

Digital Neural Circuits:

From Ions to Networks

by

Junwen Luo

A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy

in the

Faculty of Science, Agriculture and Engineering

School of Electrical and Electronic Engineering

November 2014

i

Abstract
The biological neural computational mechanism is always fascinating to human

beings since it shows several state-of-the-art characteristics: strong fault

tolerance, high power efficiency and self-learning capability. These behaviours

lead the developing trend of designing the next-generation digital computation

platform. Thus investigating and understanding how the neurons talk with each

other is the key to replicating these calculation features. In this work I

emphasize using tailor-designed digital circuits for exactly implementing bio-

realistic neural network behaviours, which can be considered a novel approach

to cognitive neural computation. The first advance is that biological real-time

computing performances allow the presented circuits to be readily adapted for

real-time closed-loop in vitro or in vivo experiments, and the second one is a

transistor-based circuit that can be directly translated into an impalpable chip for

high-level neurologic disorder rehabilitations. In terms of the methodology, first I

focus on designing a heterogeneous or multiple-layer-based architecture for

reproducing the finest neuron activities both in voltage-and calcium-dependent

ion channels. In particular, a digital optoelectronic neuron is developed as a

case study. Second, I focus on designing a network-on-chip architecture for

implementing a very large-scale neural network (e.g. more than 100,000) with

human cognitive functions (e.g. timing control mechanism). Finally, I present a

reliable hybrid bio-silicon closed-loop system for central pattern generator

prosthetics, which can be considered as a framework for digital neural circuit-

based neuro-prosthesis implications. At the end, I present the general digital

neural circuit design principles and the long-term social impacts of the

presented work.

ii

Acknowledgements
I sincerely thank my supervisors Patrick Degenaar and Alex Yakovlev. They

have consistently supported me with my work over the last four years. Their

suggestions have significantly enhanced the quality of my work and broadened

my global research visions.

I will forever be thankful to my former supervisor Terrence Mak. He guided me

to build a strong basis in the early stages and taught me how to be an excellent

researcher.

Also, I genuinely thank my co-supervisors and research advisors Peter Andras,

Chung Tin, Chi-Sang Poon and Wolfgang Stein. They gave me valuable

opportunities to study and work in various places across the world such as the

University of Ulm, City University of Hong Kong and Massachusetts Institute of

Technology. I learned about different cultures and gained further essential

knowledge from these experiences.

I am very lucky that I worked with a good support team. In particular, my

collaborators Graeme Coapes, Hock Soon Law and Jannetta Stein were always

helpful when I was in trouble. I greatly appreciate their assistance.

Last but not least, I dedicate this thesis to my family for their unerring support

and unconditional love.

iii

Contents

Abstract .. i

Acknowledgements ... ii

Contents .. iii

List of figures.. vi

List of tables .. xii

Acronyms ... xiii

Chapter 1 Overview and Rationale ... 1

1.1 Overview ... 2

1.2 History and trends ... 4

1.4 Contributions and organizations .. 7

Chapter 2 The Fundamentals ... 10

2.1 Digital computational architectures .. 11

2.2 The digital circuit design flow ... 18

2.3 How the neuron works ... 19

2.4 Comparison of neural and digital computing ... 22

2.5 Digital based biological systems and techniques 26

2.6 Design conclusions ... 35

2.7 Related biological principles .. 36

Chapter 3 The Digital Optoelectronic Neuron ... 38

3.1 Introduction .. 39

3.2 Methods ... 42

3.2.1 Ion channel mathematical relations... 42

3.2.2 Implementation ... 46

3.3 Results .. 51

3.3.1 Individual ion channel behaviours ... 51

3.3.2 Mimicking pharmacological performances of crustacean pacemaker

 ... 53

3.3.3 Hardware specification .. 53

3.4 Discussion ... 55

3.4.1 Implementation of different neural models .. 55

3.4.2 Implementation tools ... 57

iv

3.4.3 Neuroscience applications .. 57

3.5 Conclusion ... 57

Chapter 4 The Digital Cerebellum ... 59

4.1 Introduction .. 60

4.2 The passage-of-time computational model.. 63

4.3 Hardware architecture design .. 66

4.3.1 Neural computing .. 67

4.3.2 Network-on-chip* .. 68

4.3.3 Frame master ... 71

4.4 Results .. 72

4.4.1 The hardware passage-of-time (POT) results 72

4.4.2 Effects of blocking NMDA channels on POT representation 73

4.4.3 Frame master performances ... 74

4.4.4 FPGA-based granular layer for neural rehabilitation 76

4.5 Discussion ... 79

4.5.1 Scalability .. 79

4.5.2 Comparison of other techniques ... 81

4.5.3 Neuro-prosthesis applications ... 82

4.6 Conclusion ... 82

Chapter 5 Case Study: Central Pattern Generator Prosthesis 84

5.1 Introduction .. 85

5.2 Pyloric CPG modelling .. 86

5.2.1 Pyloric behaviours... 86

5.2.2 Modelling .. 87

5.3 System architecture ... 91

5.3.1 Digital CPG ... 92

5.3.2 Adaptive control mechanism ... 95

5.4 Results .. 97

5.4.1 System implementation ... 97

5.4.2 Software simulation results ... 100

5.4.3 System reliability ... 101

5.4.4 Hardware implementation specifications ... 104

5.5 Discussion ... 105

5.5.1 Comparison of other neurorehabilitation techniques 105

v

5.5.2 The advantages of the FPGA-based system 106

5.5.3 Challenges .. 106

5.6 Conclusion ... 107

Chapter 6 Conclusion ... 108

6.1 Summary ... 109

6.2 Principles of designing digital neural circuits ... 110

6.3 Future work ... 111

References.. 112

Appendices ... 124

A. The FPGA on-board results of a standard HR and IF neuronal model

 124

B. The physical board display of Virtex-4, 5 and 7 125

C. The VHDL code of ChR2 .. 126

D. Schematic figures of two-by-two frame-based network-on-chip system* 137

E. STG mapping results and closed-loop system set-up 139

E.1 mapping ... 139

E.2 Closed-loop system set-up .. 140

vi

List of figures
Figure 1-1: The neuromorphic community classifications: bio-inspired and bio-

mimicking groups. The bio-inspired devices include IBM “TrueNorth” process chip.

and dynamic vision sensors (DVSs); the bio-mimicking system contains a silicon

central pattern generator for cat movement prosthesisand silicon cerebellum for

mouse fine movement control recovery .. 2

Figure 1-2: The neuromorphic communities from organizations, industries and

universities. (a) is the human brain project emitted by the European Union; (b) is

the BRAIN Initiative supported by the American government; (c) is the first

generation of commercialized neuromorphic Zeroth chips from the Qualcomm

company; (d) is the visualization of a simulated network of neurosynaptic chips

from IBM research; (e) is the analogue CMOS-based chip designed for two-neuron

communication (MIT); and (f) is the Spinnaker computational platform of

Manchester University. ... 4

Figure 1-3: History development diagram of digital neural circuits. The x-axis is the

implemented network size and y-axis is the bio-plausibility level: leakage

integrate-and-fire (LIF) model, Izhikevich model, LIF with ion expression model,

Hodgkin-Huxley (HH) model, HH model with compartment parts such as soma and

axon (HH-c) and HH model containing voltage & calcium ion channel and ChR2

channels (HH-e). .. 5

Figure 2-1: The basic gate functions: AND, OR and NOT. ... 12

Figure 2-2: A: the typical CMOS inverter architecture for NOT gate function, B: The

typical input-output transfer characteristic of a CMOS inverter. 12

Figure 2-3: Comparison between Von Neumann and Harvard computing architecture.

 ... 14

Figure 2-4: The NVIDIA GeForce GTX580 “core”. The yellow block is the SIMD (Single

Instruction Multi Data) function unit. This figure comes from the Fermi Compute

Architecture Whitepaper CUDA Programming Guide 3.1. 15

Figure 2-5: A: gate-array-designed ASIC; B: full-custom-designed ASIC. 16

Figure 2-6: The conceptual architecture of an FPGA. The figure is cited in [26]. 17

Figure 2-7: The design flow of digital Integrated Circuits (IC) implementation. A case

study of implementation of an ion channel model is given as a demonstration. .. 20

Figure 2-8: The single neuron computational mechanism. A is the conceptual neuron

process mechanism; B is the neuron biological structure; and C is the digital event

(action potential). .. 21

Figure 2-9: The biological synapse architecture. .. 23

Figure 2-10: An example of digital system information coding. The figure displayed is

the two-wire serial control model of a WM8731/L audio CODEC chip. 23

Figure 2-11: Comparisons between digital and neural system processing. 24

Figure 2-12: The neural coding schemes: rate coding and temporal coding. 26

Figure 2-13: The conceptual architecture of simulation multiplexing technique. 28

vii

Figure 2-14: A: Both AMPA and NMDA gated ion channels are activated by excitatory

neurotransmitter glutamate in a biological synapse. The figure is cited from [37].

B: (a) is the biological recordings of excitatory postsynaptic currents from NMDA

& AMPA channels and individual NMDA channels. The figure is cited from [40]; (b)

is the FPGA-based simulation results. ... 28

Figure 2-15: The conceptual algorithm and hardware architecture of factoring

algorithm for division. The factoring algorithm for division is cited by [37]. 29

Figure 2-16: The PBC network output patterns. A displays the oscillatory burst patterns

in 30s, while B shows the first burst pattern details of four bursts in A. The

simulation is based on the single clock-cycled mode with 0.01 time step. The

figure is cited in [17].. 30

Figure 2-17: The conceptual structure of the auto-generation tool kit. Two main

modules are involved in the system: memory-based component (model

parameters and state generation) and computational component (data path). The

figure is adapted in the work [17]. .. 30

Figure 2-18: The partial hardware architecture of STDP (A) and STDP modification

function (B). The figure is cited in [16]. ... 31

Figure 2-19: Conceptual architecture of LUT approach. ... 32

Figure 2-20: The conceptual structure of Address-Event Representation (AER)

technique. Time-division multiplexing is applied on neuromorphic chip 01 and 02.

The generated spikes are transmitted serially by broadcasting on a digital bus. The

figure is adapted from [45]. The address encoders 1, 2 and 3 are the timing

multiplexed channel index. ... 33

Figure 2-21: Architecture of AER transmitter and receiver. The figure is cited from [44].

 ... 34

Figure 3-1: An optoelectronic neuron architecture. It contains 12 ion channels in total:

a delayed-rectifier 𝐼𝐾𝑑[63], a transient potassium current 𝐼𝐴[64], a persistent

sodium current 𝐼𝑁𝑎𝑝 [65][66], a fast sodium 𝐼𝑁𝑎, a potassium current 𝐼𝐾[67], a

hyperpolarization-activated inward current 𝐼ℎ [68], a descending modulatory

input current 𝐼𝑝𝑟𝑜𝑐 [69], a calcium-dependent 𝐼𝐾𝐶𝑎[70], a transient 𝐼𝐶𝑎𝑇[71],

a persistent calcium current 𝐼𝐶𝑎𝑠[71] and ChR2. .. 40

Figure 3-2: The basic circuit diagram of ion channel model. .. 43

Figure 3-3: The conceptual architecture of a digital neuron. Three signal types are

displayed in the system: configuration link, data path and general-purpose

input/output (GPIO). ... 47

Figure 3-4: A voltage-dependent ion channel block for HH-based ion channel styles.

The equations are shown in Equation 3-1 – Equation 3-3. The integration step is

optimized at 0.003 ms, and the total delay m+n equals the implemented gate

variable ion number. ... 48

Figure 3-5: A Ca2+ concentration computing block. The mathematical equation is

shownin Figure 3-5. ... 48

viii

Figure 3-6: Data path of ChR2 computing block. The mathematical equation is shown in

Equation 3-7-Equation 3-10. ... 50

Figure 3-7: System latency management system. A is the latency management system;

B is the frame-based clock outputs for addressing ROM; C is the parameters &

control signals storage-based ROM. ... 50

Figure 3-8: Different ion channel dynamic behaviours. The red dashed line is the FPGA

simulation results while the blue solid line is the software reference. The Y-axis is

the current (mA) and the X-axis the system clock cycles. 51

Figure 3-9: The hardware simulation results of ChR2. Comparisons between biological

[57] and FPGA simulation results. The short light pulses are 1, 2, 3, 5, 8, 10 and 20

ms. The software fitting parameters are τChR = 1.3 ms, γ = 0.1, ect = 0.01, etc =

0.02, Gd1 = 0.35 ms − 1, Gd2 = 0.02 ms − 1 and Imax = 0.2 nA. 52

Figure 3-10: By giving different irradiances, the corresponding peak (square) and

plateau (cycle) currents are displayed in the figure. .. 52

Figure 3-11: Mimicking pharmacological results of FPGA and software. The

performances of 𝐾𝐶𝑎 + channel blocked and control conditions of pacemaker AB

are reproduced.. 54

Figure 3-12: Mimicking pharmacological results of FPGA and software. The

performances of 𝑁𝑎 + and 𝐶𝑎2 +channel blocked conditions of pacemaker AB

are reproduced.. 54

Figure 4-1: Conceptual closed-loop system cerebellum passage-of-time (POT)

prosthetic. Damaged biological granular layer is replaced by FPGA-based granular-

layer system. CS is a conditional stimulus while US is an unconditional stimulus.

MF is the mossy fibre and CF is the climbing fibre. PKJ is the Purkinje cell. The

granular layer with a red cross represents a damaged biological one. 62

Figure 4-2: Topology of the granular-layer model. Figure A contains 1024 granule-cell

clusters and a Golgi cell; the different colours represent communities of closely

connected cells within the network. The size of the circles is proportional to the

number of other clusters that they are connected to. Each dot represents one

granule-cell cluster and one Golgi cell, as shown in Fig. B. The synaptic input

number distribution is displayed in Fig. C. .. 65

Figure 4-3: A conceptual FPGA-based network-on-chip hardware architecture. The

figure on the left is the scalable n by m structure of the frame-based network-on-

chip system. It contains n*m neural processors, n*m routers and one global

controller. This architecture can be scaled up depending on the required model.

In this paper, I implemented a network-on-chip system that contains 48

processors. On the right, there is a detailed structure of a module. The neural

processor calculates the neural activity, with each processor implementing 2000

granule cells and 20 Golgi cells with a connection ratio of 100:1. The router is for

implementing the connections from Golgi to granule clusters. The interface

modules packetize spike events received from the processor ready for

transmission through the network. When the interface modules receive packets

ix

the message is decoded and transmitted to the required cells within the neural

processor. Finally, a frame master is developed to coordinate neural and

communication processing periods. ... 67

Figure 4-4: The neural processor structure and the data path of neural model. Fig. 4A

shows the conceptual structure of the processor and Fig. 4B shows the data path

of the neural model. Both GR and GO models use the same hardware architecture

but with different parameters. The rectangular block is the delay function and the

triangular block (gain) is the different ion channel conductances, which refer to Eq.

(2). Fig. C and Fig. D show the subcomponent circuits: excitation (inhibition)

circuits and FIFO-based delay circuits. The triangular blocks denote the NMDA and

AMPA receptor conductance. ... 69

Figure 4-5: Example of mapping of neural network to a network-on-chip: a) A sample

Golgi neural network with a single Golgi cell connected to three out of four

granule-cell clusters. b) Four processing cores are shown. Each core may model

multiple Golgi cells. When the Golgi cell X produces an action potential, individual

packets are transmitted to each connected granule-cell cluster. The targeted

granule-cell clusters are distributed throughout the mesh NoC. 70

Figure 4-6: The frame master performances. In frame 1, the router processing time is

longer than the processor’s, so the frame master temporarily disables the neural

processor at t3–t4 periods until the router finishes its current traffic loads, while

in frames 2 and 3, because the routing time is shorter than the processor time,

the processor clock is continuously running. .. 71

Figure 4-7: The comparison results of a fundamental granule (Eq.(1)) neuron model

simulated by the FPGA neural processor and CPU. The CPU implementation is the

original software described in [33], running with an Intel Quad Core™ i7 CPU with

8 GB of RAM under the Ubuntu operating system. .. 72

Figure 4-8: (a): Spike patterns of 40 granule cells and Golgi cells chosen randomly in an

implemented granular layer. (b): Comparison of similarity index between software

and FPGA simulations. The grey areas are the standard deviations of the hardware

results. The errors between the two results are shown at the bottom. The

maximum error is less than 5%. (c): The reproducibility index is calculated by Eq.

(5). It maintains a high value, which suggested a robust POT representation

despite the input variability. (d): Spike patterns of 40 granule cells when NMDA

channels of granule cells (upper panel) and Golgi cells (lower panel) were blocked.

Each neuron was chosen randomly from 40 different granule-cell clusters. The

firing of the cells become rather regular and hence lost the ability to encode

temporal information about POT. (e) and (f) : Comparison of similarity index

between software and FPGA simulations when NMDA channels of granule cells

(dotted line) or those of Golgi cells (dashed line) were blocked. The similarity

indices become flat, indicating a loss of temporal structure in the granule cells’

activity pattern. ... 74

Figure 4-9: The simulation results of the two-by-two network-on-chip system. 75

x

Figure 4-10: The performances of four system processors. ... 75

Figure 4-11: The overall system experimental set-up. A is the hypothetical in vivo

closed-loop experimental set-up for cerebellum rehabilitation. B is an electronic

set-up to demonstrate the feasibility of the in vivo experiment. A Virtex-5 board is

employed to simulate the biological spikes conveyed by MFs, which are delivered

to the FPGA cerebellum model via four-bit wires. The input discrete spikes are

modelled as two 5 Hz and two 30 Hz Poisson spike trains in four-bit signals. The

developed silicon granular layer is implemented on the Virtex-7 board with the

I/O interface for displaying the system output on the oscilloscope in real time. C

shows the real-time input/output discrete spikes and the frame-based signal. ... 77

Figure 4-12: The real-time computational condition among CPU, GPU and FPGA for

simulating 1 s activities. The CPU and GPU results are cited from previous work

[92]. ... 78

Figure 4-13: Scalability of four different approaches. The dotted lines represent the

estimation of system performances, whereas solid lines represent the

measurements. The FPGA-based NoC computation time remains constant due to

its parallel nature and the efficient communication system. 79

Figure 5-1: The conceptual system architecture. V is the membrane potential, I is the

generated current and F is the neural bursting frequency. 86

Figure 5-2: The pyloric network synaptic connectivity and output patterns. There are

six neurons in the network: AB, PD, PY, LP, VD and IC. The figures are cited from

[118]. ... 87

Figure 5-3: The pyloric muscle activities in a lobster stomach. Neuron PD controls

muscle d; neuron LP controls muscle c1 and PY controls muscle c2. The figure is

cited from [119]. ... 88

Figure 5-4: The qualitative pyloric computational model. Neuron bursting capabilities,

synaptic strengths and resting potential values are fully described in this model. 91

Figure 5-5: The hardware architecture of digital CPG. The SI block is the synapse

integration; signal C is the control signals from the adaptive controller; the block

of initial states is used to pre-store different neuron parameters; the block of

delay is applied to balance computing latency. .. 92

Figure 5-6: Data path of HR neural model. D is the delay register, and the integration

step G is real-time updated by control system outputs. The corresponding

equations are shown in Equation 5-1 – Equation 5-3. .. 94

Figure 5-7: Data path of chemical synapse. The corresponding equations are shown in

Equation 5-4 – Equation 5-6. The triangle and divider functions are achieved by

using look-up table techniques. .. 95

Figure 5-8: An adaptive control system for the central pattern generator prosthesis

system. Blocks of measuring bursting periods are responsible for real-time sensor

neuron bursting frequency; blocks of switch system are for optimizing controller

gain, and the block of controller is for automatically modifying silicon neuron

calculation speed. The controlled neuron is the silicon neuron LP. 96

xi

Figure 5-9: The algorithms of measuring real-time neuronal spiking period. There are

three stages for computing: low-pass filter, recording and calculation. 96

Figure 5-10: The system implementation. A is the Virtex-4 DSP platform that used to

implement digital neurons and adaptive control system; B is the neural interface

based on intracellular/extracellular recording techniques; C is the image of real

pyloric CPG under microscope, the neurons (cycles) are clearly displayed in the

picture; D and E are the real-time simulation /recording signals; D is one of the

pyloric neuron outputs, E is both intracellular and extracellular recording results; F

is the physical stomach muscles. .. 99

Figure 5-11: A. Biological recordings of pyloric neurons; B: simulation results of pyloric

neurons. The arrow from a to g indicates pyloric period, measured as the latency

from the onset of one PD neuron burst to the next. The arrow from a to e

indicates the latency of PD neuron offset. The arrow from a to c indicates the

latency of LP neuron offset. The arrow from a to d indicates the latency of PY

neuron offset. The arrow from a to e indicates the latency of LP neuron onset. The

arrow from a to f indicates the latency of PY neuron onset. 101

Figure 5-12: A comparison of the phase relationship between biological neurons and

model neurons. The x-axis is the individual neuron name. In the top figure, the y-

axis is the phase of burst onset/offset divided by cycle periods; and in the bottom

figure, the y-axis is the differences between biological recordings and simulation

results. ... 101

Figure 5-13: A comparison between biological recordings and simulation results of

network LP-VD-PD under with and without sensory input conditions. 101

Figure 5-14: Simulation results of hybrid network. A hardware/software co-simulation

to simulate system prosthesis results. The damaged CPG neurons AB, PD and PY

are mimicked by using MatLab software and the prosthesis neuron LP is

implemented in FPGA. In the left figure, the software-based neurons have

changed their bursting periods from 1 to 2 seconds and in the right figure from 1

to 0.5 seconds. Both hybrid networks with and without controller spiking patterns

are displayed. .. 103

Figure 5-15: The numerical computational performances of an FPGA. (a) and (b) display

system accuracy and speed performances with various fraction bits. 105

xii

List of tables

TABLE 2-1: THE TRUTH TABLE OF LOGIC GATE FUNCTIONS 12

TABLE 2-2: COMPARISONS AMONG DIFFERENT COMPUTING PLATFORMS 18

TABLE 2-3: COMPARISON BETWEEN DIGITAL AND NEURAL COMPUTATION 26

TABLE 2-4: COMPARISON OF SERIES FAMILIES .. 36

TABLE 3-1 PARAMETER VALUES OF VOLTAGE AND VOLTAGE & CALCIUM-DEPENDENT ION

CHANNELS ... 44

TABLE 3-2: PARAMETER VALUES OF RESTING POTENTIAL NERNST EQUATION 44

TABLE 3-3 VOLTAGE AND CALCIUM DEPENDENCY FOR THE STEADY-STATE ACTIVATION AND

INACTIVATION OF THE CURRENTS... 44

TABLE 3-4: PARAMETERS OF THE CHR2 MODEL .. 46

TABLE 3-5: HARDWARE SPECIFICATIONS ... 55

TABLE 3-6: COMPARISON OF OTHER TECHNIQUES ... 58

TABLE 4-1: STANDARD SPIKE PACKAGE FORMAT .. 70

TABLE 4-2: FPGA-BASED GRANULAR-LAYER SPECIFICATIONS 78

TABLE 5-1: THE INFLUENCES OF THREE FACTORS ON CPG SPIKING PATTERN GENERATION 89

TABLE 5-2: PYLORIC NEURON PARAMETERS ... 90

TABLE 5-3: PYLORIC SYNAPSE PARAMETERS ... 91

TABLE 5-4: CONTROL SYSTEM SPECIFICATIONS OF STEP RESPONSE 104

TABLE 5-5: HARDWARE SPECIFICATIONS OF DIGITAL CPG 105

xiii

Acronyms

FPGA Field-Programmable Gated Array

HH Hodgkin-Huxley

ChR2 Channelrhodopsin2

NoC Network-on-Chip

POT Passenger-of-Time

STG Stomatogastric ganglion

CPG Central Pattern Generator

CPU Central Processing Unit

GPU Graphic Processing Unit

ASIC Application-Specific Integrated Circuit

AER Address event representation

LUT Look-up Table

LIF Leaky Integrate-and-Fire

STDP Spike Time-Dependent Plasticity

LTP Long Term Potential

LTD Long Term Depression

1

Chapter 1 Overview and Rationale

This chapter generally describes the definition, history, development trends and

current bottlenecks of the neuromorphic circuit. Then it gives a brief description

of the contributions of the presented work and organization of the thesis.

2

1.1 Overview

The concept of the “neuromorphic circuit” was first proposed by Carver Mead [1]

in 1989 to describe electronics that can replicate neurobiological behaviour. The

key goal of this community is to understand how neural circuits process

information and how biological systems adapt to different environments

incorporating learning, robustness to damage and development.

This field can inspire hardware engineers and computer scientists to design and

build the next-generation computational platform, which captures the major

merits of the brain’s features: highly parallel computing, ultra-low power

consumption, strong fault tolerance and adaptive capability [2].

There are two main streams within the neuromorphic community: bio-inspired

and bio-mimicking groups, as shown in Figure 1-1. The bio-inspired group

primarily investigates how to develop an electronic system that can capture

concepts or features of biological processes [3]. For example, inspired by the

insect fly navigation optic flow (OF) sensing system, which can easily avoid

hindrances and accurately move in the most changeable environments, an

FPGA-based elementary motion detector (EMD) model [4] is developed to

replicate this smart navigation mechanism, which is applied on a

MicroAirVehicle.

Bio-mimicking groups attempt to use electronics to exactly reproduce biological

neural network behaviour in real-time computing [5]. Their purpose is to try to

understand the neural mechanisms of insight.

Figure 1-1: The neuromorphic community classifications: bio-inspired and bio-
mimicking groups. The bio-inspired devices include IBM “TrueNorth” process
chip. and dynamic vision sensors (DVSs); the bio-mimicking system contains a

3

silicon central pattern generator for cat movement prosthesis and silicon
cerebellum for mouse fine movement control recovery

Nowadays there are several projects closely related to this field as shown in

Figure 1-2. The human brain project [6] was established in 2012 by the

European Union. It is a 10-year 1.19 billion euro scientific research project that

aims to fully map human brain activity on specifically designed hardware. Its

purpose is to provide better understanding of the mechanisms of the brain. In

addition, it also plans to design and build a computational model that can be

used to explore the effect of psychoactive drugs on the human brain. However,

there has been some controversy in that cognitive scientists are largely

excluded from the project. This indicates that this large flagship project mainly

focuses on low-level bottom-up approaches [7]. The US-based BRAIN Initiative

(Brain Research through Advancing Innovative Neurotechologies) [8] is another

giant project related to neuromorphic computing. It was started in 2013 under

the Obama administration. The total funds are $300 million per year over ten

years. Itwill initially map the mouse neural network dynamics and eventually

transfer these into the human brain neurons.

On the computer architectural side, a project called SpiNNaker [9] has also

given strong impetus to the neuromorphic computing community. It is a highly

parallel computing platform that is mainly focused on the three areas of

neuroscience, robotic and computer science. The platform hopes to evolve to a

million-core system to simulate the brain cortex neurons in real time. Similarly,

IBM started the SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable

Electronics) project [10], which aims to design a neurosynaptic chip. The aim is

to reproduce brain computing characteristics related to efficiency, size and

power consumption. The main applications will be for cognitive tasks such as

pattern recognition with new programming languages [11].

Meanwhile, one of the largest semiconductor companies, Qualcomm, recently

developed the first commercialized neuromorphic chip, “Zeroth”, in 2014 [12].

“Zeroth” is able to observe and predict the external environment similarly to

human beings. The chip has defined a new concept, the Neural Processing Unit

(NPU), which is a new class of processor mimicking the cognitive functions of

the brain. Compared to traditional chips, they argue that the NPU is more

4

suitable for detecting and recognizing visual figures and patterns in complicated

data with much higher power efficiency than conventional systems.

Figure 1-2: The neuromorphic communities from organizations, industries and
universities. (a) is the human brain project emitted by the European Union; (b) is
the BRAIN Initiative supported by the American government; (c) is the first
generation of commercialized neuromorphic Zeroth chips from the Qualcomm
company; (d) is the visualization of a simulated network of neurosynaptic chips
from IBM research; (e) is the analogue CMOS-based chip designed for two-
neuron communication (MIT); and (f) is the Spinnaker computational platform of
Manchester University.

Finally, in 2011, researchers at MIT [13] designed the first analogue chip that

could simulate ion-based communication between two neurons. It was

fabricated by standard CMOS manufacturing techniques with 400 transistors.

The MIT’s chip is capable of reproducing the synaptic behaviours of spike rate-

dependent plasticity and spike-timing-dependent plasticity hebbian learning

rules.

1.2 History and trends

The first conceptual neuromorphic circuit was developed by Carver Mead [1] in

1990. He used analogue circuits to mimic active ion channel current-voltage

behaviours in a nerve membrane. As this field develops, the neuromorphic

circuit has broader scopes such as analogue, digital and mixed-model

analogue/digital VLSI. Particularly in the high-level exploration of implementing

neural networks (using a Field-Programmable Gated Array), in 2004 E.L. Graas

was the first [15] to implement a Hodgkin-Huxley (HH) neural model in digital

5

circuits [15]. This specific field has rapidly developed and become an important

niche in society nowadays. The main developed history is shown in Figure 1-3.

E.L. Graas’s research gave a basic framework for using FPGAs to implement

computational neural models. It described the time multiplexing technique and

speed optimization issues. Then, in 2007, Andrew Cassidy [16] used 32 digital

neurons to replicate biological synaptic plasticity behaviours. This indicated that

the digital neural system was capable of reproducing vital neural system

performances. Meanwhile, RK Weinstein [17] contributed an auto-development

tool kit for implementing neural models; this developed tool kit can not only alter

model populations but also model inherent architectures such as

adding/deleting ion channels. A pre-BÖtzinger complex model was implemented

as a case study that contains 40 HH-based neurons. After that, researchers

started to investigate novel hardware architectures for large-scale neural

network implementation; SW Moore [18] and Kit Cheung [19] developed a

Bluehive and FPGA-based neural modelling accelerator that could implement

256,000 and 64,000 Izhikevich neurons in 2012. However, these neurons

showed poor bio-plausibility. Recently, G Smaragdos [20] presented a digital

network based on 96 HH neurons with compartments in 2014; it significantly

Figure 1-3: History development diagram of digital neural circuits. The x-axis is

the implemented network size and y-axis is the bio-plausibility level: leakage

6

integrate-and-fire (LIF) model, Izhikevich model, LIF with ion expression model,

Hodgkin-Huxley (HH) model, HH model with compartment parts such as soma

and axon (HH-c) and HH model containing voltage & calcium ion channel and

ChR2 channels (HH-e).

improved digital neural network bio-realistic characteristics but the number of

neurons is limited.

It can be deduced that the aim of digital neural network implementation is to

create very large-scale networks with highly bio-plausible behaviours. However,

the main challenges lie in limited hardware resources and biological real-time

computing requirements. Using timing multiplexing or pipelining techniques can

significantly save hardware resources but affects calculation speed. Parallel

implementation allows digital circuits to do biological real-time calculations but

requires massive resources. Also, since large-scale neural networks have more

complicated synaptic connections and neuron/ion types, the implementation

requires customer-designed routing technology and heterogeneity architectures,

which increases the design difficulty.

 1.3 Rationale

In summary, the implementation of a current digital circuit-based high-level

neural network has two limitations:

1. It still cannot reproduce multi-ion channel-type activities including both

electricity- and chemistry-related behaviours.

2. When the network scale becomes very large (e.g. 100,000), the system

has to use a simplified neuron model and shows poor bio-plausibility.

In this work I have developed two novel hardware architectures to address

these issues:

1. Pipelining-Based Multi-Loop Process Mechanism: A Pipelining-Based

Multi-Loop Process architecture is presented that can mimic different ion

channel-type activities (voltage-dependent, voltage & calcium-dependent,

Channelrhodopsin). This successfully reproduces the ions closed-loop

process mechanisms, including both in electricity and chemistry, and fills

7

the gap whereby previous architectures can only implement voltage-

dependent ion channel models.

2. The Frame Based Network-on-Chip: A frame based network-on-chip

architecture is also presented to implement a cerebellum model that

contains 100,000 neurons. At the same time, the implemented model still

has high plausibility. It can accurately mimic biological passenger-of-time

functionalities, and the network is based on a conductance-based

integrate-and-fire neural model.

3. The Hybrid Bio-silicon Network: This network is designed for central

pattern generator rehabilitation, which can be considered one of the

potential important applications of digital neural circuits.

1.4 Contributions and organizations

The major contributions are as follows:

 A bio-realistic digital ion channel model for the neuron, which can

incorporate 13 different types of ion channels. The advances include the

implementation of a channelrhodopsin model into a digital platform,

together with a multitude of calcium dependent and independent ion

channels. These latter channels are derived from biological data from

the ion channels of crustaceans (crab). Although the creation of a

MatLab model may be interesting in its own right, I have additionally

created a digital processing platform that can explore networks of these

neural models in real time. Specifically I have utilized a Field-

Programmable Gated Array (FPGA) to achieve the implementation. This

allows scalability not only for closed-loop neuroscience experiments but

also prosthetic applications.

 An efficient FPGA-based network-on-chip (NoC) hardware architecture

has been developed for implementing a very large-scale neural network.

This has been used to implement a 100 k granular-layer model of the

cerebellum to explore passage-of-time (POT) behaviours. The

computational delay has been sustainably minimized to 25.6 ms for

running a 1 s real-world activity. This model may have future

applications in neuro-prosthetics for ataxia.

 A reliable and capable system is presented specifically for CPG function

restoration. Compared to previous systems, the work is stronger in two

8

aspects: silicon neuron bio-plausibility and system reliability. Firstly,

digital neural circuits are designed to reproduce both real CPG control

and pharmacological outputs, which particularly aim for conditions with a

totally damaged and partially damaged system. Secondly, the designed

system has the capability of robustly changing the computing speed to

achieve the best communication performances with biology by using an

adaptive control mechanism.

The selected publications are as follows:

Journals

1. J. W. Luo, G. Coapes, T. Mak, T. Yamazaki, C. Tin, and P. Degenaar,
“Real-Time Reproduction of Passage-of-Time Functionality Using FPGA,”
in 2014 IEEE Transactions on Biomedical Circuits and Systems (minor
revision).

2. J. W. Luo, Peter Andras, Alex Yakovlev, and P. Degenaar, “Digital
Implementation of Bio-realistic optogenetic neurons,” in 2014 Journal of
Neural Engineering (prepared).

3. J. W. Luo, T. Mak, Peter Andras, Alex Yakovlev, and P. Degenaar, “A
Reliable Central Pattern Generator Prosthesis Technique Based on
Digital Neural Circuits,” in 2014 IEEE Transactions on Neural System
and Rehabilitations (prepared).

Conferences

1. J. W. Luo, T. Mak, B. Yu, P. Andras, and A. Yakovlev, “Towards neuro-
silicon interface using reconfigurable dynamic clamping,” in Conference
proceedings: ... Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. IEEE Engineering in Medicine and
Biology Society. Conference, 2011, vol. 2011, pp. 6389–92.

2. J. W. Luo, P. Degenaar, G. Coapes, A. Yakovlev, T. Mak, and P. Andras,
“Towards reliable hybrid bio-silicon integration using novel adaptive
control system,” in 2013 IEEE International Symposium on Circuits and
Systems (ISCAS2013), 2013, pp. 2311–2314.

3. J. W. Luo, P. Degenaar, A. Yakovlev, T. Mak, and P. Andras, “A novel
hardware architecture for large-scale hybrid bio-silicon network,” in 2012
Royal Academy of Engineering Young Researchers Futures Neural
Engineering meeting, Warwick, 2012.

4. J. W. Luo, T. Mak, P. Andras, and A. Yakovlev, “FPGA-based simulation
of the pyloric circuits of the crab stomatogastric ganglion,” in 2012
Neuroscience, D.11.f;G.06.a .

5. J. W. Luo, G. Coapes, T. Yamazaki ,T. Mak, C.Tin, and P. Degenaar, “A
Scalable FPGA-based Cerebellum for Passage-of-Time Representation.,”
in Conference proceedings : ... Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. IEEE Engineering in
Medicine and Biology Society. Conference, 2014.

The thesis structure is organized as follows:

9

Chapter 1: Overviews and Purposes. This briefly describes neuromorphic

computing background, history and development trends and the work purposes.

Chapter 2: The Fundamentals. This reviews the basic computation

architectures and circuits, the digital and neural computing mechanisms, current

implementation techniques and systems, the FPGA advances and

developments.

Chapter 3: The Digital Optoelectronic Neuron. A bio-realistic digital ion

channel model, which can incorporates 13 different types of ion channels. The

advances include the implementation of a channelrhodopsin model onto a

digital platform, together with a multitude of calcium dependent and

independent ion channels.

Chapter 4: The Digital Cerebellum. A frame-based network-on-chip (NoC)

architecture for implementing a very large-scale neural network (100,000) with

specific biological passage-of-time (POT) functionalities is presented. The

design could be a potential neuro-prosthetics tool for future experimental and

clinical applications owing to its high computational power, flexibility, high

scalability and power efficiency.

Chapter 5: Case study: Central Pattern Generator Prosthesis Technique. A

reliable and capable system is presented specifically for CPG function

restoration. Compared to previous systems, this work is stronger in two aspects:

silicon neuron bio-plausibility and system reliability. Firstly, digital neural circuits

are designed to reproduce both real CPG control and pharmacological outputs,

which are particularly aimed at conditions with a totally damaged and partially

damaged system. Secondly, the designed system has the capability of robustly

changing the computing speed to achieve the best communication

performances with biology by using an adaptive control mechanism.

Chapter 6: Conclusion. This summarizes the main work of the thesis and

briefly describes the major contributions. Also, the things that need to be

improved and future work are presented as well.

10

Chapter 2 The Fundamentals

This chapter first describes the basic computational principles of digital systems

and biological neural networks. After that, these two systems are compared. In

particular, the different features are emphasized. Then it gives a brief historical

review of previous digital-based biological systems. Finally, the design

conclusions are also presented.

11

2.1 Digital computational architectures

A basic digital computational device can be defined as a system or circuit that is

capable of performing information processing or specific functions that people

require in their daily lives. For example, a calculator: by entering several digital

numbers, the machine will automatically carry out arithmetical operations that

you need such as addition, subtraction, multiplication and division. Specifically

in numerical computing, it can perform such computations at much faster

speeds than the human brain. Designing a digital computational device in

general raises several basic questions:

1. How can the digital circuit state best represent analogue (real) world

information.

2. What is the optimal architecture for processing and storing information?

3. How should computational components communicate with each other.

We are living in an analogue world. The information we sense is continuous

values changing with time. A digital computational system has to represent

analogue world information (e.g. continuous values) by using digital states such

as low and high, on and off, charged and discharged. A positional number

system has been developed to address this issue. By using the position of

digital bits, each with different weights, numbers can be represented in a digital

system. The equation is shown in Equation 2-1:

𝐷 = ∑ 𝑑𝑖

𝑝−1

𝑖= −𝑛

𝑟𝑖

Equation 2-1

where 𝑟𝑖 is the weight and 𝑑𝑖 is the analogue values, the rightmost bit (𝑖 = −𝑛)

is called the least significant bit (LSB), and the leftmost bit (𝑖 = 𝑝 − 1) is called

the most significant bit (MSB).

Once the analogue value can be represented by digital circuit states, the next

key consideration is how to use logic signals and gates for information

processing. The gate functions AND, OR and NOT are developed as the basic

logic operations; the symbols and corresponding truth table are shown in Table

2-1and Figure 2-1. The complementary Metal-Oxide Semiconductor (CMOS) is

the fundamental unit for implementing these logic functions.

12

Figure 2-1: The basic gate functions: AND, OR and NOT.

Table 2-1: The truth table of logic gate functions

AND OR NOT

A B C A B C A B

0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1 0 1 1 0 1

1 1 1 1 1 1

It is a three-terminal device that can be considered as a voltage-controlled

resistance or amplifier. In the digital operation principles, the MOSFET is always

operated either very high (switch on) or very low (switch off). An example of

using CMOS to implement a NOT function circuit is shown in Figure 2-2: A: the

typical CMOS inverter architecture for NOT gate function, B: The typical input-

output transfer characteristic of a CMOS inverter.

Figure 2-2: A: the typical CMOS inverter architecture for NOT gate function, B:
The typical input-output transfer characteristic of a CMOS inverter.

Therefore, by combining and arranging different numbers of these gate

functions as shown in Figure 2-1, from these building blocks all important

circuits and memory elements can be created. When the circuit outputs are

purely dependent on the input values, it is defined as a combinational circuit.

When a process has to involve previous inputs or calculations, a memory

13

component such as flip-flops or latches is necessary. This circuit is defined as a

sequential circuit.

As the required information process functions become more complex and varied,

people seek to develop a general-purpose computational device with a

reprogrammable function, thus the architecture requires a customer-designed

controller or program register to manage operation sequences and data and

become more sophisticated. The Central Processing Unit (CPU) came of age.

Very early in the 19th century, there were two basic CPU structures: the Von

Neumann [21] and Harvard computing architectures. The Von Neumann

architecture contains a processing unit that consists of:

1. An arithmetic logic unit.

2. Registers (accumulators).

3. A control unit that consists of an instruction register and program counter.

4. An external massive memory storage.

5. Input/output pads.

The arithmetic logic unit is responsible for calculating data such as add, multiply

and subtract operations and comparisons such as “greater than” or “less than”.

The control unit is for managing the process of moving data and codes in and

out of memory, and also for executing program instructions. The memory is for

storing both data and program instructions such as random access memory.

The Harvard architecture maintains the same components but the key

difference is that instruction and data memory are physically separate and have

different signal pathways, as displayed in Figure 2-3.

Because the Von Neumann architecture instructions and data memory share

the same communication bus, it strongly limits the effective calculating speed.

The CPU speed becomes limited by the time taken for memory access. Harvard

architecture, modified Harvard architecture or parallel computing can alleviate

this performance problem because the data bus is separate.

The basic CPU goes through the following process sequence: first, it fetches

the instruction in the memory location indicated by the Programmer Counter

(PC), and loads it into the Instruction Register (IR); then the PC will be

automatically updated to indicate the next instruction by increasing an

14

appropriate amount. At the execution phase, CPU will carry out the instruction

in IR and execute it. This is the typical sequence of the fetch-execute cycle.

Figure 2-3: Comparison between Von Neumann and Harvard computing
architecture.

As the computer technology develops, the modern CPU is capable of

performing general-purpose tasks and significantly enhancing people’s quality

of life. However, the CPU faced limitations as graphics process requirements

increased. Such processing requires massive matrix and vector operations,

which take an extremely long processing time when processed sequentially.

Engineers then developed a tailor-designed highly parallel computing device for

graphic processing tasks, called the Graphic Processing Unit (GPU). The first

consumer-level GPU card, named Nvidia GeForce 256, was released in1999.

A GPU [22] is an interesting computing architecture. It has a highly parallel

structure. It is a heterogeneous chip multiprocessor. Because there are lots of

matrix and vector calculations, the basic architecture is shown in Figure 2-4.

The red block is the fetch/decode function unit that sends an instruction stream

across many ALUs, which refers to single-instruction multi-data processing. The

yellow block is the ALUs. And the blue block is execution contexts and shared

memory.

The GPU [24] process mechanism is complicated and often involves many

steps. The basic operation principles are as follows: first, everything is

translated into triangles by using a computer graphic library. Then the lighting

process will identify each triangle colour. After that, all these triangles are

translated into the virtual camera’s film coordinates. The rasterization step will

separate all the overlapped triangles. Next each camera pixel colour will be

15

identified and the incorrect hidden surfaces of objects will be removed.

Nowadays people increasingly use GPU for other non-graphical applications

such as bitcoin mining and neural network modelling [23].

Figure 2-4: The NVIDIA GeForce GTX580 “core”. The yellow block is the SIMD
(Single Instruction Multi Data) function unit. This figure comes from the Fermi
Compute Architecture Whitepaper CUDA Programming Guide 3.1.

Also, as the automation, mechanical and electrical industries develop, some

information process functions in commercial products have to be specifically

designed to save hardware resources, increase power efficiency and enhance

speed, in terms of raising net benefits. This raises people’s interests in

designing an Application-Specific Integrated Circuit (ASIC).

An ASIC is a customized integrated circuit for a specific function. The first ASIC

was a gate array invented in 1980 by Ferranti. The design methodology of

ASICs can be roughly divided into three categories: gate-array designs,

standard-cell designs and full-customer designs. The gate-array design is

where transistors or other active devices are predefined and unconnected. The

interconnections of the final system are decided by the engineering. Nowadays

it has been almost entirely replaced by FPGAs. The standard-cell design uses

manufacturer-designed standard function blocks to build circuits with high

electrical performance. This design involves several stages: module

specification, top-level design, system implementation, simulation, synthesis,

layout and testing of silicon. The full-customer design is defined all the silicon

layers of the device. The advantages of full-customer design usually include

smaller areas, speed enhancement and less power consumption, and also the

16

ability to integrate other components. Examples of gate-array and full-customer-

designed ASICs are displayed in Figure 2-5.

Figure 2-5: A: gate-array-designed ASIC; B: full-custom-designed ASIC.

On the other aspect, all the above three different architectures (CPUs, GPUs

and ASICs) can be implemented in a digital reconfigurable tool, which is the

FPGA.

Ross Freeman and Bernard Vonderschmitt released the first commercial

available FPGA in 1985, named XC2064 [25], which created a new beginning

market of computational architecture. The FPGA [26] is a bit different from

previous computing architectures; it is defined as “a prefabricated silicon device

that can be electrically programmed to become almost any kind of digital circuit

or system” [26]. This is done by customized programming technology, which

can change circuit performances after chip fabrication. The digital circuits are

created in the “field”. The conceptual structure of an FPGA is displayed in

Figure 2-6. It contains routing channel, logic block and I/O interfaces.

The routing channel design refers to programming technologies. The

approaches include EPROM [27], EEPROM [28], flash [29], static memory [30]

and anti-fuses [31]. Among these approaches, the flash, static memory and

anti-fuse techniques are widely applied in the FPGA model. The logic block is

for implementing circuit function; the design has to consider the trade-off among

speed, power and areas. The I/O pad is the input and output interface.

The FPGA contains three main elements: Look-Up Table (LUT), flip-flops and

routing matrix. Look-Up Tables are fundamentally how logic is actually

implemented on a block of; the output is the values of the corresponding

17

indexed address location. Flip-flops are typically used for function reset or

latching. They are usually connected to the output of LUTs, which consist of a

slice. The complex logic block contains two slices in FPGAs. The routing matrix

is a number of multiplexers and wires that respond to connecting CLBs and the

other FPGA resources. For example, a summation function needs to be

implemented that requires an adder operator. An adder can be synthesized by

using several logic functions including: AND, OR and NOT. These logic

functions are implemented by using LUT; the connections between them are

achieved by using a routing matrix. Specifically, system reset, enable and

memory functions can be realized by using flip-flops.

Figure 2-6: The conceptual architecture of an FPGA. The figure is cited in [26].

Overall, the characters of each platform are summarized in Table 2-2. There are

two computing mechanisms for sequential and parallel approaches. CPUs

follow a sequential computing approach and comprise four main steps – fetch,

decode, execute and write-back – while GPUs, FPGAs and ASICs use parallel

computing.

The clock signal governs all different digital platforms’ computing speed; it is

very important and can allow or stop a process and in general provide

synchronization for the circuits. Increased clock frequency can directly make

digital processors run faster, but it is limited by circuit delays. The clock period

has to be longer than the total propagation delay of the circuits to avoid glitches.

Generally, larger circuits have longer propagation delays. The clock cycle of

CPU Intel Core i7-960 can be up to 3.2 GHz, which is much faster than a Nvidia

GTX285 1.5 GHz. Specifically, since FPGAs have switch blocks in the circuits,

18

which have large propagation delays, the clock frequency of FPGA V6-LX670 is

0.3 GHz.

Table 2-2: Comparisons among different computing platforms

 CPUs GPUs FPGAs ASICs

Mechanism sequential parallel

Architecture specifications

Clock cycle 3.2 GHz 1.5 GHz 0.3 GHz -

Die area 263 mm2 470 mm2 - -

CMOS tech 45 nm 55 nm 40 nm -

Benchmarks (Fast Fourier Transform)

GFLOP/s 67 250 380 952

GFLOP/J 0.71 4.2 6.5 90

Characteristics

Flexibility strong strong strong weak

Design cycles normal normal relatively long long

Cost cheap cheap normal expensive

Implantable no no no yes

*: CPU is an Intel Core i7-960; GPU is a Nvidia GTX285, FPGA is a V6-LX760; the ASIC circuit is the same RTL in 65

nm for FFT implementation; GFLOP refers to a unit of computing capacity equal to one billion floating point operations
per second. The benchmark data is cited at Computer Architecture Lab at Carnegie Mellon.

A benchmark Fast Fourier Transform (FFT) algorithm was implemented on

these four platforms. The characteristics of FFT are complex dataflow and low

arithmetic density. The results indicated that ASICs have the fastest

computational speed of 952 GFLOP/S and CPU has the slowest speed of 67

GFLOP/S. However, the power consumption of CPU is 0.71 GFLOP/J and that

of ASICs is 90 GFLOP/J.

In terms of system flexibility and feasibility, CPU- and GPU-based platforms

enjoy strong flexibility and low cost, and the level of design difficulty is relatively

easy. Meanwhile, FPGAs are also reconfigurable platforms with normal costs;

the design cycles are generally a bit longer since hardware design requires

extra time for circuits’ synthesis and on-board testing. Finally, ASICs are non-

reconfigurable and expensive, and the design time generally takes months,

depending on the specific target. But the circuits are implantable and more

efficient in terms of power consumption and computing speed.

2.2 The digital circuit design flow

The overall design flow of digital Integrated Circuit (IC) implementation is

described in Figure 2-7. A digital ion channel implementation is given as a case

study. First, a mathematical biological neural model/algorithm (function) is

selected for implementation. By carefully considering the model parameter

19

range and resolution, neural network architecture and functionalities, two

hardware architecture generation tools can be candidates for designing: Very

high-speed integrated circuit Hardware Description Language (VHDL) and

visualization software Cadence. Cadence gives more design flexibility and

controllability, and VHDL is for high-level architecture (system) modelling. In this

case study, a voltage-dependent ion channel model is described by using VHDL.

And the next step is to employ ISE software to carry out behaviour and post-

translate simulation. Behaviour simulation verifies model functionalities from the

logic-design perspective, while post-translate simulation includes physical

hardware constraints such as timing and layout issues, which is as close as the

real hardware calculation. After the synthesis, the developed hardware

architecture is represented by using the register transfer level. Finally, a Virtex-7

evaluation board is used for implementation and on-board testing.

After verification by using an FPGA, the next milestone is to transfer VHDL into

ASIC circuits. At this stage the software Synopsys is applied to transfer a

previous VHDL code into a netlist in terms of generic cells such as and, or, not

and sequential elements and mapping into logic cells from the CMOS library.

Specifically, timing, area and power performances of architecture should be

optimized to meet requirements. A synthesized netlist result is shown in Figure

2-7 as well. Then the software Encounter is chosed to perform a digital IC place

& route task, which includes floor planning, placement of cells, clock tree

synthesis and optimization, routing of nets and full custom layout finishing (if

required). A 90 nm CMOS library is selected for mapping the ion channel model

and the final physical layout is shown in Figure 2-7. Finally, in the Signoff stage,

static timing analysis, dynamic simulation, formal equivalence checking, power

analysis (peak, average and time based) and transistor-level simulation should

be considered.

2.3 How the neuron works

Compared to the artificial information process system based on silicon, the

natural information process system of the biology shows totally different

features. The basic processing unit of biology is called the neuron.

A typical biological neuron consists of a soma, dendrites and an axon (Figure

2-8B). It processes and transmits information through electrical and chemical

20

Figure 2-7: The design flow of digital Integrated Circuits (IC) implementation. A

case study of implementation of an ion channel model is given as a

demonstration.

21

signals. The basic single neuron computational mechanisms can be described

as follows: first, charges from the spikes are summated at the dendritic tree,

which is an information receiver. The summated output from dendrites will be

sent to the soma for processing (e.g. integration). If a large enough amount of

ions (inputs) change, an output signal will be generated. This signal can be

considered a digital event that is transmitted to the other neurons by the axon.

Here the axon can be seen as an information sender. Dendrite computation is

analogue while axon communication is digital.

Figure 2-8: The single neuron computational mechanism. A is the conceptual
neuron process mechanism; B is the neuron biological structure; and C is the
digital event (action potential).

Particularly in neuron processing, the digital event is called action potential in

the biological system. It mainly depends on the two components ofthe soma

membrane. One is called ion pumps, which maintain the negative voltage

differences across the membrane, and the other one is called ion channels,

which are responsible for generating the ions (e.g. sodium, potassium and

chloride) concentration differences in and out of the neuron. In detail, the

generation process can be divided into five parts: the rising phase, the peak

phase, the falling phase, the undershoot phase and the refractory period. In the

rising phase, if the depolarization current is large enough, the inward sodium

current overwhelms the outward potassium current This indicates that the

membrane potential increases. Therefore, the more membrane potential

increases, the more sodium currents come in. Eventually, the membrane

potential will increase towards the sodium equilibrium voltage of around 55 mV.

22

The peak and falling stage refers to the sodium permeability being maximized

and the membrane potential being approximately equal to the sodium

equilibrium voltage. After that, the sodium ion channels are closed and become

inactivated, which indicates that the sodium membrane’s permeability is lower

than that of potassium, driving the voltage back to the resting state. The

increased voltage activates the opening of more potassium ion channels that

usual, so the potassium permeability of the membrane is very high in transient

periods. This drives the membrane potential towards to the potassium

equilibrium voltage, which is defined as post-hyperpolarization. In the refractory

period, the two ion channels are return to normal, and the membrane potential

will back to resting potential values. The five stages are summarized in Figure

2-8C.

The communication element between neurons is called synapse. Its location is

between the previous neuron axon terminal and the next neuron dendrite, which

is shown in Figure 2-9B. It allows the digital event (action potential) to pass

between two neurons. There are two different types of synapses: electrical and

chemical synapses. In a chemical synapse, the action potential will be

translated into chemical signals, which are used to initialize the received neuron

electrical response, while in an electrical synapse, the signal transmission is

achieved by the gap junction.

One thing that should be pointed out is that the synapse plays an important role

in the establishment of memory. When both communicated neurons are active

at the same time, the connection between the two neurons is strengthened as a

result of signalling mechanisms. This process is called long-term potentiation,

which is acknowledged as memory information.

2.4 Comparison of neural and digital computing

In this section, I investigate the differences between neural and digital system

process mechanisms, which are shown in Figure 2-11.

As can be seen, in the digital circuits, the basic element transistors can be

synthesized into logic functions AND, OR and NOT. Then these functions are

built into specific function circuits such as register, ALU and multiplexer and

further to higher-level CPUs etc. In contrast, in the biological system, the basic

component is neurons; these neurons interact with each other by using synaptic

23

connections to generate spiking patterns. This series of neurons can be equally

considered as a system level with some specific functions. Figure 2-11

Figure 2-9: The biological synapse architecture.

shows an example of biological networks in the human brain for controlling

people’s daily life behaviours.

Both systems have different information encoding mechanisms. For digital

circuit information encoding, it contains several important characteristics:

synchronization, language, errors, copying, granularity and compressibility.

Here is an example of two-wire serial control model in a portable Internet audio

CODEC chip in Figure 2-10.

Figure 2-10: An example of digital system information coding. The figure
displayed is the two-wire serial control model of a WM8731/L audio CODEC
chip.

The synchronization refers to each digital signal frame; the information start and

stop point are specifically designed, which can be recognized by both digital

24

sender and receiver. At this point when information starts to send, the clock

signal is at the high level and data signal at the transition level from high to low,

while when information is finishing, the clock signal is at the high level and data

signal

Figure 2-11: Comparisons between digital and neural system processing.

25

at the transition level from low to high. Once the digital communication system

establishes a start condition, a eight bits(7-bit address+R/W bit) will be send out,

and MSB(Most Significant Bit) is transferred first. If the correct address is

received and the R/W is zero, which indicating a write function, then the

WM8731/L will generate a ACK bit by pulling SDIN low on the next cycle. The

WM8731/L is a write only device only respond to the R/W bit indicating a write.

On the other hand, if the address is not recognised the device will return to the

initialized condition and wait for a new start condition and valid address. Also,

the digital information can be copied to the other system since it is noise free.

And it can be compressible to save space. But there is a granularity

(quantization error) in the digital information encoding, which refers to the

differences between the actual analogue values and the digital representation.

Neural system coding can be classified into four schemes: rate coding [34],

temporal coding [35], population coding [36] and sparse coding. Rate coding is

defined as the information containing in the firing rate of the neuron. It was

originally described by E. D. Adrain and Y. Zotterman in 1926. Temporal coding

is defined as the information that is carried by precise spiking timing or high-

frequency firing-rate fluctuations. The timescale of temporal coding is in the

range of a millisecond. Both coding examples are shown in Figure 2-12.

Population coding is an approach that uses correlation of a number of neuron’

activities to represent sensory information. It is widely used in the sensor and

motor areas of the brain. For example, the object moving direction can be

retrieved from the monkey visual area medial temporal population activity.

Sparse coding is information that is encoded by the significantly strong

activation of a relatively small sparse set of neurons.

A comparison between digital and neural computation is shown in Table 2-3.

The digital computation system enjoys high calculation speed and limited bus

connections, while the neural circuit has relatively slow firing frequency but

26

Figure 2-12: The neural coding schemes: rate coding and temporal coding.

Table 2-3: Comparison between digital and neural computation

Computation characters Digital circuits Neural circuits

Speed Fast(GHz)
Global clock

Slow (Hz)
Event-driven

Architecture connections Low(bus) connected Highly connected

Information coding Deterministic Non-deterministic

Fault tolerant Poor Good

Learning No Yes

Applications Numerical computing Image processing

massive point-to-point synaptic connections. Also, the digital circuit is governed

by a global clock. In each clock cycle, the circuit processes the information,

while in the biological neural circuit, only when information comes in does the

system have to do the processing. This can be thought as being based on the

event-driven technique. The computation in the digital circuit is deterministic

because the logic operation is fixed; but in the neural circuit it is stochastic. This

may lead to corresponding poor and good fault tolerance characters. The digital

system has fixed behaviours, while the neural circuit has a strong learning

capability to be adaptive to external environments. This is due to the synaptic

memory learning at the computation. For applications, the digital circuit is good

at numerical computing and the neural circuit is good at image processing.

2.5 Digital based biological systems and techniques

Because the neural system has so many fascinating characters shown in Table

2-3, engineers aim to exactly reproduce these biological behaviours by using

silicon to more fully understand how neural networks achieve this. The

contemporary bio-mimicking society has successfully reproduced several core

biological system behaviours by using digital circuits from ion to network levels.

A. The conduction and excitation of membrane current

27

E. L. Graas originally reproduced the conduction and excitation of membrane

current biological dynamics by using hardware in 2004 [15]; the developed

hardware architecture simulated 17 versions of the HH models and successfully

predicts sodium, potassium and leakage ionic flow manners in a neuron under a

variety of conditions. The developed system is implemented on a Xilinx Virtex-

xc2v1000 and consumes 2186 slices and 12 RAM blocks of hardware

resources. The on-board clock frequency is set at 40 MHz with a 0.001 ms

simulation time step. The whole system used 45 ms to simulate all the models,

which is 16 times faster than running on the computer.

In this work, two strategies that increase system clock frequency and integration

step are suggested to increase system computational speed: clock frequency is

decided by the longest critical path, and integration step will influence system

reliability.

In particular, a simulation multiplexing (SM) technique [15] is presented in this

work. The digital circuit computes multi-version models simultaneously by

exploiting the latency in the computational architecture, and each model will be

executed sequentially in lockstep.

The simulation multiplexing concept is illustrated in Figure 2-13 and the basic

mechanism is as follows: each external input (1st, 2nd, 3rd,…, nth) is sequentially

sent into the process block (neural model) by a Time Division Multiplexer (TDM),

and the neural model calculates each input signal and consecutively feeds back

to the time division de-multiplexer as outputs. The TDM input channel number

has to equal the neural model latency to avoid data process mismatch.

A. Synaptic ion channel behaviours

Excitation receptor-gated ion channel N-methyl-D-asparate (NMDA) and alpha-

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-gated

ion channels are both implemented on digital circuits by using a component-

based approach [37]. Those channels are mainly responsible for synaptic

plasticity such as Long-Term Depression (LTD) and Long-Term Potential (LTP)

[38][39]. These exist in the glutamatergic excitatory synapses as shown in

Figure 2-14.

28

Figure 2-13: The conceptual architecture of simulation multiplexing technique.

Figure 2-14: A: Both AMPA and NMDA gated ion channels are activated by

excitatory neurotransmitter glutamate in a biological synapse. The figure is cited

from [37]. B: (a) is the biological recordings of excitatory postsynaptic currents

from NMDA & AMPA channels and individual NMDA channels. The figure is

cited from [40]; (b) is the FPGA-based simulation results.

In Figure 2-14A, both AMPA and NMDA gated ion channels are activated by

excitatory neurotransmitter glutamate in a biological synapse. In addition, Na+,

Ca2+ and Mg2+ ionic are transmitted in between as well, while in Figure 2-14B, a

comparison between biological recordings and FPGA-based simulation of

NMDA and AMPA gated ion channel currents is displayed. It shows that the

presented silicon AMPA and NMDA gated ion channels can exactly reproduce

real synaptic ion channel excitatory current behaviours.

More importantly, a component-based approach was developed to implement

neural maths division and exponentiation in the architecture. This technique

29

utilizes digital logics to achieve factor approach iterative calculations. Hence,

the system is benefits from the limited hardware resource utilization and

adaptive model parameters. For example, a division is introduced in this section

as a case study.

Division format (Y/X) can be rephrased as a communal calculation, and the

communal element is a unique case in which Y = 1. Therefore, division

functionalities can be recomputed as multiplications of different factors as

shown in Equation 2-2:

 𝑌

𝑋
= 𝑌 ∗ ∏(1 + 𝑠𝑗

𝑛

𝑗=1

2−𝑗)
Equation 2-2

where 𝑝𝑗 = ∏ (1 + 𝑠𝑗
𝑛
𝑗=1 2−𝑗); after several computing iterations, the mutual part

𝑝𝑗 eventually converges to Y/X and 𝑝𝑗 ∗ 𝑋 converges to one. The details

factoring the algorithm for division and hardware architecture are shown in

Figure 2-15.

Figure 2-15: The conceptual algorithm and hardware architecture of factoring

algorithm for division. The factoring algorithm for division is cited by [37].

B. Rhythm generation in the Pre-Bötzinger Complex (PBC)

By using an auto-generation tool kit [17], a silicon Pre-Bötzinger Complex (PBC)

network is generated based on a FPGA circuit. Implemented PBC that contains

40 oscillatory bursting neurons with specific synaptic connections aims to

explore the respiratory rhythm generation in mammals [41]. The hardware

simulation results are shown in Figure 2-16.

30

Figure 2-16: The PBC network output patterns. A displays the oscillatory burst

patterns in 30s, while B shows the first burst pattern details of four bursts in A.

The simulation is based on the single clock-cycled mode with 0.01 time step.

The figure is cited in [17].

The auto-generation tool kit significantly reduced the system modification

design periods, since the hardware architecture is explicitly classified into two

parts: memory blocks and data path. Memory system is based on the shared

memory technique, which can be modified in real-time simulation. Adjust data

path (adding/deleting a specific ion channel) is also straightforward because the

computational component is entirely distinct from memory components. The

conceptual structure of the auto-generation tool kit is shown in Figure 2-17.

Figure 2-17: The conceptual structure of the auto-generation tool kit. Two main

modules are involved in the system: memory-based component (model

parameters and state generation) and computational component (data path).

The figure is adapted in the work [17].

C. Spike Time-Dependent Plasticity (STDP) learning rule

Spike Time-Dependent Plasticity (STDP) [42] basically reflects the synaptic

connection strength dynamic variations between two neurons in a biological

31

network. In summary, synapse, which contributes to an output spike event

generation, will be strengthened and inversely reduced. Specifically, it refers to

long-term potential (LTP) and long-term depression (LTD). The work in [16]

effectively mimics such an important biological communication feature by using

an FPGA. The corresponding architecture and STDP behaviour are shown in

Figure 2-18:

Figure 2-18: The partial hardware architecture of STDP (A) and STDP

modification function (B). The figure is cited in [16].

where spki trig is the pre-synaptic event and spko trig is the postsynaptic event.

Two buffers are employed to temporally stock pre-synaptic event time and

synaptic index. The STDP functionality values are pre-stored by using LUT

technology. The differences between pre-synaptic and postsynaptic event

timing are the index address for value w, which is for updating the current

synapse strength.

A developed FPGA-based silicon neural array, which contains 32 Leaky

Integrate-and-Fire (LIF) neurons, is implemented on a Xilinx Spartan XC3S1500,

which utilized 745 slices of FF and 4-LUTs aapproximately 11 2 KB RAMs. The

system clock frequency is 50 MHz.

The conceptual mathematical equations and architecture of LUT technology are

displayed in Equation 2-3 – Equation 2-4 and Figure 2-19.

𝑎𝑑𝑑𝑟(𝑥) =

(𝑥 − min(𝑥))

∆𝑥

Equation 2-3

𝑅𝑂𝑀𝑑𝑒𝑝 =

max(𝑥) − min (𝑥)

∆𝑥

Equation 2-4

where 𝑥 is the input, and min (𝑥) and max (𝑥) are the minimum and maximum

values of input ranges, respectively. ∆𝑥 is the resolution step, 𝑅𝑂𝑀𝑑𝑒𝑝 is the

32

Figure 2-19: Conceptual architecture of LUT approach.

depth of ROM memory block. The basic LUT technique is applied on the system.

First, an input value is compared with the base value min (𝑥) whose ROM

address is 0. Then, by multiplying the difference gain (resolution), the correct

address is calculated for the output. Equation 2-3 deduces the architecture

calculation clock cycles while Equation 2-4 decides the hardware memory

resource utilization. Therefore, it is not adequate for models with large-range

parameters and accuracy resolutions.

D. Address-event representation for mapping synaptic connection

Inspired by multiplexing methodology applied in telecommunications and

computer networks [43], neuromorphic engineering has adopted the Address-

Event Representation (AER) technique, which is an asynchronous handshaking

protocol used to transmit signals between neuromorphic systems. The basic

concept of the AER [44] is displayed in Figure 2-20. It can be simplified as a

protocol for data transmissions among many simulation multiplexing-based

process cores. For example, every time an event (e.g. spike)is generated on

Chip 1, the address encoder will write a address(corresponding to address

encoder index and its own type) onto a common digital transmission bus which

is shared by all neuron events. Arbitration circuits ensure that the addresses

are sent off sequentially. The AER handshaking protocol is responsible for the

sender and receiver respectively writes and read the correct event from the bus

only when they are allowed to. Based on the different system performances of

throughputs, neural ensembles (described in the next paragraph) and network

firing frequency, the protocol has a variety of architecture styles.

33

Compared to the encoding/decoding functionalities in biology, the retina codes

two bits per spike take optic nerve transmits 40 Mb/s[46], which is a thousand

times less than traditional imagers that require 40 Gb/s based on the Nyquist

rate. In order to describe such a stimulus-driven, fine, spatiotemporal spike

event architecture in biology, the concept of neural ensembles is defined as

describing neural network events at statistically aspect; the corresponding

equation is show in:

Figure 2-20: The conceptual structure of Address-Event Representation (AER)

technique. Time-division multiplexing is applied on neuromorphic chip 01 and

02. The generated spikes are transmitted serially by broadcasting on a digital

bus. The figure is adapted from [45]. The address encoder and decoder of 1, 2

and 3 are the timing multiplexed channel index rather than individual spike

address.

 𝜀 = {𝑥0, 𝑥1, … 𝑥𝑖, … }; 𝑡0 < 𝑡1 < ⋯ 𝑡𝑖 < ⋯ Equation 2-5

where 𝑥𝑖 represents an event that happens at a specific location and time 𝑡𝑖.

The developed encoding part is described as an address-event presentation

(AER).

Neural ensembles general contain two items: neural latency and neural

temporal dispersion. Neural latency refers to the time interval between stimulus

onset and spike appeals, while neural temporal dispersion refers to the variation

and heterogeneity of individual neurons. By considering the neuromorphic chip

signal features within these two indexes, the communication channel

architecture has to be carefully designed from capacity, latency temporal

dispersion and integrity four aspects. And the design faces several trade-offs as

well. For instance, the sampling frequency can be adaptive or static depending

34

on the signal changing; conflict happens when two spike events attempt to

access the same communication channel simultaneously. Either simply

abandoning spikes or introducing an arbiter is acceptable for dissolving collision.

Also, the time constraint is exposed at spike-event queuing in the arbiter

channel, and the solution of arranging new data events versus giving up old

data to create new spike-event timings can significantly influence all the system

throughputs. In addition, the channel should have the ability to predict the

maximum spiking frequency in real time to achieve adaptive communication

performances.

In [44] the argued arbitration is the best optimization selection for a multi-core

neuromorphic chips system as the spike activity is sparse both in time and

space. However, the arbiter channel architecture design is relatively challenging

due to the requirements of reliable and robust capabilities, and even

asynchronous digital VLSI systems [47] are employed in this research field. An

example of AER transmitter and receiver architecture [44] is given in Figure

2-21. The send neuron drives a request to the arbiter via the row-column

controller, and the address encoder is also activated at the same time. At the

receiver neuron stage, an address (X and Y) is read and latched by activating

address decoder, and acknowledged signals are fed back immediately.

Figure 2-21: Architecture of AER transmitter and receiver. The figure is cited
from [44].

35

2.6 Design conclusions

In this work I focus on exploring high-level hardware architecture to replicate

neural network behaviours (from highly bio-plausible to large-scale). The

reconfigurable capability and highly parallel computing characteristics of FPGA

is a reasonable candidate for this purpose. Furthermore, the other features of

precisely timing management and system scalability are capability of meeting

the requirements of complex neuroscience experiments. In general, selecting

FPGA is motivated by the challenges of large latency by using normal

simulation software or multiple-core systems; the significant latency banned the

implementation of real-time routine for simulation or Brain Machine Interface

(BMI) interaction. Particularly in biological network modelling, simulation of

neurons requires strong scalability, from 20 to millions for stomatogastric

ganglion [32] to mammal cerebellum [33], respectively. Currently devices such

as computers or many-core systems fail to provide such a vital advantage. In

addition, customization of a special neural system is important for design, PCs

employs standardized software that leads to poor performance and fails to

mimic certain behaviour. From the other perspective, analogue-based models

take advantage of compact architecture, efficient power consumption, relative

cheapness and signals of no loss of information. But the subthreshold analogue

CMOS circuit-based large-scale systems are extremely sensitive to divergence

of transistor threshold and currents due to the working temperature variations

and fabrication issue [16]. More importantly, the fundamental VLSI process

variation significantly influences the scalability of the system. Meanwhile,

emulating biological complexity with a multi-scale structure and spatiotemporal

dynamic on a chip is still a major challenge to engineers [16][17][18].

A brief summary of FPGA features and development trends is presented in

Table 2-4. It can clearly be seen that FPGA families have developed rapidly in

recent years; the logic cells, block RAM and DSP slices of the Virtex-7 family

have increased approximately 100, 7 and 37.5 times compared to the Virtex-4

family. The peak DPS performances and transceiver speed have increased

from 48 GMAC/s to 5335 GMAC/s and from 6.5 Gb/s to 28.05 Gb/s. In addition,

the package option has enjoyed a smart transition from Pb-Free style to highest

performance flip-flop chip. In addition, the physical boards of FPGA Virtex-4,

36

Virtex-5 and Virtex-7 are displayed in Appendix B, and details of each board

application can be found in the following chapters.

Table 2-4: Comparison of series families

Maximum capability Virtex-4 family Virtex-5 family Virtex-7 family

Logic cells 200,448 51,8401 1,995,000

Block RAM 9.7 Mb 18 Mb 68 Mb

DSP slices 96 1,056 3,600

Peak DSP
performances2

48 GMAC/s 580 GMAC/s 5,335 GMAC/s

Transceivers 24 24 96

Peak transceiver
speed

6.5 Gb/s 6.6 Gb/s 28.05 Gb/s

I/O pins 960 960 1200

CMOS technology 90 nm 65 nm 28 nm

Package option Pb-Free High signal integrity
FF

Highest
performance FF

1: Virtex-5 slice contains four LUTs and flip-flops (previously it was two LUTs and flip-flops(FF)).

2: Peak DSP performance equals number of DPS slices multiple clock frequency.

2.7 Related biological principles

Three different biological mechanisms are selected for the hardware

implementation in the following: the optogenetic technique, the Passager-of-

Time(POT) cerebellum model and the stomatogastric ganglion Central Pattern

Generators (CPG) of crabs.

First, the optogenetic technique is to use blue light to monitor and control single

neuron activities. The basic mechanism is as follows: first, a light-sensitive

protein such as channelrhodopsin is obtained from algae; this protein is an ion

channel that opens in response to blue light. Then the gene of this protein is

taken and the DNA is inserted into specific neurons. After that, the target

neurons can be controlled by a flashing blue light. Since the advantages of

without damage neurons, and little influence on the other neurons of

optogenetic technique, it is widely accepted and acknowledged for different

applications such as curing neurologic disorders and fundamental neuroscience

research.

The mechanism of optogenetic technique can be described by using the

Hodgkin-Huxley (HH) model combined with a four state channelrhodopsin 2

model. An HH model is to accurately describe how action potentials are

37

initialized and generated on the neuron membrane, which basically consists of

three different ion channels: potassium, sodium and leakage. All ion channel

currents are calculated by their resting potential, channel conductance and gate

activities. While a four-state ChR2 model is to illustrate how photo-current is

generated by using two dark and two light adapted states of a single ion

channel. Hence, based on these two fundamental components, by studying the

photo kinetics of hippocampal cells expressing ChR2, the dynamics of the

ChR2-evoked spikes and light sensitivity and efficiency of a new ChR2 version

can be achieved.

Second, people precisely timing and fine movement control are decided by

biological cerebellum. A POT mechanism is to explain how cerebellum neurons

represent the passage of time over a range of tens to hundreds of milliseconds,

which fundamentally is for organising movements of different body parts into a

coordinated action; it contains approximately 100,000 neurons with random

recurrent connections. It can successfully reproduce the classic Pavlovian delay

eyeblink conditioning.

In detail the POT model has two types of neuron, one is the granule and the

other one is the Golgi cell. It is a virtual sheet composed of a square lattice

arrangement. In this model, two requirements are necessary for representing

timing information over a dynamic population of active granule cells: 1) long

temporal integration of cell ion channels; 2) random recurrent connections from

Golgi to granule cells.

Third, the stomatogastric ganglion (STG) system is one of the most identified

neural networks since all neuron functions and their connections are well

analysed. It is responsible for crab stomach activities such as digesting and

transporting food. It contains gastric and pyloric CPGs. Specifically, it is suitable

for neuroprosthesis experiments and neuronal-machine system investigation: 1)

it still generates fictive motor patterns when removed from the animal and

placed in a saline-filled dish; 2) the neurons in the CPG are motor neurons as

well without interneurons as connections; 3) individual neuron signals can be

well identified and recorded; 4) the CPG in vitro can active for 18-24 hours and

can be sustained for weeks if required.

38

Chapter 3 The Digital Optoelectronic Neuron

This chapter addresses one of the most important design aspects in the digital

neural circuit field: system bio-plausibility. A novel architecture is presented to

implement the different ion channel-type process dynamics, including calcium

feedback mechanisms and optogenetic behaviours. Compared to the previous

implementations that can only mimic voltage-dependent ion channel behaviours,

a developed system is capable of reproducing not only electricity-related but

also chemistry-related behaviours. This significantly improves hardware bio-

realistic performances. The operation per 1 ms in a neuron can be achieved up

to 76618, which is roughly five times faster than the latest neural design

architecture. In summary, the brief design conclusion can be drawn that the

architecture should be heterogeneous or multiple-layer based with precise

latency management mechanisms to capture the various ion channel-type

process details.

39

3.1 Introduction

A key goal in the neural engineering field is to create real-time operating models

of the nervous system. Such implementations may increase the understanding

of future computational systems, and provide a better understanding of

biological neural process systems [4][32]. These in turn may lead to advanced

neuroprosthesis [48][49]. Furthermore, many major diseases of the nervous

system relate to channel dysfunctions [50]. Thus advanced neural models that

include ion channel functionality could potentially support drug discovery and

the burgeoning field of optogenetic and chemogenetic neural systems.

Electronic neural networks come in multiple forms from simple abstract

implementations that allow large-scale processing to detailed models that allow

accurate representation of ionic flow within neurons. The majority of the effort,

including previous work [51], has focused on scalability to large-scale networks

utilizing, for example, the integrate-and-fire model [52], the Izhikevich model [53]

and the Hindmarsh-Rose model[54]. These models are idealy for implementing

large neural circuits, but lack fine detail. In this work, I am interested in exploring

the effects of multi-ion channel types on the network. Thus, while I want to

develop real-time bio-realistic neurons, I wish to do so with models that can

simulate realworld effects of individual ion channels.

The ion channel model of the neuron was developed in 1952 by Hodgkin and

Huxley [14], who worked on marine invertebrates. This was later updated for

mammals by Traub [55] in the 1990s, which are more specific to real-time

implementation. Since 2004, hardware implementation of ion channel models

has attracted the attention of many researchers. Graas et al [15] developed a

field-programmable gated array (FPGA) framework for implementing

conductance-based neuron models.This was the first time a hardware process

was used to reproduce HH-based ion channel activities . In 2007, Weinstein et

al [17] demonstrated a 40-neuron Hodgkin-Huxley (HH) population model

utilizing an auto-generation tool kit. Meanwhile, A. Cassidy et al [16] presented

a digital spiking array (32 neurons) that can reproduce synaptic plasticity. In

2012, Coapes et al [56] also developed a scalable FPGA-based design that

could simulate large-scale ion channels utilizing HH modes.

However, in a general real neuron computational process, the potential

membrane variations will change the concentration of ions such as calcium in

40

and out of the neuron. This indicates that the corresponding calcium ion

channels will alter the gate behaviours. As a result of this, the final neuron

spiking patterns will also be reformed, and in turn to shape the ions

concentrations again. This is a closed-loop process mechanism related to both

electricity and chemistry interactions. Such a complicated state process

requires a heterogeneous and multiple-layer-based architecture to reproduce

the entire spiking pattern dynamics. Previous implemented digital neural

systems show limitations since they can only reproduce membrane voltage-

related spiking patterns and ignore ion concentration chemistry-related

behaviours.

In this work I have created architecture for implementing a bio-realistic neuron

that incorporates 13 different types of ion channels and a calcium feedback

process mechanism as shown in Figure 3-1. The advances include the

implementation of a channelrhodopsin (ChR2) model [57] onto a digital platform,

together with a multitude of calcium-dependent and independent ion channels.

These latter channels are derived from biological data from the ion channels of

a crustacean (crab) [58]. The developed architecture has the ability to

successfully replicate the entire ion channel dynamics in a neuron, including

calcium ion concentration and the feedback mechanisms.

Figure 3-1: An optoelectronic neuron architecture. It contains 12 ion channels in

total: a delayed-rectifier 𝐼𝐾𝑑 [63], a transient potassium current 𝐼𝐴 [64], a
persistent sodium current 𝐼𝑁𝑎𝑝 [65][66], a fast sodium 𝐼𝑁𝑎, a potassium current

 𝐼𝐾 [67], a hyperpolarization-activated inward current 𝐼ℎ [68], a descending

41

modulatory input current 𝐼𝑝𝑟𝑜𝑐 [69], a calcium-dependent 𝐼𝐾𝐶𝑎 [70], a transient

 𝐼𝐶𝑎𝑇[71], a persistent calcium current 𝐼𝐶𝑎𝑠[71] and ChR2.

The implemented digital neuron has two key advances: the first is that the

digital neuron contains the artificial ion channel ChR2 that is directly related to

the optogenetics field. Optogenetics is an exciting technique that monitors and

controls neuron activities by using light [59]. Before that, the neuron is

genetically sensitized to light by using optogenetic actuators such as ChR2 [60].

Therefore, the presented digital neurons can be considered a novel tool for

simulation brain network with optogenetic behaviours in biologically real time.

In particular, the biological ChR2 [61] originates from chlamydomonas

reinhardtii algae but can be genetically inserted into nerve cells to allow optical

control of their electrical potential. Its conductivity varies with ion size but is of

the order of pS [62]. Nevertheless, with sufficient activation, it is possible to

stimulate neural activity. Although in simple terms it can be considered an

optical switch, an optimal biophysical strategy in terms of accuracy and

complexity is to utilize a four-state model developed by Nikolic et al [57]. These

consist of light and dark-adapted ON and OFF states. The light-adapted ON

state is less efficient than the dark-adapted version, giving a non-linear

response profile to light. Thus the discussed ChR2 ion channel model is an

ideal candidate for implementation.

The second key aspect to this work is that traditional HH models [14] have

looked primarily at the three key ion channels in the mammalian nervous

system [55]: 𝐶𝑙+, 𝑁𝑎+ and 𝐾+. However, there are many processes in cells that

are mediated by calcium. Furthermore, the advanced CatCh version of ChR2

uses a calcium feedback. It would therefore be useful to have an arsenal of

channel variants to explore calcium feedback and the effect of pharmaceutical

agents or neurotransmitters on ion channels and receptors. As such,

crustaceans are very interesting. They have 12 ion channels, nine of which are

voltage dependent and three of which are both voltage and calcium dependent.

As I have their characteristics, I can create an implementation model that can

incorporate these additional channels at will in addition to the standard 𝐶𝑙+, 𝑁𝑎+

and 𝐾+.

42

Although the creation of a MatLab model may be interesting in its own right, I

have additionally created a digital processing platform that can explore

networks of these neural models in real time. Specifically, I have utilized a Field-

Programmable Gated Array (FPGA) to achieve the implementation. This allows

scalability for not only closed-loop neuroscience experiments but also prosthetic

applications.

3.2 Methods

The methods contain two sections: in the first section a bio-plausibility HH-

based neuron model that contains 13 different ion channel types is presented.

In the second section I developed a novel multi-loop process architecture for

implementing the presented neuron model in a Field Programme Gated Array

(FPGA) to achieve biologically real-time computing.

The original HH equations accurately describe three ion channel sodium,

potassium and leakage dynamic activities in a neuron, and explain the process

of how action potentials initialize and generate. These equations are developed

based on biological experiment voltage clamp recordings and successfully

predict how ion channel conductance varies. Meanwhile, the ChR2 four-state

model I employed is presented by Konstantin et al [57] and can precisely mimic

ChR2 current decay dynamics under voltage clamp conditions.

3.2.1 Ion channel mathematical relations

The implemented ion channels are listed as below:

 Voltage dependent ion channels: a delayed-rectifier 𝐼𝐾𝑑 [63], a transient

potassium current 𝐼𝐴 [64], a persistent sodium current 𝐼𝑁𝑎𝑝 [65][66], a

fast sodium 𝐼𝑁𝑎 , a potassium current 𝐼𝐾 [67], a hyperpolarization-

activated inward current 𝐼ℎ [68] and a descending modulatory input

current 𝐼𝑝𝑟𝑜𝑐 [69].

 Voltage & calcium-dependent ion channels: a calcium-dependent

 𝐼𝐾𝐶𝑎 [70], a transient 𝐼𝐶𝑎𝑇 [71] and a persistent calcium current 𝐼𝐶𝑎𝑆 [71].

 ChR2.

The mathematical equations for voltage-dependent ion channels [58] are given
in Equation 3-1 – Equation 3-3:

43

 𝐼𝑖 = 𝑔𝑖 ∗ 𝑚𝑖
𝑝

ℎ𝑖
𝑞

∗ (𝑣 − 𝐸𝑖)

Equation 3-1

 𝑑𝑚 = ((𝑚∞ − 𝑚)/𝑚𝜏

Equation 3-2

 𝑑ℎ = ((ℎ∞ − ℎ)/ℎ𝜏 Equation 3-3

where 𝐼𝑖 is the ion channel current, 𝑔𝑖 is the ion conductance, 𝑚 and ℎ are gate

variables, 𝑣 is the membrane potential and 𝐸𝑖 is the resting potential. 𝑚(ℎ)∞ and

𝑚(ℎ)𝜏 are gate variable steady-state value and time constant. The basic ion

channel model circuit is shown at Figure 3-2: voltage-dependent and leakage

ion channels are represented by non-linear conductance 𝑔 and resting

potential 𝐸 ; and ion pumps and exchanges are represented by current

sources 𝐼𝑝.

Figure 3-2: The basic circuit diagram of ion channel model.

An additional mathematical equation for calcium-dependent ion channels is

given in Equation 3-4 and Equation 3-5:

𝜏𝐶𝑎

𝑑[𝐶𝑎2+]

𝑑𝑡
= −𝐹𝐼𝐶𝑎 − [𝐶𝑎2+] + 𝐶𝑜

Equation 3-4

𝐸𝐶𝑎 = (

𝑅 ∗ 𝑇

𝑧 ∗ 𝐹
∗ log (

𝐶𝑎𝐶𝑜𝑛𝑐𝑂𝑢𝑡

𝐶𝑎2+
))

Equation 3-5

where τCa is the Ca2+ time constant, Co is the resting Ca2+ intracellular

concentration, and the parameter F responsible for translating Ca2+ related

current into Ca2+ concentration. The reversal potential 𝐸𝐶𝑎 is calculated by

using Equation 3-6. It is based on the Nernst equation, where 𝑅 is the ideal gas

44

constant, 𝑇 is the temperature in kelvin, 𝐹 is the Faraday constant (coulombs

per mole), and 𝑧 is the number of moles of electrons transferred in the cell

reaction or half-reaction; here I am assuming the extracellular concentration

𝐶𝑎𝐶𝑜𝑛𝑐𝑂𝑢𝑡 is 13 mM [72]. And the corresponding parameters of the above ion

channels are shown in Table 3-1 to Table 3-3.

Table 3-1 Parameter values of voltage and voltage & calcium-dependent ion
channels

Table 3-2: Parameter values of resting potential Nernst equation

𝐶𝑎𝐶𝑜𝑛𝑐𝑂𝑢𝑡 𝑅 𝑇 𝑧 𝐹
13000 8314.47215 273.15

+ 10.919

𝑧 = 2

96485.3399

*: 𝑖𝑓 𝐶𝑎2+ < 𝐶𝑜, 𝐶𝑎2+ = 𝐶𝑜

Table 3-3 Voltage and calcium dependency for the steady-state activation and
inactivation of the currents

 𝑚, ℎ 𝑥∞ 𝜏𝑥

 𝑆𝑦𝑡𝑙𝑒𝑠 1

1 + exp (
𝑐𝑣 − 𝑑

𝑏
)
 𝑎 −

𝑒

1 + exp (
−𝑣 − 𝑑

𝑏
)

 𝑏 𝑐 𝑑 𝑎 𝑏 𝑑 𝑒

𝐼𝑁𝑎
+ 𝑚3 5.29 −1 24.7 1.32 25 120 1.26

V INa IK ILeak Ih IK INaP IA Iproc

𝑔 𝜇𝑠 300 52.5 0.0018 0.054 1890 2.7 200 570

𝐸 𝑚𝑉 50 -80 -60 -20 -80 -50 -80 0

V&Ca ICaT ICaS IKCa [Ca] 𝜏𝐶𝑎 F 𝐶𝑜

𝑔 𝜇𝑠 55.2 9 6 570 303ms 0.418

𝜇𝑀/
𝑛𝐴

0.5 𝜇𝑀

𝐸 𝑚𝑉 0 0 -80 0 -50

45

 ℎ 5.18 1 −48.9

{
0.67

1 + 𝑒𝑥𝑝 (
−𝑣 − 62.9

10)
}

× {1.5

+
1

1 + 𝑒𝑥𝑝 (
𝑣 + 34.9

3.6)
}

𝐼𝐶𝑎𝑇 𝑚3 7.2 −1 25 55 17 58 49.5

 ℎ 7 1 36 87.5 16.9 50 75

𝐼𝑁𝑎𝑝 𝑚3 8.5 −1 22 16 26.4 25.1 13.1

 ℎ 4.8 1 48.5 666 11.7 33.6 379

𝐼ℎ 𝑚 6 1 70 272 8.74 42.2 −1499

𝐼𝐾 𝑚4 11.8 −1 14.2 7.2 19.2 28.3 6.4

𝐼𝐾𝐶𝑎 𝑚4
(

[𝐶𝑎]

[𝐶𝑎] + 30
)

1

1 + exp (
−𝑣 − 14.2

11.8
)

90.3 22.7 46 75.09

𝐼𝐴 𝑚3 8.7 −1 27 11.6 15.2 32.9 10.4

 ℎ 4.9 1 56.9 38.6 26.5 38.9 29.2

𝐼𝑝𝑟𝑜𝑐 𝑚 3.05 −1 12 0.5

𝐼𝐶𝑎𝑆 𝑚3 22 −1 8.5 16 26.4 25.1 13.1

Since parameters in tables are estimated based on biological experiment

recordings, which are under seawater temperature of approximately 12 degrees,

they have to be updated when applied to mammalian animal systems. The

corresponding temperature correction equations [55] are shown in Equation 3-7

and Equation 3-8:

𝑄 = 3

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒−36

10

Equation 3-7

𝑎𝑚(ℎ) = 𝛽𝑄

Equation 3-8

where temperature is the system environment temperature, Q is the total energy

number, β is an amplified constant depending on different ion channels, and

am(h) is the ion channel activations (inactivation).

Also, a four-state model of channelrhodopsin, which has an optimal structure in

terms of accuracy and simplicity, was previously described by Grossman et al

46

[73] and Nikolic et al [57]. The model describes channelrhodopsin as having

four states: two dark states and two activated states. The retinal molecular core

of the ChR2 ion channel absorbs a photon switching from all-trans to 13-cis-

retinal. This induces the channel to switch from a dark-adapted OFF state [C1]

to a dark-adapted ON state [O1]. If illuminated in the ON state there is a finite

probability of further photon absorption. This would switch the ChR2 from a

dark-adapted ON state to a less conductive light-adapted ON state [O2]. From

there it may thermally switch back to [O1] or decay to the light-adapted OFF

state [C2]. The [C2] state slowly (in the order of seconds) reverts to the [C1]

state by thermal means. These relations can be described as four correlated

differential equations:

 dO1

dt
= Ga1(t)C1 − (Gd1 + ect)O1 + etcO2

Equation 3-9

 𝑑𝑂2

𝑑𝑡
= 𝐺𝑎2(𝑡)𝐶2 − (𝐺𝑑2 + 𝑒𝑡𝑐)𝑂2 + 𝑒𝑐𝑡𝑂1

Equation 3-10

 𝑑𝐶2

𝑑𝑡
= 𝐺𝑑2𝑂2 − (𝐺𝑎2(𝑡) + 𝐺𝑟𝑑)𝐶2

Equation 3-11

 𝐺𝑎(𝑡) = 𝜀𝐹 [1 − exp (−
𝑡

𝜏𝐶ℎ𝑅
)] , 𝑓𝑜𝑟 𝑡 < 𝑡𝑙𝑖𝑔ℎ𝑡

 = 𝜀𝐹 [exp (
𝑡−𝑡𝑙𝑖𝑔ℎ𝑡

𝜏𝐶ℎ𝑅
) − exp (−

𝑡

𝜏𝐶ℎ𝑅
)] , 𝑓𝑜𝑟 𝑡 >

 𝑡𝑙𝑖𝑔ℎ𝑡

Equation 3-12

where O1, O2 and C2 are the numbers of ChR2 molecules in the open states 1

and 2, and closed state2. Gd1 and Gd2 are the rates of thermal conversion of C2

to C1, and etc and ect are the rates of transition between O1 and O2 and vice

versa. Also, Ga1 and Ga2 are the activation rates for C1 to O1 and C2 to O2.

Grd is the rate of thermal conversion of C2 to C1, F is photons per ChR2 per

millisecond. The corresponding parameters are given in Table 3-4.

Table 3-4: Parameters of the ChR2 model

Parameter τChR 𝜀 ect etc Gd1 Gd2 Imax

Unit 𝑚𝑠 ms−1 ms−1 ms−1 ms−1 nA

Value 1.3 0.1 0.01 0.02 0.35 0.02 0.2

3.2.2 Implementation

The hardware architecture is shown in Figure 3-3; there are four main

components: voltage-dependent ion channels, Ca2+ concentration, ChR2 and

parameter & control. Voltage-dependent ion channel block responses for

calculating ion channel activities that are only dependent on neuronal

membrane potentials. Ca2+ concentration is for updating Ca2+ resting potential

47

based on the input calcium-related currents. The ChR2 block responses for

mimicking ChR2 light-gated ion channel behaviours. The parameter & control

block focuses on pre-store system parameters and configures architecture data

path. Also, there are two external inputs in the system: one is the light pulse

specifically for the digital ChR2 block, and the other is the pre-synaptic inputs

that come from other neurons. The entire system is based on pipelining

technique; in each clock cycle, new parameters and control signals are released

to compute specifically the ion channel results.

Figure 3-3: The conceptual architecture of a digital neuron. Three signal types
are displayed in the system: configuration link, data path and general-purpose
input/output (GPIO).

The voltage-dependent ion channel architecture is shown in Figure 3-4. It

generally consists of mux, maths operators and custom-designed look-up table

(LUT) blocks. The mux components (e.g. C1, C2) response for selecting

different pre-implemented circuit blocks in specific time periods, and the

configuration signals are given by the parameter & control block; maths

operators such as gains and multipliers are utilized to perform equation

functions, and custom-designed LUT blocks are used to implement complicated

math operations such as exponential and division.

There are three stages to computing voltage-dependent ion channels. First,

when inputs come in, the function C1 and C2 select the corresponding circuits

(∞v or ∞Ca , τv or τcon) to calculate the steady-state activation m and

inactivation h values. After the integration process, the function C3 and C4

decidetheir power function and combination styles. Then the calculated values

48

is done the subtraction with resting potential ev or eCa, which is decided by

function C5. Finally, the ion channel currents are calculated by multiplying the

conductance. All the configuration signals are decided based on implemented

models.

Figure 3-4: A voltage-dependent ion channel block for HH-based ion channel
styles. The equations are shown in Equation 3-1 – Equation 3-3. The integration
step is optimized at 0.003 ms, and the total delay m+n equals the implemented
gate variable ion number.

For calculating voltage & calcium-dependent ion channels, a Ca2+

concentration block is added into the system as displayed in Figure 3-3. The

main role of the Ca2+ concentration block is to update eCa resting potential

values based on input currents ICaT and ICaS . The architecture is shown in

Figure 3-5, where τCa is the Ca2+ time constant, Co is the resting

Ca2+ intracellular concentration, and the parameter F is responsible for

translating Ca2+ related current into Ca2+ concentration.

Figure 3-5: A Ca2+ concentration computing block. The mathematical equation
is shownin Figure 3-5.

When the system is calculating ion channel ICaT and ICaS , the mux in Figure

3-3 is automatically switched from 0 to 1. This indicates that at this stage the

calculated ionic currents will be sent to the Ca2+ concentration, and ROM is for

translating Ca2+ concentration into Ca2+ resting potentials. Meanwhile, an

49

enable signals from control block will be and only active at Ca2+ computational

block periods.

The data path of ChR2 is shown in Figure 3-6. The left part is for calculating the

activation rates for C1 to O1 and C2 to O2. Since the activation rate is different

between light on and off, the component mux decides which block is connected

to the next stage of computing based on the light duration. The right part is for

calculating the ChR2 molecule number and currents. And three differential

equations are implemented (Equation 3-7 – Equation 3-10) to perform this task.

At each iteration loop, the current ChR2 molecule number, which is stored in the

register, will participate in the next stage of the process to update ChR2 outputs.

The VHDL code of ChR2 is shown in Appendix C.

Since the pipeline technique is applied to the system to enhance computational

speed and save hardware resources, a precise latency management and

parameter storage are required, as shown in Figure 3-7. First, the ion channel

parameters and configuration information are pre-stored in the different ROM

components shown in Figure C; the length of ROM n has to equal the number

of gate variables. Then I calculate the latency of data paths in the system, and

the exact time periods (e.g. a, b and c) for passing data on different data paths

can be obtained. In order to maintain the synchronizations between data-path

computing and its corresponding parameters, registers are artificially inserted

within that ROM based system to mimic data-path computing delays, which are

shown in Figure A. Also, the self-counted clock constantly generates output

values from 0 to n as the ROM addresses. Hence the systems can accurately

compute each ion channel current without data collision.

50

Figure 3-6: Data path of ChR2 computing block. The mathematical equation is
shown in Equation 3-7-Equation 3-10.

Figure 3-7: System latency management system. A is the latency management
system; B is the frame-based clock outputs for addressing ROM; C is the
parameters & control signals storage-based ROM.

51

3.3 Results

3.3.1 Individual ion channel behaviours

I showed 12 individual ion channel results of the voltage gated process block in

Figure 3-8. The red dashed lines are the FPGA simulation results while the blue

solid lines are the software references. The FPGA-based system uses the fixed

integration step 0.003 ms while the software system uses variable integration

steps. It can be seen that there is a small delay (around 1 us) between them.

This is due to the hardware truncation errors and different integration steps in

the two systems. From Figure 3-8 I can deduce that different ion channels

played specific roles in generating the burst patterns. The ionic currents from

axon showed very fast dynamic spikes, while the IH ion channel from soma

displayed slow wave oscillation, and the other ions (ICaS, ICaT, INaP) generated a

slow wave but with tiny fluctuations. In terms of functionality, these ion channels

decide the shape of action potential and the firing properties of neurons; H-type

current IH can be served as a function of generating leakage current; potassium

currents IK are responsible for the duration time of burst patterns; persistent

sodium current INaP participates in the function of initialization of neural firing;

and transient potassium current IA maintains the inactivation state almost all the

time.

Figure 3-8: Different ion channel dynamic behaviours. The red dashed line is
the FPGA simulation results while the blue solid line is the software reference.
The Y-axis is the current (mA) and the X-axis the system clock cycles.

52

It can clearly be seen that FPGA simulation results are identified with biological

experiment and software results [57]. This indicates that the developed silicon

ChR2 performs the same behaviours as the biological one when the same light

pulse is applied. Specifically, when the light pulse is 20 ms, the developed

Figure 3-9: The hardware simulation results of ChR2. Comparisons between
biological [57] and FPGA simulation results. The short light pulses are 1, 2, 3, 5,

8, 10 and 20 ms. The software fitting parameters are τChR = 1.3 ms, γ = 0.1, ect

= 0.01, etc = 0.02, Gd1 = 0.35 ms−1, Gd2 = 0.02 ms−1 and Imax = 0.2 nA.

Figure 3-10: By giving different irradiances, the corresponding peak (square)
and plateau (cycle) currents are displayed in the figure.

53

ChR2 displays a saturation situation, and the maximum current that can be

generated is 0.08 nA. Furthermore, I quantitatively analyse silicon ChR2

performances with different irradiances as shown in Figure 3-10; when

irradiance is larger than 7.1 mW mm−2 , both peak and plateau current slow

their pace and increase when they approach saturation.

3.3.2 Mimicking pharmacological performances of crustacean pacemaker

The anterior burster (AB) of a crustacean is simulated by using voltage-

dependent and voltage & calcium-dependent ion channels. The AB is a central

pattern generator pacemaker that is responsible for stomach activities such as

transport and digestion in crustaceans.

I artificially blocked some specific ion channels of silicon neuron AB to mimic its

pharmacological performances. The results are shown in Figure 3-11 and

Figure 3-12. It can clearly be seen that in the control condition, silicon neuron

AB generated regular and steady burst patterns, which are identical with the

software reference. However, in the KCa
+ ion channel blocked condition, the

silicon neuron constantly generated extreme high-frequency spikes rather than

burst patterns. This is because the slow wave component of the burst pattern is

missed.

Also, I mimicked the other two conditions: in the Na+ ion channel blocked

condition, the axon part became disabling so these fast spike events

disappeared; in the Ca2+ ion channel blocked condition, neuron AB became

silent and no burst pattern was generated. This indicated that V&Ca2+-type ion

channel can directly control pacemaker AB bursting states, which is identified

with the relative biological experiment results [74][75].

3.3.3 Hardware specification

I show the FPGA-based hardware resource utilizations in Table 3-5: Hardware

specifications. The system clock periods are all around 20 ns for three different

types of ion channel, and the system requires 107 clock cycles to calculate a

burst pattern because of the extremely tiny time step 0.003 ms. Hence the

presented system uses approximately 0.2 s to mimic 1 s of real-world neuron

activities. By applying previous work routing techniques [51], the developed

silicon neuron can be scaled up to 20 at a network level. And by applying timing

54

multiplexing technique, the maximum implemented virtual neuron number can

be achieved at around 100 neurons with biological real -time computing

Figure 3-11: Mimicking pharmacological results of FPGA and software. The
performances of 𝐾𝐶𝑎

+ channel blocked and control conditions of pacemaker AB
are reproduced.

Figure 3-12: Mimicking pharmacological results of FPGA and software. The

performances of 𝑁𝑎+ and 𝐶𝑎2+channel blocked conditions of pacemaker AB are
reproduced.

55

performances. For the memory resources utilization aspect, implementation of

V-type and V&Ca2+-type ion channel consumed 26and 43 RAM blocks,

10210and12049 slice LUTs. This is because of the extremely large range (from

0.001 to 1700) of model parameters and many custom-defined mathematical

functions; even memory optimization technique was applied to the system. Slice

registers are applied to implement digital calculation and control logic. The

consumption is around 1500 slices. For the power consumption aspect,

V&Ca2+-type, V-type and ChR2 ion used dynamic power of 0.315 w, 0.196 w

and 0.203 w, respectively.

Table 3-5: Hardware specifications

 V V&Ca2+ ChR2 Router Total

Clock periods (ns) 20.781 18.627 22.828 -- 22.828

RAM block 26 (2%) 43 (4%) 0 0 43 (4%)

Slice register 1556
(1%)

1998 (1%) 975 (1%) 791 (1%) 3764 (1%)

Slice LUT 10210
(3%)

12049 (3%) 2231
(1%)

1213
(1%)

15493
(5%)

Dynamic power (w) 0.196 0.315 0.203 0.006 0.524

Quiescent power
(w)

0.209 0.212 0.210 -- --

Max neurons
(physical)

33 25 100 -- 20

Max neurons
(virtual)

165 125 10000 -- 100

3.4 Discussion

3.4.1 Implementation of different neural models

In this work I implemented a strong bio-plausible digital neuron incorporating

ChR2 in FPGA hardware, and this neuron can be scaled up to a small/medium-

size neural network by using timing multiplexing technique. A summary of

comparisons of previous FPGA-based neural network modelling is displayed in

Table 3-6.

The Izhikevich model has a weak bio-plausibility since it describes the spiking

patterns from the mathematical perspectives that lack sufficient ionic process

details, while the HH model design is based on recordings of conductivity of

membrane potential. Therefore, it has details of each individual ion channel

computing dynamic performances. In between, there is a conductance-based

integrated and fire (IF) model that has a mediated bio-plausibility, because it

56

can mimic neuronal integration-and-firing characteristics based on the ion

channel computation parts [33].

Due to the different implemented neural models, the system focuses on quite

diverse research areas. The simplified Izhikevich model is applied for simulating

a large-scale neural network in FPGA [19]. The architecture utilized an event-

driven approach with an integrated processor to perform simulationThis can

achieve up to 2.48 x real times for running 64,000 neurons. Similarly, the

previous work uses a conductance-based IF model to reproduce biological

granular-layer (contains 100,000 neurons) passage-of-time functionalities. A

frame-based network-on-chip architecture is developed and by using this

computational speed, it can achieved up to 39 x real times. However, both

architectures are mainly focused on the large population activities and ignore

individual neuron action potential generations.

Weinstein et al [17] and G Smaragdos et al [20] utilized the HH and HH

extended model to mimic the neural system in a more detailed way. The

number of implemented ion channel types in a neuron is four, and this can

basically reflect all ionic current dynamics. They contributed a solution for

biological real-time simulation of a bio-realistic neuronal network with more than

100 neurons (with 8.7 x real time and 12.5 x C code).

In this work, I increase the ion channel types in a neuron from four up to 13,

which significantly increases the FPGA-based neural model bio-plausibility.

Compared to the previous work, calcium-related ion channels and ChR2 are

first implemented and integrated with voltage-dependent ion channels.

Therefore, developed digital neurons can not only mimic standard but also

pharmacological spiking-bursting behaviours, and the speed can be up to 5 x

real times.

There is an interesting discovery in the comparison table: the more neural

model complexity increases, the smaller the system time step is. This is due to

the fact that in some ion channel algorithms, the dynamic spike patterns change

very rapidly: for example, Ip current in the soma, which generates several

spikes in very short periods of 10 us. This requires the system to have a

sufficiently accurate time step for simulation. Hence, the developed system time

57

step is 0.003 ms and can achieve approximately 76618 operations per neuron

in 1 ms.

3.4.2 Implementation tools

In terms of programming tools, current C and Java languages [76] can be

directly applied to hardware architecture design. It enjoys the advantages of

easy modification and programming. However, it still lacks flexibility to some

extent. The graphic tool system generator is quite popularly utilized in

hardware-based neural network modelling since it is very good at digital signal

processing [15][17][77][78], but it shows limitations and constraints when routing

algorithms or communication protocols face implementation. In this work, I use

the system generator for mathematical neural model calculation and VHDL for

routing strategy implementation, which has developed an efficient approach for

neural modelling in the bio-mimicking society.

3.4.3 Neuroscience applications

I can also use this digital neuron for neural rehabilitation. One issue is that I

artificially damaged the real pacemaker AB in the pyloric network, and the

implemented silicon AB was embedded in the damaged neural network by

using a dynamic clamp [78] to restore the original neural network activities. Also,

I aim to include sufficient details in the individual neuron models to allow the

replication of circuit behaviour dynamics in a wide range of physiologically

plausible situations.

In terms of optoelectronic/optogenetic areas, the developed system can be

further developed into a processing platform for simulating neural network

patterns with ChR2. Biological real-time simulation allows us to investigate the

design of efficient optoelectronic devices for neurologic disorders [79]. More

importantly, the implemented pacemaker model architecture is identified with a

mammal-based HH model [55]; I can directly map a mammal’s biological

recording parameters on the parameter & control block to mimic the brain

network with optogenetic behaviours. Therefore, it serves as a novel reliable

simulation tool to verify emerging optogenetic hypotheses and systems [80][81].

3.5 Conclusion

In this section I propose novel hardware architecture for implementing multi-

type ion channel models that can capture the finest things in ionic activities.

58

Compared to previous work, this is the first time voltage-dependent, voltage &

calcium-dependent and ChR2 ion channels have been integrated into a single

neuron. A silicon pacemaker neuron with ChR2 is successfully implemented on

a Virtex-7 FPGA board as a case study. Based on the hardware results, it can

not only reproduce normal neural burst patterns but also pharmacological burst

patterns. This significantly improved hardware bio-realistic performances and is

a new processing platform potentially for ion channel-related mechanism

discovery and drug investigation.

Table 3-6: Comparison of other techniques

Model Izhikevich
(64,000) [19]

IF (100,000)
[51]

HH (40) [17] Extended HH
(96) [20]

This work
(100)

FPGA chip Virtex6
SX475T

Virtex7
XC7VX485

T

Virtex4
XC4VSX35

Virtex7
XC7VX485T

Virtex7
XC7VX485T

Time step
(ms)

1 1 0.01 0.05 0.003

Operations
per neuron in

1 ms

>7 30 >1200 22,200 76,618

Real-time
speed

2.48 x real
time

39 x real
time

8.7 x real
time

12.5 x C code 5 x real time

Resource
utilization

LUTs (199421)
FFs (135032)
BRAMs (886)

LUTs
(268544)

FFs
(176424)
BRAMs
(960)

Slices
(13,840)

DSP (183)

LUTs (251485)
FFs (162217)
BRAMs (804)

LUTs (294367)
FFs (75280)

BRAMs (860)

Precision Fix point Fix point Fix point Floating point Fix point

Programming
tool

Java
description

VHDL+
System

generator

System
generator

C-code VHDL+
System

generator

Novelty Using event-
driven

approach and
reasonable

memory
bandwidth

A frame-
based

network-on-
chip

architecture
without data

collision

Auto-
generation

tool kit

Real-time
simulation tool

for
investigating

ION

Real-time
simulation tool

for
optoelectronic/

optogenetic
research areas

59

Chapter 4 The Digital Cerebellum

This chapter, based on the previous chapter’s research findings, develops the

system from a single heterogeneous structure-based digital neuron to a large-

scale neural network. The mouse cerebellum is selected as an ideal study,

since it has a massive number of neurons (up to billions) and plays a vital role in

animal motor control and balance movement mechanisms. The passage-of-time

(POT) cerebellum model is implemented in the new architecture: frame-based

network-on-chip. The presented digital cerebellum has approximately 100,000

neurons, and it can successfully reproduce timing memorable performances,

which a function to represent the passage-of-time (POT) over a range of tens to

hundreds of milliseconds. The system has 48 cores, 48 routers and one frame

master. Each core implements 2000 granule cells and 20 Golgi cells with a

connection ratio of 100:1. The routers are based on custom-designed address

event representation techniques to map random recurrent synaptic connections.

And the frame master is to maintain synchronization between cores and routers.

At this stage, the design strategy can be described as a pipeline-based multi-

core-based architecture with tailor-designed routing technique, which is an

efficient system for implementing biological brain networks.

60

4.1 Introduction

Smooth and robust motor control requires precisely timed muscle activations at

specific strengths. This is critically mediated by the cerebellum, which functions

to represent the passage-of-time (POT) over a range of tens to hundreds of

milliseconds, and is essential for organizing movements of different body parts

into a coordinated action [82]. Errors in POT encoding consequent to cerebellar

damages can lead to dysmetria or delays in movement onsets in these patients

[83]. This condition, usually described as ataxia, cannot be cured completely at

the moment, and affects millions of patients worldwide. To foster a potential

cure based on neuro-prosthetic technology, an efficient computational platform

that can favourably mimic the complex function of the cerebellar neural network

is important. Figure 4-1 shows a conceptual closed-loop system for a cerebellar

prosthesis.

POT representation in the cerebellum is clearly evident in the classical

Pavlovian delayed eyeblink conditioning [84][85], where animals learn the inter-

stimulus interval (ISI), or POT, between conditioned (CS) and unconditioned

(US) stimulus onsets upon repetitive training. It has been suggested that this

information concerning POT is encoded in the extensive cerebellar granular

layer. When excited by CS through mossy fibres (MFs), the population of

granule cells exhibits different bursting dynamics such that the sequence of

active cells does not recur for a sufficiently long time. This forms a one-to-one

correspondence between the active cell population and a time interval. Various

computational models have been developed to investigate a possible

mechanism in the granular layer for POT representation. Four classes of such

models have been reviewed in [86], including the delay line model [87][88],

spectral timing model [89], oscillator model [90] and random projection model

[91][33]. Among these computational models, the random projection model is

suggested to be both a robust and biologically plausible framework in the

representation of POT, and can also be used to reproduce the classical

Pavlovian delay eyeblink conditioning. This spiking network model makes use of

two critical properties of the cerebellar granular-Golgi layers: 1) extensive

random recurrent connections between granule and Golgi cells; and 2) long

temporal integration of input signals by the NMDA receptors, which are both

evident in the biological systems.

61

Thus far, this large-scale (~106 cells) spiking network cerebellum model has

been investigated by software simulation using PC and GPU implementation

[33][92]. However, in order to use the model in real-time biological experiments,

particularly in vivo, some form of compact digital real-time implementation with

versatile I/Os would prove valuable. A scalable hardware platform that can be

tailor-designed and takes advantage of highly parallel computing capability

would be greatly preferred. Such a system would be a powerful tool for helping

to explore the POT mechanism and related disease mechanisms in the

cerebellum. Future neuro-prosthetic developments could also benefit from an

efficient hardware platform for implementing a large-scale spiking network

model for real-time computation.

In general, CPU-based process platforms are limited by their sequential

computing architecture. The large latency makes them difficult to use in real-

time Brain Machine Interfaces (BMI). GPUs [93] are capable of parallel

computing but are constrained by memory and communication bandwidth

issues. Circuits can be implemented directly onto CMOS [94][95], but a single

implementation can be time-consuming. Field-Programmable Gate Arrays

(FPGAs) are a versatile reconfigurable digital computational platform that can

be used for both direct computational implementation and as a stepping stone

to compact low-power CMOS chip implementation. It contains massive flexible

programmable logic with concurrent high-speed operation, allowing direct use in

bench-top in vitro and constrained in vivo systems. If designs are then

translated to CMOS, the subsequent chips can be applied to implantable neuro-

prosthetic devices. In recent years, FPGAs have been extensively used in

neural system modelling and simulation of large-scale biologically realistic

neural systems [77][37][15][17].

Hardware implementations of cerebellar neural networks for neuroprosthesis

have already attracted the interest of neuroscientists and engineers. Bamford et

al [95] have designed a VLSI field-programmable mixed-signal array to produce

eyeblink conditioning performances by modelling the cerebellum system. This

has been fabricated as a core on a chip prototype intended for use in an

implantable closed-loop prosthetic system aimed at rehabilitation of associated

62

Figure 4-1: Conceptual closed-loop system cerebellum passage-of-time (POT)
prosthetic. Damaged biological granular layer is replaced by FPGA-based
granular-layer system. CS is a conditional stimulus while US is an
unconditional stimulus. MF is the mossy fibre and CF is the climbing fibre. PKJ
is the Purkinje cell. The granular layer with a red cross represents a damaged
biological one.

behaviour. While they have demonstrated a proof of concept of success in their

implementation, a highly simplified neural model with abstract modelling of

cerebellar information processing is used in the work. Such simplification is

convenient for hardware implementation, but lacks direct physiological

correspondence for quantitative comparison with the biological system. In

contrast, Yamazaki and Tanaka’s model [33] is more biologically realistic and

pays specific attention to the role of the granular-Golgi layer in timing and gain

control by the cerebellar cortex to reproduce experimental results. However, this

comes at the cost of a significant increase in the size and complexity of the

computational model in order to produce a robust system behaviour. As such,

an efficient implementation is required to overcome these computational

challenges, especially when real-time application is required.

Previously [96][51] I presented the concept of an FPGA-based network-on-chip

(NoC) hardware architecture for implementing the granular layer of a random

projection cerebellum model. It produced a network behaviour of POT

representation consistent with the simulation results presented in the original

63

paper by Yamazaki and Tanaka [33]. In this work I have conducted a more in-

depth investigation of the details of system performance implementation and

analysis. The system contains ~100,000 granule cells and ~1000 Golgi cells,

using a conductance-based, leaky integrate-and-fire neuron model. The

parameter values all have an experimental basis, such that the network model

produces realistic firing behaviour. In particular, three accomplishments are

highlighted in thisthesis: 1). I have reproduced the granular-layer firing patterns

for representation of POT in real time under normal as well as

pharmacologically perturbed conditions. 2) The architecture allows for efficient

scalability to 100,000 neurons and beyond and can be used for more complex

biological neural network applications. 3) I have eliminated multiplexing timing

errors and allowed for network profiling at key time points.

4.2 The passage-of-time computational model

The cerebellar granular layer consists of two main cell types, namely granule

cells and Golgi cells. The input signal from the pre-cerebellar nucleus to the

granule cells is conveyed by MFs (Figure 4-1). The spiking network of the

cerebellar granular layer developed in [33] is modelled as a 1 mm2 virtual sheet

composed of a square lattice arrangement of 32*32 Golgi cells and glomeruli,

and 320*320 granule cells. The same network with minor changes is used in

this paper. Figure 2 describes the topology between Golgi and granule cells.

Figure 4-2A illustrates the topology of the granular-layer model, which contains

1024 granule-cell clusters and a Golgi cell. The different colours represent

communities of closely connected cells within the network. Each granule-cell

cluster contains 100 granule cells. The size of the circles is proportional to the

number of other clusters that it is connected to. Each dot represents one

granule-cell cluster and one Golgi cell, as shown in Figure 2B. Every Golgi cell

receives excitatory input from its nearest granule-cell cluster, while Golgi cells

project randomly to the nearby granule-cell clusters such that each granule-cell

cluster receives inhibitory inputs from ~8 Golgi cells on average. The probability

distribution of number of synaptic connection from Golgi cell to granule-cell

cluster is shown in Figure 2C.

The equations for modelling the neurons and analysis have been detailed in [11]

and I briefly repeat the key ones here. The granule and Golgi cells were

64

modelled as conductance-based, leaky integrate-and-fire units, as described in

Equation 4-1:

𝐶
𝑑𝑉(𝑡)

𝑑𝑡
= 𝑔𝑙𝑒𝑎𝑘(𝐸𝑙𝑒𝑎𝑘 − 𝑉(𝑡)) + 𝑔𝑒𝑥:𝐴𝑀𝑃𝐴(𝑡)(𝐸𝑒𝑥 − 𝑉(𝑡))

+ 𝑔𝑒𝑥:𝑁𝑀𝐷𝐴(𝑡)(𝐸𝑒𝑥 − 𝑉(𝑡))

+ 𝑔𝑖𝑛ℎ(𝑡)(𝐸𝑖𝑛ℎ − 𝑉(𝑡))

+ 𝑔𝑎ℎ𝑝(𝑡 − �̂�) (𝐸𝑎ℎ𝑝 − 𝑉(𝑡))

Equation 4-1

where V(t) and C are the membrane potential at time t and the capacitance,

respectively, 𝐸𝑙𝑒𝑎𝑘 are the reversal potential and t̂ denotes the last firing time of

the neuron. The membrane potential depends on five types of currents: α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor-mediated, N-

methyl-D-aspartate (NMDA) receptor-mediated, leak current, inhibition current

and the post-hyperpolarization current. The conductance, g(t)′s, is calculated

by convolving the alpha function α(t) with the spike event δj(t) of presynaptic

neuron j at time t as follows:

 𝑔𝑐(𝑡) = �̅�𝑐 ∑ 𝑤𝑗𝑗 ∫ 𝛼(𝑡 − 𝑠)𝛿𝑗
𝑡

−∞
(𝑠)𝑑𝑠

 Equation 4-2

where g̅c is the maximum conductance and wj is the synaptic weight of neuron j.

A neuron fires a spike (δj (t) = 1) when its membrane potential exceeds a

threshold θ, and the post-hyperpolarization will follow. The conductance for the

post-hyperpolarization was given by:

 𝑔𝑎ℎ𝑝(𝑡 − �̂�) = exp (−(𝑡 − �̂�)/𝜏𝑎ℎ𝑝

Equation 4-3

I followed the same analysis procedures as in [33] for evaluating the POT

behaviour produced by the simulation model. I first computed zi(t), which

represents the average activity of a granule-cell cluster i:

 𝑧𝑖(𝑡) =
1

𝜏
∑ exp (−

𝑡−𝑠

𝜏
)𝑡

𝑠=0 (
1

𝑁𝑔𝑟
∑ 𝛿𝑗𝑗 (𝑠)) Equation 4-4

65

Figure 4-2: Topology of the granular-layer model. Figure A contains 1024
granule-cell clusters and a Golgi cell; the different colours represent
communities of closely connected cells within the network. The size of the
circles is proportional to the number of other clusters that they are connected to.
Each dot represents one granule-cell cluster and one Golgi cell, as shown in Fig.
B. The synaptic input number distribution is displayed in Fig. C.

where δj(s) is the spike event in the granule cell j in the cluster at time s, Ngr is

the number of granule cells in a cluster (100 in this case) and τ is the decay

time constant, which was set at 8.3 ms.

How the activity patterns of granule cell clusters evolved over time is evaluated

based on the similarity index, S(∆t). I first computed the autocorrelation of the

activity pattern between time t and t+∆t as follows:

𝐶(𝑡, 𝑡 + ∆𝑡) =

∑ 𝑧𝑖(𝑡)𝑧𝑖 (𝑡 + ∆𝑡)𝑖

√∑ 𝑧𝑖
2(𝑡)𝑖 √∑ 𝑧𝑖

2(𝑡 + ∆𝑡)𝑖

Equation 4-5

C(t, t + ∆t) takes a value between 0 and 1 since zi(t) is always non-negative. It

will be 1 if the activity pattern vectors zi(t) and zi (t + ∆t) are identical, and it will

be 0 when they are orthogonal, indicating that the activity patterns have no

overlap. Then the similarity index is computed as the timed average of Eq. (5)

over the CS duration, T, shown as follows:

𝑆(∆𝑡) =
1

𝑇
∑ 𝐶(𝑡, 𝑡 + ∆𝑡)

𝑇

𝑡=0

Equation 4-6

66

S(∆t) represents how two activity patterns separated by ∆t are correlated, on

average. If the similarity index decreases as ∆t increases, it indicates that

activity patterns have evolved with time into uncorrelated patterns.

I further computed the reproducibility index R(t) as follows:

(𝑡) =

∑ 𝑧𝑖
(1)

(𝑡)𝑧𝑖
(2)

(𝑡)𝑖

√∑ 𝑧𝑖
(1)2(𝑡)𝑖 √∑ 𝑧𝑖

(2)2(𝑡)𝑖

Equation 4-7

where 𝑧𝑖
(1)(𝑡) and 𝑧𝑖

(2)
(𝑡) are the activity patterns of granule-cell cluster i at time

t for two different input signals. The reproducibility index quantifies how activity

patterns elicited by two different input signals differ from each other over time

and serves as a measure for the robustness of the POT representation by the

network model.

4.3 Hardware architecture design

To implement the POT model, I developed a frame-based network-on-chip

(NoC) hardware architecture on a FPGA. The conceptual structure is shown in

Figure 4-3.

In Figure 4-3, the left side shows the n by m frame-based NoC system, where

the size can be adjusted as needed. The architecture consists of three main

components: the neural processor, the router and the global controller. In this

work, I implemented an NoC system containing 48 processors. The neural

processor calculates the neural activates, with each processor implementing

2000 granule cells and 20 Golgi cells with a connection ratio of 100:1. The

router is used for implementing the inhibitory connections from Golgi cells to

granule clusters. A unicast routing strategy is applied due to the optimization of

processing, power consumption and areas. It involves a direct transmission

package from the source to the destination, and the package contains both

source and destination identifiers. According to the destination identifier

information, routers are able to decide the transmitting directions in the network.

The interface modules packetize spike events received from the processor

ready for transmission through the network. When the interface modules

receive packets the message is decoded and transmitted to the required cells

within the neural processor. Finally, a frame master is implemented to

67

coordinate neural and communication processing periods. The details of the

hardware architecture (four processors) are displayed in Appendix D*.

4.3.1 Neural computing

The neural processor data path is shown in Figure 4-4. Two types of neurons

are implemented in the processor: the granule cell (GR) and the Golgi cell (GO).

Both models use the same hardware architecture but with different parameters.

Each granule cluster, containing 100 granule cells, connects to one Golgi cell.

The activities (1 or 0) of all the 100 granule cells will be calculated first, whilst an

Figure 4-3: A conceptual FPGA-based network-on-chip hardware architecture.
The figure on the left is the scalable n by m structure of the frame-based
network-on-chip system. It contains n*m neural processors, n*m routers and
one global controller. This architecture can be scaled up depending on the
required model. In this paper, I implemented a network-on-chip system that
contains 48 processors. On the right, there is a detailed structure of a module.
The neural processor calculates the neural activity, with each processor
implementing 2000 granule cells and 20 Golgi cells with a connection ratio of
100:1. The router is for implementing the connections from Golgi to granule
clusters. The interface modules packetize spike events received from the
processor ready for transmission through the network. When the interface
modules receive packets the message is decoded and transmitted to the
required cells within the neural processor. Finally, a frame master is developed
to coordinate neural and communication processing periods.

accumulator will add all of them together and in the 100th clock cycle send the

summated value to the Golgi cell model as an excitatory input.

Figure 4-4B details the data path inside the neural model, which takes two

computing stages: ion channel activities and integration. Each stage takes four

clock cycles. Because of the parallel computational architecture, the latency in

68

each individual path has to be consistent; therefore appropriate delay blocks

(the rectangular blocks) are added as necessary.

Figure 4-4C and Figure 4-4D show the subcomponent circuits, including the

inhibition and excitation circuits and FIFO-based delay circuits. Since each

neural processor implements 2000 granule cells and 20 Golgi cells, a pipelining

technique is applied for reducing hardware resources. A long pipelining stage is

required for storing granule cells calculation intermediate values. A First-In First-

Out (FIFO)-based delay circuit is designed for achieving long computational

stages.

4.3.2 Network-on-chip*

To manage the transmission of action potentials between Golgi cells and

granular clusters I have developed an NoC infrastructure. This system allows

for arbitrary connectivity between Golgi cells and granular clusters. Each

processing element is connected to a router through which the action potentials

are communicated. The routers are connected together in a mesh topology as

shown in Figure 4-4.

Routing strategy is decided on the system bandwidth, the memory overheads,

the power consumption and area requirements. Bandwidth and memory size

can mainly determine the power and areas consumptions. Due to the relative

low connections from Golgi to Granule cells, the power versus area

relationships are similar for unicast, multicast and broadcast routing strategies

are similar. However, multicasting and broadcasting approximately require 2x

as much memories as the unicasting strategy, because it needs to store extra

routing information in the routers. Therefore, a custom designed unicasting

strategy is applied on the system

When a Golgi cell produces an action potential the interface fetches a list of

destination granular clusters from memory, and an individual packet is

generated to be sent to each of these destinations1 within the network. The

connectivity of the neural network can be updated by adjusting the contents of

the memory. A user may alter the contents of the memory to adjust the

1
 *: The presented work is finished by my collaborator Graeme Coapes, a PhD student at

Newcastle University.

69

connectivity by injecting configuration packets into the network. This can be

done at start-up or part way through simulation if required by halting the system

by using the global frame master.

The packet format is shown in the lower panel of Table 4-1. Packets are

classified by the setting of a two-bit-type identifier. The generated spike packet

contains the address of the granular cell, allowing for the routers to direct the

packet to the correct processing elements. Each granular cluster summates the

packets received. This value is used as an input into the granular clusters.

Packets are transmitted between routers using a four-phase asynchronous

protocol and a parallel data bus. The routers are output buffered using a two-

deep FIFO memory element.

Figure 4-4: The neural processor structure and the data path of neural model.
Fig. 4A shows the conceptual structure of the processor and Fig. 4B shows the
data path of the neural model. Both GR and GO models use the same hardware
architecture but with different parameters. The rectangular block is the delay
function and the triangular block (gain) is the different ion channel conductances,
which refer to Eq. (2). Fig. C and Fig. D show the subcomponent circuits:

70

excitation (inhibition) circuits and FIFO-based delay circuits. The triangular
blocks denote the NMDA and AMPA receptor conductance.

Table 4-1: Standard spike package format

Name Number of bits Value

Golgi Spike Packet 2-bit x0

Configuration Packet 2-bit x1

Core ID 6-bit \

Cluster ID 5-bit \

Figure 4-5: Example of mapping of neural network to a network-on-chip: a) A
sample Golgi neural network with a single Golgi cell connected to three out of
four granule-cell clusters. b) Four processing cores are shown. Each core may
model multiple Golgi cells. When the Golgi cell X produces an action potential,
individual packets are transmitted to each connected granule-cell cluster. The
targeted granule-cell clusters are distributed throughout the mesh NoC.

To inspect the state of the model the network-on-chip is also responsible for

transmitting information externally. When a Golgi cell produces an action

potential, a ‘Golgi Message’ packet is also transmitted to a specialist processing

element. This processing element buffers all received packets and transmits

these packets to a PC. This enables a user to review the state of each Golgi cell

at any time.

71

4.3.3 Frame master

In order to maintain synchronicity within the system a frame master is used. The

master is responsible for ensuring that all packets are transmitted to their

destination before the processing elements start to process the next time step.

This ensures that the granular clusters receive all their updates within the

correct time period.

For example, as shown in Figure 4-6, the duration of the network

communication depends on the load of the network, which is determined by the

frequency of Golgi cells spiking and the Golgi cell topologies. This varies for

each frame. In each frame, once the first Golgi cell spike event is released (at

time t2), the router starts to process the corresponding synaptic packages. After

all 20 Golgi cell spike events are computed (at time t3), the processor’s duty in

frame 1 is finished. Then the neural processor needs to start computing the next

20 Golgi cell activities for frame 2. However, in frame 1 after time t3, the

network is still processing the current 20 Golgi cell communication tasks.

Therefore there is extra time allocated for the network to finish the first frame,

before frame 2 begins. As a result of this, the frame master generates a low-

level signal that disables the processor clock for the t3–t4 period until the

network has completed the current frame routing task. The frame master then

enables the processor to allow it to start computing again.

Figure 4-6: The frame master performances. In frame 1, the router processing
time is longer than the processor’s, so the frame master temporarily disables
the neural processor at t3–t4 periods until the router finishes its current traffic
loads, while in frames 2 and 3, because the routing time is shorter than the
processor time, the processor clock is continuously running.

72

4.4 Results

4.4.1 The hardware passage-of-time (POT) results

Figure 4-7 shows a comparison of the membrane potential of a fundamental

granule (Eq.(1)) neuron model simulated by the FPGA neural processor and by

software (implemented in C). A fixed-point system with 40-bit and 22-fractional

bit is employed in this system, and the selected length of bits has to guarantee

each operation has sufficient precision to avoid data overflows and mismatch.

The same inputs were given to both simulations.

They produce essentially identical results with very minor differences due to

hardware truncation errors. Increasing the length of bits can eliminate truncation

errors but introduce resource utilization waste.

Figure 4-7: The comparison results of a fundamental granule (Eq.(1)) neuron
model simulated by the FPGA neural processor and CPU. The CPU
implementation is the original software described in [33], running with an Intel
Quad Core™ i7 CPU with 8 GB of RAM under the Ubuntu operating system.

The hardware POT simulation results are summarized in Figure 8. Poisson

spikes were fed into the simulated network to represent CS inputs through MFs.

The simulated network was first fed at each MF with 5 Hz Poisson spikes for

300 ms to set the network to steady state, then 30 Hz Poisson spikes, preceded

by 5 ms 200 Hz spikes, were given to excite the network.

Figure 4-8a shows the spike patterns of 40 granule cells randomly chosen from

different granule-cell clusters. These granule cells show different temporal

activity patterns. Specifically, they show a random repetition of transitions

between bursting and silent states. These bursts are sustained for tens to

hundreds of milliseconds. In contrast, the Golgi cells fire spikes rather regularly

73

as shown in the bottom panel of Figure 4-8 (a). Figure 4-8 shows the similarity

index of the activity pattern against the time shift Δt (Equation 4-6). The gradual

decrease of the similarity index with |Δt| demonstrates a smooth encoding of

POT from the onset of CS, indicating that the populations of active granule cells

change gradually over time such that no active granule-cell clusters appear

more than once throughout the simulation. Both of the software and hardware

simulation results are consistent with results shown in [11], which confirms a

proper POT behaviour in the simulation, in that the sequence of active granule

cell population maintains a one-to-one correspondence with the POT from the

CS onset. The hardware simulation result is very comparable with software

simulation, with mean error being less than 5% (Figure 4-8). The error is mainly

caused by hardware truncation errors. Figure 8c shows the reproducibility index

(Equation 4-7) from the hardware simulation, which compares the activity

pattern generated by two different Poisson spike inputs. The reproducibility

index remains high (>0.7), indicating that the POT encoding will remain robust

despite in the spite of the variability of signals in the two stimulating inputs

through MFs. This shows that the neuron population can maintain consistent

POT representation across trials when, for instance, learning of delayed

eyeblink conditioning over multiple training sessions is to be incorporated in the

model [33].

4.4.2 Effects of blocking NMDA channels on POT representation

To further verify the hardware simulation results, I adapted the model to

investigate the effect of blocking NMDA channels, which play a critical role in

delayed eyeblink conditioning [97]. The hardware and software simulation

results are summarized in Figure 8d–f. When NMDA channels are blocked in

either granule cells or Golgi cells, granule cells lose the temporal structure in

their firing; instead, they fire spikes in a rather continuous manner (Figure 4-8d).

The similarity index becomes flat except for |Δt| smaller than ~30 ms. Within the

time scale of 30 ms, there are a very limited number of spikes to encode a

robust temporal structure for POT. On the other hand, 30 ms is too short for

physiologically relevant POT in a classic firing pattern after NMDA-R blockade

cannot capture a temporal structure on a timescale of physiologicalrelevance.

The disruption of POT encoding consequent to NMDA channel blockade is

74

reflected by both software (Fig. 8e) and hardware simulation (Fig. 8f). The

results (both software and hardware) are consistent with those presented in [33].

Figure 4-8: (a): Spike patterns of 40 granule cells and Golgi cells chosen
randomly in an implemented granular layer. (b): Comparison of similarity index
between software and FPGA simulations. The grey areas are the standard
deviations of the hardware results. The errors between the two results are
shown at the bottom. The maximum error is less than 5%. (c): The
reproducibility index is calculated by Eq. (5). It maintains a high value, which
suggested a robust POT representation despite the input variability. (d): Spike
patterns of 40 granule cells when NMDA channels of granule cells (upper panel)
and Golgi cells (lower panel) were blocked. Each neuron was chosen randomly
from 40 different granule-cell clusters. The firing of the cells become rather
regular and hence lost the ability to encode temporal information about POT. (e)
and (f) : Comparison of similarity index between software and FPGA simulations
when NMDA channels of granule cells (dotted line) or those of Golgi cells
(dashed line) were blocked. The similarity indices become flat, indicating a loss
of temporal structure in the granule cells’ activity pattern.

4.4.3 Frame master performances

In particular, I examined the frame master performances of a two-by-two

network-on-chip system as a case study. The simulation results are shown in

Figure 4-9.

75

Figure 4-9: The simulation results of the two-by-two network-on-chip system.

In Figure 4-9, at the frame update clock cycle time point 82,000 ns, router 1 (r1),

router 3(r3) and router 4(r4) all released control signal “1”, which indicates that

they have all finished their routing tasks. Only router 2 still generates the low-

level signal “0”. This shows that in the communication duty of the Golgi cell still

being performed by router 2. As a results of this, the developed frame master

immediately stops the clock from processor blocks computing clock_m until the

router 2 control signal becomes a high level signal After five clock cycles, the

process clock becomes enabled again since all the routers have finished their

current frame routing missions. Then the entire system is ready to calculate the

next frame process duties.

Figure 4-10: The performances of four system processors.

76

It can be clearly seen in Figure 4-10 that the current frame process duration is

105 clock cycles (83,055,100-82,005,100 = 1,050,000 ns), which is five clock

cycles more than the standard frame process period of 100 clock cycles. This

illustrates that the developed frame master successfully “freezes” the

processors’ five clock cycles to avoid routing package traffic congestion.

4.4.4 FPGA-based granular layer for neural rehabilitation

I illustrated a hypothetical in vivo experimental set-up for closed-loop prosthetic

application using the developed FPGA granular-layer system in Figure 4-11A.

Biological neuronal spike signals will be recorded by using a multi-channel

neural recording system that will then be used as inputs to the silicon granular-

layer model. These neuronal spikes will be processed by the silicon-granular

layer, which then generates the appropriately timed output discrete spikes to

trigger the stimulation to be injected into the animal. Figure 4-11B shows an

electronic system set-up to demonstrate such an experiment. A Virtex-5 board

is employed to simulate the neural spike inputs conveyed by MFs, which are

delivered to the FPGA cerebellum model via four-bit wires. The input discrete

spikes are modelled as two 5 Hz and two 30 Hz Poisson spike trains in four-bit

signals. The developed silicon granular layer is implemented on the Virtex-7

board with the I/O interface for displaying the system output on the oscilloscope

in real time (Figure 4-11C). The displayed GR spikes were taken from three

neural processors. The frame-based signal, which is used to monitor and verify

system processing behaviours, is also shown. When each frame workload is

finished, the frame-based signal is changed to a high-level value, and each

frame uses 25.6 us (the distances between X1 and X2) to mimic 1 ms real-

world activities. Hence, this set-up can complete 1 sec real-world activities in

25.6 ms at full speed as shown in Figure 4-12. The system specifications are

summarized in Table 4-2.

77

Figure 4-11: The overall system experimental set-up. A is the hypothetical in
vivo closed-loop experimental set-up for cerebellum rehabilitation. B is an
electronic set-up to demonstrate the feasibility of the in vivo experiment. A
Virtex-5 board is employed to simulate the biological spikes conveyed by MFs,
which are delivered to the FPGA cerebellum model via four-bit wires. The input
discrete spikes are modelled as two 5 Hz and two 30 Hz Poisson spike trains in
four-bit signals. The developed silicon granular layer is implemented on the
Virtex-7 board with the I/O interface for displaying the system output on the
oscilloscope in real time. C shows the real-time input/output discrete spikes and
the frame-based signal.

78

Table 4-2: FPGA-based granular-layer specifications

Timing issues

Maximum clock frequency 121.945

MHz

Minimum period 8.2 ns

Hardware resource utilization

 Processor Router Module Total

Slice register 2884 792 3676 176424

(29%)

Slice LUTs 4379 1213 5592 268455

(88%)

Block

RAM/FIFO

20 0 20 960

(93%)

DSP48E1s 48 0 48 2304

(82%)

Power consumption

Dynamic power - - 60 mW 2.88 W

Figure 4-12: The real-time computational condition among CPU, GPU and
FPGA for simulating 1 s activities. The CPU and GPU results are cited from
previous work [92].

79

4.5 Discussion

4.5.1 Scalability

In Figure 4-13 I compare the performance of the presented design with three

alternative approaches previously developed for implementing a spiking neural

network. In addition to its higher computational speed, the FPGA-based NoC

approach clearly demonstrates scalability compared with other approaches. The

computation time remains almost constant even if the network size increases by

an order of magnitude. (For both FPGA-based systems, there is an assumption

of thay the resources corresponding increasingly as neuron number rises.)

Figure 4-13: Scalability of four different approaches. The dotted lines represent
the estimation of system performances, whereas solid lines represent the
measurements. The FPGA-based NoC computation time remains constant due
to its parallel nature and the efficient communication system.

The architecture of FPGA allows a variety of techniques to be employed to

reduce the overall memory consumption. As such, memory requirement of

FPGA based optimized system scales much less steeply. For instance, the

major memory consumption is to store the connectivity information of the

individual granule and Golgi cells. In implementing the network connectivity, the

NoC architecture requires only tiny resources for storing routing information, in

that each Golgi neuron package is only 15 bits. On the other hand, pipelining

technique is employed to significantly save memory resources when simulating

a large number of neurons.

80

Another alternative is to use GPU processors, which can supplement or even

replace CPUs for parallelizable code. The rise of GPU languages such as

CUDA and Open CL has simplified their use enormously. Modern GPUs exceed

5000 cores and can increase processing speed by orders of magnitude for

parallelizable tasks [23][98][92]. Additionally, GPUs offer extremely high raw

memory bandwidth, though this is difficult to achieve in practice and requires

adherence to strict memory access patterns [23].

Nevertheless, with sufficient power, it is possible to implement spiking neural

networks for high-speed computation on a GPU. However, this would be at the

cost of relatively large power consumption, which is not scalable to prosthetic

devices. I therefore chose an FPGA platform with large numbers of I/Os for

potential in vitro and in vivo operation.

One key difference between the FPGA platform and processor-based

implementations is that I utilize distributed, localized memory banks that avoid

sharing of global memory resources. This avoids delays associated with

accessing global memory and reduces power consumption by minimizing the

size and operating frequency of channels between processors and memory.

A further variance of previous work is the use of frame-based encoding. One

issue with real-time NoC systems is that spiking information encoded in latency

or frequency can be prone to distortion due to congestion [99][100][101]. In

contrast, I utilize a stop-start approach whereby all the neural spikes processed

and then stopped to allow full transmission around the network whenever

necessary. This is actually akin to biology, whereby synaptic transmission,

dendritic signal integration and action potential initialization can take time, but

the transmission speed is actually very fast [102]. In addition to low distortion,

this approach also allows us to easily compare among computational models. I

can simply extract a specific frame N from the simulations in all cases for

detailed comparison.

An alternative digital implementation of an NoC is perhaps a bus between

processing cores. This will form a limiting factor whereby increases in frequency

lead to distortion of the information. Alternatively, some of these effects can be

alleviated using traffic management via hierarchical AER architectures [103].

81

Using an NoC infrastructure as opposed to a bus also reduces power

consumption within the design as it allows for much reduced clock frequency.

Using a Xilinx XPower Analyzer I estimate that when implemented upon a

Virtex-7 VC707 XC7VX485T-2FFG1761C Evaluation Kit, each module,

containing a processor, router and interface, consumes 60 mW of dynamic

power, equating to a total dynamic power consumption of 2.88 W when running

at full speed, or 60 mW per processing module.

4.5.2 Comparison of other techniques

There are several possible alternative techniques to the frame-based network-

on-chip architecture. Currently, SpiNNaker [3], NeuroGrid [104] and IBM

SyNAPSE [11] are projects that build custom chips or systems for efficient

large-scale simulation of general neural network models. These systems are

powerful and innovative; however, they may not be optimal for the system that I

am implementing in this paper. For example, SpiNNaker with multicast strategy

will require the addition of extra memory resources to control the routing at

some intermediate nodes. With the unicast strategy, routing is determined

purely from the packets contents - reducing the memory overheads.NeuroGrid

employs a smart approach to combining analogue circuits for mimicking the

neural process and digital circuits for implementing routing components. It can

potentially save a significant amount of energy consumption. But analogue

circuit-based dimensionless models are not ideal for mapping conductance-

based leaky integration-and-fire neurons in a POT model. IFAT [105] is also a

well-established platform for brain network real-time operation, but the

analogue-based integrate-and-fire array may not provide good scalability.

I am seeking to further optimize the system and to use it for other applications.

Cassidy et al [106][107] developed a neuro-array architecture for a general

large-scale neuromorphic systems with corresponding analysis. Their design

principles, including external SRAM technique, can provide new insight for

optimizing the system. Also, applying the developed silicon granular layer to

perform pattern recognition would be another implication that is similar to the

new IBM chip TrueNorth [11].

In fact, the developed frame-based network-on-chip architecture is general for

spiking neural networks, although in order to implement other models, I need to

82

modify the components appropriately for the target model. For instance, in this

work the routing components (transmitter, router and receiver) are custom

designed for implementing POT recurrent random network connections; and

neural processor architecture is also specifically designed for mapping the

connections from granule cells to Golgi cells. Further system tweaking will be

required to optimize the performance for a different target model.

4.5.3 Neuro-prosthesis applications

For translation into neuro-prosthesis, the architecture lends itself easily to

electrical [108] or optical stimulation methodologies [109][110]. The FPGA-

based granular model can correctly predict responses of POT behaviour and

thus be used to interface with in vivo and in vitro experiments. Furthermore, it is

straightforward to translate generated spikes directly to tissue as each will be

encoded with a destination address.

For long-term neuro-prosthesis experiments this design can be translated

directly to an ASIC platform in order to increase portability and to reduce power

consumption. I estimate that by translating the design into CMOS, each module

will consume 1.3 mW in high-speed operation and only 0.6 mW in real-time

operation, giving a total power consumption of 28. 8mW for implementing a

neural network containing 100,000 elements. This compares favourably to

power requirements in the brain whereby exceeding 100 mW can cause thermal

damage [111].

4.6 Conclusion

The goal of the work has been to implement a real-time cerebellar granular-

layer model onto an FPGA hardware platform utilizing an NoC hardware

architecture. The design can achieve (more than) real-time operation for a

system of 1000 Golgi cells and 100,000 granule cells on a single FPGA board.

This is achieved via an efficient implementation of the mathematical models of

the neuron cells, and the use of a frame-based architecture that eliminates

congestion distortion of spike timing in multiplexed networks. The design is also

highly scalable in that computation time remains almost unchanged for a much

larger network model.

83

The major contributions of this paper are summarized as follows: 1) An efficient

FPGA-based NoC hardware architecture is developed for implementing a large-

scale cerebellar granular-Golgi layer model for POT encoding; 2) The

implementation is computationally efficient in that it can complete a 1 sec

simulation in 25.6 ms and that FPGA provides precise timing control. Together

they allow our design to be readily adapted for real-time closed-loop in vitro or

in vivo experiments; 3) The NoC architecture is highly scalable and hence it is

now possible to simulate the full-scale granular layer with a cell density of 1

million cells/mm3 as in the real brain, which is 10 times the size of the current

model. Such simulation power can open up new possibilities for understanding

the dynamics of the cerebellar network; 4) The design can be a potential neuro-

prosthetics tool for future experimental and clinical applications owing to its high

computational power, flexibility, high scalability and power efficiency.

84

Chapter 5 Case Study: Central Pattern

Generator Prosthesis

This chapter aims to explore digital neural circuit neuro-prosthesis applications.

A reliable pyloric central pattern generator prosthesis technique is presented to

explain the methodology in details. The biological pyloric network is an

appropriate platform since individual neuron characters and synaptic

connections are clearly identified. The approach steps, from software modelling,

hardware implementation and system-level reliability investigation to

experimental set-up, are discussed in depth. The simulation results

demonstrate that the developed system can successfully restore the damaged

network functionalities in different external environments. This work can be

considered as a framework of digital circuits for neurorehabilitation applications.

85

5.1 Introduction

Neurorehabilitation is a vital technique that aims to help people disabled by

injury or disease affecting the brain, spinal cord or muscles. It is a collection

process that specifically focuses on a person’s recovery potential and can help

a patient to live a more normal, active and independent life. Traditional

neurorehabilitation techniques include occupational [112], psychological [113],

speech and language therapies. It shows its effects and strongly helps people

to recover from diseases (e.g. stroke, Parkinson’s and brain injury), both

mentally and physically.

However, when these approaches confront neurologic disorders such as ataxia,

epilepsy and conditions caused by damage to the nervous system, they display

limitations and constraints since neural circuits are fundamentally injured.

Therefore, currently there is still no effective rehabilitation approach to cure

these diseases.

Nowadays, with the rapid development of neuroscience and electronic subjects,

there is potentially a new way to address this dilemma: using silicon neurons to

replace the damaged real neurons to restore original biological functionalities.

Achieving this technique that integrates neural network and electronic circuits

into an entire system is a great challenge. The fundamental issue is that the two

systems utilize totally different computing mechanisms: electronic circuits based

on Metal-Oxide-Semiconductor (MOS) utilize small amounts of dopants to

create conductivity and are transformed into specific circuits for daily

applications, while biological neurons receive multi-synaptic inputs from

synapses, and integrate this information to generate spike patterns related to

movement behaviours. The challenges lie in the fact that the silicon neurons

have to accurately replicate various biological system spiking patterns in real

time. More importantly, since the neural network is adaptive to the external

environment, it will automatically change its bursting frequency according to the

sensory inputs. This indicates that electronic systems have to modify their

computational speed in real time to follow the biological ones.

Previously, Berger et al [114] showed an external silicon chip connected to rat

and monkey brains to achieve memory prosthesis. R.J. Vogelsteinet al [49]

created a neuromorphic chip to reproduce biological spinal central pattern

86

generator (CPG) activities and used this chip to support a cat walking in vivo.

These works all serve as strong evidence of the feasibility of this concept.

In this work, I propose a reliable and capable system specifically for CPG

function restoration, which is shown in Figure 5-1. Compared to the previous

systems, the work is stronger frow two aspects: silicon neurons’ bio-plausibility

and system reliability. Firstly, the digital neural circuits are designed to

reproduce both real CPG control and pharmacological outputs, which are

particularly aimed at conditions with totally damaged and partially damaged

systems. Secondly, the developed system is capable of robustly changing the

computing speed to achieve the best communication performances with biology

by using an adaptive control mechanism.

The rest of the paper is organized as follows. Section 5.2 briefly describes the

pyloric CPG modeling work. Section 5.3 explains the system architecture and

individual component functionalities. Section 5.4 presents the hardware

simulation and biological experimental results. Section 5.5 provides a

comprehensive discussion, and in Section 5.6 a conclusion is presented.

Figure 5-1: The conceptual system architecture. V is the membrane potential, I
is the generated current and F is the neural bursting frequency.

5.2 Pyloric CPG modelling

5.2.1 Pyloric behaviours

The pyloric network is one of two CPGs in the stomatogastric ganglion (STG) of

a crab. It contains around 14 neurons with complex connections [1]. The

function of the pyloric network is to control striated muscles that dilate and

87

constrict pyloric areas in the stomach [115]. It has been investigated for almost

50 years and contributes many important neural mechanisms, such as adaption

[116], compensation [117] and evolution [32], to the neuroscience society.

Figure 5-2 describes network rhythms and synaptic connections.

Figure 5-2: The pyloric network synaptic connectivity and output patterns. There
are six neurons in the network: AB, PD, PY, LP, VD and IC. The figures are
cited from [118].

In the pyloric network, neuron AB is electrically coupled with neuron PD as the

pacemakers in the whole network. At first, the PD and AB neurons together

inhibit the LP and PY neurons. Then the LP neuron rebounds before the PY

neurons due to various factors, and in turn inhibits the PY neurons. When the

PY neurons rebound from the inhibitions, they in turn terminate LP neuron

bursts. The firing frequency varies from 0.5 Hz to 3 Hz [115].

The muscles active in each phase of the pyloric cycle are shown in Figure 5-3.

Activity of the pyloric dilator muscles mediated by the two PD neurons appears

to open a valve in the pyloric region, which is then closed in the second phase

by an antagonist, the lateral pyloric muscle operated by the LP cell. In the third

phase, a sheet of pyloric muscles contracts under the activation of several PY

neurons (divisible into PE and PL subtypes), giving overall a peristaltic

appearance to the pyloric surface. The two muscles located in the anterior

(cardiac) portion of the stomach control a curious valve structure [119].

5.2.2 Modelling

I model the pyloric CPG in three different stages. In the first stage, I analyse

and investigate which factors strongly influence the pattern generation

88

according to the biological experiment recordings; in the second stage, based

on previous results, I model the pyloric pattern generation mechanism at

qualitative level to give a fundamental architecture; in the third stage, the

specific neural models will be selected and parameters will be optimized to

achieve exactly the same behaviours as the biological one. The model will then

be quantitatively defined.

Figure 5-3: The pyloric muscle activities in a lobster stomach. Neuron PD
controls muscle d; neuron LP controls muscle c1 and PY controls muscle c2.
The figure is cited from [119].

Four factors will be described in the first stage: commissural inputs, synaptic

connection, oscillators and non-oscillators. Commissural inputs are from inter

neurons, and the inter neurons make excitatory synaptic contact with all pyloric

cells except the oscillators AB and PD. Oscillators are neurons AB and PD

while the other neurons are non-oscillators. Synaptic connection is the topology

of this pyloric network. The main difference between oscillators and non-

oscillators is that oscillators can generate bursts without inputs but non-

oscillators cannot. The influences of these four factors [120][38][121][118] on

pattern generation are displayed in Table 5-1. The conclusions can be

summarized as below:

 With commissural inputs contacted, this pyloric circuit can still generate

spiking patterns even with one or two lost oscillators.

 Without commissural inputs, this pyloric circuit can only generate spiking

patterns with complete oscillators (AB and PD) and the conditional

oscillator LP.

 A synaptic connection is necessary for generating rhythm patterns.

According to these important findings, I translate this information into a

visualized model, which is shown in Figure 5-4. The model uses three different

measurements to define network properties: neuron bursting ability, synaptic

strength and resting potential values. It is shown that neurons AB and PD have

the strongest bursting generation behaviours and neurons IC and PY seem to

89

be inactive neurons. AB and PD drive IC and PY for bursts, and for synapse

properties, both AB and PD have a strong inhibition to neuron LP. Also, neuron

LP has the same effects as neurons PY and VD. But the synaptic activation

among neurons LP, IC and VD is quite weak and exerts a tiny influence on all

the entire network pattern generations.

Table 5-1: The influences of three factors on CPG spiking pattern generation

In the final stage, these neurons are mimicked by the Hindmarsh-Rose (HR) [54]

model. The reasons for choosing this model are the relatively simple

mathematical equations and strong bio-plausibility. Neuron functions such as

repetitive firing, post-inhibitory rebound and plateau properties can all be

90

reproduced by the HR model, and the equations are shown in Equation 5-1 –

Equation 5-3:

 𝑑𝑥

𝑑𝑡
= (−𝑥3 + 𝑎 × 𝑥2 + 𝑦 + 𝐼 − 𝑧) Equation 5-1

 𝑑𝑦

𝑑𝑡
= (1 − 𝑏 × 𝑥2 − 𝑦)

Equation 5-2

 𝑑𝑧

𝑑𝑡
= (𝑟(𝑠(𝑥 − 𝑥𝑜) − 𝑧))

Equation 5-3

 Where 𝑥(𝑡) is the membrane potential, which is written in dimensionless units,

and 𝑦(𝑡) and 𝑧(𝑡) can be considered as fast and slow ions variables. The model

has eight parameters: 𝑎, 𝑏 , 𝑐, 𝑑, 𝑟, 𝑠, 𝑥𝑜 𝑎𝑛𝑑 𝐼 . The parameter I indicates the

current that injected in the neuron, is taken as a control parameter. For synaptic

modelling aspects, in line with [122] and [123], I employ these two models as

electrical and chemical synapses. For electrical synapse, it can be modelled by

resistances to capture gap junction behaviours that are both bidirectional signal

transfer and synchronization. However, chemical synapses remain the key

communication in this network. I employed a synaptic model in Equation 5-4 –

Equation 5-6:

 𝐼𝑠𝑦𝑛 = 𝑔𝑠𝑦𝑛 × 𝑆 × (𝐸𝑠𝑦𝑛 − 𝑉𝑝𝑜𝑠𝑡) Equation 5-4

 (1 − 𝑆∞) × 𝜏𝑠𝑦𝑛
𝑑𝑆

𝑑𝑡
= (𝑆∞ − 𝑆) Equation 5-5

𝑆∞(𝑉𝑝𝑟𝑒) = {tanh
(

𝑉𝑝𝑟𝑒 − 𝑉1/2

𝑉𝑠𝑙𝑜𝑝𝑒
)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑉𝑝𝑟𝑒 > 𝑉1
2

Equation 5-6

where Vpost and Vpre are the post- and pre-membrane potentials, Esyn is the

resting potential and gsyn is the conductance, S is the ration between 0 and 1,

and V1/2 and Vslope are synaptic half-activation voltage and slope voltage.

The parameters of each neuron and synapse are shown in Table 5-2 and Table

5-3.

Table 5-2: Pyloric neuron parameters

Neuron AB PD LP PY VD IC

𝑎 2.7 2.7 2.8 2.6 2.8 2.8

𝑏 0 0 0.2 0.2 0.2 0.2

𝑟 0.003 0.003 0.003 0.003 0.0021 0.0021

𝑠 4 4 4 4 4 4

𝑥𝑜 -1.1 -1.1 -1.1 -1.1 -1.2 -1.2

91

Figure 5-4: The qualitative pyloric computational model. Neuron bursting
capabilities, synaptic strengths and resting potential values are fully described
in this model.

Table 5-3: Pyloric synapse parameters

Synapse 𝑔𝑠𝑦𝑛 𝑉1/2 𝑉𝑠𝑙𝑜𝑝𝑒 𝐸𝑠𝑦𝑛

LP→PD 0.5 1.5 0.02 -10

AB→LP 0.5 1.5 0.02 -20

PD→LP 0.5 1.5 0.02 -20

PY→LP 0.5 1.5 0.02 -5

VD→LP 0.5 1.5 0.02 -5

LP→PY 0.5 1.5 0.02 -15

PD→PY 0.1 1.5 0.02 -5

AB→PY 0.1 1.5 0.02 -5

VD→PY 0.1 1.5 0.02 -1

LP→VD 0.7 1.5 0.02 -15

AB→VD 0.5 1.5 0.02 -10

IC→VD 1 1.5 0.02 -5

PD→IC 0.5 1.5 0.02 -10

AB→IC 0.5 1.5 0.02 -10

PY→IC 0.2 1.5 0.02 -5

VD→IC 0.2 1.5 0.02 -1

5.3 System architecture

The system mechanism is described as follows: the damaged CPG receives

sensory inputs and generates motor signals to control muscles; at the same

time, it sends outputs to the digital CPG via the neural interface. After the

92

process time, the digital CPG feeds back calculated recovery currents to restore

the damaged original functionalities. Meanwhile, the output frequency of the

digital CPG is adaptive in real time to biological CPG bursting frequency

through adaptive control mechanisms to maintain system reliability. The

individual blocks are discussed below.

5.3.1 Digital CPG

I implement the previously developed pyloric model on a parallel computational

platform FPGA as the prosthesis processor. The hardware architecture is

shown in Figure 5-5.

A classic timing multiplexing technique is employed to save hardware resources.

A timing division multiplexer (TDM) has six channels; each channel is

responsible for one neuron’s activities. And the TDM selects input signals

sequentially for calculation, while the corresponding parameters will also be

sent from the block of initial states.

The key design principle for applying timing multiplexing technique to build a

biological network is shown in Equation 5-7.

Figure 5-5: The hardware architecture of digital CPG. The SI block is the
synapse integration; signal C is the control signals from the adaptive controller;

93

the block of initial states is used to pre-store different neuron parameters; the
block of delay is applied to balance computing latency.

 𝑡𝑖 = 𝑛 = 𝑡𝑐 Equation 5-7

Where 𝑡𝑖 refers to integrator latency, 𝑡𝑐 refers to the model data-path

computational periods, and n is the total neural number.

With regard to latency constraints in TDM technique, the integrator latency ti

has to be equal to the number of TDM inputs n in order to maintain correct

calculating sequences among different input channels. In general, ti is set to

one cycle to achieve the integration function. However, when TDM is applied in

a neuronal model, the value of ti has to be set to a specific value to match TDM

calculating sequences. For example, a neuronal network consists of 14 neurons

and the integrator latency is also one cycle. When computation of the first input

channel signals for neuron A is finished, results are delayed for one cycle by ti.

While the second input channel signals are calculating for the activities of

neuron B during the second cycle, results calculated from the previous input

channel (i.e. neuron A) are released. Calculated activities of neuron A are

included in the calculation of neuron B. As a consequence, the activities

calculated for neuron B are incorrect. Therefore, integrator latency ti has to be

equal to the number of TDM inputs.

The calculating latency tc has to be equal to or be in a multiple relationship with

ti because the timing division de-multiplexer (TDD) selects calculated results at

specific time points. In the previous example, suppose the implementation of

the 14-neuron neuronal model has 56 clock cycles for computing a burst, so

each neuron uses a total of four clock cycles for calculation. The TDD output

results of the first neuron A will be released at the time period of clock cycles 2,

16, 33 and 44. However, if the calculating latency is 15 clock cycles, the second

results for neuron A finish computing at the time period of clock cycle 17, which

is the output time point for neuron C. This makes the system output results

incorrect.

A data-path diagram of the HR model is shown in Figure 5-6. The arithmetic

functions multipliers and adders have three and one latencies, respectively. So

three data-path latencies are 12, 8 and 11 cycles in total. According to Equation

94

5-7, I have to artificially add 2, 6 and 3 delays into the corresponding places.

This in turn is to shorten the critical path and bring more computational cycles

into the model to match the network neuron numbers. Also, integration functions

are achieved by using a register and an adder component. Register delays are

artificially set to 14 to match the calculating latency as well.

Figure 5-6: Data path of HR neural model. D is the delay register, and the
integration step G is real-time updated by control system outputs. The
corresponding equations are shown in Equation 5-1 – Equation 5-3.

A data-path diagram of the chemical synapse model is shown in Figure 5-7. The

synaptic circuit computes synaptic currents based on pre- and post-synaptic

membrane input voltages. In each step in the circuit, two state variables are

stored and a single integration result is calculated. The parameters of this

kinetic synapse model can fit directly into physiological measurements. In

addition, the triangle and divider functions are achieved by using look-up table

techniques.

95

Figure 5-7: Data path of chemical synapse. The corresponding equations are
shown in Equation 5-4 – Equation 5-6. The triangle and divider functions are
achieved by using look-up table techniques.

5.3.2 Adaptive control mechanism

The entire adaptive control system is shown in Figure 5-8. The basic

mechanisms are described below: first, biological neuron bursting frequency is

measured in real time as shown by r(t) . Then it is compared to the three

references in the adaptive controller: reference 1 is the slow bursting period,

reference 2 is the normal bursting period and reference 3 is the fast bursting

period. According to the calculated errors e(t) , the switches automatically

choose the gain that corresponds to the smallest value e(t). This is the adaptive

gain that best fits the current biological neuron bursting state. After an electrical

neuron receives control outputs and interacts with biological neurons, the

electrical neuron can follow biological neuron bursting period characters to

avoid an incorrect spiking phase relationship and irregular burst patterns.

For a real-time bursting period measurement algorithm, there are three stages

in the calculation. The algorithm flow is shown in Figure 5-9.

Firstly, in order to avoid heavy computations in the algorithm, a low-pass filter is

applied to focus on burst fields rather than individual spikes. The frequency

pass parameter in the system is 0.01 and the frequency stop is 0.03. In the next

step, every burst threshold time point is detected and recorded by using hit

crossing(Matlab library) technique. The burst threshold value is set to -15 mV.

Finally, the burst period is calculated by using the current burst threshold time

point tn subtracted from the previous burst threshold time point tn−1.

96

Figure 5-8: An adaptive control system for the central pattern generator
prosthesis system. Blocks of measuring bursting periods are responsible for
real-time sensor neuron bursting frequency; blocks of switch system are for
optimizing controller gain, and the block of controller is for automatically
modifying silicon neuron calculation speed. The controlled neuron is the silicon
neuron LP.

Figure 5-9: The algorithms of measuring real-time neuronal spiking period.
There are three stages for computing: low-pass filter, recording and calculation.

The switch mechanism is designed as follows: by comparing with three different

reference periods (slow, normal and fast), the controller can identify what

bursting state the biological neuron is in. Then the switch will choose the

corresponding adaptive gain for the current system. In this circuit, the three

reference periods are defined as 0–0.5 seconds, 0.5–1 seconds and 1–2

97

seconds. And the three adaptive gain values are 1/300, 1/500 and 1/800. For

example, when the biological neuron bursting period is 0.4 periods, the value

belongs to reference 1 range 0–0.5 periods. This indicates that the calculated

errors e1(t), e2(t) and e3(t) are 0, 1 and 1. The gain valued 1/300 is selected

as the result.

For digital controller design, three steps are considered in this system. Firstly, I

employ the trigonometric function cosθ to represent biological neuron bursting

characters because of their share of the identified wave patterns. The Z-

transform equation of neuron bursting behaviours is below:

𝑋(𝑧) =

1 − 𝑒−𝑎𝑇𝑧−1𝑐𝑜𝑠𝜔𝑇

1 − 2𝑒−𝑎𝑇𝑧01𝑐𝑜𝑠𝜔𝑇 + 𝑒−2𝑎𝑇𝑧−2

Equation 5-8

Then, according to the biological recordings, parameter values a, T and ω are

set as -0.7, 1 and 0.0018. The specific pyloric neuron Z-transform is below:

 𝑋(𝑧) =
𝑧(𝑧−2)

(𝑍+3.414)(𝑧−0.568)
 Equation 5-9

After transforming biological spiking-pattern performances into digital-based Z-

equations, I consider that this hybrid bio-silicon system requires stable

communication performances; two control system parameters are optimized: by

minimizing system setting time (Ts = 3.027), the hybrid network can achieve

quick transient response while biological neuron states vary; by minimizing

percentage overshoot (τ = 1%), the hybrid network can avoid overload in most

cases. The controller Z-transform is below:

 𝑋(𝑧) = 2.857 ×
𝑧−0.568

𝑧+0.149
 Equation 5-10

5.4 Results

5.4.1 System implementation

The system implementation is shown in Figure 5-10. For the silicon aspect, the

digital CPG and adaptive control mechanism are implemented at Xilinx Virtex-4

DSP board. The hardware architecture is designed by using software system

98

generator and VHDL languages, which are shown in Figure 5-10A. The details

are shown in Appendix E.2.

For the biological preparations, Adult Cancer pagurus L. were obtained from

local sources (Newcastle University, Dove Marine Laboratories) and kept in

filtered seawater (10–12 °C). Animals were kept in ice for 20–40 minutes for

anaesthetizing. The STG was pinned down in a silicone elastomer-lined

(ELASTOSIL RT601, Wacker, Munich, Germany) petri dish with chilled saline

(10–13 °C). The details of dissection and desheathingthe STG were performed

as in [124] and [78]. The rhythmic activity patterns generated in the STG were

recorded using extracellular recordings: a petroleum jelly-based cylindrical

compartment was built around a section of the main motor nerve, the inferior

ventricular nerve (LVN), to electrically isolate the nerve from the bath. One of

two stainless steel electrode wires was placed in this compartment and the

other one was placed in the bath as a reference electrode. The differential

signal was recorded, filtered and amplified with an AC differential amplifier

(Kaiserslautern University, Germany). The motor activities of the ganglion were

monitored using an oscilloscope (DL708E; Yokogawa, Tokyo, Japan) and were

recorded using a data acquisition board (CED Power, 1401) and the software

Spike 2. The pyloric network image under a microscope is shown in Figure

5-10C and real-time system recording and stimulating signals are shown in

Figure 5-10 D and E. The details of the network recording and mapping are

shown in Appendix E.1.

99

Figure 5-10: The system implementation. A is the Virtex-4 DSP platform that
used to implement digital neurons and adaptive control system; B is the neural
interface based on intracellular/extracellular recording techniques; C is the
image of real pyloric CPG under microscope, the neurons (cycles) are clearly
displayed in the picture; D and E are the real-time simulation /recording signals;
D is one of the pyloric neuron outputs, E is both intracellular and extracellular
recording results; F is the physical stomach muscles.

100

5.4.2 Software simulation results

I simulate biological pyloric CPG in both control and pharmacological conditions,

which can correspondingly cure diseases where CPG is totally or partially

damaged.

A comparison of control simulation and recording results is shown in Figure

5-11. The network rhythm phase relationship PD-LP-PY is quite similar to the

biological recordings, although digital CPG displays a slightly higher spiking

frequency per burst. Furthermore, the measurable values PD-onset, LP-onset

and PY-offset are approximately the same values. At the bottom of Figure 5-12,

the maximum errors are approximately less than 7%. However, the digital LP

neuron displayed a slightly longer bursting time than the biological one, and the

digital PY neuron showed a slightly later bursting start time in the rhythm. This

variation can be further eliminated by optimizing the parameters. A comparison

of pharmacological simulation results of LP-VD-PD and biological recordings is

shown in Figure 5-13. In the biological recordings, with the commissural inputs

being contacted, the subnetwork LP-PD-VD displayed a stable and regular

spiking pattern. However, when the network was without commissural inputs,

this system generated irregular spikes. This is because a single oscillator PD

doesn’t have such the ability to drive two conditional neurons bursts together.

The digital subnetwork successfully replicated this behaviour in both conditions

as shown in Figure 5-13B.

101

Figure 5-11: A. Biological recordings of pyloric neurons; B: simulation results of
pyloric neurons. The arrow from a to g indicates pyloric period, measured as the
latency from the onset of one PD neuron burst to the next. The arrow from a to
e indicates the latency of PD neuron offset. The arrow from a to c indicates the
latency of LP neuron offset. The arrow from a to d indicates the latency of PY
neuron offset. The arrow from a to e indicates the latency of LP neuron onset.
The arrow from a to f indicates the latency of PY neuron onset.

Figure 5-12: A comparison of the phase relationship between biological neurons
and model neurons. The x-axis is the individual neuron name. In the top figure,
the y-axis is the phase of burst onset/offset divided by cycle periods; and in the
bottom figure, the y-axis is the differences between biological recordings and
simulation results.

Figure 5-13: A comparison between biological recordings and simulation results
of network LP-VD-PD under with and without sensory input conditions.

5.4.3 System reliability

The damaged biological CPG (AB, PD and LP) is simulated by using MatLab

software, and the neuron LP is implemented on the FPGA as a prosthesis

processor. Therefore, the neuron silicon neuron LP is the controlled target. I

0.2

0.4

0.6

0.8

1

P
h
a
s
e
 o

f
b
u
rs

t
o
n
s
e
t/
o
ff
s
e
t

 d
iv

id
e
 b

y
 c

y
c
le

 p
e
ri
o
d
s

PD LP LP-lat PY PY-lat
0

0.05

0.1

E
rr

o
r

Biological neurons

Artifical neurons

102

artificially modify software-based neuron bursting periods to investigate control

system performances.

There are two classic case studies of hybrid network reliable performances.

One is the network bursting frequency, which fluctuates from standard to fast

due to external stimulus, and the other one is the frequency from standard to

slow due to the system becoming inactive.

The biological neurons AB, PD and LP are simulated by using MatLab software

while the digital neuron LP is implemented on FPGA. The entire system is

simulated in a hardware/software co-design environment.

As shown in Figure 5-14, on the left for the first case, the hybrid network with

controller shows standard burst patterns while without controller it displays

irregular bursts. Compared to the regular biological pyloric patterns, the network

pattern with controller still maintains spiking behaviours and phase relationships.

The other case is shown in Figure 5-14 on the right, where the spiking phase

relationship b/a shows significant differences between the hybrid network with

controller and without controller. In the with controller case, the value of b/a is

approximately 0.5. However, while under without the controller state, LP

maintains same bursting frequency in the network, and the value of b/a is

approximately 0.8. This causes incorrect network burst pattern phase

relationships and makes it less energy efficient for muscle activities. The

detailed specifications of the control system are shown in Table 5-4. The

closed-loop system setting time is 0.293 seconds, which is smaller than the

fastest biological neuron bursting frequency of 0.5 seconds. Also, the system

overshoots are approximately 1.75%. This indicates that system

communications are in a reliable condition. Also, system sensitivities of

input/output and noise are calculated as well. The results explain that they all

show strong anti-disturbance behaviours.

103

Figure 5-14: Simulation results of hybrid network. A hardware/software co-
simulation to simulate system prosthesis results. The damaged CPG neurons
AB, PD and PY are mimicked by using MatLab software and the prosthesis
neuron LP is implemented in FPGA. In the left figure, the software-based
neurons have changed their bursting periods from 1 to 2 seconds and in the
right figure from 1 to 0.5 seconds. Both hybrid networks with and without
controller spiking patterns are displayed.

104

Table 5-4: Control system specifications of step response

 System S (input) S (output) S (noise)

Setting time
(sec)

0.293 0.79 0.293 0.239

Overshoot
(%)

1.75 0 0.987 1.75

Rise time
(sec)

0.208 0.436 0.208 0.208

Steady
state

-1.29 -1.2 2.29 1.29

 *: S: S is the sensitivity.

5.4.4 Hardware implementation specifications

I use MatLab software R2012b discrete floating point calculation as a reference

to verify hardware simulation. The accuracy of the results is evaluated by using

mean square error algorithms.

In each experiment, integer bits were fixed at 6, and the fraction bits were

varied to explore and study the effect of truncation errors. The accuracy

percentage calculation algorithm is modified to the Mean Square Error algorithm,

which more precisely analyses errors quantitatively. Secondly, the reference

answer is changed from hardware implementation results with a fixed 60-bit

integer and 40-bit fraction system to a software discrete, floating point system.

Figure 5-15 shows that there is a steady increase in the precision percentage

and a gradual decrease in computational speed as the number of bits increases.

Surprisingly, there is a sharp drop in computational speed between 18 and 20

bits. This is mainly due to the synthesis tool utilizing four times more embedded

multipliers to calculate the algorithms when they are more than 18 bits. Here I

selected a 24-bit fractional system for implementation.

The resource utilizations are shown in Table 5-5. Compared to the standard

implementation technique, timing multiplexing technique only utilizes one-sixth

hardware resources for implementation.

105

Figure 5-15: The numerical computational performances of an FPGA. (a) and (b)
display system accuracy and speed performances with various fraction bits.

Table 5-5: Hardware specifications of digital CPG

Resources TM Standard Improvement

Slice 6545 20417 71.4%

LUTs 8137 37960 80.8%

FIFO/RAMB 48 184 78%

DSP blocks 79 368 78.5%

5.5 Discussion

5.5.1 Comparison of other neurorehabilitation techniques

Traditional neurorehabilitation techniques [125] mainly refer to appropriate

locomotor training, which is the facilitation and assistance of stepping-like

movements with patients’ legs, custom-designed reflex electrical stimulation or

drug treatment. Compared to the presented technique, it is more reliable, safe

and convincing. However, in most cases it cannot fundamentally solve the

problem and has limited scope, because the neural circuits are still damaged.

The approach aims to recover the neural circuits’ behaviour essentially by using

artificial neurons. Similarly, Vogelstein et al [49] demonstrated that using silicon

circuits can successfully restore the damaged CPG, and hence the disabled cat

can walk again. One key unique advantage of the presented system is its strong

reliability. In reality, the CPG-related movements such as respiration and

locomotion are always altering their speed to adapt to external environments.

Therefore the prosthesis system has to be adaptive as well to solve this

constraint. The adaptive mechanism in this system is capable of modifying

digital processor computational speed in real time to follow biological spiking

time to restore the original functionalities. The control system setting time is

0.293 seconds and the overshoots are approximately 1.75%.

106

5.5.2 The advantages of the FPGA-based system

In terms of hardware architecture design, the timing multiplexing technique

successfully divides the entire neural network into several subnetworks. In a

frame, each channel is responsible for the corresponding subnetwork activities.

Although the entire simulation speed is relatively decreased, the hardware

resources are significantly saved by up to 70%. More importantly, the

information of each neuron/synapse currents can be easily fetched out in

different clock cycles, which shows the advantage to network state estimation

and monitoring.

Also, by taking FPGAs reconfigurable advantage [26], the implemented circuits

can be modified according to the damaged neural circuit conditions, which

increases the range of the presented technique applications (e.g. totally or

partially damaged). Meanwhile, by using an auto-generation tool kit

approach[17], the parameters and digital neural circuits can be easily updated

in hours, such as by adding and deleting neurons/ions.

Last but not least, since the FPGA-based platform is a highly parallel computing

system, it shows strong scalability when a large-scale neural model is required.

Compared to the traditional CPU-based systems [126][127][128], it solves the

timing constraints in the bio-silicon closed-loop system.

5.5.3 Challenges

The portable characters and long-term recording/stimulating (e.g. years)

interfaces are two major issues of concern for the developed system, since a

patient has to do outdoor activities, and the damage from surgery has to be

maximally minimized. For the implantable aspect, the designed digital neural

circuits can be transformed into ASIC directly to achieve portable device

features, which may be considered in the next step of the project’. Alternatively,

a custom-designed’printed circuit board integrated with FPGA-based neural

circuits and micro-controller with limited sizes can also be considered as

portable devices. Meanwhile, interfaces with long-term recording/stimulating

performances are required at the next stage. There are some existing

techniques [129][130] that can be adopted into the system in the near future.

107

5.6 Conclusion

In this paper, I propose a novel system for biological central pattern generator

rehabilitation based on digital neural circuits. To demonstrate system feasibility

and scalability, a complete biological pyloric model consisting of 14 neurons and

24 synapses is implemented on FPGA. Simulation results indicate that a silicon

pyloric model can mimic real pyloric model rhythms. The mean error of five

parameters between biological and silicon neurons is 7%. By applying TDM

techniques, these circuits utilize one-sixth of the hardware resources of

standard techniques for implementation. More importantly, the presented

system shows strong reliable behaviours under different conditions; the control

system setting time is 0.293 seconds and the overshoots are approximately

1.75%.

Optimization of power utilization, area and computational speed will be

considered in the next step. Data reuse technique [131] can be applied for

reducing the power consumption for off-chip memory, data transfer and storage,

and the full pipelining method [77] can effectively save the hardware resources.

Taken together, these will lead to an efficient custom-designed dynamic clamp

experiment.

In the future, I am going to use this model to interact with the imperfect real

pyloric network aiming to rehabilitate biological functionality via restoring

biological neurons. I investigated the behaviour of the model under the impact

of simulated neuromodulators (e.g. dopamine), and I also simulated the impact

of losing selected neurons from the network. I expect that the FPGA model of

the pyloric circuit may help to facilitate the execution of simultaneous dynamic

clamp experiments with multiple STG neurons. The ultimate goal is to include

sufficient details in individual neuron models to allow the replication of circuit

behaviour dynamics in a wide range of physiological situations.

108

Chapter 6 Conclusion

This chapter gives a summary of what I have done in the digital neural circuit

field. Then, based on these works, several general principles of digital neural

circuit architecture design are given. Also, the potential applications and social

impacts are discussed as well.

109

6.1 Summary

The major contribution of this work is to illustrate and investigate the profound

methodologies used for designing digital neural circuits. Put simply, that is how

to mimic various biological (e.g. ions, neurons and networks) system behaviours

by using digital electronic circuits. I first introduced several classic and vital

techniques such as: simulation of virtual neurons; Look-up-table (LUT) and

component-based methodology; address event representation (AER); and auto

generation tool kit. After that, three novel techniques (a pipeline-based multi-

loop process structure, a framework-based network-on-chip structure and a

reliable closed-loop system for central pattern generator rehabilitation) were

developed as major contributions. At the end, I briefly explained the impacts,

meanings and implications of the developed work and the issues for the next

step.

Specifically, I developed the first digital optogenetic neuron using reconfigurable

hardware that contains 13 different types of ion channel. A pipelining-based

multi-loop process architecture is presented to implement a neural model. The

results indicate that it cannot only reproduce normal neural burst patterns but

also pharmacological burst patterns. The system can achieve approximately

76,618 operations per neuron in 1 ms, which is five times faster than the latest

digital cerebellum neuron system [20].

Furthermore, a frame-based network-on-chip (NoC) architecture has been

developed to implement a granular-layer model of the cerebellum with

approximately 100,000 neurons. The system can not only meet the biological

real-time computing requirement (it only takes 25.6 ms to mimic 1 s of real-

world activities), but can also avoid NoC architecture package traffic congestion

by using frame mastering. After verification of on-board simulation results, the

design can be readily adapted for real-time closed-loop in vitro or in vivo

experiments and as a potential neuro-prosthetics tool for future experimental

and clinical applications owing to its high computational power, flexibility,

scalability and power efficiency.

Finally, a concept of FPGA-based hybrid bio-silicon integration is developed to

restore the biological pyloric central pattern generator (CPG) functionalities.

Potentially this can be one of the most important neuroscience applications for

110

digital neural circuits. The simulation results indicate that the presented system

can successfully repair damaged CPG behaviours in different situations.

6.2 Principles of designing digital neural circuits

Based on the research findings, there are several general principles for

hardware architecture design of implementing a large-scale neural network with

high bio-plausibility.

The first is to use multi-core architecture with pipelining technique to mimic

large-scale neuron activities. Multi-core architecture has the ability to reproduce

biological highly parallel computing performances; and timing multiplexing or

pipelining technique utilizes the digital speed advantages (GHz) to implement a

number of neurons in the same physical hardware resources. Previous

computational platforms such as SpiNNaker [3], NeuroGrid [104] and IBM chip

[11] are all similar to this architecture. The implementation generally requires

appropriate memory space for storing calculation neuronal states and

distributed memory location to increase communication bandwidth.

The second is the individual processor design. The architecture should be

heterogeneous and multiple-layer based to meet the network bio-plausibility

requirements. In a neuron, the membrane voltage alternation always introduces

related ion concentration fluctuation such as calcium [132] or ChR2 [73].

Therefore, the calcium-dependent ion channels or other channels will update

their gate behaviours to shape the final neuron spiking patterns. A digital

processor should have a responsibility to mimic all these ion channel dynamics

including these closed-loop process mechanisms. The multiple-layer- or

heterogeneous-based cores are proper candidates but will significantly cost

more in terms of hardware resources and limits system integration step.

Optimization of resource utilizations and speed is necessary in the final design

stage.

The third is system level optimization. Because the system itself is massive, it

has to be carefully optimized to achieve the best computing performances.

There are many issues involved in this topic. For example, the trade-off

between the number of processors and the implemented neuron numbers per

processor in the architecture: the more the number of processors implemented,

the faster the computational speed and the more resources utilized, while the

111

more the number of implemented neurons in a processor, the slower the

computational speed but the fewer the number of resources utilized. Also, the

neural data-path design generally decides the critical path and power

consumption, and the two implementation approaches of operation balance and

latency balance will lead to totally different hardware specifications. Last but not

least, the address event representation techniques should be custom designed

to map the neural network connectivity. In general, the biological neurons are

highly connected but the connections are quite varied in detail. Different routing

strategies (e.g. uni-cast, multi-cast and board-cast) are correspondingly map

different connection types[133].

6.3 Future work

There are three main areas for the future work: optimization of the methodology

of digital neural circuit design, neuronal-machine prosthesis system

experimental verification and bio-inspired device development.

First, based on the previous two architecture designs, we have drawn some

conclusions for the digital neural circuit design. However, there are still some

major issues that need to be further considered. For example, in terms of a

single neuron design, there is a variety of different architectures for minimal

power consumption, minimal areas and fastest speed. The fundamental

principles of these designs should be investigated and summarized. Next,

synaptic connections and network sizes decide the architecture’s main features.

A general and systematic approach should be developed for implementing

different kinds of neural network. In the end, the high-level optimization method

of the entire architecture still needs to be improved.

Second, developed silicon neural network cerebellums and optogenetic neurons

will be further taken into biological experiments. By interacting with the real

biology, we will study how the bio-silicon system works and how to further

custom modify silicon part to achieve system adaptive performance

Finally, since developed artificial neural systems have the ability to capture

major biological intelligence, there is a potential that we will transfer these

presented systems into practical devices for intelligent tasks such as

environment detecting and monitoring.

112

References

[1] C. Mead, “Neuromorphic electronic systems,” Proc. IEEE, vol. 78, no. 10,
pp. 1629–1636, 1990.

[2] S. Furber and S. Temple, “Neural systems engineering.,” J. R. Soc.
Interface, vol. 4, no. 13, pp. 193–206, Apr. 2007.

[3] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S.
Temple, and A. D. Brown, “Overview of the SpiNNaker System
Architecture,” IEEE Trans. Comput., vol. 62, no. 12, pp. 2454–2467, Dec.
2013.

[4] F. Aubépart and N. Franceschini, “Bio-inspired optic flow sensors based
on FPGA: Application to Micro-Air-Vehicles,” Microprocess. Microsyst.,
vol. 31, no. 6, pp. 408–419, Sep. 2007.

[5] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R.
Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S.
Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F.
Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang,
and K. Boahen, “Neuromorphic silicon neuron circuits.,” Front. Neurosci.,
vol. 5, p. 73, Jan. 2011.

[6] E. R. Kandel, H. Markram, P. M. Matthews, R. Yuste, and C. Koch,
“Neuroscience thinks big (and collaboratively).,” Nat. Rev. Neurosci., vol.
14, no. 9, pp. 659–64, Sep. 2013.

[7] “Scientists threaten to boycott €1.2bn Human Brain Project | Science |
The Guardian.” [Online]. Available:
http://www.theguardian.com/science/2014/jul/07/human-brain-project-
researchers-threaten-boycott. [Accessed: 18-Jul-2014].

[8] A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes,
and R. Yuste, “The brain activity map project and the challenge of
functional connectomics.,” Neuron, vol. 74, no. 6, pp. 970–4, Jun. 2012.

[9] S. B. Furber, F. Galluppi, S. Temple, and L. . Plana, “The SpiNNaker
Project,” Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[10] “IBM Research: Neurosynaptic chips.” IBM Corporation, 16-Dec-2013.

[11] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F.
Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo,
S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk,
R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Science (80-.).,
vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[12] “Introducing Qualcomm Zeroth Processors: Brain-Inspired Computing |
Qualcomm.” [Online]. Available:

113

http://www.qualcomm.com/media/blog/2013/10/10/introducing-qualcomm-
zeroth-processors-brain-inspired-computing. [Accessed: 11-Jul-2014].

[13] G. Rachmuth, H. Z. Shouval, M. F. Bear, and C.-S. Poon, “A
biophysically-based neuromorphic model of spike rate- and timing-
dependent plasticity.,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 49, pp.
E1266–74, Dec. 2011.

[14] A. L. HODGKIN and A. F. HUXLEY, “A quantitative description of
membrane current and its application to conduction and excitation in
nerve.,” J. Physiol., vol. 117, no. 4, pp. 500–44, Aug. 1952.

[15] E. L. Graas, E. A. Brown, and R. H. Lee, “An FPGA-based approach to
high-speed simulation of conductance-based neuron models.,”
Neuroinformatics, vol. 2, no. 4, pp. 417–36, Jan. 2004.

[16] A. Cassidy, S. Denham, P. Kanold, and A. Andreou, “FPGA Based Silicon
Spiking Neural Array,” in 2007 IEEE Biomedical Circuits and Systems
Conference, 2007, pp. 75–78.

[17] R. K. Weinstein, M. S. Reid, and R. H. Lee, “Methodology and design flow
for assisted neural-model implementations in FPGAs.,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 15, no. 1, pp. 83–93, Mar. 2007.

[18] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and A. Mujumdar,
“Bluehive - A Field-Programable Custom Computing Machine for
Extreme-Scale Real-Time Neural Network Simulation,” in 2012 IEEE 20th
International Symposium on Field-Programmable Custom Computing
Machines, 2012, pp. 133–140.

[19] K. Cheung, S. R. Schultz, and W. Luk, Artificial Neural Networks and
Machine Learning – ICANN 2012, vol. 7552. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 113–120.

[20] G. Smaragdos, S. Isaza, M. F. van Eijk, I. Sourdis, and C. Strydis,
“FPGA-based biophysically-meaningful modeling of olivocerebellar
neurons,” in Proceedings of the 2014 ACM/SIGDA international
symposium on Field-programmable gate arrays - FPGA ’14, 2014, pp.
89–98.

[21] M. D. Godfrey, “Introduction to‘The First Draft Report on the EDVAC’ by
John von Neumann.”

[22] T. Oguchi, M. Higuchi, T. Uno, M. Kamaya, and M. Suzuki, “A single-chip
graphic display controller,” in 1981 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers, 1981, vol. XXIV, pp. 170–171.

[23] A. K. Fidjeland and M. P. Shanahan, “Accelerated simulation of spiking
neural networks using GPUs,” in The 2010 International Joint Conference
on Neural Networks (IJCNN), 2010, pp. 1–8.

114

[24] D. Luebke and G. Humphreys, “How GPUs Work,” Computer (Long.
Beach. Calif)., vol. 40, no. 2, pp. 96–100, Feb. 2007.

[25] “Xilinx, ASIC vendors talk licensing | EE Times.” [Online]. Available:
http://www.eetimes.com/document.asp?doc_id=1180867. [Accessed: 31-
Oct-2014].

[26] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and
Challenges,” Found. Trends® Electron. Des. Autom., vol. 2, no. 2, pp.
135–253, Feb. 2007.

[27] D. Frohman-Bentchkowsky, “A fully-decoded 2048-bit electrically-
programmable MOS ROM,” in 1971 IEEE International Solid-State
Circuits Conference. Digest of Technical Papers, 1971, vol. XIV, pp. 80–
81.

[28] R. Cuppens, C. D. Hartgring, J. F. Verwey, H. L. Peek, F. A. H. Vollebragt,
E. G. M. Devens, and I. A. Sens, “An EEPROM for microprocessors and
custom logic,” IEEE J. Solid-State Circuits, vol. 20, no. 2, pp. 603–608,
Apr. 1985.

[29] D. C. Guterman, I. H. Rimawi, R. D. Halvorson, and D. J. McElroy, “An
electrically alterable nonvolatile memory cell using a floating-gate
structure,” IEEE J. Solid-State Circuits, vol. 14, no. 2, pp. 498–508, Apr.
1979.

[30] H.-C. Hsieh, K. Dong, J. Y. Ja, R. Kanazawa, L. T. Ngo, L. G. Tinkey, W.
S. Carter, and R. H. Freeman, “A 9000-gate user-programmable gate
array,” in Proceedings of the IEEE 1988 Custom Integrated Circuits
Conference, 1988, pp. 15.3/1–15.3/7.

[31] E. Hamdy, J. McCollum, S.-O. Chen, S. Chiang, S. Eltoukhy, J. Chang, T.
Speers, and A. Mohsen, “Dielectric based antifuse for logic and memory
ICs,” in Technical Digest., International Electron Devices Meeting, 1988,
pp. 786–789.

[32] M. P. Nusbaum and M. P. Beenhakker, “A small-systems approach to
motor pattern generation.,” Nature, vol. 417, no. 6886, pp. 343–50, May
2002.

[33] T. Yamazaki and S. Tanaka, “A spiking network model for passage-of-
time representation in the cerebellum.,” Eur. J. Neurosci., vol. 26, no. 8,
pp. 2279–2292, Oct. 2007.

[34] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of neural
science. Elsevier, 1991, p. 1135.

[35] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. Massachusetts Institute of
Technology Press, 2001, p. 460.

115

[36] J. H. Maunsell and D. C. Van Essen, “Functional properties of neurons in
middle temporal visual area of the macaque monkey. I. Selectivity for
stimulus direction, speed, and orientation,” J Neurophysiol, vol. 49, no. 5,
pp. 1127–1147, May 1983.

[37] T. S. T. Mak, G. Rachmuth, K.-P. Lam, and C.-S. Poon, “A component-
based FPGA design framework for neuronal ion channel dynamics
simulations.,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 4, pp.
410–8, Dec. 2006.

[38] J. P. Miller and A. I. Selverston, “Mechanisms underlying pattern
generation in lobster stomatogastric ganglion as determined by selective
inactivation of identified neurons. II. Oscillatory properties of pyloric
neurons.,” J. Neurophysiol., vol. 48, no. 6, pp. 1378–91, Dec. 1982.

[39] Z. Zhou, J. Champagnat, and C. S. Poon, “Phasic and long-term
depression in brainstem nucleus tractus solitarius neurons: differing roles
of AMPA receptor desensitization.,” J. Neurosci., vol. 17, no. 14, pp.
5349–56, Jul. 1997.

[40] J. J. Renger, C. Egles, and G. Liu, “A Developmental Switch in
Neurotransmitter Flux Enhances Synaptic Efficacy by Affecting AMPA
Receptor Activation,” Neuron, vol. 29, no. 2, pp. 469–484, Feb. 2001.

[41] R. J. Butera, J. Rinzel, and J. C. Smith, “Models of respiratory rhythm
generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons.,”
J. Neurophysiol., vol. 82, no. 1, pp. 382–97, Jul. 1999.

[42] K. D. M. L. F. A. N. G. P. Sen Song, “Competitive Hebbian Learning
through Spike-Timing-Dependent Synaptic Plasticity.”

[43] M. Schwartz, “Telecommunication networks: protocols, modeling and
analysis,” Jan. 1986.

[44] K. A. Boahen, “Point-to-point connectivity between neuromorphic chips
using address events,” IEEE Trans. Circuits Syst. II Analog Digit. Signal
Process., vol. 47, no. 5, pp. 416–434, May 2000.

[45] M. Mahowald, “VLSI analogs of neuronal visual processing: a synthesis of
form and function.” 12-Sep-1992.

[46] D. K. Warland, P. Reinagel, and M. Meister, “Decoding visual information
from a population of retinal ganglion cells.,” J. Neurophysiol., vol. 78, no.
5, pp. 2336–50, Nov. 1997.

[47] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus,
“The design of an asynchronous microprocessor,” ACM SIGARCH
Comput. Archit. News, vol. 17, no. 4, pp. 99–110, Jun. 1989.

[48] Bo Wen and K. Boahen, “A silicon cochlea with active coupling.,” IEEE
Trans. Biomed. Circuits Syst., vol. 3, no. 6, pp. 444–55, Dec. 2009.

116

[49] R. J. Vogelstein, F. Tenore, L. Guevremont, R. Etienne-Cummings, and V.
K. Mushahwar, “A silicon central pattern generator controls locomotion in
vivo.,” IEEE Trans. Biomed. Circuits Syst., vol. 2, no. 3, pp. 212–22, Sep.
2008.

[50] B. Dworakowska and K. Dołowy, “Ion channels-related diseases.,” Acta
Biochim. Pol., vol. 47, no. 3, pp. 685–703, Jan. 2000.

[51] J. Luo, G. Coapes, T. Mak, T. Yamazaki, C. Tin, and P. Degenaar, “A
Scalable FPGA-based Cerebellum for Passage-of-Time Representation,”
in Conference proceedings : ... Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. IEEE Engineering in
Medicine and Biology Society. Conference, 2014.

[52] L. . Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron
(1907),” Brain Res. Bull., vol. 50, no. 5–6, pp. 303–304, Nov. 1999.

[53] E. M. Izhikevich, “Simple model of spiking neurons.,” IEEE Trans. Neural
Netw., vol. 14, no. 6, pp. 1569–72, Jan. 2003.

[54] J. L. Hindmarsh and R. M. Rose, “A model of neuronal bursting using
three coupled first order differential equations.,” Proc. R. Soc. Lond. B.
Biol. Sci., vol. 221, no. 1222, pp. 87–102, Mar. 1984.

[55] R. D. Traub, R. K. Wong, R. Miles, and H. Michelson, “A model of a CA3
hippocampal pyramidal neuron incorporating voltage-clamp data on
intrinsic conductances.,” J. Neurophysiol., vol. 66, no. 2, pp. 635–50, Aug.
1991.

[56] G. Coapes, T. Mak, J. W. Luo, A. Yakovlev, and C.-S. Poon, “A scalable
FPGA-based design for field programmable large-scale ion channel
simulations,” in 22nd International Conference on Field Programmable
Logic and Applications (FPL), 2012, pp. 112–119.

[57] K. Nikolic, N. Grossman, M. S. Grubb, J. Burrone, C. Toumazou, and P.
Degenaar, “Photocycles of channelrhodopsin-2.,” Photochem. Photobiol.,
vol. 85, no. 1, pp. 400–11.

[58] C. Soto-Treviño, P. Rabbah, E. Marder, and F. Nadim, “Computational
model of electrically coupled, intrinsically distinct pacemaker neurons.,” J.
Neurophysiol., vol. 94, no. 1, pp. 590–604, Jul. 2005.

[59] K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, and M.
J. Schnitzer, “Next-generation optical technologies for illuminating
genetically targeted brain circuits.,” J. Neurosci., vol. 26, no. 41, pp.
10380–6, Oct. 2006.

[60] J. J. Mancuso, J. Kim, S. Lee, S. Tsuda, N. B. H. Chow, and G. J.
Augustine, “Optogenetic probing of functional brain circuitry.,” Exp.
Physiol., vol. 96, no. 1, pp. 26–33, Jan. 2011.

117

[61] G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D.
Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly
light-gated cation-selective membrane channel.,” Proc. Natl. Acad. Sci. U.
S. A., vol. 100, no. 24, pp. 13940–5, Nov. 2003.

[62] J. Y. Lin, “A user’s guide to channelrhodopsin variants: features,
limitations and future developments.,” Exp. Physiol., vol. 96, no. 1, pp.
19–25, Jan. 2011.

[63] P. Brown and N. Dale, “Spike-independent release of ATP from Xenopus
spinal neurons evoked by activation of glutamate receptors.,” J. Physiol.,
vol. 540, no. Pt 3, pp. 851–60, May 2002.

[64] A. J. Tierney and R. M. Harris-Warrick, “Physiological role of the transient
potassium current in the pyloric circuit of the lobster stomatogastric
ganglion.,” J. Neurophysiol., vol. 67, no. 3, pp. 599–609, Mar. 1992.

[65] J. C. Smith, R. J. Butera, N. Koshiya, C. Del Negro, C. G. Wilson, and S.
M. Johnson, “Respiratory rhythm generation in neonatal and adult
mammals: the hybrid pacemaker–network model,” Respir. Physiol., vol.
122, no. 2–3, pp. 131–147, Sep. 2000.

[66] R. H. Lee and C. J. Heckman, “Adjustable amplification of synaptic input
in the dendrites of spinal motoneurons in vivo.,” J. Neurosci., vol. 20, no.
17, pp. 6734–40, Sep. 2000.

[67] A. Alaburda, J.-F. Perrier, and J. Hounsgaard, “An M-like outward current
regulates the excitability of spinal motoneurones in the adult turtle.,” J.
Physiol., vol. 540, no. Pt 3, pp. 875–81, May 2002.

[68] B. Santoro, S. Chen, A. Luthi, P. Pavlidis, G. P. Shumyatsky, G. R. Tibbs,
and S. A. Siegelbaum, “Molecular and functional heterogeneity of
hyperpolarization-activated pacemaker channels in the mouse CNS.,” J.
Neurosci., vol. 20, no. 14, pp. 5264–75, Jul. 2000.

[69] S. Hooper and E. Marder, “Modulation of the lobster pyloric rhythm by the
peptide proctolin,” J. Neurosci., vol. 7, no. 7, pp. 2097–2112, Jul. 1987.

[70] P. Sah and E. S. Louise Faber, “Channels underlying neuronal calcium-
activated potassium currents,” Prog. Neurobiol., vol. 66, no. 5, pp. 345–
353, Apr. 2002.

[71] B. R. Johnson, P. Kloppenburg, and R. M. Harris-Warrick, “Dopamine
modulation of calcium currents in pyloric neurons of the lobster
stomatogastric ganglion.,” J. Neurophysiol., vol. 90, no. 2, pp. 631–43,
Aug. 2003.

[72] F. Buchholtz, J. Golowasch, I. R. Epstein, and E. Marder, “Mathematical
model of an identified stomatogastric ganglion neuron.,” J. Neurophysiol.,
vol. 67, no. 2, pp. 332–40, Feb. 1992.

118

[73] N. Grossman, K. Nikolic, C. Toumazou, and P. Degenaar, “Modeling
study of the light stimulation of a neuron cell with channelrhodopsin-2
mutants.,” IEEE Trans. Biomed. Eng., vol. 58, no. 6, pp. 1742–51, Jun.
2011.

[74] J. Golowasch and E. Marder, “Ionic currents of the lateral pyloric neuron
of the stomatogastric ganglion of the crab.,” J. Neurophysiol., vol. 67, no.
2, pp. 318–31, Feb. 1992.

[75] L. M. Hurley and K. Graubard, “Pharmacologically and functionally distinct
calcium currents of stomatogastric neurons.,” J. Neurophysiol., vol. 79, no.
4, pp. 2070–81, Apr. 1998.

[76] J. Becker, M. Platzner, and S. Vernalde, Eds., Field Programmable Logic
and Application, vol. 3203. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004.

[77] G. Coapes, T. Mak, J. W. Luo, A. Yakovlev, and C.-S. Poon, “A scalable
FPGA-based design for field programmable large-scale ion channel
simulations,” in 22nd International Conference on Field Programmable
Logic and Applications (FPL), 2012, pp. 112–119.

[78] J. W. Luo, T. Mak, B. Yu, P. Andras, and A. Yakovlev, “Towards neuro-
silicon interface using reconfigurable dynamic clamping.,” in Conference
proceedings : ... Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. IEEE Engineering in Medicine and
Biology Society. Conference, 2011, vol. 2011, pp. 6389–92.

[79] W. Al-Atabany, B. McGovern, K. Mehran, R. Berlinguer-Palmini, and P.
Degenaar, “A processing platform for optoelectronic/optogenetic retinal
prosthesis.,” IEEE Trans. Biomed. Eng., vol. 60, no. 3, pp. 781–91, Mar.
2013.

[80] P. Degenaar, N. Grossman, M. A. Memon, J. Burrone, M. Dawson, E.
Drakakis, M. Neil, and K. Nikolic, “Optobionic vision--a new genetically
enhanced light on retinal prosthesis.,” J. Neural Eng., vol. 6, no. 3, p.
035007, Jun. 2009.

[81] J. M. Barrett, R. Berlinguer-Palmini, and P. Degenaar, “Optogenetic
approaches to retinal prosthesis.,” Vis. Neurosci., vol. 31, no. 4–5, pp.
345–54, Sep. 2014.

[82] R. B. Ivry and R. M. C. Spencer, “The neural representation of time,” Curr.
Opin. Neurobiol., vol. 14, no. 2, pp. 225–232, Apr. 2004.

[83] J. D. Schmahmann, “Disorders of the cerebellum: ataxia, dysmetria of
thought, and the cerebellar cognitive affective syndrome.,” J.
Neuropsychiatry Clin. Neurosci., vol. 16, no. 3, pp. 367–78, Jan. 2004.

[84] K. M. Christian and R. F. Thompson, “Neural substrates of eyeblink
conditioning: acquisition and retention.,” Learn. Mem., vol. 10, no. 6, pp.
427–55.

119

[85] M. D. Mauk and N. H. Donegan, “A model of Pavlovian eyelid conditioning
based on the synaptic organization of the cerebellum.,” Learn. Mem., vol.
4, no. 1, pp. 130–58.

[86] T. Yamazaki and S. Tanaka, “Computational models of timing
mechanisms in the cerebellar granular layer.,” Cerebellum, vol. 8, no. 4,
pp. 423–32, Dec. 2009.

[87] J. W. Moore, J. E. Desmond, and N. E. Berthier, “Adaptively timed
conditioned responses and the cerebellum: A neural network approach,”
Biol. Cybern., vol. 62, no. 1, pp. 17–28, 1989.

[88] J. E. Desmond and J. W. Moore, “Biological Cybernetics Adaptive Timing
in Neural Networks : The Conditioned Response,” vol. 415, pp. 405–415,
1988.

[89] D. Bullock, J. C. Fiala, and S. Grossberg, “A neural model of timed
response learning in the cerebellum,” Neural Networks, vol. 7, no. 6–7, pp.
1101–1114, Jan. 1994.

[90] M. Fujita, “Adaptive filter model of the cerebellum,” Biol. Cybern., vol. 45,
no. 3, pp. 195–206, 1982.

[91] T. Yamazaki and S. Tanaka, “Neural Modeling of an Internal Clock,”
Neural Comput., vol. 17, no. 5, pp. 1032–1058, May 2005.

[92] T. Yamazaki and J. Igarashi, “Realtime cerebellum: a large-scale spiking
network model of the cerebellum that runs in realtime using a graphics
processing unit.,” Neural Netw., vol. 47, pp. 103–11, Nov. 2013.

[93] M. Wang, B. Yan, J. Hu, and P. Li, “Simulation of large neuronal networks
with biophysically accurate models on graphics processors,” in The 2011
International Joint Conference on Neural Networks, 2011, pp. 3184–3193.

[94] C. Hofstoetter, M. Gil, K. Eng, G. Indiveri, M. Mintz, J. Kramer, and P. F.
Verschure, “The Cerebellum Chip: an Analog VLSI Implementation of a
Cerebellar Model of Classical Conditioning,” in Advances in Neural
Information Processing Systems, 2004, pp. 577–584.

[95] S. A. Bamford, R. Hogri, A. Giovannucci, A. H. Taub, I. Herreros, P. F. M.
J. Verschure, M. Mintz, and P. Del Giudice, “A VLSI field-programmable
mixed-signal array to perform neural signal processing and neural
modeling in a prosthetic system.,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 20, no. 4, pp. 455–67, Jul. 2012.

[96] J. Luo, G. Coapes, P. Degenaar, T. Mak, T. Yamazaki, and C. Tin, “A
Real-time Silicon Cerebellum Spiking Neural Model based on FPGA,” in
International Symposium on Integrated Circuits (ISIC), 2014.

[97] Y. Kishimoto, S. Kawahara, Y. Kirino, H. Kadotani, Y. Nakamura, M.
Ikeda, and T. Yoshioka, “Conditioned eyeblink response is impaired in

120

mutant mice lacking NMDA receptor subunit NR2A.,” Neuroreport, vol. 8,
no. 17, pp. 3717–21, Dec. 1997.

[98] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. V
Veidenbaum, “A configurable simulation environment for the efficient
simulation of large-scale spiking neural networks on graphics processors.,”
Neural Netw., vol. 22, no. 5–6, pp. 791–800.

[99] R. Emery, A. Yakovlev, and G. Chester, “Connection-centric network for
spiking neural networks,” in 2009 3rd ACM/IEEE International Symposium
on Networks-on-Chip, 2009, pp. 144–152.

[100] D. Vainbrand and R. Ginosar, “Scalable network-on-chip architecture for
configurable neural networks,” Microprocess. Microsyst., vol. 35, no. 2, pp.
152–166, Mar. 2011.

[101] T. T. Mak, P. Sedcole, P. K. Cheung, and W. Luk, “On-FPGA
Communication Architectures and Design Factors,” in 2006 International
Conference on Field Programmable Logic and Applications, 2006, pp. 1–
8.

[102] B. L. Sabatini and W. G. Regehr, “Timing of synaptic transmission.,” Annu.
Rev. Physiol., vol. 61, pp. 521–42, Jan. 1999.

[103] S. Carrillo, J. Harkin, L. J. McDaid, S. Pande, S. Cawley, B. McGinley,
and F. Morgan, “Hierarchical Network-on-Chip and Traffic Compression
for Spiking Neural Network Implementations,” in 2012 IEEE/ACM Sixth
International Symposium on Networks-on-Chip, 2012, pp. 83–90.

[104] B. V. Benjamin, Peiran Gao, E. McQuinn, S. Choudhary, A.
Chandrasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. . Merolla,
and K. Boahen, “Neurogrid: A Mixed-Analog-Digital Multichip System for
Large-Scale Neural Simulations,” Proc. IEEE, vol. 102, no. 5, pp. 699–
716, May 2014.

[105] R. J. Vogelstein, U. Mallik, E. Culurciello, G. Cauwenberghs, and R.
Etienne-Cummings, “A multichip neuromorphic system for spike-based
visual information processing.,” Neural Comput., vol. 19, no. 9, pp. 2281–
300, Sep. 2007.

[106] A. Cassidy, A. G. Andreou, and J. Georgiou, “Design of a one million
neuron single FPGA neuromorphic system for real-time multimodal scene
analysis,” in 2011 45th Annual Conference on Information Sciences and
Systems, 2011, pp. 1–6.

[107] A. S. Cassidy, J. Georgiou, and A. G. Andreou, “Design of silicon brains
in the nano-CMOS era: spiking neurons, learning synapses and neural
architecture optimization.,” Neural Netw., vol. 45, pp. 4–26, Sep. 2013.

[108] Y. Ugawa, K. Genba-Shimizu, J. C. Rothwell, M. Iwata, and I. Kanazawa,
“Suppression of motor cortical excitability by electrical stimulation over the
cerebellum in ataxia.,” Ann. Neurol., vol. 36, no. 1, pp. 90–6, Jul. 1994.

121

[109] B. McGovern, R. B. Palmini, N. Grossman, E. Drakakis, V. Poher, M. A. A.
Neil, and P. Degenaar, “A New Individually Addressable Micro-LED Array
for Photogenetic Neural Stimulation.,” IEEE Trans. Biomed. Circuits Syst.,
vol. 4, no. 6, pp. 469–76, Dec. 2010.

[110] X. Liu, S. Ramirez, P. T. Pang, C. B. Puryear, A. Govindarajan, K.
Deisseroth, and S. Tonegawa, “Optogenetic stimulation of a hippocampal
engram activates fear memory recall.,” Nature, vol. 484, no. 7394, pp.
381–5, Apr. 2012.

[111] S. Kim, P. Tathireddy, R. A. Normann, and F. Solzbacher, “Thermal
impact of an active 3-D microelectrode array implanted in the brain.,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 4, pp. 493–501, Dec.
2007.

[112] J. Elbaum and D. M. Benson, Eds., Acquired Brain Injury. New York, NY:
Springer New York, 2007.

[113] E. Galante, L. Gazzi, and S. Caffarra, “Psychological activities in
neurorehabilitation: from research to clinical practice.,” G. Ital. Med. Lav.
Ergon., vol. 33, no. 1 Suppl A, pp. A19–28.

[114] T. W. Berger, R. E. Hampson, D. Song, A. Goonawardena, V. Z.
Marmarelis, and S. A. Deadwyler, “A cortical neural prosthesis for
restoring and enhancing memory.,” J. Neural Eng., vol. 8, no. 4, p.
046017, Aug. 2011.

[115] E. Marder and D. Bucher, “Understanding circuit dynamics using the
stomatogastric nervous system of lobsters and crabs.,” Annu. Rev.
Physiol., vol. 69, pp. 291–316, Jan. 2007.

[116] E. Marder and A. L. Taylor, “Multiple models to capture the variability in
biological neurons and networks.,” Nat. Neurosci., vol. 14, no. 2, pp. 133–
8, Feb. 2011.

[117] R. Grashow, T. Brookings, and E. Marder, “Compensation for variable
intrinsic neuronal excitability by circuit-synaptic interactions.,” J. Neurosci.,
vol. 30, no. 27, pp. 9145–56, Jul. 2010.

[118] A. L. Weaver and S. L. Hooper, “Follower neurons in lobster (Panulirus
interruptus) pyloric network regulate pacemaker period in complementary
ways.,” J. Neurophysiol., vol. 89, no. 3, pp. 1327–38, Mar. 2003.

[119] S. Clemens, J. C. Massabuau, P. Meyrand, and J. Simmers, “A
modulatory role for oxygen in shaping rhythmic motor output patterns of
neuronal networks.,” Respir. Physiol., vol. 128, no. 3, pp. 299–315, Nov.
2001.

[120] J. S. Eisen and E. Marder, “Mechanisms underlying pattern generation in
lobster stomatogastric ganglion as determined by selective inactivation of
identified neurons. III. Synaptic connections of electrically coupled pyloric
neurons.,” J. Neurophysiol., vol. 48, no. 6, pp. 1392–1415, Dec. 1982.

122

[121] E. Marder and R. L. Calabrese, “Principles of rhythmic motor pattern
generation.,” Physiol. Rev., vol. 76, no. 3, pp. 687–717, Jul. 1996.

[122] A. A. Sharp, L. F. Abbott, and E. Marder, “Artificial electrical synapses in
oscillatory networks.,” J. Neurophysiol., vol. 67, no. 6, pp. 1691–4, Jun.
1992.

[123] A. Destexhe, Z. F. Mainen, and T. J. Sejnowski, “An Efficient Method for
Computing Synaptic Conductances Based on a Kinetic Model of Receptor
Binding,” Neural Comput., vol. 6, no. 1, pp. 14–18, Jan. 1994.

[124] G. J. Gutierrez and R. G. Grashow, “Cancer borealis stomatogastric
nervous system dissection.,” J. Vis. Exp., no. 25, p. e1207, Jan. 2009.

[125] M. Hubli and V. Dietz, “The physiological basis of neurorehabilitation--
locomotor training after spinal cord injury.,” J. Neuroeng. Rehabil., vol. 10,
no. 1, p. 5, Jan. 2013.

[126] I. Raikov, A. Preyer, and R. J. Butera, “MRCI: a flexible real-time dynamic
clamp system for electrophysiology experiments.,” J. Neurosci. Methods,
vol. 132, no. 2, pp. 109–23, Jan. 2004.

[127] T. Nowotny, A. Szucs, R. D. Pinto, and A. I. Selverston, “StdpC: a modern
dynamic clamp.,” J. Neurosci. Methods, vol. 158, no. 2, pp. 287–99, Dec.
2006.

[128] T. J. Kispersky, M. N. Economo, P. Randeria, and J. A. White, “GenNet: A
Platform for Hybrid Network Experiments.,” Front. Neuroinform., vol. 5, p.
11, Jan. 2011.

[129] A. Sharma, L. Rieth, P. Tathireddy, R. Harrison, H. Oppermann, M. Klein,
M. Töpper, E. Jung, R. Normann, G. Clark, and F. Solzbacher, “Long term
in vitro functional stability and recording longevity of fully integrated
wireless neural interfaces based on the Utah Slant Electrode Array.,” J.
Neural Eng., vol. 8, no. 4, p. 045004, Aug. 2011.

[130] T. D. Y. Kozai, N. B. Langhals, P. R. Patel, X. Deng, H. Zhang, K. L.
Smith, J. Lahann, N. A. Kotov, and D. R. Kipke, “Ultrasmall implantable
composite microelectrodes with bioactive surfaces for chronic neural
interfaces.,” Nat. Mater., vol. 11, no. 12, pp. 1065–73, Dec. 2012.

[131] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung, “Data-
reuse exploration under an on-chip memory constraint for low-power
FPGA-based systems,” IET Comput. Digit. Tech., vol. 3, no. 3, p. 235,
2009.

[132] C. Soto-Treviño, P. Rabbah, E. Marder, and F. Nadim, “Computational
model of electrically coupled, intrinsically distinct pacemaker neurons.,” J.
Neurophysiol., vol. 94, no. 1, pp. 590–604, Jul. 2005.

123

[133] K. Cheung, S. R. Schultz, and P. H. W. Leong, “A parallel spiking neural
network simulator,” in 2009 International Conference on Field-
Programmable Technology, 2009, pp. 247–254.

124

Appendices

A. The FPGA on-board results of a standard HR and IF neuronal model

125

B. The physical board display of Virtex-4, 5 and 7

126

C. The VHDL code of ChR2

--

-- Company: Newcastle University

-- Engineer: Junwen Luo

--

-- Create Date: 20:08:08 06/27/2014

-- Design Name: Channelrhodopsin-2 (ChR2)

-- Module Name: chr2 – Behavioural

-- Project Name: Silicon ChR2

-- Target Devices: Virtex-7 evaluation kit

-- Tool versions:

-- Description:

 -- All fixed-point values are represented by 45-bit and 30-fractional bit

 -- The architecture is to mimic ChR2 ion dynamic with single light pulse

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 – File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity chr2 is

 port (imax : in std_logic_vector(44 downto 0);

 CLOCK : in std_logic;

 current_chr2 : out std_logic_vector (44 downto 0)

);

end chr2;

architecture netlist of chr2 is

 component selection port -----decide ChR2 conductance between light on

and light off

 (CLOCK :in std_logic;

 t_out :out std_logic_vector(44 downto 0);

 control_out :out std_logic;

 pulse_out :out std_logic_vector (44 downto 0)

);

 end component;

 component ga1 port -----Calculate ChR2 ga1 conductance

 (t :in std_logic_vector(44 downto 0);

 CLOCK :in std_logic;

 control :in std_logic;

 pulse : in std_logic_vector (44 downto 0);

 ga1_out :out std_logic_vector(44 downto 0)

);

127

 end component;

 component ga2 port -----Calculate ChR2 ga2 conductance

 (t :in std_logic_vector(44 downto 0);

 CLOCK :in std_logic;

 control :in std_logic;

 pulse : in std_logic_vector (44 downto 0);

 ga2_out :out std_logic_vector(44 downto 0)

);

 end component;

 component ode port -----Calculate ChR2 ionic numbers

 (ga1_in :in std_logic_vector(44 downto 0);

 CLOCK :in std_logic;

 ga2_in : in std_logic_vector(44 downto 0);

 o1 :out std_logic_vector (44 downto 0);

 o2 :out std_logic_vector (44 downto 0);

 o3 : out std_logic_vector (44 downto 0)

);

 end component;

 component current_g port -----Calculate ChR2 current

 (imax : in std_logic_vector(44 downto 0);

 CLOCK :in std_logic;

 O1 : in std_logic_vector (44 downto 0);

 O2 : in std_logic_vector (44 downto 0);

 current :out std_logic_vector (44 downto 0)

);

 end component;

signal s1 ,s3,s4,s5,s6,s7,s8 : std_logic_vector(44 downto 0);

signal s2 : std_logic;

begin

 U1: selection port map (CLOCK, s1,s2,s3);

 U2: ga1 port map (s1,CLOCK,s2,s3,s4);

 U3: ga2 port map (s1,CLOCK,s2,s3,s5);

 U4: ode port map (s4, CLOCK, s5, s6,s7,s8);

 U5: current_g port map (imax, CLOCK, s6,s7, current_chr2);

end netlist;

--
U1:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.std_logic_arith.ALL;

use IEEE.std_logic_unsigned.all;

use IEEE.numeric_std.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity selection is

128

 generic (light : std_logic_vector (44 downto 0) :=

"000000000000101"&"000000000000000000000000000000");

 port (CLOCK :in std_logic;

 t_out :out std_logic_vector(44 downto 0);

 control_out :out std_logic;

 pulse_out :out std_logic_vector (44 downto 0)

);

function adder(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(width-1 downto 0);

 begin

 s_p := a+b;

 return s_p;

end function;

function mult(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(a'length + b'length-1 downto 0);

 begin

 s_p := a*b;

 return s_p(lowbit+width-1 downto lowbit);

end function;

end selection;

architecture Behavioural of selection is

constant step : std_logic_vector(44 downto 0) :=

"000000000000000"&"000000101000111101011100001010";

signal count_int : std_logic_vector(44 downto 0) := (others =>'0');

signal count_out : std_logic_vector(44 downto 0);

begin

 process(CLOCK)

 begin

 if rising_edge(CLOCK) then

 if count_int =

"001001110001000"&"000000000000000000000000000000" then

 count_int <= (others =>'0');

 else

 count_int <=

adder(count_int,"000000000000001"&"000000000000000000000000000000",45,45);

 end if;

 count_out <= mult(count_int,step,45,45);

 t_out <= count_out;

 pulse_out <= light;

129

 if count_int <= light then

 control_out <= '1' ;

 else

 control_out <= '0' ;

 end if;

 end if;

 end process;

end Behavioural;
--

U2:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity ga1 is

 port(t :in std_logic_vector(44 downto 0);

 CLOCK :in std_logic;

 control :in std_logic;

 pulse : in std_logic_vector (44 downto 0);

 ga1_out :out std_logic_vector(44 downto 0)

);

end ga1;

architecture netlist of ga1 is

component mux1 port (sel: in std_logic;

 d0 : in std_logic_vector(44 downto 0);

 d1 : in std_logic_vector(44 downto 0);

 d_out : out std_logic_vector(44

downto 0)

);

end component;

component ga1off port (t_in : in std_logic_vector (44 downto 0);

 p_in: in std_logic_vector (44 downto 0);

 CLOCK :in std_logic;

 data1_in : in std_logic_vector

(44 downto 0);

 data2_in : in std_logic_vector

(44 downto 0);

130

 out1 : out std_logic_vector (44

downto 0);

 address1 : out integer;

 address2 : out integer

);

end component;

component memory1 port(

 address1_in : in integer;

 address2_in : in integer;

 data1_out : out

std_logic_vector(44 downto 0);

 data2_out : out

std_logic_vector(44 downto 0)

);

end component;

component ga1on port (t_in : in std_logic_vector (44 downto 0);

 p_in: in std_logic_vector (44 downto 0);

 CLOCK :in std_logic;

 data3_in : in std_logic_vector

(44 downto 0);

 out2 : out std_logic_vector (44

downto 0);

 address3 : out integer

);

end component;

component memory2 port(

 address3_in : in integer;

 data3_out : out

std_logic_vector(44 downto 0)

);

end component;

signal s1,s2,s3,s4,s7 : std_logic_vector (44 downto 0);

signal s5,s6,s8 : integer;

begin

 U1 : ga1off port map (t, pulse, CLOCK,s3, s4, s1, s5, s6);

 U2 : memory1 port map (s5, s6, s3, s4);

 U3: ga1on port map (t, pulse, CLOCK,s7, s2, s8);

 U4 : memory2 port map (s8, s7);

 U5: mux1 port map (control, s1,s2,ga1_out);

end netlist;

--

U3:

library IEEE;

131

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.std_logic_unsigned.all;

use IEEE.numeric_std.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity ga1on is

port (t_in : in std_logic_vector (44 downto 0);

 p_in: in std_logic_vector (44 downto 0);

 CLOCK :in std_logic;

 data3_in : in std_logic_vector

(44 downto 0);

 out2 : out std_logic_vector (44

downto 0);

 address3 : out integer

);

function adder(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(a'length + b'length-1 downto 0);

 begin

 s_p := a+b;

 return s_p(lowbit+width-1 downto lowbit);

end function;

function sub(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(a'length + b'length-1 downto 0);

 begin

 s_p := a-b;

 return s_p(lowbit+width-1 downto lowbit);

end function;

function mult(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(a'length + b'length-1 downto 0);

 begin

 s_p := a*b;

132

 return s_p(lowbit+width-1 downto lowbit);

end function;

end ga1on;

architecture Behavioural of ga1on is

constant tau_ChR : std_logic_vector :=

"100000000000000"&"110001001110101001001010100011";

constant QEtrans : std_logic_vector :=

"000000000000000"&"100110011001100110011001100110";

constant F : std_logic_vector :=

"000000000000000"&"001001110101100011100010000110";

signal s1,s2,s3 : std_logic_vector(44 downto 0);

begin

 process(CLOCK,t_in,data3_in)

 begin

 s1<= mult(QEtrans, F, 45,45);

 s2<= mult(t_in, tau_ChR, 45,45);

 address3 <= to_integer(unsigned(s2));

 --s3<=

adder("000000000000001"&"000000000000000000000000000000",data3_in,45,45);

 s3<= "000000000000001"&"000000000000000000000000000000"+data3_in;

 out2<= mult(s1,s3,45,45);

 end process;

end Behavioural;
--

U4:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.std_logic_unsigned.all;

use IEEE.numeric_std.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity ode is

generic (Gd1 : std_logic_vector (44 downto 0) :=

"000000000000101"&"010110011001100110011001100110";

 e_ct: std_logic_vector (44 downto 0) :=

"000000000000101"&"000000101000111101011100001010";

 e_tc: std_logic_vector (44 downto 0) :=

"000000000000101"&"000001010001111010111000010100";

 Gd2 : std_logic_vector (44 downto 0) :=

"000000000000101"&"000001010001111010111000010100";

 Gr_d : std_logic_vector (44 downto 0) :=

"000000000000101"&"000000000001010111010111110110"

);

133

port (ga1_in :in std_logic_vector(44 downto 0);

 CLOCK :in std_logic;

 ga2_in : in std_logic_vector(44 downto 0);

 o1 :out std_logic_vector (44 downto 0);

 o2 :out std_logic_vector (44 downto 0);

 o3 : out std_logic_vector (44 downto 0)

);

function adder(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(width-1 downto 0);

 begin

 s_p := a+b;

 --return s_p(lowbit+width-1 downto lowbit);

 return s_p;

end function;

function sub(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(width-1 downto 0);

 begin

 s_p := a-b;

 --return s_p(lowbit+width-1 downto lowbit);

 return s_p;

end function;

function mult(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(a'length + b'length-1 downto 0);

 begin

 s_p := a*b;

 return s_p(lowbit+width-1 downto lowbit);

end function;

function delay (a: in std_logic_vector (44 downto 0);

 clk: in std_logic)

return std_logic_vector is

 variable r : std_logic_vector(44 downto 0);

 begin

 if(clk = '1')then

 r := a;

 else

 r:= (others =>'0') ;

 end if;

134

 return r;

 end function;

end ode;

architecture Behavioural of ode is

signal s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s12,so1,so2,so3 : std_logic_vector(44 downto 0) :=

(others =>'0');

signal s13,s14,s15,s16,s17,s18,s19,s21 : std_logic_vector(44 downto 0) := (others =>'0');

signal s22,s23,s24,s25,s26,s28 : std_logic_vector(44 downto 0) := (others =>'0');

begin

 process(CLOCK,ga1_in,ga2_in)

 begin

 if(rising_edge(CLOCK)) then

 s1 <= Gd1 + e_ct;

 --s2<= adder(s1,ga1_in,45,45);

 s2 <= s1 + ga1_in;

 s3<= mult(s2,so1, 45,45);

 s4<= sub(ga1_in, s3,45,45);

 s5<= sub(e_tc, ga1_in, 45,45);

 s6<= mult(s5,so2,45,45);

 s7<= mult(ga1_in,so3,45,45);

 s8<= sub(s6,s7,45,45);

 s9<= sub(s4,s8,45,45);

 s10<= mult(s9,"000000000000101"&"000000101000111101011100001010",45,45);

 so1<= adder(s10,s12,45,45);

 s12<= delay(so1,CLOCK);

 s13<= mult(e_ct,so1,45,45);

 s14<= Gd2 + e_tc;

 s15<= mult(so2,s14,45,45);

 s16<= sub(s13,s15,45,45);

 s17<= mult(ga2_in,so3,45,45);

 s18<= adder(s17,s16,45,45);

 s19<=

mult(s18,"000000000000101"&"000000101000111101011100001010",45,45);

 so2 <= adder(s19,s21,45,45);

 s21<= delay(so2,CLOCK);

 s22<= mult(Gd2,so2,45,45);

 s23<= adder(ga2_in, Gr_d,45,45);

 s24<= mult(s23, so3, 45,45);

 s25<= sub(s22, s24,45,45);

 s26<=

mult(s25,"000000000000101"&"000000101000111101011100001010",45,45);

 so3<= adder(s26,s28,45,45);

 s28<= delay(so3,CLOCK);

 o1<=so1;

 o2<=so2;

 o3<=so3;

 end if;

 end process;

135

end Behavioural;

--U5:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.std_logic_unsigned.all;

use IEEE.numeric_std.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity current_g is

port (imax : in std_logic_vector(44 downto 0);

 CLOCK :in std_logic;

 O1 : in std_logic_vector (44 downto 0);

 O2 : in std_logic_vector (44 downto 0);

 current :out std_logic_vector (44 downto 0)

);

function adder(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(width-1 downto 0);

 begin

 s_p := a+b;

 --return s_p(lowbit+width-1 downto lowbit);

 return s_p;

end function;

function sub(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(width-1 downto 0);

 begin

 s_p := a-b;

 --return s_p(lowbit+width-1 downto lowbit);

 return s_p;

end function;

function mult(a: in std_logic_vector;

 b:in std_logic_vector;

 width: in integer;

 lowbit: in integer)

return std_logic_vector is

 variable s_p : std_logic_vector(a'length + b'length-1 downto 0);

136

 begin

 s_p := a*b;

 return s_p(lowbit+width-1 downto lowbit);

end function;

function delay (a: in std_logic_vector (44 downto 0);

 clk: in std_logic)

return std_logic_vector is

 variable r : std_logic_vector(44 downto 0);

 begin

 if(clk = '1')then

 r := a;

 else

 r:= (others =>'0') ;

 end if;

 return r;

 end function;

end current_g;

architecture Behavioural of current_g is

signal s1,s2,s3,s4 : std_logic_vector(44 downto 0);

begin

 process(CLOCK,imax)

 begin

 s1 <=

mult("000000000001010"&"000000000000000000000000000000",imax,45,45);

 s2 <= mult(s1,O1,45,45);

 s3 <= mult(s1,O2,45,45);

 s4 <=

mult(s3,"000000000000000"&"000101000111101011100001010001",45,45);

 current<= adder(s4,s2,45,45);

 end process;

end Behavioural;

137

D. Schematic figures of two-by-two frame-based network-on-chip system*

138

139

E. STG mapping results and closed-loop system set-up

E.1 mapping

Since the entire STG network has only approximately 24 neurons, it is feasible

to identify each neuron location and character and to recognize the pacemaker

neurons. The mapped results are shown below:

140

E.2 Closed-loop system set-up

The Virtex-4 DSP board was integrated into a standard PC as a digital

processor, and the electro-psychological device is an Axoclamp 900A Amplifier.

The overall system is shown below.

