extraction and matching
of a 12 bpp input image and a 8 bpp input image. As shown in Figure 8.21, the
bulk of the pixel correspondences are identical (blue lines); out of 611 found

8.6 Application-Specific Algorithmic Parameterization 185

Figure 8.20 Comparison of the resulting SIFT-features of the left input image for 12 bpp
images and 8 bpp images. In the 12 bpp input image, an overall number of 1,069 features
have been detected, whereas in the 8 bpp input image 1,056 features have been determined.
A subset of 1,045 features (97.8%) is identical in both images (blue). There are 14 (1.3%)
exclusive 8 bpp feature positions (red) detected and 24 (2.2%) exclusive 12 bpp feature positions
(orange).

Figure 8.21 Comparison of the resulting pixel correspondences for the 8 bpp and 12 bpp input
images. In the 12 bpp input image, an overall number of 611 pixel pairs has been detected,
whereas in the 8 bpp input image 608 correspondences have been determined. A subset of 587
pairs (96.1%) is identical in both images (blue lines). Furthermore, there are 23 (3.8%) exclusive
8 bpp pairs (red lines) and 24 (3.9%) exclusive 12 bpp pixel correspondences (orange lines).

correspondences, 587 pairs (96.1%) are equal. In addition, there are 23 (3.8%)
exclusive 8 bpp correspondences (red lines) and 24 (3.9%) exclusive 12 bpp
correspondences (orange lines).

By tuning the algorithmic parameters in relation to the pixel depth of the
used input images in this case study, it is possible to extract identical pixel

186 Self-Calibration of Wide Baseline Stereo Camera Systems

correspondences. If there is no reason for further image processing steps,
which require a proven higher bit depth than an 8 bpp graymap image, it is
advisable to process the standard 8 bpp image in order to save computation
resources.

8.6.2 Threshold-based Feature Matching

In this context of wide baseline stereo matching, threshold-based feature
matching is used. As highlighted in subsection 8.2.2 , a nearest-neighbor-
based match is defined as a pair of two descriptors, which are nearest neighbors
of a matching process with a descriptor distance below a threshold. Further-
more, a feature only has one matching correspondence. In order to ensure a
high rate of correct matches with a low rate of false matches, simultaneously,
the threshold has to be selected in accordance to the algorithmic setup
and the application-specific image content. Therefore, in this section a method
for threshold selection is presented.

Underlying assumption for selecting a threshold for the presented NNB
matching is the fact that there are correct matches with a low descriptor
distance, false matches with a higher descriptor distance and nothing in
between. Again, correct and false matches in this experiment are evaluated
with existing disparity maps of the stereo camera system. The descriptor
distances of an idealized NNB feature matching is shown in Figure 8.22 (right

Figure 8.22 Histogram of random generated SIFT-descriptor distances of an idealized NNB
feature matching. The right distribution with mean μ2 displays the distances of wrong matches,
whereas the left distribution with mean μ1 illustrates the correct matches.

8.6 Application-Specific Algorithmic Parameterization 187

plot). For this experiment, 2 × 106 random generated SIFT-descriptors have
been generated, pairs have been matched and the distances have been evaluated
in a histogram. The resulting distribution of descriptor distances equals the
Gaussian distribution, defined by mean μ2 and deviation σ2. Obviously, those
descriptor distances are false matches. Correct matches follow the same
distribution, but with differing mean μ1 and deviation σ1, as depicted in
Figure 8.22 (left plot). By definition, descriptor distances are sums of absolute
values, negative distances are not possible.

By comparing the distance histogram of the synthetic idealized NNB
feature matching (see Figure 8.22) with a real-world NNB SIFT-feature
matching (see Figure 8.23, left plot), two distinctive differences are noticeable:
Firstly, the distance distribution for the correct feature distances and the false
feature distance are overlapped and secondly, both distributions are skewed in
direction of the others distribution mean value. This distortion is explainable
by the fact, that there are always non-avoidable false positives and false
negatives during the matching process. Further information concerning the
distance distribution is available in [39].

The resulting distance distribution for the NNB SIFT-feature matching is
shown in Figure 8.23 (right plot). Based on this plot, a suitable threshold for
the matching process has to be extracted. It is desirable to select a threshold,
which skips all of the false matches and approves all correct matches, and
which corresponds to a threshold between the two ideal distributions. Due to
skewing and overlapping of the distributions, there is always a set of false
matches, which has to be tolerated by the chosen threshold. Therefore, the

Figure 8.23 Histogram of descriptor distances for a NNB SIFT-feature matching with the
extracted threshold according to Otsu. Distances of correct/wrong matches are displayed in
blue/orange. The complete distribution is shown in purple.

188 Self-Calibration of Wide Baseline Stereo Camera Systems

goal is to minimize the false matches and maximize the correct matches,
simultaneously.

Using the Otsu method [40], two overlapping distributions are separable
by applying the discriminant criterion and utilizing the zeroth- and first-order
cumulative moments of the distance histogram. Originally, Otsu presented
his method for binarization of grey scale images, but the algorithm may be
generalized for different types of histogram decomposition. By separating the
two Gaussian distributions with Otsu’s method, the descriptor distance which
divides the distribution into a correct and a false region is determined and set
as the matching threshold. Four different case studies have been executed (see
Figures 8.23 and 8.24). Even for distance distributions, which do not show
such a clear composition of two Gaussian distributions as the SIFT-feature
matching case demonstrates, the Otsu’s applied method provides reasonable
thresholds.

For the entire application of wide baseline stereo matching, the threshold
extraction has been performed offline, but it is also conceivable to implement
an adaptive frame-to-frame online threshold extraction.

8.6.3 Parameterization of Matching Methods

The aim of this section is the evaluation of the presented matching procedures
(see subsection 8.2.2) and the related parameter sets regarding their quality
of assigned pixel correspondences in stereo camera systems images. The
presented matching methods (TB, NNB, NNDR) result in varying corres-
pondence lists, each of different size and with a variable percentage of correct
pixel correspondences. The matching technique, which provides a high rate
of correct correspondences for this application and a low rate of wrong
assignments simultaneously, has to be identified.

It is possible to speed up the matching process through helpful assumptions
about the position of corresponding feature points based on the given geometry
of the stereo camera system. Using a spatial pre-selection of detected feature
points, the number of candidates for the subsequent descriptor matching
is significantly limited. In addition to reducing the problem size for the
matching step, the quality of the feature point correspondences is increased.
This is caused by excluding matching candidates, which are geometrically
contradictory for the used camera setup. Despite the possibility of highly
similar descriptors, wrong correspondences are prohibited even before the
matching step using this technique.

8.6 Application-Specific Algorithmic Parameterization 189

Figure 8.24 Histograms of descriptor distances for different NNB feature matching case
studies with the extracted threshold according to Otsu. Distances of correct/wrong matches
are displayed in blue/orange. The complete distribution is shown in purple. Due to different
descriptors and resulting matching distances, various axis scales for clear presentation are used.

Geometry-based feature matching
The effect of spatial restriction of possible matching candidates (see
Figure 8.17) in order to reduce the problem size for the feature matching
depends on the permissible window size for matching candidates. In Table 8.4,

190 Self-Calibration of Wide Baseline Stereo Camera Systems

Table 8.4 Results for a SIFT-feature matching for a global matching and a geometry-based
feature matching. The window size for the geometry-based feature matching is +/−4 pixel in
y-direction and +100/−4 pixel in x-direction

Global Matching Geometry-Based Matching

#SIFT-features left image 1,057 1,057

#SIFT-features right image 1,011 1,011

#avg matching candidates 1,011@1,057 matchings 7@1,057 matchings

an overview of the average number of candidates per matching event is given.
In the left/right 8-bit input image, 1,057/1,011 SIFT-features are extracted,
which leads to 1,011×1,057 descriptor comparisons, when a brute force
approach is used. With a window size of +/− 4 pixel in y-direction (for
rectified input images) and +100/−4 pixel in x-direction, the average number
of descriptor comparisons is reduced to 7×1,057, which is a reduction of
problem size of two orders of magnitude. The exact numbers of the candidate
distribution for the geometry-based matching are shown in Figure 8.25. The
reduction of problem size by a factor of×144 using the geometry-based feature
matching in relation to the global matching clearly outperforms the test, if a
detected feature is a matching candidate. Therefore, using the geometry-based
matching approach is advisable.

Choosing a matching method
Different methods of feature matching with or without a spatial restriction
of the matching candidates directly affect the quality of resulting feature
correspondence lists. Exemplary numbers for a variation of matching methods
are shown in Table 8.5. Again, in the left/right 8-bit input image, 1,057/1,011

Figure 8.25 Exemplary histogram for the distribution of matching candidates for the
geometry-based feature matching (see Table 8.4). The average number of candidates is 7
candidates per matching event.

8.6 Application-Specific Algorithmic Parameterization 191

Table 8.5 Results of disparity verified feature correspondences for different combinations of
global and spatial restriction matching methods. In addition to a high rate of correct matches,
a minimal number of pixel correspondences has to be given for a reliable subsequent image
processing. The total numbers of detected matches for selected algorithmic combinations are
given in brackets. The number of correct matches and wrong matches do not result in 100%
because of missing values in the ground truth disparity maps. Those values are skipped for
evaluation

Global Matching Geometry-Based Matching

#Correct #Wrong #Correct #Wrong

Matches Matches Matches Matches

#TB disparity verified matches 562 (1,057) 400 702 (1,006) 240

53.2% 37.8% 69.8% 23.9%

#NNB disparity verified matches 541 (735) 149 556 (597) 22

73.6% 20.3% 93.1% 3.7%

#NNDR disparity 493 (540) 31 542 (605) 36

verified matches 91.3% 5.7% 89.6% 6.0%

SIFT-features are extracted. The total number of detected matches for each
algorithmic combination is given in brackets (see Table 8.5).

For each method, the geometry-based feature matching grants an improve-
ment of the correct matching rate or the rate remains in the same order of
magnitude. The resulting correspondence lists generated with the threshold-
based feature matching has the highest number of entries, but the quota of
correct matches is insufficiently low. A combination of NNB-matching and
the geometry-based restriction leads to the highest rate of correct matches
(93.1%) and a low rate of wrong matches (3.7%), simultaneously. Further-
more, the absolute number of correct matches (556) guarantees a stable base
for following image processing algorithms. Therefore, the use of the NNB-
matching with a geometry-based restriction of matching candidates in order to
extract pixel correspondence lists for a feature-based camera self-calibration is
recommended.

Accuracy of localization
All prior investigations in this section are based on the assumption that
‘disparity verified matching’ defines the consensus of the extracted feature-
based disparity including a small offset ε and the related actual disparity taken
from the disparity ground truth map. This offset ε is necessary in order to
tolerate small deviations of feature positions, which are caused during the
localization step.

192 Self-Calibration of Wide Baseline Stereo Camera Systems

Figure 8.26 Rates of disparity verified pixel correspondences for different offsets ε and three
matching methods. For all methods, the rate of correct matches runs into saturation. The NNB
matching method performs best over all offsets ε. (TB: Threshold-Based Matching; NNB:
Nearest-Neighbor-Based Matching; NNDR: Nearest-Neighbor Distance Ratio Matching).

To evaluate the impact of varying offsets ε, in the left/right 8-bit input
image, 1,057/1,011 SIFT-features are extracted and matched with a geometry-
based approach for the TB, NNB and NNDR matching method. The rates of
disparity verified pixel correspondences for different offsets ε are shown in
Figure 8.26. Remarkably the qualitative trend is identical for all matching
methods. Furthermore, all methods run into saturation for offsets higher than
3 pixel. As expected, the threshold-based matching (TB) provides the lowest
matching rate for all offsets ε. The nearest-neighbor based (NNB) matching
method results constantly in the highest rate for disparity verified matches
with approximately over 90% (<537 out of 597 matches) for an offset larger
than 1 pixel. It is worth mentioning that 70% of all matches (419 out of 597
matches) for the NNB method are identical to the ground truth disparity map
(offsets ε = 0 pixel).

To achieve an applicable trade-off between exact ‘disparity verified corre-
spondences’ and permitting localization errors due to viewpoint changes, all
prior investigations have been verified with an offset ε = 3 pixel.

8.7 Hardware Based SIFT-Feature Extraction

Fast and reliable extraction of SIFT-features in the presented context of
feature-based camera self-calibration requires a tuned implementation of the

8.7 Hardware Based SIFT-Feature Extraction 193

algorithm for the hardware platform used. Therefore, in this section, the
relevant hardware properties of SIFT-feature extraction are introduced and
an overview of existing SIFT-feature implementations is given.

8.7.1 Challenges of SIFT-Feature Extraction

The extraction of SIFT-features is a challenging task due to the number of
operations and memory accesses that have to be executed. As depicted in
Figure 8.27, the algorithmic steps of SIFT-feature extraction differ in varying
ratios of control complexity and regular arithmetic. As shown in [41], the
building of scale-space, which consists of multiple separable and symmetric
Gaussian filters, is an arithmetically intensive task with almost no control
overhead. In contrast, parts of the feature points detection or the descriptor
generation require control mechanisms, which result in heavy branching on
conventional processors. Furthermore, the scale-space is mandatory for the
feature description and has to be buffered until the generation of descriptors,
which requires a large memory and arbitrarily non-aligned memory accesses
aggravate the challenging memory bottleneck. In addition, the algorithmic
quality of SIFT has to be ensured for subsequent processing steps, which
requires an appropriate level of internal accuracy of the temporal results.

Therefore, specialized architectures are necessary to ensure the processing
performance demanded for SIFT-feature extraction. At the same time, those
specialized systems have to be as flexible as possible to guarantee a fast

Figure 8.27 Break down of SIFT-feature extraction into four algorithmic steps and relating
qualitatively quota of control complexity and complexity (i.e., regular arithmetic).

194 Self-Calibration of Wide Baseline Stereo Camera Systems

implementation of future algorithms which might perform better compared
to state-of-the-art feature extractors [42].

8.7.2 Existing Systems for Hardware Based
SIFT-Feature Extraction

In the following Table 8.6, a set of existing systems/platforms for the hardware
based SIFT-feature extraction is presented. The selection shown is not meant to
be exhaustive, but elucidates the trade-off of different platforms regarding suf-
ficient processing power, low power consumption and satisfactory flexibility
for future algorithm implementations.

Moren et al. [43] presented in 2015 a comprehensive survey of a SIFT-
feature extraction for homogeneous and heterogeneous CPU/GPU systems.
With different techniques for parallelization and a portable performance con-
cept using OpenCL (Open Computing Language), the SIFT-feature extraction
has been implemented on various single device and multi-device platforms.

Table 8.6 Overview of existing systems for SIFT-feature extraction
Implementation Frequency Performance

Author Year Device Powre (MHz)** (fps)

CPU & Moren et al. [43] 2015 Nvidia GTX 780 TI 250 W* 875 137.6 @ 640x480

GPU AMD R9-290 300 W* 947 98.7 @ 640x480

Nvidia GTX 580 244 W* 772 77.2 @ 640x480

Nvidia Tesla C2050 238 W* 1150 74.0 @ 640x480

Intel MIC 3120A 300 W* 1100 16.8 @ 640x480

Intel Core-i7 4930K 130 W* 3400 32.6 @ 640x480

Intel Xeon E5-2667 130 W* 2900 28.3 @ 640x480

AMD Opteron 6168 115 W* 1900 8.0 @ 640x480

Intel Xeon E5-2667 130 W* 2900 4.0 @ 640x480

Mobile Rister et al. [44] 2013 Snapdragon S4 ∼4 W 1,700/400 9.9 @ 320x240

GPU Nexus 7 N/A 1,600/520 8.6 @ 320x240

Galaxy Note II N/A 1,600/400 7.6 @ 320x240

Tegra 250 ∼3 W 1,000/333 7.9 @ 320x240

FPGA & Bonato et al. [45] 2008 Altera Stratix II N/A 100 30.0 @ 320x240

ASIC Yao et al. [46] 2009 Xilinx Virtex 5 N/A 100 32.3 @ 640x480

Huang et al. [47] 2012 TSMC 18μm CMOS N/A 100 30.0 @ 640x480

Yum et al. [48] 2015 Xilinx Virtex 6 N/A 170 36.9 @ 1280x720

ASIP Mentzer et al. [41, 42] 2015 TSMC 45nm process <1 W 400 1 @ 800x640

*Thermal Design Power.
**For category mobile GPU: CPU/GPU frequency.

8.7 Hardware Based SIFT-Feature Extraction 195

The systems are separated into four different implementations, where each
implementation is optimized according to device specific characteristics:

• Host-device implementation for control
• GPU device implementation
• Multi-core CPU device
• Multi-device implementation

The systems are evaluated for multiple image sizes for equal algorithmic
setups. Single device runtimes are listed in Table 8.6 for VGA image size.
Noticeable is the fact, that all single GPU systems and multi-device systems,
in which a GPU is enlisted, provide enough performance for a real-time
SIFT-feature extraction for VGA images, but require more than 230 W power
consumption. Furthermore, CPU single device systems are close to real-time
by providing 17–32 fps, but again, the power consumption is far too high
for use in automobiles with over 115 W power consumption. The AMD
Opteron 6168 and Intel Xeon E5 do not reach a sufficient frame rate for
a SIFT-feature extraction application. The author presents three different
heterogeneous systems, which are assembled by the afore mentioned single
device systems, which provide enough performance for real-time applications
even for very large images. For all systems, the flexibility is ensured by using
the high-level OpenCL.

In 2013, Rister [44] proposed an investigation of SIFT-feature extraction
on four different platforms using mobile GPUs. The author used a hetero-
geneous dataflow scheme and applied a partitioning of workload between
CPU and GPU. Different platform specific optimizations are used, e.g., data
compressing by pixel reordering or branchless convolution through on-the-fly
code generation. With frame rates reaching between 7.6 fps and 9.9 fps, the
performance is too poor for an use in ADAS, but a power consumption of the
complete systems of <5 W fulfills the requirements demanded. Furthermore,
flexibility is guaranteed by OpenGL for Android.

Bonato et al. presented 2008 the first hardware based SIFT implementa-
tion [45]. The heterogeneous system consists of a hardware accelerator for
SIFT-feature detection and a NIOS II softcore processor for SIFT-descriptor
generation. The system has been emulated on an Altera Stratix II FPGA and a
frame rate of 30 fps for QVGA images has been reached.

One year later in 2009, Yao et al. claimed to reach a comparable frame
rate of 32.3 fps, but for VGA images. They presented a hardware-based SIFT-
feature detector, which has been emulated on a ML507 board, and a SIFT-
feature generation in software. The drawback of the presented work is the

196 Self-Calibration of Wide Baseline Stereo Camera Systems

simplified SIFT scale-space, which leads to a limited algorithmic quality,
compared to the original algorithm.

The first fully hardware-based SIFT-feature extraction has been presented
in 2012 by Huang et al. [47]. The author’s system reaches a frame rate of 30
fps for VGA images and uses a TSMC 180 µm CMOS process.

In 2015, Yum et al. proposed a FPGA-based full SIFT implementation,
which is capable of processing 36.85 fps for HD images on a Xilinx Virtex
6 device [48]. By reducing the amount of necessary internal memory and a
local-patch reuse scheme, a high data throughput is reached, but the building
of scale-space is adjusted, which affects the algorithmic quality.

These hardware-based approaches provide adequate processing power for
a high frame rate and a sufficiently low power consumption of typically <10 W,
but the presented systems are not SW-flexible.

Mentzer et al. [41, 42] presented an ASIP-based SIFT-feature extraction,
which preserves the full algorithmic quality. Sufficient flexibility for future
algorithms of image feature extraction is ensured by the platform-specific
attribute of full software programmability. The drawback of the presented
case study is the low frame rate in FPGA emulation, which prohibits a real
time application in automotive use.

Thus, heterogeneous systems consisting of dedicated hardware for acceler-
ating the scale-space construction and a processor-based descriptor generation
is a promising trade-off between flexibility, performance and power consump-
tion. State-of-the-art conventional CPUs and GPUs are too power greedy,
nowadays mobile GPUs do not reach sufficient frame rates and pure hardware-
based systems do not fulfill the requirements for flexibility. A trade-off
concerning flexibility by supporting a processor with non-programmable
hardware accelerators is a possible approach for a SIFT-feature extraction
in the field of Advanced Driver Assistance Systems.

8.8 Conclusion

In this chapter, selected aspects of self-calibration for wide baseline stereo
camera systems for automotive applications have been introduced. Starting
at the extraction and matching of image features up to the extrinsic online
self calibration of stereo camera systems, fundamental algorithms have been
presented. A promising algorithmic combination consisting of the extraction
of SIFT-features, nearest-neighbor-based matching with spatial selection of
matching candidates and the estimation of camera parameters in order to
rectify misaligned stereo images have been discussed in detail.

References 197

Three exemplary aspects of algorithmic parameterizations, which are
the impact of a decreasing bit depth of input images, the selection of a
matching method and the threshold selection for the matching process, have
been examined in detail to show substitutionally the complexity of adjusting
existing algorithms to new applications.

In the last section, basic challenges of hardware-based SIFT-feature
extraction are presented and hardware-specific solutions for the afore men-
tioned algorithmic challenges are discussed. Finally, existing systems for the
extraction of SIFT-features are reviewed.

As discussed in this chapter, there is no state-of-the-art hardware imple-
mentation for the proposed algorithmic combination, which fulfills the three
requirements for ADAS, and delivers sufficient processing performance, low
power consumption and full flexibility for future algorithms. Thus, remaining
challenges will be solved to improve safety for vulnerable road users and to
enhance comfort in future automobiles.

References

[1] K. Genuit, Sound-Engineering im Automobilbereich, Springer, 2010.
[2] C. Schmid, R. Mohr and C. Bauckhage, “Evaluation of Interest Point

Detectors,” International Journal of Computer Vision, pp. 151–172,
2010.

[3] K. Mikolajczyk and C. Schmid, “A Performance Evaluation of Local
Descriptors,” IEEE Transcations on Pattern Analysis and Machine
Intelligence, pp. 1615–1630, 2005.

[4] H. Aanæs, A. L. Dahl and K. S. Pedersen, “Interesting Interest Points,”
International Journal of Computer Vision, pp. 18–35, 2012.

[5] S. Gauglitz, T. Höllerer and M. Turk, “Evaluation of Interest Point
Detectors and Feature Descriptors for Visual Tracking,” International
Journal of Computer Vision, 2011.

[6] J. Heinly, E. Dunn and J.-M. Frahm, “Comparative Evaluation of Binary
Features,” ECCV, pp. 759–773, 2012.

[7] K. Mikolajczyk and C. Schmid, “Scale & Affine Invariant Interest Point
Detectors,” International Journal of Computer Vision, pp. 63–86, 2004.

[8] J. Shi and C. Tomasi, “Good Features to Track,” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 593–600, 1994.

[9] D. G. Lowe, “Object recognition from local scale-invariant features,”
Proceedings of the International Conference on Computer Vision,
pp. 1150–1157, 1999.

198 Self-Calibration of Wide Baseline Stereo Camera Systems

[10] H. Hirschmüller, “Accurate and efficient stereo processing by semi-
global matching and mutual information,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2005.

[11] Z. Zhang, “A Flexible New Technique for Camera Calibration,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1330–1334, 2000.

[12] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F.
Schaffalitzky, T. Kadir and L. V. Gool, “A Comparison of Affine Region
Detectors,” International Journal of Computer Vision, pp. 43–72, 2005.

[13] J. Canny, “A Computational Approach to Edge Detection,” Transactions
on Pattern Analysis and Machine Intelligence, 1986.

[14] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,”
Proceedings of the Alvey Vision Conference, pp. 23.1–23.6, 1988.

[15] E. Rosten and T. Drummond, “Machine Learning for high-speed corner
detection,” European Conference on Computer Vision, 2006.

[16] T. Lindeberg, Scale-Space Theory in Computer Vision, KluwerAcademic
Publishers, 1994.

[17] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive representation
for local image descriptors,” Proceedings of Conference on Computer
Vision and Pattern Recognition, 2004.

[18] S. Belongie, J. Malik and J. Puzicha, “Shape Matching and Object
Recognition Using Shape Contexts,” Transactions on Pattern Analysis
and Machin Intelligence, pp. 509–522, April 2002.

[19] E. Tola, V. Lepetit and P. Fua, “DAISY: An Efficient Dense Descriptor
Applied to Wide-Baseline Stereo,” Transactions on Pattern Analysis and
Machine Intelligence, pp. 815–830, May 2010.

[20] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha and
P. Fua, “BRIEF: Computing a Local Binary Descriptor Very Fast,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1281–1298, 2012.

[21] A. Alahi, R. Ortiz and P. Vandergheynst, “FREAK: Fast Retina Key-
point,” Conference on Computer Vision and Pattern Recognition,
pp. 510–517, 2012.

[22] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, “ORB: an efficient
alternative to SIFT or SURF,” International Conference on Computer
Vision, pp. 2564–2571, 2011.

[23] S. Leutenegger, M. Chli and R. Y. Siegwart, “BRISK: Binary Robust
Invariant Scalable Keypoints,” International Conference on Computer
Vision, pp. 2548–2555, 2011.

References 199

[24] P. F. Alcantarilla, A. Bartoli and A. J. Davison, “KAZE Features,”
Proceedings of the 12th European Conference on Computer Vision,
pp. 214–227, 2012.

[25] H. Bay, A. Ess, T. Tuytelaars and L. Van Gool, “SURF: Speeded Up
Robust Features,” Journal of Computer Vision and Image Understanding,
pp. 346–359, 6 2008.

[26] P. Alcantarilla, J. Nuevo and A. Bartoli, “Fast Explicit Diffusion for
Accelerated Features in Nonlinear Scale Spaces,” Proceedings of the
British Machine Vision Conference, 2013.

[27] M. Muja and D. G. Lowe, “Fast Approximate Nearest Neighbors
with Automatic Algorithm Configuration,” International Conference on
Computer Vision Theory and Applications, pp. 331–340, 2009.

[28] H. C. Longuet-Higgins, “A Computer Algorithm for Reconstructing a
Scene from Two Projections,” Readings in Computer Vision: Issues,
Problems, Principles, and Paradigms, pp. 61–62, 1987.

[29] R. I. Hartley, “Estimation of relative camera positions for uncalibrated
cameras,” European Conference on Computer Vision, pp. 579–587, 1992.

[30] Z. Zhang, Q.-T. Luong and O. Faugeras, “Motion of an Uncali-
brated Stereo Rig: Self-calibration and Metric Reconstruction,” IEEE
Transactions on Robotics and Automation, pp. 103–113, 1996.

[31] Q.-T. Luong and O. D. Faugeras, “Self-Calibration of a Moving Camera
from Point Correspondences and Fundamental Matrices,” International
Journal for Computer Vision, pp. 261–289, 1997.

[32] P. Torr and A. Zisserman, “Robust Computation and Parametrization of
Multiple View Relations,” in Computer Vision and Image Understanding,
2000.

[33] B. Triggs, P. F. McLauchlan, R. I. Hartley and A. W. Fitzgibbon, “Bundle
Adjustment – A Modern Synthesis,” Proceedings of the International
Workshop on Vision Algorithms: Theory and Practice, pp. 298–372,
2000.

[34] T. Dang, C. Hoffmann and C. Stiller, “Continuous Stereo Self-calibration
by Camera Parameter Tracking,” Transactions on Image Processing,
pp. 1536–1550, 2009.

[35] M. Björkman and J.-O. Eklundh, “Real-Time Epipolar Geometry Esti-
mation of Binocular Stereo Heads,” Transactions on Pattern Analysis
and Machine Intelligence, pp. 425–432, 2002.

[36] Petterson and Petterson, “Online stereo calibration using FPGAs,”
Intelligent Vehicles Symposium, 2005.

200 Self-Calibration of Wide Baseline Stereo Camera Systems

[37] P. Hansen, H. S. Alismail, P. Rander and B. Browning, “Online Contin-
uous Stereo Extrinsic Parameter Estimation,” International Conference
on Computer Vision and Pattern Recognition, 2012.

[38] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, Cambridge University Press, 2004.

[39] R. Szeliski, Computer Vision: Algorithms and Applications, London:
Springer-Verlag, 2011.

[40] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,”
IEEE Transactions on Systems, Man and Cybernetics, pp. 62–66, 1979.

[41] N. Mentzer, G. P. Vaya and H. Blume, “Analyzing the Performance-
Hardware Trade-off of an ASIP-based SIFT Feature Extraction,” Journal
of Signal Processing Systems, 2015.

[42] N. Mentzer, N. V. Egloffstein, G. P. Vaya, W. Ritter and H. Blume,
“Instruction-Set Extension for an ASIP-based SIFT Feature Extrac-
tion,” in International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS), Samos, Greece, 2014.

[43] K. Moren and D. Göhringer, “A framework for accelerating local feature
extraction with OpenCLon multi-core CPUs and co-processors,” Journal
of Real-Time Image Processing, pp. 1–18, 03 2016.

[44] B. Rister, G. Wang, M. Wu and J. R. Cavallaro, “A Fast and Efficient
SIFT Detector using the mobile GPU,” IEEE International Conference
on Acoustics, Speech and Signal Processing, 2013.

[45] V. Bonato, E. Marques and G. A. Constantinides, “A Parallel Hard-
ware Architecture for Scale and Rotation Invariant Feature Detection,”
IEEE Transactions on Circuits and Systems for Video Technology,
pp. 1703–1712, 2008.

[46] L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao and W. Feng, “An architecture
of optimised SIFT feature detection for an FPGA implementation of
an image matcher,” International Conference on Field-Programmable
Technology, pp. 30–37, 2009.

[47] F.-C. Huang, S. Huang, J. Ker and Y. Chen, “High-Performance SIFT
Hardware Accelerator for Real-Time Image Feature Extraction,” IEEE
Transactions on Circuits and Systems for Video Technology, pp. 340–351,
03 2012.

[48] J. Yum, C.-H. Lee, J.-S. Kim and H.-J. Lee, “A Novel Hardware Archi-
tecture with Reduced Internal Memory for Real-time Extraction of SIFT
in an HD Video,” IEEE Transactions on Circuits and Systems for Video
Technology, 2015.

9
Arbitration and Sharing Control Strategies

in the Driving Process

David González1, Joshué Pérez1, Vicente Milanés1,
Fawzi Nashashibi1, Marga Sáez Tort2 and Angel Cuevas2

1INRIA, France
2CTAG – Centro Tecnológico de Automoción de Galicia, Spain

9.1 Introduction

Automated functions for real world traffic scenarios have been increasing in
last years in the automotive industry. Many research contributions have been
done in this field. However, other problems have come to the drivers, related
to the legal and liability framework, where it is still unclear up to which
point the control of the vehicle should stay with the driver or be taken by
automation.

The aim of the Advanced Driver Assistance Systems (ADAS) is mainly
related to help drivers in safety critical situations rather than to replace them.
However, in recent years, many research advances have been done in this
field, making automated driving closer to reality day by day. The numbers
of automated driving functions for typical traffic scenarios have increased
in the last few years in the automotive industry and university research.
However, other problems have appeared for drivers of such automated cars:
When should the driver or the automated systems take control of the vehicle
(since both cannot control an automated vehicle together at the same time
due to potential conflicts)? This question has not a simple answer; it depends
on different conditions, such as: the environment, driver condition, vehicle
capabilities, fault tolerance, among others. Arbitration and control activities
have been implemented in DESERVE WP24, mainly motivated by this
question.

201

202 Arbitration and Sharing Control Strategies in the Driving Process

In this chapter, we will analyze the acceptability to the ADAS functions
available in the market, and its relation with the different control actions.
A survey on arbitration and control solutions in ADAS is presented. It
will allow to create the basis for future development of a generic ADAS
control (the lateral and longitudinal behavior), based on the integration of
the application request, the driver behavior and driving conditions in the
framework of the DESERVE project. Based on vehicle modeling, driver
behavior and intention, a first approach for arbitration and control strategies,
which can anticipate the priorities on the control in emergency situations, is
described.

The main aim of this work is to allow the development of a new generation
of ADAS solutions where the control could be effectively shared between the
vehicle and the driver. Some simulations will allow the virtual testing for the
future implementation in demonstrators.

Fuzzy logic techniques are a suitable approach for the arbitration control in
the driving process. The contributions described in this chapter will be imple-
mented in two demonstrators: Automatic/Autonomous Emergency Braking
(AEB) pedestrian protection system and Driver Distraction monitoring—CRF
demo vehicles—using RTMaps1 as the development software.

The proposed arbitration and shared control takes into account the state
of the driver and the state of the system, in order to assess the level of
control that each system should have; based on the standard SAE J3016. Fuzzy
Logic controllers consider a control level that allows a smooth control sharing
between the automated system and the driver. It has been design according
to the Application Platform in DESERVE control architecture. Although the
Fuzzy Logic (as some other Artificial Intelligence techniques) is not explicitly
considered in the road vehicles functions safety standard (ISO 26262), a large
number of applications have been developed in recent years. The behavior of
a human driver can be emulated with this technique.

9.2 ADAS Functions Available in the Market

Driver Assistance Systems (DAS) or Advanced Driver Assistance Systems
(ADAS) can be defined as those active safety systems which require some
monitoring on the vehicle’s environment and on driver intentions. This extra
information is combined with ego-vehicle data (positions and speed profile)
in order to provide the driver with some warning or perform some automatic

1https://intempora.com/

9.2 ADAS Functions Available in the Market 203

actuation with the goal of increasing safety. Regarding driver interactions, a
DAS can offer:

• Information about the current situation
• A warning to alert the driver
• Take the control of the vehicle, partially or completely
• A combination of them

This section is focused on those DAS which have the capability of taking
vehicle control to improve or correct the driver response.

From the control point of view, control DAS systems can be classified as:

• Longitudinal Control Systems: Those DAS which are able to modify
vehicle speed by accelerating or braking.

• Lateral Control Systems: Those DAS which are able to change vehicle
direction, usually actuating on the steering system.

• Global Control Systems: DAS with a combination of longitudinal and
lateral control.

The Control DAS examples described in this subchapter are shown below:

Longitudinal Control Systems

• ACC (Adaptive Cruise Control)
• FCW (Frontal Collision Warning or Forward Collision Warning)
• AEB/CMbB (Automatic Emergency Braking/Collision Mitigation by

Braking)
• SLA (Speed Limit Assistant)

Lateral Control Systems

• LDW/LKA (Lane Departure Warning/Lane Keeping Assistance)
• BSD/LCA (Blind Spot Detection/Lane Change Assistant)

Other Control Systems

• Pedestrian Detection/Active Hood
• Driver Distraction Detection
• PreCrash
• Parking Assistance

9.2.1 Longitudinal Control Systems

These are the main steps for the longitudinal control of the vehicle: the first
system is more a comfort than a safety one (ACC), but safety systems such as

204 Arbitration and Sharing Control Strategies in the Driving Process

Forward Collision Warning (FCW) orAEB are built upon it. Other possibilities
for Longitudinal Control of the vehicle are systems such as SLA.

ACC (Adaptive Cruise Control)
The ACC adds to the most common Cruise Control constant safety distance
maintenance with the preceding vehicle. It consists of a front-mounted sensor,
an integrated control unit with the task to regulate the system’s perfor-
mance and a suitable HMI that informs and allows the driver to control the
system.

This sensor controls the area in front of the vehicle. If no obstacle is
detected, the vehicle keeps the selected speed as a standard cruise control. In
case a vehicle is detected in the predicted path of the vehicle (target vehicle),
the sensor calculates the relative distance and speed to the target vehicle. (up
to around 150–200 m). Then, the Control Unit decides whether it is necessary
to actuate the brake system of the vehicle with the goal to keep a constant
safety distance. When the target vehicle disappears from the detection area,
the Control Unit sends the order to accelerate again until the desired cruise
speed is reached.

The system works usually between 30 and 180 km/h. The maximum
deceleration provided by the system is far from the maximum deceleration
capabilities of the vehicle (in between 2 and 3 m/s2)2. The driver can choose
between different safety gaps (time – related). Developed for high capacity

Figure 9.1 ACC Systems.

2In case the driver does not react, some other ACC systems are also improved with an AEB
system, also considered as CMbB, providing autonomous brake action (from 5 m/s2 to full
power).

9.2 ADAS Functions Available in the Market 205

roads, ACC Stop & Go improves the performance of the conventional ACC
to a full stop capability. The stop and go of the vehicle is, thus, automatically
performed, so the range of the system is extended to 0–200 km/h.

FCW (Frontal Collision Warning)
When ACC fails to provide enough deceleration [exceed comfort specifi-
cations (above 2–3 m/s2)], request to avoid a possible head-on collision, a
warning, is provided to the driver (FCW). This warning reminds the driver the
urge to take control of the situation. FCW is included in the basic ACC system
in all vehicles equipped with the necessary sensors (laser, radar, etc.). These
systems are usually activated between 5 and 2 seconds before the collision
with the vehicle ahead might occur.

AEB/CMbB (Automatic Emergency Braking/Collision Mitigation by
Braking)
As the third step in the longitudinal control of the vehicle, AEB is an automatic
emergency safety system that takes control of the situation if the driver fails
to decelerate the vehicle when a head-on collision is about to happen. The
system consists on an automatic actuation of the vehicle’s brakes in case the
situation requires so to avoid a crash. AEB systems can be divided according
to their deceleration in 1) Soft Braking. Up to 5 m/s2 and 2) Hard Braking.
From 5 m/s2 to the full capability of the braking system.

Some systems can provide a progressive braking: first, a soft braking can
be provided and, in case the accident seems unavoidable, a hard braking is
applied. Also, a pre-fill of the brake circuit in case of possible risk (when the
FCW system is launched) can be provided, in order to be ready for a full-brake
in case it is required (either by the driver or automatically). In case the system
is not able to avoid an accident but can help in the collision mitigation as the

Figure 9.2 Stages on the longitudinal control of the vehicle.

206 Arbitration and Sharing Control Strategies in the Driving Process

obstacle is crashed at a lower speed, it is called CMbB, Collision Mitigation by
Braking. The only difference is that AEB can really avoid the accident, while
CMbB is launched a short time before the accident that can’t be avoided
any more.

SLA (Speed Limit Assistant)
The Speed Limit Assistant (SLA) is a safety system that provides the driver
with information on the most suitable maximum speed continuously during
his or her journey.

SLA system can be based on several sub-systems:

• TSR (Traffic Sign Recognition): Recognition of the traffic signs on the
road, either by vision or gathering information from a map, is shown to
the driver as a reminder of the prevailing speed limits.

• CSW (Curve Speed Warning): As extracted from the digital maps,
information of the most suitable recommended maximum speed limits

Figure 9.3 CSW system.

Figure 9.4 TSR system.

9.2 ADAS Functions Available in the Market 207

when passing the curve ahead are shown to the driver. Another option is
to show just a warning icon in case speed is considered as too high for
the incoming bend.

9.2.2 Lateral Control Systems

Lateral control systems take care of the lateral dynamics of the vehicle, either
warning the driver or taking control of the vehicle actuation systems.

LDW/LKA (Lane Departure Warning/Lane Keeping Assistant)
The Lane Departure Warning system has the task to warn the driver in case he
drives out of the lane due to a distraction (without using the blinkers). Many
OEMs offer today a Lane Departure System under different commercial
brands (AFIL, Audi Lane Assist, etc.). It is composed by a sensor (or several
sensors) with the capability to detect when the driver is leaving from the
chosen lane, a Control Unit and a suitable HMI for the driver.

Lane’s lines detection can be done through two different technologies:

• Infrared sensors placed in the low part of the vehicle (PSA models):
They use the reflection produced by the emitted light when driving over
a white line to detect if the vehicle is driving over them. In this case,
a Control Unit determines the driver is departing from the lane, and,
depending on some other factors (blinkers, etc.), it can warn him or her
by different methods (making the steering wheel or the seat vibrate, sound
warning, etc.).

• Image processing: A camera—usually placed behind the windshield, on
the rear view mirror housing—provides images which can be analyzed.
Thus, it is possible to determine when the driver is departing from
its chosen lane. This system brings advantages, such as its predictive
capability (it can on obstacles in the already known driving corridor)
and is more robust in front of situations such as arrows, providing
considerably fewer false alarms. As a disadvantage, it can be less robust
in case of poor visibility.

In any case, the system works from a certain speed (commonly, from in
between 60 and 80 km/h upwards) and can be switched off. Moreover, when
activating the suitable blinker, the system understands that the driver really
wants to change lane and no warning is provided in case of crossing the
lines.

An update of the system is also found in the market: LKA (Lane Keeping
Assistant), which includes an additional torque on the steering wheel (electrical

208 Arbitration and Sharing Control Strategies in the Driving Process

Figure 9.5 LDW system.

Figure 9.6 BSD/LCA system.

power steering is required) that helps the driver to keep the vehicle into the
desired lane.

BSD (Blind Spot Detection)
A Blind Spot Detection system has the goal to warn the driver in case another
vehicle is located in the blind spot which is not controlled by the rear-view
mirrors.

Therefore, it counts on some sensors (commonly, short range radars @
24 GHz or image processing units) which monitor constantly the area placed
in the lateral blind spots of the vehicle. These sensors provide information to
a Control Unit, which decides the susceptibility to provide the driver with a
warning. This warning can be acoustic, visual or haptic.

Some systems can warn continuously on the existence of objects in the
blind spot. Some others only warn when the driver expresses his or her will

9.2 ADAS Functions Available in the Market 209

to change lane, using the correspondent blinker. They usually work over a
certain speed and are capable to exclude parked vehicles or those driving in
the opposite direction, in order to reduce the false alarm rate. The detection
area can measure around 10 meters behind the rear view mirror and 4 meters
wide, enough to cover the blind spot.

LCA (Lane Change Assistant)
A Lane Change Assistant is a system which increases the possibilities of a
Blind Spot Detection System. The detection distance can achieve up to 50–60
meters behind the ego-vehicle (positions and speed profile of the vehicle) in
the adjacent lanes. Moreover, the relative speed of the detected vehicles is
also taken into account, so the system is capable to warn the driver in case the
lane change is too risky because of a fast approaching vehicle from behind.
Depending on some parameters, different warning levels can be included.

9.2.3 Other Control Systems

Pedestrian detection/Active hood
Apedestrian detection system is capable to recognize a potential danger. In this
case, the driver can be warned or even an automatic action can be performed
(automatic speed adaptation). In case of unavoidable crash, the activation of
passive safety measures is also considered (active hood).

PreCrash systems
In the transition or overlap between active and passive safety, PreCrash
systems work when accidents are unavoidable. Its mission is, based on the
information gathered by the rest of the safety systems, and after determining
the accident cannot be avoided by its intervention, to prepare the passive safety
elements of the vehicle to better perform their safety mission. For instance,
when there’s a sure head-on collision, CMbB will reduce the speed of the
crash, while PreCrash will pre-tension the seatbelts, will move the seats to
place them in a more convenient position or will pre-trigger airbag deployment
order. PreCrash systems can cover the front of the vehicle, the rear or all 360◦
of the vehicle.

Parking assistance
Parking assistance is one of the most implemented DAS. There are many types
of technology used on this. This section will not be focused on the traditional
ultrasonic or vision aided parking assistance systems, but on the systems that

210 Arbitration and Sharing Control Strategies in the Driving Process

can provide some kind of support to the driver. These systems can be divided
in the following ones:

• Vision-Aided Systems: together with the image of a camera placed in the
rear part of the vehicle, some support provided by visual guidelines in
the dashboard display.

• Top View Systems: up to 4 cameras placed on exposed surfaces around
the vehicle provide images that, after some processing, can be shown on
the vehicle’s display as if it was seen from above.

• Aided Park Systems: some systems can provide support to the driver on
his/her search for parking spots or his/her maneuvers to park the vehicle.

Figure 9.7 Top view of a parking assistance system.

Figure 9.8 Aided park system.

9.2 ADAS Functions Available in the Market 211

Figure 9.9 Automatic park systems.

• Automatic Park System: this system can take control of the steering of
the vehicle in order to park automatically after detection of a parking
slot. The driver remains responsible for the longitudinal control of the
vehicle.

9.2.4 Control Solution in ADAS

Based on most control architectures for Automated and semi-automated
vehicles [2], DESERVE is divided in three main platform parts or stages: per-
ception, application and information-warning-intervention (IWI). The sensing
and perception of environmental and onboard information is vitally important
for any automotive DAS function. Based on preliminary work from other fund-
ing projects in this area3 the information flow and architectural decomposition
of the DESERVE platform is shown in Figure 9.10.

The three main building blocks in Figure 9.10 are the perception layer, the
application layer and the IWI controller layer. The same decomposition was
also chosen from other parties in similar projects (like InteractIVe [3]) and
corresponds to the naturalistic behavior that is applied when accomplishing
a given task, namely the action points “sense”, “plan” and “act”. As baseline
DESERVE considers the results of several research projects, like InteractIVe,
but targets the standardization of the software architecture.

Indeed, by handling the sensor and actuator information on a virtual and
abstract level, a systematical standardization of input and output interfaces can
be realized. This results both in a very good encapsulated module architecture
and makes exchange or addition of further module components much easier.

3InteractIVe—FP7/ICT funding project—www.interactIVe-ip.eu

212 Arbitration and Sharing Control Strategies in the Driving Process

Figure 9.10 DESERVE platform.

In particular, the Perception Platform processes the data received from
the sensors that are available on the ego vehicle and sends them to the
Application Platform. The data received from the Application Platform are
used to develop control functions and to decide the actuation strategies. Finally,
the output is sent to the IWI Platform informing the driver in case of warning
conditions and activating the systems related to the longitudinal and/or lateral
dynamics.

9.2.4.1 Perception platform
The main objective of the Perception layer is to define and develop the
DESERVE platform components that will interface with sensors and actuators,
acquiring information from the typical sources. All these possible information
sources are addressed, described and characterized in an abstract level that
allows virtualization of input and output data. By using such an abstract and
virtual intermediate layer the connection/exchange of sensors or actuators and
the porting or adaptation to different vehicle models is expected to become
much easier and less time consuming.

The DESERVE Perception layer is composed of different sub-layers that
build up, in their totality, the complete information source that can be imported
into the DESERVE platform framework. In a generalized sense the Perception
layer can be seen as the input and output (I/O) gateway, especially when
including communication devices and the different actuators as part of the I/O
components.

9.2 ADAS Functions Available in the Market 213

F
ig

ur
e

9.
11

D
E

SE
R

V
E

pl
at

fo
rm

fr
am

ew
or

k.

214 Arbitration and Sharing Control Strategies in the Driving Process

9.2.4.2 Application platform
Based on these assumptions and previous works, a control strategy for
sharing vehicle control between the driver and embedded ADAS systems was
proposed. These layers can be used dynamically, based on the information
from the driver monitoring automotive—DMA.

Since the driver is legally responsible for operating the car in its environ-
ment, in our approach he/she will have the last responsibility in the arbitration
control process. However, if the driver is not enabled to drive, then the control
will be taken by the embedded system.
The specific Application modules used in the arbitration and control of the
vehicle are:

• Threat assessment: the information from Frontal Object Perception,
Vehicle trajectory and Driver intention modules will be considered, in
order to establish a risk level in each scenario.

• IWI manager: this module will determine the action to be taken by
the driver or the vehicle (here we can set the Arbitration and Control
functions). The Driver Assistance Systems involve two main decision
makers: when is the driver who takes the control or when does the
automated system and up to which extent.

• Vehicle control: Only the brake pedal will be considered. Classical con-
trol techniques considering comfortable/safe accelerations. Longitudinal
control based on PID and Fuzzy logic controllers have been used in
automated functions.

The level of assistance provided by the automated car to the driver might
change depending on the driver’s state and on the situation at hand (imminence
of danger). With a varying level of automation of the automated vehicle,
control might smoothly flow from the driver to the automated car and vice
versa.

9.2.4.3 Information Warning Intervention (IWI) platform
The Information Warning and Intervention module uses the output of the
Application layer and provides ways to execute the interaction with the driver
and the control of the vehicle. Mainly the information is sent to the actuators
that will translate high level commands into acceleration and steering angle
to provide the correct answer expected from the vehicle.

In a similar way, information is sent through the HMI towards the driver
if necessary. These messages will warn and inform the driver (visual and
acoustic signals/messages), as well as interact with him/her (haptic signals).

9.3 Survey on Arbitration and Control Solutions in ADAS 215

In order for these messages to be effective, great efforts have been done in
HMI solutions where the current hot topic is to share the control with the
driver. In the following, a review of some techniques for the arbitration and
shared control are presented.

9.3 Survey on Arbitration and Control Solutions in ADAS

In the transportation field, human machine interaction plays a key role.
Nowadays, significant results have been achieved in the automated driving
field (at least, under certain circumstances) [4, 5]. Nonetheless, there is a long
way to go before removing the driver from the loop in real traffic conditions.

Parasuraman et al. [7], stated that the main problem in this kind of
systems lies in the decision making process and the assignment of control
responsibility. In the ITS field, shared control is the action of carrying a task
simultaneously between a (on board) computer and a driver, differing from
manual control and fully automation (since no real “sharing” is being done in
this situations, see Figure 9.12).

The first levels of automation were set by Sheridan in [9]. Here, 10
different levels described the amount of responsibility for each decision maker.
Flemisch et al. in [10] presents a more developed view of the levels needed for
control sharing, where the automation is based in the H-metaphor and clarified
in two main groups: Tight rein and loose rein.

Recently [11], new taxonomy of automated driving was issued by SAE
International; its control levels are depicted by Figure 9.12. Other levels of
automation have already been proposed by the German Federal Highway
Research Institute (BASt) [12] and the National Highway Traffic Safety
Administration (NHTSA) [13]. A comparison of these is summarized in [11],
stating that the SAE taxonomy is alike the other two, but gives a broader and
more specified view of automation levels. For this reason, the SAE taxonomy
will be the one taken into account (see Figure 9.12).

When considering the driver in the control loop, it is important to know
the automation level embedded in the vehicle. This will permit the control

Figure 9.12 SAE J3016 standards of driving automation levels for on-road vehicles.

216 Arbitration and Sharing Control Strategies in the Driving Process

sharing system to set the limits for each decision maker. We will deepen in the
arbitration concept as a way to change, in a smooth way, the level of control
according to the situation in-hand.

The Arbitration concept is the process of settling an argument or a
disagreement by an entity that is not involved.4 Little research has been done
in terms of arbitration (since it is a new concept in vehicle automation).
First approaches define cognitive states and relations between humans and
machines [6], also mental models as in human relationships have been
considered by [14]. This consideration leads to a scenario where the status
of the driver and the system must be known, at all times, aiming to set an
accurate level of automation for the current situation.

From the above, communication between the system and the driver
should constantly occur, in a way that is possible for both to make a
mental model of one another [14]. Also different metaphors have been
stated, such as the copilot metaphor (referring to the automated system)
and the H-metaphor as a comparison between horse-human cooperation and
vehicle-human cooperation [15].

9.4 Human-Vehicle Interaction

Increasing need to pay more attention to the human driver in interaction
with the vehicle has been recently identified [1]. From other domains where
automation is already widely used (e.g. aviation, central rooms) it is known
that automation has both positive and negative effects on the human operator.
With increasing automation in the vehicle domain these effects need to get far
more attention on the short term, evaluating the human-vehicle relationship
and assigning countermeasures if necessary [1]. In order to have a regular
communication between the two decision makers (the driver and the embedded
system), in [15], a haptic HMI system is proposed where active force feedback
is the common language. This allows the message to be directly linked to the
actuator where the reaction of the driver is expected, also allowing the system
to evaluate the performance of the driver. The haptic feedback can also give
hints in terms of the action the driver should perform (e.g. the steering wheel
turns a little to the right or left in order to hint the driver).

Haptic systems have been implemented widely across the literature: in
gas pedal feedback [16, 17], and in steering wheel feedback [18, 19]. These
are also used in training simulators, improving the performance of drivers in
different scenarios.

4Oxford dictionary.

9.5 Driver Monitoring 217

The use of corrective feedbacks is known to cause over-corrective behavior
[8] or bad performance when removed. This happens because it impairs the
input-output relationship in motor skill learning of the driver. In [20], the
haptic aid shows a good performance if the feedback is provided as needed
and not all the time.

For arbitration and shared control, a state of the driver is needed in order
to know his current status to perform the driving task. In [21], an extensive
study on driver distraction was performed. It showed that in terms of visual
and cognitive attention sharing, while performing following or passing driving
maneuvers, a warning from the HMI proved to be helpful.

In [22], the importance of vision at the driving task was stated.
Although visual acuity proved to be important, other indicators of the driver
ability (Visual field, processing speed, divided attention, among others) have
evidence-basis for their relevance to the driver ability and safety, and can
be measured in a noninvasive way with recent in-car perception systems,
as in [23].

Recently, the HAVEit5 project [24, 25], and the InteractIVe6 project [26]
have made the first approaches into control sharing strategies, theoretically
and in simulations, with driver-in-the-loop capabilities.

The aim of arbitration and control solutions in ADAS, inside the
DESERVE project is to effectively share the control with the driver and
manage risky situations. In [27], ADAS applications are listed such as lane
change assistance systems, pedestrian safety systems, adaptive light control,
and parking assistance systems, among others. These are considered to
improve the automated system and take into account the driver-in-the-loop
for arbitration applications [28].

Arbitration systems for shared control applications is a new concept in
the ITS research field. Based on previous contributions, it is the objective
to develop a system able to share the control—in a smooth way—between
the decision makers. Motivation for this approach can be found in social
needs [29], legal challenges [1, 33] and technical bases such as the DESERVE
platform (see [11]).

9.5 Driver Monitoring

Driver’s limitations are very often related to his physiological and psycho-
logical states. An optimum pilot state includes an optimum alertness level

5http://haveit-eu.org/
6http://www.interactive-ip.eu/

218 Arbitration and Sharing Control Strategies in the Driving Process

and a task-oriented attentiveness. The distinction between “alertness” and
“attention” is justified in the way that driver “alertness” is presumed to be
necessary but not sufficient for an appropriate focus on external events. Thus,
drivers may be alert but still be inattentive. In order to assess alertness and
attentiveness in the DESERVE project, two main factors are evaluated:

• Drowsiness/fatigue
• Distraction

Up to now, a universally valid definition of drowsiness still lacks.Atired driver
mainly derives from performing a highly demanding task for extensive time
periods (“time-on task” for the driving effort). Other definitions focus on the
sleepiness level, which is the state of being ready to fall asleep. It is mainly
caused by circadian rhythms and sleep disorders (reduced quality or quantity
of sleep).

On the other hand, “Driver distraction refers to those instances when a
driver’s attention is diverted from the primary task of driving the vehicle in a
way that compromises safe driving performance”, [30]. This distraction can
be either internal (e.g. other passengers interaction, cellphone, etc.) or external
(e.g. other road users, traffic signs, etc.). It can also be classified in different
modes as: Visual (external attractors for example advertisement on the side
of the road or internal attractors e.g. looking to his children at the back of
the vehicle, displaying an address onto a navigation device, etc.), acoustic
(ringing phone, listening music) or cognitive distraction (conversing at phone
but also internal thought and rumination, etc.).

For more information about on-line driver monitoring approaches, the
reader is referred to [34]. Here a description of the different on-the-market and
research methods and approaches are described in detail. In the DESERVE
project, two main approaches were taken into consideration for the assessment
of alertness and attentiveness of the driver:

The Continental driver supervision system is implemented for a real
time monitoring of two independent parameters, the drowsiness level (sleepi-
ness vs. awakeness) and the visual inattention (e.g. the driver “is/is not”
looking to the road) [23].

The Driver state monitoring includes a compact low consumption and
high dynamic range (120 dB) CMOS camera sensor. The camera is equipped
with a global shutter for the synchronization with a set of pulsed NIR
lights (850 nm).

Ficosa’s Somnoalert Sensor aims to detect “non-apt to drive” states using
physiological signals such as thoracic effort signal. An external thoracic effort

9.5 Driver Monitoring 219

sensor sends the signals to a smartphone, where it is processed to evaluate the
state of the driver and indicate if this becomes dangerous.

9.5.1 Legal and Liability Aspects

For automated vehicles, it is still unclear how legal and liability aspects are
going to evolve. As a matter of fact, the U.S. legislation does not prohibit
nor allows the use of automation in the driving task [31]. This leaves an
important legal gap towards the responsibility of any action taken by the on-
board system, since it is now an entity that “thinks for itself”. Similar situations
arise in Europe where in a crash the responsible at all times is the driver, even
when an embedded system was controlling the vehicle [32].

From the legal perspective, several initiatives in the U.S., specifically in
the states of Nevada (2011), Florida (2012), California (2012), Washington
D.C. (2012) and Michigan (2014), have already established some of the
minimum safety requirements in order to allow automated vehicles technology
[33]. Other state legislations in the U.S. are following these initiatives,
to take a wider view of this the reader is referred to [32] and [33]. In
the E.U., initiatives launched between governments and manufactures are
currently creating the framework for the new standards and regulations for
automated driving. These address legal matters and promote the standard-
ization of the automated vehicles technology, as for example the Citymobil2
project [36].

As to liability, Beiker and Calo [35] noted that the situation is more
complex with automated vehicles, concluding that it is unclear how the courts,
or the public, will respond to the prospect of artificial intelligence acting on
behalf of humans with fatal consequences. They expect that a set of policies can
be established to create the necessary legal framework for further development
of vehicle automation. In the E.U., the legal framework sets the liability of any
crash towards the driver. This creates many barriers for automated vehicles
and restricts them to private roads.

As a matter of fact, automation (or the lack of it) is not black or white
but rather in shades of gray, complex and involving many design dimensions
[1]. OEMs are careful with this and do not claim that an ADAS is working in
all driving situations. A helpful model of automation is to consider different
levels of assistance and automation that can e.g. be organized on a scale as in
[11]. This not only suggests but encourages the use of systems that consider
the driver-in-the-loop. These systems will allow the industry to add driver’s

220 Arbitration and Sharing Control Strategies in the Driving Process

vigilance to their system’s supervision and avoid gaps (at least in the legal
framework).

9.6 Sharing and Arbitration Strategies: DESERVE
Approach

The arbitration module is defined in the information, warning, intervention
(IWI) manager (Application platform) of the DESERVE abstraction layer
(Figure 9.11). This Advanced Driver Assistance System involves two main
decision makers: the driver and the automated system. It will determine the
level of responsibility of each of them at all times and allow smooth transitions
between automation levels defined in [11].

Based on the information from different perception systems, it is possible
to define fuzzy control parameters to achieve this, as was proposed in [37, 38].
This cognitive process will result in the selection of a course of action among
several alternative scenarios (e.g., up to which amount the driver should be
responsible of the pedal action in anACC maneuver while tired). The proposed
system consists of a two level fuzzy approach for the arbitration (IWI manager)
and vehicle sharing (VMC) modules.

The arbitration and sharing control concept has been developed
in RTMaps, one of the development platform defined in DESERVE.
Figure 9.13 shows the general diagram for the arbitration. Here a fuzzy logic
approach is implemented to compute the automation assessment (or situation
status of decision-makers). This value is an assessment of the alertness and
attentiveness of the driver w.r.t. the risk detected from the situation status.

Figure 9.13 Arbitration and control sharing application: General diagram.

9.7 Conclusions 221

The sharing controller considers the automation assessment (but also the
driver and the automated systems decisions) to decide the level of control and
responsibility of each decision maker in real time. The output goes then to the
HMI, informing the driver (a haptic steering wheel system informs the driver
of next maneuvers that the system is ready to perform), and to the vehicle
control. This process is done in real time, allowing a smooth sharing between
decision-makers. For details and further perspective in first preliminary results
please refer to [38].

9.7 Conclusions

This chapter presents a survey on arbitration and control solutions for ADAS,
based on the ADAS solutions available in the market, and the ones considered
from the functional requirements described in Sub-Project-1 of the DESERVE
project. The main architecture is described as a three-pillar platform system
first “sensing” the environment, then “planning” according to decisions made
over perception data and finally “acting” to follow those decisions.

For the sharing and arbitration approach, different points of view have been
considered. Here, the estimation of the driver state and the assessment of the
risk related to the situation in hand are the most important ones. These allow the
system to have a coherent evaluation of the situation of both decision makers
and arbitrate if the vehicle’s embedded system needs to intervene because of
risky driver actions.

This intervention is performed through haptic signals. However, there are
still some challenges with respect to HMI solutions that can properly work as a
communication bridge for the two decision makers and inform the driver—on
time—of automated vehicles decisions.

Furthermore, legal and liability aspects are important milestones yet
to be tackled. Although some states of the U.S. are taking the initiative,
law regarding automated vehicles is in its first steps. Liability and legal
responsibility still lies with the driver, hence, in our approach the control
lies with the drivers (the driver can deactivate the system at any stage and is
stronger than haptic cues). In future research we will focus in the arbitration,
to determine (using some perception information) up to which point the
embedded system can take control of the vehicle and which situations are
more dangerous (risk management, taking special care of situations where
overreliance on the system occurs—the embedded system returns the control
to the human driver).

222 Arbitration and Sharing Control Strategies in the Driving Process

References

[1] Schijndel-de Nooij, Margriet, Krosse, Bastiaan, Broek, Thijs, Sander
Maas, Ellen van Nunen, and Han Zwijnenberg. “Definition of necessary
vehicle and infrastructure systems for Automated Driving”, Study Report
for the European Commission (2011).

[2] González David, Pérez Joshué, Milanés Vicente and Nashashibi, Fawzi.,
“A Review of Motion Planning Techniques for Automated Vehicles,” in
Intelligent Transportation Systems, IEEE Transactions on, in press.

[3] Hesse, Tobias, et al. Towards user-centred development of integrated
information, warning, and intervention strategies for multiple ADAS in
the EU project interactive. s.l.: Universal Access in Human-Computer
Interaction. Context Diversity, 2011.

[4] Ziegler, Jens, Philipp Bender, Markus Schreiber, Henning Lategahn,
Tobias Strauss, Christoph Stiller, Thao Dang et al. “Making bertha
drive—An autonomous journey on a historic route.” Intelligent Trans-
portation Systems Magazine, IEEE 6, no. 2 (2014): 8–20.

[5] Broggi, Alberto, Pietro Cerri, Stefano Debattisti, Maria Chiara Laghi,
Paolo Medici, Matteo Panciroli, and Antonio Prioletti. “PROUD-Public
road urban driverless test: Architecture and results.” In Intelligent
Vehicles Symposium Proceedings, 2014 IEEE, pp. 648–654. IEEE, 2014.

[6] Hoc, Jean-Michel. Towards a cognitive approach to human-machine
cooperation in dynamic situations. s.l.: International Journal of Human-
Computer Studies, 2001. Vol. 54.

[7] Parasuraman, Raja, Sheridan, Thomas B and Wickens, Christopher D.
A Model for types and levels of humans interaction with automation.
s.l.: Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 2000. Vol. 30.

[8] Leeuwen, Peter van, et al. Effects of concurrent continuous visual
feedback on learning the lane keeping task. s.l.: Proceedings of the
Sixth International Driving Symposium on Human Factors in Driver
Assessment, Training and Vehicle Design, 2011.

[9] Sheridan, Thomas B. and Verplank, William L. Human and Computer
Control of Undersea Teleoperators. s.l.: Massachusetts Institute of
Technology Cambridge Man-Machine Systems Lab, 1978.

[10] Flemisch, Frank, et al. Cooperative Control and active interfaces for
vehicle assisstance and automation. s.l.: FISITA World automotive
Congress, 2008.

[11] Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle
Automated Driving Systems. s.l.: SAE International, 2014.

References 223

[12] Gasser, Tom M. and Westhoff, Daniel. BASt-study: Definitions of
Automation and Legal Issues in Germany. s.l.: 2012 Road Vehicle
Automation Workshop, July 25, 2012.

[13] Preliminary Statement of Policy Concerning Automated Vehicles. s.l.:
Nationam Highway Traffic Safety Administration, May 30, 2013.

[14] Flemisch, Frank, et al. Automation Spectrum, inner/outer compatibility
and other potentially usefull human factors concepts for assisstance and
automation. s.l.: Human Factors for assisstance and automation, 2008.

[15] Flemisch, Frank O., et al. The H-Metaphor as a Guideline for Vehi-
cle Automation and Interaction. s.l.: NASA Center for AeroSpace
Information, 2003.

[16] Abbink, David A. Neuromuscular analysis of haptic gas pedal feedback
during car following. s.l.: Faculty of Mechanical Maritime and Materials
Engineering, Delf University of Technology, 2006.

[17] Winter, Joost C.F. de, et al. A two-dimensional weighting function for a
driver assistance system. s.l.: Systems, Man, and Cybernetics, Part B:
Cybernetics IEEE Transactions on, 2008. Vol. 38.

[18] Mulder, Mark, Abbink, David A. and Boer, Erwin R. The effect of haptic
guidance on curve negotiation behavior of young, experienced drivers.
s.l.: Systems, Man and Cybernetics, 2008 SMC 2008 IEEE International
Conference on, 2008.

[19] Abbink, David A., Mulder, Mark and Boer, Erwin R. Haptic
shared control: smoothly shifting control authority? s.l.: Cognition,
Technology & Work, 2012.

[20] Crespo, Laura Marchal, et al. The effect of haptic guidance, aging, and
initial skill level on motor learning of a steering task. s.l.: Experimental
Brain Research, 2010. Vol. 201.

[21] Zhang, Yu. Visual and Cognitive Distraction Effects on Driver Behavior
and an Approach to Distraction State Classification. Raleigh, North
Carolina: North Carolina State University, 2011.

[22] Owsley, Cynthia and Jr., Gerald McGwin. Vision ans Drivng. s.l.: Vision
Research, 2010. Vol. 50.

[23] Boverie, S., Cour, M and Le Gall, JY. Adapted Human Machine Interac-
tion concept for Driver Assistance Systems DrivEasy. Milano: 18th IFAC
World Congress, 2011.

[24] Flemisch, Franck, et al. Towards Highly Automated Driving: Inter-
mediate report on the HAVEit-Joint System. Brussels: 3rd European Road
Transport Research Arena, Tra2010, 2010.

[25] Vanholme, Benoit. Highly Automated Driving on Highways based on
Legal Safety, PhD Thesis. 2012.

224 Arbitration and Sharing Control Strategies in the Driving Process

[26] Hesse, Tobias, et al. Towards user-centred development of integrated
information, warning, and intervention strategies for multiple ADAS in
the EU project interactive. s.l.: Universal Access in Human-Computer
Interaction. Context Diversity, 2011.

[27] D24.1 -Vehicle Control Solutions-, SP2. s.l.: DESERVE project, 2013.
Deliverable.

[28] D44.1 -Automated Functions Solution Design-, SP4. s.l.: DESERVE
project, 2013. Deliverable.

[29] Adams, Lisa D. Review of the literature on obstacle avoidance maneu-
vers: braking versus steering. s.l.: Univ. Michigan Transp. Res. Inst.,
Ann Arbor, MI, Tech. Rep. UMTRI-94-19, 1994.

[30] Young, Kristie, John D. Lee, and Michael A. Regan, eds. Driver
distraction: Theory, effects, and mitigation. CRC Press, 2008.

[31] Walker Smith, B. Automated Vehicles Are Probably Legal in the United
States, 1 Tex. A&M L. Rev. 411, 2014.

[32] Trimble, Tammy E., Richard Bishop, Justin F. Morgan, and Myra Blanco.
Human factors evaluation of level 2 and level 3 automated driving
concepts: Past research, state of automation technology, and emerging
system concepts. No. DOT HS 812 043. 2014.

[33] Anderson, James M., Kalra Nidhi, Karlyn D. Stanley, Paul Sorensen,
Constantine Samaras, and Oluwatobi A. Oluwatola. Autonomous vehicle
technology: A guide for policymakers. Rand Corporation, 2014.

[34] D32.1 -General Driving Monitoring module definition SoA-, SP3 s.l.:
DESERVE project, 2013 Deliverable.

[35] Beiker, S. and Calo, R. Legal aspects of autonomous driving. Santa Clara
L. Rev. 52 (2012): 1145.

[36] J. van Dijke and M. van Schijndel, Citymobil, advanced transport for the
urban environment: Update, Transportation Research Record: Journal of
the Transportation Research Board, no. 2324, pp. 29–36, 2012.

[37] D24.4 -Generic ADAS Control-, SP2 s.l.: DESERVE project, 2013
Deliverable.

[38] Perez, J. M., David Gonzalez, Fawzi Nashashibi, Gwenael Dunand,
Fabio Tango, Nereo Pallaro, and Andre Rolfsmeier. “Development and
design of a platform for arbitration and sharing control applications.” In
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XIV), 2014 International Conference on, pp. 322–328. IEEE,
2014.

PART III

Validation and Evaluation

http://taylorandfrancis.com

10
The HMI of Preventing Warning Systems:

The DESERVE Approach

Caterina Calefato1, Chiara Ferrarini1, Elisa Landini2,
Roberto Montanari2, Fabio Tango3, Marga Sáez Tort4

and Eva M. García Quinteiro4

1Unimore – University of Modena and Reggio Emilia – Italy
2RE:Lab srl, Italy
3CRF – Centro Ricerche Fiat, Italy
4CTAG – Centro Tecnológico de Automoción de Galicia, Spain

10.1 Introduction

Early ’70s literature in traffic safety put into evidence how the majority of
accidents is a consequence of human error. One of the pioneering work carried
out in 1977 in the automotive domain [34] started from an examination of
a large number of accidents and showed that more than 90% of them was
determined by different kind of mistakes attributable solely to a human factor
and rarely to technical and/or environmental failures.

This finding was confirmed in the following years also in other domains
with very complex technologic contexts (i.e. avionic, railway, etc.).

It was realized that in the framework of the evolution of technical systems,
the human element plays a fundamental role both as a governing factor
and as a potential menace to safety. This concept paved the way for the
modern preventive safety systems, wide known as ADAS (Advanced Driver
Assistance System).

The experience carried out into the DESERVE project (Development
Platform for Safe and Efficient Drive) was agreed by all involved partners
to be beneficial for the extension of future ADAS. A key role in this process
is played by the Human Machine Interface (HMI). Since ADAS systems cope
with the driving task influencing driver’s decisions or directly intervening

227

228 The HMI of Preventing Warning Systems: The DESERVE Approach

in the driving maneuver, the issue of the driver’s trust opens a crucial design
problem, because the driver cedes a part of the control [30]. Low trust, resulting
e.g. from an earlier experience of failure, can lead to disuse of the system
[24]. Building and enforcing the driver’s trust through a positive system
experiencing depends not only on the proper functioning of the system itself
(i.e. the capability of detecting some events) but also on the HMI design.

In order to create those positive experiences and avoid the disuse ofADAS,
one has to understand the driver and his/her goals and motives while driving
[13], together with the role of technology in supporting the driver in his/her
task and in avoiding road accidents.

This chapter aims at exploring step by step the rationale behind the
effective design of the Human Machine Interface for ADAS systems, giving
the reader an outline of the role and scope ofADAS system. In next paragraphs,
a particular focus on the role of humans and role of technology in the
preventing of the road accidents is presented, along with the discussion of
the importance of the detection of the driver’s intention. Then an example of a
whole HMI design process is presented. In fact during the DESERVE project
the in-vehicle HMI for 17 functions (13 of them wereADAS) was designed and
evaluated. This chapter will report to the reader how the HMI was conceived,
including discussions on the role of ADAS in preventing imminent accidents
and a short state of art on HMI design approaches.

10.2 Prevent Imminent Accidents:The Role of Humans,
the Role of Technology

In general, the amount of accidents among the years is progressively decreased
since the second half of the ’80s [8]. This basically depends both from a
strengthen in humans awareness on the accident causes, partly influenced by
the evolution of studies in humans factors, but mostly this depends on tech-
nological innovation on vehicles. The history of such evolution which intends
to show the relationship existing between the run-up of the accident and the
technologies and functions for safety enhancement will be presented in the next
paragraph.

10.2.1 From Passive to Preventive Safety

The first phase in reaching a higher safety degree on vehicles was due to the
introduction of the so called passive safety systems, whose main purpose is
to improve the driver conditions while an accident takes place. Indeed, the

10.2 Prevent Imminent Accidents: The Role of Humans, the Role of Technology 229

Figure 10.1 Total number of fatalities in road traffic accidents in Europe [8].

introduction of safety belts, airbag, etc., as well as the strengthening of the
materials have significantly reduced the number of injuries and consequently
the number of victims on the road. For instance, studies on the effectiveness
of the seat belts were conducted since the end of the ’60s starting from
Sweden [4].

The second phase was characterized by the introduction of active safety
systems, which were intended to increase the safety of the driver when
approaching a dangerous situation. In particular, this period dealt with the
introduction of systems such as the ABS (Anti-lock Braking Systems), the
ESC (Electronic Stability Control), as well as other functions able to intervene
by minimising the impact in proximity of a potential dangerous situation and,
hence, by avoiding the accident. For instance cars equipped with ESC were
22% less likely to be involved in crashes than those without, with 32% and
38% fewer crashes in wet and snowy conditions [19].

The challenge of reducing even more the number of accidents consists in
allowing the development of the so called preventive safety technology, which
is conceived to assist the driver when the risk of occurring a hazardous and
critic situation is greeting higher. These technologies, namedADAS (Advance
Driver Assistance Systems) are able to monitor the driving dynamics by
introducing preventive features in support of the driving activity. In particular,
driving safety will be fostered on the longitudinal axis of the vehicle thanks, for
instance, to the frontal collision warning and adaptive cruise control systems.
Driving safety on the lateral axis can be improved by systems like lane support
and lane warning. The implementation of blind spot improves the safety on
the rear spectrum indeed. The purpose of this approach is twofold: on one
hand it is intended to guarantee an high level of protection on the road,
almost as if the driver was stuck inside of a kind of “safety bubble”, as

230 The HMI of Preventing Warning Systems: The DESERVE Approach

highlighted by some researchers when referring to the concept of “virtual
safety belt” [31]. On the other hand, it aims at allowing cars to operate in
coordination by implementing a scenario where the whole vehicles have
high situation awareness capabilities. It is indubitable the effectiveness of
the ADAS in driving safety, even most of them have not yet achieved a
mature introduction in vehicle market but are still in the prototyping phase.
Nevertheless, researches has shown that to an increase of the automation
and accident prevention features included in the on-board technologies does
not always correspond to increase of the driving confidence, especially if the
drivers’expectations in vehicle technologies interaction are not fully taken into
consideration by designers. On the other hand, a theory known as Peltzman
effect [25] seems to show that an improvement of confidence due to effective
automated safety support systems, even if they are only able to increase the
driving monitoring scenario, could induce drivers in improving, for instance,
speed, till to jeopardize the effectiveness of such systems.

10.2.2 The Role of Driver Model in ADAS Design

As aforementioned, Advanced Driver Assistance Systems (ADAS) have been
implemented more and more in recent years in the automotive industry, in
order to move from passive safety to preventive safety. In this context, through
the driver models, a more complete understanding of driver’s behaviour is
expected to have the opportunity to enhance the road safety and to increase
the driver acceptance of in-vehicle advanced systems, by designing ADAS
that are more suitable to the drivers. As a practical example: the Lane
Departure Warning (LDW) warns the driver when the left/right lane is crossed
without using the indicator. However, blinkers are used only half the time
before a lane change [18] and, therefore, the LDW might warn the driver
in situations in which s/he is in full control of the vehicle (for example,
during an overtaking without blinker activated), causing a nuisance to the
driver. If this situation occurs frequently, the driver might get so annoyed by
the system that might deactivate the LDW, eliminating the possible safety
benefit brought by the system. If the human behaviour could be modelled
more precisely, it would be possible to discriminate between an intentional lane
crossing and (simply) an unintended lane crossing (with the LDW warning the
driver only in the second case). Then, driver acceptance of the LDW could be
increased. Similar examples could be found for other ADAS such as Forward
Collision Warning (FCW) and Blind Spot System (BDS). Then, the driver
intention detection module might be used jointly with other systems to warn

10.2 Prevent Imminent Accidents: The Role of Humans, the Role of Technology 231

the driver about risky behaviours or might be used for the communication
with other ADAS. For instance, the lane change detection module could be
implemented with a surrounding vision system or with a blind spot information
system to prevent the driver from a dangerous overtaking manoeuvre (if an
oncoming vehicle is spotted and, at the same time, a lane change intention is
detected).

The Driver Intention Detection Module developed within the DESERVE
project aims at modelling and predicting the driver’s behavior at the tactical
and operational levels of the Michon’s model [20]. Among the maneu-
vers taken into consideration for the prediction of driver’s intent, the most
researched are the lane change, the turning left/right, the braking and the lane
keeping. For the scope of the DESERVE project, the focus will be placed on
the prediction of lane changes (and possibly of overtaking) with the final aim
of improving the acceptance of ADAS. If a reliable lane change intention was
developed, the warning could be issued only when needed: ADAS designed
in such a way could increase driver’s acceptance and reach a higher benefit
with respect to road safety.

In the field of lane change intention detection, several researches have
been already performed. One of the main authors on this topic is Salvucci.
He applied the model tracing technique associated to a computational driver
model to detect driver’s intention to change lane [29]. Model tracing tech-
niques were originally used for intelligent tutoring to predict students’possible
next steps in problem solving. In the study of [29], data from the vehicle
(steering wheel angle, accelerator depression, lateral position, longitudinal
distance and time headway to a lead vehicle, longitudinal distance front and
back, to vehicles in adjacent lanes) and from the environment (presence or
absence of a lane to the left and right of the current travel lane) were used
to build the model. Based on the information, the model calculates a desired
steering angle and the accelerator position. The model performed well when
tested both at the driving simulator and in the real vehicle, reaching a reliable
detection of the maneuver after 1 second.

In a later research work [6], the authors developed and implemented a real-
time lane change intent detection system which could go beyond the traditional
offline implementation. The authors made use of information collected from
the vehicle (steering wheel angle, yaw rate and blinker state signal), the
Adaptive Cruise Control (distance to the lead vehicle, the relative speed, time
gap to the vehicle in front and the difference between the current speed and
the desired speed), the Lane Departure Warning (vehicle lateral deviation,
lane curvature and vehicle yaw angle), the Side Warning Assist (occupancy

232 The HMI of Preventing Warning Systems: The DESERVE Approach

and speed state within a critical zone) and the head position (head motion,
head yaw and head pitch), adopting a time window of 2 second to trace the
past events. A classifier based on relevance vector machines (RVM) was used
for the lane change intent. The results show that, for a good prediction of
the lane change intention, the inputs from the direct observation of the driver
(head-viewing camera) are relevant and that the quality of the classification
is improved (unreliable detections are beyond 3 seconds). In a later article
[15], a multiclass Support Vector Machine (SVM) algorithm associated to
a Bayesian filtering approach to predict lane change intention was used. The
variables used as inputs for the algorithm were the lateral position of the vehicle
(obtained from a lane tracker system), the steering angle, the first derivative
of the lane position and the first derivative of the steering angle. The research
was formulated as a multiclass classification problem with three possible
outcomes: left lane change, right lane change and no lane change. On top of the
multiclass classifier, a Bayesian Filter (BF) in order to improve the reliability
of the predictions was used. The comparison between the SVM algorithm
alone and the combination of SVM and BF shows that, in the first case, many
false alarms were observed but the precision was increased by adding the
Bayesian Filter, reducing average prediction times. Most of the lane changes
are predicted almost 1.3 seconds before the lane crossing with a maximum
prediction horizon reaching 3.3 seconds. The authors reported that further
improvements might be brought by inclusion of other variables as the distance
to the vehicle in front and the speed difference with the vehicle in front.

Overall, despite the knowledge acquired concerning the prediction of
driver’s intention to start a lane change, the topic is still interesting because the
problem of lane change intention has shown to be extremely challenging. In
particular, for having a more reliable prediction of driver intent, three aspects
should be considered:

• to increase the precision of the prediction algorithms;
• to augment the detection time prior to the lane change;
• to decrease the number of variables to predict the lane change (not all the

sensors used in the previous studies are available in common vehicles).

In addition, as pointed out by previous research [7], there are aspects which
should be considered when designing a study to infer driver’s intention
prediction:

• type of inputs to be used: CAN data (steering wheel angle, pedal position,
turn indicator), lane position sensor/camera (lateral lane position and
standard deviation) and sensors for behavior data (head motion, eye
motion foot and hands positions).

10.3 HMI Design Flow: The DESERVE Approach 233

• type of algorithm to be adopted for the analysis: SupportVector Machines,
Bayesian Nets, Hidden Markov Models

• material to be employed for the experiment: real vehicle (naturalistic or
imposed) or driving simulator.

Regarding the first aspect, the results highly improve when measures of driver
behavior are included, especially the head motion. However, this information
is, usually, not available in common vehicles and, therefore, this feature should
be further analyzed.

10.3 HMI Design Flow:The DESERVE Approach

In order to develop an HMI concept for ADAS capable of generating positive
experiences during the driving task, a design workflow of 5 steps was used:

1. Collecting the state of art and last trends in the automotive HMI
designing;

2. Defining three different HMI concepts;
3. Preliminary testing the three HMI concepts by a focus group;
4. Testing the best 2 concepts by a user test at driving simulator;
5. Defining the final concept.

The HMI was designed in order to allow adaptation strategies that takes into
account the inputs provided by the driver model.

10.3.1 Different Approaches in the HMI of the Preventing
Warning Systems: A State of Art in a Glance

From the point of view of the on-board human machine interface correlated
to the different type of preventive accident systems, the evolution of HMI for
ADAS could be clustered in three main phases.

It is possible to name the first era of preventive accident systems HMI
as warning era. Most of the active and preventive systems above mentioned,
which are not expected to be automatically actuated, are at the end a kind of
warning based systems as they are aimed at increasing the driver awareness
thanks to the support of technologies. The corresponding HMI is therefore
based on alerts and aimed at delivering to the drivers immediately potential
risks so to restore a safe situation for the driver.

The second phase coincides with an important transformation induced
by the active and preventing safety systems evolution moving from being
only activated by on-board sensors to a larger spectrum of sensors including
both vehicle, other vehicles (Vehicles to Vehicles – V2V) and infrastructure

234 The HMI of Preventing Warning Systems: The DESERVE Approach

(Vehicles to Infrastructure – V2I). This technological evolution is creating
so-called cooperative ADAS perspective [16] where preventive capabilities
of such systems is allowed by the connection of the infrastructure. In terms
of HMI, it is evident that vehicles are not necessary and exclusively oriented
towards a dimension characterized by warning-based interfaces.Although this
mechanism tends to persist, as well as to be necessary, it is also evident that
within a system characterized by a high level of cooperation, the warning-
based system might be easily replaced by a recommending-based mechanism.
In other words, if vehicles are able to mutually recognize each other, as
well as to cooperate for exchanging information and data, the system for
supporting the driver will be aimed at sharing behavioural choice among
the cars, rather than imposing and reporting imminent dangers. D3COS EU
project (www.d3cos.eu) – among its results – have firstly proposed such
promising concept in HMI for preventive accident systems [29]. This new
dimension represents a real shift of paradigm going towards an increasing
level of automation.

The third phase is characterized by the integration between the cooperative
and the warning-based dimensions from one side, and the increased level of
automation in cars (according to SAE Standard J0316) from the other. In
this situation, expected HMIs will raise even more complex issues. Firstly,
if on one hand it is true that automation will set the driver free from the
necessity of constantly driving the vehicle, on the other hand, the driver
is obliged to continuously monitor the correct functioning of the whole
system. In a pioneering work, [1] expressed the idea of a sort of irony
hiding behind the concept of automation. In fact, if theoretically speaking,
the purpose of automation is to exclude the user from the driving tasks, in
practices autonomous systems tends to encourage even more the participation
of the driver, who must continuously monitor the correct functioning of the
mechanism. The more the vehicle is autonomous, the more the driver is
responsible for the only monitoring and the design issues for HMI designers is
how to provide the best monitoring and to re-allocate the control to the drivers
in the most effective and quicker way.

10.4 HMI Concepts Design

The three HMI concepts developed within the DESERVE project included the
information normally displayed in the dashboard (i.e. speedometer, odometer,
fuel level and water temperature information, diagnostic telltales, etc.),ADAS

10.4 HMI Concepts Design 235

information support (i.e. lane change assistance system, nigh view, parking
aid, adaptive cruise control, etc. as well as drowsy driver alert system) and
navigation information.

Moreover a particular attention was dedicated to the design layout of
the drowsy driver alert system. Drowsiness detection can be used to give
a direct warning to the driver (explicit drowsiness) or as an input for an HMI
reconfiguration strategy (implicit drowsiness). These two different strategies
for drowsiness management were applied to all the three HMI concepts,
obtaining hence 6 concepts to test. For the explicit drowsiness a warning is
delivered to the driver with an icon and a message. For the implicit drowsiness
ADAS sensitivity is set to the highest level. Once the driver takes a break, the
ADAS configuration s/he set before is restored.

The user interface deploys 17 functions: 13 of them areADAS, 2 are Safety
Assistance Systems, and 2 are IVIS (In-Vehicle Information System), as listed
in the following:

1. Lane change assistance system (ADAS);
2. Night vision system with pedestrian detection (ADAS);
3. Rear view camera system (Safety Assistance);
4. Surround view (Safety Assistance);
5. Lane departure warning (ADAS);
6. Pedestrian safety system (ADAS);
7. Collision warning system (ADAS);
8. Emergency braking ahead (ADAS);
9. Rear approaching vehicle (ADAS);

10. Adaptive high beam assist (ADAS);
11. Adaptive cruise control (ADAS);
12. Curve warning system (ADAS);
13. Intelligent park assist (ADAS);
14. Traffic sign recognition (ADAS);
15. Driver impairment warning system (ADAS);
16. Navi/Map info (IVIS);
17. Setting menu (IVIS).

10.4.1 Concept 1: Holistic HMI

In the Holistic HMI concept all the HMI elements (I/O) are centralized in
front of the driver. The Instrument Panel Cluster (IPC) is the main visual
output channel, while the steering wheel (SW) is the main input channel.

236 The HMI of Preventing Warning Systems: The DESERVE Approach

The HMI elements are listed as follows: i) IPC display 12”; ii) SW
commands; iii) Left stalk commands; iv) Buttons; v) Knobs.

The instrument panel cluster was divided in three areas. In the central area
the following information are delivered: lane change assistance system, night
vision system with pedestrian detection, rear view camera system, surround
view and setting menu.

The left area is mainly dedicated to the hazard warnings: lane departure
warning, pedestrian safety system, collision warning system, emergency
braking ahead, rear approaching vehicle, adaptive high beam assist, adaptive
cruise control, and curve warning system are displayed.

In the right area the following information are delivered: intelligent
park assist, traffic sign recognition, driver impairment warning system and
navigation.

Figure 10.2 Holistic HMI concept, that shows: IPC display 12”; SW commands; left stalk
commands; buttons; knobs.

Figure 10.3 Holistic HMI layout.

10.4 HMI Concepts Design 237

Figure 10.4 Holistic HMI layout with the user menu in the central area.

Figure 10.5 Holistic HMI layout with the lane change assist in the central area.

Figure 10.6 Holistic HMI layout with the rear view camera in the central area.

238 The HMI of Preventing Warning Systems: The DESERVE Approach

Figure 10.7 Holistic HMI layout with the night vision system in the central area.

Figure 10.8 (A-B-C-D) Holistic HMI left area with: lane departure warning, collision
warning, Rear approaching vehicle system, pedestrian safety system.

10.4.2 Concept 2: Immersive HMI

The second concept is totally different from the previous one. While the
Holistic HMI concept centralizes all the info and the interaction with the driver
in front of him/her, the Immersive HMI concept distributes the interaction
along the dashboard and the windscreen.

The HMI elements of concept 2 are listed as follows: i) 3,5” IPC display;
ii) Touch Display 8,5” in the dashboard; iii) Head-up display for the wind-
screen; iv) SW commands; v) Left stalk commands; vi) Buttons; vii) Knobs.

In the concept 2 the area dedicated to the hazard warnings was moved
in the middle of the instrument panel cluster, while the navigation, the rear
view camera, the night vision system, radio/multimedia, phone and menu
applications were moved to the dashboard display. The head-up display
delivers traffic sign recognition and lane change assist information on the
windscreen.

10.4 HMI Concepts Design 239

Figure 10.9 Immersive HMI concept shows: 3,5” IPC display; touch display 8,5” in the
dashboard; head-up display for the windscreen; SW commands; left stalk commands; buttons;
knobs.

10.4.3 Concept 3: Smart HMI

The third concept replaces the dashboard display with a nomadic device (ND –
i.e. smartphone/tablet). The HMI can reconfigure itself according to ND size.

The IPC display has the same structure of that one of concept 2. The
difference is that in the Smart HMI concept the 3,5” display of concept 2 was
integrated by adding, for example, a 7” tablet (as in Figure 10.7) seamlessly
connected with the car system. Drivers just connect the phone with a cable and
immediately s/he gains access to ND applications using dashboard/steering-
wheel buttons. The ND can provide also the access to further automotive
applications. Driver can define what kind of information has to be shown in
the ND: the ND is able to manage the infotainment functions and some ADAS
applications.

Figure 10.10 Immersive HMI concept: instrument panel cluster display.

240 The HMI of Preventing Warning Systems: The DESERVE Approach

Figure 10.11 Immersive HMI concept: dashboard display.

Figure 10.12 Immersive HMI concept: head-up display details.

The HMI elements of concept 3 are listed as follows: i) Display 3,5” in
the IPC: ii) Touch Display of the nomadic device set into the dashboard;
iii) SW commands; iv) Left stalk commands; v) Buttons; vi) Knobs.

10.5 Preliminary Testing by Focus Group

As Morgan described, “in essence, focus groups are special occasions devoted
to gathering data on specific topics [21]”. Using a focus group leads to evaluate
preliminary concepts and in this case it is a useful technique to evaluate
the proposals explained before [28], [35] having in mind that focus group
is a technique deeply used in automotive field to evaluate user experience
regarding HMI concepts [2, 9–12, 17].

10.5 Preliminary Testing by Focus Group 241

Figure 10.13 Smart HMI concept.

Figure 10.14 Smart HMI concept: Nomadic device with night vision system.

10.5.1 Participants

Sample is composed by 7 participants with a range of age between 25 and 39
years old (M = 31.71; SD = 4.06). Around 30% drive between 10000–15000
km/year and around 45% more than 20000 km/year. All drivers run at least
once a day during the last year. 2 drivers run than 10% of their total driven by
city, other 2 drive between 20–25%, and 3 run at least 40% or more of their
driving in city. Moreover, around 40% drive usually on dual carriage way, and
30% run on highway and in similar percentage, 30%, drive on main roads.

10.5.2 Results

Participants discussed and exchanged points of views about HMI. They gave
scores about degree of utility, easy to use, easy to learn, visual clarity, if the
concepts were intuitive, degree of accessibility, and degree of driver annoyance
and finally they provide a global value.

242 The HMI of Preventing Warning Systems: The DESERVE Approach

The HMI concept 1 (with explicit drowsiness) was considered as very
useful, enough easy to use, with the most visual clarity and degree of
accessibility among all the options presented. Having information located
in same area is positive to avoid distraction and the three delimited areas for
presenting information are pleasant. In general, alternative to concept 1 (with
implicit drowsiness) is less appreciated than the original one. Scores are lowest
than previous concept and the absence of drowsiness icon is missing by focus
group participants.

Regarding HMI concept 2 (with explicit drowsiness), most of the partic-
ipants appreciated to have information on HUD, moreover to have primary
information in a different place from secondary one is a positive attribute.
Besides, this concept seems to be a bit more easy to use and to learn and more
intuitive. Concept 2 bis (with implicit drowsiness) is measured as intuitive
and have visual clarity. Once more, HUD information is well appreciated
by focus group participants. Anyway, it should be necessary to take into
account that drivers are not being confident to manage drowsiness without a
detailed icon.

Concept 3 (with explicit drowsiness) is not really appreciated from an
aesthetically point of view. It is enough useful, easy to use and learn and
enough intuitive. Focus group participants liked the possibility to place tablet
where they prefer although it could mean less frontal vision. Last concept
(n. 3 with implicit drowsiness) showed participants the least acceptable one.
Although it will be positive to place the table according the wishes of drivers
the general impression of having information in this way is not positive, even
if it is having in mind that there is not drowsiness icon.

10.5.3 List of the Winning Features and Redesign
Recommendations

As it can be observed in the radar chart which summarizes the HMI evaluation
for the six concepts, concept 3 and its alternative, concept 3 bis (with implicit
drowsiness) were the concept less valued. This concept “3 bis” is the concept
which is considered more annoyed. Concept 2 had the highest average score for
the global evaluation but concept 1 is closed to concept which adds information
on a HUD and touch dashboard. Concept 1 stands out by its accessibility, utility
and visual clarity and concept 2 is highlighted by its feature to be easy to use
and it is a bit more intuitive.

During the session participants pointed several issues that should be taking
into account:

10.6 Users Test at Driving Simulator 243

Figure 10.15 Radar chart summarizing HMI evaluation for the 6 HMI concepts. Bis concepts
are concept 1, 2, 3 with implicit drowsiness.

• Summarizing the best option should have drowsiness icon.
• Option concept 1 and concept 2 are the best.
• The possibility to have HUD information is really appreciated.
• Participants suggested having in HUD the following information: traffic

signals, gap for ACC, navigator system (with arrows and distances).
• For traffic signal information, it is very important to them to maintain

this information available because sometimes you forgot this information
(e.g. when you are running by a road and you forgot which was the speed
limit).

• Information should be very clear and concise.
• It should be a great idea to have the possibility to select where you want

to have the navigation system.

10.6 Users Test at Driving Simulator

As a final step for the definition of the overall HMI concept the two winning
option from the focus group, namely concept 1 and concept 2 with the explicit
drowsiness icon, were tested with users on a driving simulator in order
to identify the final DESERVE HMI concept configuration. Each user was
interviewed alone by a usability expert gathering comments and suggestions
about the different ADAS function disposition and visualization.

Among the 13 ADAS functions developed for the DESERVE project, it
was decided to test only 4ADAS functions that were considered representative

244 The HMI of Preventing Warning Systems: The DESERVE Approach

of the main HMI concept logic. In particular the following ADAS functions
were widely tested with users:

1. Forward collision warning – with acoustic signal type 1.
2. Rear view camera system.
3. Lane change assistance system – with acoustic signal type 1.
4. Drowsiness icon – with acoustic signal type 2.

10.6.1 Participants

Sample is composed by 30 participants (20 Male and 10 female) with a range
of age between 23 and 62 years old (M = 32.17; SD = 7.15). The majority of
participants achieved a Master’s degree.

The 30% of participants drive more than 20.000 km/year and the remaining
between 10000 and 15000 km/year (M km/year = 15600; SD = 6931.18).

10.6.2 Procedure

After a brief explanation of test objective and some questions on personal data,
user where asked to seat on the driving simulator and imagine to be inside
their car, at the driving place with a dashboard of your car in front where some
information about the car, its functioning and so on are displayed. Before
assessing the solutions users where asked to practice a little with the driving
simulator and to count the stars that appear on the road.

In particular user where asked to evaluate on a 7 point scale:

• The suitability of the HMI concept tested;
• The comprehensibility of the information displayed;
• The number of the information displayed;
• The pleasantness from a graphical point of view of the HMI concept

tested;

10.6.3 Results

From the analysis of the different part of HMI concept test, concept 1 seems
to be the preferred one even if the difference with the percentage of users
that prefer concept 2 is not statistically significant. Despite this result the 60%
of users would like to have the warning information in the central part of
the display instead of in the lateral part. The functions representation seems
quite clear for all users, only the adaptive light control and the adaptive cruise
control icon should be re-designed. Considering the result of the task that

10.6 Users Test at Driving Simulator 245

Figure 10.16 Proposed change to create the final DESERVE HMI concept.

Figure 10.17 Final DESERVE HMI concept: warning area.

Figure 10.18 Final DESERVE HMI concept: rear view camera.

246 The HMI of Preventing Warning Systems: The DESERVE Approach

Figure 10.19 Final DESERVE HMI concept: navigation.

asked users to build their own solution, almost all distributed all functions in
the same central display.

Thanks to users’ feedbacks, the final DESERVE HMI concept has a single
display with the warning functions in the central area and the gauges in the
lateral part of the display.

10.7 Conclusions

Most cars today contain heterogeneous ADAS that support safe and clean
driving. Because the pattern of factors in the automotive domain is constantly
changing (new technologies and devices on board, new infrastructure, new
mobility concepts, new trends in pollution prevention), the accident charac-
teristics of the transport domain are also changing. As a consequence, also the
research in that domain changed perspective, starting to investigate the human
factor in order to improve safety and to prevent accidents. Even if it is not
feasible to exactly predict the next accident, it is possible to anticipate some
decisive characteristics of future accidents, as driver’s misbehaviour. All these
features concur in defining a new concept of ADAS system as a support and
sometimes as a partner for drivers during task accomplishment and no more
as a mere substitute.

Since nowadays more and more ADAS function are going to be imple-
mented in current vehicles, the need for a unique Human Machine Interface is
becoming an issue that reflects the increasing complexity of the entire system,
whereby the driver has to deal with different devices and different interaction
strategies. The aim of this work was in fact to identify the most suitable HMI
concepts that allow an easy integration of different ADAS function in order
to guarantee the safety of the introduction of any new element.

References 247

Acknowledgments

This study has been conducted thanks to the work and the experience of many
people, besides the authors of this chapter.

We would like to express our thanks to Luana Baldassini for fruitful
discussions, support, reviews and forward looking attitude.

References

[1] Bainbridge, L. (1983). Ironies of automation. Automatica, 19(6),
775–779.

[2] Barfield, W. & Dingus, T. (1997). Human factors in intelligent transporta-
tion systems Mahwah, NJ: Lawrence Erlbaum Associates.

[3] Barrera Murphy, N. & Knoblauch, R. (2004). Hispanic Pedestrian and
Bicycle Savety. Report of Focus Group Discussions in Washington,
New Cork, Miami and Los Angeles. http://safety.fhwa.dot.gov/ped bike/
docs/fhwanhtsa/fhwahtsa.pdf

[4] Bohlin, N. I. (1967). A statistical analysis of 28,000 accident cases with
emphasis on occupant restraint value (No. 670925). SAETechnical Paper.

[5] Chowanetz, F., & Rigoll, G. (2011, October). A large-scale LED array to
support anticipatory driving. In Systems, Man, and Cybernetics (SMC),
2011 IEEE International Conference on (pp. 2087–2092). IEEE.

[6] Doshi A., Morris, B., Trivedi M. (2011). On-road prediction of driver’s
intent with multimodal sensory cues. IEEE Automotive Pervasive
Computing 10(3), 2011.

[7] Doshi A., Trivedi, M. M. (2011). Tactical driver behavior prediction and
intent inference: A review. 14th International IEEE Conference on Intel-
ligent Transportation Systems (ITSC), 2011. European Commissions,
Road safety statistics at regional level, (2014), Source: Eurostat and
DG Move. http://ec.europa.eu/eurostat/statistics-explained/index.php/
Road safety statistics at regional level consulted on 14/12/2015.

[8] Green, P. & Brand, J. (1992). Future in-car information systems: input
from focus groups (SAE paper 920614).

[9] Hof, T., Conde, L., Garcia, E., Iviglia, A., Jamson, S., Jopson, A., Lai, F.,
Merat, N., Nyberg, J., Rios, S., Sanchez, D., Scheineider, O. S., Seewald,
P., Weerdt, C. V. D., Wijn, R. & Zlocki, A. (2012). D11.1: A state of the
arte review and user’s expectations. EcoDriver Project.

[10] Jeon, M., Schuett, J., Yim, J.-B., Raman, P. and Walker, B. N. (2011).
ENGIN (Exploring Next Generation IN-vehicle INterfaces): Drawing

248 The HMI of Preventing Warning Systems: The DESERVE Approach

a new conceptual framework through iterative participatory processes.
Adjunct Proceedings of the 3rd International Conference on Automotive
User Interfaces and Vehicular Applications (AutomotiveUI’11).

[11] Kaufmann, C. Pereira, M., Simoes, A., Lancelle, V., Bruyas, M. P.,
Britschgi, V., Diez, J. L., Garcia Quinteiro, E. & Turetschek, C. (2010).
A focus group approach towards an understanding of drivers’ interaction
with in-vehicle technologies. In J. F. Krems, T. Petzoldt & M. Henning
(Eds.). Proceedings of the European Conference on Human Interface
Design for Intelligent Transport Systems, Berlin, Germany, April 29–30
2010 (pp. 389–399). Lyon: Humanist Publications.

[12] Knobel, M., Schwarz, F., Palleis, H., & Schumann, J. Towards Designing
Experiences for Advanced Driving Assistance Systems. In Workshop
User Experience in Cars. In conjunction with 13th IFIP TC13 Conference
on Human-Computer Interaction (INTERACT 2011) (pp. 05–09).

[13] Krueger, R. A. (1988). El grupo de discusión. Guı́a práctica para la
investigación aplicada. Madrid: Ediciones Pirámide.

[14] Kumar P., Perrollaz M., Lefevre S., Laugier C. (2013). Learning-Based
Approach for Online Lane Change Intention Prediction. IEEE Intelligent
Vehicles Symposium, 2013.

[15] Laquai, F., Gusmini, C., Tonnis, M., Rigoll, G., & Klinker, G. (2013,
October). A multi lane Car Following Model for cooperative ADAS.
In Intelligent Transportation Systems-(ITSC), 2013 16th International
IEEE Conference on (pp. 1579–1586). IEEE.

[16] Larsson, P., Esberg, I., van Noort, M., Willemsen, D., Garcia, E.,
Fahrenkrog, F., Zlocki, A., Scholliers, J., Koskinen, S., Várhelyi, A.,
Schönebeck, S. (2012). “Test and evaluation plans”. Deliverable D7.4 of
the InteractIVe project.

[17] Lee S. E., Olsen E. C. B., Wierwille W. W. (2004). A Comprehensive
Examination of Naturalistic Lane-Changes. National Highway Traffic
Safety Administration, DOT HS 809 702, 2004.

[18] Lie, A., & Tingvall, C. (2002). How do Euro NCAP results correlate with
real-life injury risks? A paired comparison study of car-to-car crashes.
Traffic Injury Prevention, 3(4), 288–293.

[19] Michon, J. A., A Critical View of Driver Behavior Models: What Do
We Know, What Should We Do?, Human Behavior and Traffic Safety,
pp. 485–524, 1985.

[20] Morgan, D. L, Krueger, R. A., King, J. A. & Scannell, A. U. (1998). The
Focus Group Kit, Volumes 1–6. Thousand Oaks, CA: SAGE Publications.

References 249

[21] National Highway Traffic SavetyAdministration (NHTSA) (2008). Sum-
mary of Focus Group Findings. http://www.nhtsa.gov/staticfiles/DOT/
NHTSA/Rulemaking/Rules/Associated%20files/5StarFocusGroup.pdf

[22] Olsheski, J. D., Walker, B. N., & McCloud, J. (2011, October). In-
vehicle assistive technology (IVAT) for drivers who have survived a
traumatic brain injury. In The proceedings of the 13th international ACM
SIGACCESS conference on Computers and accessibility (pp. 257–258).
ACM.

[23] Parasuraman, R., & Riley, V. (1997). Humans and automation: Use,
misuse, disuse, abuse. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 39(2), 230–253.

[24] Peltzman, S. (1975). The effects of automobile safety regulation. The
Journal of Political Economy, 677–725.

[25] Pinotti, D., Tango, F., Losi, M. G., & Beltrami, M. (2014). A model
for an innovative Lane Change Assistant HMI. In Proceedings of the
Human Factors and Ergonomics Society Europe Chapter 2013 Annual
Conference.

[26] Rasmussen, J., Skills, Rules and Knowledge; Signals, Signs, and Sym-
bols, and Other Distinctions in Human Performance Models, IEEE
Transactions on Systems, Man, and Cybernetics 13 (3), pp. 257–266,
1983.

[27] Rubin, J. & Chisnell, D. (2008). Handbook of Usability Testing. How
to plan, Design, and Conduct Effective Tests. 2nd Edition. IN: Wiley
Publishing.

[28] Salvucci D. D., Mandalia H. M., Kuge N., Yamamura T. Lane-Change
Detection Using a Computational Driver Model. Human Factors 49(3)
2007, pp.532–542.

[29] Schmidt, A., Dey, A. K., Kun, A. L., & Spiessl, W. (2010, April).
Automotive user interfaces: human computer interaction in the car. In
CHI’10 Extended Abstracts on Human Factors in Computing Systems
(pp. 3177–3180). ACM.

[30] Schmittner, C., Gruber, T., Puschner, P., & Schoitsch, E. (2014). Security
application of failure mode and effect analysis (FMEA). In Computer
Safety, Reliability, and Security (pp. 310–325). Springer International
Publishing.

[31] Seay, A., Zaloshnja, E., Miller, T., Romano, E., Luchter, S., & Spicer,
R. (2002). The economic impact of motor vehicle crashes, 2000 (No.
HS-809 446,). Washington, DC: US Department of Transportation,
National Highway Traffic Safety Administration.

250 The HMI of Preventing Warning Systems: The DESERVE Approach

[32] Sharken Simon, J. (1999) [On line]. How to conduct a Focus Group.
Recovered on August 18th, 2008 from: http://tgi.com/magazine/HowTo
ConductAFocusGroup.pdf

[33] Treat, J. R., Tumbas, N. S., McDonald, S. T., Shinar, D., & Hume,
R. D. (1979). TRI-LEVEL STUDY OF THE CAUSES OF TRAFFIC
ACCIDENTS. EXECUTIVE SUMMARY (No. DOTHS034353579TAC
(5) Final Rpt).

[34] Tullis, T. & Albert, W. (2013). Measuring the user experience. 2nd
Edition. Morgan Kaufmann.

11
Vehicle Hardware-In-the-Loop System

for ADAS Virtual Testing

Romain Rossi, Clément Galko, Hariharan Narasimman
and Xavier Savatier

Univ. Rouen, UNIROUEN, ESIGELEC, IRSEEM 76000 Rouen,
France

11.1 Introduction

Testing vehicular functions can be a very tedious task. The classical approach
tries to tackle this problem using a multiple-stage validation and testing pro-
cess.The first step is a Model-In-the-Loop (MIL) approach which allows quick
algorithmic development without involving dedicated hardware. Usually, this
level of development involves high-level abstraction software frameworks
running on general-purpose computers. The second step is a Software-In-
the-Loop (SIL) validation, where the actual implementation of the developed
model will be evaluated on general-purpose hardware. This step requires a
complete software implementation very close to the final one. The last step
of this validation process is Hardware-In-the-Loop (HIL) which involves the
final hardware, running the final software with input and output connected
to a simulator. This proven process is very widely used in the transportation
industry and has enabled the development of very high quality components
which are then integrated into bigger systems or vehicles. Modern vehicles
however integrate so many such components that the integration phase has
become more complex and also requires a multi-step validation process. The
final integration tests are performed on tracks or roads. While mandatory, these
real-condition tests are limited because of multiple factors and have a very
high cost.

251

252 Vehicle Hardware-In-the-Loop System for ADAS Virtual Testing

Testing a complex system like a modern vehicle on a test track or on a
real road involves complex and costly engineering. First of all, to be testable
the vehicle must be fully or nearly-fully functional. This limits the testing
opportunity to a very late stage in the development process and implies
high engineering costs. Moreover, because the real-condition test is very
constrained in time and space, the test coverage is not complete and only
a very small variety of real-world conditions can be tested.

To address these limitations and lower the cost, modernADAS (Advanced
DriverAssistance Systems) development frameworks uses a virtual test bench
approach where realistic simulator software and hardware are used to enable
faster and less expensive tests with better coverage on complete vehicles.
In this document, we propose a virtual testing system built on a chassis
dynamometer which enables a complex test scenario to be applied early in
the ADAS development process.

Our proposed system, named SERBER (Simulateur d’ Environnement
Routier integré à un Banc de test véhicule pour l’Evaluation de stratégies de
gestion de l’éneRgie embarquée) aims to ease ADAS prototypes testing and
at the same time, analyze the energy efficiency of the prototype system using
the standard equipment of the chassis dynamometer. A previous version of
this system has been published in [3], which presented the SERBER system
and showed preliminary results.

11.2 State of the Art

In the automotive industry, car manufacturers use different ways to test and
validate ADAS and other embedded systems. An extensive study of the state
of the art in ADAS testing and validation methods can be found in [1]. These
test methods can be grouped in two categories: test-bench tests and in-vehicle
tests.

For test-bench tests, three approaches are usually used during the devel-
opment cycle: Model-In-the-Loop (MIL), Software-In-the-Loop (SIL) and
Hardware-In-the-Loop (HIL). In MIL, a model of the developed system is inte-
grated in a simulation loop with models of vehicle dynamics, sensor, actuators
and traffic environment. After successful MIL validation, the SIL approach
allows to replace the tested model with a real software implementation for
real-time operation validation. The last step, HIL, consists of a combination
of simulated and real components in order to validate the functionality of the
developed system on both hardware and software aspects.

11.2 State of the Art 253

Test-bench tests are very useful as they provide a safe, repeatable and
reliable way to validate these embedded systems under a variety of operating
conditions. This kind of tests also has some drawbacks. For example, the
interaction with other ADAS is difficult to test as well as the integration
in the vehicle system. A sample of a HIL test bench for complex ADAS is
available in [2].

The second category of tests methods are in-vehicle tests. These tests
require a prototype to integrate the developed system.Again, three approaches
are commonly used: test-drives on test-tracks, test-drives on open-roads and
Vehicle-Hardware-In-the-Loop (VeHIL).

The first two approaches are very similar and assume the prototype to be
driven in real-conditions. The test-track allows control of some environment
parameters (traffic, some weather conditions, road signs, road type and so on)
but requires big infrastructures. The open-road tests require less dedicated
infrastructures but are of limited use because of the difficulty to reproduce the
needed conditions, and the underlying safety problems. Both of these methods
are costly and time-consuming and can’t be used early in the development
cycle because they require heavy engineering efforts to have a fully functional
prototype to drive.

Avery interesting solution which combines nearly all the advantages of the
previous methods without most of their drawbacks is theVeHILapproach.This
kind of tests is a combination of the HILand test-drives approaches. Functional
as well as integration tests can be done easily and early in the development
cycle. As the vehicle is physically locked on the chassis-dynamometer, this
system greatly improves the safety of the tests. Because it is an indoor
test, every environmental parameter (humidity, ambient light, temperature
and so on) can easily be controlled and thus the repeatability of the test is
ensured.

Existing VeHIL systems like the one described in [1] and currently
used by [2] relies on mobile platforms (called Mobile Bases) to move
targets (fake cars and pedestrians) in front of the tested vehicle in order to
trigger the various embedded functions (pedestrian detection, ACC, AEB
and so on). This setup however needs heavy infrastructure: the chassis-
dynamometer is installed in a very large room (200 × 40 m) and the
targets are moved at high speed by the Mobile Bases which can be dan-
gerous for both the tested vehicle and the persons involved. Thus, the tests
are remotely executed from a control room and the test area has to be
evacuated.

254 Vehicle Hardware-In-the-Loop System for ADAS Virtual Testing

11.3 Proposed System

To address the problems of existing VeHIL systems (large infrastructures,
fast moving targets, hazard for people), we propose a system which asso-
ciates a chassis dynamometer with multi-sensor road environment simulation
software. The simulator uses a description of the virtual environment and
the position of the vehicle to generate multi-sensors data. These data are
then fed into the sensors of the real car placed on the chassis dynamometer.
On the other way, motion data (speed, acceleration) are gathered from the
chassis-dynamometer and used to update the simulated vehicle speed and
position.

Our system, as seen in Figure 11.1 is mainly composed of three parts: the
chassis-dynamometer, multi-sensor simulation software running in a computer
and devices to feed the vehicle sensors like LCD screen and the CAN bus
interface with synthetic data.The chassis-dynamometer is standard equipment,
the main requirement is to be able to connect it with the simulation computer
in order to read the vehicle actual speed and control the simulated slope
by adjusting the friction force applied by the dynamometer. The simulation
software is at the core of our system and is responsible for the generation
of sensor data to be fed into ADAS sensors. We use the Pro-Sivic software
dedicated to this kind of application.An introduction to Pro-Sivic can be found
in [4]. The difficulties in our proposed system lies mainly in the way to fool

Figure 11.1 Overview of the SERBER VeHIL system.

11.3 Proposed System 255

(i.e. feed synthetic data into) the vehicle’s sensors with the data produced by
the simulation software.

Three ways can be used to fool sensors. The first way (full simulation) is
to disconnect completely the ADAS and replace it with an electronic probe
controlled by our system, which simulates the ADAS behavior completely.
The simulated data (ADAS outputs) are sent directly into the vehicle internal
communication bus (CAN) to be used by the other vehicular functions. The
second way (sensor simulation) is to disconnect only the sensor part of the
ADAS and replace it with an electronic probe. The simulator generates data
according to the specification of the simulated sensor. The “signal processing”
part of the ADAS is kept in the loop, so it can be tested by the system.
This approach however requires the sensor to be separated from the main
ADAS unit. The last way (stimulation) is to keep the full ADAS in the loop
and send physical stimuli to the ADAS sensor through dedicated hardware.
For example, an LCD screen can be placed in front of an embedded camera
or a Hyper-Frequency generator can send signals to an embedded RADAR
sensor.

This last solution is the preferred one, as it keeps the whole ADAS in the
testing loop and limits the modifications done to the vehicle. So the objective
of our work is to be able to simulate and fool every vehicle sensors. This
approach however is very difficult to achieve for some kind of sensors, like
inertial sensors and environmental sensors, or needs very complex stimulation
hardware for RADAR and LIDAR.

With such a hardware-in-the-loop system, multiple scenarios can be
implemented and tested in the safety and convenience of an indoor workshop.
This system can be used for newADAS prototyping as it is very easy to produce
test-cases for the specific system under development. It can also be used to
test the integration of multiple ADAS in a car, using a set of predefined test-
cases to validate their interaction. It can also be used for very complex ADAS
or fully-automated vehicle development where the embedded system relies
simultaneously on multiple sensors to operate, because it is able to simulate
nearly every aspect of the road environment at the same time.

Moreover, the use of a chassis dynamometer allows a simultaneous
analysis of various performance indicators of the vehicle, including energy
consumption and pollution. This coupling is a real benefit compared to
traditional test setups and enables the early evaluation of the energy con-
sumption impact of various changes in the ADAS systems. For example,
the fuel consumption and pollution of a car equipped with Adaptive Cruise
Control (ACC) can be continuously monitored as various ACC algorithms are
developed and tested.

256 Vehicle Hardware-In-the-Loop System for ADAS Virtual Testing

11.4 Hardware Implementation

The proposed system is implemented at IRSEEM facilities. A chassis-
dynamometer is available in one of our technological platform and is used
as a building block. This chassis dynamometer is a Horiba Vulcan 4WD with
two independent axles. It provides real-time velocity information based on
the real vehicle wheel speed. It can also apply a friction force equivalent to a
5% slope of the road. The control system allows interfacing through analog
inputs and outputs, these are used to control the friction force to simulate
the slope and to read the actual speed of the vehicle in real-time. A complete
description of the used chassis-dynamometer is available from the Horiba
website [5]. We use an analog input/output device from National Instru-
ments to link the simulation computer with the chassis-dynamometer control
system.

One of the main challenges in our proposal is the ability to generate
synthetic data and feed the ADAS sensors with this data. The synthetic data
generation for vision-based, RADAR-based and LIDAR-based sensors is
handled by Pro-Sivic. The main problem is how to correctly stimulate the
sensors to feed it with this simulation data.

11.4.1 Sensors Stimulation Solutions

Feeding sensors with simulated data is a key function of our system and a com-
plex challenge. A vehicle can embed numerous sensors like cameras, inertial
sensors, temperature sensors, rain sensors, odometer, LIDAR, RADAR, GPS
and more. Because of the broad variety of sensor types, different approaches
are needed to be able to control what the sensor reports to theADAS processor.

For camera-based sensors, we use direct stimulation using a standard
computer display placed in front of the camera. A first successful test was
done with a 32” LCD screen. A display system using a projector would allow
a bigger image surface and is currently being tested. Image field-of-view and
distortions have to be taken into account for an accurate stimulation of the
ADAS sensor. Special care must be taken in order to completely cover the
sensor’s field of view. This is especially difficult with wide-angle or fish-eye
cameras and would require special setup.

The rain sensor can easily be triggered using a localized water diffusion
device (sprinkler) actuated by a solenoid valve. This system can also be used to
generate rain-like perturbation on camera sensors by directly applying water
on the windshield. However, such solutions can produce perturbations which
are not reproducible.

11.4 Hardware Implementation 257

GPS simulation devices already exist for factory tests and are able to
generate a controlled fake position to be interpreted by GPS receivers nearby.
This kind of device could easily be integrated with our system to provide real-
time positioning to the vehicle and embedded ADAS using GPS as a source
of information. These systems are however costly and a direct transmission of
generated NMEA frames to the ADAS is vastly more cost effective, but needs
a small modification of the vehicle under test.

Likewise, real-time target generators for various types of RADAR (24 and
76 GHz) are available as off-the-shelve component. These systems cans also
be coupled with the real-time simulation software to report the position and
speed of simulated actors to the vehicle.

A recent paper [6] shows a possible implementation of a target simulator
for LIDAR sensors. In this paper, a pulse generator is synchronized with the
LIDAR in order to inject false object echo. Fully functional real-time target
simulators are however to be demonstrated. This setup could be used in our
system like the RADAR target simulator described above.

Inertial sensors are not covered yet. These sensors are usually deeply
embedded in ECU and can be difficult to physically disconnect. An option
is to physically move the vehicle using external actuators, but this implies
heavy equipment. Another option is to open the ECU and physically replace
the sensor with an electronic probe, which is time-consuming and difficult to
achieve without complete documentation.

For Ultra-Sonic range-finder, two main solutions are possible. The first
one is to use a sound generator simulating echo. The other one is to use small
mobile targets located directly in front of the sensors. As these sensors are
usually used only for low-speed maneuver and short-range detection, these
mobile systems would not require a big infrastructure and can safely be used
even in the presence of people.

Recently, Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
communication has widespread with the 802.11p standard. These systems are
used as a kind of virtual sensor providing the position, relative speed and status
of the vehicles in the vicinity. Because of their operation, such systems are
easy to connect with a computer. In our system we used one 802.11p modem to
generate synthetic CAM and DENM messages to be interpreted by the vehicle
under test.

Feeding the sensor with simulated data is not an easy task and each sensor
has to be addressed differently. We plan to use sensor stimulation whenever
possible, and fall back to sensor simulation and sending data in the CAN
bus when stimulation is not feasible. Some kind of sensors appears to be

258 Vehicle Hardware-In-the-Loop System for ADAS Virtual Testing

relatively easy to stimulate (like cameras), others needs very complex and
costly equipment (GPS, RADAR and inertial sensors).

For all these sensors, an alternative approach would be to have a cooper-
ative software embedded in the ECU which would allow to overwrite actual
measurements through the CAN bus (or another communication medium).
While this solution seems unlikely to be possible on production vehicles;
prototypes and test vehicles can be equipped with such debugging software,
enabling a controlled and effective way to bypass sensors and feed synthetic
data straight to the embedded processors.

11.4.2 Software Implementation

Our software runs on a high-end laptop computer and is based on two main
building blocks: multi-sensor simulation software (Pro-Sivic) and a real-time
middleware (RTMAPS). A block diagram of the complete system is presented
in Figure 11.2.

To run the simulations, we used Pro-Sivic from Civitec. This real-time
multi-sensor simulation software is a fusion between a driving simulator and
a multi-sensor simulator. Pro-Sivic provides kinetic data and sensor data from

Figure 11.2 Block diagram of the SERBER system.

11.4 Hardware Implementation 259

the simulated vehicle and can also be used as a driving simulator. A complete
description of Pro-Sivic is given in [4]. Pro-Sivic is able to generate realistic
video output which can be directly used to stimulate camera-based ADAS. A
sample view of Pro-Sivic video output can be seen in Figure 11.3.

The other main software building block, RTMAPS from Intempora is
a middleware which interconnects all other parts of the system. It is also
used to produce CAN messages to be sent on the vehicle bus and perform
other implementation-specific operations. RTMAPS is a component-based
graphical programming framework to easily build multi-tasks or distributed
applications. This software is described in detail in [7] and in this book
(Part 1, Chapter 4). RTMAPS provides native interfaces to multiple simulation
software, including Pro-Sivic, and also numerous components for device
support (CANpeak, serial GPS, National Instruments I/O device and so on).

The most significant part of the RTMAPS diagram is presented in
Figure 11.4. This diagram main task is to handle the communication between
Pro-Sivic and the chassis-dynamometer; and to generate Vehicle-to-Vehicle
and Vehicle-to-Infrastructure communication messages based on the simula-
tion data.

Figure 11.3 Sample video output of Pro-Sivic.

260 Vehicle Hardware-In-the-Loop System for ADAS Virtual Testing

Figure 11.4 RTMAPS diagram of the system (extract).

Our chassis-dynamometer has a hardware limitation: the vehicle front
wheels cannot turn when the vehicle is moving; or damage can occur. In
order to prevent this, the test vehicles driving wheel is physically removed
and replaced by a USB joystick connected to the computer. This allows
lateral control of the virtual vehicle by the driver, in a way very similar to
driving simulators, while the physical wheels stays in line with the chassis
dynamometer.

11.5 Experimental Setup

In order to test our system, we equipped a small fully-electrical vehicle with
an after-market ADAS system: a Mobileye 560. This ADAS, designed to be
installed on the windshield, is based on a forward-looking camera and an
integrated processor which performs real-time image processing. The main
unit contains the camera and a processing device, and a separate display is
used to inform the driver of the working state of the system and to show
warnings. A Bluetooth connection allows using a dedicated application on a
smartphone or tablet to display various data in addition to the one already
shown on the small display. A picture of the system is shown in Figure 11.5
where the main unit is shown on the right, the small display in the middle, and
a smart-phone running the dedicated application on the left.

The Mobileye system is able to detect and track many objects: pedestrians,
other vehicles, speed-limit signs, and white lines. The position of the tracked

11.5 Experimental Setup 261

Figure 11.5 Mobileye 560 aftermarket vision-based ADAS.

objects, as well as the vehicle speed information gathered from the CAN-bus
is used to detect dangerous situations and to warn the driver: risk of pedestrian
collision, risk of forward collision, lane departure, over-speed and so on. All
the processing is done inside the Mobileye main unit and only high-level
information is available through a small display. The Mobileye system is
described in details in [8] and up-to-date information is available in [9].

The V2V communication test bench is composed of two Khoda Wireless
MK 2802.11p modems equipped with MobileMark SMW-303 multiband
antennas. One of the modem is used to send CAM and DENM messages
generated from virtual vehicles data. The other modem is used as an embedded
unit in the vehicle under test. The data received by this second modem are used
to update a dashboard HMI. An extract of the RTMAPS diagram responsible
for the communication task is shown Figure 11.6.

Figure 11.6 RTMAPS diagram of the V2V task.

262 Vehicle Hardware-In-the-Loop System for ADAS Virtual Testing

Figure 11.7 The Biocar test vehicle on the Horiba chassis dynamometer.

The test vehicle equipped with the Mobileye is placed on the chassis
dynamometer, and an LCD screen is placed in front of the windshield, in
the sight of both the driver and the Mobileye system. The Figure 11.7 shows
a view of the test vehicle installed on the chassis-dynamometer. The LCD
screen can be seen in front of the car.

The whole system was tested with an urban scenario and environment.
This scenario is composed of a few roads with some buildings and trees; the
traffic is simulated with four cars following a predefined path. The virtual car
can freely move inside this environment and is directed by actions from the
driver. A view of the urban scenario is shown in Figure 11.8.

11.6 Results

A first series of results have been obtained with the described experimental
setup. The virtual car forward motion is completely controlled by the real
vehicle controls (accelerator and brake pedals), while the lateral control is
obtained from the USB driving wheel connected to the computer.

First, the integration of the chassis-dynamometer with the simulation
software was tested. The real car speed is read and used to update the virtual

11.6 Results 263

Figure 11.8 Overview of the urban environment in Pro-Sivic.

vehicle motion. In Pro-Sivic, the road slope under the vehicle is processed and
this information is used to control the resistive torque applied by the chassis-
dynamometer on the real vehicle. During the tests, the car driver can feel the
resistive torque applied by the system on the vehicle wheels when climbing
a slope, and has a feeling of free wheels when going down. The Figure 11.9
shows a picture taken near the driver’s seat. Driving the car is natural and
intuitive, just as if the car would be on a real road. The driving simulator use-
case is not the main goal of this system but this first test proves the interest of
the SERBER system even for ADAS which involves driver interaction.

The ADAS sensor stimulation abilities of the system were tested using the
Mobileye. This test showed promising results as the Mobileye was fooled by
the simulation and worked as if the car would be running on a real road. The
lane departure warning and forward collision warning have been triggered
by the corresponding simulated situations. The Figure 11.10 shows the lane
departure warning being triggered when the car is crossing the road central
line with the blinkers off. In this picture, the road is clearly seen on the LCD
screen in the top right part. In the bottom left part, a tablet running the Mobileye
application shows a graphical representation of the warning being triggered.

264 Vehicle Hardware-In-the-Loop System for ADAS Virtual Testing

Figure 11.9 Inner view of the vehicle.

Figure 11.10 Lane departure warning triggered.

The last tested functionality is the V2V communication simulation. In this
test, four virtual vehicles are simulated and their global positions are broad-
casted by the 802.11p modem using CAM messages.Various DENM messages
are also broadcasted by virtual vehicles. Another modem is embedded in the
vehicle under test and receives these messages. An HMI is used to display this

11.7 Conclusion and Future Work 265

Figure 11.11 V2V Communication HMI.

data to the driver, using a RADAR-like circular representation. A snapshot of
the HMI is shown in Figure 11.11.

11.7 Conclusion and Future Work

In this chapter, we have presented SERBER, our Vehicle-Hardware-In-the-
Loop system which uses a chassis-dynamometer and a multi-sensor simulation
software to create a kind of virtual reality platform for intelligent vehicles
equipped withADAS using sensors to gather information from the surrounding
environment. The combination of the simulation software and the chassis-
dynamometer allows applying the resulting force from a simulated slope to
the real vehicle, while the sensor data generated by the simulation software
are fed into the ADAS.

We discussed different way show the system can feed simulated data to
sensors, both at the communication-bus level (CAN messages) and at the
physical-stimuli level.

We described our current implementation based on Pro-Sivic, RTMAPS
and a Horiba chassis-dynamometer and presented the first results obtained
by a complete test using a small electrical car equipped with an after-market
camera-based ADAS and 802.11p modem. The result presented in this paper

266 Vehicle Hardware-In-the-Loop System for ADAS Virtual Testing

shows the ability to fool an ADAS system based on a forward-looking
camera. Various functions of the ADAS are triggered when correspond-
ing situations are simulated: forward collision warning and lane departure
warning.

The DESERVE project aims to provide an environment for ADAS design,
development and pre-validation. In this context, SERBER provides a virtual
testing platform enabling early tests of newly designed ADAS with realistic
scenarios and testing environments. This system can also be used to validate
multiple ADAS interaction on the same vehicle and aims to be a complete test
and validation system for fully-autonomous vehicles.

SERBER is more compact and simpler to use than other VeHIL systems
which use mobile bases to move fake cars at high speed in order to simulate
other vehicles motion. In fact, our system can easily be installed on a standard
chassis-dynamometer, if it can be controlled by software, requiring only minor
physical modification of the facility.

The work presented in this chapter is a first step towards a complete
simulation system able to stimulate multiple sensors in the tested vehicle.
Currently, only camera-based ADAS and V2X communication systems can
be stimulated.

The first area of improvement for the current system is the simulation
and stimulation of additional sensors. A RADAR virtual target generator is
currently being developed in order to fool RADAR-basedADAS likeAdaptive
Cruise Control (ACC) and Automatic Emergency Braking (AEB). A LIDAR
target generator and GPS simulator can be integrated to provide a quite
complete setup able to test realistic scenarios.

A second area of improvement is in the simulation environment and
scenario. To be able to test corner-cases and complex interaction of various
ADAS functions, sophisticated scenarios involving various road environ-
ments, pedestrians, other vehicles and driver behavior have to be designed
and implemented.

Acknowledgment

The DESERVE project (Development platform for Safe and Efficient dRiVE,
is a project funded by ECSEL-JU (http://ecsel.eu) and is available at
http://deserve-project.eu

The SERBER project (Simulateur d’Environnement Routier integré à un
Banc de test véhicule pour l’Evaluation de stratégies de gestion de l’éneRgie
embarquée) is funded by Institut Carnot ESP (http://www.carnot-esp.fr).

References 267

References

[1] C. Galko, R. Rossi and X. Savatier, “Vehicle-Hardware-In-The-Loop
System for ADAS Prototyping and Validation,” in IEEE International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIV), SAMOS Island, Greece, 2014.

[2] O. Gietelink, J. Ploeg, B. De Schutter and M. Verhaegen, “Development
of advanced driver assistance systems with vehicle hardware-in-the-loop
simulations,” Vehicle System Dynamics, Vol. 44, No. 7, pp. 569–590,
2006.

[3] K. Athanasas, C. Bonnet, H. Fritz, C. Scheidler, and G. Volk, “VALSE-
validation of safety-related driver assistance systems,” chez Intelligent
Vehicles Symposium, 2003. Proceedings. IEEE, 2003.

[4] “Vehicle Hardware-In-the-Loop,” [Online]. Available: https://www.
tassinternational.com/VeHIL. [Accessed 18 08 2016].

[5] N. Hiblot, D. Gruyer, J.-S. Barreiro and B. Monnier, “Pro-SiVIC and
ROADS. A Software suite for sensors simulation and virtual prototyping
of ADAS,” in Proceedings of DSC, 2010.

[6] “Chassis Dynamometer VULCAN,” [Online]. Available: http://www.
horiba.com/automotive-test-systems/products/mechatronic-systems/
engine-test-systems/details/vulcan-emscd48-626/. [Accessed 18 08
2016].

[7] J. Petit, B. Stottelaar, M. Feiri and F. Kargl, “Remote Attacks on Auto-
mated Vehicles Sensors: Experiments on Camera and LiDAR,” in Black
Hat Europe, 2015.

[8] B. Steux, P. Coulombeau and C. Laurgeau, “RTmaps: a framework for
prototyping automotive multi-sensor applications,” in Proc. Intelligent
Vehicles Symposium, 2000.

[9] I. Gat, M. Benady andA. Shashua, “Amonocular vision advance warning
system for the automotive aftermarket,” in SAE World Congress &
Exhibition, 2005.

[10] “MobilEye 5-series product page,” [Online]. Available: https://www.
mobileye.com/products/mobileye-5-series/. [Accessed 18 08 2016].

http://taylorandfrancis.com

Index

A
Active safety systems 202, 229
ADAS 1, 9, 77, 251
ADAS development 3, 9, 12, 252
ADTF 5, 24, 35, 133
Application-Specific

Instruction-Set
Processor (ASIP) 121, 126,
194, 196

Arbitration 201, 214, 215, 220
Automotive 26, 134, 157, 233
Automotive radar 133, 134,

138, 154

B
Backpropagation 109, 110, 112

C
CFAR 139, 140, 141, 151
Chassis dynamometer 252, 254,

259, 262
Chirp-sequence 133, 136, 146
Cluster 18, 134, 233, 239
CNN 106, 113, 115, 125
Convolution 112, 117, 123, 195
Convolutional Neural

Networks (CNN) 107, 112,
123, 124

D
DAS 15, 23, 203, 209
Data acquisition 33, 68, 72, 74

Data fusion 3, 13, 18, 67
Data processing 19, 72, 133, 153
Data record 70
Data synchronization 31, 65,

67, 218
Deep learning 105, 107, 125, 127
Design of Experiment 81, 82,

91, 93
Driver model 45, 52, 57, 230
Driver modelling 45, 48, 50
Driver-in-the-loop 217, 219
Driving behaviour 45, 47, 51, 62
Driving task 46, 52, 217, 233
Drowsiness 6, 65, 218, 243

E
Evaluation 14, 116, 119, 243
Extrinsic online

self-calibration 161, 181

F
Failure 38, 40, 42, 227
Feature description 193
Feature detection 159, 166,

171, 195
Feature extraction 107, 192,

193, 194
Feature matching 161, 172,

180, 189
Feature pools 175
Feed forward network 109
FMCW 134, 135, 138

269

270 Index

Focus group 233, 240, 242, 243
FPGA 14, 22, 125, 196
Fragmentation 114, 115, 117, 201
Functional safety 16, 17, 36, 37

H
Hardware 120, 145, 192, 251
Hardware accelerator 14, 15,

145, 196
Hardware platform 18, 35,

42, 120
Hardware-based feature

extraction 192, 194, 196, 197
HMI 227, 233, 234, 239
HMI design process 228
Holistic HMI 235, 236, 237, 238

I
Image features 158, 161, 177, 179
Immersive HMI 238, 239, 240
ISO 26262 14, 26, 36, 37

L
Lateral Control 52, 203, 207, 260
Longitudinal Control 203, 205,

211, 214

M
Middleware 3, 65, 72, 258
Model-based Optimization 81
Model-based Validation 83, 98
Multi-scale 171

P
Passive safety systems 228
Pixel classification 113
Preventive safety systems 227

R
Radar signal processing 134
Range-Doppler 135
Real-time 13, 133, 176, 257
Road accident 228
RTMaps 5, 67, 72, 260

S
Scene Labeling 106, 115,

116, 120
Shared control 202, 215, 217
SIFT 177, 178, 182, 192
Smart HMI 239, 241
Software 14, 16, 26, 258
Stereo cameras 66, 158
Supervised learning 109, 110

T
Testing 14, 70, 240, 251
Traffic simulation 45, 51,

60, 63
Training 4, 110, 125, 180
Trust 228

U
Usability 28, 63, 243
User test 233

V
VeHIL 253, 254, 266
Virtual testing 9, 11,

73, 251

W
Warning systems 32, 227, 233
Wide-baseline 157

About the Editors

Guillermo Payá Vayá obtained his Ing. degree from the School of Tele-
communications Engineering, Universidad Politécnica de Valencia, Spain, in
2001. During 2001–2004, he was a member of the research group of Digital
System Design, Universidad Politécnica de Valencia, where he worked on
VLSI dedicated architecture design of signal and image processing algorithms
using pipelining, retiming, and parallel processing techniques. In 2004, he
joined the Department of Architectures and Systems at the Institute of Micro-
electronic Systems, Leibniz Universität Hannover, Germany, and received a
Ph.D. degree in 2011. He is currently Junior Professor at the same Institute. His
research interests include embedded computer architecture design for signal
and image processing systems.

Holger Blume received his diploma in electrical engineering in 1992 at
the University of Dortmund, Germany. In 1997 he achieved his Ph.D. with
distinction from the University of Dortmund, Germany. Until 2008 he worked
as a senior engineer and as an academic senior councilor at the Chair of
Electrical Engineering and Computer Systems (EECS) of the RWTH Aachen
University. In 2008 he got his postdoctoral lecture qualification. Holger has
been Professor for “Architectures und Systems” at the Leibniz Universität
Hannover, Germany, since July 2008 and runs the Institute of Microelec-
tronic Systems. His present research includes algorithms and heterogeneous
architectures for digital signal processing, design space exploration for such
architectures as well as research on the corresponding modeling techniques.

271

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of Contents
	Preface
	List of Contributors
	List of Figures
	List of Tables
	List of Abbreviations
	1: The DESERVE Project: Towards Future ADAS Functions
	1.1 Project Aim
	1.2 Project Structure
	1.3 DESERVE Platform Design
	1.4 The Project Innovation Summary
	1.5 Conclusions

	Part I: ADAS Development Platform
	2: The DESERVE Platform: A Flexible Development Framework to Seemlessly Support the ADAS Development Levels
	2.1 Introduction to the DESERVE Platform Concept
	2.2 The DESERVE Platform – A Flexible Development Framework to Seamlessly Support the ADAS Development Levels
	2.3 DESERVE Platform Requirements
	2.3.1 DESERVE Platform Framework
	2.3.2 Generic DESERVE Platform Requirements (Relevant to all Development Levels)
	2.3.3 Rapid Prototyping Framework Requirements (Development Level 2)
	2.3.4 Additional Requirements for Embedded Multicore Platform with FPGA (Development Level 3)

	2.4 DESERVE Platform Specification and Architecture
	2.4.1 DESERVE Platform Architecture
	2.4.1.1 Hardware Architecture
	2.4.1.2 Software Architecture

	2.4.2 DESERVE Platform Interface Definition
	2.4.2.1 Definition of DESERVE Interface Architecture
	2.4.2.2 Existing ADAS Interfaces
	2.4.2.3 Definition of Next Generation Interfaces

	2.5 Safety Standards and Certification Concepts
	2.5.1 Safety Impact of DESERVE
	2.5.2 Functional Safety of Road Vehicles (ISO 26262)
	2.5.3 Guidelines Related to ISO 26262
	2.5.4 Safety and AUTOSAR
	2.5.5 Safety Mechanisms for DESERVE Platform

	References

	3: Driver Modelling
	3.1 Introduction
	3.2 Driver Modelling
	3.3 Requirements for DESERVE
	3.4 Generic Structure
	3.4.1 Model Structure
	3.4.2 Parameter Structure

	3.5 Implementation
	3.6 Applications in DESERVE and Results
	3.7 Conclusions and Outlook
	References

	4: Component Based Middleware for Rapid Development of Multi-Modal Applications
	4.1 Introduction
	4.2 Using a Middleware
	4.3 The Multisensor Problem
	4.3.1 Knowing the Date and Time of Your Data
	4.3.2 Component-Based GUI
	4.3.3 The Off-the-Shelf Component Library
	4.3.4 Custom Extensions
	4.3.5 About Performance

	4.4 Compatibility with Other Tools
	4.4.1 dSPACE Prototyping Systems
	4.4.2 Simulators
	4.4.3 Other Standards

	4.5 Conclusion
	References

	5: Tuning of ADAS Functions Using Design Space Exploration
	5.1 Introduction
	5.1.1 Parameter Tuning: An Overview
	5.1.2 Industrial Tuning Applications: Challenges and Opportunities
	5.1.3 Model-Based Tuning
	5.1.4 Model-Based Validation

	5.2 Demonstrative Example
	5.2.1 Function: An Overview
	5.2.2 Design Variables
	5.2.3 Key Performance Indicators (KPI)
	5.2.4 Test Maneuver
	5.2.5 Test Run Overview
	5.2.6 Raw Data Plausibility Check
	5.2.7 Meta Modelling
	5.2.8 Optimization
	5.2.9 Verification

	5.3 Model-Based Validation
	5.4 Conclusions
	Acknowledgement
	References

	Part II: Test Case Functions
	6: Deep Learning for Advanced Driver Assistance Systems
	6.1 Introduction
	6.2 Scene Labeling in Advanced Driver Assistance Systems
	6.3 Convolutional Neural Networks and Deep Learning
	6.3.1 Introduction to Neural Networks
	6.3.2 Supervised Learning
	6.3.3 Convolutional Neural Networks

	6.4 CNN for Scene Labeling
	6.4.1 Exemplary Network for Scene Labeling
	6.4.2 Evaluation

	6.5 Hardware Platforms for Scene Labeling
	6.5.1 Theoretical Performance Requirements
	6.5.2 CPU-Based Platforms
	6.5.3 GPU-Based Platforms
	6.5.4 FPGA-Based Platforms

	6.6 Summary
	References

	7: Real-Time Data Preprocessing for High-Resolution MIMO Radar Sensors
	7.1 Introduction
	7.2 Signal Processing for Automotive Radar Sensors
	7.2.1 FMCW Radar System Architecture
	7.2.2 Two-Dimensional Spectrum Analysis for Range and Velocity Estimation
	7.2.3 Thresholding and Target Detection
	7.2.4 Angle Estimation

	7.3 Hardware Accelerators for MIMO Radar Systems
	7.3.1 Basic Structure of a Streaming Hardware Accelerator
	7.3.2 Pipelined FFT Accelerator
	7.3.3 Rank-Only OS-CFAR Accelerator

	7.4 Conclusion
	References

	8: Self-Calibration of Wide Baseline Stereo Camera Systems for Automotive Applications
	8.1 Introduction
	8.1.1 Extraction of Image Features
	8.1.2 Matching of Image Features
	8.1.3 Extrinsic Online Self-Calibration

	8.2 Algorithmic Overview
	8.2.1 Survey of Image Features Extraction
	8.2.1.1 Detection of Features
	8.2.1.2 Description of Features
	8.2.1.3 Characteristics of Features

	8.2.2 Feature Matching
	8.2.3 Survey of Feature-Based Self-Calibration

	8.3 Extraction of Image Features
	8.3.1 Detection of SIFT-Feature Points
	8.3.2 Description of SIFT-Image Features

	8.4 Matching of Image Features
	8.5 Extrinsic Online Self-Calibration
	8.6 Application-Specific Algorithmic Parameterization
	8.6.1 Decreasing Bit Depth of Input Images for Extraction of SIFT-Features
	8.6.2 Threshold-Based Feature Matching
	8.6.3 Parameterization of Matching Methods

	8.7 Hardware Based SIFT-Feature Extraction
	8.7.1 Challenges of SIFT-Feature Extraction
	8.7.2 Existing Systems for Hardware Based SIFT-Feature Extraction

	8.8 Conclusion
	References

	9: Arbitration and Sharing Control Strategies in the Driving Process
	9.1 Introduction
	9.2 ADAS Functions Available in the Market
	9.2.1 Longitudinal Control Systems
	9.2.2 Lateral Control Systems
	9.2.3 Other Control Systems
	9.2.4 Control Solution in ADAS
	9.2.4.1 Perception Platform
	9.2.4.2 Application Platform
	9.2.4.3 Information Warning Intervention (IWI) Platform

	9.3 Survey on Arbitration and Control Solutions in ADAS
	9.4 Human-Vehicle Interaction
	9.5 Driver Monitoring
	9.5.1 Legal and Liability Aspects

	9.6 Sharing and Arbitration Strategies: DESERVE Approach
	9.7 Conclusions
	References

	Part III: Validation and Evaluation
	10: The HMI of Preventing Warning Systems: The DESERVE Approach
	10.1 Introduction
	10.2 Prevent Imminent Accidents: The Role of Humans, The Role of Technology
	10.2.1 From Passive to Preventive Safety
	10.2.2 The Role of Driver Model in ADAS Design

	10.3 HMI Design Flow: The DESERVE Approach
	10.3.1 Different Approaches in the HMI of the Preventing Warning Systems: A State of Art in a Glance

	10.4 HMI Concepts Design
	10.4.1 Concept 1: Holistic HMI
	10.4.2 Concept 2: Immersive HMI
	10.4.3 Concept 3: Smart HMI

	10.5 Preliminary Testing by Focus Group
	10.5.1 Participants
	10.5.2 Results
	10.5.3 List of the Winning Features and Redesign Recommendations

	10.6 Users Test at Driving Simulator
	10.6.1 Participants
	10.6.2 Procedure
	10.6.3 Results

	10.7 Conclusions
	Acknowledgments
	References

	11: Vehicle Hardware-In-the-Loop System for ADAS Virtual Testing
	11.1 Introduction
	11.2 State of the Art
	11.3 Proposed System
	11.4 Hardware Implementation
	11.4.1 Sensors Stimulation Solutions
	11.4.2 Software Implementation

	11.5 Experimental Setup
	11.6 Results
	11.7 Conclusion and Future Work
	Acknowledgment
	References

	Index
	About the Editors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

