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Abstract 
The biological neural computational mechanism is always fascinating to human 

beings since it shows several state-of-the-art characteristics: strong fault 

tolerance, high power efficiency and self-learning capability. These behaviours 

lead the developing trend of designing the next-generation digital computation 

platform. Thus investigating and understanding how the neurons talk with each 

other is the key to replicating these calculation features. In this work I 

emphasize using tailor-designed digital circuits for exactly implementing bio-

realistic neural network behaviours, which can be considered a novel approach 

to cognitive neural computation. The first advance is that biological real-time 

computing performances allow the presented circuits to be readily adapted for 

real-time closed-loop in vitro or in vivo experiments, and the second one is a 

transistor-based circuit that can be directly translated into an impalpable chip for 

high-level neurologic disorder rehabilitations. In terms of the methodology, first I 

focus on designing a heterogeneous or multiple-layer-based architecture for 

reproducing the finest neuron activities both in voltage-and calcium-dependent 

ion channels. In particular, a digital optoelectronic neuron is developed as a 

case study. Second, I focus on designing a network-on-chip architecture for 

implementing a very large-scale neural network (e.g. more than 100,000) with 

human cognitive functions (e.g. timing control mechanism). Finally, I present a 

reliable hybrid bio-silicon closed-loop system for central pattern generator 

prosthetics, which can be considered as a framework for digital neural circuit-

based neuro-prosthesis implications. At the end, I present the general digital 

neural circuit design principles and the long-term social impacts of the 

presented work. 
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Chapter 1 Overview and Rationale  
 

This chapter generally describes the definition, history, development trends and 

current bottlenecks of the neuromorphic circuit. Then it gives a brief description 

of the contributions of the presented work and organization of the thesis.   
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1.1 Overview 

The concept of the “neuromorphic circuit” was first proposed by Carver Mead [1] 

in 1989 to describe electronics that can replicate neurobiological behaviour. The 

key goal of this community is to understand how neural circuits process 

information and how biological systems adapt to different environments 

incorporating learning, robustness to damage and development.  

This field can inspire hardware engineers and computer scientists to design and 

build the next-generation computational platform, which captures the major 

merits of the brain’s features: highly parallel computing, ultra-low power 

consumption, strong fault tolerance and adaptive capability [2].  

There are two main streams within the neuromorphic community: bio-inspired 

and bio-mimicking groups, as shown in Figure 1-1. The bio-inspired group 

primarily investigates how to develop an electronic system that can capture 

concepts or features of biological processes [3]. For example, inspired by the 

insect fly navigation optic flow (OF) sensing system, which can easily avoid 

hindrances and accurately move in the most changeable environments, an 

FPGA-based elementary motion detector (EMD) model [4] is developed to 

replicate this smart navigation mechanism, which is applied on a 

MicroAirVehicle. 

Bio-mimicking groups attempt to use electronics to exactly reproduce biological 

neural network behaviour in real-time computing [5]. Their purpose is to try to 

understand the neural mechanisms of insight.  

 

Figure 1-1: The neuromorphic community classifications: bio-inspired and bio-
mimicking groups. The bio-inspired devices include IBM “TrueNorth” process 
chip. and dynamic vision sensors (DVSs); the bio-mimicking system contains a 
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silicon central pattern generator for cat movement prosthesis and silicon 
cerebellum for mouse fine movement control recovery  

Nowadays there are several projects closely related to this field as shown in 

Figure 1-2. The human brain project [6] was established in 2012 by the 

European Union. It is a 10-year 1.19 billion euro scientific research project that 

aims to fully map human brain activity on specifically designed hardware. Its 

purpose is to provide better understanding of the mechanisms of the brain. In 

addition, it also plans to design and build a computational model that can be 

used to explore the effect of psychoactive drugs on the human brain. However, 

there has been some controversy in that cognitive scientists are largely 

excluded from the project. This indicates that this large flagship project mainly 

focuses on low-level bottom-up approaches [7]. The US-based BRAIN Initiative 

(Brain Research through Advancing Innovative Neurotechologies) [8] is another 

giant project related to neuromorphic computing. It was started in 2013 under 

the Obama administration. The total funds are $300 million per year over ten 

years. Itwill initially map the mouse neural network dynamics and eventually 

transfer these into the human brain neurons. 

On the computer architectural side, a project called SpiNNaker [9] has also 

given strong impetus to the neuromorphic computing community. It is a highly 

parallel computing platform that is mainly focused on the three areas of 

neuroscience, robotic and computer science. The platform hopes to evolve to a 

million-core system to simulate the brain cortex neurons in real time. Similarly, 

IBM started the SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable 

Electronics) project [10], which aims to design a neurosynaptic chip. The aim is 

to reproduce brain computing characteristics related to efficiency, size and 

power consumption. The main applications will be for cognitive tasks such as 

pattern recognition with new programming languages [11]. 

Meanwhile, one of the largest semiconductor companies, Qualcomm, recently 

developed the first commercialized neuromorphic chip, “Zeroth”, in 2014 [12]. 

“Zeroth” is able to observe and predict the external environment similarly to 

human beings. The chip has defined a new concept, the Neural Processing Unit 

(NPU), which is a new class of processor mimicking the cognitive functions of 

the brain. Compared to traditional chips, they argue that the NPU is more 
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suitable for detecting and recognizing visual figures and patterns in complicated 

data with much higher power efficiency than conventional systems.  

 

Figure 1-2: The neuromorphic communities from organizations, industries and 
universities. (a) is the human brain project emitted by the European Union; (b) is 
the BRAIN Initiative supported by the American government; (c) is the first 
generation of commercialized neuromorphic Zeroth chips from the Qualcomm 
company; (d) is the visualization of a simulated network of neurosynaptic chips 
from IBM research; (e) is the analogue CMOS-based chip designed for two-
neuron communication (MIT); and (f) is the Spinnaker computational platform of 
Manchester University.    

Finally, in 2011, researchers at MIT [13] designed the first analogue chip that 

could simulate ion-based communication between two neurons. It was 

fabricated by standard CMOS manufacturing techniques with 400 transistors. 

The MIT’s chip is capable of reproducing the synaptic behaviours of spike rate-

dependent plasticity and spike-timing-dependent plasticity hebbian learning 

rules.    

1.2 History and trends  

The first conceptual neuromorphic circuit was developed by Carver Mead [1] in 

1990. He used analogue circuits to mimic active ion channel current-voltage 

behaviours in a nerve membrane. As this field develops, the neuromorphic 

circuit has broader scopes such as analogue, digital and mixed-model 

analogue/digital VLSI. Particularly in the high-level exploration of implementing 

neural networks (using a Field-Programmable Gated Array), in 2004 E.L. Graas 

was the first [15] to implement a Hodgkin-Huxley (HH) neural model in digital 
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circuits [15]. This specific field has rapidly developed and become an important 

niche in society nowadays. The main developed history is shown in Figure 1-3. 

E.L. Graas’s research gave a basic framework for using FPGAs to implement 

computational neural models. It described the time multiplexing technique and 

speed optimization issues. Then, in 2007, Andrew Cassidy [16] used 32 digital 

neurons to replicate biological synaptic plasticity behaviours. This indicated that 

the digital neural system was capable of reproducing vital neural system 

performances. Meanwhile, RK Weinstein [17] contributed an auto-development 

tool kit for implementing neural models; this developed tool kit can not only alter 

model populations but also model inherent architectures such as 

adding/deleting ion channels. A pre-BÖtzinger complex model was implemented 

as a case study that contains 40 HH-based neurons. After that, researchers 

started to investigate novel hardware architectures for large-scale neural 

network implementation; SW Moore [18] and Kit Cheung [19] developed a 

Bluehive and FPGA-based neural modelling accelerator that could implement 

256,000 and 64,000 Izhikevich neurons in 2012. However, these neurons 

showed poor bio-plausibility. Recently, G Smaragdos [20] presented a digital 

network based on 96 HH neurons with compartments in 2014; it significantly  

 

Figure 1-3: History development diagram of digital neural circuits. The x-axis is 

the implemented network size and y-axis is the bio-plausibility level: leakage 
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integrate-and-fire (LIF) model, Izhikevich model, LIF with ion expression model, 

Hodgkin-Huxley (HH) model, HH model with compartment parts such as soma 

and axon (HH-c) and HH model containing voltage & calcium ion channel and 

ChR2 channels (HH-e). 

improved digital neural network bio-realistic characteristics but the number of 

neurons is limited. 

It can be deduced that the aim of digital neural network implementation is to 

create very large-scale networks with highly bio-plausible behaviours. However, 

the main challenges lie in limited hardware resources and biological real-time 

computing requirements. Using timing multiplexing or pipelining techniques can 

significantly save hardware resources but affects calculation speed. Parallel 

implementation allows digital circuits to do biological real-time calculations but 

requires massive resources. Also, since large-scale neural networks have more 

complicated synaptic connections and neuron/ion types, the implementation 

requires customer-designed routing technology and heterogeneity architectures, 

which increases the design difficulty.  

 1.3 Rationale 

In summary, the implementation of a current digital circuit-based high-level 

neural network has two limitations: 

1. It still cannot reproduce multi-ion channel-type activities including both 

electricity- and chemistry-related behaviours.  

2. When the network scale becomes very large (e.g. 100,000), the system 

has to use a simplified neuron model and shows poor bio-plausibility.  

In this work I have developed two novel hardware architectures to address 

these issues:  

1. Pipelining-Based Multi-Loop Process Mechanism: A Pipelining-Based 

Multi-Loop Process architecture is presented that can mimic different ion 

channel-type activities (voltage-dependent, voltage & calcium-dependent, 

Channelrhodopsin). This successfully reproduces the ions closed-loop 

process mechanisms, including both in electricity and chemistry, and fills 
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the gap whereby previous architectures can only implement voltage-

dependent ion channel models.  

2. The Frame Based Network-on-Chip: A frame based network-on-chip 

architecture is also presented to implement a cerebellum model that 

contains 100,000 neurons. At the same time, the implemented model still 

has high plausibility. It can accurately mimic biological passenger-of-time 

functionalities, and the network is based on a conductance-based 

integrate-and-fire neural model. 

3. The Hybrid Bio-silicon Network: This network is designed for central 

pattern generator rehabilitation, which can be considered one of the 

potential important applications of digital neural circuits. 

1.4 Contributions and organizations  

The major contributions are as follows: 

 A bio-realistic digital ion channel model for the neuron, which can 

incorporate 13 different types of ion channels. The advances include the 

implementation of a channelrhodopsin model into a digital platform, 

together with a multitude of calcium dependent and independent ion 

channels. These latter channels are derived from biological data from 

the ion channels of crustaceans (crab). Although the creation of a 

MatLab model may be interesting in its own right, I have additionally 

created a digital processing platform that can explore networks of these 

neural models in real time. Specifically I have utilized a Field-

Programmable Gated Array (FPGA) to achieve the implementation. This 

allows scalability not only for closed-loop neuroscience experiments but 

also prosthetic applications. 

 An efficient FPGA-based network-on-chip (NoC) hardware architecture 

has been developed for implementing a very large-scale neural network. 

This has been used to implement a 100 k granular-layer model of the 

cerebellum to explore passage-of-time (POT) behaviours. The 

computational delay has been sustainably minimized to 25.6 ms for 

running a 1 s real-world activity. This model may have future 

applications in neuro-prosthetics for ataxia.  

 A reliable and capable system is presented specifically for CPG function 

restoration. Compared to previous systems, the work is stronger in two 
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aspects: silicon neuron bio-plausibility and system reliability. Firstly, 

digital neural circuits are designed to reproduce both real CPG control 

and pharmacological outputs, which particularly aim for conditions with a 

totally damaged and partially damaged system. Secondly, the designed 

system has the capability of robustly changing the computing speed to 

achieve the best communication performances with biology by using an 

adaptive control mechanism. 

The selected publications are as follows: 

Journals 

1. J. W. Luo, G. Coapes, T. Mak, T. Yamazaki, C. Tin, and P. Degenaar, 
“Real-Time Reproduction of Passage-of-Time Functionality Using FPGA,” 
in 2014 IEEE Transactions on  Biomedical Circuits and Systems (minor 
revision). 

2. J. W. Luo, Peter Andras, Alex Yakovlev, and P. Degenaar, “Digital 
Implementation of Bio-realistic optogenetic neurons,” in 2014 Journal of 
Neural Engineering (prepared). 

3. J. W. Luo, T. Mak, Peter Andras, Alex Yakovlev, and P. Degenaar, “A 
Reliable Central Pattern Generator Prosthesis Technique Based on 
Digital Neural Circuits,” in 2014 IEEE Transactions on Neural System 
and Rehabilitations (prepared). 

Conferences 

1. J. W. Luo, T. Mak, B. Yu, P. Andras, and A. Yakovlev, “Towards neuro-
silicon interface using reconfigurable dynamic clamping,” in Conference 
proceedings: ... Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society. IEEE Engineering in Medicine and 
Biology Society. Conference, 2011, vol. 2011, pp. 6389–92. 

2. J. W. Luo, P. Degenaar, G. Coapes, A. Yakovlev, T. Mak, and P. Andras, 
“Towards reliable hybrid bio-silicon integration using novel adaptive 
control system,” in 2013 IEEE International Symposium on Circuits and 
Systems (ISCAS2013), 2013, pp. 2311–2314. 

3. J. W. Luo, P. Degenaar, A. Yakovlev, T. Mak, and P. Andras, “A novel 
hardware architecture for large-scale hybrid bio-silicon network,” in 2012 
Royal Academy of Engineering Young Researchers Futures Neural 
Engineering meeting, Warwick, 2012. 

4. J. W. Luo, T. Mak, P. Andras, and A. Yakovlev, “FPGA-based simulation 
of the pyloric circuits of the crab stomatogastric ganglion,” in 2012 
Neuroscience, D.11.f;G.06.a . 

5. J. W. Luo, G. Coapes, T. Yamazaki ,T. Mak, C.Tin, and P. Degenaar, “A 
Scalable FPGA-based Cerebellum for Passage-of-Time Representation.,” 
in Conference proceedings : ... Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society. IEEE Engineering in 
Medicine and Biology Society. Conference, 2014. 

The thesis structure is organized as follows: 
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Chapter 1: Overviews and Purposes. This briefly describes neuromorphic 

computing background, history and development trends and the work purposes.  

Chapter 2: The Fundamentals. This reviews the basic computation 

architectures and circuits, the digital and neural computing mechanisms, current 

implementation techniques and systems, the FPGA advances and 

developments.  

Chapter 3: The Digital Optoelectronic Neuron.  A bio-realistic digital ion 

channel model, which can incorporates 13 different types of ion channels. The 

advances include the implementation of a channelrhodopsin model onto a 

digital platform, together with a multitude of calcium dependent and 

independent ion channels. 

Chapter 4: The Digital Cerebellum. A frame-based network-on-chip (NoC) 

architecture for implementing a very large-scale neural network (100,000) with 

specific biological passage-of-time (POT) functionalities is presented. The 

design could be a potential neuro-prosthetics tool for future experimental and 

clinical applications owing to its high computational power, flexibility, high 

scalability and power efficiency. 

Chapter 5: Case study: Central Pattern Generator Prosthesis Technique. A 

reliable and capable system is presented specifically for CPG function 

restoration. Compared to previous systems, this work is stronger in two aspects: 

silicon neuron bio-plausibility and system reliability. Firstly, digital neural circuits 

are designed to reproduce both real CPG control and pharmacological outputs, 

which are particularly aimed at conditions with a totally damaged and partially 

damaged system. Secondly, the designed system has the capability of robustly 

changing the computing speed to achieve the best communication 

performances with biology by using an adaptive control mechanism. 

Chapter 6: Conclusion. This summarizes the main work of the thesis and 

briefly describes the major contributions. Also, the things that need to be 

improved and future work are presented as well. 
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Chapter 2 The Fundamentals 
 

This chapter first describes the basic computational principles of digital systems 

and biological neural networks. After that, these two systems are compared. In 

particular, the different features are emphasized. Then it gives a brief historical 

review of previous digital-based biological systems. Finally, the design 

conclusions are also presented.  
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2.1 Digital computational architectures 

A basic digital computational device can be defined as a system or circuit that is 

capable of performing information processing or specific functions that people 

require in their daily lives.  For example, a calculator: by entering several digital 

numbers, the machine will automatically carry out arithmetical operations that 

you need such as addition, subtraction, multiplication and division. Specifically 

in numerical computing, it can perform such computations at much faster 

speeds than the human brain. Designing a digital computational device in 

general raises several basic questions:  

1. How can the digital circuit state best represent analogue (real) world 

information. 

2. What is the optimal architecture for processing and storing information? 

3. How should computational components communicate with each other.  

We are living in an analogue world. The information we sense is continuous 

values changing with time. A digital computational system has to represent 

analogue world information (e.g. continuous values) by using digital states such 

as low and high, on and off, charged and discharged. A positional number 

system has been developed to address this issue. By using the position of 

digital bits, each with different weights, numbers can be represented in a digital 

system. The equation is shown in Equation 2-1: 

  

𝐷 =  ∑ 𝑑𝑖

𝑝−1

𝑖= −𝑛

𝑟𝑖 

 

Equation 2-1 

where 𝑟𝑖 is the weight and 𝑑𝑖 is the analogue values, the rightmost bit (𝑖 =  −𝑛) 

is called the least significant bit (LSB), and the leftmost bit (𝑖 =  𝑝 − 1) is called 

the most significant bit (MSB).  

Once the analogue value can be represented by digital circuit states, the next 

key consideration is how to use logic signals and gates for information 

processing. The gate functions AND, OR and NOT are developed as the basic 

logic operations; the symbols and corresponding truth table are shown in Table 

2-1and Figure 2-1. The complementary Metal-Oxide Semiconductor (CMOS) is 

the fundamental unit for implementing these logic functions.  
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Figure 2-1: The basic gate functions: AND, OR and NOT. 

Table 2-1: The truth table of logic gate functions 

AND OR NOT 

A B C A B C A B 

0 0 0 0 0 0 0 1 

0 1 0 0 1 1 1 0 

1 0 1 1 0 1   

1 1 1 1 1 1   

 

It is a three-terminal device that can be considered as a voltage-controlled 

resistance or amplifier. In the digital operation principles, the MOSFET is always 

operated either very high (switch on) or very low (switch off). An example of 

using CMOS to implement a NOT function circuit is shown in Figure 2-2: A: the 

typical CMOS inverter architecture for NOT gate function, B: The typical input-

output transfer characteristic of a CMOS inverter. 

 

Figure 2-2: A: the typical CMOS inverter architecture for NOT gate function, B: 
The typical input-output transfer characteristic of a CMOS inverter. 

Therefore, by combining and arranging different numbers of these gate 

functions as shown in Figure 2-1, from these building blocks all important 

circuits and memory elements can be created. When the circuit outputs are 

purely dependent on the input values, it is defined as a combinational circuit. 

When a process has to involve previous inputs or calculations, a memory 
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component such as flip-flops or latches is necessary. This circuit is defined as a 

sequential circuit. 

As the required information process functions become more complex and varied, 

people seek to develop a general-purpose computational device with a 

reprogrammable function, thus the architecture requires a customer-designed 

controller or program register to manage operation sequences and data and 

become more sophisticated.  The Central Processing Unit (CPU) came of age. 

Very early in the 19th century, there were two basic CPU structures: the Von 

Neumann [21] and Harvard computing architectures. The Von Neumann 

architecture contains a processing unit that consists of: 

1. An arithmetic logic unit.  

2. Registers (accumulators). 

3. A control unit that consists of an instruction register and program counter. 

4. An external massive memory storage. 

5. Input/output pads.  

The arithmetic logic unit is responsible for calculating data such as add, multiply 

and subtract operations and comparisons such as “greater than” or “less than”. 

The control unit is for managing the process of moving data and codes in and 

out of memory, and also for executing program instructions. The memory is for 

storing both data and program instructions such as random access memory. 

The Harvard architecture maintains the same components but the key 

difference is that instruction and data memory are physically separate and have 

different signal pathways, as displayed in Figure 2-3.  

Because the Von Neumann architecture instructions and data memory share 

the same communication bus, it strongly limits the effective calculating speed. 

The CPU speed becomes limited by the time taken for memory access. Harvard 

architecture, modified Harvard architecture or parallel computing can alleviate 

this performance problem because the data bus is separate. 

The basic CPU goes through the following process sequence: first, it fetches 

the instruction in the memory location indicated by the Programmer Counter 

(PC), and loads it into the Instruction Register (IR); then the PC will be 

automatically updated to indicate the next instruction by increasing an 
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appropriate amount. At the execution phase, CPU will carry out the instruction 

in IR and execute it. This is the typical sequence of the fetch-execute cycle. 

 

Figure 2-3: Comparison between Von Neumann and Harvard computing 
architecture. 

As the computer technology develops, the modern CPU is capable of 

performing general-purpose tasks and significantly enhancing people’s quality 

of life. However, the CPU faced limitations as graphics process requirements 

increased. Such processing requires massive matrix and vector operations, 

which take an extremely long processing time when processed sequentially. 

Engineers then developed a tailor-designed highly parallel computing device for 

graphic processing tasks, called the Graphic Processing Unit (GPU). The first 

consumer-level GPU card, named Nvidia GeForce 256, was released in1999. 

A GPU [22] is an interesting computing architecture. It has a highly parallel 

structure. It is a heterogeneous chip multiprocessor. Because there are lots of 

matrix and vector calculations, the basic architecture is shown in Figure 2-4. 

The red block is the fetch/decode function unit that sends an instruction stream 

across many ALUs, which refers to single-instruction multi-data processing. The 

yellow block is the ALUs. And the blue block is execution contexts and shared 

memory. 

The GPU [24] process mechanism is complicated and often involves many 

steps. The basic operation principles are as follows: first, everything is 

translated into triangles by using a computer graphic library. Then the lighting 

process will identify each triangle colour. After that, all these triangles are 

translated into the virtual camera’s film coordinates. The rasterization step will 

separate all the overlapped triangles. Next each camera pixel colour will be 
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identified and the incorrect hidden surfaces of objects will be removed. 

Nowadays people increasingly use GPU for other non-graphical applications 

such as bitcoin mining and neural network modelling [23].  

  

 

Figure 2-4: The NVIDIA GeForce GTX580 “core”. The yellow block is the SIMD 
(Single Instruction Multi Data) function unit. This figure comes from the Fermi 
Compute Architecture Whitepaper CUDA Programming Guide 3.1. 

Also, as the automation, mechanical and electrical industries develop, some 

information process functions in commercial products have to be specifically 

designed to save hardware resources, increase power efficiency and enhance 

speed, in terms of raising net benefits. This raises people’s interests in 

designing an Application-Specific Integrated Circuit (ASIC). 

An ASIC is a customized integrated circuit for a specific function. The first ASIC 

was a gate array invented in 1980 by Ferranti. The design methodology of 

ASICs can be roughly divided into three categories: gate-array designs, 

standard-cell designs and full-customer designs. The gate-array design is 

where transistors or other active devices are predefined and unconnected. The 

interconnections of the final system are decided by the engineering. Nowadays 

it has been almost entirely replaced by FPGAs. The standard-cell design uses 

manufacturer-designed standard function blocks to build circuits with high 

electrical performance. This design involves several stages: module 

specification, top-level design, system implementation, simulation, synthesis, 

layout and testing of silicon. The full-customer design is defined all the silicon 

layers of the device. The advantages of full-customer design usually include 

smaller areas, speed enhancement and less power consumption, and also the 
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ability to integrate other components. Examples of gate-array and full-customer-

designed ASICs are displayed in Figure 2-5. 

 

Figure 2-5: A: gate-array-designed ASIC; B: full-custom-designed ASIC.  

On the other aspect, all the above three different architectures (CPUs, GPUs 

and ASICs) can be implemented in a digital reconfigurable tool, which is the 

FPGA. 

Ross Freeman and Bernard Vonderschmitt released the first commercial 

available FPGA in 1985, named XC2064 [25], which created a new beginning 

market of computational architecture. The FPGA [26] is a bit different from 

previous computing architectures; it is defined as “a prefabricated silicon device 

that can be electrically programmed to become almost any kind of digital circuit 

or system” [26]. This is done by customized programming technology, which 

can change circuit performances after chip fabrication. The digital circuits are 

created in the “field”. The conceptual structure of an FPGA is displayed in 

Figure 2-6. It contains routing channel, logic block and I/O interfaces.  

The routing channel design refers to programming technologies. The 

approaches include EPROM [27], EEPROM [28], flash [29], static memory [30] 

and anti-fuses [31]. Among these approaches, the flash, static memory and 

anti-fuse techniques are widely applied in the FPGA model.  The logic block is 

for implementing circuit function; the design has to consider the trade-off among 

speed, power and areas. The I/O pad is the input and output interface.   

The FPGA contains three main elements: Look-Up Table (LUT), flip-flops and 

routing matrix. Look-Up Tables are fundamentally how logic is actually 

implemented on   a block of; the output is the values of the corresponding 
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indexed address location. Flip-flops are typically used for function reset or 

latching. They are usually connected to the output of LUTs, which consist of a 

slice. The complex logic block contains two slices in FPGAs. The routing matrix 

is a number of multiplexers and wires that respond to connecting CLBs and the 

other FPGA resources. For example, a summation function needs to be 

implemented that requires an adder operator. An adder can be synthesized by 

using several logic functions including: AND, OR and NOT. These logic 

functions are implemented by using LUT; the connections between them are 

achieved by using a routing matrix. Specifically, system reset, enable and 

memory functions can be realized by using flip-flops.  

 

Figure 2-6: The conceptual architecture of an FPGA. The figure is cited in [26]. 

Overall, the characters of each platform are summarized in Table 2-2. There are 

two computing mechanisms for sequential and parallel approaches. CPUs 

follow a  sequential computing approach and comprise four main steps – fetch, 

decode, execute and write-back – while GPUs, FPGAs and ASICs use parallel 

computing.  

The clock signal governs all different digital platforms’ computing speed; it is 

very important and can allow or stop a process and in general provide 

synchronization for the circuits. Increased clock frequency can directly make 

digital processors run faster, but it is limited by  circuit delays. The clock period 

has to be longer than the total propagation delay of the circuits to avoid glitches. 

Generally, larger circuits have longer propagation delays. The clock cycle of 

CPU Intel Core i7-960 can be up to 3.2 GHz, which is much faster than a Nvidia 

GTX285 1.5 GHz. Specifically, since FPGAs have switch blocks in the circuits, 
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which have large propagation delays, the clock frequency of FPGA V6-LX670 is 

0.3 GHz.  

Table 2-2: Comparisons among different computing platforms 

 CPUs GPUs FPGAs ASICs 

Mechanism sequential parallel 

Architecture specifications  

Clock cycle 3.2 GHz 1.5 GHz 0.3 GHz - 

Die area 263 mm2 470 mm2 - - 

CMOS tech 45 nm 55 nm 40 nm - 

Benchmarks (Fast Fourier Transform) 

GFLOP/s 67 250 380 952 

GFLOP/J 0.71 4.2 6.5 90 

Characteristics 

Flexibility strong strong strong weak 

Design cycles normal normal relatively long long 

Cost cheap cheap normal expensive 

Implantable no no no yes 

*: CPU is an Intel Core i7-960; GPU is a Nvidia GTX285, FPGA is a V6-LX760; the ASIC circuit is the same RTL in 65 

nm for FFT implementation; GFLOP refers to a unit of computing capacity equal to one billion floating point operations 
per second. The benchmark data is cited at Computer Architecture Lab at Carnegie Mellon.  
 

A benchmark Fast Fourier Transform (FFT) algorithm was implemented on 

these four platforms. The characteristics of FFT are complex dataflow and low 

arithmetic density. The results indicated that ASICs have the fastest 

computational speed of 952 GFLOP/S and CPU has the slowest speed of 67 

GFLOP/S. However, the power consumption of CPU is 0.71 GFLOP/J and that 

of ASICs is 90 GFLOP/J. 

In terms of system flexibility and feasibility, CPU- and GPU-based platforms 

enjoy strong flexibility and low cost, and the level of design difficulty is relatively 

easy. Meanwhile, FPGAs are also reconfigurable platforms with normal costs; 

the design cycles are generally a bit longer since hardware design requires 

extra time for circuits’ synthesis and on-board testing. Finally, ASICs are non-

reconfigurable and expensive, and the design time generally takes months, 

depending on the specific target. But the circuits are implantable and more 

efficient in terms of power consumption and computing speed. 

2.2 The digital circuit design flow 

The overall design flow of digital Integrated Circuit (IC) implementation is 

described in Figure 2-7. A digital ion channel implementation is given as a case 

study.  First, a mathematical biological neural model/algorithm (function) is 

selected for implementation. By carefully considering the model parameter 
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range and resolution, neural network architecture and functionalities, two 

hardware architecture generation tools can be candidates for designing: Very 

high-speed integrated circuit Hardware Description Language (VHDL) and 

visualization software Cadence. Cadence gives more design flexibility and 

controllability, and VHDL is for high-level architecture (system) modelling. In this 

case study, a voltage-dependent ion channel model is described by using VHDL. 

And the next step is to employ ISE software to carry out behaviour and post-

translate simulation. Behaviour simulation verifies model functionalities from the 

logic-design perspective, while post-translate simulation includes physical 

hardware constraints such as timing and layout issues, which is as close as the 

real hardware calculation. After the synthesis, the developed hardware 

architecture is represented by using the register transfer level. Finally, a Virtex-7 

evaluation board is used for implementation and on-board testing.  

After verification by using an FPGA, the next milestone is to transfer VHDL into 

ASIC circuits. At this stage the software Synopsys is applied to transfer a 

previous VHDL code into a netlist in terms of generic cells such as and, or, not 

and sequential elements and mapping into logic cells from the CMOS library. 

Specifically, timing, area and power performances of architecture should be 

optimized to meet requirements. A synthesized netlist result is shown in Figure 

2-7 as well. Then the software Encounter is chosed to perform a digital IC place 

& route task, which includes floor planning, placement of cells, clock tree 

synthesis and optimization, routing of nets and full custom layout finishing (if 

required). A 90 nm CMOS library is selected for mapping the ion channel model 

and the final physical layout is shown in Figure 2-7. Finally, in the Signoff stage, 

static timing analysis, dynamic simulation, formal equivalence checking, power 

analysis (peak, average and time based) and transistor-level simulation should 

be considered. 

2.3 How the neuron works 

Compared to the artificial information process system based on silicon, the 

natural information process system of the biology shows totally different 

features. The basic processing unit of biology is called the neuron.   

A typical biological neuron consists of a soma, dendrites and an axon (Figure 

2-8B). It processes and transmits information through electrical and chemical 
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Figure 2-7: The design flow of digital Integrated Circuits (IC) implementation. A 

case study of implementation of an ion channel model is given as a 

demonstration.  
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signals. The basic single neuron computational mechanisms can be described 

as follows: first, charges from the spikes are summated at the dendritic tree, 

which is an information receiver. The summated output from dendrites will be 

sent to the soma for processing (e.g. integration). If a large enough amount of 

ions (inputs) change, an output signal will be generated. This signal can be 

considered a digital event that is transmitted to the other neurons by the axon. 

Here the axon can be seen as an information sender. Dendrite computation is 

analogue while axon communication is digital.    

 

Figure 2-8: The single neuron computational mechanism. A is the conceptual 
neuron process mechanism; B is the neuron biological structure; and C is the 
digital event (action potential).  

Particularly in neuron processing, the digital event is called action potential in 

the biological system. It mainly depends on the two components ofthe soma 

membrane. One is called ion pumps, which maintain the negative voltage 

differences across the membrane, and the other one is called ion channels, 

which are responsible for generating the ions (e.g. sodium, potassium and 

chloride) concentration differences in and out of the neuron. In detail, the 

generation process can be divided into five parts: the rising phase, the peak 

phase, the falling phase, the undershoot phase and the refractory period. In the 

rising phase, if the depolarization current is large enough, the inward sodium 

current overwhelms the outward potassium current This indicates that the 

membrane potential increases. Therefore, the more membrane potential 

increases, the more sodium currents come in. Eventually, the membrane 

potential will increase towards the sodium equilibrium voltage of around 55 mV. 
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The peak and falling stage refers to the sodium permeability being maximized 

and the membrane potential being approximately equal to the sodium 

equilibrium voltage. After that, the sodium ion channels are closed and become 

inactivated, which indicates that the sodium membrane’s permeability is lower 

than that of potassium, driving the voltage back to the resting state. The 

increased voltage activates the opening of more potassium ion channels that 

usual, so the potassium permeability of the membrane is very high in transient 

periods. This drives the membrane potential towards to the potassium 

equilibrium voltage, which is defined as post-hyperpolarization. In the refractory 

period, the two ion channels are return to normal, and the membrane potential 

will back to  resting potential values. The five stages are summarized in Figure 

2-8C. 

The communication element between neurons is called synapse. Its location is 

between the previous neuron axon terminal and the next neuron dendrite, which 

is shown in Figure 2-9B. It allows the digital event (action potential) to pass 

between two neurons.  There are two different types of synapses: electrical and 

chemical synapses. In a chemical synapse, the action potential will be 

translated into chemical signals, which are used to initialize the received neuron 

electrical response, while in an electrical synapse, the signal transmission is 

achieved by the gap junction.  

One thing that should be pointed out is that the synapse plays an important role 

in the establishment of memory. When both communicated neurons are active 

at the same time, the connection between the two neurons is strengthened as a 

result of signalling mechanisms. This process is called long-term potentiation, 

which is acknowledged as memory information.    

2.4 Comparison of neural and digital computing 

In this section, I investigate the differences between neural and digital system 

process mechanisms, which are shown in Figure 2-11. 

As can be seen, in the digital circuits, the basic element transistors can be 

synthesized into logic functions AND, OR and NOT. Then these functions are 

built into specific function circuits such as register, ALU and multiplexer and 

further to higher-level CPUs etc. In contrast, in the biological system, the basic 

component is neurons; these neurons interact with each other by using synaptic 
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connections to generate spiking patterns. This series of neurons can be equally 

considered as a system level with some specific functions. Figure 2-11 

 

Figure 2-9: The biological synapse architecture. 

shows an example of biological networks in the human brain for controlling 

people’s daily life behaviours.  

Both systems have different information encoding mechanisms. For digital 

circuit information encoding, it contains several important characteristics: 

synchronization, language, errors, copying, granularity and compressibility. 

Here is an example of two-wire serial control model in a portable Internet audio 

CODEC chip in Figure 2-10. 

 

Figure 2-10: An example of digital system information coding. The figure 
displayed is the two-wire serial control model of a WM8731/L audio CODEC 
chip. 

The synchronization refers to each digital signal frame; the information start and 

stop point are specifically designed, which can be recognized by both digital 
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sender and receiver. At this point when information starts to send, the clock 

signal is at the high level and data signal at the transition level from high to low, 

while when information is finishing, the clock signal is at the high level and data 

signal  

 

 

Figure 2-11: Comparisons between digital and neural system processing. 
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at the transition level from low to high. Once the digital communication system 

establishes a start condition, a eight bits(7-bit address+R/W bit) will be send out, 

and MSB(Most Significant Bit) is transferred first. If the correct address is 

received and the R/W is zero, which indicating a write function, then the 

WM8731/L will generate a ACK bit by pulling SDIN low on the next cycle. The 

WM8731/L is a write only device only respond to the R/W bit indicating a write. 

On the other hand, if the address is not recognised the device will return to the 

initialized condition and wait for a new start condition and valid address. Also, 

the digital information can be copied to the other system since it is noise free. 

And it can be compressible to save space. But there is a granularity 

(quantization error) in the digital information encoding, which refers to the 

differences between the actual analogue values and the digital representation.  

Neural system coding can be classified into four schemes: rate coding [34], 

temporal coding [35], population coding [36] and sparse coding. Rate coding is 

defined as the information containing in the firing rate of the neuron. It was 

originally described by E. D. Adrain and Y. Zotterman in 1926. Temporal coding 

is defined as the information that is carried by precise spiking timing or high-

frequency firing-rate fluctuations. The timescale of temporal coding is in the 

range of a millisecond. Both coding examples are shown in Figure 2-12. 

Population coding is an approach that uses correlation of  a number of neuron’ 

activities to represent sensory information. It is widely used in the sensor and 

motor areas of the brain. For example, the object moving direction can be 

retrieved from the monkey visual area medial temporal population activity. 

Sparse coding is information that is encoded by the significantly strong 

activation of a relatively small sparse set of neurons.  

A comparison between digital and neural computation is shown in Table 2-3. 

The digital computation system enjoys high calculation speed and limited bus 

connections, while the  neural  circuit  has  relatively  slow  firing  frequency  but  
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Figure 2-12: The neural coding schemes: rate coding and temporal coding.  

Table 2-3: Comparison between digital and neural computation 

Computation characters Digital circuits Neural circuits 

Speed Fast(GHz) 
Global clock 

Slow (Hz) 
Event-driven 

Architecture connections Low(bus) connected Highly connected 

Information coding Deterministic Non-deterministic 

Fault tolerant Poor Good 

Learning  No Yes 

Applications Numerical computing  Image processing 

 

massive point-to-point synaptic connections. Also, the digital circuit is governed 

by a global clock. In each clock cycle, the circuit processes the information, 

while in the biological neural circuit, only when information comes in does the 

system have to do the processing. This can be thought as being based on the 

event-driven technique. The computation in the digital circuit is deterministic 

because the logic operation is fixed; but in the neural circuit it is stochastic. This 

may lead to corresponding poor and good fault tolerance characters. The digital 

system has fixed behaviours, while the neural circuit has a strong learning 

capability to be adaptive to external environments. This is due to the synaptic 

memory learning at the computation. For applications, the digital circuit is good 

at numerical computing and the neural circuit is good at image processing. 

2.5 Digital based biological systems and techniques 

Because the neural system has so many fascinating characters shown in Table 

2-3, engineers aim to exactly reproduce these biological behaviours by using 

silicon to more fully understand how neural networks achieve this. The 

contemporary bio-mimicking society has successfully reproduced several core 

biological system behaviours by using digital circuits from ion to network levels. 

A. The conduction and excitation of membrane current 
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E. L. Graas originally reproduced the conduction and excitation of membrane 

current biological dynamics by using hardware in 2004 [15]; the developed 

hardware architecture simulated 17 versions of the HH models and successfully 

predicts sodium, potassium and leakage ionic flow manners in a neuron under a 

variety of conditions. The developed system is implemented on a Xilinx Virtex-

xc2v1000 and consumes 2186 slices and 12 RAM blocks of hardware 

resources. The on-board clock frequency is set at 40 MHz with a 0.001 ms 

simulation time step. The whole system used 45 ms to simulate all the models, 

which is 16 times faster than running on the computer.  

In this work, two strategies that increase system clock frequency and integration 

step are suggested to increase system computational speed: clock frequency is 

decided by the longest critical path, and integration step will influence system 

reliability.  

In particular, a simulation multiplexing (SM) technique [15] is presented in this 

work. The digital circuit computes multi-version models simultaneously by 

exploiting the latency in the computational architecture, and each model will be 

executed sequentially in lockstep.  

The simulation multiplexing concept is illustrated in Figure 2-13 and the basic 

mechanism is as follows: each external input (1st, 2nd, 3rd,…, nth) is sequentially 

sent into the process block (neural model) by a Time Division Multiplexer (TDM), 

and the neural model calculates each input signal and consecutively feeds back 

to the time division de-multiplexer as outputs. The TDM input channel number 

has to equal the neural model latency to avoid data process mismatch.  

A. Synaptic ion channel behaviours 

Excitation receptor-gated ion channel N-methyl-D-asparate (NMDA) and alpha-

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-gated 

ion channels are both implemented on digital circuits by using a component-

based approach [37]. Those channels are mainly responsible for synaptic 

plasticity such as Long-Term Depression (LTD) and Long-Term Potential (LTP) 

[38][39]. These exist in the glutamatergic excitatory synapses as shown in 

Figure 2-14. 
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Figure 2-13: The conceptual architecture of simulation multiplexing technique.  

 

 

Figure 2-14: A: Both AMPA and NMDA gated ion channels are activated by 

excitatory neurotransmitter glutamate in a biological synapse. The figure is cited 

from [37]. B: (a) is the biological recordings of excitatory postsynaptic currents 

from NMDA & AMPA channels and individual NMDA channels. The figure is 

cited from [40]; (b) is the FPGA-based simulation results. 

In Figure 2-14A, both AMPA and NMDA gated ion channels are activated by 

excitatory neurotransmitter glutamate in a biological synapse. In addition, Na+, 

Ca2+ and Mg2+ ionic are transmitted in between as well, while in Figure 2-14B, a 

comparison between biological recordings and FPGA-based simulation of 

NMDA and AMPA gated ion channel currents is displayed. It shows that the 

presented silicon AMPA and NMDA gated ion channels can exactly reproduce 

real synaptic ion channel excitatory current behaviours.  

More importantly, a component-based approach was developed to implement 

neural maths division and exponentiation in the architecture. This technique 
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utilizes digital logics to achieve factor approach iterative calculations. Hence, 

the system is benefits from the limited hardware resource utilization and 

adaptive model parameters. For example, a division is introduced in this section 

as a case study.  

Division format (Y/X) can be rephrased as a communal calculation, and the 

communal element is a unique case in which Y = 1. Therefore, division 

functionalities can be recomputed as multiplications of different factors as 

shown in Equation 2-2: 

 𝑌

𝑋
= 𝑌 ∗ ∏(1 +  𝑠𝑗

𝑛

𝑗=1

2−𝑗) 
Equation 2-2 
 

 

where 𝑝𝑗 =  ∏ (1 + 𝑠𝑗
𝑛
𝑗=1 2−𝑗); after several computing iterations, the mutual part 

𝑝𝑗  eventually converges to Y/X and 𝑝𝑗 ∗ 𝑋  converges to one. The details 

factoring the algorithm for division and hardware architecture are shown in 

Figure 2-15. 

 

Figure 2-15: The conceptual algorithm and hardware architecture of factoring 

algorithm for division. The factoring algorithm for division is cited by [37].  

B. Rhythm generation in the Pre-Bötzinger Complex (PBC) 

By using an auto-generation tool kit [17], a silicon Pre-Bötzinger Complex (PBC) 

network is generated based on a FPGA circuit. Implemented PBC that contains 

40 oscillatory bursting neurons with specific synaptic connections aims to 

explore the respiratory rhythm generation in mammals [41]. The hardware 

simulation results are shown in Figure 2-16. 
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Figure 2-16: The PBC network output patterns. A displays the oscillatory burst 

patterns in 30s, while B shows the first burst pattern details of four bursts in A. 

The simulation is based on the single clock-cycled mode with 0.01 time step. 

The figure is cited in [17]. 

The auto-generation tool kit significantly reduced the system modification 

design periods, since the hardware architecture is explicitly classified into two 

parts: memory blocks and data path. Memory system is based on the shared 

memory technique, which can be modified in real-time simulation. Adjust data 

path (adding/deleting a specific ion channel) is also straightforward because the 

computational component is entirely distinct from memory components. The 

conceptual structure of the auto-generation tool kit is shown in Figure 2-17. 

 

Figure 2-17: The conceptual structure of the auto-generation tool kit. Two main 

modules are involved in the system: memory-based component (model 

parameters and state generation) and computational component (data path). 

The figure is adapted in the work [17]. 

C. Spike Time-Dependent Plasticity (STDP) learning rule 

Spike Time-Dependent Plasticity (STDP) [42] basically reflects the synaptic 

connection strength dynamic variations between two neurons in a  biological 
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network. In summary, synapse, which contributes to an output spike event 

generation, will be strengthened and inversely reduced. Specifically, it refers to 

long-term potential (LTP) and long-term depression (LTD). The work in [16] 

effectively mimics such an important biological communication feature by using 

an FPGA. The corresponding architecture and STDP behaviour are shown in 

Figure 2-18: 

 

Figure 2-18: The partial hardware architecture of STDP (A) and STDP 

modification function (B). The figure is cited in [16]. 

where spki trig is the pre-synaptic event and spko trig is the postsynaptic event.  

Two buffers are employed to temporally stock pre-synaptic event time and 

synaptic index. The STDP functionality values are pre-stored by using LUT 

technology. The differences between pre-synaptic and postsynaptic event 

timing are the index address for value w, which is for updating the current 

synapse strength.  

A developed FPGA-based silicon neural array, which contains 32 Leaky 

Integrate-and-Fire (LIF) neurons, is implemented on a Xilinx Spartan XC3S1500, 

which utilized 745 slices of FF and 4-LUTs aapproximately 11 2 KB RAMs.  The 

system clock frequency is 50 MHz.  

The conceptual mathematical equations and architecture of LUT technology are 

displayed in Equation 2-3 – Equation 2-4 and Figure 2-19. 

 
𝑎𝑑𝑑𝑟(𝑥) =  

(𝑥 − min(𝑥))

∆𝑥
 

Equation 2-3 
 

 
𝑅𝑂𝑀𝑑𝑒𝑝 =  

max(𝑥) − min (𝑥)

∆𝑥
 

Equation 2-4 
 

   

where 𝑥 is the input, and min (𝑥) and max (𝑥) are the minimum and maximum 

values of  input  ranges, respectively. ∆𝑥  is the  resolution step,  𝑅𝑂𝑀𝑑𝑒𝑝  is the  
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Figure 2-19: Conceptual architecture of LUT approach. 

depth of ROM memory block. The basic LUT technique is applied on the system. 

First, an input value is compared with the base value min (𝑥)  whose ROM 

address is 0. Then, by multiplying the difference gain (resolution), the correct 

address is calculated for the output. Equation 2-3 deduces the architecture 

calculation clock cycles while Equation 2-4 decides the hardware memory 

resource utilization. Therefore, it is not adequate for models with large-range 

parameters and accuracy resolutions. 

 

D. Address-event representation for mapping synaptic connection 

Inspired by multiplexing methodology applied in telecommunications and 

computer networks [43], neuromorphic engineering has adopted the Address-

Event Representation (AER) technique, which is an asynchronous handshaking 

protocol used to transmit signals between neuromorphic systems.  The basic 

concept of the AER [44] is displayed in Figure 2-20. It can be simplified as a 

protocol for data transmissions among many simulation multiplexing-based 

process cores. For example, every time an event (e.g. spike)is generated on 

Chip 1, the address encoder will write a address(corresponding to address 

encoder index and its own type) onto a common digital transmission bus which 

is shared by all neuron events.  Arbitration circuits ensure that the addresses 

are sent off sequentially. The AER handshaking protocol is responsible for the 

sender and receiver respectively writes and read the correct event from the bus 

only when they are allowed to. Based on the different system performances of 

throughputs, neural ensembles (described in the next paragraph) and network 

firing frequency, the protocol has a variety of architecture styles.  
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Compared to the encoding/decoding functionalities in biology, the retina codes 

two bits per spike take optic nerve transmits 40 Mb/s[46], which is a thousand 

times less than traditional imagers that require 40 Gb/s based on the Nyquist 

rate.  In order to describe such a stimulus-driven, fine, spatiotemporal spike 

event architecture in biology, the concept of neural ensembles is defined as 

describing neural network events at statistically aspect; the corresponding 

equation is show in: 

 

Figure 2-20: The conceptual structure of Address-Event Representation (AER) 

technique. Time-division multiplexing is applied on neuromorphic chip 01 and 

02. The generated spikes are transmitted serially by broadcasting on a digital 

bus. The figure is adapted from [45]. The address encoder and decoder of 1, 2 

and 3 are the timing multiplexed channel index rather than individual spike 

address.  

 𝜀 =  {𝑥0, 𝑥1, … 𝑥𝑖, … }; 𝑡0 < 𝑡1 < ⋯ 𝑡𝑖 < ⋯ Equation 2-5 
 

 

where 𝑥𝑖 represents an event that happens at a specific location and time 𝑡𝑖. 

The developed encoding part is described as an address-event presentation 

(AER).  

Neural ensembles general contain two items: neural latency and neural 

temporal dispersion. Neural latency refers to the time interval between stimulus 

onset and spike appeals, while neural temporal dispersion refers to the variation 

and heterogeneity of individual neurons. By considering the neuromorphic chip 

signal features within these two indexes, the communication channel 

architecture has to be carefully designed from capacity, latency temporal 

dispersion and integrity four aspects. And the design faces several trade-offs as 

well. For instance, the sampling frequency can be adaptive or static depending 
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on the signal changing; conflict happens when two spike events attempt to 

access the same communication channel simultaneously. Either simply 

abandoning spikes or introducing an arbiter is acceptable for dissolving collision. 

Also, the time constraint is exposed at spike-event queuing in the arbiter 

channel, and the solution of arranging new data events versus giving up old 

data to create new spike-event timings can significantly influence all the system 

throughputs. In addition, the channel should have the ability to predict the 

maximum spiking frequency in real time to achieve adaptive communication 

performances.  

In [44] the argued arbitration is the best optimization selection for a multi-core 

neuromorphic chips system as the spike activity is sparse both in time and 

space. However, the arbiter channel architecture design is relatively challenging 

due to the requirements of reliable and robust capabilities, and even 

asynchronous digital VLSI systems [47] are employed in this research field. An 

example of  AER transmitter and receiver architecture [44] is given in  Figure 

2-21. The send neuron drives a request to the arbiter via the row-column 

controller, and the address encoder is also activated at the same time. At the 

receiver neuron stage, an address (X and Y) is read and latched by activating 

address decoder, and acknowledged signals are fed back immediately.  

 

Figure 2-21: Architecture of AER transmitter and receiver. The figure is cited 
from [44]. 



35 
 

2.6 Design conclusions 

In this work I focus on exploring high-level hardware architecture to replicate 

neural network behaviours (from highly bio-plausible to large-scale). The 

reconfigurable capability and highly parallel computing characteristics of FPGA 

is a reasonable candidate for this purpose. Furthermore, the other features of 

precisely timing management and system scalability are capability of meeting 

the requirements of complex neuroscience experiments. In general, selecting 

FPGA is motivated by the challenges of large latency by using normal 

simulation software or multiple-core systems; the significant latency banned the 

implementation of real-time routine for simulation or Brain Machine Interface 

(BMI) interaction. Particularly in biological network modelling, simulation of 

neurons requires strong scalability, from 20 to millions for stomatogastric 

ganglion [32] to mammal cerebellum [33], respectively. Currently devices such 

as computers or many-core systems fail to provide such a vital advantage. In 

addition, customization of a special neural system is important for design, PCs 

employs standardized software that leads to poor performance and fails to 

mimic certain behaviour. From the other perspective, analogue-based models 

take advantage of compact architecture, efficient power consumption, relative 

cheapness and signals of no loss of information. But the subthreshold analogue 

CMOS circuit-based large-scale systems are extremely sensitive to divergence 

of transistor threshold and currents due to the working temperature variations 

and fabrication issue [16]. More importantly, the fundamental VLSI process 

variation significantly influences the scalability of the system. Meanwhile, 

emulating biological complexity with a multi-scale structure and spatiotemporal 

dynamic on a chip is still a major challenge to engineers [16][17][18]. 

A brief summary of FPGA features and development trends is presented in 

Table 2-4. It can clearly be seen that FPGA families have developed rapidly in 

recent years; the logic cells, block RAM and DSP slices of the Virtex-7 family 

have increased approximately 100, 7 and 37.5 times compared to the Virtex-4 

family. The peak DPS performances and transceiver speed have increased 

from 48 GMAC/s to 5335 GMAC/s and from 6.5 Gb/s to 28.05 Gb/s. In addition, 

the package option has enjoyed a smart transition from Pb-Free style to highest 

performance flip-flop chip. In addition, the physical boards of FPGA Virtex-4, 
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Virtex-5 and Virtex-7 are displayed in Appendix B, and details of each board 

application can be found in the following chapters.  

Table 2-4: Comparison of series families  

Maximum capability Virtex-4 family Virtex-5 family Virtex-7 family 

Logic cells 200,448 51,8401 1,995,000 

Block RAM 9.7 Mb 18 Mb 68 Mb 

DSP slices 96 1,056 3,600 

Peak DSP 
performances2 

48 GMAC/s 580 GMAC/s 5,335 GMAC/s 

Transceivers 24 24 96 

Peak transceiver 
speed 

 

6.5 Gb/s 6.6 Gb/s 28.05 Gb/s 

I/O pins 960 960 1200 

CMOS technology 90 nm 65 nm 28 nm 

Package option Pb-Free High signal integrity 
FF 

Highest 
performance FF 

1: Virtex-5 slice contains four LUTs and flip-flops (previously it was two LUTs and flip-flops(FF)). 

2: Peak DSP performance equals number of DPS slices multiple clock frequency. 

 

2.7 Related biological principles 

Three different biological mechanisms are selected for the hardware 

implementation in the following: the optogenetic technique, the Passager-of-

Time(POT) cerebellum model and the stomatogastric ganglion Central Pattern 

Generators (CPG) of crabs. 

First, the optogenetic technique is to use blue light to monitor and control single 

neuron activities. The basic mechanism is as follows: first, a light-sensitive 

protein such as channelrhodopsin is obtained from algae; this protein is an ion 

channel that opens in response to blue light. Then the gene of this protein is 

taken and the DNA is inserted into specific neurons. After that, the target 

neurons can be controlled by a flashing blue light. Since the advantages of 

without damage neurons, and little influence on the other neurons of 

optogenetic technique, it is widely accepted and acknowledged for different 

applications such as curing neurologic disorders and fundamental neuroscience 

research.  

The mechanism of optogenetic technique can be described by using the 

Hodgkin-Huxley (HH) model combined with a four state channelrhodopsin 2 

model. An HH model is to accurately describe how action potentials are 



37 
 

initialized and generated on the neuron membrane, which basically consists of 

three different ion channels: potassium, sodium and leakage. All ion channel 

currents are calculated by their resting potential, channel conductance and gate 

activities. While a four-state ChR2 model is to illustrate how photo-current is 

generated by using two dark and two light adapted states of a single ion 

channel. Hence, based on these two fundamental components, by studying the 

photo kinetics of hippocampal cells expressing ChR2, the dynamics of the 

ChR2-evoked spikes and light sensitivity and efficiency of a new ChR2 version 

can be achieved.  

Second, people precisely timing and fine movement control are decided by 

biological cerebellum. A POT mechanism is to explain how cerebellum neurons 

represent the passage of time over a range of tens to hundreds of milliseconds, 

which fundamentally is for organising movements of different body parts into a 

coordinated action; it contains approximately 100,000 neurons with random 

recurrent connections. It can successfully reproduce the classic Pavlovian delay 

eyeblink conditioning.  

In detail the POT model has two types of neuron, one is the granule and the 

other one is the Golgi cell. It is a virtual sheet composed of a square lattice 

arrangement. In this model, two requirements are necessary for representing 

timing information over a dynamic population of active granule cells: 1) long 

temporal integration of cell ion channels; 2) random recurrent connections from 

Golgi to granule cells. 

Third, the stomatogastric ganglion (STG) system is one of the most identified 

neural networks since all neuron functions and their connections are well 

analysed. It is responsible for crab stomach activities such as digesting and 

transporting food. It contains gastric and pyloric CPGs. Specifically, it is suitable 

for neuroprosthesis experiments and neuronal-machine system investigation: 1) 

it still generates fictive motor patterns when removed from the animal and 

placed in a saline-filled dish; 2) the neurons in the CPG are motor neurons as 

well without interneurons as connections; 3) individual neuron signals can be 

well identified and recorded; 4) the CPG in vitro can active for 18-24 hours and 

can be sustained for weeks if required.       
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Chapter 3 The Digital Optoelectronic Neuron 
 

This chapter addresses one of the most important design aspects in the digital 

neural circuit field: system bio-plausibility. A novel architecture is presented to 

implement the different ion channel-type process dynamics, including calcium 

feedback mechanisms and optogenetic behaviours. Compared to the previous 

implementations that can only mimic voltage-dependent ion channel behaviours, 

a developed system is capable of reproducing not only electricity-related but 

also chemistry-related behaviours. This significantly improves hardware bio-

realistic performances. The operation per 1 ms in a neuron can be achieved up 

to 76618, which is roughly five times faster than the latest neural design 

architecture. In summary, the brief design conclusion can be drawn that the 

architecture should be heterogeneous or multiple-layer based with precise 

latency management mechanisms to capture the various ion channel-type 

process details.  
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3.1 Introduction 

A key goal in the neural engineering field is to create real-time operating models 

of the nervous system. Such implementations may increase the understanding 

of future computational systems, and provide a better understanding of 

biological neural process systems [4][32]. These in turn may lead to advanced 

neuroprosthesis [48][49]. Furthermore, many major diseases of the nervous 

system relate to channel dysfunctions [50]. Thus advanced neural models that 

include ion channel functionality could potentially support drug discovery and 

the burgeoning field of optogenetic and chemogenetic neural systems.  

Electronic neural networks come in multiple forms from simple abstract 

implementations that allow large-scale processing to detailed models that allow 

accurate representation of ionic flow within neurons. The majority of the effort, 

including previous work [51], has focused on scalability to large-scale networks 

utilizing, for example, the integrate-and-fire model [52], the Izhikevich model [53] 

and the Hindmarsh-Rose model[54]. These models are idealy for implementing 

large neural circuits, but lack fine detail. In this work, I am interested in exploring 

the effects of multi-ion channel types on the network. Thus, while I want to 

develop real-time bio-realistic neurons, I wish to do so with models that can 

simulate realworld effects of individual ion channels.  

The ion channel model of the neuron was developed in 1952 by Hodgkin and 

Huxley [14], who worked on marine invertebrates. This was later updated for 

mammals by Traub [55] in the 1990s, which are more specific to real-time 

implementation. Since 2004, hardware implementation of ion channel models 

has attracted the attention of many researchers. Graas et al [15] developed a 

field-programmable gated array (FPGA) framework for implementing 

conductance-based neuron models.This was the first time a hardware process 

was used to reproduce HH-based ion channel activities . In 2007, Weinstein et 

al [17] demonstrated a 40-neuron Hodgkin-Huxley (HH) population model 

utilizing an auto-generation tool kit. Meanwhile, A. Cassidy et al [16] presented 

a digital spiking array (32 neurons) that can reproduce synaptic plasticity.  In 

2012,  Coapes et al [56] also developed a scalable FPGA-based design that 

could simulate large-scale ion channels utilizing HH modes.  

However, in a general real neuron computational process, the potential 

membrane variations will change the concentration of ions such as calcium in 
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and out of the neuron. This indicates that the corresponding calcium ion 

channels will alter the gate behaviours. As a result of this, the final neuron 

spiking patterns will also be reformed, and in turn to shape the ions 

concentrations again. This is a closed-loop process mechanism related to both 

electricity and chemistry interactions. Such a complicated state process 

requires a heterogeneous and multiple-layer-based architecture to reproduce 

the entire spiking pattern dynamics. Previous implemented digital neural 

systems show limitations since they can only reproduce membrane voltage-

related spiking patterns and ignore ion concentration chemistry-related 

behaviours.  

In this work I have created architecture for implementing a bio-realistic neuron 

that incorporates 13 different types of ion channels and a calcium feedback 

process mechanism as shown in Figure 3-1. The advances include the 

implementation of a channelrhodopsin (ChR2) model [57] onto a digital platform, 

together with a multitude of calcium-dependent and independent ion channels. 

These latter channels are derived from biological data from the ion channels of 

a crustacean (crab) [58]. The developed architecture has the ability to 

successfully replicate the entire ion channel dynamics in a neuron, including 

calcium ion concentration and the feedback mechanisms. 

 

 

Figure 3-1: An optoelectronic neuron architecture. It contains 12 ion channels in 

total: a delayed-rectifier  𝐼𝐾𝑑 [63], a transient potassium current  𝐼𝐴 [64],  a 
persistent sodium current  𝐼𝑁𝑎𝑝 [65][66], a fast sodium  𝐼𝑁𝑎, a potassium current 

 𝐼𝐾 [67], a hyperpolarization-activated inward current  𝐼ℎ [68], a descending 
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modulatory input current  𝐼𝑝𝑟𝑜𝑐 [69], a calcium-dependent  𝐼𝐾𝐶𝑎 [70], a transient 

 𝐼𝐶𝑎𝑇[71], a persistent calcium current  𝐼𝐶𝑎𝑠[71] and ChR2. 

The implemented digital neuron has two key advances: the first is that the 

digital neuron contains the artificial ion channel ChR2 that is directly related to 

the optogenetics field. Optogenetics is an exciting technique that monitors and 

controls neuron activities by using light [59]. Before that, the neuron is 

genetically sensitized to light by using optogenetic actuators such as ChR2 [60]. 

Therefore, the presented digital neurons can be considered a novel tool for 

simulation brain network with optogenetic behaviours in biologically real time. 

In particular, the biological ChR2 [61] originates from chlamydomonas 

reinhardtii algae but can be genetically inserted into nerve cells to allow optical 

control of their electrical potential. Its conductivity varies with ion size but is of 

the order of pS [62]. Nevertheless, with sufficient activation, it is possible to 

stimulate neural activity. Although in simple terms it can be considered an 

optical switch, an optimal biophysical strategy in terms of accuracy and 

complexity is to utilize a four-state model developed by Nikolic et al [57]. These 

consist of light and dark-adapted ON and OFF states. The light-adapted ON 

state is less efficient than the dark-adapted version, giving a non-linear 

response profile to light. Thus the discussed ChR2 ion channel model is an 

ideal candidate for implementation.   

The second key aspect to this work is that traditional HH models [14] have 

looked primarily at the three key ion channels in the mammalian nervous 

system [55]: 𝐶𝑙+, 𝑁𝑎+ and 𝐾+. However, there are many processes in cells that 

are mediated by calcium. Furthermore, the advanced CatCh version of ChR2 

uses a calcium feedback. It would therefore be useful to have an arsenal of 

channel variants to explore calcium feedback and the effect of pharmaceutical 

agents or neurotransmitters on ion channels and receptors. As such, 

crustaceans are very interesting. They have 12 ion channels, nine of which are 

voltage dependent and three of which are both voltage and calcium dependent. 

As I have their characteristics, I can create an implementation model that can 

incorporate these additional channels at will in addition to the standard 𝐶𝑙+, 𝑁𝑎+ 

and 𝐾+. 
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Although the creation of a MatLab model may be interesting in its own right, I 

have additionally created a digital processing platform that can explore 

networks of these neural models in real time. Specifically, I have utilized a Field-

Programmable Gated Array (FPGA) to achieve the implementation. This allows 

scalability for not only closed-loop neuroscience experiments but also prosthetic 

applications. 

3.2 Methods 

The methods contain two sections: in the first section a bio-plausibility HH-

based neuron model that contains 13 different ion channel types is presented. 

In the second section I developed a novel multi-loop process architecture for 

implementing the presented neuron model in a Field Programme Gated Array 

(FPGA) to achieve biologically real-time computing.  

The original HH equations accurately describe three ion channel sodium, 

potassium and leakage dynamic activities in a neuron, and explain the process 

of how action potentials initialize and generate. These equations are developed 

based on biological experiment voltage clamp recordings and successfully 

predict how ion channel conductance varies. Meanwhile, the ChR2 four-state 

model I employed is presented by Konstantin et al [57] and can precisely mimic 

ChR2 current decay dynamics under voltage clamp conditions.  

3.2.1 Ion channel mathematical relations 

The implemented ion channels are listed as below: 

 Voltage dependent ion channels: a delayed-rectifier  𝐼𝐾𝑑  [63], a transient 

potassium current  𝐼𝐴 [64],  a persistent sodium current  𝐼𝑁𝑎𝑝 [65][66], a 

fast sodium  𝐼𝑁𝑎 , a potassium current  𝐼𝐾 [67], a hyperpolarization-

activated inward current  𝐼ℎ [68] and a descending modulatory input 

current  𝐼𝑝𝑟𝑜𝑐 [69]. 

 Voltage & calcium-dependent ion channels: a calcium-dependent 

 𝐼𝐾𝐶𝑎 [70], a transient  𝐼𝐶𝑎𝑇 [71] and a persistent calcium current  𝐼𝐶𝑎𝑆 [71]. 

 ChR2. 

The mathematical equations for voltage-dependent ion channels [58] are given 
in Equation 3-1 – Equation 3-3:  
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 𝐼𝑖 = 𝑔𝑖 ∗ 𝑚𝑖
𝑝

ℎ𝑖
𝑞

∗ (𝑣 − 𝐸𝑖)                                                                                          

 

Equation 3-1 

 𝑑𝑚 = ((𝑚∞ − 𝑚)/𝑚𝜏                                                                                                  
 

Equation 3-2 

 𝑑ℎ = ((ℎ∞ − ℎ)/ℎ𝜏 Equation 3-3 
                                                                                                    

where 𝐼𝑖  is the ion channel current, 𝑔𝑖 is the ion conductance, 𝑚 and ℎ are gate 

variables, 𝑣 is the membrane potential and 𝐸𝑖 is the resting potential. 𝑚(ℎ)∞ and 

𝑚(ℎ)𝜏 are gate variable steady-state value and time constant. The basic ion 

channel model circuit is shown at Figure 3-2: voltage-dependent and leakage 

ion channels are represented by non-linear conductance 𝑔  and resting 

potential  𝐸 ; and ion pumps and exchanges are represented by current 

sources 𝐼𝑝. 

 

Figure 3-2: The basic circuit diagram of ion channel model.  

An additional mathematical equation for calcium-dependent ion channels is 

given in Equation 3-4 and Equation 3-5: 

 
𝜏𝐶𝑎

𝑑[𝐶𝑎2+]

𝑑𝑡
= −𝐹𝐼𝐶𝑎 − [𝐶𝑎2+] + 𝐶𝑜                                                                                            

 

Equation 3-4 

 
𝐸𝐶𝑎 = (

𝑅 ∗ 𝑇

𝑧 ∗ 𝐹
∗ log (

𝐶𝑎𝐶𝑜𝑛𝑐𝑂𝑢𝑡

𝐶𝑎2+
)) 

 

Equation 3-5 

where τCa  is the Ca2+  time constant, Co  is the resting Ca2+  intracellular 

concentration, and the parameter F  responsible for translating Ca2+   related 

current into Ca2+   concentration.  The reversal potential 𝐸𝐶𝑎  is calculated by 

using Equation 3-6. It is based on the Nernst equation, where 𝑅 is the ideal gas 
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constant, 𝑇 is the temperature in kelvin, 𝐹 is the Faraday constant (coulombs 

per mole), and 𝑧 is the number of moles of electrons transferred in the cell 

reaction or half-reaction; here I am assuming the extracellular concentration 

𝐶𝑎𝐶𝑜𝑛𝑐𝑂𝑢𝑡 is 13 mM [72]. And the corresponding parameters of the above ion 

channels are shown in Table 3-1 to Table 3-3. 

Table 3-1 Parameter values of voltage and voltage & calcium-dependent ion 
channels 

 

 

 

 

 

 

 

 

 

Table 3-2: Parameter values of resting potential Nernst equation 

𝐶𝑎𝐶𝑜𝑛𝑐𝑂𝑢𝑡 𝑅 𝑇 𝑧 𝐹 
13000 8314.47215 273.15

+ 10.919 

𝑧 = 2 

 

96485.3399 

*:  𝑖𝑓 𝐶𝑎2+  < 𝐶𝑜,   𝐶𝑎2+ = 𝐶𝑜 

Table 3-3 Voltage and calcium dependency for the steady-state activation and 
inactivation of the currents 

 𝑚, ℎ 𝑥∞ 𝜏𝑥 

 𝑆𝑦𝑡𝑙𝑒𝑠 1

1 + exp (
𝑐𝑣 − 𝑑

𝑏
)
 𝑎 −

𝑒

1 + exp (
−𝑣 − 𝑑

𝑏
)
 

  𝑏 𝑐 𝑑 𝑎 𝑏 𝑑 𝑒 

𝐼𝑁𝑎
+  𝑚3 5.29 −1 24.7 1.32 25 120 1.26 

V INa IK ILeak Ih IK INaP IA Iproc 

𝑔 𝜇𝑠 300 52.5 0.0018 0.054 1890 2.7 200 570 

𝐸 𝑚𝑉 50 -80 -60 -20 -80 -50 -80 0 

V&Ca ICaT ICaS IKCa  [Ca] 𝜏𝐶𝑎 F 𝐶𝑜 

𝑔 𝜇𝑠 55.2 9 6  570 303ms 0.418 

𝜇𝑀/
𝑛𝐴 

0.5 𝜇𝑀 

𝐸 𝑚𝑉 0 0 -80  0 -50   
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 ℎ 5.18 1 −48.9 

{
0.67

1 + 𝑒𝑥𝑝 (
−𝑣 − 62.9

10 )
}

× {1.5

+
1

1 + 𝑒𝑥𝑝 (
𝑣 + 34.9

3.6 )
} 

𝐼𝐶𝑎𝑇 𝑚3 7.2 −1 25 55 17 58 49.5 

 ℎ 7 1 36 87.5 16.9 50 75 

𝐼𝑁𝑎𝑝 𝑚3 8.5 −1 22 16 26.4 25.1 13.1 

 ℎ 4.8 1 48.5 666 11.7 33.6 379 

𝐼ℎ 𝑚 6 1 70 272 8.74 42.2 −1499 

𝐼𝐾 𝑚4 11.8 −1 14.2 7.2 19.2 28.3 6.4 

𝐼𝐾𝐶𝑎 𝑚4 
(

[𝐶𝑎]

[𝐶𝑎] + 30
)

1

1 + exp (
−𝑣 − 14.2

11.8
)
 

90.3 22.7 46 75.09 

𝐼𝐴 𝑚3 8.7 −1 27 11.6 15.2 32.9 10.4 

 ℎ 4.9 1 56.9 38.6 26.5 38.9 29.2 

𝐼𝑝𝑟𝑜𝑐 𝑚 3.05 −1 12 0.5 

𝐼𝐶𝑎𝑆 𝑚3 22 −1 8.5 16 26.4 25.1 13.1 

Since parameters in tables are estimated based on biological experiment 

recordings, which are under seawater temperature of approximately 12 degrees, 

they have to be updated when applied to mammalian animal systems. The 

corresponding temperature correction equations [55] are shown in Equation 3-7 

and Equation 3-8: 

 
𝑄 =  3

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒−36

10                                                                                                                

 

Equation 3-7 

 
𝑎𝑚(ℎ) =  𝛽𝑄                                                                                                                        

Equation 3-8 

 

where temperature is the system environment temperature, Q is the total energy 

number,  β is an amplified constant depending on different ion channels, and 

am(h) is the ion channel activations (inactivation). 

Also, a four-state model of channelrhodopsin, which has an optimal structure in 

terms of accuracy and simplicity, was previously described by Grossman et al 
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[73] and Nikolic et al [57]. The model describes channelrhodopsin as having 

four states: two dark states and two activated states. The retinal molecular core 

of the ChR2 ion channel absorbs a photon switching from all-trans to 13-cis-

retinal. This induces the channel to switch from a dark-adapted OFF state [C1] 

to a dark-adapted ON state [O1]. If illuminated in the ON state there is a finite 

probability of further photon absorption. This would switch the ChR2 from a 

dark-adapted ON state to a less conductive light-adapted ON state [O2]. From 

there it may thermally switch back to [O1] or decay to the light-adapted OFF 

state [C2]. The [C2] state slowly (in the order of seconds) reverts to the [C1] 

state by thermal means. These relations can be described as four correlated 

differential equations: 

 dO1

dt
= Ga1(t)C1 − (Gd1 + ect)O1 + etcO2 

Equation 3-9 

 𝑑𝑂2

𝑑𝑡
= 𝐺𝑎2(𝑡)𝐶2 − (𝐺𝑑2 + 𝑒𝑡𝑐)𝑂2 +  𝑒𝑐𝑡𝑂1 

Equation 3-10 

 𝑑𝐶2

𝑑𝑡
= 𝐺𝑑2𝑂2 − (𝐺𝑎2(𝑡) + 𝐺𝑟𝑑)𝐶2 

Equation 3-11 

 𝐺𝑎(𝑡) =  𝜀𝐹 [1 − exp (−
𝑡

𝜏𝐶ℎ𝑅
)] ,   𝑓𝑜𝑟 𝑡 <  𝑡𝑙𝑖𝑔ℎ𝑡                                                 

   =  𝜀𝐹 [exp (
𝑡−𝑡𝑙𝑖𝑔ℎ𝑡

𝜏𝐶ℎ𝑅
) − exp (−

𝑡

𝜏𝐶ℎ𝑅
)] , 𝑓𝑜𝑟  𝑡 >

 𝑡𝑙𝑖𝑔ℎ𝑡 

 

Equation 3-12 

where O1, O2 and C2 are the numbers of ChR2 molecules in the open states 1 

and 2, and closed state2. Gd1 and Gd2 are the rates of thermal conversion of C2 

to C1, and etc and ect are the rates of transition between O1 and O2 and vice 

versa. Also, Ga1 and Ga2 are the activation rates for C1 to O1 and C2 to O2. 

Grd is the rate of thermal conversion of C2 to C1, F is photons per ChR2 per 

millisecond. The corresponding parameters are given in Table 3-4. 

Table 3-4: Parameters of the ChR2 model 

Parameter τChR 𝜀 ect etc Gd1 Gd2 Imax 

Unit 𝑚𝑠  ms−1 ms−1 ms−1 ms−1 nA 

Value 1.3 0.1 0.01 0.02 0.35 0.02 0.2 

 

3.2.2 Implementation 

The hardware architecture is shown in Figure 3-3; there are four main 

components: voltage-dependent ion channels, Ca2+  concentration, ChR2 and 

parameter & control. Voltage-dependent ion channel block responses for 

calculating ion channel activities that are only dependent on neuronal 

membrane potentials. Ca2+ concentration is for  updating Ca2+  resting potential 
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based on the input calcium-related currents. The ChR2 block responses for 

mimicking ChR2 light-gated ion channel behaviours. The parameter & control 

block focuses on pre-store system parameters and configures architecture data 

path.  Also, there are two external inputs in the system: one is the light pulse 

specifically for the digital ChR2 block, and the other is the pre-synaptic inputs 

that come from other neurons. The entire system is based on pipelining 

technique; in each clock cycle, new parameters and control signals are released 

to compute specifically  the ion channel results. 

 

Figure 3-3: The conceptual architecture of a digital neuron. Three signal types 
are displayed in the system: configuration link, data path and general-purpose 
input/output (GPIO). 

The voltage-dependent ion channel architecture is shown in Figure 3-4. It 

generally consists of mux, maths operators and custom-designed look-up table 

(LUT) blocks. The mux components (e.g. C1, C2) response for selecting 

different pre-implemented circuit blocks in specific time periods, and the 

configuration signals are given by the parameter & control block; maths 

operators such as gains and multipliers are utilized to perform equation 

functions, and custom-designed LUT blocks are used to implement complicated 

math operations such as exponential and division.  

There are three stages to computing voltage-dependent ion channels. First, 

when inputs come in, the function C1 and C2 select the corresponding circuits 

( ∞v  or ∞Ca  , τv  or τcon ) to calculate the steady-state activation m  and 

inactivation h  values. After the integration process, the function C3 and C4 

decidetheir power function and combination styles. Then the calculated values 
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is done the subtraction with resting potential  ev or  eCa, which is decided by 

function C5. Finally, the ion channel currents are calculated by multiplying the 

conductance. All the configuration signals are decided based on implemented 

models. 

 

Figure 3-4: A voltage-dependent ion channel block for HH-based ion channel 
styles. The equations are shown in Equation 3-1 – Equation 3-3. The integration 
step is optimized at 0.003 ms, and the total delay m+n equals the implemented 
gate variable ion number. 

For calculating voltage & calcium-dependent ion channels, a Ca2+  

concentration block is added into the system as displayed in Figure 3-3. The 

main role of the Ca2+   concentration block is to update eCa  resting potential 

values based on input currents ICaT  and ICaS . The architecture is shown in 

Figure 3-5, where τCa  is the Ca2+  time constant, Co  is the resting 

Ca2+ intracellular concentration, and the parameter F is responsible for 

translating Ca2+ related current into Ca2+ concentration.  

 

Figure 3-5: A Ca2+ concentration computing block. The mathematical equation 
is shownin Figure 3-5. 

When the system is calculating ion channel  ICaT and ICaS , the mux in Figure 

3-3 is automatically switched from 0 to 1. This indicates that at this stage the 

calculated ionic currents will be sent to the Ca2+ concentration, and ROM is for 

translating Ca2+  concentration into Ca2+  resting potentials. Meanwhile, an 
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enable signals from control block will be and only active at Ca2+ computational 

block periods.  

The data path of ChR2 is shown in Figure 3-6. The left part is for calculating the 

activation rates for C1 to O1 and C2 to O2. Since the activation rate is different 

between light on and off, the component mux decides which block is connected 

to the next stage of computing based on the light duration. The right part is for 

calculating the ChR2 molecule number and currents. And  three differential 

equations are implemented (Equation 3-7 – Equation 3-10) to perform this task. 

At each iteration loop, the current ChR2 molecule number, which is stored in the 

register, will participate in the next stage of the process to update ChR2 outputs. 

The VHDL code of ChR2 is shown in Appendix C. 

Since the pipeline technique is applied to the system to enhance computational 

speed and save hardware resources, a precise latency management and 

parameter storage are required, as shown in Figure 3-7. First, the ion channel 

parameters and configuration information are pre-stored in the different ROM 

components shown in Figure C; the length of ROM n has to equal the number 

of gate variables. Then I calculate the latency of data paths in the system, and 

the exact time periods (e.g. a, b and c) for passing data on different data paths 

can be obtained. In order to maintain the synchronizations between data-path 

computing and its corresponding parameters, registers are artificially inserted 

within that ROM based system to mimic data-path computing delays, which are 

shown in Figure A. Also, the self-counted clock constantly generates output 

values from 0 to n as the ROM addresses. Hence the systems can accurately 

compute each ion channel current without data collision.  
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Figure 3-6: Data path of ChR2 computing block. The mathematical equation is 
shown in Equation 3-7-Equation 3-10. 

 

 

 

Figure 3-7: System latency management system. A is the latency management 
system; B is the frame-based clock outputs for addressing ROM; C is the 
parameters & control signals storage-based ROM. 
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3.3 Results 

3.3.1 Individual ion channel behaviours 

I showed 12 individual ion channel results of the voltage gated process block in 

Figure 3-8. The red dashed lines are the FPGA simulation results while the blue 

solid lines are the software references. The FPGA-based system uses the fixed 

integration step 0.003 ms while the software system uses variable integration 

steps. It can be seen that there is a small delay (around 1 us) between them. 

This is due to the hardware truncation errors and different integration steps in 

the two systems. From Figure 3-8 I can deduce that different ion channels 

played specific roles in generating the burst patterns. The ionic currents from 

axon showed very fast dynamic spikes, while the IH ion channel from soma 

displayed slow wave oscillation, and the other ions (ICaS, ICaT, INaP) generated a 

slow wave but with tiny fluctuations. In terms of functionality, these ion channels 

decide the shape of action potential and the firing properties of neurons; H-type 

current IH can be served as a function of generating leakage current; potassium 

currents IK are responsible for the duration time of burst patterns; persistent 

sodium current INaP participates in the function of initialization of neural firing; 

and transient potassium current IA maintains the inactivation state almost all the 

time. 

 

Figure 3-8: Different ion channel dynamic behaviours. The red dashed line is 
the FPGA simulation results while the blue solid line is the software reference. 
The Y-axis is the current (mA) and the X-axis the system clock cycles. 
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It can clearly be seen that FPGA simulation results are identified with biological 

experiment and software results [57]. This indicates that the developed silicon 

ChR2 performs the same behaviours as the biological one when the same light 

pulse  is  applied. Specifically, when  the  light  pulse  is 20 ms, the  developed  

 

Figure 3-9: The hardware simulation results of ChR2. Comparisons between 
biological [57] and FPGA simulation results. The short light pulses are 1, 2, 3, 5, 

8, 10 and 20 ms. The software fitting parameters are τChR = 1.3 ms, γ = 0.1, ect 

= 0.01, etc  = 0.02, Gd1 = 0.35 ms−1,   Gd2 = 0.02 ms−1  and  Imax  = 0.2 nA. 

 

 

 

Figure 3-10: By giving different irradiances, the corresponding peak (square) 
and plateau (cycle) currents are displayed in the figure. 
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ChR2 displays a saturation situation, and the maximum current that can be 

generated is 0.08 nA. Furthermore, I quantitatively analyse silicon ChR2 

performances with different irradiances as shown in Figure 3-10; when 

irradiance is larger than 7.1 mW mm−2 , both peak and plateau current slow 

their pace and increase when they approach saturation. 

3.3.2 Mimicking pharmacological performances of crustacean pacemaker 

The anterior burster (AB) of a crustacean is simulated by using voltage-

dependent and voltage & calcium-dependent ion channels. The AB is a central 

pattern generator pacemaker that is responsible for stomach activities such as 

transport and digestion in crustaceans.  

I artificially blocked some specific ion channels of silicon neuron AB to mimic its 

pharmacological performances. The results are shown in Figure 3-11 and 

Figure 3-12. It can clearly be seen that in the control condition, silicon neuron 

AB generated regular and steady burst patterns, which are identical with the 

software reference. However, in the KCa
+   ion channel blocked condition, the 

silicon neuron constantly generated extreme high-frequency spikes rather than 

burst patterns. This is because the slow wave component of the burst pattern is 

missed.  

Also, I mimicked the other two conditions: in the Na+ ion channel blocked 

condition, the axon part became disabling so these fast spike events 

disappeared; in the Ca2+ ion channel blocked condition, neuron AB became 

silent and no burst pattern was generated. This indicated that V&Ca2+-type ion 

channel can directly control pacemaker AB bursting states, which is identified 

with the relative biological experiment results [74][75]. 

3.3.3 Hardware specification 

I show the FPGA-based hardware resource utilizations in Table 3-5: Hardware 

specifications. The system clock periods are all around 20 ns for three different 

types of ion channel, and the system requires 107 clock cycles to calculate a 

burst pattern because of the extremely tiny time step 0.003 ms. Hence the 

presented system uses approximately 0.2 s to mimic 1 s of real-world neuron 

activities. By applying previous work routing techniques [51], the developed 

silicon neuron can be scaled up to 20 at a network level. And by applying timing 
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multiplexing technique, the maximum implemented virtual neuron number can 

be achieved at around 100 neurons with biological real -time computing 

 

Figure 3-11: Mimicking pharmacological results of FPGA and software. The 
performances of  𝐾𝐶𝑎

+  channel blocked and control conditions of pacemaker AB 
are reproduced. 

 

Figure 3-12: Mimicking pharmacological results of FPGA and software. The 

performances of 𝑁𝑎+ and 𝐶𝑎2+channel blocked conditions of pacemaker AB are 
reproduced. 
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performances. For the memory resources utilization aspect, implementation of 

V-type and V&Ca2+-type ion channel consumed 26and 43 RAM blocks, 

10210and12049 slice LUTs. This is because of the extremely large range (from 

0.001 to 1700) of model parameters and many custom-defined mathematical 

functions; even memory optimization technique was applied to the system. Slice 

registers are applied to implement digital calculation and control logic. The 

consumption is around 1500 slices. For the power consumption aspect, 

V&Ca2+-type, V-type and ChR2 ion used dynamic power of 0.315 w, 0.196 w 

and 0.203 w, respectively.  

Table 3-5: Hardware specifications 

 V V&Ca2+  ChR2 Router Total 

Clock periods (ns) 20.781 18.627 22.828 -- 22.828 

RAM block 26 (2%) 43 (4%) 0 0 43 (4%) 

Slice register 1556 
(1%) 

1998 (1%) 975 (1%) 791 (1%) 3764 (1%) 

Slice LUT 10210 
(3%) 

12049 (3%) 2231 
(1%) 

1213 
(1%) 

15493 
(5%) 

Dynamic power (w) 0.196 0.315 0.203 0.006 0.524 

Quiescent power 
(w) 

0.209 0.212 0.210 -- -- 

Max neurons 
(physical) 

33 25 100 -- 20 

Max neurons 
(virtual) 

165 125 10000 -- 100 

 

3.4 Discussion 

3.4.1 Implementation of different neural models 

In this work I implemented a strong bio-plausible digital neuron incorporating 

ChR2 in FPGA hardware, and this neuron can be scaled up to a small/medium-

size neural network by using timing multiplexing technique. A summary of 

comparisons of previous FPGA-based neural network modelling is displayed in 

Table 3-6. 

The Izhikevich model has a weak bio-plausibility since it describes the spiking 

patterns from the mathematical perspectives that lack sufficient ionic process 

details, while the HH model design is based on recordings of conductivity of 

membrane potential. Therefore, it has details of each individual ion channel 

computing dynamic performances. In between, there is a conductance-based 

integrated and fire (IF) model that has a mediated bio-plausibility, because it 
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can mimic neuronal integration-and-firing characteristics based on the ion 

channel computation parts [33].   

Due to the different implemented neural models, the system focuses on quite 

diverse research areas. The simplified Izhikevich model is applied for simulating 

a large-scale neural network in FPGA [19]. The architecture utilized an event-

driven approach with an integrated processor to perform simulationThis can 

achieve up to 2.48 x real times for running 64,000 neurons. Similarly, the 

previous work uses a conductance-based IF model to reproduce biological 

granular-layer (contains 100,000 neurons) passage-of-time functionalities. A 

frame-based network-on-chip architecture is developed and by using this 

computational speed, it can achieved up to 39 x real times. However, both 

architectures are mainly focused on the large population activities and ignore 

individual neuron action potential generations. 

Weinstein et al [17] and G Smaragdos et al [20] utilized the HH and HH 

extended model to mimic the neural system in a more detailed way. The 

number of implemented ion channel types in a neuron is four, and this can 

basically reflect all ionic current dynamics. They contributed a solution for 

biological real-time simulation of a bio-realistic neuronal network with more than 

100 neurons (with 8.7 x real time and 12.5 x C code).  

In this work, I increase the ion channel types in a neuron from four up to 13, 

which significantly increases the FPGA-based neural model bio-plausibility. 

Compared to the previous work, calcium-related ion channels and ChR2 are 

first implemented and integrated with voltage-dependent ion channels. 

Therefore, developed digital neurons can not only mimic standard but also 

pharmacological spiking-bursting behaviours, and the speed can be up to 5 x 

real times. 

There is an interesting discovery in the comparison table: the more neural 

model complexity increases, the smaller the system time step is. This is due to 

the fact that in some ion channel algorithms, the dynamic spike patterns change 

very rapidly: for example, Ip current in the soma, which generates several 

spikes in very short periods of 10 us. This requires the system to have a 

sufficiently accurate time step for simulation. Hence, the developed system time 
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step is 0.003 ms and can achieve approximately 76618 operations per neuron 

in 1 ms.  

3.4.2 Implementation tools 

In terms of programming tools, current C and Java languages [76] can be 

directly applied to hardware architecture design. It enjoys the advantages of 

easy modification and programming. However, it still lacks flexibility to some 

extent. The graphic tool system generator is quite popularly utilized in 

hardware-based neural network modelling since it is very good at digital signal 

processing [15][17][77][78], but it shows limitations and constraints when routing 

algorithms or communication protocols face implementation. In this work, I use 

the system generator for mathematical neural model calculation and VHDL for 

routing strategy implementation, which has developed an efficient approach for 

neural modelling in the bio-mimicking society.   

3.4.3 Neuroscience applications 

I can also use this digital neuron for neural rehabilitation. One issue is that I 

artificially damaged the real pacemaker AB in the pyloric network, and the 

implemented silicon AB was embedded in the damaged neural network by 

using a dynamic clamp [78] to restore the original neural network activities. Also, 

I aim to include sufficient details in the individual neuron models to allow the 

replication of circuit behaviour dynamics in a wide range of physiologically 

plausible situations.  

In terms of optoelectronic/optogenetic areas, the developed system can be 

further developed into a processing platform for simulating neural network 

patterns with ChR2. Biological real-time simulation allows us to investigate the 

design of efficient optoelectronic devices for neurologic disorders [79]. More 

importantly, the implemented pacemaker model architecture is identified with a 

mammal-based HH model [55]; I can directly map a mammal’s biological 

recording parameters on the parameter & control block to mimic the brain 

network with optogenetic behaviours. Therefore, it serves as a novel reliable 

simulation tool to verify emerging optogenetic hypotheses and systems [80][81].  

3.5 Conclusion 

In this section I propose novel hardware architecture for implementing multi-

type ion channel models that can capture the finest things in ionic activities. 
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Compared to previous work, this is the first time voltage-dependent, voltage & 

calcium-dependent and ChR2 ion channels have been integrated into a single 

neuron. A silicon pacemaker neuron with ChR2 is successfully implemented on 

a Virtex-7 FPGA board as a case study.  Based on the hardware results, it can 

not only reproduce normal neural burst patterns but also pharmacological burst 

patterns. This significantly improved hardware bio-realistic performances and is 

a new processing platform potentially for ion channel-related mechanism 

discovery and drug investigation.  

Table 3-6: Comparison of other techniques 

Model Izhikevich 
(64,000) [19]  

IF (100,000) 
[51] 

HH (40) [17] Extended HH 
(96) [20]  

This work 
(100) 

FPGA chip Virtex6 
SX475T 

Virtex7 
XC7VX485

T 

Virtex4 
XC4VSX35 

Virtex7 
XC7VX485T 

Virtex7 
XC7VX485T 

Time step 
(ms) 

1 1 0.01 0.05 0.003 

Operations 
per neuron in 

1 ms 

>7 30 >1200 22,200 76,618 

Real-time 
speed 

2.48 x real 
time 

39 x real 
time 

8.7 x real 
time 

12.5 x C code 5 x real time 

Resource 
utilization 

LUTs (199421) 
FFs (135032) 
BRAMs (886) 

 

LUTs 
(268544) 

FFs 
(176424) 
BRAMs 
(960) 

 

Slices 
(13,840) 

DSP (183) 

LUTs (251485) 
FFs (162217) 
BRAMs (804) 

 

LUTs (294367) 
FFs (75280) 

BRAMs (860) 
 

Precision Fix point Fix point Fix point Floating point Fix point 

Programming 
tool 

Java 
description 

VHDL+ 
System 

generator 

System 
generator 

C-code VHDL+ 
System 

generator 

Novelty Using event-
driven 

approach and 
reasonable 

memory 
bandwidth 

A frame-
based 

network-on-
chip 

architecture 
without data 

collision 

Auto-
generation 

tool kit 

Real-time 
simulation tool 

for 
investigating 

ION 

Real-time 
simulation tool 

for 
optoelectronic/

optogenetic 
research areas 

 

 

 

 

 



59 
 

 

 

 

 

 

 

 

 

Chapter 4 The Digital Cerebellum 
 

This chapter, based on the previous chapter’s research findings, develops the 

system from a single heterogeneous structure-based digital neuron to a large-

scale neural network. The mouse cerebellum is selected as an ideal study, 

since it has a massive number of neurons (up to billions) and plays a vital role in 

animal motor control and balance movement mechanisms. The passage-of-time 

(POT) cerebellum model is implemented in the new architecture: frame-based 

network-on-chip. The presented digital cerebellum has approximately 100,000 

neurons, and it can successfully reproduce timing memorable performances, 

which a function to represent the passage-of-time (POT) over a range of tens to 

hundreds of milliseconds. The system has 48 cores, 48 routers and one frame 

master. Each core implements 2000 granule cells and 20 Golgi cells with a 

connection ratio of 100:1. The routers are based on custom-designed address 

event representation techniques to map random recurrent synaptic connections. 

And the frame master is to maintain synchronization between cores and routers. 

At this stage, the design strategy can be described as a pipeline-based multi-

core-based architecture with tailor-designed routing technique, which is an 

efficient system for implementing biological brain networks.  
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4.1 Introduction 

Smooth and robust motor control requires precisely timed muscle activations at 

specific strengths. This is critically mediated by the cerebellum, which functions 

to represent the passage-of-time (POT) over a range of tens to hundreds of  

milliseconds, and is essential for organizing movements of different body parts 

into a coordinated action [82]. Errors in POT encoding consequent to cerebellar 

damages can lead to dysmetria or delays in movement onsets in these patients 

[83]. This condition, usually described as ataxia, cannot be cured completely at 

the moment, and affects millions of patients worldwide. To foster a potential 

cure based on neuro-prosthetic technology, an efficient computational platform 

that can favourably mimic the complex function of the cerebellar neural network 

is important. Figure 4-1 shows a conceptual closed-loop system for a cerebellar 

prosthesis. 

POT representation in the cerebellum is clearly evident in the classical 

Pavlovian delayed eyeblink conditioning [84][85], where animals learn the inter-

stimulus interval (ISI), or POT, between conditioned (CS) and unconditioned 

(US) stimulus onsets upon repetitive training. It has been suggested that this 

information concerning POT is encoded in the extensive cerebellar granular 

layer. When excited by CS through mossy fibres (MFs), the population of 

granule cells exhibits different bursting dynamics such that the sequence of 

active cells does not recur for a sufficiently long time. This forms a one-to-one 

correspondence between the active cell population and a time interval. Various 

computational models have been developed to investigate a possible 

mechanism in the granular layer for POT representation. Four classes of such 

models have been reviewed in [86], including the delay line model [87][88], 

spectral timing model [89], oscillator model [90] and random projection model 

[91][33]. Among these computational models, the random projection model is 

suggested to be both a robust and biologically plausible framework in the 

representation of POT, and can also be used to reproduce the classical 

Pavlovian delay eyeblink conditioning. This spiking network model makes use of 

two critical properties of the cerebellar granular-Golgi layers: 1) extensive 

random recurrent connections between granule and Golgi cells; and 2) long 

temporal integration of input signals by the NMDA receptors, which are both 

evident in the biological systems.  
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Thus far, this large-scale (~106 cells) spiking network cerebellum model has 

been investigated by software simulation using PC and GPU implementation 

[33][92]. However, in order to use the model in real-time biological experiments, 

particularly in vivo, some form of compact digital real-time implementation with 

versatile I/Os would prove valuable. A scalable hardware platform that can be 

tailor-designed and takes advantage of highly parallel computing capability 

would be greatly preferred. Such a system would be a powerful tool for helping 

to explore the POT mechanism and related disease mechanisms in the 

cerebellum. Future neuro-prosthetic developments could also benefit from an 

efficient hardware platform for implementing a large-scale spiking network 

model for real-time computation. 

In general, CPU-based process platforms are limited by their sequential 

computing architecture. The large latency makes them difficult to use in real-

time Brain Machine Interfaces (BMI). GPUs [93] are capable of parallel 

computing but are constrained by memory and communication bandwidth 

issues. Circuits can be implemented directly onto CMOS [94][95], but a single 

implementation can be time-consuming. Field-Programmable Gate Arrays 

(FPGAs) are a versatile reconfigurable digital computational platform that can 

be used for both direct computational implementation and as a stepping stone 

to compact low-power CMOS chip implementation. It contains massive flexible 

programmable logic with concurrent high-speed operation, allowing direct use in 

bench-top in vitro and constrained in vivo systems. If designs are then 

translated to CMOS, the subsequent chips can be applied to implantable neuro-

prosthetic devices. In recent years, FPGAs have been extensively used in 

neural system modelling and simulation of large-scale biologically realistic 

neural systems [77][37][15][17]. 

Hardware implementations of cerebellar neural networks for neuroprosthesis 

have already attracted the interest of neuroscientists and engineers. Bamford et 

al [95] have designed a VLSI field-programmable mixed-signal array to produce 

eyeblink conditioning performances by modelling the cerebellum system. This 

has been fabricated as a core on a chip prototype intended for use in an 

implantable closed-loop prosthetic system aimed at rehabilitation of associated  
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Figure 4-1: Conceptual closed-loop system cerebellum passage-of-time (POT) 
prosthetic. Damaged biological granular layer is replaced by FPGA-based 
granular-layer system.  CS is a conditional stimulus while US is an 
unconditional stimulus. MF is the mossy fibre and CF is the climbing fibre. PKJ 
is the Purkinje cell. The granular layer with a  red cross represents a damaged 
biological one. 

behaviour. While they have demonstrated a proof of concept of success in their 

implementation, a highly simplified neural model with abstract modelling of 

cerebellar information processing is used in the work. Such simplification is 

convenient for hardware implementation, but lacks direct physiological 

correspondence for quantitative comparison with the biological system. In 

contrast, Yamazaki and Tanaka’s model [33] is more biologically realistic and 

pays specific attention to the role of the granular-Golgi layer in timing and gain 

control by the cerebellar cortex to reproduce experimental results. However, this 

comes at the cost of a significant increase in the size and complexity of the 

computational model in order to produce a robust system behaviour. As such, 

an efficient implementation is required to overcome these computational 

challenges, especially when real-time application is required. 

Previously [96][51] I presented the concept of an FPGA-based network-on-chip 

(NoC) hardware architecture for implementing the granular layer of a random 

projection cerebellum model. It produced a network behaviour of POT 

representation consistent with the simulation results presented in the original 
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paper by Yamazaki and Tanaka [33]. In this work I have conducted a more in-

depth investigation of the details of system performance implementation and 

analysis. The system contains ~100,000 granule cells and ~1000 Golgi cells, 

using a conductance-based, leaky integrate-and-fire neuron model. The 

parameter values all have an experimental basis, such that the network model 

produces realistic firing behaviour. In particular, three accomplishments are 

highlighted in thisthesis: 1). I have reproduced the granular-layer firing patterns 

for representation of POT in real time under normal as well as 

pharmacologically perturbed conditions. 2) The architecture allows for efficient 

scalability to 100,000 neurons and beyond and can be used for more complex 

biological neural network applications.  3) I have eliminated multiplexing timing 

errors and allowed for network profiling at key time points. 

4.2 The passage-of-time computational model 

The cerebellar granular layer consists of two main cell types, namely granule 

cells and Golgi cells. The input signal from the pre-cerebellar nucleus to the 

granule cells is conveyed by MFs (Figure 4-1). The spiking network of the 

cerebellar granular layer developed in [33] is modelled as a 1  mm2 virtual sheet 

composed of a square lattice arrangement of 32*32 Golgi cells and glomeruli, 

and 320*320 granule cells. The same network with minor changes is used in 

this paper. Figure 2 describes the topology between Golgi and granule cells.  

Figure 4-2A illustrates the topology of the granular-layer model, which contains 

1024 granule-cell clusters and a Golgi cell. The different colours represent 

communities of closely connected cells within the network. Each granule-cell 

cluster contains 100 granule cells. The size of the circles is proportional to the 

number of other clusters that it is connected to. Each dot represents one 

granule-cell cluster and one Golgi cell, as shown in Figure 2B. Every Golgi cell 

receives excitatory input from its nearest granule-cell cluster, while Golgi cells 

project randomly to the nearby granule-cell clusters such that each granule-cell 

cluster receives inhibitory inputs from ~8 Golgi cells on average. The probability 

distribution of number of synaptic connection from Golgi cell to granule-cell 

cluster is shown in Figure 2C.  

The equations for modelling the neurons and analysis have been detailed in [11] 

and I briefly repeat the key ones here. The granule and Golgi cells were 
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modelled as conductance-based, leaky integrate-and-fire units, as described in 

Equation 4-1: 

𝐶
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑔𝑙𝑒𝑎𝑘(𝐸𝑙𝑒𝑎𝑘 − 𝑉(𝑡)) + 𝑔𝑒𝑥:𝐴𝑀𝑃𝐴(𝑡)(𝐸𝑒𝑥 − 𝑉(𝑡))

+ 𝑔𝑒𝑥:𝑁𝑀𝐷𝐴(𝑡)(𝐸𝑒𝑥 − 𝑉(𝑡))

+ 𝑔𝑖𝑛ℎ(𝑡)(𝐸𝑖𝑛ℎ − 𝑉(𝑡))

+ 𝑔𝑎ℎ𝑝(𝑡 − �̂�) (𝐸𝑎ℎ𝑝 − 𝑉(𝑡)) 

 

Equation 4-1 
 

where V(t) and C are the membrane potential at time t and the capacitance, 

respectively, 𝐸𝑙𝑒𝑎𝑘 are the reversal potential and t̂ denotes the last firing time of 

the neuron. The membrane potential depends on five types of currents: α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor-mediated, N-

methyl-D-aspartate (NMDA) receptor-mediated, leak current, inhibition current 

and the post-hyperpolarization current.  The conductance, g(t)′s, is calculated 

by  convolving  the alpha function α(t) with the spike event δj(t) of presynaptic 

neuron j at time t as follows: 

 𝑔𝑐(𝑡) = �̅�𝑐 ∑ 𝑤𝑗𝑗 ∫ 𝛼(𝑡 − 𝑠)𝛿𝑗
𝑡

−∞
(𝑠)𝑑𝑠                                 

 

        Equation 4-2 
 

where g̅c is the maximum conductance and wj is the synaptic weight of neuron j. 

A neuron fires a spike (δj (t) = 1) when its membrane potential exceeds a 

threshold θ, and the post-hyperpolarization will follow. The conductance for the 

post-hyperpolarization was given by: 

 𝑔𝑎ℎ𝑝(𝑡 − �̂�) = exp (−(𝑡 − �̂�)/𝜏𝑎ℎ𝑝 

 

Equation 4-3 
 

I followed the same analysis procedures as in [33] for evaluating the POT 

behaviour produced by the simulation model. I first computed zi(t),  which 

represents the average activity of a granule-cell cluster i: 

 𝑧𝑖(𝑡) =  
1

𝜏
∑ exp (−

𝑡−𝑠

𝜏
)𝑡

𝑠=0 (
1

𝑁𝑔𝑟
∑ 𝛿𝑗𝑗 (𝑠))                           Equation 4-4 
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Figure 4-2: Topology of the granular-layer model. Figure A contains 1024 
granule-cell clusters and a Golgi cell; the different colours represent 
communities of closely connected cells within the network. The size of the 
circles is proportional to the number of other clusters that they are connected to. 
Each dot represents one granule-cell cluster and one Golgi cell, as shown in Fig. 
B. The synaptic input number distribution is displayed in Fig. C. 

where δj(s) is the spike event in the granule cell j in the cluster at time s,  Ngr is 

the number of granule cells in a cluster (100 in this case) and τ is the decay 

time constant, which was set at 8.3 ms.   

How the activity patterns of granule cell clusters evolved over time is evaluated 

based on the similarity index, S(∆t). I first computed the autocorrelation of the 

activity pattern between time t and t+∆t as follows: 

 
𝐶(𝑡, 𝑡 + ∆𝑡) =  

∑ 𝑧𝑖(𝑡)𝑧𝑖 (𝑡 +  ∆𝑡)𝑖

√∑ 𝑧𝑖
2(𝑡)𝑖 √∑ 𝑧𝑖

2(𝑡 + ∆𝑡)𝑖

 

 

Equation 4-5 
 

C(t, t + ∆t) takes a value between 0 and 1 since zi(t) is always non-negative. It 

will be 1 if the activity pattern vectors zi(t) and zi (t +  ∆t) are identical, and it will 

be 0 when they are orthogonal, indicating that the activity patterns have no 

overlap. Then the similarity index is computed as the timed average of Eq. (5) 

over the CS duration, T, shown as follows: 

𝑆(∆𝑡) =  
1

𝑇
∑ 𝐶(𝑡, 𝑡 +  ∆𝑡)

𝑇

𝑡=0

 

 

Equation 4-6 
 



66 
 

S(∆t) represents how two activity patterns separated by ∆t are correlated, on 

average. If the similarity index decreases as ∆t  increases, it indicates that 

activity patterns have evolved with time into uncorrelated patterns. 

I further computed the reproducibility index R(t) as follows: 

 
(𝑡) =  

∑ 𝑧𝑖
(1)

(𝑡)𝑧𝑖
(2)

(𝑡)𝑖

√∑ 𝑧𝑖
(1)2(𝑡)𝑖 √∑ 𝑧𝑖

(2)2(𝑡)𝑖

 

 

Equation 4-7 
 

where 𝑧𝑖
(1)(𝑡) and 𝑧𝑖

(2)
(𝑡) are the activity patterns of granule-cell cluster i at time 

t for two different input signals. The reproducibility index quantifies how activity 

patterns elicited by two different input signals differ from each other over time 

and serves as a measure for the robustness of the POT representation by the 

network model. 

4.3 Hardware architecture design 

To implement the POT model, I developed a frame-based network-on-chip 

(NoC) hardware architecture on  a FPGA. The conceptual structure is shown in 

Figure 4-3. 

In Figure 4-3, the left side shows the n by m frame-based NoC system, where 

the size can be adjusted as needed. The architecture consists of three main 

components:  the neural processor, the router and the global controller. In this 

work, I implemented an NoC system containing 48 processors. The neural 

processor calculates the neural activates, with each processor implementing 

2000 granule cells and 20 Golgi cells with a connection ratio of 100:1. The 

router is used for implementing the inhibitory connections from Golgi cells to 

granule clusters. A unicast routing strategy is applied due to the optimization of 

processing, power consumption and areas. It involves a direct transmission 

package from the source to the destination, and the package contains both 

source and destination identifiers. According to the destination identifier 

information, routers are able to decide the transmitting directions in the network.  

The interface modules packetize spike events received from the processor 

ready for transmission through the network. When the interface modules 

receive packets the message is decoded and transmitted to the required cells 

within the neural processor. Finally, a frame master is implemented to 
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coordinate neural and communication processing periods. The details of the 

hardware architecture (four processors) are displayed in Appendix D*. 

4.3.1 Neural computing 

The neural processor data path is shown in Figure 4-4. Two types of neurons 

are implemented in the processor: the granule cell (GR) and the Golgi cell (GO). 

Both models use the same hardware architecture but with different parameters. 

Each granule cluster, containing 100 granule cells, connects to one Golgi cell. 

The activities (1 or 0) of all the 100 granule cells will be calculated first, whilst an  

 

Figure 4-3: A conceptual FPGA-based network-on-chip hardware architecture. 
The figure on the left is the scalable n by m structure of the frame-based 
network-on-chip system. It contains n*m neural processors, n*m routers and 
one global controller. This architecture can be scaled up depending on the 
required model. In this paper, I implemented a network-on-chip system that 
contains 48 processors. On the right, there is a detailed structure of a module.  
The neural processor calculates the neural activity, with each processor 
implementing 2000 granule cells and 20 Golgi cells with a connection ratio of 
100:1. The router is for implementing the connections from Golgi to granule 
clusters. The interface modules packetize spike events received from the 
processor ready for transmission through the network.  When the interface 
modules receive packets the message is decoded and transmitted to the 
required cells within the neural processor.  Finally, a frame master is developed 
to coordinate neural and communication processing periods.  

accumulator will add all of them together and in the 100th clock cycle send the 

summated value to the Golgi cell model as an excitatory input. 

Figure 4-4B details the data path inside the neural model, which takes two 

computing stages: ion channel activities and integration. Each stage takes four 

clock cycles. Because of the parallel computational architecture, the latency in 
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each individual path has to be consistent; therefore appropriate delay blocks 

(the rectangular blocks) are added as necessary.  

Figure 4-4C and Figure 4-4D show the subcomponent circuits, including the 

inhibition and excitation circuits and FIFO-based delay circuits. Since each 

neural processor implements 2000 granule cells and 20 Golgi cells, a pipelining 

technique is applied for reducing hardware resources.  A long pipelining stage is 

required for storing granule cells calculation intermediate values. A First-In First-

Out (FIFO)-based delay circuit is designed for achieving long computational 

stages.  

 

4.3.2 Network-on-chip* 

To manage the transmission of action potentials between Golgi cells and 

granular clusters I have developed an NoC infrastructure. This system allows 

for arbitrary connectivity between Golgi cells and granular clusters. Each 

processing element is connected to a router through which the action potentials 

are communicated. The routers are connected together in a mesh topology as 

shown in Figure 4-4. 

Routing strategy is decided on the system bandwidth, the memory overheads, 

the power consumption and area requirements. Bandwidth and memory size 

can mainly determine the power and areas consumptions. Due to the relative 

low connections from Golgi to Granule cells, the power versus area 

relationships are similar for unicast, multicast and broadcast routing strategies 

are similar.  However, multicasting and broadcasting approximately require 2x 

as much memories as the unicasting strategy, because it needs to store extra 

routing information in the routers. Therefore, a custom designed unicasting 

strategy is applied on the system 

When a Golgi cell produces an action potential the interface fetches a list of 

destination granular clusters from memory, and an individual packet is 

generated to be sent to each of these destinations1 within the network. The 

connectivity of the neural network can be updated by adjusting the contents of 

the memory. A user may alter the contents of the memory to adjust the 

                                            
1
 *: The presented work is finished by my collaborator Graeme Coapes, a PhD student at 

Newcastle University.  
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connectivity by injecting configuration packets into the network. This can be 

done at start-up or part way through simulation if required by halting the system 

by using the global frame master. 

The packet format is shown in the lower panel of Table 4-1. Packets are 

classified by the setting of a two-bit-type identifier. The generated spike packet 

contains the address of the granular cell, allowing for the routers to direct the 

packet to the correct processing elements. Each granular cluster summates the 

packets received. This value is used as an input into the granular clusters. 

Packets are transmitted between routers using a four-phase asynchronous 

protocol and a parallel data bus.  The routers are output buffered using a two-

deep FIFO memory element. 

 

Figure 4-4: The neural processor structure and the data path of neural model. 
Fig. 4A shows the conceptual structure of the processor and Fig. 4B shows the 
data path of the neural model. Both GR and GO models use the same hardware 
architecture but with different parameters. The rectangular block is the delay 
function and the triangular block (gain) is the different ion channel conductances, 
which refer to Eq. (2). Fig. C and Fig. D show the subcomponent circuits: 
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excitation (inhibition) circuits and FIFO-based delay circuits. The triangular 
blocks denote the NMDA and AMPA receptor conductance. 

 

Table 4-1: Standard spike package format 

Name Number of bits Value 

Golgi Spike Packet 2-bit x0 

Configuration Packet 2-bit x1 

Core ID 6-bit \ 

Cluster ID 5-bit \ 

 

 

Figure 4-5: Example of mapping of neural network to a network-on-chip: a) A 
sample Golgi neural network with a single Golgi cell connected to three out of 
four granule-cell clusters. b)  Four processing cores are shown.  Each core may 
model multiple Golgi cells. When the Golgi cell X produces an action potential, 
individual packets are transmitted to each connected granule-cell cluster. The 
targeted granule-cell clusters are distributed throughout the mesh NoC. 

 

To inspect the state of the model the network-on-chip is also responsible for 

transmitting information externally. When a Golgi cell produces an action 

potential, a ‘Golgi Message’ packet is also transmitted to a specialist processing 

element. This processing element buffers all received packets and transmits 

these packets to a PC. This enables a user to review the state of each Golgi cell 

at any time.   
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4.3.3 Frame master 

In order to maintain synchronicity within the system a frame master is used. The 

master is responsible for ensuring that all packets are transmitted to their 

destination before the processing elements start to process the next time step. 

This ensures that the granular clusters receive all their updates within the 

correct time period.  

For example, as shown in Figure 4-6, the duration of the network 

communication depends on the load of the network, which is determined by the 

frequency of Golgi cells spiking and the Golgi cell topologies. This varies for 

each frame. In each frame, once the first Golgi cell spike event is released (at 

time t2), the router starts to process the corresponding synaptic packages. After 

all 20 Golgi cell spike events are computed (at time t3), the processor’s duty in 

frame 1 is finished. Then the neural processor needs to start computing the next 

20 Golgi cell activities for frame 2. However, in frame 1 after time t3, the 

network is still processing the current 20 Golgi cell communication tasks.  

Therefore there is extra time allocated for the network to finish the first frame, 

before frame 2 begins. As a result of this, the frame master generates a low-

level signal that disables the processor clock for the t3–t4 period until the 

network has completed the current frame routing task. The frame master then 

enables the processor to allow it to start computing again.  

 

Figure 4-6: The frame master performances. In frame 1, the router processing 
time is longer than the processor’s, so the frame master temporarily disables 
the neural processor at t3–t4 periods until the router finishes its current traffic 
loads, while in frames 2 and 3, because the routing time is shorter than the 
processor time, the processor clock is continuously running.   



72 
 

4.4 Results 

4.4.1 The hardware passage-of-time (POT) results 

Figure 4-7 shows a comparison of the membrane potential of a fundamental 

granule (Eq.(1)) neuron model simulated by the FPGA neural processor and by 

software (implemented in C). A fixed-point system with 40-bit and 22-fractional 

bit is employed in this system, and the selected length of bits has to guarantee 

each operation has sufficient precision to avoid data overflows and mismatch. 

The same inputs were given to both simulations.  

They produce essentially identical results with very minor differences due to 

hardware truncation errors. Increasing the length of bits can eliminate truncation 

errors but introduce resource utilization waste. 

 

Figure 4-7: The comparison results of a fundamental granule (Eq.(1)) neuron 
model simulated by the FPGA neural processor and CPU. The CPU 
implementation is the original software described in [33], running with an Intel 
Quad Core™ i7 CPU with 8 GB of RAM under the Ubuntu operating system. 

The hardware POT simulation results are summarized in Figure 8. Poisson 

spikes were fed into the simulated network to represent CS inputs through MFs. 

The simulated network was first fed at each MF with 5 Hz Poisson spikes for 

300 ms to set the network to steady state, then 30 Hz Poisson spikes, preceded 

by 5 ms 200 Hz spikes, were given to excite the network.  

Figure 4-8a shows the spike patterns of 40 granule cells randomly chosen from 

different granule-cell clusters. These granule cells show different temporal 

activity patterns. Specifically, they show a random repetition of transitions 

between bursting and silent states. These bursts are sustained for tens to 

hundreds of milliseconds. In contrast, the Golgi cells fire spikes rather regularly 
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as shown in the bottom panel of Figure 4-8 (a). Figure 4-8 shows the similarity 

index of the activity pattern against the time shift Δt (Equation 4-6). The gradual 

decrease of the similarity index with |Δt| demonstrates a smooth encoding of 

POT from the onset of CS, indicating that the populations of active granule cells 

change gradually over time such that no active granule-cell clusters appear 

more than once throughout the simulation. Both of the software and hardware 

simulation results are consistent with results shown in [11], which confirms a 

proper POT behaviour in the simulation, in that the sequence of active granule 

cell population maintains a one-to-one correspondence with the POT from the 

CS onset. The hardware simulation result is very comparable with software 

simulation, with mean error being less than 5% (Figure 4-8).  The error is mainly 

caused by hardware truncation errors. Figure 8c shows the reproducibility index 

(Equation 4-7) from the hardware simulation, which compares the activity 

pattern generated by two different Poisson spike inputs. The reproducibility 

index remains high (>0.7), indicating that the POT encoding will remain robust 

despite in the spite of the variability of signals in the two stimulating inputs 

through MFs. This shows that the neuron population can maintain consistent 

POT representation across trials when, for instance, learning of delayed 

eyeblink conditioning over multiple training sessions is to be incorporated in the 

model [33].  

4.4.2 Effects of blocking NMDA channels on POT representation 

To further verify the hardware simulation results, I adapted the model to 

investigate the effect of blocking NMDA channels, which play a critical role in 

delayed eyeblink conditioning [97]. The hardware and software simulation 

results are summarized in Figure 8d–f. When NMDA channels are blocked in 

either granule cells or Golgi cells, granule cells lose the temporal structure in 

their firing; instead, they fire spikes in a rather continuous manner (Figure 4-8d). 

The similarity index becomes flat except for |Δt| smaller than ~30 ms. Within the 

time scale of 30 ms, there are a very limited number of spikes to encode a 

robust temporal structure for POT. On the other hand, 30 ms is too short for 

physiologically relevant POT in a classic firing pattern after NMDA-R blockade 

cannot capture a temporal structure on a timescale of physiologicalrelevance. 

The disruption of POT encoding consequent to NMDA channel blockade is 
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reflected by both software (Fig. 8e) and hardware simulation (Fig. 8f). The 

results (both software and hardware) are consistent with those presented in [33]. 

 

 

Figure 4-8: (a): Spike patterns of 40 granule cells and Golgi cells chosen 
randomly in an implemented granular layer. (b): Comparison of similarity index 
between software and FPGA simulations. The grey areas are the standard 
deviations of the hardware results. The errors between the two results are 
shown at the bottom. The maximum error is less than 5%. (c): The 
reproducibility index is calculated by Eq. (5). It maintains a high value, which 
suggested a robust POT representation despite the input variability. (d):  Spike 
patterns of 40 granule cells when NMDA channels of granule cells (upper panel) 
and Golgi cells (lower panel) were blocked. Each neuron was chosen randomly 
from 40 different granule-cell clusters. The firing of the cells become rather 
regular and hence lost the ability to encode temporal information about POT. (e) 
and (f) : Comparison of similarity index between software and FPGA simulations 
when NMDA channels of granule cells (dotted line) or those of Golgi cells 
(dashed line) were blocked. The similarity indices become flat, indicating a loss 
of temporal structure in the granule cells’ activity pattern. 

 

4.4.3 Frame master performances 

In particular, I examined the frame master performances of a two-by-two 

network-on-chip system as a case study. The simulation results are shown in 

Figure 4-9. 
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Figure 4-9: The simulation results of the two-by-two network-on-chip system. 

In Figure 4-9, at the frame update clock cycle time point 82,000 ns, router 1 (r1), 

router 3(r3) and router 4(r4) all released control signal “1”, which indicates that 

they have all finished their routing tasks. Only router 2 still generates the low-

level signal “0”. This shows that in the communication duty of the Golgi cell still 

being performed by router 2.  As a results of this, the developed frame master 

immediately stops the clock from processor blocks computing clock_m until the 

router 2 control signal becomes a high level signal After five clock cycles, the 

process clock becomes enabled again since all the routers have finished their 

current frame routing missions. Then the entire system is ready to calculate the 

next frame process duties.  

 

Figure 4-10: The performances of four system processors. 
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It can be clearly seen in Figure 4-10 that the current frame process duration is 

105 clock cycles (83,055,100-82,005,100 = 1,050,000 ns), which is five clock 

cycles more than the standard frame process period of 100 clock cycles. This 

illustrates that the developed frame master successfully “freezes” the 

processors’ five clock cycles to avoid routing package traffic congestion.  

4.4.4 FPGA-based granular layer for neural rehabilitation 

I illustrated a hypothetical in vivo experimental set-up for closed-loop prosthetic 

application using the developed FPGA granular-layer system in Figure 4-11A. 

Biological neuronal spike signals will be recorded by using a multi-channel 

neural recording system that will then be used as inputs to the silicon granular-

layer model. These neuronal spikes will be processed by the silicon-granular 

layer, which then generates the appropriately timed output discrete spikes to 

trigger the stimulation to be injected into the animal. Figure 4-11B shows an 

electronic system set-up to demonstrate such an experiment. A Virtex-5 board 

is employed to simulate the neural spike inputs conveyed by MFs, which are 

delivered to the FPGA cerebellum model via four-bit wires. The input discrete 

spikes are modelled as two 5 Hz and two 30 Hz Poisson spike trains in four-bit 

signals. The developed silicon granular layer is implemented on the Virtex-7 

board with the I/O interface for displaying the system output on the oscilloscope 

in real time (Figure 4-11C). The displayed GR spikes were taken from three 

neural processors. The frame-based signal, which is used to monitor and verify 

system processing behaviours, is also shown. When each frame workload is 

finished, the frame-based signal is changed to a high-level value, and each 

frame uses 25.6 us (the distances between X1 and X2) to mimic 1 ms real-

world activities. Hence, this set-up can complete 1 sec real-world activities in 

25.6 ms at full speed as shown in Figure 4-12. The system specifications are 

summarized in Table 4-2.  
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Figure 4-11: The overall system experimental set-up.  A is the hypothetical in 
vivo closed-loop experimental set-up for cerebellum rehabilitation. B is an 
electronic set-up to demonstrate the feasibility of the in vivo experiment. A 
Virtex-5 board is employed to simulate the biological spikes conveyed by MFs, 
which are delivered to the FPGA cerebellum model via four-bit wires. The input 
discrete spikes are modelled as two 5 Hz and two 30 Hz Poisson spike trains in 
four-bit signals. The developed silicon granular layer is implemented on the 
Virtex-7 board with the I/O interface for displaying the system output on the 
oscilloscope in real time. C shows the real-time input/output discrete spikes and 
the frame-based signal. 
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Table 4-2: FPGA-based granular-layer specifications 

Timing issues 

Maximum clock frequency  121.945 

MHz 

Minimum period  8.2 ns 

Hardware resource utilization 

 Processor Router Module Total 

Slice register 2884 792 3676 176424 

(29%) 

Slice LUTs 4379 1213 5592 268455 

(88%) 

Block 

RAM/FIFO 

20 0 20 960 

(93%) 

DSP48E1s 48 0 48 2304 

(82%) 

Power consumption 

Dynamic power - - 60 mW 2.88 W 

 

 

 

 

 

Figure 4-12: The real-time computational condition among CPU, GPU and 
FPGA for simulating 1 s activities. The CPU and GPU results are cited from 
previous work [92].   
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4.5 Discussion 

4.5.1 Scalability 

In Figure 4-13 I compare the performance of the presented design with three 

alternative approaches previously developed for implementing a spiking neural 

network.  In addition to its higher computational speed, the FPGA-based NoC 

approach clearly demonstrates scalability compared with other approaches. The 

computation time remains almost constant even if the network size increases by 

an order of magnitude. (For both FPGA-based systems, there is an assumption 

of thay the resources corresponding increasingly as neuron number rises.) 

 

Figure 4-13: Scalability of four different approaches. The dotted lines represent 
the estimation of system performances, whereas solid lines represent the 
measurements. The FPGA-based NoC computation time remains constant due 
to its parallel nature and the efficient communication system.  

The architecture of FPGA allows a variety of techniques to be employed to 

reduce the overall memory consumption. As such, memory requirement of 

FPGA based optimized system scales much less steeply. For instance, the 

major memory consumption is to store the connectivity information of the 

individual granule and Golgi cells. In implementing the network connectivity, the 

NoC architecture requires only tiny resources for storing routing information, in 

that each Golgi neuron package is only 15 bits. On the other hand, pipelining 

technique is employed to significantly save memory resources when simulating 

a large number of neurons.  
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Another alternative is to use GPU processors, which can supplement or even 

replace CPUs for parallelizable code. The rise of GPU languages such as 

CUDA and Open CL has simplified their use enormously. Modern GPUs exceed 

5000 cores and can increase processing speed by orders of magnitude for 

parallelizable tasks [23][98][92]. Additionally, GPUs offer extremely high raw 

memory bandwidth, though this is difficult to achieve in practice and requires 

adherence to strict memory access patterns [23]. 

Nevertheless, with sufficient power, it is possible to implement spiking neural 

networks for high-speed computation on a GPU. However, this would be at the 

cost of relatively large power consumption, which is not scalable to prosthetic 

devices. I therefore chose an FPGA platform with large numbers of I/Os for 

potential in vitro and in vivo operation.  

One key difference between the FPGA platform and processor-based 

implementations is that I utilize distributed, localized memory banks that avoid 

sharing of global memory resources. This avoids delays associated with 

accessing global memory and reduces power consumption by minimizing the 

size and operating frequency of channels between processors and memory.   

A further variance of previous work is the use of frame-based encoding. One 

issue with real-time NoC systems is that spiking information encoded in latency 

or frequency can be prone to distortion due to congestion [99][100][101]. In 

contrast, I utilize a stop-start approach whereby all the neural spikes processed 

and then stopped to allow full transmission around the network whenever 

necessary. This is actually akin to biology, whereby synaptic transmission, 

dendritic signal integration and action potential initialization can take time, but 

the transmission speed is actually very fast [102]. In addition to low distortion, 

this approach also allows us to easily compare among computational models. I 

can simply extract a specific frame N from the simulations in all cases for 

detailed comparison.  

An alternative digital implementation of an NoC is perhaps a bus between 

processing cores. This will form a limiting factor whereby increases in frequency 

lead to distortion of the information. Alternatively, some of these effects can be 

alleviated using traffic management via hierarchical AER architectures [103]. 
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Using an NoC infrastructure as opposed to a bus also reduces power 

consumption within the design as it allows for much reduced clock frequency. 

Using a Xilinx XPower Analyzer I estimate that when implemented upon a 

Virtex-7 VC707 XC7VX485T-2FFG1761C Evaluation Kit, each module, 

containing a processor, router and interface, consumes 60 mW of dynamic 

power, equating to a total dynamic power consumption of 2.88 W when running 

at full speed, or 60 mW per processing module.   

4.5.2 Comparison of other techniques 

There are several possible alternative techniques to the frame-based network-

on-chip architecture. Currently, SpiNNaker [3], NeuroGrid [104] and IBM 

SyNAPSE [11] are projects that build custom chips or systems for efficient 

large-scale simulation of general neural network models. These systems are 

powerful and innovative; however, they may not be optimal for the system that I 

am implementing in this paper. For example, SpiNNaker with multicast strategy 

will require the addition of extra memory resources to control the routing at 

some intermediate nodes.  With the unicast strategy, routing is determined 

purely from the packets contents - reducing the memory overheads.NeuroGrid 

employs a smart approach to combining analogue circuits for mimicking the 

neural process and digital circuits for implementing routing components. It can 

potentially save a significant amount of energy consumption. But analogue 

circuit-based dimensionless models are not ideal for mapping conductance-

based leaky integration-and-fire neurons in a POT model. IFAT [105] is also a 

well-established platform for brain network real-time operation, but the 

analogue-based integrate-and-fire array may not provide good scalability.  

I am seeking to further optimize the system and to use it for other applications. 

Cassidy et al [106][107] developed a neuro-array architecture for a general 

large-scale neuromorphic systems with corresponding analysis. Their design 

principles, including external SRAM technique, can provide new insight for 

optimizing the system. Also, applying the developed silicon granular layer to 

perform pattern recognition would be another implication that is similar to the 

new IBM chip TrueNorth [11].  

In fact, the developed frame-based network-on-chip architecture is general for 

spiking neural networks, although in order to implement other models, I need to 
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modify the components appropriately for the target model. For instance, in this 

work the routing components (transmitter, router and receiver) are custom 

designed for implementing POT recurrent random network connections; and 

neural processor architecture is also specifically designed for mapping the 

connections from granule cells to Golgi cells. Further system tweaking will be 

required to optimize the performance for a different target model. 

4.5.3 Neuro-prosthesis applications  

For translation into neuro-prosthesis, the architecture lends itself easily to 

electrical [108] or optical stimulation methodologies [109][110]. The FPGA-

based granular model can correctly predict responses of POT behaviour and 

thus be used to interface with in vivo and in vitro experiments. Furthermore, it is 

straightforward to translate generated spikes directly to tissue as each will be 

encoded with a destination address.  

For long-term neuro-prosthesis experiments this design can be translated 

directly to an ASIC platform in order to increase portability and to reduce power 

consumption.  I estimate that by translating the design into CMOS, each module 

will consume 1.3 mW in high-speed operation and only 0.6 mW in real-time 

operation, giving a total power consumption of 28. 8mW for implementing a 

neural network containing 100,000 elements. This compares favourably to 

power requirements in the brain whereby exceeding 100 mW can cause thermal 

damage [111]. 

 

4.6 Conclusion 

The goal of the work has been to implement a real-time cerebellar granular-

layer model onto an FPGA hardware platform utilizing an NoC hardware 

architecture. The design can achieve (more than) real-time operation for a 

system of 1000 Golgi cells and 100,000 granule cells on a single FPGA board. 

This is achieved via an efficient implementation of the mathematical models of 

the neuron cells, and the use of a frame-based architecture that eliminates 

congestion distortion of spike timing in multiplexed networks. The design is also 

highly scalable in that computation time remains almost unchanged for a much 

larger network model. 
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The major contributions of this paper are summarized as follows: 1) An efficient 

FPGA-based NoC hardware architecture is developed for implementing a large-

scale cerebellar granular-Golgi layer model for POT encoding; 2) The 

implementation is computationally efficient in that it can complete a 1 sec 

simulation in 25.6 ms and that FPGA provides precise timing control. Together 

they allow our design to be readily adapted for real-time closed-loop in vitro or 

in vivo experiments; 3) The NoC architecture is highly scalable and hence it is 

now possible to simulate the full-scale granular layer with a cell density of 1 

million cells/mm3 as in the real brain, which is 10 times the size of the current 

model. Such simulation power can open up new possibilities for understanding 

the dynamics of the cerebellar network; 4) The design can be a potential neuro-

prosthetics tool for future experimental and clinical applications owing to its high 

computational power, flexibility, high scalability and power efficiency. 
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Chapter 5 Case Study: Central Pattern 

Generator Prosthesis 
 

This chapter aims to explore digital neural circuit neuro-prosthesis applications. 

A reliable pyloric central pattern generator prosthesis technique is presented to 

explain the methodology in details. The biological pyloric network is an 

appropriate platform since individual neuron characters and synaptic 

connections are clearly identified. The approach steps, from software modelling, 

hardware implementation and system-level reliability investigation to 

experimental set-up, are discussed in depth. The simulation results 

demonstrate that the developed system can successfully restore the damaged 

network functionalities in different external environments. This work can be 

considered as a framework of digital circuits for neurorehabilitation applications. 
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5.1 Introduction 

Neurorehabilitation is a vital technique that aims to help people disabled by 

injury or disease affecting the brain, spinal cord or muscles. It is a collection 

process that specifically focuses on a person’s recovery potential and can help 

a patient to live a more normal, active and independent life. Traditional 

neurorehabilitation techniques include occupational [112], psychological [113], 

speech and language therapies. It shows its effects and strongly helps people 

to recover from diseases (e.g. stroke, Parkinson’s and brain injury), both 

mentally and physically.  

However, when these approaches confront neurologic disorders such as ataxia, 

epilepsy and conditions caused by damage to the nervous system, they display 

limitations and constraints since neural circuits are fundamentally injured. 

Therefore, currently there is still no effective rehabilitation approach to cure 

these diseases. 

Nowadays, with the rapid development of neuroscience and electronic subjects, 

there is potentially a new way to address this dilemma: using silicon neurons to 

replace the damaged real neurons to restore original biological functionalities.  

Achieving this technique that integrates neural network and electronic circuits 

into an entire system is a great challenge. The fundamental issue is that the two 

systems utilize totally different computing mechanisms: electronic circuits based 

on Metal-Oxide-Semiconductor (MOS) utilize small amounts of dopants to 

create conductivity and are transformed into specific circuits for daily 

applications, while biological neurons receive multi-synaptic inputs from 

synapses, and integrate this information to generate spike patterns related to 

movement behaviours. The challenges lie in the fact that the silicon neurons 

have to accurately replicate various biological system spiking patterns in real 

time. More importantly, since the neural network is adaptive to the external 

environment, it will automatically change its bursting frequency according to the 

sensory inputs. This indicates that electronic systems have to modify their 

computational speed in real time to follow the biological ones.  

Previously, Berger et al [114] showed an external silicon chip  connected to rat 

and monkey brains to achieve memory prosthesis. R.J. Vogelsteinet al [49] 

created a neuromorphic chip to reproduce biological spinal central pattern 
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generator (CPG) activities and used this chip to support a cat walking in vivo. 

These works all serve as strong evidence of the feasibility of this concept. 

In this work, I propose a reliable and capable system specifically for CPG 

function restoration, which is shown in Figure 5-1. Compared to the previous 

systems, the work is stronger frow two aspects: silicon neurons’ bio-plausibility 

and system reliability. Firstly, the digital neural circuits are designed to 

reproduce both real CPG control and pharmacological outputs, which are 

particularly aimed at conditions with totally damaged and partially damaged 

systems. Secondly, the developed system is capable of robustly changing the 

computing speed to achieve the best communication performances with biology 

by using an adaptive control mechanism. 

The rest of the paper is organized as follows. Section 5.2 briefly describes the 

pyloric CPG modeling work. Section 5.3 explains the system architecture and 

individual component functionalities. Section 5.4 presents the hardware 

simulation and biological experimental results. Section 5.5 provides a 

comprehensive discussion, and in Section 5.6 a conclusion is presented.   

 

 

Figure 5-1: The conceptual system architecture. V is the membrane potential, I 
is the generated current and F is the neural bursting frequency. 

5.2 Pyloric CPG modelling 

5.2.1 Pyloric behaviours 

The pyloric network is one of two CPGs in the stomatogastric ganglion (STG) of 

a crab. It contains around 14 neurons with complex connections [1]. The 

function of the pyloric network is to control striated muscles that dilate and 



87 
 

constrict pyloric areas in the stomach [115]. It has been investigated for almost 

50 years and contributes many important neural mechanisms, such as adaption 

[116], compensation [117] and evolution [32], to the neuroscience society. 

Figure 5-2 describes network rhythms and synaptic connections. 

 

Figure 5-2: The pyloric network synaptic connectivity and output patterns. There 
are six neurons in the network: AB, PD, PY, LP, VD and IC. The figures are 
cited from [118]. 

In the pyloric network, neuron AB is electrically coupled with neuron PD as the 

pacemakers in the whole network. At first, the PD and AB neurons together 

inhibit the LP and PY neurons. Then the LP neuron rebounds before the PY 

neurons due to various factors, and in turn inhibits the PY neurons. When the 

PY neurons rebound from the inhibitions, they in turn terminate LP neuron 

bursts. The firing frequency varies from 0.5 Hz to 3 Hz [115].   

The muscles active in each phase of the pyloric cycle are shown in Figure 5-3. 

Activity of the pyloric dilator muscles mediated by the two PD neurons appears 

to open a valve in the pyloric region, which is then closed in the second phase 

by an antagonist, the lateral pyloric muscle operated by the LP cell. In the third 

phase, a sheet of pyloric muscles contracts under the activation of several PY 

neurons (divisible into PE and PL subtypes), giving overall a peristaltic 

appearance to the pyloric surface. The two muscles located in the anterior 

(cardiac) portion of the stomach control a curious valve structure [119]. 

5.2.2 Modelling  

I model the pyloric CPG in three different stages. In the first stage, I analyse 

and investigate which factors strongly influence the pattern generation 
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according to the biological experiment recordings; in the second stage, based 

on previous results, I model the pyloric pattern generation mechanism at 

qualitative level to give a fundamental architecture; in the third stage, the 

specific neural models will be selected and parameters will be optimized to 

achieve exactly the same behaviours as the biological one.  The model will then 

be quantitatively defined.  

 

Figure 5-3: The pyloric muscle activities in a lobster stomach. Neuron PD 
controls muscle d; neuron LP controls muscle c1 and PY controls muscle c2. 
The figure is cited from [119].  

Four factors will be described in the first stage: commissural inputs, synaptic 

connection, oscillators and non-oscillators. Commissural inputs are from inter 

neurons,  and the inter neurons make excitatory synaptic contact with all pyloric 

cells except the oscillators AB and PD. Oscillators are neurons AB and PD 

while the other neurons are non-oscillators. Synaptic connection is the topology 

of this pyloric network. The main difference between oscillators and non-

oscillators is that oscillators can generate bursts without inputs but non-

oscillators cannot. The influences of these four factors [120][38][121][118] on 

pattern generation are displayed in Table 5-1. The conclusions can be 

summarized as below: 

 With commissural inputs contacted, this pyloric circuit can still generate 

spiking patterns even with one or two lost oscillators.  

 Without commissural inputs, this pyloric circuit can only generate spiking 

patterns with complete oscillators (AB and PD) and the conditional 

oscillator LP. 

 A synaptic connection is necessary for generating rhythm patterns. 

According to these important findings, I translate this information into a 

visualized model, which is shown in Figure 5-4. The model uses three different 

measurements to define network properties: neuron bursting ability, synaptic 

strength and resting potential values. It is shown that neurons AB and PD have 

the strongest bursting generation behaviours and neurons IC and PY seem to 
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be inactive neurons. AB and PD drive IC and PY for bursts, and for synapse 

properties, both AB and PD have a strong inhibition to neuron LP. Also, neuron 

LP has the same effects as neurons PY and VD. But the synaptic activation 

among neurons LP, IC and VD is quite weak and exerts a tiny influence on all 

the entire network pattern generations.  

Table 5-1: The influences of three factors on CPG spiking pattern generation 

 

In the final stage, these neurons are mimicked by the Hindmarsh-Rose (HR) [54] 

model. The reasons for choosing this model are the relatively simple 

mathematical equations and strong bio-plausibility. Neuron functions such as 

repetitive firing, post-inhibitory rebound and plateau properties can all be 
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reproduced by the HR model, and the equations are shown in Equation 5-1 – 

Equation 5-3:  

 𝑑𝑥

𝑑𝑡
= (−𝑥3 + 𝑎 × 𝑥2 + 𝑦 + 𝐼 − 𝑧)                            Equation 5-1 

 𝑑𝑦

𝑑𝑡
= (1 − 𝑏 × 𝑥2 − 𝑦) 

Equation 5-2 

 𝑑𝑧

𝑑𝑡
= (𝑟(𝑠(𝑥 − 𝑥𝑜) − 𝑧)) 

Equation 5-3 

 

 Where 𝑥(𝑡) is the membrane potential, which is written in dimensionless units, 

and 𝑦(𝑡) and 𝑧(𝑡) can be considered as fast and slow ions variables. The model 

has eight parameters: 𝑎, 𝑏 , 𝑐, 𝑑, 𝑟, 𝑠, 𝑥𝑜 𝑎𝑛𝑑 𝐼 . The parameter I indicates the 

current that injected in the neuron, is taken as a control parameter. For synaptic 

modelling aspects, in line with [122] and [123], I employ these two models as 

electrical and chemical synapses. For electrical synapse, it can be modelled by 

resistances to capture gap junction behaviours that are both bidirectional signal 

transfer and synchronization. However, chemical synapses remain the key 

communication in this network. I employed a synaptic model in Equation 5-4 – 

Equation 5-6:  

 𝐼𝑠𝑦𝑛 =  𝑔𝑠𝑦𝑛 × 𝑆 × (𝐸𝑠𝑦𝑛 − 𝑉𝑝𝑜𝑠𝑡)                         Equation 5-4 

 (1 − 𝑆∞) × 𝜏𝑠𝑦𝑛
𝑑𝑆

𝑑𝑡
= (𝑆∞ − 𝑆)   Equation 5-5 

 

 

𝑆∞(𝑉𝑝𝑟𝑒) = {tanh
(

𝑉𝑝𝑟𝑒 −  𝑉1/2

𝑉𝑠𝑙𝑜𝑝𝑒
)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑉𝑝𝑟𝑒 >  𝑉1
2
 

Equation 5-6 

 

where Vpost  and Vpre  are the post- and pre-membrane potentials, Esyn  is the 

resting potential and gsyn is the conductance, S is the ration between 0 and 1, 

and V1/2 and Vslope are synaptic half-activation voltage and slope voltage. 

The parameters of each neuron and synapse are shown in Table 5-2 and Table 

5-3. 

Table 5-2: Pyloric neuron parameters 

Neuron AB PD LP PY VD IC 

𝑎 2.7 2.7 2.8 2.6 2.8 2.8 

𝑏 0 0 0.2 0.2 0.2 0.2 

𝑟 0.003 0.003 0.003 0.003 0.0021 0.0021 

𝑠 4 4 4 4 4 4 

𝑥𝑜 -1.1 -1.1 -1.1 -1.1 -1.2 -1.2 
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Figure 5-4: The qualitative pyloric computational model. Neuron bursting 
capabilities, synaptic strengths and resting potential values are fully described 
in this model. 

Table 5-3: Pyloric synapse parameters 

Synapse 𝑔𝑠𝑦𝑛 𝑉1/2 𝑉𝑠𝑙𝑜𝑝𝑒 𝐸𝑠𝑦𝑛 

LP→PD 0.5 1.5 0.02 -10 

AB→LP 0.5 1.5 0.02 -20 

PD→LP 0.5 1.5 0.02 -20 

PY→LP 0.5 1.5 0.02 -5 

VD→LP 0.5 1.5 0.02 -5 

LP→PY 0.5 1.5 0.02 -15 

PD→PY 0.1 1.5 0.02 -5 

AB→PY 0.1 1.5 0.02 -5 

VD→PY 0.1 1.5 0.02 -1 

LP→VD 0.7 1.5 0.02 -15 

AB→VD 0.5 1.5 0.02 -10 

IC→VD 1 1.5 0.02 -5 

PD→IC 0.5 1.5 0.02 -10 

AB→IC 0.5 1.5 0.02 -10 

PY→IC 0.2 1.5 0.02 -5 

VD→IC 0.2 1.5 0.02 -1 

 

5.3 System architecture 

The system mechanism is described as follows: the damaged CPG receives 

sensory inputs and generates motor signals to control muscles; at the same 

time, it sends outputs to the digital CPG via the neural interface. After the 
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process time, the digital CPG feeds back calculated recovery currents to restore 

the damaged original functionalities. Meanwhile, the output frequency of the 

digital CPG is adaptive in real time to biological CPG bursting frequency 

through adaptive control mechanisms to maintain system reliability.  The 

individual blocks are discussed below. 

5.3.1 Digital CPG 

I implement the previously developed pyloric model on a parallel computational 

platform FPGA as the prosthesis processor. The hardware architecture is 

shown in Figure 5-5. 

A classic timing multiplexing technique is employed to save hardware resources. 

A timing division multiplexer (TDM) has six channels; each channel is 

responsible for one neuron’s activities. And the TDM selects input signals 

sequentially for calculation, while the corresponding parameters will also be 

sent from the block of initial states.  

The key design principle for applying timing multiplexing technique to build a 

biological network is shown in Equation 5-7.  

 

Figure 5-5: The hardware architecture of digital CPG. The SI block is the 
synapse integration; signal C is the control signals from the adaptive controller; 



93 
 

the block of initial states is used to pre-store different neuron parameters; the 
block of delay is applied to balance computing latency. 

 𝑡𝑖 = 𝑛 =  𝑡𝑐 Equation 5-7 

 

Where 𝑡𝑖  refers to integrator latency, 𝑡𝑐  refers to the model data-path 

computational periods, and n is the total neural number. 

With regard to latency constraints in TDM technique, the integrator latency ti 

has to be equal to the number of TDM inputs n in order to maintain correct 

calculating sequences among different input channels. In general, ti is set to 

one cycle to achieve the integration function. However, when TDM is applied in 

a neuronal model, the value of ti has to be set to a specific value to match TDM 

calculating sequences. For example, a neuronal network consists of 14 neurons 

and the integrator latency is also one cycle. When computation of the first input 

channel signals for neuron A is finished, results are delayed for one cycle by ti. 

While the second input channel signals are calculating for the activities of 

neuron B during the second cycle, results calculated from the previous input 

channel (i.e. neuron A) are released. Calculated activities of neuron A are 

included in the calculation of neuron B. As a consequence, the activities 

calculated for neuron B are incorrect. Therefore, integrator latency ti has to be 

equal to the number of TDM inputs. 

The calculating latency tc has to be equal to or be in a multiple relationship with 

ti because the timing division de-multiplexer (TDD) selects calculated results at 

specific time points. In the previous example, suppose the implementation of 

the 14-neuron neuronal model has 56 clock cycles for computing a burst, so 

each neuron uses a total of four clock cycles for calculation. The TDD output 

results of the first neuron A will be released at the time period of clock cycles 2, 

16, 33 and 44. However, if the calculating latency is 15 clock cycles, the second 

results for neuron A finish computing at  the time period of clock cycle 17, which 

is the output time point for neuron C. This makes the system output results 

incorrect. 

A data-path diagram of the HR model is shown in Figure 5-6. The arithmetic 

functions multipliers and adders have three and one latencies, respectively. So 

three data-path latencies are 12, 8 and 11 cycles in total. According to Equation 
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5-7, I have to artificially add 2, 6 and 3 delays into the corresponding places. 

This in turn is to shorten the critical path and bring more computational cycles 

into the model to match the network neuron numbers. Also, integration functions 

are achieved by using a register and an adder component. Register delays are 

artificially set to 14 to match the calculating latency as well.  

 

Figure 5-6: Data path of HR neural model. D is the delay register, and the 
integration step G is real-time updated by control system outputs. The 
corresponding equations are shown in Equation 5-1 – Equation 5-3. 

A data-path diagram of the chemical synapse model is shown in Figure 5-7. The 

synaptic circuit computes synaptic currents based on pre- and post-synaptic 

membrane input voltages. In each step in the circuit, two state variables are 

stored and a single integration result is calculated. The parameters of this 

kinetic synapse model can fit directly into physiological measurements. In 

addition, the triangle and divider functions are achieved by using look-up table 

techniques. 
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Figure 5-7: Data path of chemical synapse. The corresponding equations are 
shown in Equation 5-4 – Equation 5-6. The triangle and divider functions are 
achieved by using look-up table techniques. 

5.3.2 Adaptive control mechanism 

The entire adaptive control system is shown in Figure 5-8. The basic 

mechanisms are described below: first, biological neuron bursting frequency is 

measured in real time as shown   by r(t) . Then it is compared to the three 

references in the adaptive controller: reference 1 is the slow bursting period, 

reference 2 is the normal bursting period and reference 3 is the fast bursting 

period. According to the calculated errors  e(t) , the switches automatically 

choose the gain that corresponds to the smallest value e(t). This is the adaptive 

gain that best fits the current biological neuron bursting state. After an electrical 

neuron receives control outputs and interacts with biological neurons, the 

electrical neuron can follow biological neuron bursting period characters to 

avoid an incorrect spiking phase relationship and irregular burst patterns. 

For a real-time bursting period measurement algorithm, there are three stages 

in the calculation. The algorithm flow is shown in Figure 5-9. 

Firstly, in order to avoid heavy computations in the algorithm, a low-pass filter is 

applied to focus on burst fields rather than individual spikes. The frequency 

pass parameter in the system is 0.01 and the frequency stop is 0.03. In the next 

step, every burst threshold time point is detected and recorded by using hit 

crossing(Matlab library) technique. The burst threshold value is set to -15 mV. 

Finally, the burst period is calculated by using the current burst threshold time 

point tn subtracted from the  previous burst threshold time point tn−1. 
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Figure 5-8: An adaptive control system for the central pattern generator 
prosthesis system. Blocks of measuring bursting periods are responsible for 
real-time sensor neuron bursting frequency; blocks of switch system are for 
optimizing controller gain, and the block of controller is for automatically 
modifying silicon neuron calculation speed. The controlled neuron is the silicon 
neuron LP.  

 

Figure 5-9: The algorithms of measuring real-time neuronal spiking period. 
There are three stages for computing: low-pass filter, recording and calculation. 

The switch mechanism is designed as follows: by comparing with three different 

reference periods (slow, normal and fast), the controller can identify what 

bursting state the biological neuron is in. Then the switch will choose the 

corresponding adaptive gain for the current system. In this circuit, the three 

reference periods are defined as 0–0.5 seconds, 0.5–1 seconds and 1–2 
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seconds. And the three adaptive gain values are 1/300, 1/500 and 1/800. For 

example, when the biological neuron bursting period is 0.4 periods, the value 

belongs to reference 1 range 0–0.5 periods. This indicates that the calculated 

errors e1(t), e2(t) and e3(t) are 0, 1 and 1. The gain valued 1/300 is selected 

as the result. 

For digital controller design, three steps are considered in this system. Firstly, I 

employ the trigonometric function cosθ  to represent biological neuron bursting 

characters because of their share of the identified wave patterns. The Z-

transform equation of neuron bursting behaviours is below: 

 
𝑋(𝑧) =  

1 − 𝑒−𝑎𝑇𝑧−1𝑐𝑜𝑠𝜔𝑇

1 − 2𝑒−𝑎𝑇𝑧01𝑐𝑜𝑠𝜔𝑇 + 𝑒−2𝑎𝑇𝑧−2
 

Equation 5-8 

 

Then, according to the biological recordings, parameter values a, T and ω are 

set as -0.7, 1 and 0.0018. The specific pyloric neuron Z-transform is below: 

 𝑋(𝑧) =  
𝑧(𝑧−2)

(𝑍+3.414)(𝑧−0.568)
                                              Equation 5-9 

 

After transforming biological spiking-pattern performances into digital-based Z-

equations, I consider that this hybrid bio-silicon system requires stable 

communication performances; two control system parameters are optimized: by 

minimizing system setting time (Ts = 3.027), the hybrid network can achieve 

quick transient response while biological neuron states vary; by minimizing 

percentage overshoot (τ = 1%), the hybrid network can avoid overload in most 

cases. The controller Z-transform is below: 

 𝑋(𝑧) =  2.857 ×
𝑧−0.568

𝑧+0.149
                                              Equation 5-10 

 

 

5.4 Results  

5.4.1 System implementation 

The system implementation is shown in Figure 5-10. For the silicon aspect, the 

digital CPG and adaptive control mechanism are implemented at Xilinx Virtex-4 

DSP board. The hardware architecture is designed by using software system 
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generator and VHDL languages, which are shown in Figure 5-10A. The details 

are shown in Appendix E.2. 

For the biological preparations, Adult Cancer pagurus L. were obtained from 

local sources (Newcastle University, Dove Marine Laboratories) and kept in 

filtered seawater (10–12 °C). Animals were kept in ice for 20–40 minutes for 

anaesthetizing. The STG was pinned down in a silicone elastomer-lined 

(ELASTOSIL RT601, Wacker, Munich, Germany) petri dish with chilled saline 

(10–13 °C). The details of dissection and desheathingthe  STG were performed 

as in [124] and [78]. The rhythmic activity patterns generated in the STG were 

recorded using extracellular recordings: a petroleum jelly-based cylindrical 

compartment was built around a section of the main motor nerve, the inferior 

ventricular nerve (LVN), to electrically isolate the nerve from the bath. One of 

two stainless steel electrode wires was placed in this compartment and the 

other one was placed in the bath as a reference electrode. The differential 

signal was recorded, filtered and amplified with an AC differential amplifier 

(Kaiserslautern University, Germany). The motor activities of the ganglion were 

monitored using an oscilloscope (DL708E; Yokogawa, Tokyo, Japan) and were 

recorded using a data acquisition board (CED Power, 1401) and the software 

Spike 2. The pyloric network image under a microscope is shown in Figure 

5-10C and real-time system recording and stimulating signals are shown in 

Figure 5-10 D and E. The details of the network recording and mapping are 

shown in Appendix E.1. 
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Figure 5-10: The system implementation. A is the Virtex-4 DSP platform that 
used to implement digital neurons and adaptive control system; B is the neural 
interface based on intracellular/extracellular recording techniques; C is the 
image of real pyloric CPG under microscope, the neurons (cycles) are clearly 
displayed in the picture; D and E are the real-time simulation /recording signals; 
D is one of the pyloric neuron outputs, E is both intracellular and extracellular 
recording results; F is the physical stomach muscles. 
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5.4.2 Software simulation results 

I simulate biological pyloric CPG in both control and pharmacological conditions, 

which can correspondingly cure diseases where CPG is totally or partially 

damaged. 

A comparison of control simulation and recording results is shown in Figure 

5-11. The network rhythm phase relationship PD-LP-PY is quite similar to the 

biological recordings, although digital CPG displays a slightly higher spiking 

frequency per burst. Furthermore, the measurable values PD-onset, LP-onset 

and PY-offset are approximately the same values. At the bottom of Figure 5-12, 

the maximum errors are approximately less than 7%. However, the digital LP 

neuron displayed a slightly longer bursting time than the biological one, and the 

digital PY neuron showed a slightly later bursting start time in the rhythm. This 

variation can be further eliminated by optimizing the parameters. A comparison 

of pharmacological simulation results of LP-VD-PD and biological recordings is 

shown in Figure 5-13. In the biological recordings, with the commissural inputs 

being contacted, the subnetwork LP-PD-VD displayed a stable and regular 

spiking pattern. However, when the network was without commissural inputs, 

this system generated irregular spikes. This is because a single oscillator PD 

doesn’t have such the ability to drive two conditional neurons bursts together. 

The digital subnetwork successfully replicated this behaviour in both conditions 

as shown in Figure 5-13B. 
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Figure 5-11: A. Biological recordings of pyloric neurons; B: simulation results of 
pyloric neurons. The arrow from a to g indicates pyloric period, measured as the 
latency from the onset of one PD neuron burst to the next. The arrow from a to 
e indicates the latency of PD neuron offset. The arrow from a to c indicates the 
latency of LP neuron offset. The arrow from a to d indicates the latency of PY 
neuron offset. The arrow from a to e indicates the latency of LP neuron onset. 
The arrow from a to f indicates the latency of PY neuron onset. 

 

 

Figure 5-12: A comparison of the phase relationship between biological neurons 
and model neurons. The x-axis is the individual neuron name. In the top figure, 
the y-axis is the phase of burst onset/offset divided by cycle periods; and in the 
bottom figure, the y-axis is the differences between biological recordings and 
simulation results.   

 

Figure 5-13: A comparison between biological recordings and simulation results 
of network LP-VD-PD under with and without sensory input conditions. 

5.4.3 System reliability 

The damaged biological CPG (AB, PD and LP) is simulated by using MatLab 

software, and the neuron LP is implemented on the FPGA as a prosthesis 

processor. Therefore, the neuron silicon neuron LP is the controlled target. I 
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artificially modify software-based neuron bursting periods to investigate control 

system performances.  

There are two classic case studies of hybrid network reliable performances. 

One is the network bursting frequency, which fluctuates from standard to fast 

due to external stimulus, and the other one is the frequency from standard to 

slow due to the system becoming inactive.   

The biological neurons AB, PD and LP are simulated by using MatLab software 

while the digital neuron LP is implemented on FPGA. The entire system is 

simulated in a hardware/software co-design environment. 

As shown in Figure 5-14, on the left for the first case, the hybrid network with 

controller shows standard burst patterns while without controller it displays 

irregular bursts. Compared to the regular biological pyloric patterns, the network 

pattern with controller still maintains spiking behaviours and phase relationships. 

The other case is shown in Figure 5-14 on the right, where the spiking phase 

relationship b/a shows significant differences between the hybrid network with 

controller and without controller. In the with controller case, the value of b/a is 

approximately 0.5. However, while under without the controller state, LP 

maintains same bursting frequency in the network, and the value of b/a  is 

approximately 0.8. This causes incorrect network burst pattern phase 

relationships and makes it less energy efficient for muscle activities. The 

detailed specifications of the control system are shown in Table 5-4. The 

closed-loop system setting time is 0.293 seconds, which is smaller than the 

fastest biological neuron bursting frequency of 0.5 seconds. Also, the system 

overshoots are approximately 1.75%. This indicates that system 

communications are in a reliable condition. Also, system sensitivities of 

input/output and noise are calculated as well. The results explain that they all 

show strong anti-disturbance behaviours.  
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Figure 5-14: Simulation results of hybrid network. A hardware/software co-
simulation to simulate system prosthesis results. The damaged CPG neurons 
AB, PD and PY are mimicked by using MatLab software and the prosthesis 
neuron LP is implemented in FPGA. In the left figure, the software-based 
neurons have changed their bursting periods from 1 to 2 seconds and in the 
right figure from 1 to 0.5 seconds. Both hybrid networks with and without 
controller spiking patterns are displayed. 
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Table 5-4: Control system specifications of step response 

 System S (input) S (output) S (noise) 

Setting time 
(sec) 

0.293 0.79 0.293 0.239 

Overshoot 
(%) 

1.75 0 0.987 1.75 

Rise time 
(sec) 

0.208 0.436 0.208 0.208 

Steady  
state 

-1.29 -1.2 2.29 1.29 

                       *: S: S is the sensitivity. 

 

5.4.4 Hardware implementation specifications  

I use MatLab software R2012b discrete floating point calculation as a reference 

to verify hardware simulation. The accuracy of the results is evaluated by using 

mean square error algorithms. 

In each experiment, integer bits were fixed at 6, and the fraction bits were 

varied to explore and study the effect of truncation errors. The accuracy 

percentage calculation algorithm is modified to the Mean Square Error algorithm, 

which more precisely analyses errors quantitatively. Secondly, the reference 

answer is changed from hardware implementation results with a fixed 60-bit 

integer and 40-bit fraction system to a software discrete, floating point system. 

Figure 5-15 shows that there is a steady increase in the precision percentage 

and a gradual decrease in computational speed as the number of bits increases. 

Surprisingly, there is a sharp drop in computational speed between 18 and 20 

bits. This is mainly due to the synthesis tool utilizing four times more embedded 

multipliers to calculate the algorithms when they are more than 18 bits. Here I 

selected a 24-bit fractional system for implementation. 

The resource utilizations are shown in Table 5-5. Compared to the standard 

implementation technique, timing multiplexing technique only utilizes one-sixth 

hardware resources for implementation.  
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Figure 5-15: The numerical computational performances of an FPGA. (a) and (b) 
display system accuracy  and speed performances with various fraction bits. 

Table 5-5: Hardware specifications of digital CPG 

Resources TM Standard Improvement 

Slice 6545 20417 71.4% 

LUTs 8137 37960 80.8% 

FIFO/RAMB 48 184 78% 

DSP blocks 79 368 78.5% 
 

5.5 Discussion  

5.5.1 Comparison of other neurorehabilitation techniques 

Traditional neurorehabilitation techniques [125] mainly refer to appropriate 

locomotor training, which is the facilitation and assistance of stepping-like 

movements with patients’ legs, custom-designed reflex electrical stimulation or 

drug treatment. Compared to the presented technique, it is more reliable, safe 

and convincing. However, in most cases it cannot fundamentally solve the 

problem and has limited scope, because the neural circuits are still damaged. 

The approach aims to recover the neural circuits’ behaviour essentially by using 

artificial neurons. Similarly, Vogelstein et al [49]  demonstrated that using silicon 

circuits can successfully restore the damaged CPG, and hence the disabled cat 

can walk again. One key unique advantage of the presented system is its strong 

reliability. In reality, the CPG-related movements such as respiration and 

locomotion are always altering their speed to adapt to external environments. 

Therefore the prosthesis system has to be adaptive as well to solve this 

constraint. The adaptive mechanism in this system is capable of modifying 

digital processor computational speed in real time to follow biological spiking 

time to restore the original functionalities. The control system setting time is 

0.293 seconds and the overshoots are approximately 1.75%.   
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5.5.2 The advantages of the FPGA-based system 

In terms of hardware architecture design, the timing multiplexing technique 

successfully divides the entire neural network into several subnetworks. In a 

frame, each channel is responsible for the corresponding subnetwork activities. 

Although the entire simulation speed is relatively decreased, the hardware 

resources are significantly saved by up to 70%.  More importantly, the 

information of each neuron/synapse currents can be easily fetched out in 

different clock cycles, which shows the  advantage to network state estimation 

and monitoring.   

Also, by taking FPGAs reconfigurable advantage [26], the implemented circuits 

can be modified according to the damaged neural circuit conditions, which 

increases the range of the presented technique applications (e.g. totally or 

partially damaged). Meanwhile, by using an auto-generation tool kit 

approach[17], the parameters and digital neural circuits can be easily updated 

in hours, such as by adding and deleting neurons/ions.  

Last but not least, since the FPGA-based platform is a highly parallel computing 

system, it shows strong scalability when a large-scale neural model is required. 

Compared to the traditional CPU-based systems [126][127][128], it solves the 

timing constraints in the bio-silicon closed-loop system.  

5.5.3 Challenges   

The portable characters and long-term recording/stimulating (e.g. years) 

interfaces are two major issues of concern for the developed system, since a 

patient has to do outdoor activities, and the damage from surgery has to be 

maximally minimized. For the implantable aspect, the designed digital neural 

circuits can be transformed into ASIC directly to achieve portable device 

features, which may be considered in the next step of the project’. Alternatively, 

a custom-designed’printed circuit board integrated with FPGA-based neural 

circuits and micro-controller with limited sizes can also be considered as  

portable devices. Meanwhile, interfaces with long-term recording/stimulating 

performances are required at the next stage. There are some existing 

techniques [129][130] that can be adopted into the system in the near future.  
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5.6 Conclusion  

In this paper, I propose a novel system for biological central pattern generator 

rehabilitation based on digital neural circuits. To demonstrate system feasibility 

and scalability, a complete biological pyloric model consisting of 14 neurons and 

24 synapses is implemented on FPGA. Simulation results indicate that a silicon 

pyloric model can mimic real pyloric model rhythms. The mean error of five 

parameters between biological and silicon neurons is 7%. By applying TDM 

techniques, these circuits utilize one-sixth of the hardware resources of 

standard techniques for implementation. More importantly, the presented 

system shows strong reliable behaviours under different conditions; the control 

system setting time is 0.293 seconds and the overshoots are approximately 

1.75%.   

Optimization of power utilization, area and computational speed will be 

considered in the next step. Data reuse technique [131] can be applied for 

reducing the power consumption for off-chip memory, data transfer and storage, 

and the full pipelining method [77] can effectively save the hardware resources.  

Taken together, these will lead to an efficient custom-designed dynamic clamp 

experiment. 

In the future, I am going to use this model to interact with the imperfect real 

pyloric network aiming to rehabilitate biological functionality via restoring 

biological neurons. I investigated the behaviour of the model under the impact 

of simulated neuromodulators (e.g. dopamine), and I also simulated the impact 

of losing selected neurons from the network. I expect that the FPGA model of 

the pyloric circuit may help to facilitate the execution of simultaneous dynamic 

clamp experiments with multiple STG neurons. The ultimate goal is to include 

sufficient details in individual neuron models to allow the replication of circuit 

behaviour dynamics in a wide range of physiological situations. 
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Chapter 6 Conclusion 
 

This chapter gives a summary of what I have done in the digital neural circuit 

field. Then, based on these works, several general principles of digital neural 

circuit architecture design are given. Also, the potential applications and social 

impacts are discussed as well.   
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6.1 Summary 

The major contribution of this work is to illustrate and investigate the profound 

methodologies used for designing digital neural circuits. Put simply, that is how 

to mimic various biological (e.g. ions, neurons and networks) system behaviours 

by using digital electronic circuits. I first introduced several classic and vital 

techniques such as: simulation of virtual neurons; Look-up-table (LUT) and 

component-based methodology; address event representation (AER); and auto 

generation tool kit. After that, three novel techniques (a pipeline-based multi-

loop process structure, a framework-based network-on-chip structure and a 

reliable closed-loop system for central pattern generator rehabilitation) were 

developed as major contributions. At the end, I briefly explained the impacts, 

meanings and implications of the developed work and the issues for the next 

step. 

Specifically, I developed the first digital optogenetic neuron using reconfigurable 

hardware that contains 13 different types of ion channel. A pipelining-based 

multi-loop process architecture is presented to implement a  neural model. The 

results indicate that it cannot only reproduce normal neural burst patterns but 

also pharmacological burst patterns. The system can achieve approximately 

76,618 operations per neuron in 1 ms, which is five times faster than the latest 

digital cerebellum neuron system [20].  

Furthermore, a frame-based network-on-chip (NoC) architecture has been 

developed to implement a granular-layer model of the cerebellum with 

approximately 100,000 neurons. The system can not only meet the biological 

real-time computing requirement (it only takes 25.6 ms to mimic 1 s of real-

world activities), but can also avoid NoC architecture package traffic congestion 

by using frame mastering.  After verification of on-board simulation results, the 

design can be readily adapted for real-time closed-loop in vitro or in vivo 

experiments and as a potential neuro-prosthetics tool for future experimental 

and clinical applications owing to its high computational power, flexibility, 

scalability and power efficiency. 

Finally, a concept of FPGA-based hybrid bio-silicon integration is developed to 

restore the biological pyloric central pattern generator (CPG) functionalities. 

Potentially this can be one of the most important neuroscience applications for 



110 
 

digital neural circuits. The simulation results indicate that the presented system 

can successfully repair damaged CPG behaviours in different situations.  

6.2 Principles of designing digital neural circuits 

Based on the research findings, there are several general principles for 

hardware architecture design of implementing a large-scale neural network with 

high bio-plausibility.  

The first is to use multi-core architecture with pipelining technique to mimic 

large-scale neuron activities. Multi-core architecture has the ability to reproduce 

biological highly parallel computing performances; and timing multiplexing or 

pipelining technique utilizes the digital speed advantages (GHz) to implement a 

number of neurons in the same physical hardware resources. Previous 

computational platforms such as SpiNNaker [3], NeuroGrid [104] and IBM chip 

[11] are all similar to this architecture. The implementation generally requires 

appropriate memory space for storing calculation neuronal states and 

distributed memory location to increase communication bandwidth.    

The second is the individual processor design. The architecture should be 

heterogeneous and multiple-layer based to meet the network bio-plausibility 

requirements. In a neuron, the membrane voltage alternation always introduces 

related ion concentration fluctuation such as calcium [132] or ChR2 [73]. 

Therefore, the calcium-dependent ion channels or other channels will update 

their gate behaviours to shape the final neuron spiking patterns. A digital 

processor should have a responsibility to mimic all these ion channel dynamics 

including these closed-loop process mechanisms. The multiple-layer- or 

heterogeneous-based cores are proper candidates but will significantly cost 

more in terms of hardware resources and limits system integration step. 

Optimization of resource utilizations and speed is necessary in the final design 

stage.  

The third is system level optimization. Because the system itself is massive, it 

has to be carefully optimized to achieve the best computing performances. 

There are many issues involved in this topic. For example, the trade-off 

between the number of processors and the implemented neuron numbers per 

processor in the architecture: the more the number of processors implemented, 

the faster the computational speed and the more resources utilized, while the 
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more the number of implemented neurons in a processor, the slower the 

computational speed but the fewer the number of resources utilized. Also, the 

neural data-path design generally decides the critical path and power 

consumption, and the two implementation approaches of operation balance and 

latency balance will lead to totally different hardware specifications. Last but not 

least, the address event representation techniques should be custom designed 

to map the neural network connectivity. In general, the biological neurons are 

highly connected but the connections are quite varied in detail. Different routing 

strategies (e.g. uni-cast, multi-cast and board-cast) are correspondingly map 

different connection types[133].  

6.3 Future work 

There are three main areas for the future work: optimization of the methodology 

of digital neural circuit design, neuronal-machine prosthesis system 

experimental verification and bio-inspired device development. 

First, based on the previous two architecture designs, we have drawn some 

conclusions for the digital neural circuit design. However, there are still some 

major issues that need to be further considered. For example,  in terms of a 

single neuron design, there is a variety of different architectures for minimal 

power consumption, minimal areas and fastest speed. The fundamental 

principles of these designs should be investigated and summarized. Next, 

synaptic connections and network sizes decide the architecture’s main features. 

A general and systematic approach should be developed for implementing 

different kinds of neural network. In the end, the high-level optimization method 

of the entire architecture still needs to be improved. 

Second, developed silicon neural network cerebellums and optogenetic neurons 

will be further taken into biological experiments. By interacting with the real 

biology, we will study how the bio-silicon system works and how to further 

custom modify silicon part to achieve system adaptive performance 

Finally, since developed artificial neural systems have the ability to capture 

major biological intelligence, there is a potential that we will transfer these 

presented systems into practical devices for intelligent tasks such as 

environment detecting and monitoring.  
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Appendices 

A. The FPGA on-board results of a standard HR and IF neuronal model 
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B. The physical board display of Virtex-4, 5 and 7 
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C. The VHDL code of ChR2 

---------------------------------------------------------------------------------- 

-- Company:   Newcastle University 

-- Engineer:   Junwen Luo 

--  

-- Create Date:    20:08:08 06/27/2014  

-- Design Name:     Channelrhodopsin-2 (ChR2) 

-- Module Name:    chr2 – Behavioural  

-- Project Name:   Silicon ChR2 

-- Target Devices:  Virtex-7 evaluation kit 

-- Tool versions:  

-- Description:  

 --  All fixed-point values are represented by 45-bit and 30-fractional bit 

 --  The architecture is to mimic ChR2 ion dynamic with single light pulse 

-- 

-- Dependencies:  

-- 

-- Revision:  

-- Revision 0.01 – File Created 

-- Additional Comments:  

-- 

---------------------------------------------------------------------------------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

--use IEEE.NUMERIC_STD.ALL; 

 

-- Uncomment the following library declaration if instantiating 

-- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity chr2 is 

    port ( imax : in  std_logic_vector(44 downto 0); 

         CLOCK : in  std_logic; 

         current_chr2 : out  std_logic_vector (44 downto 0) 

);      

end chr2; 

 

architecture netlist of chr2 is 

 

 component selection port                                 -----decide ChR2 conductance between light on 

and light off 

       (  CLOCK :in  std_logic; 

          t_out :out  std_logic_vector( 44 downto 0); 

    control_out :out std_logic; 

          pulse_out   :out std_logic_vector (44 downto 0) 

    ); 

  end component; 

   

  component ga1 port                                      -----Calculate ChR2 ga1 conductance 

         ( t  :in std_logic_vector( 44 downto 0); 

     CLOCK :in  std_logic; 

     control :in std_logic; 

           pulse :  in std_logic_vector (44 downto 0); 

           ga1_out :out  std_logic_vector( 44 downto 0) 

);      
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  end component; 

  

  component  ga2 port                                    -----Calculate ChR2 ga2 conductance 

         ( t  :in std_logic_vector( 44 downto 0); 

     CLOCK :in  std_logic; 

     control :in std_logic; 

           pulse  : in std_logic_vector (44 downto 0); 

           ga2_out :out  std_logic_vector( 44 downto 0) 

);  

 end component; 

  

  component ode port                                   -----Calculate ChR2 ionic numbers 

        (  ga1_in  :in std_logic_vector( 44 downto 0); 

       CLOCK :in  std_logic; 

       ga2_in : in std_logic_vector( 44 downto 0); 

     o1      :out std_logic_vector (44 downto 0); 

     o2      :out std_logic_vector (44 downto 0); 

     o3     : out std_logic_vector (44 downto 0) 

     ); 

 end component;  

  

  component current_g port                            -----Calculate ChR2 current 

       (  imax    : in std_logic_vector(44 downto 0); 

       CLOCK :in  std_logic; 

     O1    :  in std_logic_vector (44 downto 0); 

     O2    :  in std_logic_vector (44 downto 0); 

     current :out std_logic_vector (44 downto 0) 

     ); 

 end component; 

 

signal s1 ,s3,s4,s5,s6,s7,s8 : std_logic_vector(44 downto 0); 

signal s2  : std_logic; 

 

begin 

 

  U1:  selection port map (CLOCK, s1,s2,s3); 

  U2:  ga1       port map (s1,CLOCK,s2,s3,s4); 

  U3:  ga2       port map (s1,CLOCK,s2,s3,s5); 

  U4:  ode       port map (s4, CLOCK, s5, s6,s7,s8); 

  U5:  current_g port map (imax, CLOCK, s6,s7, current_chr2); 

 

end netlist; 

---------------------------------------------------------------------------------------------------------- 
U1: 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.std_logic_arith.ALL; 

use IEEE.std_logic_unsigned.all; 

use IEEE.numeric_std.ALL; 

 

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

--use IEEE.NUMERIC_STD.ALL; 

 

-- Uncomment the following library declaration if instantiating 

-- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity selection is 
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        generic ( light : std_logic_vector (44 downto 0) := 

"000000000000101"&"000000000000000000000000000000" ); 

        port (  CLOCK :in  std_logic; 

          t_out :out  std_logic_vector( 44 downto 0); 

    control_out :out std_logic; 

          pulse_out   :out std_logic_vector (44 downto 0) 

    ); 

    

function adder(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(width-1 downto 0); 

 begin  

    s_p := a+b; 

  return s_p; 

end function; 

 

 

function mult(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(a'length + b'length-1 downto 0); 

 begin  

    s_p := a*b; 

  return s_p(lowbit+width-1 downto lowbit); 

end function; 

 

end selection; 

 

architecture Behavioural of selection is 

 

constant step : std_logic_vector(44 downto 0) := 

"000000000000000"&"000000101000111101011100001010"; 

 

signal count_int : std_logic_vector(44 downto 0) := (others =>'0'); 

signal count_out : std_logic_vector(44 downto 0); 

 

 

begin 

 

   process(CLOCK) 

      begin     

       if rising_edge(CLOCK) then 

        if count_int = 

"001001110001000"&"000000000000000000000000000000" then 

                    count_int <= (others =>'0'); 

      else 

                     count_int <= 

adder( count_int,"000000000000001"&"000000000000000000000000000000",45,45);                     

                            

      end if; 

      count_out <= mult(count_int,step,45,45); 

      t_out <= count_out; 

      pulse_out <= light; 
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      if count_int <= light then 

              control_out <= '1' ; 

      else 

                      control_out <= '0' ;  

              end  if; 

     

           end if; 

   

    

    

  end process; 

 

   

end Behavioural; 
---------------------------------------------------------------------------------------------------------- 

U2: 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

--use IEEE.NUMERIC_STD.ALL; 

 

-- Uncomment the following library declaration if instantiating 

-- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity ga1 is 

 port( t  :in std_logic_vector( 44 downto 0); 

       CLOCK :in  std_logic; 

     control :in std_logic; 

           pulse :  in std_logic_vector (44 downto 0); 

           ga1_out :out  std_logic_vector( 44 downto 0) 

);      

end ga1; 

 

 

 

 

 

architecture netlist of ga1 is 

 

component mux1 port  (sel: in std_logic; 

                     d0 : in std_logic_vector( 44 downto 0); 

       d1 : in std_logic_vector( 44 downto 0); 

       d_out : out std_logic_vector( 44 

downto 0) 

         ); 

end component; 

        

component ga1off port (t_in : in std_logic_vector (44 downto 0); 

                        p_in:  in std_logic_vector (44 downto 0); 

        CLOCK :in  std_logic; 

        data1_in : in std_logic_vector 

(44 downto 0); 

        data2_in : in std_logic_vector 

(44 downto 0); 
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        out1 : out std_logic_vector (44 

downto 0); 

        address1 : out  integer; 

        address2 : out  integer 

        );    

     

end component; 

         

component memory1 port( 

                        address1_in : in integer; 

        address2_in : in integer; 

        data1_out   : out 

std_logic_vector( 44 downto 0); 

        data2_out   : out 

std_logic_vector( 44 downto 0) 

        ); 

end component;  

 

         

component ga1on port (t_in : in std_logic_vector (44 downto 0); 

                        p_in:  in std_logic_vector (44 downto 0); 

        CLOCK :in  std_logic; 

        data3_in : in std_logic_vector 

(44 downto 0); 

         

        out2 : out std_logic_vector (44 

downto 0); 

        address3 : out  integer 

         

        );    

      

end component; 

 

component memory2 port( 

                        address3_in : in integer;       

  

        data3_out   : out 

std_logic_vector( 44 downto 0) 

        ); 

end component;  

 

signal s1,s2,s3,s4,s7 : std_logic_vector (44 downto 0);  

signal s5,s6,s8 : integer; 

 

begin 

   

  U1 : ga1off port map ( t, pulse, CLOCK,s3, s4, s1, s5, s6); 

  U2 : memory1 port map ( s5, s6, s3, s4); 

  U3:  ga1on  port map ( t, pulse, CLOCK,s7, s2, s8); 

  U4 : memory2 port map ( s8, s7); 

  U5:  mux1   port map (control, s1,s2,ga1_out); 

 

 

end netlist; 

 
----------------------------------------------------------------------------------------------------------  

U3: 

library IEEE; 
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use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.std_logic_unsigned.all; 

use IEEE.numeric_std.ALL; 

 

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

--use IEEE.NUMERIC_STD.ALL; 

 

-- Uncomment the following library declaration if instantiating 

-- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity ga1on is 

port (t_in : in std_logic_vector (44 downto 0); 

                        p_in:  in std_logic_vector (44 downto 0); 

        CLOCK :in  std_logic; 

        data3_in : in std_logic_vector 

(44 downto 0); 

         

        out2 : out std_logic_vector (44 

downto 0); 

        address3 : out  integer 

         

        );  

         

function adder(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(a'length + b'length-1 downto 0); 

 begin  

    s_p := a+b; 

  return s_p(lowbit+width-1 downto lowbit); 

end function; 

 

function sub(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(a'length + b'length-1 downto 0); 

 begin  

    s_p := a-b; 

  return s_p(lowbit+width-1 downto lowbit); 

end function; 

 

 

function mult(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(a'length + b'length-1 downto 0); 

 begin  

    s_p := a*b; 
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  return s_p(lowbit+width-1 downto lowbit); 

end function; 

         

end ga1on; 

 

architecture Behavioural of ga1on is 

 

constant tau_ChR : std_logic_vector := 

"100000000000000"&"110001001110101001001010100011"; 

constant QEtrans  : std_logic_vector := 

"000000000000000"&"100110011001100110011001100110"; 

constant F        : std_logic_vector := 

"000000000000000"&"001001110101100011100010000110"; 

 

signal s1,s2,s3 : std_logic_vector(44 downto 0); 

 

begin 

    process(CLOCK,t_in,data3_in) 

    begin 

    s1<= mult(QEtrans, F, 45,45); 

    s2<= mult(t_in, tau_ChR, 45,45); 

    address3 <= to_integer(unsigned(s2)); 

     

    --s3<= 

adder("000000000000001"&"000000000000000000000000000000",data3_in,45,45); 

      s3<= "000000000000001"&"000000000000000000000000000000"+data3_in; 

    out2<= mult(s1,s3,45,45); 

   end process;  

 

end Behavioural; 
----------------------------------------------------------------------------------------------------------  

U4: 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.std_logic_unsigned.all; 

use IEEE.numeric_std.ALL; 

 

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

--use IEEE.NUMERIC_STD.ALL; 

 

-- Uncomment the following library declaration if instantiating 

-- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity ode is 

generic ( Gd1 : std_logic_vector (44 downto 0) := 

"000000000000101"&"010110011001100110011001100110"; 

          e_ct: std_logic_vector (44 downto 0) := 

"000000000000101"&"000000101000111101011100001010"; 

    e_tc: std_logic_vector (44 downto 0) := 

"000000000000101"&"000001010001111010111000010100"; 

    Gd2 : std_logic_vector (44 downto 0) := 

"000000000000101"&"000001010001111010111000010100"; 

    Gr_d : std_logic_vector (44 downto 0) := 

"000000000000101"&"000000000001010111010111110110" 

    ); 
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port (  ga1_in  :in std_logic_vector( 44 downto 0); 

       CLOCK :in  std_logic; 

       ga2_in : in std_logic_vector( 44 downto 0); 

     o1      :out std_logic_vector (44 downto 0); 

     o2      :out std_logic_vector (44 downto 0); 

     o3     : out std_logic_vector (44 downto 0) 

  ); 

   

   

function adder(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(width-1 downto 0); 

 begin  

    s_p := a+b; 

  --return s_p(lowbit+width-1 downto lowbit); 

  return s_p; 

end function; 

 

function sub(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(width-1 downto 0); 

 begin  

    s_p := a-b; 

  --return s_p(lowbit+width-1 downto lowbit); 

  return s_p; 

end function; 

 

 

function mult(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(a'length + b'length-1 downto 0); 

 begin  

    s_p := a*b; 

  return s_p(lowbit+width-1 downto lowbit); 

end function;  

 

function delay ( a: in std_logic_vector (44 downto 0); 

                clk: in std_logic) 

return std_logic_vector is 

     variable r : std_logic_vector(44 downto 0); 

      begin 

 

     if(clk = '1')then 

           r := a; 

     else 

                 r:= (others =>'0') ; 

           end if; 
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        return r; 

 end function; 

 

  

             

              

   

end ode; 

 

architecture Behavioural of ode is 

 

signal s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s12,so1,so2,so3 : std_logic_vector(44 downto 0) := 

(others =>'0'); 

signal s13,s14,s15,s16,s17,s18,s19,s21 : std_logic_vector(44 downto 0) := (others =>'0'); 

signal s22,s23,s24,s25,s26,s28 : std_logic_vector(44 downto 0) := (others =>'0'); 

 

begin 

    process(CLOCK,ga1_in,ga2_in) 

     begin 

    if(rising_edge(CLOCK)) then 

      s1 <= Gd1 + e_ct; 

    --s2<= adder(s1,ga1_in,45,45); 

    s2 <= s1 + ga1_in; 

     

          s3<= mult(s2,so1, 45,45); 

     

          s4<= sub( ga1_in, s3,45,45); 

     

          s5<= sub(e_tc, ga1_in, 45,45); 

          s6<= mult(s5,so2,45,45); 

          s7<= mult(ga1_in,so3,45,45); 

          s8<= sub(s6,s7,45,45); 

          s9<= sub(s4,s8,45,45); 

          s10<= mult(s9,"000000000000101"&"000000101000111101011100001010",45,45); 

          so1<= adder(s10,s12,45,45); 

          s12<= delay(so1,CLOCK); 

    s13<= mult(e_ct,so1,45,45); 

    s14<= Gd2 + e_tc; 

    s15<= mult(so2,s14,45,45); 

    s16<= sub(s13,s15,45,45); 

    s17<= mult(ga2_in,so3,45,45); 

    s18<= adder(s17,s16,45,45); 

    s19<= 

mult(s18,"000000000000101"&"000000101000111101011100001010",45,45); 

    so2 <= adder(s19,s21,45,45); 

    s21<= delay(so2,CLOCK); 

    s22<= mult(Gd2,so2,45,45); 

    s23<= adder(ga2_in, Gr_d,45,45); 

    s24<= mult(s23, so3, 45,45); 

    s25<= sub(s22, s24,45,45); 

    s26<= 

mult(s25,"000000000000101"&"000000101000111101011100001010",45,45); 

    so3<= adder(s26,s28,45,45); 

    s28<= delay(so3,CLOCK); 

    o1<=so1; 

    o2<=so2; 

    o3<=so3; 

  end if; 

   

   end process;           
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end Behavioural; 

 

----------------------------------------------------------------------------------------------------------U5: 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.std_logic_unsigned.all; 

use IEEE.numeric_std.ALL; 

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

--use IEEE.NUMERIC_STD.ALL; 

 

-- Uncomment the following library declaration if instantiating 

-- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity current_g is 

 

port   (  imax    : in std_logic_vector(44 downto 0); 

       CLOCK :in  std_logic; 

     O1    :  in std_logic_vector (44 downto 0); 

     O2    :  in std_logic_vector (44 downto 0); 

     current :out std_logic_vector (44 downto 0) 

     ); 

      

function adder(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(width-1 downto 0); 

 begin  

    s_p := a+b; 

  --return s_p(lowbit+width-1 downto lowbit); 

  return s_p; 

end function; 

 

function sub(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(width-1 downto 0); 

 begin  

    s_p := a-b; 

  --return s_p(lowbit+width-1 downto lowbit); 

  return s_p; 

end function; 

 

 

function mult(a: in std_logic_vector;  

              b:in std_logic_vector;  

      width: in integer;  

      lowbit: in integer) 

       

return std_logic_vector is  

   variable s_p : std_logic_vector(a'length + b'length-1 downto 0); 
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 begin  

    s_p := a*b; 

  return s_p(lowbit+width-1 downto lowbit); 

end function;  

 

function delay ( a: in std_logic_vector (44 downto 0); 

                clk: in std_logic) 

return std_logic_vector is 

     variable r : std_logic_vector(44 downto 0); 

      begin 

 

     if(clk = '1')then 

           r := a; 

     else 

                 r:= (others =>'0') ; 

           end if; 

          

        return r; 

 end function; 

      

      

      

      

      

end current_g; 

 

architecture Behavioural of current_g is 

 

signal s1,s2,s3,s4 : std_logic_vector(44 downto 0); 

 

begin 

   process(CLOCK,imax) 

    begin 

     s1 <= 

mult("000000000001010"&"000000000000000000000000000000",imax,45,45); 

   s2 <= mult(s1,O1,45,45); 

   s3 <= mult(s1,O2,45,45); 

   s4 <= 

mult(s3,"000000000000000"&"000101000111101011100001010001",45,45); 

   current<= adder(s4,s2,45,45); 

   end process; 

  

 

end Behavioural; 
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D. Schematic figures of two-by-two frame-based network-on-chip system* 
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E. STG mapping results and closed-loop system set-up 

E.1 mapping 

Since the entire STG network has only approximately 24 neurons, it is feasible 

to identify each neuron location and character and to recognize the pacemaker 

neurons. The mapped results are shown below: 
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E.2 Closed-loop system set-up 

The Virtex-4 DSP board was integrated into a standard PC as a digital 

processor, and the electro-psychological device is an Axoclamp 900A Amplifier.  

The overall system is shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


