
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

An FPGA-based 77 GHzs RADAR signal processing system for An FPGA-based 77 GHzs RADAR signal processing system for

automotive collision avoidance automotive collision avoidance

Sundeep Lal
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Lal, Sundeep, "An FPGA-based 77 GHzs RADAR signal processing system for automotive collision
avoidance" (2010). Electronic Theses and Dissertations. 7979.
https://scholar.uwindsor.ca/etd/7979

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7979?utm_source=scholar.uwindsor.ca%2Fetd%2F7979&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An FPGA-based 77 GHz

RADAR

Signal Processing System for

Automotive Collision Avoidance

By

Sundeep Lai

A Thesis

Submitted to the Faculty of Graduate Studies

Through Electrical and Computer Engineering

In Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science

at the University of Windsor

Windsor, Ontario, Canada

2010

© Sundeep Lai

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-62749-5
Our file Notre r6f6rence
ISBN: 978-0-494-62749-5

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone's copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

in

Abstract

An FPGA implementable Verilog HDL based signal processing algorithm has been

developed to detect the range and velocity of target vehicles using a MEMS based 77

GHz LFMCW long range automotive radar. The algorithm generates a tuning voltage to

control a GaAs based VCO to produce a triangular chirp signal, controls the operation of

MEMS components, and finally processes the IF signal to determine the range and

veolicty of the detected targets. The Verilog HDL code has been developed targeting the

Xilinx Virtex-5 SX50T FPGA. The developed algorithm enables the MEMS radar to detect

24 targets in an optimum timespan of 6.42 ms in the range of 0.4 to 200 m with a range

resolution of 0.19 m and a maximum range error 0.25 m. A maximum relative velocity of

±300 km/h can be determined with a velocity resolution in HDL of 0.95 m/s and a

maximum velocity error of 0.83 m/s with a sweep duration of 1 ms.

IV

A Sincere Dedication

To mom, dad, amma, thaththa, Mannu andSunali with love..

It is your ever-encouraging faith in me that keeps me going.

Om Sai Ram

v

Acknowledgement

Before all I submit my prayers to Almighty God who has always kept His Guiding

Hand upon me and whose bounteous Blessings reveal themselves in the form of all the

lovely people who have made this work possible.

With utmost sincerity I express my gratitude and respect to my advisor Dr. Sazzadur

Chowdhury, who has always inspired me to work with honesty, integrity and discipline.

His timely guidance and reassuring aura have been indispensible boons contributing to

the completion of this thesis.

I am thankful to Mohan Thangarajah, Matt Murawski and Tugrul Zure for their

helpful comments, and extend my note of thanks to Dr. Mosaddequr Rehman for his

encouraging words.

This note would be incomplete without thanking Andria Ballo for always being there

for every engineering soul in distress, her ever-readiness to help, valuable guidance and

the uncanny ability to remember the name of every single student.

Lastly I would like to mention the names of my best friends Jitender and Rishi who

have always been around with their comic and witty remarks that worked well in

lowering my stress level throughout the course of this research.

Table of Contents

Author's Declaration of Originality iii

Abstract iv

A Sincere Dedication v

Acknowledgement vi

List of Figures ix

List of Tables xi

List of Abbreviations xii

Nomenclature xiv

CHAPTER 1: INTRODUCTION 1

1.1 Problem Statement 1

1.2 Hypothesis 6

1.3 Motivation 6

1.4 Research Methodology 7

1.5 Principal Results 8

1.6 Thesis Organization 9

CHAPTER 2: LITERATURE SURVEY 10

2.1 Literature Review 10

2.1.1 Selecting the Type of Radar 13

2.1.2 Beamforming with Phased Array Antennae 15

2.1.3 Direction of Arrival Estimation using Phased Array Antennae 20

2.1.4 Frequency Generation, Tuning and Linearity 21

2.1.5 Selecting the Development Platform 22

2.1.6 State-of-the-Art in Automotive Radar 24

2.1.7 Recent Work Done in FPGA-based LFMCW Digital Signal Processing 28

CHAPTER 3: REQUIREMENTS FOR THE TARGET FMCW SYSTEM 29

3.1 System Requirements Identification.. 29

3.2 Selecting the Required FMCW Waveform 31

3.3 Linear Frequency Modulated Continuous Wave Radar 32

3.3.1 Derivation of Range and Velocity for LFMCW 34

3.3.2 LFMCW Radar Signal Generation using VCO 38

3.3.3 Received Echo Signal Conditioning for LFMCW 39

3.4 Digital Signal Processing Tools 41

3.4.1 Time-domain Window 41

3.4.2 The Fast Fourier Transform 48

3.4.3 Constant False Alarm Rate (CFAR) Processor 49

3.4.4 Miscellaneous Topics 52

CHAPTER 4: RADAR CONTROL AND SIGNAL PROCESSING ALGORITHM 59

4.1 Radar Transmitter Control and MEMS RFSP3T Switch Control 61

vii

4.2 Radar Receiver Flow Control and Signal Processing 63

4.3 Selecting the Radar Sweep Bandwidth 65

4.4 Configuration of System Components 68

4.4.1 ADC 68

4.4.2 FFT 68

4.4.3 CFAR 68

4.4.4 Peak Pairing 69

4.5 Developed Algorithm Summary 69

CHAPTER 5: SOFTWARE IMPLEMENTATION AND SIMULATION 71

5.1 Software Implementation of the Radar Signal Processing Algorithm 71

5.2 Testing Stage 1: Windowing versus No Windowing 74

5.2.1 Results without Windowing 75

5.2.2 Results with Windowing 76

5.3 Testing Stage 2: 3-Lane Highway Scenario with Narrow Beam 77

5.4 Testing Stage 3: Scenario with 7 Targets Detected in a Single Wide Beam 86

5.5 Observations from Software Simulation Results 91

CHAPTER 6: HARDWARE IMPLEMENTATION AND VALIDATION 92

6.1 Hardware Implementation of the Radar Signal Processing Algorithm 92

6.1.1 Radar Signal Processing Algorithm on FPGA 94

6.2 Validation of the HDL Implementation of the Signal Processing Algorithm 115

6.2.1 Test 1: 3-Lane Highway Scenario with Narrow Beam 116

6.2.2 Test 2: Scenario with 7 Targets Detected in a Single Wide Beam 124

6.3 Hardware Synthesis Results for the Developed Algorithm 131

6.4 Observations from HDL Implementation of the Developed Algorithm 133

CHAPTER 7: CONCLUSIONS ; 135

7.1 Discussions and Conclusions 135

7.2 Future Work 136

REFERENCES 138

APPENDIX 142

A l . MATLAB listing for Radar Signal Processing Algorithm testing 143

A2. MATLAB listing for error calculation from 10-bit rounding of Window functions 150

A3. HDL listing for TLC 151

A4. HDL listing for SAMPLER 158

A5. HDL wrapper for Xilinx FFT v7.0 core 162

A6. HDL listing for FDR 163

A7. HDL listing for PSD 168

A8. HDL listing for CFAR 170

A9. HDL listing for PPM 174

VITAAUCTORIS 182

VIII

List of Figures

igure 1.1: Automotive radar system conceptual diagram 4

igure 2.1: Pulsed Doppler radar waveform 12

igure 2.2: Transmit signal frequency for FSK-CW and triangular FMCW 13

igure 2.3: Six patch array antenna of radiating elements 16

igure 2.4: Radiation pattern for 3 patch array and 6 patch array 17

igure2.5: Analog beamformer 18

igure 2.6: Schematic of the intrinsic beamforming capability of the Rotman lens 19

igure 2.7: Non-linear frequency response of a typical RF VCO 22

igure 2.8: Radar applications in the automotive industry 25

Igure 2.9: Distronic Plus by Mercedes-Benz 26

igure 3.1: FMCW waveforms left to right: Sine, Saw-tooth and Triangular 31

igure 3.2: LFMCW Transmit, Receive and Beat frequency 33

igure 3.3: FPGA based tuning voltage generation for VCO to produce LFMCW chirps 38
:igure 3.4: Time-domain RF signal showing up and down frequency chirps 39
:igure 3.5: Conceptual diagram of an RF mixer 40
:igure 3.6: Spectral leakage due to rectangular windowing 42
:igure 3.7: Time and Frequency domain representations of various window functions 43

Igure 3.8: CA-CFAR processor architecture 51

Igure 3.9: Safe distance between two vehicles 58
:igure 4.1: Flowchart for the operation of modulation and transmitter control unit 62

igure 4.2: Radar signal processing algorithm 64
:igure 4.3: Variation of range resolution with LFMCW sweep bandwidth 66
:igure 5.1: Flowchart for MATLAB simulation of the radar signal processing algorithm 73
:igure 5.2: Test case highway scenario 78
:igure 5.3: Time-domain signals for the up and down sweep of Beam 1 80
:igure 5.4: Frequency analysis of return signals in Beams 1, 2 and 3 83
:igure 5.5: Hypothetical scenario with a single wide-angle antenna beam 86
:igure 5.6: Frequency analysis for the wide-angle beam scan 88
:igure 6.1: Xilinx Virtex-5 SX50T mounted on Development Board ML506 93
:igure 6.2: HDL blocks for the radar signal processing algorithm 94
:igure 6.3: Black box view of radar control and signal processing algorithm 95
:igure 6.4: TLC in Xilinx ISERTL viewer 96
:igure 6.5: Xilinx ISE RTL view of SAMPLER unit with sub-modules WINDOW and TDR 100
:igure 6.6: Timing diagram for SAMPLER module 101
:igure 6.7: Xilinx ISE RTL view of FFTv7.0 core 103
:igure 6.8: Timing diagram for Xilinx FFT core v7.0 104
:igure 6.9: Xilinx ISE RTL schematic view of two sub-modules forming the FDR unit 106

ix

Figure 6.10: Timing diagram for FDR 107

Figure 6.11: Peak intensity calculation unit 108

Figure 6.12: Four PSD units work in parallel 109

Figure 6.13: RTL view of CFAR module 110

Figure 6.14: Timing diagram for CFAR module I l l

Figure 6.15: RTL view of PPM 112

Figure 6.16: Timing diagram for PPM showing 4 detected targets from CFAR 113

Figure 6.17: Test case highway scenario 116

Figure 6.18: Test Case 1: 3-Lane simulation waveform results from Xilinx ISE Simulator 118

Figure 6.19: HDL simulation results for Test Case 1 122

Figure 6.20: Test Case 2: Hypothetical scenario with a single wide-angle antenna beam 125

Figure 6.21: HDL simulation results for Test Case 2 128

Figure 6.22: LFMCW sweep timing diagram for the realized HDL system 134

Figure 7.1: Typical angle and range coverage for SRR, MRR and LRR 137

x

List of Tables

Table 1.1: Fatality count around the globe 3

Table 2.1: Speed Comparison of a typical FPGA 23

Table 2.2: Commercially available new generation of automotive radar systems 27

Table 2.3: Previous generation of automotive radar systems 27

Table 3.1: The next generation of Long Range Radar 30

Table 3.2: Comparison of common Window functions 47

Table 3.3: Atmospheric attenuation at 70-80 GHz 56

Table 4.1: Initially provided System Specifications 60

Table 4.2: Final parameters for the devised signal processing algorithm 70

Table 5.1: Practical Test Case Highway Scenario-Target Description 78

Table 5.2: Results from MATLAB Simulation of 3-Lane Narrow Beam Scenario 84

Table 5.3: Errors from MATLAB Simulations of 3-Lane Narrow Beam Scenario 85

Table 5.4: Hypothetical Test Case - Target Description 87

Table 5.5: Results from MATLAB Simulations of 3-Lane Single Wide Beam Scenario 90

Table 5.6: Errors from MATLAB Simulations of 3-Lane Single Wide Beam Scenario 90

Table 6.1: Xilinx Virtex-5 SX50T features 93

Table 6.2: Port description for TLC 97

Table 6.3: Port description for SAMPLER 101

Table 6.4: Xilinx FFT IP core parameterization 102

Table 6.5: Port description for FFT 103

Table 6.6: Port description for FDR 106

Table 6.7: Port description for PSD 108

Table 6.8: Port description for CFAR 110

Table 6.9: Sensitivity Adjustment for CA-CFAR Processor 112

Table 6.10: Port description for PPM 113

Table 6.11: Results from HDL Simulation of 3-Lane Narrow Beam Scenario 123

Table 6.12: Errors from HDL Simulations of 3-Lane Narrow Beam Scenario 124

Table 6.13: Results from HDL Simulations of 3-Lane Single Wide Beam Scenario 129

Table 6.14: Errors from HDL Simulations of 3-Lane Single Wide Beam Scenario 129

Table 6.15: Comparison of MATLAB and HDL range results for wide beam scenario 130

Table 6.16: Comparison of MATLAB and HDL velocity results for wide beam scenario 131

Table 6.17: Resource Usage for the Radar Signal Processing Algorithm on Virtex-5 SX50T 132

Table 6.18: Timing Achievements of HDL Implementation 132

Table 6.19: Achieved Timing Details for Developed LFMCW Radar System 134

XI

List of Abbreviations

MEMS - Microelectromechanical Systems

Radar - Radio Detection and Ranging

RF - Radio Frequency

SP3T - Single Pole Triple Throw

PRF - Pulse Repetition Frequency

DSP - Digital Signal Processor(-ing)

FPGA- Field Programmable Gate Array

DAC - Digital to Analog Converter

ADC - Analog to Digital Converter

FSK - Frequency Shift Keying

LFMCW - Linear Frequency Modulated Continuous Wave

HDL- Hardware Description Language

ECCM - Electronic Counter-Countermeasures

FFT- Fast Fourier Transform

DFT- Discrete Fourier Transform

DIT- Decimation In Time

DIF - Decimation In Frequency

CA(OS)-CFAR - Constant False(Ordered Statistics) Constant False Alarm Rate

RTL - Register Transfer Level

TLC - Top Level Control

TDR-Time-domain Data RAM

FDR - Frequency-domain DATA RAM

PSD - Power Spectral Density

xii

PPM - Peak Pairing Module

RCS - Radar Cross-Section

CPI -Coherent Processing Interval

VCO-Voltage Controlled Oscillator

LRR - Long Range Radar

MRR - Medium Range Radar

SRR-Short Range Radar

IF - Intermediate Frequency

MSPS - Mega-Samples Per Second

LUT-Look-Up Table

FF-Flip-Flop

BUFG-Global Buffer

BUFGCTLR - Global Clock Buffer

RAM - Random Access Memory

ROM - Read-Only Memory

DSP48E -Xilinx Digital Signal Processing Slice (5th Generation)

DOA - Direction Of Arrival

ISE - Integrated System Environment

LPF - Low Pass Filter

AWGN - Additive White Gaussian Noise

EM - Electro-Magnetic

MMIC - Monolithic Microwave Integrated Circuits

UWB-Ultra-Wide Band

SMD - Surface Mount Device

Nomenclature

r - target range

c = speed of RF waves through air

^two-way = two-way travel time for RF wave from radar sensor to target and back

vrel = relative velocity

vtarget = target velocity

vhost = n o s t vehicle velocity

/ (j = Doppler frequency shift

X = radio wave wavelength

/b = beat frequency or instantaneous intermediate frequency

/ t = transmit signal frequency

fx = received signal frequency

r0 = travel time for RF wave from radar sensor to target

B = LFMCW sweep bandwidth

T - LFMCW sweep duration

k = rate of change of frequency in LFMCW sweep =BIT

X k = frequency domain sample

xn = time domain sample

Pfa = probability of false alarm

Tc = CFAR dynamic threshold

<T = Radar Cross-Section of a target

Njh = thermal noise

rA = absolute atmospheric temperature

SNRQ = quantization signal-to-noise ratio

fs = sampling frequency

/res = frequency resolution of FFT

xiv

CHAPTER 1:
INTRODUCTION

This chapter starts with a clear definition of the issue this research work

addresses, explaining the importance of the work and its outcomes. Facts about road

safety and accident records around the globe are presented and automotive radar

applications are identified as an effective means of enhancing vehicular safety features.

The potential benefits of automotive radar systems in road safety are highlighted, and

the radar being developed at the University of Windsor is presented along with a

concise operating principle. Finally, the principal results of this research work are listed.

1.1 Problem Statement

The objective and goal of this research is to develop an FPGA-implementable signal

processing algorithm for use in a Microelectromechanical Systems (MEMS) based linear

frequency modulated continuous wave (LFMCW) long range auotomotive radar to

determine the range and velocity of targets in the vicinity of a host vehicle.

Loss of lives and property damage due to automotive collisions can be minimized if it

is possible to detect the proximity of other vehicles, pedestrians, and obstacles in real­

time using advanced microelectromechanical systems (MEMS) based sensor technology.

The current technology for short and long range proximity detection, such as: stand­

alone ultrasonic sensor or sensor arrays, electromagnetic radar units (present in high-

end vehicles only), lasers, and cameras mounted on side view mirrors fall short of

establishing a real-time dynamic safety shell around a vehicle due to their high latency

time associated with microelectronic signal processing and need for mechanical

scanning of the target area in case of radars. Moreover, due to high cost of stand-alone

manufacturing, automakers are reluctant to incorporate these solutions in low-end

1

vehicles. As a result the overall road safety situation remains almost the same even if

some of the vehicles are equipped with advanced collision or pre-crash warning

systems. To put the problem in perspective, less than 1% of vehicles running in Canadian

highways are equipped with advanced radar sensors.

Market research firm Strategy Analytics predicts that over the period 2006 to 2011,

the use of long-range distance warning systems in cars could increase by more than 65

percent annually, with demand reaching 3 mn units in 2011, with 2.3 mn of them using

radar sensors. By 2014, 7 percent of all new cars will include a distance warning system,

primarily in Europe and in Japan [18].

Global auto industries and governments are extensively pursuing radar based

proximity detection systems for (1) ACC support with Stop&Go functionality, (2) collision

warning, (3) pre-crash warning, (4) blind spot monitoring, (5) parking aid (forward and

reverse), (6) lane change assistant and (7) rear crash collision warning. The European

Commission (EC) has set an ambitious target to reduce road deaths by 50% by the end

of 2010. In North America alone the rate of fatalities related to road accidents has been

stagnant at approximately 43,000 per year, which sums to a huge annual loss of life and

property [15]. It has been concluded that the use of Forward Collision Warning long

range radar and Lane Departure Warning camera-based sensor among other security

features will become very effective to reduce road fatality rates. In [15], it has been

mentioned that with the proposed crash prevention technologies equipped in vehicles,

the number of crashes can be reduced by 3.8 mn in North America, and the number of

human lives saved from that amounts close to 17,000 per year. This warrants the use of

long range radar as an indispensable feature to improve highway safety and minimize

loss of lives and property damage.

2

Table 1.1: Fatality count around the globe [15]

North America

European Union

Japan

Fatality count in 2005

43,443

41,600

6,871

Fatality rate per 100 million vehicle

miles

1.5

1.3

1.4

Pulse-Doppler vs FMCW Radar

Some of the earlier automotive radar applications relied on a high-power Pulsed

Doppler radar technique, but the suitability of the technique came under criticism after

the televised failure of the Mercedes-Benz pulsed radar assisted Distronic cruise control

system on Stern TV in 2005 [17]. This has instigated the industry to study and use the

FMCW radar technique for modern radar systems. FMCW radar in automotive

applications is still a developing field of study, with on-going research at all system levels

including signal processing and RF hardware design.

The MEMS Radar

The application of an automotive radar system is classified according to the

range it covers. Long range radar (LRR) and medium range radar (MRR) are used in

cruise control and collision avoidance, and short range radar (SRR) is used in collision

avoidance, crash-prevention and parking-assist systems.

Having established that automotive radar can be very helpful in reducing the

number of fatal accidents, it is essential that low cost and reliable radar systems be

made to improve road safety globally. Lower cost (compared to $2000-$3000 approx.

for current systems) will enable even lower-end vehicles to be equipped with safety

options, boosting road safety.

3

MEMS technology offers the advantage of realizing low cost batch fabricatable

high performance RF componets like Rotman lens, RF switches that can be sued to

realize a compact high performance lightweight radar in a small form factor. Such a

MEMS based radar system has been developed at the University of Windsor, Ontario,

Canada. A block diagram for the MEMS based radar has been developed as part of this

thesis and is shown in Figure 1.1.

Transmitted
signal

Target

SP3T
switch
control

Transmitter
control

Signal
processing Target velocity, range,

safe distance

Driver
notification

CAN Bus

FPGA

Figure 1.1: Automotive radar system conceptual diagram showing Rotman lens and SP3T
switches. Only major components are shown.

MEMS Radar Operating Principle:

1. An FPGA implemented control circuit generates a triangular signal (Vtune) to

modulate a voltage controlled oscillator (VCO) to generates a linear frequency

modulated continuous wave (LFMCW) signal having a frequency sweep range of

0-400 MHz centered at 77 GHz.

2. The signal is fed to a MEMS SP3T switch.

3. An FPGA implemented control algorithm controls the SP3T switch to sequentially

switch the LFMCW signal among the three beam ports of a MEMS implemented

Rotman lens.

4. As the LFMCW signal arrives at the array ports of the Rotman lens after traveling

through the Rotman lens cavity, the time-delayed in-phase signals are fed to a

microstrip antenna array that radiates the signal in a specific direction.

5. The sequential switching of the input signal among the beamports of the Rotman

lens enables the beam to be steered across the target area in steps by a pre-

specific angle.

6. On the receiving side, a receiver antenna array receives the signal reflected off a

vehicle or an obstacle and feeds the signal to another SP3T switch through

another Rotman lens.

7. An FPGA based control circuit controls the operation of the receiver SP3T switch

so that the signal output at a specific beamport of the receiver Rotman lens can

be mixed with the corresponding transmit signal.

8. The output of the receiver SP3T switch is passed through a mixer to generate an

IF signal in the range of 0-200 KHz.

9. An Analog-to-digital converter (ADC) samples the received IF signal and converts

it to a digital signal.

10. Finally, an FPGA implemented algorithm processes the digital signal from the

ADC to determine the range and velocity of the detected target.

The goal of this thesis is to develop the FPGA implementable algorithm to realize the

functionality of the MEMS Radar system as described above to detect the distance and

velocity of target vehicle(s) in a pre-specified range to meet the requirements of a long

range automotive radar.

1.2 Hypothesis

Owing to the passive nature of the MEMS Rotman lens, a relatively enhanced

cycle time can be achievable as compared to current state-of-the-art systems. The FPGA

based control and signal processing algorithm can be implemented as a low cost ASIC.

Together with the miniature MEMS components, and appropriate off-the-shelf radar

frontend, the target system would offer a highly compact higher performance small

form factor radar solution for automotive applications.

The efficiency of the FPGA control and signal processing implementation will be

gauged by resource usage, speed and its accuracy compared to floating-point MATLAB

simulations.

1.3 Motivation

The automotive scenario is fast-paced, with every millisecond being precious in

time-critical applications such as collision avoidance and collision mitigation systems.

Existing automotive radar sensors are critical components of the overall safety system of

a vehicle, and their cycle time or refresh time (these terms are used interchangeably

through this thesis) - the time over which the entire field of view is covered - should be

considerably short. At a speed of 200 km/h a vehicle travels 2.78 meters in 50ms, the

refresh time of a typical existing system such as Bosch LRR3. Such latency in the safety

mechanism of the vehicle in response to a potential threat increases the possibility of an

accident.

This thesis aims at exploiting the intrinsic beamforming capability of the Rotman

lens, the fast signal processing and parallel computing on FPGAs, and the reliability of

the LFMCW method in target detection to provide digital signal processing and control

of a lightweight state-of-the-art compact radar sensor for automotive safety systems.

6

1.4 Research Methodology

The course of developing an FPGA-based LFMCW radar signal processing algorithm for

the 77 GHz MEMS radar sensor involves the following steps:

1. Study the initial system specifications provided by the project supervisor based

on the MEMS based radar sensor presented in [1].

2. Survey of literature on radar systems, radar signal processing and target tracking,

radio frequency attenuation, and acceptable parameters for automotive collision

avoidance systems.

3. Development of a robust and fast radar signal processing algorithm and

development of a mathematical model of the same.

4. Decision on system peripherals such as data converters and interfaces according

to target system parameters.

5. Simulation of the algorithm in MATLAB for a typical highway traffic test scenario.

6. Development of HDL code for implementation on FPGA.

7. Verification of the developed HDL code using the same test scenario as in (3) for

a comparison of accuracy between fixed-point HDL signal processing and

floating-point MATLAB processing.

8. Fine-tuning and optimization of the HDL code for implementation on target

FPGA.

7

1.5 Principal Results

1. A reusable and parameterizable ready-to-implement LFMCW radar signal

processing algorithm for FPGA/ASIC with minimal latency of 212 us and a

competitive radar cycle time of 6.78 ms has been created. Major achieved

performance specifications of the developed system are listed below:

• Operating frequency - 77 GHz (within regional radio frequency allocation)

• Bandwidth - 800 MHz (within regional bandwidth limits)

• Maximum (Minimum) distance - 200 (0.4) meters

• Range resolution (in HDL) - 0.19 meters

• Maximum target range error - 0.25 meters

• Worst-case range accuracy - 99.75% (beyond 100 meters)

• Maximum relative velocity - ±300 km/h (receding and approaching target)

• Velocity resolution (in HDL) - 0.95 m/s

• Maximum target velocity error - 0.83 m/s

• Worst-case velocity accuracy - 99.17% (beyond 60 km/h)

• Beam steerability - ±4.5° (beam width 9°) [1]

• Maximum target count for 3-beam Rotman lens radar - 24

2. A superior signal processing time compared to recent FPGA-based

implementations as presented in [28].

8

1.6 Thesis Organization

Developing from the introduction in Chapter 1, Chapter 2 concisely summarizes

the available literature of radar technology and studies state-of-the-art standards in

automotive radar sensors, and their applications, in order to produce a list of target

specifications for the MEMS radar sensor developed at the University of Windsor.

Chapter 3 of this thesis propounds a thorough background and mathematical

conceptualization of radar topics, focusing on LFMCW radar theory. The underlying

concept of radio detection and ranging systems is presented considering different issues

affecting performance, such as noise, attenuation and non-linearity all with reference to

the design of an automotive radar sensor. Essential signal conditioning and processing

approaches are discussed with focus on frequency analysis of the radar signal.

Chapter 4 builds on the foundations laid in Chapter 2, and presents the developed

radar signal processing algorithm. The different components in the algorithm are

discussed in further detail.

Chapter 5 shows a MATLAB implementation and simulation of the radar signal

processing algorithm. Effects of different signal processing methods such as time-

domain windowing and Fourier transform on a noisy signal are studied. Simulation

results are presented to validate the accuracy of the developed algorithm.

Hardware implementation of the conceived algorithm is laid out in the form of

FPGA modules in Chapter 6. Realization of the modules is carried out in Verilog HDL

(Verilog 2005 - IEEE Standard 1364-2005) using Xilinx development software, where

fixed-point and resource usage considerations for the signal processing, sampling and

control algorithm are presented. Code validation is done using Xilinx ISE ISim simulator

with the same real-valued time-domain data samples as used in MATLAB code

verification. Chapter 7 furnishes the concluding remarks on the research work, shedding

light on achieved system specifications, future amendments and possible expansions to

the work presented herein.

9

CHAPTER 2:

LITERATURE SURVEY

This chapter covers a review of the existing literature on radar systems,

identifying the types of radars available. The advantages of frequency modulated

continuous wave (FMCW) radar over pulsed and frequency shifting radars are

recognized, based on which the decision of using FMCW radar is selected as the right

match for the target automotive radar. Important radar concepts are described,

especially beamforming and beam steering for solid-state phased array antenna radars.

The Rotman lens' role in this radar system is described, and a platform for the radar

signal processing algorithm is selected. The latter part of this chapter presents state-of-

the-art automotive radar systems, highlighting the Bosch LRR3 as a guideline for the

specifications of the system developed in this thesis.

2.1 Literature Review

Radar technology has long been used in military, aerospace, marine, geographical,

weather monitoring and global positioning applications [9]. The first conceptualization

of RF radar was made in 1920 by Bells Labs and in 1922 by Guglielmo Marconi [10]. It

has recently found increasing popularity in the automotive arena with automobile

manufacturers incorporating radars for adaptive cruise control (ACC), parking aid, pre-

crash warning, and collision avoidance systems.

Radar systems can be classified by two major types: Pulsed and Continuous Wave

[2]. Both implementations have distinct operating principle, transmit signal generation,

receive signal conditioning and processing, control and synchronization issues, and

power requirements.

10

Pulsed Radar: Pulsed radars send short-duration (in the range of a few hundred

nanoseconds) high-power (typically in kilowatts range) pulses which illuminate a target

in the line-of-sight. A pulse is essentially a sinusoid (carrier wave) at the chosen

operating frequency: the Doppler shift in the carrier wave frequency within the pulse

corresponds to the relative velocity of the target, and the time taken for the radar to

detect a return of the pulse determines the range of the target. The pulse repetation

frequency (PRF) between two consecutive pulses is a critical factor in Pulsed radar

design. Pulsed radar is a mature technology. The waveform for Pulsed radar is shown in

Figure 2.1.

In Pulsed radar the range and relative velocity of the target are determined as follows:

c x^two-way ,~ ...
Range, r = (2.1)

— f x A
Relative velocity, vre, = - ^ - (2.2)

Here, c is the speed of electromagnetic radiation in air, 77
tw0_way is the two-way travel

time for a pulse reflected form the target to return to the source, / d is the Doppler shift

and AQ is the operating wavelength.

11

; Pulse Repetition Period
< >

Pulse Width j

Time

Figure 2.1: Pulsed Doppler radar waveform - short pulses with high peak power are broadcast in
the direction of the target. A pulse contains a few hundred oscillations of the RF signal. The
return of a pulse is timed and analysed for Doppler shift. [11]

Continuous Wave Radar: Continuous Wave radars continuously transmit the RF wave at

a lower power level (typically less than 50mW) and a selected frequency. The CW radar

systems continuously observe the return from a target over a period of time, commonly

called the Coherent Processing Interval (CPI). During the CPI, the instantaneous transmit

and receive signals are mixed, and the resultant intermediate frequency (IF) signal is

assessed over the CPI for valid targets. The CW radar technology is still under constant

refinement with new strategies related to both hardware and signal processing

algorithms being developed. There are two prime implementations of CW radar: FH-

(Frequency Hopping) or FSK-CW (Frequency Shift Keying) radar and FMCW (Frequency

Modulated) radar. In FSK-CW the RF jumps between multiple frequencies over a CPI,

whereas FMCW makes use of a frequency chirp in a sine, saw-tooth or triangular fashion

[12]. The transmit waveforms for both CW radar types are shown in Figure 2.2.

12

frit)
F2+

•step

Tc?\ 2 r C P I Time 'CPI z i CPI Time

Figure 2.2: Transmit signal frequency for FSK-CW (left) radar - frequency hopping - and
triangular FMCW (right) radar - linear frequency up and down sweeps (or chirps).

Range for FSK-CW radar,

Relative Velocity for FSK-CW radar,

r =

r̂el

cAd>

4*(F2-F,)
(2.3)

(2.4)

Here, c is the speed of electromagnetic radiation in air, AO is the difference in phase

shift at the two frequencies Fx and F2, fd is the Doppler shift and XQ is the operating

wavelength.

2.1.1 Selecting the Type of Radar

Pulsed Doppler, FSK-CW and LFMCW radars are distinguished by the type of

waveform, the operating power, computational cost, hardware requirements and

application. Where Pulsed radar suffers lower atmospheric attenuation, CW radar is well

suited to short-range applications with low transmit power. Keeping in mind the

automotive scenario, which is the central theme around this thesis, the following

disadvantages are visible in these radar types.

13

Pulsed Doppler disadvantages:

- Velocity measurement limited by blind speed when fd is a multiple of the PRF.

Maximum measurable Doppler shift has to be less than PRF to avoid ISI among

different pulses and target returns.

- To reduce the above velocity ambiguity the PRF can be increased, however

increasing the PRF creates range ambiguity.

Relatively high power requirements in the automotive scenario.

Greater risk of jamming or confusion due to high-power pulses from other

Pulsed radars.

FSK-CW disadvantages:

Invisible targets in the direct path of the radar.

- Target range is computed based on the difference in phase shift for two

consecutive frequency hops. This makes the system subject to phase noise.

The CPI needs to be large enough to avoid range ambiguity.

The disadvantages posed by both Pulsed Doppler and FSK-CW radars mandate a

type of radar which does not suffer the same, and is apropos in the automotive

scenario. LFMCW radar overcomes these disadvantages with:

No theoretical limit to range resolution and better short range detection.

Reduced effects of clutter and atmospheric noise.

Lower power rating than Pulsed radar.

Less effects of phase noise.

More resistance to interference from other similar radars in the vicinity.

14

No theoretical blind spots.

Resistance to jamming (frequency modulation is a common tool in ECCM -

Electronic Counter-Countermeasures - to overcome jamming effects)

This qualitative comparison warrants the use of LFMCW for the MEMS radar sensor

under development, especially for long range radar (LRR) application.

Apart from the distinction in operating principles of different radar types, there are

design issues common to all types in general. These are:

Beamforming technique

Frequency generation, tuning and linearity

Platform for implementation of radar signal processing algorithm

2.1.2 Beamforming with Phased Array Antennae

2.1.2.1 Microelectronic Beamforming

The primitive approach in communications to rotate a scanning beam over an

azimuthal angle was to physically rotate a directional antenna mounted on a gyrating

platform. To reduce the delay and power usage inherent to this mechanically rotating

part, solid-state antennae with microelectronic beamforming were developed.

Beamforming is an aspect of wireless systems where directional signal transmission

and/or reception are desired. In other words, beamforming can be referred to as a form

of spatial filtering [7]. It is a technique applied in both transmission and reception,

depending on the application. In communications, high directivity is desired in the

direction of the signal source for a low-noise high-fidelity link to be established. In radar

15

systems, beamforming allows a means of electronic steering of a narrow scanning beam

to detect targets with higher angular resolution.

Essentially, beamforming with phased array antennae - which is the type of

antenna used in the radar system under development - is the ability to simulate a large

directional radiation pattern using a set of smaller non-directional radiating antennae

[4]. A beamformer does this by adjusting the amplitude and phase of the radiation at

every radiating element and forming a pattern of constructive interference in the

desired direction and destructive interference elsewhere.

RF Source

Figure 2.3: Six patch array antenna of radiating elements.

Figure 2.3 illustrates the concept of beamforming usuing an array of 6 radiating

elements (or patches). Each element is separated by a distance of y~ , where l i s the

wavelength of the waves being radiated. The RF source passes an identical signal down

the 6 different paths leading to the radiating patches. The RF signal travels different

distances to reach the radiating patch, which essentially creates a different path delay

for the signal. This delay manifests itself as a phase shift in the original signal. These

phase shifted RF signals are radiated and produce an interference pattern which adds

up to a main lobe and possibly some sidelobes, with nulls occurring in intermittently.

16

Figure 2.4 shows the radiation pattern of a 3 patch array antenna and a 6 patch

array antenna. As a design rule for linear patch array antennae, a higher number of

patches produce a more directional and sharper beam.

W W t * -f%r •#•• fc«i
m- * i : " i s - : a. •• so" t * : ^

Figure 2.4: Radiation pattern for 3 patch array (left) and 6 patch array (right). (The figures are
extracts from graphs generated using Java applets distributed with Fundamentals of Applied
Electromagnetics 6th Edition by Ulaby, Michielsson, Ravaioli.)

Beamforming involves both the generation of a directional pattern as well as

steering of the main lobe over the azimuth and also the elevation angles.

Microelectronic beamforming can be categorized into two main types:

• Analog Beamforming

• Digital Beamforming

2.1.2.1.1 Analog Beamforming

Figure 2.5 illustrates the general layout of an analog beamformer that can be

implemented using analog RF circuit components. After generation, an RF signal is fed to

the radiating elements after altering the phase using electronically tuned phase shifting

elements and constant weights to form a directional beam. An analog triangle or sine

wave generator can be used to continuously vary the phase shifting elements, which

effectively causes the beam to be steered [4]. Bosch LRR2 automotive radar has been

developed to operate using this analog beamforming concept.

17

Array Elements

Phase Shifters

Weight Multipliers

I RF Source I

Figure2.5: Analog beamformer with power and phase adjustment to rotate the beam.

2.1.2.1.2 Digital Beamforming

Instead of using analog circuits to control the phase and power of the signal fed at

every antenna patch, digital control offers the following advantages [5-6]. Denso bistatic

77 GHz LRR and Toyota CRDL 77GHz LRR radar both operate on a digital beamforming

principle.

• Improved beamformer control: The phase at individual patch or sub-array level

can be accurately controlled. The beam shape and size can be controlled

electronically to any degree resulting in a more selective beamforming.

• Switching between multiple beams: Switching between beams of different

widths by enabling or disabling array elements or generating distinct beams

using separate sub-arrays.

• High precision control of phase shift and power: DSPs or FPGAs are powerful

tools for high-resolution high-speed precise digital control of antenna

components. These digital circuits can be used to drive high power antenna

circuits with improved control and precision as compared to conventional analog

implementations.

18

A/2 A/2 A/2 A/2 A/2 A/2 A/2

Digital beamformers require memory blocks, adders and multipliers as system

building blocks. These digital components are available in high-speed on-chip resources

in FPGAs which typically operate at clock frequencies of 550 MHz (e.g. Virtex 6 FPGA by

Xilinx). This makes digital beamforming techniques more feasible and efficient. Digital

beamforming does require more signal conditioning prior to digital processing. If the

signal frequency is too high (greater than 100 MHz, say) direct sampling is not possible.

To overcome this issue, the signal needs to be down-converted to an intermediate

frequency (IF) using an RF mixer which can be sampled. Various beamformer

architectures are available in [3-4].

2.1.2.2 Rotman Lens Beamformer

A Rotman lens [1] is a passive device that can enable a beamforming and beam

steering capability with out any microelectronic signal processing as needed by analog

or digital beamformers. During operation, the electromagnetic property of a dielectric

cavity is exploited to realize a directional in-phase signal.

Figure 2.6: Schematic of the intrinsic beamforming capability of the Rotman lens [1].

19

The body of the Rotman lens has beam ports on one side and array ports on the

opposite side. The central beam (beam port 2 in Figure 2.6) guides the input signal

through channels of equal length to the array elements, creating a forward-facing beam.

On beam ports 1 and 3 the input signal travels through different path lengths to the

antenna patches, thus undergoing phase shift leading to the beam being steered as

shown [8]. Typical Rotman lenses are large and are realized using microstrip substrates

like Duroid 5880 or dielectric material filled waveguides. Figure 2.6 illustrates the

schematic representation of a Rotman lens. Recently a novel MEMS based air-filled

waveguide type Rotman lens has been reported [1].

2.1.3 Direction of Arrival Estimation using Phased Array Antennae

Direction of Arrival estimation or DOA using classical approach required a

gyrating radar antenna that would pin-point the exact angle of a target. However, with

solid-state antennae and beamforming, DOA estimation requires digital processing. With

higher clock speeds and parallel processing capability of FPGAs and multi-core DSPs, this

digital processing does not pose any limitations. Two techniques have been compared in

literature [30]: DOA estimation by spatial frequency and DOA estimation by phase

difference.

DOA by the spatial frequency: this method is limited by the number of array antenna

elements. A larger number of array elements are required for better accuracy and

precision. It is shown in [30] that with 10 elements the DOA estimation can be unreliable

using this method. For reliable and accurate measurement of target angle a 128

element array is then used, which in real-life applications is impractical and would

increase hardware.

DOA by phase difference: this method is proposed as a superior method to the spatial

frequency method, and requires fewer antenna elements for good precision DOA

measurement. The technique is described as follows:

20

Let there be n patch array elements in the antenna. Sample each array element

individually at the same time and process the samples through 1-D FFT to obtain

the spectral power distribution for detected targets.

Let there be m peaks in the FFT spectrum of each of the n element

corresponding to m targets. Compute the phase of each complex peak and

produce a matrix [O, y] for i = 1, 2, 3...m and j = 1, 2, 3.../1.

Compute the phase change for every row of [Q>ij], taking O ^ as the primary

phase for the Vth target, and obtain a new phase difference matrix V^ij] with

the same definitions for indices i and j .

Obtain the average of each row pertaining to a single target from V^ij], thus

obtaining an array of averages [xVi]. Use the average computed, along with the

observed wavelength A, for the particular target (obtained from the peak

frequency resolution in the previous steps) and the known distance between

individual array elements d, to compute the angle of arrival using the equation:

% =2n—sin0, (2.5)

Where 9t is the angle of the Vth target.

2.1.4 Frequency Generation, Tuning and Linearity

Generation of the RF radar signal is typically accomplished by means of a voltage

controlled oscillator (VCO). In FSK-CW or simple Pulsed Doppler radar a constant

frequency is broadcast over a CPI or pulse respectively, however for LFMCW a frequency

chirp is realized by tuning the VCO using a triangular modulating signal. This gives rise to

linearity considerations in the transmitter, which arises due to a non-linear rate of

change of output frequency per unit change in tuning voltage. Linearity of a VCO is

defined as follows [13].

21

Linearity, S = * 'max (2.6)
B

Here, | / e (0 | m a 's t n e maximum absolute value of | / e (0 | / which is the error or

difference between the ideally expected output frequency |/jdeal(0| of the VCO and the

actual output frequency |/ac tua i (0| of the VCO, and B is the bandwidth over which the

VCO is being tuned.

fe (0 = /ideal (0 ~ /actual (0 (2-7)

Due to material imperfections, stray capacitance and inductance in high

frequency RF circuits, VCOs tend to have a non-linear frequency vs. voltage curve as in

Figure 2.7. These drifts in the output frequency gradient cause phase errors in an LFW-

CW radar among others [2].

Output Frequency fideJt)
,

fe(t) J

/actualftJ

^t^f^"^ ' ' """

>

— * -
Tuning Voltage

Figure 2.7: Non-linear frequency response of a typical RF VCO.

2.1.5 Selecting the Development Platform for the Radar Signal
Processing System

The transmitter incorporates radar signal generation, tuning and linearity

control. These aspects become critical in LFMCW radar due to the requirement of highly

linear frequency sweeps. In LFMCW radar the signal generation and sweep modulation

can be accomplished using analog or digital modulation. Analog PLLs or Phase Locked

22

Loops containing a VCO were used in early CW systems, however were overtaken by

digital systems with better frequency response, excellent linearity, easier design and

improved performance in noise [2].

In digital implementation of a radar transmitter the control and modulation

algorithm can be based on a Digital Signal Processor (DSP) or a Field Programmable Gate

Array (FPGA). Due to their highly parallel nature, ability to run several tasks

simultaneously without stalling other tasks, and on-chip resources (such as RAM blocks,

LUTs, fast DSP multipliers) FPGAs are the preferred solution for digital signal processing.

The use of FPGAs for DSP has been boosted by the wide availability of fully customizable

IP cores from various providers spanning many application areas such as DSP,

automotive, communications, computer networking and bus interfaces among others

[14]. According to benchmark results presented in [21], [22] and [28], the latencies for a

2048-point FFT on a 32-bit Intel Core 2 Duo @ 3 GHz, an Analog Devices ADSP-BF53x

and a Texas Instruments TMS320C67xx are tabulated in Table 2.1. Comparison of these

with an FPGA at a much lower clock frequency demonstrates the power of FPGAs as

modern-day high-bandwidth DSP solutions.

Table 2.1: Speed Comparison of a typical FPGA versus a general purpose Dual Core

Processor and a Digital Signal Processor

Manufacturer

Intel

Analog Devices

Texas Instruments

Xilinx

Part Name

32-bit Core 2 Duo

ADSP-BF53X

TMS320C67xx

Virtex-5 FFT Core

Clock

Frequency

(MHz)

3000

600

600

200

2048-point

FFT Latency

(Us)

37.55

32.40

34.20

39.60

Number of

Clock

Cycles

112650

19440

20520

7920

23

Even with a low clock frequency of 200 MHz the FPGA has comparable speed

performance compared to the other processors at higher clock rates. Power

consumption of a digital circuit is proportional to the total gate-level switching required

to compute a particular result: the higher the clock frequency and required clock cycles,

the greater the amount of switching, and thus the higher the power consumption. Given

the automotive scenario, FPGAs offer a desirable combination of speed and power

efficiency.

Furthermore, to deal with possible VCO non-linearity FPGAs can be used to

implement a DDS or Direct Digital Synthesis algorithm. DDS is a method of creating

arbitrary yet repetitive waveforms using a RAM or LUT, a counter, and a DAC,

components that are readily available on FPGA platforms. DDS promises optimal

linearity in frequency sweeps, precise frequency tuning, and excellent phase error

recovery [2].

Based on the analyses presented here, the development platform of choice for

this thesis is FPGA technology. A successful implementation of a radar sensor

transmitter and receiver based on FPGA technology is the Radar Digital Unit (RDU) of

South African Synthetic Aperture Radar II (SASAR II) in May 2004, by the University of

Cape Town [22].

2.1.6 State-of-the-Art in Automotive Radar

Research on automotive radar began as early as the 1950s, although

commercialization only became possible in the late 1990s with the launch of various

manufacturers introducing the early versions of collision warning, parking assist and

adaptive cruise control radars [23]. Daimler-Chrysler launched their first "autonomous

cruise control" radar in 1999 with Mercedes S-class models, marketed as "Distronic".

Further developments of 77 GHz LRR and 24 GHz UWB SRR were launched as a

combination of cruise control, parking assist and collision warning systems, marketed in

24

2003 as "Distronic" and a second version marketed as "Distronic Plus" [24]. Figure 2.8

shows the Daimler-Chrysler automotive radar application portfolio, which has set an

industry-wide standard on radar systems. The Distronic Plus system, which includes 1

LRR at 77 GHz and 4 SRRs at 24 GHz, is shown in Figure 2.9.

.. Blind spot
^ ^ ^ ^ n n g a i a detection

stop & tSBKKi ^ ^ ^ ^ _ _ _ ^ ^ _

iMa Blind spot 1
l i l detection

Figure 2.8: Radar applications in the automotive industry © Daimler-Chrysler 2005.

One of the promising development initiatives was the German government

funded Daimler-Chrysler research project named KOKON [25]. The main outcomes of

this research were development of cost-effective 76 - 81 GHz automotive radar

systems, vehicular integration conceptualization, and standardization of the 7 6 - 8 1 GHz

radio frequency band for automotive applications. The KOKON project is a successor to

the RoCC project, which is a joint-venture of Daimler-Chrysler, BMW, Bosch, Continental

and Infineon [25].

25

Short range radar Short:-range radar for Parking Assist:
for DISTRONIC PLUS,
DAS PLUS ami %
Parking Assist \

Long-range radar
for DISTROWIC PLUS -
and BAS PLUS

Short-range radar/
for DISTRONIC PLUS,
BAS PLUS and
Parking Assist Short-range radar for Parking Assist

Figure 2.9: Distronic Plus by Mercedes-Benz © Daimler-Chrysler 2005.

The RoCC project essays a study of automotive radar vehicular integration and

live testing, investigation of complete sensor packaging including DSP unit(s), evaluation

of automotive radar beyond 100 GHz, SMD packaging of RF MMICs, feasibility study for

500 GHz UWB automotive radar based on LFMCW technique, improvement of energy

efficiency and multi-mode multi-range self-calibrating sensors. The lattermost objective

is currently one of the most pursued topics in automotive radar; recent self-calibrating

dual-band MMICs such as those presented in literatures [26] and [27] propose the

capability of switching between 24 GHz and 77 GHz SRR, MRR and LRR using the same

MMIC RF radar frontend.

The MEMS Rotman lens and MEMS RF switch combination central to this thesis

can be used in conjunction with a reconfigurable patch array antenna in order to

accomplish SRR, MRR and LRR beamforming using the same hardware. The control of

such a system would be easily realizable digitally by means of the FPGA control

algorithm.

Table 2.2 lists some of the commercially available automotive radar systems by

different developers and their operating specifications. The AC3 by TRW Automotive is a

third-generation adaptive cruise control radar operating at 77 GHz, capable of scanning

targets up to 250 meters distant [20]. Table 2.3 shows a list of the previous generation

26

of radar systems and their capabilities as listed by a report from Fujitsu presented in

reference [16].

Table 2.2: Commercially available new generation of automotive radar systems [23]

Developer

TRW Automotive

Delphi

Denso

Bosch

Operation

Frequency

77 GHz

76 GHz

77 GHz

77 GHz

Radar

Type

Pulsed

Doppler

Pulsed

Doppler

FMCW

FMCW

Range

(m)

1-250

1-174

2-150

0.5 - 250

Relative

Velocity

(km/h)1

±220

-360 to +90

±200

-500 to +250

Field

of

View

±8°

±10°

±20°

±30°

Refresh

Time

(ms)2

50

50

50

50

Negative sign means velocity of approaching target; positive sign means velocity of receding
target.

Processing times are not included.

Table 2.3: Previous generation of automotive radar systems - listing by Fujitsu [16]

Manufacturer

Appearance

Externa!

Dimensions (mm)

Modulation Method

Detection

Range

Horizontal

Detection Angie

Alible Detection

Method

EHF Device

Our company

m
89X107X86

F M C W

4 m to 120m

or greater

±8""

Mechanical

Scan

MMIC

ADC

a
136X133X68

FM Pulse

Approx.

1 m to 150m

Approx.

Ream

Conversion

CUNN

Delphi

m
137X67X100

F M C W

Approx.

Ira to 150m

Approx.

±5°

Mechanical

Scan

CUNN

Bosch

91X124X79

2m to 120m

or greater

±4"'

Beam

Conversion

CUNN

Honda elesvs

9
123X98X79

F M C W

4 m to 100 m

or greater

± 8 '

Beam

Conversion

MMIC

Denso

%

77X107X53

FM-CW

Approx.

2m to 150m

±10''

Phased

Array

MMIC

Hitachi

80X108X64

2- frequency CVV

Approx,

lm to 150m

±8'

Monopulse

MMIC

27

One of the most recent systems from Table 2.2 is the Bosch LRR3 (as marketed)

which was launched in September 2009 on the Porsche Panamera 2010 model. One of

the claims of Bosch LRR3 is being the world's smallest radar sensor package at 74mm x

77mm x 58mm. The MEMS radar system being developed at the University of Windsor

has close to half the dimensions at 30mm x 40mm x 10mm owing to the compact MEMS

Rotman lens beamformer and antenna design.

These state-of-the-art automotive radar systems provide a target for this thesis

and help set the aims for the speed and efficiency of the radar signal processing

algorithm presented in this thesis.

2.1.7 Recent Work Done in FPGA-based LFMCW Digital Signal
Processing

A recent study, in 2009, on FPGA-based LFMCW radar signal processing

algorithm has been presented in [28], where a Xilinx Virtex-ll Pro FPGA at 50 MHz has

been employed. For a radar cycle (or refresh) time of 60ms the developers have used a

sampling time of 1240us and a processing time of 1250p.s per frequency sweep. The

spectral analysis is first done using an FFT core, after which the software processing for

peak detection and range-velocity computations has been done using a soft-processor

MicroBlaze core by Xilinx. The developers quote a usage of 4100 DSP48 slices and 35%

of on-chip Block RAM usage, and several Xilinx IP cores to optimize timing requirements.

This work is given due consideration in light of the aims of this project, and a faster

signal processing algorithm would be a key outcome of this thesis.

28

CHAPTER 3:
REQUIREMENTS FOR THE TARGET FMCW SYSTEM

This chapter reviews the relevant mathamtical models associated with FMCW

radar to process the reflected radar signal to determine the range and the velocity of

the targets. The range and velocity equations are reviewed for the automotive radar

algorithm for both relatively stationary and moving targets. Necesssary mathematical

process blocks have been identified and their characteristics are studied to determine

the operating parameters. Several other issues such as atmospheric attenuation, effects

of temperature, false alarm rate, removal of clutter, types of radar targets, and have

also been reviewed. The gathered knowledge has been used in the next chapter to

develop a robust highly accurate control and signal processing algorithm for the MEMS

Rotman lens based radar.

3.1 System Requirements Identification

In [19], the requirements for state-of-the-art automotive long range radar have

been identified in Table 3.1. Daimler-Chrysler has specified the operating parameters of

the next generation of long range radar for automotive applications. The parameters

key to the work presented in this thesis are range coverage, range accuracy, relative

velocity coverage, velocity accuracy, and cycle time.

29

Table 3.1: The next generation of Long Range Radar (from Daimler-Chrysler)

Specifi ration LRR

Range /

Range Accuracy

Velocity Range /

Velocity Accuracy

Opening Angje Horizontal

Angle Resolution Horizontal

Alignment Offset Horizontal

Opening Angle Vertical

Angle Resolution Vertical

Alignment Offset Vertical

Cycle Time

Interface

Unit

m

m

km/h

km/h

deg

deg

deg

deg

deg

deg

ms

-

DC-Spec

1 .200

±0,25

-100. .260

±0,5

20

not del .

±3addittv

4.5

notder.

± 2

<50

CAN

DAIMUERCHRYSLER

Power

Transma Power

Sensor Size (WxHxD)

Sensor Weight

Operation Temperature

Storage Temperature

Mounting Position Offset Horizontal

Mounting Position Offset Vertical

Misalignment Detection /

Automatic Adjustment Horizontal /

Automatic Adjustment Vertical /

Blockage Detection Time /

77 GHz Interference Safety

Unit

w

rrfW

mm

9

•c

*c

cm

cm

deg

-
sec

-

DC-Sp*C

<S

< 10

10Cr*100-50

<500

-40 ...B5

-40... 105

±80

>50

<0,1

yes

yes

<1

yes
1 10 '

Based on the next-generation specifications in Table 3.1 [19], the target radar signal

processing algorithm need to meet at least the following performance specifications:

1. Range: 200 meters

2. Range accruay: 0.25 meters

3. Relative velocity: -100 to 250 km/h

4. Velocity accuracy: ±0.5 km/h

5. Cycle time: < 50ms

30

3.2 Selecting the Required FMCW Waveform

FMCW is the type of radar for which the algorithm presented in this thesis has

been designed. The use of FMCW as the radar technique of choice has been justified in

Chapter 2. FMCW waveforms - note that LFMCW is a special case of FMCW where the

modulating waveform is linear — exist in various standard implementations: sine wave,

saw-tooth and triangular. Figure 3.1 illustrates these three types.

Frequency

"2H

F i

Frequency
A

Frequency
A

Time Time

Figure 3.1: FMCW waveforms left to right: Sine, Saw-tooth and Triangular. (The period T is

equivalent to CPI in Chapter 1)

Sine wave modulation is seldom used in contemporary FMCW systems due to

the extra latency added in computing and adjusting sine wave coefficients. Also, sine

wave modulation has less tolerance for VCO non-linearity as compared to the linear

variants of FMCW waveforms. However, at lower operating frequencies (few hundred

MHz) sine wave modulation is realizable and offers easy analog modulation without the

need for digital waveform generation.

The saw-tooth waveform only has a positive frequency sweep, and is thus easier

to control and tune electronically. However, the computation of range and velocity

relies on phase calculation of the beat frequency over a minimum of 2 sweeps, and thus

31

requires more processing when compared to the triangular waveform. Range and

velocity may not be determined simultaneously.

The favoured FMCW waveform is the triangular waveform due to the ability to

determine both range and velocity. The difference in up sweep and down sweep

frequencies is equivalent to twice the Doppler shift of the target, thus allowing

simultaneous range and velocity computation. Another benefit of the triangular

waveform is that the different sweep directions make the system more resistant to

stationary clutter and jamming signals by having a more dynamic instantaneous

frequency.

3.3 Linear Frequency Modulated Continuous Wave Radar

The LFMCW technique relies on a linear frequency sweep (or chirp) over a

carefully selected bandwidth and measures the received beat frequency / b from all

targets (and false targets or clutter) that fall in the field of view of the radar beam. As

discussed, triangular modulation is chosen for this thesis. The beat frequency is defined

as the instantaneous difference in the frequencies of the transmitted and received radar

signal:

/b(0 = / t (0"/r (0 (3-D

The bandwidth and chirp period (termed CPI in Chapter 2 and T hereon) are

critical parameters in determining the refresh rate, range resolution and velocity

resolution of the targets. A larger sweep bandwidth improves range resolution, which is

a desirable effect. However, the limiting factor to higher bandwidth is the linearity of

the VCO that is used to generate the radar signal. Figure 3.2 shows the LFMCW

transmitted and received signals illustrating the beat frequency obtained in the up

(positive) and down (negative) frequency sweeps.

32

FREQUENCY
Transmitted

Wave

Received Wave
(Target Echo)

BEAT
FREQUENCY

/ , up

f&> own

Figure 3.2: LFMCW Transmit, Receive and Beat frequency.

TIME

TIME

Here, r0 = round trip delay t ime for the signal to be received from the target

fd= Doppler shift due to relative target velocity

/ 0 = starting frequency for operation bandwidth

B = operation bandwidth

T = sweep duration (same for both up and down sweeps in this thesis)

fb= beat frequency or intermediate frequency

/ u p = up sweep beat frequency

/down = down sweep beat frequency

33

3.3.1 Derivation of Range and Velocity for LFMCW

The following is a concise step-wise derivation of the range and velocity equations for

LFMCW radar:

Let ft(t) = transmitted radar signal

fT(t)= received target echo signal

k = — = rate of change of frequency over a single sweep

3.3.1.1 First case: Relatively Stationary Target

A relatively stationary target is a target with zero relative velocity compared to

the radar sensor or host vehicle, and as such does not contribute to any Doppler shift of

the received echo signal. The transmitted radar signal can be defined as a complex

sinusoid with a base frequency of f0 modulated over a bandwidth of B Hz [29].

f (1 2
/ t l (0 = exp jln f0t + -ktz (3.2)

The modulation of the transmit signal is evident from the frequency term in equation

1 2

(3.2) above. The term —kt adds a fraction of the total sweep bandwidth depending on

the instantaneous time t.

The received echo signal can be defined as a complex sinusoid delayed by a round trip

delay time r0.

((1 2
/ r l (0 = exp j2n f0(t-T0) + -k(t-T0)

V V 2

(3.3)
/ ;

34

Multiplying in time (or mixing) the transmitted and received signals, and ignoring

the high frequency component in the mixer output, produces the beat or intermediate

frequency of interest. In the case of a relatively stationary target, beat frequencies for

both up and down sweep are identical and can be expressed as:

krt' /bi (0 = /ti (0 ® / n (0 = expf y 2 ; / / 0 r 0 + ktr0 - hrl \ | (3.4)

Differentiating the phase of the beat signal in (3.4) w.r.t. time t gives the instantaneous

beat frequency that is directly proportional to the range of the target.

4foTo+ktT0-~kr$

/upl = ~ Jt
 l = kr0 (3.5)

Therefore, both up and down sweep beat frequencies are defined for a stationary

target.

2r
/upl = /downl =kT0=k— (3.6)

c

Here, r is the range of the target and c is the speed of EM waves in air. Thus for a

relatively stationary target the range is computed by taking the average of the up and

down sweep instantaneous beat frequencies as follows [29]:

r =
/upl + /downl

J

x — (3.7)
2k

3.3.1.2 Second case: Moving Target

Consider a moving target with velocity vr relative to the radar sensor or host vehicle.

This velocity introduces an additional term in the transmitted and received signals due

to the Doppler shift. This Doppler shift is approximated by f^vjc [29]. The following

transmitted signal is generated for the up sweep.

35

/ t 2 (0 = exp H /0t+-kt2 (3.8)

The received signal for the up sweep is affected by twice the amount of Doppler shift

due to two-way travel of the radar wave, as well as round trip delay as in the case of the

stationary target.

/ r 2 (0 = exp j2df0(t-T0) + ^k(t-T0)
2+2f0^-(t-T0) (3.9)

Multiplying the transmitted and received signals in time we obtain the beat frequency

for the up sweep as given in equation (3.9).

/b uP(0 = exp jln

f (v v ^
f0r0 +\kT0+ 2 / 0 -^ - 2kr0 -£•

V c c j

t--kr2

2 °

\ \

• (
\

+ 2-

(3.10)

The constant and second order terms in the above equation can be ignored for a stable

computation of the instantaneous up sweep frequency by differentiating w.r.t time t.

/ up2

fr v v U
kr0+2f0^-2kT0^ t

c c) ,
dt

kr0 + 2 / 0 ^ - 2kr0 ^*kr0+ fd (3.11)
c c

v 2v v v
The above approximation is possible as 2kr0-

L = 2k L = 4ftr—^-«1 for
c c c c

bandwidths under 1 GHz. Larger bandwidths in tens of GHz also produce negligible

frequency values for this term, and thus this term can be safely neglected.

During the down sweep, the Doppler shift manifests as a negative entity due to

the negative slope of the modulating wave. Note that fA<B. This gives rise to the

following beat frequency signal at the receiver of the radar sensor:

36

/ b d o w n (0 = exp jln

((v v ^
/orO + kTQ-lfQ^-lkTQ-t

V c c)

t--kxl
2 °

+ 2-
. 2 ^ (3.12)

J)

Differentiating (3.12) w.r.t. time t we get the down sweep frequency for a moving

target with relative velocity v r .

/ d lown2

(f v v ^
kr0-2f0-^-2kT0-t t

vv c c))
dt

= krQ - 2 / 0 ^ - 2kr0 ^ * k r 0 - fd (3.13)
c c

From this analysis, the range and velocity of any target for the LFMCW technique can be

determined. Adding (3.11) and (3.13) we get

/uP2 + /down2 = kTo + fd + kr0 -fd= 2kr0 = 2k
(2r)

Hence, range r
C/up2 + / d o w n 2) C

2k
(3.14)

This is similar to the range expression derived earlier for a stationary target.

The relative velocity of the target can be derived by subtracting (3.13) from (3.11) to

extract the Doppler shift caused by the target.

/uP2 ~ /down2 = kr0 +fd- (kt0 -fd) = 2fd= 4 / 0 — F c

Hence, relative velocity, v r =
v/up2 /down2) C

X

4 /o
(3.15)

Given equation (3.15), the actual target velocity can be computed based on knowledge

about the host vehicle velocity.

(3.16) Actual target velocity, "'target ~ vhost • v r

37

3.3.2 LFMCW Radar Signal Generation using VCO

A core component in contemporary radar systems is the VCO or voltage

controlled oscillator. As the name implies, a VCO is supplied an input analog tuning

voltage which translates to a change in internal capacitances leading to a change in

generated output frequency. For the LFMCW radar under development the output

frequency has been chosen as a triangular chirp, with a positive sweep in frequency

following by a negative sweep. This requires a triangular modulating signal, which can

be generated using an FPGA with relative ease.

The modulating unit requires an up/down counter that will feed a DAC which will

output the tuning voltage to the VCO. The digital counter will count up for the up

sweep, and count down back to zero for the down sweep. The refresh rate and

resolution of the DAC are important parameters affecting the linearity of the LFMCW

frequency chirps. Figure 3.3 shows the radar signal generation method employed in the

algorithm presented in this thesis, based on a digital counter implemented in an FPGA.

Up sweep : 0 -» 2r - 1

Down sweep : 2r - 1 -> 0

77 GHz
VCO

Antenna

Figure 3.3: FPGA based tuning voltage generation for VCO to produce LFMCW chirps

38

The modulation results in a time-domain chirp signal resembling the conceptual

waveform in Figure 3.4. The up frequency sweep is followed by a down sweep over

time.

LFM-CW Triangular Chirp

0 0.5 1 1.5 2 2.5
Time (s) x 1 Q -3

Figure 3.4: Time-domain RF signal showing up (red) and down (purple) frequency chirps for
LFMCW radar.

3.3.3 Received Echo Signal Conditioning for LFMCW

Prior to digital signal processing of a received target echo, conditioning of the RF

signal is required. Conditioning is typically accomplished using analog processing and

involves the following components:

1. Low Noise Amplifier: boost the received echo signal using a low noise amplifier

to counter atmospheric and hardware attenuation.

39

2. Mixer: time-domain multiplication (frequency-domain convolution) of the

instantaneous received echo signal with the instantaneous radar signal being

transmitted. Let ar sin(wr /) and at sin(w t /) be the received and transmitted

signals at any t ime, then the output of the mixer is the difference and sum of

these frequencies. Figure 3.5 shows the conceptual diagram of a mixer.

axax ar sin(wr t) <S> a t sin(wt t) = -LJ-[sin((wr + wt)t) + sin(wr - wt)t)] (3.17)

Mixer I f< + f< I

Received Signal r ^ \ \ / \ Intermediate
from Antenna Jx \^\^ Frequency

A
Transmit Signal from
Local Oscillator / VCO

Figure 3.5: Conceptual diagram of an RF mixer.

3. Low Pass Filter: filter out the high frequency component from the output of the

mixer and extract the beat frequency of interest, (w r -wt).

4. Analog to Digital Converter: sample the IF or the beat frequency slightly above

Nyquist rate to avoid aliasing. The ADC is a critical component in determining the

efficiency and accuracy of the entire radar signal processing algorithm. The

output resolution of the ADC commands the memory usage, speed and precision

of range and velocity computation: higher resolution provides lower

quantization noise and improved precision at the cost of t ime and required

memory. The sampling rate of the ADC is proportional to the bandwidth the

radar system operates at.

40

3.4 Digital Signal Processing Tools

The following is a list of the major signal processing steps required in a radar system:

1. Time-domain windowing

2. Spectral analysis using the Fast Fourier Transform

3. Constant False Alarm Rate processing

3.4.1 Time-domain Window

After signal conditioning, the data is digitized and available through the ADC,

which samples the time-domain beat frequency or intermediate frequency over a

restricted length of time t seconds, say. Spectral analysis is done on the time-domain

data using the FFT, which assumes that the data consists of an integral number of

wavelengths of the signal. However, samples from the ADC seldom contain an exact

integral number of wavelengths, and the intermediate frequency in itself is distorted by

noise and microwave interference. Sampling by an ADC is equivalent to multiplying a

time-domain signal by a rectangular window function. This leads to the formation of

spectral noise in the form of leakage [31].

Spectral leakage is caused by the sudden slicing of a time-domain signal. For

there to be no spectral leakage the signal would have to be sampled over an infinite

length of time, which is not feasible. Time-limiting a signal means multiplying it by a

rectangular window function, which causes the signal to be non-band-limited, giving rise

to power leakage into neighbouring frequencies from the actual frequency of interest.

Figure 3.6 illustrates the effect.

41

Time domain signal Sampled signal
Frequency domain

representation

. , Fraction of wavelength
A m P ' l t u d e Ampl i tude ignored by rectangular Intensity Frequency

T
i i.

(a)

-•Time

T < >

CWL
f i[t f

sampling window

Time

of interest

(b)

Spectral
leakage

(side lobe)

f Frequency

(c)

Figure 3.6: (a) Time-domain continuous wave with period T; (b) Sampled time-domain signal
multiplied by a rectangular window through ADC; (c) Spectral leakage due to rectangular
windowing where FN = 1/T is the frequency of interest.

In order to reduce the effects of spectral leakage, different windowing functions

have been investigated [31]. An ideal window function is a time-domain function whose

energy is band-limited. When multiplied by a time-domain signal, an ideal window

function helps focus the energy of the signal and reduce spectral leakage. Although ideal

window functions are practically unrealizable, there exist windows that can greatly

reduce the sidelobe spectral leakage as well as attenuate frequencies other than the

frequency of interest, similar to the action of a filter. Figures 3.7(a), 3.7(b), 3.7(c) and

3.7(d) offer a comparison of some window functions, namely Rectangular, Triangular,

Hann and Hamming. The equations for each window are given, where w(n) represents

the set of all time-domain coefficients of the window. The nth coefficient is multiplied

by the nth time-domain sample.

42

1

0.9

0.8

0.7

0.6

I 0.5

< 0.4

0.3

0.2

0.1

O®e®®®0®@0®
-20 -15 -1

Rectangular Window
trr-Ot^1 '4) Cp Q (p Ci)^>(r>t:>Q G) Q Gt rK r) - ^

-5 0 5
Sample Count

® ® @ ® ® 0 0 0 0 ®
10 15 20

Spectral leakage in Rectangular Window
V

-10

-20

-30

ST
S - 4 0
T3
3

! -50
CD

2
-60

-70

-80

-90

\ \ \ \
\
\ ;

. I /
\j

' '
^ -13dB

\ A r.
i I / \ A A

I

Ij \
I I •
I i : s

j

1

A
1
1

1

' >

-

-

A /A r\ •'
\ 1 \ / \ /

1 ' W
1 1 1

' i
1 / !

!i
11

1 11

1

-

200 400 600 800 1000
Frequency Bin

1200

Figure 3.7(a): Time and Frequency domain representations of Rectangular window

points with 2048-point FFT.

1

0.9

0.8

0.7

0.6
CD

T3

I 0.5
E

< 0.4

0.3

0.2

0.1

-20

Triangular Window

9

Q

-15 -10

O

-5 0 5 10
Sample Count

15 20

0

-20

-40

Spectral leakage in Triangular Window

CD
2 ,
a> •a
3

•**
(0
2

-80

-100

-120

-140

-160

-180
200 400

\ /

600 800
Frequency Bin

\ i

1000 1200

Figure 3.7(b): Time and Frequency domain representations of Triangular window with 21 points

and 2048-point FFT.

44

w(n) = 0.5 1 - cos
V

Inn

N - 1
(3.18)

Hann Window
-filter

-10 0
Sample Count

30

Spectral leakage in Hann Window
0

-20

-40

-60

ST -80

0)
1 -100
'c
J -120

-140

-160

-180

-200

\

-

-

\
I

A
\

1

) \
(

-39dB

I f\ A
II 1/ '•

i [|

j

1

l i

i i it'

'

v ̂
1 !

-

-

-

h 1
!

i

..... - I - - -

200 400 600 800
Frequency Bin

1000 1200

Figure 3.7(c): Time and Frequency domain representations of Hann window with 41 points and

2048-point FFT. In the equation, N - number of time-domain points.

45

W (H) = 0.54 - 0.46 cos
Inn

N - 1
(3.19)

1

0.9

0.8

0.7

0.6

I 0.5

0.4

0.3

0.2

0.1

0__.
-30

Hamming Window
^fifcfe

qfi

Q

Q

A?

-20 -10 0
Sample Count

10 20
seeseeeee®

30

-50

a

f
-100

-150

Spectral leakage in Hamming Window

-43dB

A A A A p.. r, ^
A / / \ / \i \ \ A A A A A A A

i i \/ \i]> '
y

\ A A A A f

200 400 600 800
Frequency Bin

1000 1200

Figure 3.7(d): Time and Frequency domain representations of Hamming window with 41 points

and 2048-point FFT. In the equation, N = number of time-domain points.

46

file:///AAaaa
file:///AAAAf

Table 3.2: Comparison of common Window functions [31]

Window

Rectangular

Triangular

Hamming

Hann

Blackman

Main-lobe width (-3dB)

(no. of frequency bins)

0.89

1.28

1.36

1.64

1.68

Highest side-lobe level

(dB)

-13

-27

-43

-39

-58

Roll-off rate

(dB/octave)

-6

-12

-6

-18

-18

Table 3.2 lists some well-known window functions compared to the default

rectangular window. An ideal window function would have a unit main-lobe width, very

low side-lobe level and steep roll-off. Looking at the table, the best side-lobe

attenuation and roll-off are for the Blackman window; however the main-lobe width is

large. This means that the energy of the main lobe is spread across 1.68 frequency bins,

and this may be inferred in some systems as spectral leakage as well. The Hamming

window is commonly employed in communication systems, although the roll-off is

smaller than the rest.

For this project, a Hamming window is chosen. The reasons for this choice are:

1. Excellent side-lobe attenuation.

2. Good accuracy even after truncation to 5 decimal places precision in fixed-point

multiplications.

3. Optimal main-lobe width; the poor roll-off can be easily dealt with using CFAR

processing (discussed later).

47

3.4.2 The Fast Fourier Transform

Perhaps the most widely used signal processing routine is the famous FFT

algorithm developed by James W. Cooley and John W. Tukey [32]. The algorithm is a re­

definition of the Discrete Fourier Transform in which an arbitrary N-point DFT is broken

down into smaller DFTs recursively until computationally simple DFTs are possible. This

forms the well-known butterfly architecture.

The simplest form of the FFT developed by Cooley and Tukey is the Radix-2

Decimation-in-Time algorithm. The DFT is defined by the following formula:

N - \ _ 2 n i
 nk

* k = £ *ne N (3.20)
n = 0

Here, k is an integer from 0 to N~l, i = V ^ L N is the total number of time-domain

samples, and n is an index. The Radix-2 DIT FFT partitions the DFT into odd and even

indices, thus dividing an N-point DFT into 2 DFTs of size N/2.

More generally, the Cooley-Tukey FFT algorithm divides an N-point FFT into Ni

FFTs of size N2, i.e. N = NiN2. First, Ni DFTs of size N2 are performed. Secondly, the

outputs of the first step are multiplied by weights called twiddle factors. Finally, N2 DFTs

of size Ni are performed on the result of step 2. If Ni<N2 the algorithm is called a Radix-

Ni Decimation-in-Time FFT, otherwise if N2<Ni the algorithm is called a Radix-N2

Decimation-in-Frequency FFT.

The Radix of an FFT algorithm affects the speed and complexity of the FFT. The

two common algorithms used are Radix-2 DIT and Radix-4 DIT. The Radix-4 DIT

algorithm is computationally quicker than the Radix-4 DIT algorithm [33].

N
Number of complex multiplications for Radix-2 = —log2 N

3
Number of complex multiplications for Radix-4 = -7Vlog2 N = 75% of Radix-2

48

Number of complex additions for Radix-2 = iVlog2 N

Number of complex additions for Radix-4 = Nlog2N= same as Radix-2

Radix-4 thus requires 25% less complex multiplications than Radix-2 DIT

algorithm, making it a faster FFT. In this project a Radix-4 FFT is used, the details of

which are mentioned in Chapter 4 of this thesis.

3.4.3 Constant False Alarm Rate (CFAR) Processor

The CFAR unit makes it possible for radar systems to operate despite

contamination of received signal with noise, interference, clutter and effects of

attenuation. The CFAR unit runs an adaptive algorithm responsible for filtering out all

spurious spectral peaks in the FFT output and extracts only those peaks that have a high

probability of being real targets. The adaptive nature of CFAR processors enables them

to identify real target returns in the presence of changing noise and clutter from

surrounding false targets. In contrast, non-adaptive detection systems, called

clairvoyant detectors in [34], use a static threshold to detect valid targets.

After the spectral intensity of a signal is received from the FFT unit, the CFAR unit

detects valid targets. For non-adaptive detectors a constant threshold, Tc, is used. Each

frequency bin (frequency-domain sample from the FFT) is compared in absolute value to

f
Tc. If | X[ri\ \> Tc then there exists a valid target at frequency n x — , where X[n] is the

discrete frequency domain representation of the received radar IF, n is an integer

between 0 to (N-l)/2, N is the FFT size, and fs is the rate at which the IF is sampled.

However, since noise and interference are stochastic and random processes this static

threshold can produce high number of false alarms.

CFAR algorithms overcome the short-coming of non-adaptive systems by

dynamically changing the threshold Tc according to the amount of noise and clutter

49

present in the surrounding frequency bins of that target. There are various CFAR

algorithms constantly being developed and refined, however two methods have seen

widespread application in radar systems: OS-CFAR (Ordered Statistic CFAR) and CA-CFAR

(Cell Averaging CFAR) [35-36]. There have been several variations to these basic two

CFAR types; however, the details are beyond the scope of this thesis.

A typical CA-CFAR architecture is shown in Figure 3.8 [37-38]. This is the CFAR

architecture employed for the system developed in this thesis. The principle of

operation of the CA-CFAR unit can be summarized in the following steps:

1. Square law detector removes any possible negative values from the FFT output,

in essence computing the absolute value or intensity of each frequency bin.

2. G number of guard bands are left on either side of the CUT (cell-under-test),

which help overcome spectral leakage effects.

3. M12 number of cells (or frequency bins) are averaged on either side of the

guard bands. Let avgL be the average of the left hand side Ml2 cells, and

avgR be the average of the right hand side M12 cells. The index k ranges from

l t o M / 2 .

4. The average of avgL and avgR is computed and multiplied by a predetermined

constant K to obtain the dynamic threshold Tc. The value of the CFAR

parameter K is determined by the following equation:

K = Pia M - 1 (3.21)

Here, Pfa is the acceptable preselected probability of false alarm and M is the

depth of the CFAR averaging [40].

5. The CUT is compared with Tc obtained from step 4. If CUT > Tc then a valid

target detection is declared [39].

50

The CA-CFAR processor runs through the entire FFT output x[ri\ considering each

cell as the CUT. Given the parallel nature of this CA-CFAR architecture, FPGAs can

immensely speed up detection owing to their parallel processing capabilities [39].

Input signal
from FFT

Square-law
detector

Guard bands

CUT>TC?
Decision

(adaptive
threshold)

Figure 3.8: CA-CFAR processor architecture as implemented in this thesis.

The CA-CFAR has two slight variants from the implementation shown in Figure

3.8. Instead of computing the average of A and B, the GO (greatest of) -CFAR makes use

of the greater value between A and B, while the LO (least of) -CFAR makes use of the

smaller value between A and B to be multiplied by K. So in GO-CFAR, Tc =AxK

where (A>B) and in LO-CFAR, Tc=AxK where (A<B) [41].

51

3.4.4 Miscellaneous Topics

3.4.4.1 Radar Targets

In the 1950s, Peter Swerling of RAND Corporation developed mathematical models

to classify radar targets into 5 types based on the RCS or radar cross-section they display

[43]. These are known as the Swerling I, II, III, IV and V models for radar targets, and

present a mathematical model to determine the RCS of a radar target [42]. The

classification is modeled using the chi-squared distribution, which is beyond the scope of

this thesis. In simple terms, the parameters that affect the type of Swerling model are:

- Shape of the target.

Degree of freedom for the target.

Maximum and average RCS viewable from the target.

Variation pattern in the RCS of the target with time and space.

The RCS of a target is determined by the following relation:

a = lim Anr1 [^ s { (3.22)
r ->co | E . |2

Here, Es = Scattered field intensity at distance r

E\ = Incident EM intensity on object

The radar cross-section of a vehicle is one of the factors which determine the maximum

unambiguous range the radar can cover.

Swerling I targets:

Consist of 5 or more scattering surfaces equally contributing to the overall RCS.

Have a constant RCS throughout a CPI or scanning interval, but independently

varying RCS in different radar beam scans.

The distribution of RCS is described by the following relation [43]:

p(a) = — e "av« (3.23)
" a v g

Where a is the RCS of the target and cravg is the mean value of RCS for the

target.

Swerling II targets:

Classification is similar to that of Swerling I, however the RCS varies during a

single frequency sweep or CPI instead of staying constant. This represents more

dynamic targets.

Swerling III targets:

Consist of 1 main scattering entity and may possess several less significant

smaller scattering surfaces.

- The RCS p.d.f. tends to remain constant through a single LFMCW sweep scan.

- The p.d.f. is characterized by equation (3.24) as follows:

2a

p(a) = ^ - e *""* (3.24)
^"avg

Swerling IV targets:

Similar to Swerling III targets, however the RCS scattering varies within a single

scan and thus represents a more dynamic case of Swerling III targets.

53

Swerling V targets:

Characterized by a constant RCS independent of time. These targets are easiest

to detect as there is ideally no spectral deviation during or over consecutive

frequency sweeps.

Typically, Swerling II and IV targets are harder to track due to variation in RCS, and

hence reflected power, over a single CPI or sampling interval.

3.4.4.2 Noise

Contemporary radar systems are affected by various types of noise sources. Noise

may originate from the signal conditioning analog components, the RF circuitry and

antennae, and the digital processing of the signal. Major sources of noise are listed:

1. Background noise - cosmic radiation, atmospheric absorption of EM radiation

and noise temperature of the Earth contribute to background noise which

manifests as white noise in all communication systems. This noise gets amplified

throughout the system and can be accounted for by adequate signal processing.

2. Thermal noise - generated due to thermal motion of semiconductor charge

carriers contributing to increased resistance in electronic and RF circuit

components [5].

Thermal noise, NTh = kTAB (3.25)

Where k is Boltzmann's constant, TA is the average absolute temperature

around the circuit components and B is the system bandwidth.

3. 1/f noise - pink noise power is inversely proportional to frequency. High

frequency systems such as radars suffer less effects of 1/f noise [44].

54

4. Quantization noise - when sampling the intermediate frequency of the radar

return using an ADC all continuous samples are rounded to the nearest

quantization level available. For instance, for a 10-bit ADC with an input range of

1V-5V, an input of 0.22V would mean 1024 * (0.22V / 4V) = 56.32 levels.

However, since the number of levels in the ADC is an integer from 1 to 1024, this

voltage would be quantized to level 56 corresponding to 0.21875V, hence an

error of 0.125% is induced.

The SNRQ or signal-to-quantization-noise ratio for an ADC is defined as follows

[45]:

SNRQ (dB) = 6.027V + 4.77 + 20 log, 0(LF) (3.26)

Here, LF is the RMS input voltage divided by the maximum acceptable voltage

for the ADC.

3.4.4.3 Attenuation

Atmospheric attenuation is a necessary evil in radar systems. Attenuation varies

with weather and the moisture level in the air. Table 3.3 lists attenuation under

different weather conditions [46]. For this research work, an attenuation of 0.8 dB/km

has been considered, which falls between light rain and medium rain conditions,

resulting in an SNR of 4.73 dB.

55

Table 3.3: Atmospheric attenuation at 70-80 GHz

Condition

Clear, dry air

Drizzle

Light rain

Medium rain

Heavy rain or snow

Precipitation Rate (mm/hr)

0.00

0.25

1.25

12.50

25.00

Attenuation (dB/km)

0.1

0.2

0.5

1.5

9.0

Although severe weather conditions can completely mask a target, within

operable conditions attenuation is beneficial for a radar system. One of the most

important aspects of LFMCW radars is peak pairing. Peak pairing is the technique by

which a peak detected in the up sweep is paired with a peak detected in the down

sweep as belonging to the same target. Every target manifests as a peak in each of the

sweeps, therefore if reliable peak pairing is not accomplished, the target information

would be grossly incorrect. One of the most logical criteria for peak pairing is power

level comparison: a target at distance 10 m will have larger frequency-domain peak

magnitude than a target at 30 m.

3.4.4.4 Clutter

Radar clutter is defined as the unwanted back-scatter reflection to the radar

sensor from objects of no interest or invalid targets. In the automotive scenario, clutter

is contributed by trees, water, buildings, sign posts, road surface, barriers or dividers,

and even the host vehicle's bumper, among other sources. All these objects are not real

targets of interest such as cars or trucks in the path of the vehicle; however clutter does

contribute to the received radar signal at the antenna. Most sources of clutter are

stationary sources and thus remain fixed to a particular frequency bin over a scan

sweep. The other property of clutter is the low power and constant RCS, and can be

56

classified as Sterling V type targets. Except ground clutter, most low-intensity spurious

spikes in the output of a frequency analyzer can be effectively removed by means of

CFAR processing, owing to the fact that all clutter sources exhibit very little or no

Doppler shift over LFMCW frequency chirps. Ground clutter infests the lower

frequencies due to its close proximity to the host vehicle, and can thus be handled by

filtering out those frequencies. In digital signal processing, ground clutter is removed by

ignoring high-power returns in the lower frequency bins of the FFT output, and is a valid

method assuming that the probability of a target existing within 30 cm of the radar

sensor is very low.

Albeit the general attempt at removal of clutter from the target return spectrum,

a recent literature in [47] illustrates the idea of making use of clutter as valuable

information in mapping the surrounding scenario. Literature [47] propounds the

estimation of road curvature and detection of road dividers and partitions based on

common clutter received in automotive radar applications. Such information can prove

useful in determining advanced security aspects of the trajectory of the host vehicle,

and act as a smarter adaptive cruise control system.

3.4.4.5 Radar Jamming

Jamming occurs when high-power microwave signals occupy the entire

bandwidth of operation of a radar sensor and render it incapable of distinguishing

between false and true targets. Although typically jamming has been an intentional ploy

by security agencies [48], in the automotive radar scenario jamming may occur due to

interference from nearby radar systems operating at the same instant frequency at the

very same time, or from broadband pulsed Doppler radars that generate high-power

pulses.

Frequency hopping is a well-known ECCM or Electronic Counter Countermeaures

solution. This allows FSK radars with several frequency hops better resistance to

57

jamming, although complete resistance is not guaranteed. Likewise, LFMCW radars

suffer less effects of jamming due to the constant frequency chirps.

3.4.4.6 Safe Distance Determination

A concise formula for safe distance calculation has been presented in literature

[55]. Consider the scenario in Figure 3.9, where the host vehicle with the radar sensor is

moving at velocity v2 following a vehicle at velocity vj .

< >

Figure 3.9: Safe distance between two vehicles.

Let the deceleration rate of the host vehicle be ax and the deceleration rate of

the radar target vehicle be a2 • Finally, let Tr be the reaction time of the driver of the

host vehicle. Then, the safe distance that should be maintained by the host vehicle from

the leading vehicle is given by

rsafe = T7~A - — V , 2 + V2Tr (3.27)
2b2 26]

The value of 6i and b2 is dependent on the braking performance of the vehicles in

different road conditions. On a dry road, K ~ 6.5 m/s2 and b ~ 6.0 m/s2 assuming Tr

= 1.0 s. On a surface covered with ice, K -2.6 m/s2 and t,2 ~ 2.0 m/s2 [55].

58

CHAPTER 4:
RADAR CONTROL AND SIGNAL PROCESSING

ALGORITHM

This chapter presents the developed algorithm and where it fits into the whole

automotive radar system. The long rage automotive radar system being developed at

the University of Windsor has three primary requirements: target range measurement,

target velocity measurement and target angle measurement. This thesis develops a

system to measure target range and velocity based on the LFMCW approach using a

MEMS Rotman lens, MEMS RF switches and phased array antennae for transmission and

reception. The signal processing algorithm controls the modulation of the linear

frequency chirps in the transmission side and also processes the received echo signal

after it has been conditioned. Signal conditioning and common noise and attenuation

issues faced by radar developers, have been detailed in Chapter 3.

This chapter lists the decisions made while designing the radar signal processing

algorithm, and describes the operation of individual blocks with reference to the initial

system specifications described in Table 4.1.

59

Table 4.1: Initially provided System Specifications

Parameter

Radar type

Operating frequency

VCO used

Target model(s) considered

Beamformer

Number of beams

Processing duration per beam

Beam width

Antenna type

Radar processing unit (RPU) platform

Value

LFMCW

77 GHz

TLC77XS1

Reliability guaranteed with Swerling 1, III and V

type targets

Rotman lens

3 beams2

2 ms

±4.5°

Phased array antenna

FPGA

176.5 GHz MMIC VCO by TLC Precision Wafer Technology

2 Reference [1]

Figure 1.1 shows the conceptual diagram of the entire radar system, showing the

major components of the MEMS based radar system including the MEMS Rotman lens,

MEMS RF switches, and the FPGA for signal processing. As shown, the tuning voltage is

obtained from the DAC, and as described in Chapter 3 this translates to the triangular

frequency chirp which is broadcast through the SP3T switch and Rotman lens

combination into the phased array antenna.

60

4.1 Radar Transmitter Control and MEMS RF SP3T Switch Control

Responsibilities of the algorithm in the transmission part of the radar system:

1. Generate the radar frequency chirp by tuning the VCO with a voltage sweep

through a DAC.

2. Synchronize chirp generation with receiver side signal processing, giving

appropriate delay when the sampler is busy.

3. At the end of every down sweep, modify the MEMS switch control bits to switch

to the next beam port, thus changing beam direction.

4. Switch between MEMS Rotman lens beam ports; beam port 1 to beam port 2,

beam port 2 to beam port 3, beam port 3 back to beam port 1.

Figure 4.1 illustrates the transmitter side operation flowchart for the algorithm. On

system reset, the sensor begins with beam port 1 of the Rotman lens, and by default

would be designed to start with the up sweep or positive frequency chirp. The DAC is

configured to output a voltage range from t̂une-min t 0 t̂une-max > which is the range

required to tune the VCO over the desired sweep bandwidth of the system.

For the target sweep duration of 1 ms, a 10-bit DAC with a 900 ns refresh period

would be a suitable choice based on current market availability of fast DACs.

61

* •

/ System \
Reset or First
V Start /

Start up counter from 0
to max.

i
r

Increment counter by 1

NO ^ ^ Max. u p \

\ r eached? / ^

YES I

Wait for sampling unit to
complete sampling and

buffering data

i '
Start down counter from

max. to 0

\ '
Decrement counter by 1

NO A
/ cou

\ ^ reac

\ °
YES

wn \
nter \
hed /
? /

Adjust switch control
bits to next beam port

of Rotman lens

' r

DAC converts binary
input into analog tuning

voltage for VCO
, ,

*R\
Ky
77 GHz

VCO

Figure 4 .1 : Flowchart for the operation of the developed radar algorithm's modulation and

transmitter control unit.

62

4.2 Radar Receiver Flow Control and Signal Processing

The main part of the radar algorithm is its signal processing routine, the input to

which are the time-domain ADC samples and the output from which is target

information. The signal processing algorithm is responsible for the following internal

tasks:

1. Apply the Hamming window to the time-domain samples acquired from the ADC.

2. Fast Fourier Transform of the windowed time-domain samples.

3. Peak intensity calculation for every frequency bin of the FFT output.

4. Run a CFAR algorithm and detect valid target peaks, neglecting noise and clutter,

for both up and down sweeps.

5. Once both up and down sweeps have been processed by the CFAR unit, carry out

peak pairing to calculate the target information.

The developed signal processing algorithm discussed above is defined in Figure 4.2.

The superimposed graphs are generated from MATLAB and depict the time-domain

samples as it passes through the radar signal processing system.

63

Received
Signal

Transmitted
Signal

Mixer

Individual Target
Detection with

CFAR

Multiple Target
Frequency

Segregation (Peak
Pairing)

Determine Range and
Velocity for Detected

Targets

Calculate Safe
Distance from Nearest

Target

LCD

CAN

Figure 4.2: Radar signal processing algorithm developed as part of the radar control unit for this

thesis. The first two superimposed graphs represent the time-domain sampled signal; the graphs

post FFT processing represent frequency-domain processing stages. Signal conditioning steps

are also shown - Mixer, LPF and ADC.

64

4.3 Selecting the Radar Sweep Bandwidth

The choice of components for the system is vital in determining the efficiency of

the algorithm. One of the system parameters affecting the system components is the

bandwidth of the system over which the frequency sweeps are made. The bandwidth

selection involves a major trade-off: a higher bandwidth improves range resolution for

the radar system (refer to equation 4.1), but also suffers non-linearity effects of the

VCO. Following this trade-off, sweep bandwidths of 200 MHz, 400 MHz, 600 MHz, 800

MHz and 1 GHz were tested in MATLAB for the developed algorithm. Due to frequency

spectrum allocation policies bandwidths are currently restricted to 77.5 GHz.

Range resolution for LFMCW radar, AR

Velocity resolution for LFMCW radar, Avr

Here, c is the speed of the EM radar wave in air, B is the LFMCW sweep bandwidth, A

is the wavelength of the radar wave, and T is the up or down sweep duration [49].

The graph in Figure 4.3 shows the results for maximum intermediate frequency

and range resolution from the tests on different bandwidths. The target radar

specifications for maximum range and maximum relative velocity were selected as 200

meters and ±300 km/h in line with the state-of-the-art Bosch LRR3 radar presented in

Chapter 1.

c
25

A
IT

(4.1)

(4.2)

1600
X
-S£

>•
c
<u 3

I k .

u.
Si
w

T 3
0»

£
w
<U

c
£
3
E
X
ro

z

1400

1200

1000

800

600

400

200

0

Range Resolution vs. Bandwidth
% 0.7S I

200 400 600 800

Bandwidth (MHz)

1000

0.8

0.7

0.6

0.5

0.4

0 3

0.2

0.1

0

£
tr
o
** 3

o
« 0 £
01
0 0
£

Figure 4.3: Variation of range resolution and maximum intermediate frequency with LFMCW
sweep bandwidth.

As illustrated in Figure 4.3, an increase in bandwidth does improve range

resolution for the radar system, but also increases the intermediate frequency. An

increase in intermediate frequency means an increase in the sampling frequency,

following Nyquist's sampling theorem. Another trade-off must be made at this point.

Consider equations (4.2) and (4.3).

f
Frequency resolution of FFT, / r e s = — (4.3)

Here, / s is the sampling frequency and N is the point size of the FFT which is equal to

the number of time-domain samples collected.

The resolution of the FFT affects the minimum range gap between two

frequency bins in the output of the FFT, which is nothing but the range resolution of the

radar system. According to equation (4.3) frequency resolution can be improved by

either lowering sampling frequency or by increasing the sampling duration or both.

Increasing the sampling duration also improves velocity resolution by equation (4.2),

however the cycle time of the radar system increases, which is an undesirable effect.
66

Now, consider first a bandwidth of 200 MHz. The maximum expected

intermediate frequency of a target at 200 meters distance going at a relative velocity of

+300 km/h is close to 306 kHz. The minimum required sampling frequency is twice this

frequency and is equal to 612 kHz. Restricting the point size of the FFT algorithm to

1024, say, for quick computation, we have N = 1024. This gives an FFT resolution of

597.66 Hz/bin, which translates to an ideal-case minimum target separation of 0.45

meters (which is within the theoretic range resolution of the radar sensor for this

bandwidth - refer to Figure 4.3).

Secondly, consider a bandwidth of 1000 MHz. The maximum expected

intermediate frequency of the same target now becomes 1357 kHz. The required

sampling frequency for this bandwidth would be at least 2714 kHz. Restricting FFT size

to 1024, the frequency resolution is equal to 2650.39 Hz/bin, corresponding to a

minimum target separation of 0.40 meters. This range resolution is better than achieved

with a bandwidth of 200 MHz using the same FFT point size.

Through this discussion it seems desirable to have a higher bandwidth however

the limiting factor of VCO linearity is to be taken into account. The non-linearity of any

MMIC VCO is a key issue, especially at higher bandwidths. In order to operate in a linear

part of the VCO transfer function, as discussed in Chapter 2, the sweep bandwidth

should not be set too high. Most modern MMIC VCOs promise a linearity of 0.5% over 1-

2 GHz range (TLC 77xs VCO datasheet from TLC Precision Wafer Technology).

Following this discussion, and keeping under consideration the frequency

resolution and timing constraint of 2 ms per beam or 1 ms per sweep, the bandwidth of

800 MHz is chosen. This choice necessitates an ADC with a sampling frequency of 2.2

MHz (2.2 MSPS or Mega Samples per Second), which over 1 ms would collect close to

2048 samples. A power of 2 is preferred for the sample count N so that a Radix-2 DIT

FFT algorithm can be used, allowing faster and more hardware-efficient implementation

on FPGA.

67

4.4 Configuration of System Components

4.4.1 ADC

As discussed above, with a bandwidth of 800 MHz a respectable range resolution

is achievable. For this bandwidth, an ADC with sampling frequency of 2.2 MHz is

required. Or alternately, a sampling frequency of 2 MHz can be used over 1.024 ms for

an exact total of 2048 samples.

4.4.2 FFT

Over 1 ms (or 1.024ms), close to 2048 samples will be collected using the chosen

ADC rate. This would be the size of the FFT required for the signal processing algorithm.

4.4.3 CFAR

The CA-CFAR was chosen as the CFAR processor architecture for this thesis.

Results have been presented in Chapter 4 of this thesis supporting the validity of this

choice. The CA-CFAR processes a total of 1024 frequency-domain peaks (only half of the

FFT output is considered as the FFT is a symmetric algorithm) to identify valid targets

from clutter and noise. The probability of false alarm Pfa is selected as 10"6 for the

algorithm, with an averaging depth M of 4 cells on either side of the CUT and 2 guard

bands on either side of the CUT. This generates the following value of scaling constant

K:

K = P^~m -1 = (10~6) 2x8-1*1.3714

Using 2 guard bands on either side of the CUT allows for enhanced noise

handling capability and increased immunity to spectral leakage as a secondary line of

defense after the Hamming window.

68

4.4.4 Peak Pairing

Two criteria for peak pairing are used in the proposed radar signal processing

algorithm [48], assuming Swerling I, III and V targets. These are:

1. Spectral proximity: With the chosen system bandwidth, a relative velocity of 300

km/h corresponds to a maximum frequency bin shift of 84 bins between up

sweep and down sweep peaks belonging to the same target. This frequency shift

is due to Doppler shift. Therefore, a peak detected in the up sweep will only be

paired with a detected peak in the down sweep if they are within 84 frequency

bins of each other.

2. Power level: The peak intensity of the FFT output is indicative of the power level

in the return of a given target. A distant target would produce a larger beat

frequency but at lower power compared to a nearer target. This relation has

high probability of occurrence and can therefore be used as a pairing criterion,

by which a peak in the up sweep would be paired with a peak in the down sweep

if the difference in their power levels is small.

4.5 Developed Algorithm Summary

The decisions presented in this chapter set the ground for the software (MATLAB) and

hardware (HDL on FPGA) testing of the devised radar signal processing algorithm. The

subsequent chapters show simulation results and a comparison in performance of

floating-point software (MATLAB) and fixed-point (HDL) systems. Table 4.2 lists the final

parameters for this thesis.

69

Table 4.2: Final parameters for the devised signal processing algorithm

Parameters

LFMCW sweep bandwidth

FFT size

FFTtype

Up/down sweep duration

ADC resolution / sampling rate

DAC resolution / refresh period

Target range

Target relative velocity

CFAR Algorithm

CFAR Parameters

Value

800 MHz

2048

Mixed Radix-2 and Radix-4 DIT

l m s

l lb i ts /2.2MSPS

10 bits / 900 ns

0.40 m - 200 m

±300 km/h

CA-CFAR

One-side cell-averaging depth = 4

One-side guard band count = 2

70

CHAPTER 5:
SOFTWARE IMPLEMENTATION AND SIMULATION

MATLAB simulations of the developed radar signal processing algorithm are

carried out in this chapter, and the results presented. Based on the target specifications,

the mathematical theory, and the component configurations the signal processing

algorithm is tested for two different cases. The first case simulates targets detected in a

3-beam MEMS radar, and the second case assumes a large wide-angle beam with a large

number of targets. The results from the MATLAB simulation validate the developed

algorithm and form the basis for the HDL implementation of the same.

5.1 Software Implementation of the Radar Signal Processing
Algorithm

Following the Research Methodology stated in Chapter 1, after the development

of the algorithm and decision on peripherals' configurations, the next step is a detailed

MATLAB simulation of the proposed algorithm. MATLAB R2006b Version 7.3 has been

used to develop the code for and verify the radar signal processing algorithm.

There are three stages to testing the algorithm in MATLAB:

1. Test the algorithm with and without a window function to validate the need for

the extra processing produced by windowing.

2. Test the algorithm with a test case for a practical 3-lane highway scenario with 3

narrow beams between 3°-6° width each.

3. Test the algorithm for a hypothetical scenario with a large number of targets in a

single wide-angle beam between 15°-30° in order to see the effect of saturating

the radar sensor.

71

Before the results are analyzed, we must revisit the chosen algorithm parameters as

presented in Chapter 4. With these system settings, one can proceed testing the

algorithm. The flowchart in Figure 5.1 shows a flowchart of the sequential MATLAB

program used to simulate the radar signal processing algorithm (see Appendix A l for

complete code listing).

Frequency sweep bandwidth = 800 MHz

Sampling frequency = 2 MHz

Sampling duration (up/down sweep duration) = 1.024 ms

Number of time-domain samples = 2048

FFT size = 2048

FFT frequency resolution = 2 MHz / 2048 = 976.5625 Hz/bin

72

Define system
parameters such as

sweep duration,
bandwidth, CA-CFAR

depth etc.

Set range and velocity for all
targets, host vehicle velocity

and attenuation level

r
Compute the ideal up and

down sweep beat frequencies
for all targets

Corrupt beat frequency sine
waves with AWGN noise of

variance = 1 and add all
target beat frequencies

Apply a 2048-point Hamming
window to all time-domain
beat frequency samples

Run a 2048-point FFT on the
time-domain samples for both

up and down sweep

Compute the absolute peak
intensity in all frequency bins
of the FFT output for up and

down sweep

Execute CA-CFAR processing
on the computed power

spectrum for up and down
sweep

Apply pairing criteria to all
valid down sweep peaks and
match them to corresponding

up sweep peaks

Output Range and Velocity
results for all targets

Figure 5.1: Flowchart for MATLAB simulation of the radar signal processing algorithm.

5.2 Testing Stage 1: Windowing versus No Windowing

Test scenario:

1 target at distance 142 meters.

Target velocity is 165 km/h.

Host vehicle velocity is 70 km/h.

- Therefore relative velocity is (70 - 165) km/h = -95 km/h, due to a negative

Doppler shift caused by a receding target.

For the described target, the up sweep frequency would be a sum of the beat

frequency component due to the distance of 142 meters, / R , and the Doppler shift due

to relative velocity -95 km/h, fD, obtained from equations (3.11) and (3.13):

r f f 2kr 2f0vr
/ u p calculated - JR + JD ~ h ~

c C

JSOOMHzX.- 95
2 \T~^TA l42m 2x76JGHzx(- — m/s)

1 ! m4mS]
 + - ^ = 732683.97 Hz

2.973xl08m/5 2.973xl08m/5

Similarly, the down sweep frequency for the target amounts to the difference between

/ R and / D :

f - f - f - 2kr 2fvVr
J down calculated ~ JR JD ~

2
^S0OMHz\ Ars 95

\A2m 2x76JGHzx(- — m/s)
3-6 -=759774.08 Hz

\1.024ms;

2.973x\0Sm/s 2.973x\08m/s

74

5.2.1 Results without Windowing

The results obtained from the MATLAB simulation without any windowing stage in the

algorithm are as follows:

Up sweep frequency bin number obtained from CFAR = 752 bins

.*. Up sweep frequency / u p obtained through algorithm

= 752 bins x frequency resolution

= 752 bins x 976.5625 Hz/bin

= 734375.00 Hz

Down sweep frequency bin number obtained from CFAR = 780 bins

.'. Down sweep frequency /down obtained through algorithm

= 780 bins x 976.5625 Hz/bin

= 761718.75 Hz

Now, by equation (2.14) the target range from the simulation result is computed as

follows:

(/up + /down) C

r = — x —
2 2k

^(734375 + 76171 SJS)Hz 2.973xl08m/s = 1 4 2 - 3 3 m

2 „ SOOMHz
2x

1.024ms

And, by equation (3.15) the target velocity from the simulation result is computed as 75

C/up /down) c
vr = x —

4 / 0

_ (734375-761718.75)/fe 2.973xlQ8yw/^

4 76.7 x\09 Hz

= -26.497 m/s

= -95.39 km/h

5.2.2 Results with Windowing

The results obtained from the MATLAB simulation without any windowing stage in the

algorithm are as follows:

Up sweep frequency bin number obtained from CFAR = 751 bins

.*. Up sweep frequency / u p obtained through algorithm

= 751 bins x frequency resolution

= 751 bins x 976.5625 Hz/bin

= 733398.44 Hz

Down sweep frequency bin number obtained from CFAR = 779 bins

.". Down sweep frequency /<]own obtained through algorithm

= 779 bins x 976.5625 Hz/bin

= 760742.11 Hz

Now, by equation (3.14) the target range from the simulation result is computed as

76

v/up ~*~ /down / C r = x —
2 2k

_ (733398.44 +760742. ll)/fe 2.973 x \0sm/s = 1 4 2 1 5 m

2 X 800M//Z

1.024ms

And, by equation (3.15) the target velocity from the simulation result is computed as

(/up — /down) c
V ' ~ 4

(733398.44-

= -26.497 m/s

= -95.39 km/h

x —
/o

-760742.1
4

l)//z 2.973>
x

76.7 >

:108

clO9

m/s

' /&

From this simulation result, the velocity of the target was obtained as the same

with and without window. However, there is an observed improvement in range

measurement by (142.33 - 142.15) m = 18 cm. Without windowing, the error for the

measured range is (142.33 - 142)/142 x 100 = 0.23%. With the Hamming window, this

error is reduced to (142.15 - 142)/142 x 100 = 0.11%, thus using an extra signal

processing step to apply the Hamming window function to the time-domain samples

offers considerable improvement in range measurement.

5.3 Testing Stage 2: 3-Lane Highway Scenario with Narrow Beam

Figure 5.2 and Table 5.1 illustrate the highway scenario being tested in this case. A

3-beam Rotman lens radar sensor has been considered, as described in Chapter 4. The

host vehicle is taken to be travelling at 70 km/h.

77

Target 2 Target 5 Target 6
Range: 35 m Range: 78 m Range: 90 m

Velocity: 250 km/h Velocity: 99 km/h Velocity: 150 km/h

Figure 5.2: Test case highway scenario. Beam 1 shines 2 targets, Beam 2 covers 2 targets, and

Beam 3 covers 3 of the targets. Beam width for the antenna is assumed to be 9°, with 4.5°

Rotman lens beam steering.

Table 5.1: Practical Test Case Highway Scenario - Target Description

Beam Port

Number

1

2

3

Target

ID

1

3

4

6

2

5

6

Range

(m)

12

54

111

90

35

78

90

Velocity

(km/h)

65

24

90

150

250

99

150

Theoretical Up

Sweep IF (Hz)

63784

290397

580509

461541

158148

405783

461541

Theoretical Down

Sweep IF (Hz)

62358

277280

586212

484354

209477

414053

484354

All targets are assumed to be Swerling I or III type, and it is tacitly assumed that

the return f rom each target sums up at the receiving phased array antenna of the MEMS

radar sensor. This gives rise to the time-domain signals for Beam 1 up and down

78

frequency sweeps shown in Figure 5.3, before and after being multiplied by the window

function. The simulated time-domain signals for Beam 2 and 3 are similar to those

illustrated in Figure 5.3. The signal has been corrupted with AWGN (Additive White

Gaussian Noise) with unit variance. The simulated signal-to-noise ratio is 4.73 dB.

Up Chirp IF corrupted with Zero-Mean Random Noise

0.4 0.6 0.8
Time (ms)

x 10

1.2
3

5.3(a) Received up sweep IF before windowing.

Up Chirp IF corrupted with Zero-Mean Random Noise

! - '
^ f l l l

0.2 0.4 0.6
Time (ms)

0.8 1.2

x10

5.3(b) Up sweep IF signal after Hamming window.

Down Chirp IF corrupted with Zero-Mean Random Noise

0.4 0.6 0.8
Time (ms) x 10

1.2
•3

5.3(c) Received down sweep IF before windowing.

Down Chirp IF corrupted with Zero-Mean Random Noise

0.6
Time (ms) x 10"

5.3(d) Down sweep IF signal after Hamming window.

Figure 5.3: Time-domain signals for the up and down sweep of Beam 1 of the Rotman

presented in the test scenario, before and after multiplication with the Hamming window.

Figure 5.4 shows the frequency analysis output from the FFT for Beams 1, 2 and

windowing. The respective targets have been marked.

1

0.9

0.8

f 0.7

I 0.6

Z 0 3

MATLAB Frequency Analysis - Beam 1, Up Sweep

Target 1

Target 3

4 5 6
Frequency (Hz)

x 10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

MATLAB Frequency Analysis - Beam 1, Down Sweep

Target 1

Target 3

4 5 6
Frequency (Hz) x 10

Figure 5.4(a): Spectral analysis of beam 1 targets in the up and down sweeps.

1

0.9

0.8

£• 0.7
S
c ID
c 0.6

J *

a i? 0.5
•g

75 ° ' 4

g
£ 0.3

0.2

0.1,
A

MATLAB Frequency Analysis - Beam 2, Up Sweep
{•<

-

-

Target 6

V

o

Target 4

Q

C)

-

i=Q r>
CiD ^ O ^K «L^ O ^£l ~ i &£

9
Q Q Q

Q HH Q
ftiCfflc A , ^

1

-

-

-

-

-

-

a €
p CfaiSliEvi^

4 5 6
Frequency (Hz)

x10

1

0.9

0.8

& 0.7

1 0.6

rf 0.5

75 0 4

% 0.3

0.2,

°1

MATLAB Frequency Analysis - Beam 2, Down Sweep

~
Target 6

-

^

-

.

\Mm&2Mk Cih£jj|i$f>)

)

1
 (

P&L,

Target 4 -

-

-

• \

-

-

Jtoojk © Cg) f&M

Frequency (Hz)
8 9 10

x105

Figure 5.4(b): Spectral analysis of beam 2 targets in the up and down sweeps.

82

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Cf

MATLAB Frequency Analysis - Beam 3, Up Sweep

Target 2

Target 5

0)

Target 6

4 5 6
Frequency (Hz) x 10'

10
5

MATLAB Frequency Analysis - Beam 3, Down Sweep

x 10

Figure 5.4(c): Spectral analysis of beam 3 targets in the up and down sweeps.

Figure 5.4: Frequency analysis of return signals in Beams 1, 2 and 3 shows the presence of

83

The error induced in the floating-point MATLAB based radar signal processing

algorithm is primarily due to the added AWGN added in the code (see Appendix for

complete MATLAB listing), which is visible in the spectral plots in Figure 5.4. Table 5.2

shows the results obtained from the MATLAB simulations of the algorithm. The results

presented are after successful pairing of the up sweep and down sweep peaks. Table 5.3

displays the errors from the simulation results.

Table 5.2: Results from MATLAB Simulation of the Developed Algorithm for 3-Lane

Narrow Beam Scenario

Beam

Port

Number

1

2

3

Target

ID

1

3

4

6

2

5

6

Measured Up

Sweep IF

(frequency bins)1

67

299

596

474

164

417

474

Measured Down

Sweep IF

(frequency bins)1

66

286

602

497

216

426

498

Measured

Range

(m)

12.36

54.35

111.30

90.21

35.30

78.32

90.30

Measured

Velocity

(km/h)2

66.59

25.71

90.44

148.36

247.15

100.66

151.76

1 Frequency resolution for 2048-point FFT = 976.5625 Hz/bin

Target velocity has been calculated using equation (3.16)

84

Table 5.3: Errors for the Developed Algorithm from MATLAB Simulations for 3-Lane

Narrow Beam Scenario (SNR = 4.73dB)

Beam Port Number

1

2

3

Target ID

1

3

4

6

2

5

6

Error in Range

Measurement (m)

0.36

0.35

0.30

0.21

0.30

0.32

0.30

Error in Velocity

Measurement (km/h)

1.59

1.71

0.44

1.64

2.85

1.66

1.76

Maximum error in range measurement for the developed algorithm: 0.36 m

Maximum error in velocity measurement: 2.85 km/h

85

5.4 Testing Stage 3: Hypothetical Scenario with 7 Targets Detected
in a Single Wide Beam

The test scenario is presented in Figure 5.5. Only one wide-angle beam is

considered for this simulation. The host vehicle velocity is set at 100 km/h, and it has

direct line-of-sight detection of 7 simulated targets.

HOST VEHICLE
Velocity: 100 km/h

Target 1 target 3
Range: 9 m Range: 29 m

Velocity: 90 km/h Velocity: 89 km/h

Target 4
Range: 55 m

Velocity: 100 km/h

Target 7
Range: 148 m

Velocity: 22 km/h

0 * * *

*

% '""••-..̂
* " ' • • - .

* % % %

— = -

ir jr.;

u t . . . ""

>
';'

Target 2
Range: 24 m

Velocity: 55 km/h

Target 5
Range: 78 m

Velocity: 70 km/h

Target 6
Range: 106 m

Velocity: 80 km/h

Figure 5.5: Hypothetical scenario with a single wide-angle antenna beam using only one beam
port of the Rotman lens, i.e. no beam steering required to cover 3 central highway lanes.

To ensure fair and reliable testing, different target descriptions were used from

Testing Stage 2. These target descriptions are tabulated in Table 5.4, and the results

obtained from the MATLAB simulation are presented in Table 5.5. Figure 5.6 looks at the

frequency analysis of the wide-angle beam, clearly labeling the 7 simulated targets. The

CFAR processing results are shown, where all 7 target peaks have been correctly

identified and extracted. This validates the accuracy of the employed CA-CFAR

algorithm.

86

Table 5.4: Hypothetical Test Case -Target Description

Target ID

1

2

3

4

5

6

7

Range

(m)

9

24

29

55

78

106

148

Velocity

(km/h)

123

55

89

100

70

80

22

Theoretical Up

Sweep IF (Hz)

44004

132585

153990

289060

414239

559964

789013

Theoretical Down

Sweep IF (Hz)

50563

119753

150853

289060

405684

554261

766771

These targets have been selected randomly, and the test results are displayed

after 6 complete iterations of the system for the same targets. This is one of the

approaches to ensuring fair and reliable test results.

87

MATLAB Frequency Analysis - Wide-Angle Beam, Up sweep

Frequency (Hz) x1(f

0.35

0.3

0.25

5
| 0.2
o a.

TD
<D
N 0.15

0.1

0.05

0

Valid Target Peaks Extracted by CFAR in Up Sweep

Target 6
Target 7

0 100 200 300 400 500 600 700 800 900
FFT Bin Number

Figure 5.6(a): Frequency analysis of up frequency sweep for the wide-angle beam scan. The valid

targets are shown as detected by the CFAR unit.

88

MATLAB Frequency Analysis - Wide-Angle Beam, Down Sweep

3 4 5 6 7
Frequency (Hz)

8 9 10

x 105

0.25

0.2

CD

I
0.15

N
'To 0.1

o

0.05

0

Valid Target Peaks Extracted by CFAR in Down Sweep
-9;

Target 1

Target 2
Target 4

9

Q,

Target 3
Target 5

Target 6 Target 7

Q

0 100 200 300 400 500 600 700 800
FFT Bin Number

Figure 5.6(b): Frequency analysis of down frequency sweep for the wide-angle beam scan

valid targets are shown as detected by the CFAR unit.

Table 5.5: Results from MATLAB Simulations of the Developed Algorithm for 3-Lane

Single Wide Beam Scenario

Target

ID

l

2

3

4

5

6

7

Measured Up

Sweep IF

(frequency bins)1

47

138

159

298

426

575

810

Measured Down

Sweep IF

(frequency bins)1

54

124

156

298

417

569

787

Measured

Range(m)

9.38

24.34

29.27

55.37

78.32

106.28

148.37

Measured

Velocity (km/h)2

123.85

52.31

89.78

100.00

69.34

79.56

21.64

Frequency resolution for 2048-point FFT= 976.5625 Hz/bin

2 Target velocity has been calculated using equation (3.16)

Table 5.6: Errors for the Developed Algorithm from MATLAB Simulations for 3-Lane

Single Wide Beam Scenario (SNR = 4.73dB)

Target ID

l

2

3

4

5

6

7

Error in Range

Measurement (m)

0.38

0.34

0.27

0.37

0.32

0.28

0.37

Error in Velocity

Measurement (km/h)

0.85

2.69

0.78

0.00

0.66

0.44

0.36

90

The error of the obtained target range and velocity measurements from the MATLAB

Simulation of the radar signal processing algorithm are shown in Table 5.6.

Maximum error in range measurement for the developed algorithm: 0.38 m

Maximum error in velocity measurement: 2.69 km/h

5.5 Observations from Software Simulation Results

The simulations results confirm the validity of the developed algorithm and

chosen system parameters such as bandwidth of 800 MHz and up/down sweep duration

of 1.024ms. The chosen ADC sample rate of 2.0 MHz is appropriate for capturing exactly

2048 time-domain samples of the intermediate frequency or beat frequency signal.

The CA-CFAR algorithm has been tested and its operation validated through

accurate extraction of valid targets from a background of noise and clutter with an SNR

of 4.73 dB, which is a good performance with reference to literature [50] in which the

author has described better SNR under normal conditions at mm-wavelengths.

The maximum error observed in the range determination of any target is 38 cm,

while the maximum error in target velocity measurement is 2.85 km/h or 0.79 m/s.

These errors are within tolerable limits compared to state-of-the-art automotive radars

studied in Chapter 2.

91

CHAPTER 6:
HARDWARE IMPLEMENTATION AND VALIDATION

The signal processing algorithm is coded in Verilog HDL and the modular design

has been shown in this chapter. The data flow through individual modules is described,

and an overview of the entire HDL implementation is produced. A few alterations and

fine-tuning of the FFT and CFAR modules have been done to improve noise tolerance

and accommodate short range, medium range and long range target return attenuation

and power variation. The coded system is simulated using Xilinx ISim and the waveforms

have been illustrated. The results are promising and show lower error than the MATLAB

simulations, primariliy due to the fixed-point rounding of data as it propagates through

the digital logic.

6.1 Hardware Implementation of the Radar Signal Processing
Algorithm

The advantages of modern FPGAs over DSPs in running signal processing tasks

have been highlighted in Chapter 2. The state-of-the-art Bosch LRR3 has a cycle time of

50 ms. An FPGA implementation presented in [28] displays a signal processing latency of

1250 p.s for a single LFMCW sweep using with a 1024-point FFT using a Xilinx Virtex-ll

Pro FPGA clocked at 50 MHz. To achieve a smaller computation latency per sweep, and

hence a smaller cycle time for the MEMS based automotive radar, the target FPGA for

this thesis is selected as Virtex-5 SX50T.

Figure 6.1 shows an annotated snapshot of the Virtex-5 development board and

Table 6.1 highlights the main aspects of this FPGA. One of the advantages of using the

Virtex-5 FPGA from Xilinx is the high integration capacity of the design, and the higher

operating clock frequency, owing to the improved gate-level performance with 65 nm

92

technology. A faster clock frequency enables quicker computation of signal processing

routines thus reducing overall cycle time for the MEMS radar further. It should be noted

here that the MEMS Rotman lens and MEMS SP3T switches devised for the radar system

are capable of handling switching times well below 1 ms.

Table 6.1: Xilinx Virtex-5 SX50T features [51]

Feature

DSP48E Slices

Block/ Distributed RAM

Total LUT Bits

Maximum Clock Frequency

Gate Technology

I/O Voltage / Core Voltage

Value

288

4,752 kb / 780 kb

> 13 million

550 MHz

65 nm

1.2V-3.3V/1 .0V

LEDs(Green/Red) User Buttons

Figure 6.1: Xilinx Virtex-5 SX50T mounted on Development Board ML506 (annotated).
93

The resources offered by Xilinx Virtex-5 suffice for the developed signal

processing algorithm and future expansions of the MEMS automotive radar project,

while offering optimal speed. The on-chip system monitor has core temperature and

power consumption sensors that can be used to ensure the system is always in working

capacity.

6.1.1 Radar Signal Processing Algorithm on FPGA

The block diagram for the HDL implementation on FPGA is presented in Figure

6.2. The language used for the FPGA implementation is Verilog HDL (Verilog 2005 - IEEE

Standard 1364-2005). The coding and simulation has been done using Xilinx ISE Design

Suite 11.5. The HDL blocks are synonymous to the signal processing stages of the

algorithm presented and tested in Chapter 5, and have been developed for a bandwidth

of 800 MHz and a frequency sweep of 1.024 ms.

Control to MEMS
SP3T Switches

Host Vehicle
Velocity

System
ENABLE oaiy I | eiN«E

PPM
LFMCW Peak

Pairing
CA-CFAR
Processing

CFAR

TDRI

Distributed Dual-
Port RAM

(Time-domain
data)

FDR

FFT

FFTCore

Distributed Dual-
Port RAM

(Frequency-domain
data)

1
Square Law

Detector

Peak Intensity
Computation (over

I.F. frequency range)

PSD
Target Velocity Target Range

Figure 6.2: HDL blocks for the radar signal processing algorithm.
94

6.1.1.1 Top Level Control (TLC)

The TLC is the interface of the radar control and signal processing algorithm to

the real world and MEMS radar RF components. The control part of the algorithm

synchronizes the radar transmission and signal processing, and provides the sampling

clock to the ADC and captures real-valued time-domain samples from the intermediate

frequency of target echoes through the sampler unit. The TLC also provides a clock to

the DAC, along with data bits to generate the tuning voltage for the VCO as discussed in

previous chapters. The operation of this top level module is described by the flowchart

in Figure 4.1.

Figure 6.3 below illustrates entire radar control and signal processing algorithm

as a black box as seen from outside the FPGA.

11-bit ADC samples

8-bit Host
Vehicle Velocity

System CLOCK

System ENABLE

System RESET

22-bit Target
Information Output

10-bit Modulating
Signal Output to DAC
3-pin MEMS RF
Switch Control

DAC Clock

Sampling Clock
to ADC

Figure 6.3: Black box view of radar control and signal processing algorithm. The thicker lines
represent data buses. The left side represents inputs and the right side shows the outputs.

The 22-bit target information output from the unit has the following format:

[10-bit target velocity] [10-bit target range] [2-bit beam port number]

95

6.1.1.1.1 Velocity Precision

The velocity is presented in a [9.1] format in km/h, meaning 9 bits for the integer

part and 1 bit for the fractional part. This means velocity measurement is restricted to a

precision of 0.5 km/h. However, internally there is 5-bit precision for velocity calculation

which gives a precision of 0.03125 km/h. The 5-bit precision has been curtailed to 1-bit

fractional precision in order to restrict the length of the output target information.

6.1.1.1.2 Range Precision

The range is output in a [8.2] format, thus a precision of 0.25 meters is imposed

on the HDL implementation. However, as in the case of velocity calculation, this

fractional precision can be extended up to 11-bit precision or 0.00048828125 m = 488

u,m. Since such precision is not required in automotive radar applications, the 11-bit

internal precision is replaced with 2-bit fractional precision to shorten the output word

length.

The beam port number appended at the end of target information represents

the beam number the target was detected in, which is indicative of the estimated

direction of the target.

Figure 6.4 below shows the top level module as seen in the Xilinx ISE Design

Suite. Table 6.2 describes the input and output signals.

iik>f

en.>f~

reset/j-

umt_vel(7:0)>f-

datain{10:0)>f-

final info valid)

sclk>

modulate(9:0)>

final_targetJnfo(21:0)>

beamport(2:0))>

Figure 6.4: TLC in Xilinx ISE RTL viewer.

96

Table 6.2: Port description for TLC

HDL Port Name

elk

en

reset

unit_vel

datain

final_info_valid

sclk

modulate

final_target_info

beam port

Direction

Input

Input

Input

Input

Input

Output

Output

Output

Output

Output

Description

System clock at 550 MHz from ML506 development

board on-board clock generator

System enable signal

Global synchronous system reset

Host vehicle velocity

Real-valued time-domain ADC samples

Signal is logic ' 1 ' or HIGH if a new target range and

velocity information are being output

Sampling clock from TLC to ADC

10-bit data to DAC generated from an up/down counter

in TLC - used to generate the tuning voltage to modulate

the VCO output1

This contains the target range and velocity measurement

along with 2 bits describing the beam direction in which

the target was detected

Control pins for the MEMS SP3T switches to control the

direction of the radar beam by controlling the beam port

of the Rotman lens being fed

1 For the TLC77xs VCO being used for this thesis, tuning voltage range of 2.5V to 6.5V generates

output frequency range 76.5 ± 1 GHz. Therefore, for 800 MHz bandwidth centered at 76.9 GHz,

the tuning voltage is 4.5 V to 6.1 V is required. A value of 0 on the modulate port will be output

from the DAC as 4.5 V, and a value of (1111111111)2 or 1023 will result in 6.1 V.

The 3-pin MEMS RF switch control signal contains a bit each for the 3 MEMS

switches that are controlled through charge pumps connected to the FPGA pins. These

MEMS SP3T switches are responsible for routing the RF signal generated by the VCO to

the appropriate beam port of the Rotman lens thus steering the beam. Isolation

97

between the supply voltage of the MEMS switches and the RF signal travelling through

them is done using a bias-tee for each switch.

The system clock input for Virtex-5 is 550 MHz, obtained from the ML506

development kit from Xilinx. This clock signal is divided internally to an operating clock

of 100 MHz, which is the target operating frequency for the radar algorithm.

Time-domain samples from the ADC are obtained in 11-bit format as per the

decided resolution of the ADC (Chapter 3).

6.1.1.2 Sampling Unit (SAMPLER): sub-module Window Function (WINDOW)

This is a sub-module of the sampler module and contains a ROM storing 1024

coefficients of a 2048-point Hamming window. Since the Hamming window is

symmetric, storing the first 1024 values is memory efficient. This sub-module contains a

simple 10-bit up/down counter that extracts the coefficient depending on the index of

the time-domain sample.

The Hamming window coefficients are floating point numbers, thus representing

them in digital hardware requires rounding off. The precision of the coefficients is

chosen to be 10 bits, with the maximum of (11 1111 1111)2 representing the maximum

coefficient value of 1. The rounded off Hamming coefficients are thus stored as integers

ranging from (0.08 x 1023) to (1 x 1023). The coefficients are obtained from MATLAB

code which carries out the following steps (refer to Appendix for MATLAB listing):

1. Create a Hamming window of size 2048.

2. Multiply the window coefficients by 1023 to scale them to a 10-bit range.

3. Round off the scaled coefficients to the nearest integer.

4. Save the first 1024 coefficients in sampler ROM.

98

Although this rounding does introduce a secondary quantization error after the ADC,

the results from simulation of the algorithm in HDL show desired accuracy and

precision. The percentage error produced by from rounding the Hamming coefficients is

0.084%, which has negligible effects on the signal processing. A similar approach has

been presented and validated by Hampson in [56].

The scaling an x-bit time-domain sample by multiplication with a window coefficient

returns a scaled x-bit number; there is no change in the word length of the samples. This

is done by retrieving only the most significant x bits from the result of the multiplication.

Thus:

x-bit time-domain sample -> WINDOW -> x-bit scaled time-domain sample

This method of scaling has a maximum error of 0.1% per sample which is

negligible. The preservation of word length proves efficient later on in the signal

processing by limiting the memory sizes and reducing processing speed while retaining

adequate accuracy.

6.1.1.3 Sampling Unit (SAMPLER): sub-module Time-Domain Data RAM (TDR)

This is a sub-model of the sampler module which is a dual-port Block RAM. This

sub-module stores the windowed time-domain samples collected from the ADC. The

width of the data RAM is 12 bits, and the depth is 2048 - 2 MHz ADC sampling over

1.024 ms. An important note to make is that although the ADC output is 11 bits long, the

TDR module stores 12-bit samples. The extra bit is merely a '0' added to the front of

every sample. This is done as the FFT core used in this project works with 2's

complement input and output data, so appending a '0' at the beginning of every time-

domain sample converts all samples to positive values. The only effect of this method is

a high DC component being detected in the first frequency bin of the FFT, which is safely

ignored as it represents a negligible target range of 0.186 m or 18.6 cm. The first few
99

range gates of the FFT are ignored to avoid nearby clutter return from the host vehicle's

bumper, the immediate ground level, and internal reflections in the radar sensor.

The TDR module is also responsible for feeding the sampled data to the FFT core.

The TDR monitors the sample index being displayed from the FFT core and outputs the

sample at that index. In this case, the index from the FFT core is used as the address to

access the RAM in TDR. Upon sending all 2048 samples to the FFT core, the TDR sends a

"start calculation" active-high signal to the FFT core. Figure 6.5 shows the overall

sampler module as seen from Xilinx ISE. The timing diagram for the sampler unit is

shown in Figure 6.6.

<Jatairif10;Ql

m indexftQ:fl)
mmmmmm

elk

en

fft r f d

reset

r

k

^

A

j j ^ i m d

[m mitt

...JJLslart

hold

sclk

Figure 6.5: Xilinx ISE RTL view of sampler unit with sub-modules WINDOW and TDR.

100

Table 6.3: Port description for SAMPLER

HDL Port Name

datain

xnjndex

elk

en

fft_rfd

reset

xn_im

xn_re

fft_start

hold

sclk

Direction

Input from TLC

Input from FFT

Input from TLC

Input

Input from FFT

Input

Output to FFT

Output to FFT

Output to FFT

Output to TLC

Output to TLC

Description

11-bit ADC sample

Index of the sample being passed to the FFT core

Operating clock of 100 MHz

Enable signal

Control signal from FFT core indicating it is ready to

accept new batch of data for processing

Global synchronous reset

Imaginary part of time-domain sample - this port is

permanently grounded to 0

Real part of time-domain sample - windowed time-

domain samples from dual-port RAM

Active-high start signal for FFT - initiates FFT

computation

Active-high signal to TLC - a level 'V on this wire

makes the TLC halt modulation and sampling while all

data is fed from RAM to the FFT core

Sampling clock to ADC generated by the sampler unit

T
sclk

Windowed
Time-domain

Sample

hold

fft_start
TIME

Figure 6.6: Timing diagram for SAMPLER module. When hold = 1 all windowed time-domain

samples are fed to the FFT core. Values Tscik and 7/,oW are presented in Table 6.16. The pulse

widths are not drawn to scale.

101

< = — — — >

T
<ZX~i~

hold-

JL

6.1.1.4 Fast Fourier Transform Core (FFT)

This module contains a 2048-point FFT core generated using Xilinx Core

Generator, which is part of the Xilinx ISE Design Suite 11.5 package. Xilinx FFT v7.0

(version 7.0) has been used in this thesis. Core Generator offers fully customizable, high-

performance, parameterized signal processing IP cores from Xilinx. The parameters used

for the FFT core implemented in this thesis are displayed in Table 6.4. The Xilinx ISE

block for the FFT is shown in Figure 6.7.

Table 6.4: Xilinx FFT IP core parameterization

Parameter

FFT size

Architecture type

Radix

Input word length

Output word length

Scaling type

I/O data type

Internal phase factor length

Value

2048

Burst I/O1

Mixed 2/4

12 bits

12 bits (scaled)

Rounding

2's complement

16 bits2

1 refer to FFT datasheet from Xilinx [52]. The two available architectures are Burst I/O and
Streaming I/O. Burst I/O architecture has been chosen due to its lower resource consumption.

2 this parameter affects the precision of the FFT calculation. 16 bits was chosen for the phase
factor word length as a trade-off between accuracy and resource usage.

102

scale $ch<11,0)

xn... »TI(11;.J).

m rei'lt 0)

elk

fwd tnv

fwd ww we

scale a h we

start

unload

?4c §nflt;0s

>k index{10:0)

| * refit.0)

xn index(10:.Q)

_bysy

done

dy

edone

m

Figure 6.7: Xilinx ISE RTL view of FFT v7.0 core.

Table 6.5: Port description for FFT

HDL port name

scale_sch2

xn_im

xn_re

elk

fwd_inv2

fwd_inv_we2

scale_sch_we2

start

unload

xk_im

xk_index

Direction

Input from TLC

Input from TDR

Input from TDR

Input from TLC

Input from TLC

Input from TLC

Input from TLC

Input from TDR

Input from FDR

Output to FDR

Output to FDR

Description

Scaling schedule for all stages of the FFT - a default

value of (0110 1010 1010)2 has been used1

Imaginary part of the time-domain sample

Real part of the time-domain sample

Operating clock at 100 MHz

' 1 ' for FFT, '0' for IFFT (inverse FFT)

Write enable for fwdjnv

Write enable for scale_sch

Start signal initiates FFT computation

Signal to start unloading result from FFT

Imaginary part of frequency-domain FFT result

Index of frequency-domain sample being unloaded

103

xk_re

xn_index

busy

done

dv

edone

rfd

Output to FDR

Output to TDR

Output

(unconnected)

Output to FDR

Output to FDR

Output

(unconnected)

Output to TDR

Real part of frequency-domain FFT result

Index of time-domain sample being loaded

Active-high busy signal

Active-high completion signal

Active-high data valid pin - logic T while unloading FFT

results

Early completion signal - goes to logic T one clock

cycle before done

Ready For Data - logic T when FFT core is ready to

accept new batch of t ime-domain data for processing

1 refer to Xilinx FFT datasheet [52]. The scaling schedule specifies the number of bits to be

scaled at the end of each internal FFT stage. This scaling ensures the same output world length

as the input, in this case 12 bits.

these signals offer run-time configurability to the FFT core.

The t iming diagram for the Xilinx FFT core is shown in Figure 6.8 below.

start-y-i 1 i

x n - r e ĵ load ^ata Fr$me A

xnjm „ '/tosd ifata Frime f

xnjndax </Q < i ^-1
f I i

ttd y \ \

busy i ; ; f~

dv I i

xn_re ; ; :

xn im 1 :

xnjreJex i ;

^ i
i i

N !

: processing

L/~_

4 i

« i t

! ! !
(toad data Rime B _

/toad data Frama B i_

f°
r~

Frame A

i . . . : N-IN
i i i

i i \
! 1 i

\ ! / t
: i i

F ™ T ~ ™ T "

| j

prqcesstnb Frame 8

'/ urtttedFra'nwA

'/ unload Frame A

Jo ;... ! N-1

\ !

^ i
^ :

\ !

i

: /

\t
i / 0

'•• i i

I I \

upload frame % \

HiMnftrt Prarrw R \

~r—-~~~ipi__

Figure 6.8: Timing diagram for Xilinx FFT core v7.0 (refer to datasheet in reference [52]).

104

6.1.1.5 Frequency-Domain Data RAM (FDR)

This unit is made of two sub-modules. The first sub-module monitors the done

signal from the FFT core to be asserted, upon which it requests the FFT core to start

unloading the result of the FFT by asserting the unload signal of the FFT core. The sub-

module then accepts the frequency-domain samples from the FFT once the DV (data

valid) signal from the FFT core is asserted, converts the 2's complement samples into

positive values. This gives the absolute value of each real and imaginary frequency

sample, setting up the next stage of the signal processing which deals with peak

intensity calculation for each complex frequency sample.

The second sub-module contains two Block RAMs, one each for real and

imaginary samples from the FFT. Only the latter half of the FFT results is stored due to

the observation that the first half of the Xilinx FFT core has more noise and inaccuracy

than the latter half. The fact that the FFT of a real-valued signal is symmetric about the

central frequency bin allows the first half of the frequency-domain data to be ignored.

Each stored sample is 12 bits in length, therefore the total RAM used is:

2 x 12 x 1024 bits = 24 kb

Once all 1024 frequency-domain samples have been retrieved and stored, the

second sub-module of FDR begins the peak intensity calculation procedure by squaring

the real and imaginary parts, summing them up and passing them to the PSD module.

Figure 6.9 shows the RTL view of the two sub-modules forming the FDR unit and Table

6.6 lists the port descriptions. Figure 6.10 illustrates the timing of events related to the

FDR module.

105

y.k i m ' i y g ^

>;k «r.ds^10:0'i

xk re l ^ g j ^ |

dk

ift dona

ffS dv

rase;

r 1

A

mj^nm

rafH-iR

dv

ft! ynisad

r
ndes9C.

(a 1 1 J ^ ^

afar bjsy

eft

dv

l e d

sqrt done

L

1

A

m£j£ fe&ds24Qi

sqrt fe=d»!24Q'i

mj^jg ?e=ckJ24:G'i

m^fi feeddt240>

sqrt start

Figure 6.9: Xilinx ISE RTL schematic view of two sub-modules forming the FDR unit.

Table 6.6: Port description for FDR

HDL Port Name

xk_im

xk_index

xk_re

elk

fft_done

fft_dv

reset

cfar_busy

sqrt_done

sqrt_feeda/b/c/d

sqrt_start

Direction

Input from FFT

Input from FFT

Input from FFT

Input from TLC

Input from FFT

Input from FFT

Input

Input from CFAR

Input from PSD

Output to PSD

Output to PSD

Description

2's complement imaginary part of complex

frequency-domain sample from FFT core

Index of frequency-domain sample being unloaded

from the FFT core

2's complement real part of complex frequency-

domain sample from FFT core

Operating clock of 100 MHz

FFT completion signal from FFT core

Signal is logic T when valid output data is being

unloaded from the FFT core

Global synchronous reset

Busy signal from the CFAR unit - logic T causes FDR

and PSD units to halt

Completion signal from PSD module

Four complex values sent per clock cycle to PSD unit

Signal asserted to instruct PSD module to commence

peak intensity computation

106

fft_done

fft_unload

fft_dv

fft_re

fft_im

sqrt_feeda

sqrt_feedb

sqrt_feedc

sqrt_feedd

start_sqrt
TIME

Figure 6.10: Timing diagram for FDR. [7p F j un|oacj = 1024 clock cycles] and 7pSD is defined in

Table 6.16.

6.1.1.6 Peak Intensity Calculator (PSD)

The PSD module computes the peak intensities of all the 1024 captured FFT

output samples. It processes one sample at a time upon assertion of the sqrt_start

signal. The signal processing algorithm contains 4 of these modules operating in parallel,

allowing faster processing of all 1024 frequency-domain samples. Buses

sqrt_feeda/b/c/d from the FDR are each inputs to one of these PSD modules. Once the

peak intensity is computed, it is passed through a square-law detector unit which

essentially ensures that no peak intensity value is negative before being passed to the

CFAR processor. The positive-valued, frequency-domain peak intensity is sent to the

CFAR processing module in groups of 4.

107

n

T
FFT _ unload

<ZXZ> <204?

-(ixiy <zo47
LPSD

O-<I>

value (24:01

elk

reset

start

rooti 12:01

done

Figure 6.11: Peak intensity calculation unit.

Table 6.7: Port description for PSD

HDL Port Name

value

elk

reset

start

root

done

Direction

Input from PSD units

Input from TLC

Input

Input from FDR

Output to CFAR

Output to FDR

Description

Mapped to sqrt_feeda/b/c/d from FDR

Operating clock at 100 MHz

Global synchronous reset

Start peak intensity computation signal from FDR

Peak intensity computation result to CFAR unit

Completion of peak intensity calculation

6.1.1.7 Constant False Alarm Rate Processor (CFAR)

The CA-CFAR algorithm has been detailed in previous chapters of this thesis. The

HDL implementation of the CA-CFAR algorithm is a vital component of the radar signal

processing algorithm. It is solely responsible for removal of unwanted clutter and noise

while detecting valid targets from an unknown attenuation pattern arising from

different weather conditions.

The CFAR processor receives frequency-domain peak intensity values in batches

of 4 from the 4 PSD units working in parallel, as shown in Figure 6.12. These 4 values are

stored in a Block RAM in the following order:
108

Result of sqrt_feeda stored in index 0 of Block RAM.

Result of sqrt_feedb stored in index 1 of Block RAM.

Result of sqrt_feedc stored in index 2 of Block RAM.

Result of sqrt_feedd stored in index 3 of Block RAM.

In the similar order, the next 4 received peak intensity values from the 4 PSD

units are stored in index 4, 5, 6 and 7 of the RAM. The RTL block diagram for the CFAR

processor is shown in Figure 6.13, and the port description is provided in Table 6.8. The

timing diagram depicting the operation of the CFAR unit is shown in Figure 6.14.

FDR

PSD1

PSD2

PSD3

PSD4

CFAR

Figure 6.12: Four PSD units work in parallel to speed up peak intensity computation.

109

iftAf120i

inB{1£ja

in 0(12.0).

«0(120)

elk

reset

start

targe? abs(120:i

target posfSOl

complete

jnewjargel

start cfar

Figure 6.13: RTL view of CFAR module.

Table 6.8: Port description for CFAR

HDL Port Name

inA/B/C/D

elk

reset

start

target_abs

target_pos

complete

new_target

start_cfar

Direction

Input from PSD

Input from TLC

Input

Input from PSD

Output to PPM

Output to PPM

Output to PPM

Output to PPM

Output to FDR

Description

Peak intensity values from 4 parallel PSD units

Operating clock at 100 MHz

Global synchronous reset

Active-high signal that is logic T when new peak

intensity values are available to be read from the PSD

units

Peak intensity of detected target output to Peak Pairing

module

Spectral position (FFT bin number) of detected target

output to Peak Pairing module

CFAR completion signal for all 1024 values

Active-high signal that is logic ' 1 ' to alert the Peak

Pairing module when a new valid target is detected

Mapped to cfar_busy signal to FDR indicating CFAR unit

is busy

110

PSD1
output

PSD2
output

PSD3
output

PSD4
output

CFAR busy
(start_cfa?)

<!>-<Z>-

PSD PSD

< T >

<I

TIME

Figure 6.14: Timing diagram for CFAR module: 32 peak intensity values are collected by the CFAR

unit from 4 PSD units working in parallel. For processing delays 7pSD ar|d ^CFAR re^er t 0 Table

6.16.

Reasons for processing 32 frequency-domain values at a time:

1. Lower memory requirements for the CFAR module.

2. Reduce complexity and improve speed in CFAR module.

6.1.1.7.1 Important modification to the CA-CFAR processor

Due to atmospheric attenuation targets far away appear with smaller peak

intensities. Low power peaks were observed in the CFAR when modeling far away

targets, and in some cases this led to their exclusion by the CA-CFAR process. In order to

overcome this problem, the sensitivity of the CFAR processor was increased for

medium-range and long-range targets by reducing the Pfa used to compute the

constant K. The adjustments are presented in Table 6.9. This approach increased the

detection rate for medium- and long-range targets.

I l l

Table 6.9: Sensitivity Adjustment for CA-CFAR Processor

Radar range

Short

Medium

Long

FFT bin range

1-512

513-852

853 -1024

Corresponding

range (m)

0.186-95.136

95.322-158.312

158.498-200.000

Pf*

10"7

10'6

10"5

Constant K1

6.499

4.623

3.217

1 As mentioned in Chapter 4, cell-averaging depth is 4 on either side of CUT i.e. M = 8. These

values of K have been rounded off in the fixed-point HDL implementation.

6.1.1.8 Peak Pairing Module (PPM)

The Peak Pairing unit was implemented as is from the MATLAB model of the

radar signal processing algorithm. The criteria of peak pairing used are Spectral

Proximity and Power Level comparison as described in Chapter 4. Figure 6.15 and Figure

6.16 display the Xilinx RTL view and the timing diagram for the PPM, respectively. Table

6.10 provides port descriptions for the module. The output of the PPM is the target

range and velocity information already described in the TLC section of this chapter.

target absf12:0)

target pos(9;0)

uns; vel(7:0)

dk

comctcte

new targe!

upclown

target info(19:0)

info valid

Figure 6.15: RTL view of PPM.

112

Table 6.10: Port description for PPM

HDL Port Name

target_abs

target_pos

unit_vel

elk

complete

new_target

reset

updown

target_info

info_valid

Direction

Input from CFAR

Input from CFAR

Input from TLC

Input from TLC

Input from CFAR

Input from CFAR

Input

Input from TLC

Output to TLC

Output to TLC

Description

Peak intensity of a detected target by CFAR

Spectral position of a detected target by CFAR

Velocity of host vehicle in km/h

Operating clock at 100 MHz

Completion signal for CFAR processing of all 1024
frequency-domain samples

Active-high signal that is logic ' 1 ' when a new valid
target is detected by CFAR

Global synchronous reset

Is equal to logic ' 1 ' during a positive frequency chirp
and logic '0' during a negative frequency chirp

Bus containing computed target information with
most significant 10 bits for target velocity, next 10
bits for target range, and final 2 bits for beam number
in which the target was detected

Active-high signal that is at logic ' 1 ' when new target
information is available to the TLC

updown

target_abs

targetjDos

new_target

complete

info_valid

targetjnfo

TIME

Figure 6.16: Timing diagram for PPM showing 4 detected targets from CFAR.

113

I 1

-0~©-@—{<> 0-^—0-©
-Q-@-0-~Q o_@_0^)
nnn n nnnn

n •
n_n_JL_n_

As illustrated in Figure 6.16, the Peak Pairing module collects peaks from the

CFAR processor for both the up and down frequency sweeps. Once all target peaks and

spectral positions have been received from the CFAR, the LFMCW equations for range

and velocity are applied to retrieve the target information and output it over the

targetjnfo bus.

Let us re-state the range and velocity equations from Chapter 3:

_ v/up + /down / C
Range, r = — x —

2 2k

. v/up "~ /down) C
Velocity, v = — x —

4 /o

Doing the multiplications and divisions to calculate range and velocity would be

hardware in-efficient and consume more clock cycles. An easier method is to pre-

calculate the factors for range and velocity so that a direct multiplication with the sum

and difference of the target spectral positions (or frequency bin numbers) would

generate the target range and velocity, respectively.

The range factor for the implemented system parameters is:

J- 1 C r<
U =—X x ^ r e s

2 2k

2.973 xlO8 2x10°
= x

„ 800 xlO6 2048
4x -

1.024 xlO"3
(6.1)

= 0.09290625

Here, Fres is the frequency resolution of the FFT core.

This value has been approximated as an 11-bit number equal to (00010111110)2, where

all bits represent the fractional part. This sequence thus corresponds to a decimal value

of 0.0927734375.

114

Similarly, the velocity factor is:

„ 1 c 1 2.973xl08 2x l0 6

vf = — x — xF r e sx3.6 = - x — x x3.6
4 / 0

 res 4 76.9 xlO9 2048 (6.2)
= 3.39790414

Here, the value of 3.6 has been multiplied here to convert the calculated velocity from

m/s into km/h. The central frequency for the LFMCW chirps has been set to 76.9 GHz, as

the TLC VCO permits a sweep range of 76.5 GHz - 77.3 GHz to form a bandwidth of 800

MHz.

This value has been approximated by a 7-bit binary number equal to (1101101)2

where the first 2 bits represent the integer part and the last 5 bits represent the

fractional part, corresponding to a decimal value of 3.40625.

6.2 Simulation and Validation of the HDL Implementation of the
Signal Processing Algorithm

To accomplish simulation and validation of the entire HDL implementation and ensure

readiness of the Verilog HDL code for downloading to the Virtex-5 FPGA, the following

steps were followed:

1. All individual modules are assembled to form the top level control module TLC.

2. A Verilog test-bench is coded to run tests on the TLC module.

3. Time-domain samples of the intermediate frequency generated from the traffic

scenarios presented in Chapter 5 are extracted in hexadecimal format from

MATLAB. A total of 2048 samples are extracted.

4. The time-domain samples are passed to the TLC through the test-bench, thus

imitating the external ADC at 2 MSPS sampling rate.

115

5. The simulation test-bench is run in Xilinx ISE Simulator and the resultant

waveforms are observed for the output of the TLC.

6. The results are compared to the actual parameters of the simulated targets.

The test on the HDL modules involved the same scenarios used to verify the signal

processing algorithm in Chapter 5.

6.2.1 Test 1: 3-Lane Highway Scenario with Narrow Beam

Recall the test scenario presented in Figure 6.17. The HDL design was clocked at

100 MHz and tested for timing compliance with the desired 1 ms up or down sweep

time as part of the target MEMS radar specifications.

Target 1 Target 3 Target 4
HOST VEHICLE Range: 12 m Range: 54 m Range: 111m
Velocity: 70 km/h Velocity: 65 km/h Velocity: 24 km/h Velocity: 90 km/h

Target 2 Target 5 Target 6
Range: 35 m Range: 78 m Range: 90 m

Velocity: 250 km/h Velocity: 99 km/h Velocity: 150 km/h

Figure 6.17: Test case highway scenario. Beam 1 shines 2 targets, Beam 2 covers 2 targets, and
Beam 3 covers 3 of the targets. Beam width for the antenna is assumed to be 9°, with 4.5°
Rotman lens beam steering.

116

The test-bench is coded to display the timing of each major event. The following is the

output from the Xilinx ISim Simulation:

up sampling start: 110
up sampling done: 1023890
down sampling start: 1044610
down sampling done: 2068150
beam 1 first target info out: 2259300

up sampling start: 2259300
up sampling done: 3303390
down sampling start: 3303400
down sampling done: 4347650
beam 2 first target info out: 4347820

up sampling start: 4347820
up sampling done: 5391910
down sampling start: 5391920
down sampling done: 6436170
beam 3 first target info out: 6436380

The numerical values in the output are the exact time in nanoseconds at which

the labeled event occurred. Therefore, sampling 1024 time-domain values took 1023780

ns or 0.1024 ms approximately, which is the expected sampling duration.

Additionally, this timing information gives the total time taken for 1 beam to be

scanned and all target information to be output from the PPM. Start of sampling the up

frequency sweep for beam 1 is at 110 ns, and the first target information for beam 1 is

output at 2259300 ns, thus a total time of 2259190 ns or 2.26 ms approximately. This

confirms that a total processing latency of less than 0.25 ms per beam has been

achieved.

117

1ft s*
|» ^ g finalJarget_info[21:0]

p. ^ j | bearnport[2:0]

i^|finaljnfo_yalic

)». I H modulate[9:0]

1 | | elk
1J| reset

I f en
I*, m datain[10:0]

». m unit_vel[7:0]

• M i[31=0]

Figure 6.18: 3-Lane simulation waveform results from Xilinx ISE Simulator. The spikes on the
final_info_valid signal show the positions where new target information is available.

Figure 6.18 shows target detection, and also shows the change in the 3-pin beam

port control bus responsible for controlling the MEMS SP3T switches. The control signals

are accurate and occur at the correct time. On the left hand side of the figure the list of

displayed variables is as follows:

1. sclk: Sampling clock

2. final_target_info: 22-bit target information

3. beamport: 3-bit control bus for MEMS SP3T switches to control beam direction

through the MEMS Rotman lens

4. final_info_valid: Signal goes to logic ' 1 ' when new target information is output

5. modulate: the 10-bit counter output to the DAC which forms the up and down

sweeps for the VCO tuning voltage

6. elk: Operating clock of 100 MHz

7. reset: Global synchronous reset

118

8. en: System enable signal

9. datain: MATLAB samples are input via this port to the TLC, imitating time-

domain ADC samples

10. unit_veh This is the host vehicle velocity, which has been set to (0110 0100)2 or

100 km/h

11. /': An index variable used in the Verilog test-bench code

The results for the range and velocity measurements obtained from HDL simulation are

illustrated in binary format in Figure 6.19, and tabulated in Table 6.11.

59 290 000 ps
i i i i _

2 259 295 000 ps
_ i i i _

12 259 300 000 ps
_ J i i t _

12 259 305 000 ps

I 0000000011. 00011 111 lOODOOl 1000001 ooooooooooooc
010

omoioion

10011100100

piIOOIOO

000000000000000100000000000 X 00000000000000000000000000

6.19(a): Beam 1, Target 1

119

59 360 000 ps
i i i i

f 0000001101... |)

2 259 365 000 ps
> < i i

(00001011000

2 259 370 000 ps
i i i i

2 259 375 000 ps
i i i i

Jl101100001 X| OOOOOOOOOOOOC

010

CD10101011

1001 HOC 100

31100100

m

'itzM'y-f^^W'y

f;i,:;f-:s;
;:

OOOOOOOOOOOC DOOOOOOOOOOOOOOOI 000

6.19(b): Beam 1, Target 3

1 1 1

0000000...

0000000000

4 347 815 000 ps

; oiooioinoo

JOOOOOIOOOOOOO... J

4 347 820 000 ps

10110100010 \

Ml

0010101011

10000101000

01100100

(OOOOOOOC

4 347 825 000 ps
• i i i

oooooooooot

oooooooooooooooc

6.19(c): Beam 2, Target 6

,

300... 1

4 347 885 OOO ps
1 ' i i

L ooionoiooo

gf :," "-.- "S^S

mi 1 '••-'-?••

4 347 890 000 ps
• i i i

4 347 895 000 ps
• i i i

4 34'

11011110010 j[| OOOOOOOOOOC DOOO

001

0010101011

'__- ' _ - »*__ •

10000101000

01100100

," •••*3s - f * ; N

: - • • - % : =

•0? '

X i

0000001 0000000000000000 (00000000

6.19(d): Beam 2, Target 4

370 000 ps
1 1 1

D00000001...

6 436 375 000 ps

{ oiiinoiooo

ooooooooc

6 436 380 000 ps

D1000110011)

100

0010101011

11010011011

01100100

oooooooooooiooooi;

6 436 385 000 ps

I oooooooooooo

000000

6.19(e): Beam 3, Target 2

1 1 1

.5"

6 436 465 OOO ps
• i i i

•--<- - *

6 436 470 000 ps
i i i i

)ooooooooo..r: ooiiooiooooiooiuooon)

5.-' >V.'V-H'

100

0010101011

;* ':> y^'M^'f'ik
11010011011

01100100

000000(0000000000000100

6 436 475 000 ps
• i i i

t 1 00000000000
p

•*,£* - .• "

•:

100000000

6.19(f): Beam 3, Target 5

1 1

D000000...|)
1

6 436 555 000 ps
i i i i

t, •*. •:.-:;'
! oiooioimo

_

0000001

6 436 560 000 ps
i i i i

-'" '*: ̂ V" '

10110100011)

1UU

"•""r.

0010101011

11010011011

01100100

0000000000000100

6 436 565 000 ps
i i i i

._
1 OOOOOOOOOOG

J

•

100000000

6.19(g): Beam 3, Target 6

Figure 6.19: HDL simulation results for Test Case 1.

As described earlier in this chapter, the 22-bit target information contains the

range and velocity measurement of the target. For example, Figure 6.19(e) shows the

target information for Target 2 detected in Beam 3 of the MEMS radar.

122

The 22-bit target information is understood as follows:

(0111110100 0010001100 11)2

Most significant 10 bits = velocity of Target 2 in 9-integer-l-fractional bit format

= (011111010)2.(0)2

= 250.0 km/h

Next 10 significant bits = range of Target 2 in 8-integer-2-fractional bit format

= (00100011)2.(00)2

= 35.00 m

In a similar fashion, all detected target ranges and velocities can be computed. These

have been listed in Table 6.11.

Table 6.11: Results from HDL Simulation of the Developed Algorithm for 3-Lane Narrow

Beam Scenario

Beam

Port

Number

1

2

3

Target

ID

1

3

4

6

2

5

6

Measured Up

Sweep IF

(frequency bins)1

71

303

478

600

167

421

478

Measured Down

Sweep IF

(frequency bins)1

60

280

493

597

211

421

497

Measured

Range

(m)

12.00

54.00

111.00

90.00

35.00

78.00

90.00

Measured

Velocity

(km/h)

63.0

22.0

90.0

151.0

250.0

100.0

151.5

1 Frequency resolution for 2048-point FFT = 976.5625 Hz/bin

123

Table 6.12: Errors for the Developed Algorithm from HDL Simulations of 3-Lane Narrow

Beam Scenario (SNR = 4.73dB)

Beam Port Number

1

2

3

Target ID

1

3

4

6

2

5

6

Error in Range

Measurement (m)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Error in Velocity

Measurement (km/h)

2.0

2.0

0.0

1.0

0.0

1.0

1.5

Maximum error in range measurement for the developed algorithm: 0.00 m

Maximum error in velocity measurement: 1.50 km/h

6.2.2 Test 2: Hypothetical Scenario with 7 Targets Detected in a Single
Wide Beam

Figure 6.20 shows the scenario in consideration. It is a replica of the test carried

out on the MATLAB model of the radar signal processing unit. The target ranges and

velocities have been selected randomly to ensure fair testing. Through the verification

process several target configurations were tested using randomly generated targets

spread over the allowable range for the developed system, and the results presented in

this chapter have been obtained after 6 iterations for each scenario. This is applicable

for both Test 1 and Test 2 cases.

124

HOST VEHICLE
Velocity: 100km/h

Target 1
Range: 9 m

Velocity: 90 km/h

Target 3
Range: 29 m

Velocity: 89 km/h

Target 4
Range: 55 m

Velocity: 100 km/h

Target 7
Range: 148 m

Velocity: 22 km/h

,* :.*?:"
.12̂

a A i t

Target 2
Range: 24 m

Velocity: 55 km/h

Target 5 Target 6
Range: 78 m Range: 106 m

Velocity: 70 km/h Velocity: 80 km/h

Figure 6.20: Hypothetical scenario with a single wide-angle antenna beam using only one beam
port of the Rotman lens, i.e. no beam steering required to cover 3 central highway lanes.

The results obtained are presented in Figure 6.21 for all 7 targets. Measurement

results from the simulation and the respective errors are shown in Table 6.13 and Table

6.14, respectively.

I >

r
M00...|J

2 259 455 000 ps
i i i i

•••' ; '

! ooi i i io i i io

2 259 460 000 ps
i i i i

" , • " •

30010010001 J

01

00101^

010110

0110(

oooooooooooooooot

2 259 465 000 ps
i i i i

I] ooooooc
D

11011

11011

1100

1000100000000000

6.21(a): Target 1

125

1 1
2 259 625 000 ps

i i i i

2 259 630 000 ps
• i i i

2 259 635 000 ps
i i i i

DOOO...)(OOOl 1010110 JOl 1OOOO0O1)! OOOOOOC

sf

"*~ i - - * ' < v r ^

!f <" <

010

0010111100

.v

_ -,

01011(11011

0110)100

0000000000000000 3000100000000000

6.21(b): Target 2

00 ps

r DOOO... B

2 259 795 000 ps
t i l l

(00101011110

•*':"'

oooooooc

2 259 800 000 ps
i i i i

Ml 11010001)

010

<-

0010101100

01011011011

01100100

00000000000010001

2 259 805 000 ps
l i l t

; ooooooooooc

10000000

6.21(c): Target 3

126

1 ,1
2 259 965 000 ps

i i i i

-,>- 'iiw.: i -z„s

2 259 970 000 ps
i 1 i.. i

•> \ •-

2 259 975 000 ps
i i i i

DOOO...K; 00110010000)1101110001 3(1 0OO0O0C

-"": "~

mw'f^ *"•?< •

£??-!*

o:
- ' x

00101

"™* . J • " " " " ' " l

0

31100

01011(11011

0110)100

0000000000000000)000100000000000

6.21(d): Target 4

)000...

2 260 135 000 ps
i i i i

; ooiooonoio

2 260 140 000 ps
• i i i

10011100001 J

01

00101

01011C

0110

0000000000000000

2 260 145 000 ps

] 000000C

0

)1100

11011

)100

)000100000000000

6.21(e): Target 5

127

1 1

r

2 260 305 000 ps
l i l t

D000...I;; ooioioonoo

<*.. i;

- —

&• , - j ; - : . - • '

f. . • - - • > •

2 260 310 000 ps
• i i i

I1010100001)

2 260 315 000 ps

1
1 ooooooc

o:o

00101

-- -

moo
C' '

01011(11011

0110 D 1 0 0

0000000000000000]000100000000000

6.21(f): Target 6

DOps
i i

)100... 1

2 260 475 000 ps
• i i i

*&•** " • s >_*,

; ooooionooi

.

, ; , •

ooooooot

2 260 480 000 ps
• i i i

raiooimoi ;

010

-'
0010101100

01011011011

01100100

00000000000010001

2 260 485 000 ps

-

(ooooooooooc

10000000

6.21(g): Target 7

Figure 6.21: HDL simulation results for Test Case 2.

Table 6.13: Results from HDL Simulations of the Developed Algorithm for 3-Lane Single

Wide Beam Scenario

Target

ID

1

2

3

4

5

6

7

Measured Up

Sweep IF

(frequency bins)1

46

137

159

297

425

574

809

Measured Down

Sweep IF

(frequency bins)1

53

123

155

297

416

569

786

Measured

Range (m)

9.00

24.00

29.00

55.00

78.00

106.00

147.75

Measured

Velocity (km/h)2

123.5

53.5

87.5

100.0

70.5

83.0

22.0

1 Frequency resolution for 2048-point FFT = 976.5625 Hz/bin

Target velocity has been calculated using equation (3.16)

Table 6.14: Errors for the Developed Algorithm from HDL Simulations for 3-Lane Single

Wide Beam Scenario (SNR = 4.73dB)

Target ID

1

2

3

4

5

6

7

Error in Range

Measurement (m)

0.00

0.00

0.00

0.00

0.00

0.00

0.25

Error in Velocity

Measurement (km/h)

0.5

1.5

1.5

0.0

0.5

3.0

0.0

129

Maximum error in range measurement for the developed algorithm: 0.25 m

Maximum error in velocity measurement: 3.00 km/h

At this point a comparison can be made between the MATLAB simulation results

and the HDL simulation results for the developed radar signal processing algorithm. HDL

results are seen to be in accordance with software simulation results, and this proves

the mathematical accuracy of the developed hardware system on FPGA. Table 6.15 and

Table 6.16 show the difference between MATLAB and HDL results for range and velocity,

respectively, for the wide beam scenario presented in Figure 6.20.

Table 6.15: Comparison of MATLAB and HDL range results for wide beam scenario

Target

ID

1

2

3

4

5

6

7

Target

Distance f rom

Host Vehicle

(m)

9.00

24.00

29.00

55.00

78.00

106.00

148.00

MATLAB

calculated

value

(m)

9.38

24.34

29.27

55.37

78.32

106.28

148.37

HDL

determined

value

(m)

9.00

24.00

29.00

55.00

78.00

106.00

147.75

A

MATLA-

Actual

(m)

0.38

0.34

0.27

0.37

0.32

0.28

0.37

A

HDL-

Actual

(m)

0.00

0.00

0.00

0.00

0.00

0.00

0.25

A

MATLAB

-HDL

(m)

0.38

0.34

0.27

0.37

0.32

0.28

0.62

130

Table 6.16: Comparison of MATLAB and HDL velocity results for wide beam scenario

Target

ID

1

2

3

4

5

6

7

Target Velocity

relative to Host

Vehicle

(km/h)

123

55

89

100

70

80

22

MATLAB

calculated

value

(km/h)

123.85

52.31

89.78

100.00

69.34

79.56

21.64

HDL

determined

value

(km/h)

123.5

53.5

87.5

100.0

70.5

83.0

22.0

A

MATLA-

Actual

(km/h)

0.85

2.69

0.78

0.00

0.66

0.44

0.36

A

HDL-

Actual

(km/h)

0.5

1.5

1.5

0.0

0.5

3.0

0.0

A

MATLAB

-HDL

(km/h)

0.35

1.19

2.28

0.00

1.16

3.44

0.36

From Table 6.15 and Table 6.16 it can be concluded that the HDL results are in

good accordance with the MATLAB results, and have higher accuracy compared to

MATLAB results. This is due to the quantization involved in fixed-point HDL. The

maximum measured range discrepancy between MATLAB and HDL is 62 cm, and the

maximum measured velocity difference is 3.44 km/h or 0.95 m/s.

6.3 Hardware Synthesis Results for the Developed Algorithm

Table 6.15 lists the resource usage for the developed HDL design of the signal

processing algorithm. The target device has been selected as the Virtex-5 SX50T FPGA.

Table 6.16 lists the timing achievements of the HDL implementation.

131

Table 6.17: Resource Usage for the Radar Signal Processing Algorithm on Virtex-5 SX50T

Resource

Slice registers

Slice LUTs

DSP48E slices

Fully used LUT-FF pairs

BUFG/BUFGCTRLs

FPGA fabric area ratio

Used

1357

7445

17

705

1

21

Available

32640

32640

288

8097

32

100

Percentage Usage

4%

23%

6%

9%

3%

21%

Table 6.18: Timing Achievements of HDL Implementation

Operation

Up sweep sampling

(rsclk = o.5/tf)

Window and feed time-

domain samples to FFT core

FFT calculation

Peak intensity calculation

with 4 PSD units in parallel

CFAR processing and Peak

Pairing (rC F A R)

Total Signal Processing

Latency

Overall Latency

Effective Clock

Cycles per Beam

204756

2072

3960

10743

4388

21163

225928

Latency per Beam with Operating

Clock at 100 MHz (ms)

2.047560

0.020720

0.039600

0.107430

0.060460

0.211630

2.259280

132

6.4 Observations from HDL Implementation of the Developed
Algorithm

The following noteworthy observations have been made about the HDL implementation

of the radar signal processing algorithm:

1. The worst case range measurement error is seen to be 0.25 m. This can be

further reduced by increasing the word length of the range output, which is

currently restricted to 10 bits.

2. The worst case velocity measurement error is noted to be 3 km/h, which

corresponds to 0.83 m/s. This error is within tolerance limits of the automotive

radar arena, however can be improved further by making use of more bits for

the output result.

3. Proper synchronization of the modules has been achieved.

4. The HDL design can operate at a maximum of 160 MHz, although a 100 MHz

operating frequency is selected for ease of clock generation.

5. Generation of the modulating waveform data to the DAC operates as required.

6. The sampling clock is tuned at 2 MHz and the TLC unit samples over 1.024 ms to

gather a total of 2048 time-domain samples.

7. The HDL design operates within the time frame of 1.024 ms, and gives a result

for a single beam scan in less than 0.22 ms as shown in Figure 6.22.

8. The HDL results are within acceptable error limits compared to the MATLAB

results, thus validating the HDL implementation of the algorithm. Due to

truncation and rounding used in the fixed-point HDL implementation, the HDL

code appears to generate better results compared to the floating-point MATLAB

model. This was seen to be true over 6 iterations of running the system on the

same time-domain data, however may or may not always hold true.

133

Table 6.19: Achieved Timing Details for Developed LFMCW Radar System

Parameter

Up sweep duration

Down sweep duration

Maximum Design Operating Frequency

Processing Time per Beam

«S> 100 MHz)

Processing Time for 3 Beam RADAR

Value

1.024 ms

1.024 ms

160 MHz (65-nm FPGA technology)

2.04756 ms sampling + 0.21163 ms processing =

2.25928 ms

2.25928 ms x 3 = 6.77784 ms1

=> 147 MHz refresh rate

1 This value is assuming that the sweep generation is stalled during processing, which is not the

case. In actual implementation, processing of the previous beam is done during the next sweep

as shown in Figure 6.22. The actual time is (2.048 + 0.020720) x 3 + 0.211630 = 6.41779 ms.

DAC Output

No sampling while passing
up sweep samples to FFT

core over 20720ns

Hex'3FF=>6.1V-H

Hex'000 => 4.5V - j — ^ Time (ms)

No sampling while passing Beam 1 results available
down sweep samples to at 2259280ns
FFT core over 20720ns

Figure 6.22: LFMCW sweep timing diagram for the realized HDL system.

134

CHAPTER 7:
CONCLUSIONS

7.1 Discussions and Conclusions

A Xilinx Virtex-5 SX50T FPGA platform targeted Verilog HDL based signal

processing algorithm has been developed to process the drive, control and decision

making signal processing tasks associated with a MEMS implemented Rotman lens

based LFMCW long range radar to detect the velocity and range of target vehicles in

typical highway condtions. Necessary building blocks of the complete system have been

developed and implemented to realize a fast radar control and signal processing

algorithm in hardware. Excellent agreement between the MATLAB implemented

mathematical models and Verilog HDL code generated results verify the accuracy of the

HDL modules. The devloped Verilog HDL codes can be used to fabricate an ASIC that can

be incorporated in a 3-D integrated complete radar system to realize a small form-factor

low-cost automotive radar. A hardware latency time as low as 211.63 ps clocked at 100

MHz has been achieved which is superior to state-of-the-art commercially reported

radar systems. This is almost 3 times faster than a recent FPGA implementation

presented in [28], where an LFMCW signal processing system has been implemented on

a Xilinx Virtex-ll Pro FPGA with a latency of 1250 ps clocked at 50 MHz. The results for

range and velocity calculations are promising and accurate with 100% detection in a

tested SNR of 4.73 dB under an atmospheric attenuation of 0.8 dB/km corresponding to

light or medium rain conditions. Swerling I, III and V type targets have been simulated.

The maximum error in range measurement is 25 cm, and the maximum error in velocity

measurement is 3 km/h or 0.83 m/s. The bandwidth of the LFMCW radar waveform is

set to 800 MHz, and the radar algorithm is capable of covering a range of 200 meters

with a maximum relative target velocity of ±300 km/h (receding and approaching

targets).

135

The excellent speed performance of the algorithm validates the use of FPGAs in

radar signal processing and allows the MEMS radar sensor to operate with a cycle time

of 6.78 ms for a 3-beam sensor, which is at least 7 times faster than the Bosch LRR3 [23].

Beam direction control by means of MEMS SP3T RF switches and a MEMS Rotman lens

has been implemented in the radar algorithm and found to operate in coherence with

the radar system specifications.

7.2 Future Work

This thesis opens the path to many additional features that can be added to the MEMS

radar sensor system. The following are some of the exciting possible future

developments to the field of automotive radar systems with regard to this thesis:

1. Accurate target angle measurement using an FPGA-based implementation of

Direction-of-Arrival or DOA algorithms, such as Phase-Difference DOA estimation

using double 1-D FFT [30], MUSIC [53], or ESPRIT [54].

2. Higher resolution of ADC input and target information output to improve range

precision from 25 cm down to 5 cm and velocity precision from 0.5 km/h down

to 0.125 km/h provided the sweep bandwidth is increased to 2 GHz and the

sweep duration is increased to at least 6 ms.

3. Inculcate the ability to gather road clutter and create a virtual map of the road

by smartly using clutter information to detect side fences and dividers along with

vehicles, as presented in literature [47].

4. Use alternating frequency bands and bandwidths to increase chances of target

detection and improve detection accuracy by comparing results from both

bands.

5. Decrease the sweep duration to 0.5 ms and study the effect on signal processing

accuracy and precision.

136

6. Implement an OS-CFAR module parallel to the CA-CFAR module developed

herein in order to increase system fidelity by dynamic comparison of the results

of both modules.

7. Estimate the RCS of a detected target in close proximity or threat zone of the

host vehicle and compute the mass and impact force in case of collision.

8. Implementation of a multi-mode automotive radar system consisting of an SRR,

MRR and LRR, as in Figure 7.1, running on the same processing unit and

hardware. Such a system would be realizable by means of a reconfigurable

antenna that can be controlled using the FPGA algorithm.

9. Implementation of a combined FSK-monopulse and LFMCW radar using the

same hardware to improve the functional dimensions to realize a compact small

form-factor cost-effective automotive radar.

SRR (30 meters) MRR (80 meters) LRR (200 meters)

Figure 7.1: Typical angle and range coverage for forward-looking collision avoidance SRR, MRR

and LRR over a 3-lane road.

137

REFERENCES

1. A. Sinjari, S. Chowdhury, "MEMS Automotive Collision Avoidance Radar Beamformer," in

Proc. IEEE ISCAS2008, Seattle, WA, 2008, pp. 2086-2089.

2. Y. K. Chan, S. Y. Lim, "Synthetic Aperture Radar (SAR) Signal Generation," Progress in

Electromagnetics Research B, Vol. 1, pp. 269-290, 2008.

3. R. A. Mucci, "A Comparison of Efficient Beamforming Algorithms," IEEE Trans. Acoustics,

Speech, and Signal Processing, Vol. ASSP-32, No. 3, pp. 548-558, Jun. 1984.

4. T. Haynes. (1998, March 26). A Primer on Digital Beamforming, Spectrum Signal

Processing. White paper [Online]. Available: http://www.spectrumsignal.com

/publications/beamform_primer.pdf

5. C. Wolff. (2008). Digital Beamforming [Online]. Available: http://www.radartutorial.eu

/06.antennas/an51.en.html

6. J. Bass, E. Rodriguez, J. Finnigan, C. McPheeters. (2005, July). Beamforming Basics

[Online]. Available: http://cnx.org/content/ml2563/latest/

7. S. Chowdhury, M. Ahmadi, G. A. Jullien, W. C. Miller, "A Surface Mountable MEMS

Beamforming Microphone Array and Associated MEMS Socket Structure," in Symp.

Microelectronics Research and Development in Canada (MR&DCAN 2001), Ottawa, ON,

2001.

8. L. Hall, H. Hansen, D. Abbott, "Rotman Lens for mm-wavelengths," in Proc. IEEE Smart

Structures, Devices and Systems (SPIE2002), Vol. 4935, pp. 215-221, 2002.

9. M. I. Skolnik, Radar Handbook, 2nd ed., New York: McGraw-Hill, 1970.

10. BBC h2g2. (2003, July). The History of Radar [Online]. Available: http://www.bbc.co.uk

/dna/h2g2/A591545

11. "Fundamentals of Radar", Encyclopaedia Britannica Online, [2010 April 29]. Available:

http://www.britannica.com/EBchecked/topic/488278/radar

12. H. Rohling, Some Radar Topics: Waveform Design, Range CFAR and Target Recognition,

Advances in Sensing with Security Applications. [NATO Security Through Science Book

Series, Vol. 2]. Netherlands: Springer Netherlands, 2006. (ISBN: 978-1-4020-4284-3)

13. S. Hu, X. Wang, Q. Si, "Effects of FM Linearity of Linear FM Signals on Pulse-compression

Performance," in Proc. IEEE Conf. Radar, Verona, NY, 2006.

14. T. Curtis, M. Curtis (2004). High Performance Digital Signal Processing, Curtis Technology

(UK) Ltd. [Online]. Available: http://www.curtistech.co.uk/

15. D. Hoetzer, D. Freundt, "Driver Assist & Crash Avoidance Technologies: Radar and Video

Systems", Robert Bosch GmbH, presented at Telematics Detroit, Detroit, Ml, 2008.

138

http://www.spectrumsignal.com
http://www.radartutorial.eu
http://cnx.org/content/ml2563/latest/
http://www.bbc.co.uk
http://www.britannica.com/EBchecked/topic/488278/radar
http://www.curtistech.co.uk/

16. S. Yamano et ai, "76GHz Millimeter Wave Automobile Radar using Single Chip MMIC",

Fujitsu Ten Technical Journal No. 23, Fujitsu Ten Corp., Plymouth, Ml, 2004.

17. A. Anderson. (November 2005). Mercedes-Benz Sudden Acceleration Incidents [Online].

Available: http://www.antony-anderson.eom/Cruise/9.5%20SA%20Links/Mercedes%20

Benz.html

18. R. Lachner, "Development Status of Next Generation Automotive Radar in EU - Infineon

Radar Technology," presented at ITS Forum 2009, Tokyo (Japan), 2009.

19. J. Wenger, "RF-Applications in Vehicles - Today and Tomorrow - DaimlerChrysler,"

presented at DaimlerChrysler AG, Ulm (Germany), 2006.

20. TRW Automotive (2009). Adaptive Cruise Control (ACC) [Online]. Available:

http://www.trw.com/sites/default/files/DAS_ACC_Eng09_0.pdf

21. Xilinx Corporation (2010). ISE Design Suite: Intellectual Property. [Online]. Available:

http://www.xilinx.com/ipcenter/

22. J. M. Webster, "The Development of a Radar Digital Unit for the SASAR II Project," M.S.

Thesis, Dept. Elect. Eng., Univ. Cape Town, Cape Town, South Africa, 2004.

23. M. Schneider, "Automotive Radar - Status and Trends," in German Microwave Conf.

(GeMiC2005), Ulm (Germany), 2005, pp. 144-147.

24. J. Wenger, "Automotive Radar - Status and Perspectives," in IEEE CSIC 2005 Dig., 2005,

Sitges (Spain), 2005, pp. 21-24.

25. H.-L. Bloecher, A. Sailer, G. Rollmann, J. Dickmann, "79 GHz UWB Automotive Short

Range Radar - Spectrum Allocation and Technology Trends," Adv. Radio Sc, Vol. 7,

2009, pp. 61-65. Available: www.adv-radio-sci.net/7/61/2009/ars-7-61-2009.html

26. V. Jain, B. Javid, P. Heydari, "A 24/77GHz Dual-Band BiCMOS Frequency Synthesizer," in

IEEE 2008 Conf. Custom Integrated Circuits Conference (CICC), San Jose, CA, 2008, pp.

487-490.

27. V. Jain, B. Javid, P. Heydari, "A BiCMOS Dual-Band Millimeter-Wave Frequency

Synthesizer for Automotive Radars," IEEE J. Solid-State Circuits, Vol. 44, No. 8, pp. 2100-

2113, Aug. 2009.

28. J. Saad, A. Baghdadi, "FPGA-based Radar Signal Processing for Automotive Driver

Assistance System," in IEEE/IFIP Intl. Symp. Rapid System Prototyping, Fairfax, VA, 2009,

pp. 196-199.

29. D. E. Barrick, "FM/CW Radar Signals and Digital Processing," NOAA Technical Report ERL

283-WPL26, U.S. Department of Commerce, Boulder (Colo.), Jul. 1973.

30. X. Bo, L. G.-lin, L C.-hua, "DOA Estimation Based on Phase-difference," in Proc. IEEE

ICSP2006, Beijing (China), 2006, pp. 1-4.

139

http://www.antony-anderson.eom/Cruise/9.5%20SA%20Links/Mercedes%20
http://www.trw.com/sites/default/files/DAS_ACC_Eng09_0.pdf
http://www.xilinx.com/ipcenter/
http://www.adv-radio-sci.net/7/61/2009/ars-7-61-2009.html

31. F. J. Harris, "On the Use of Windows for Harmonic Analysis with the Discrete Fourier

Transform," Proc. IEEE, Vol. 66, No. 1, pp. 51-83, Jan. 1978.

32. J. W. Cooley, J. W. Tukey, "An Algorithm for the Machine Calculation of Complex Fourier

Series," Math. Comput, Vol. 19, No. 90, pp. 297-301,1965.

33. H. V. Sorensen, D. L Jones, M. T. Heideman, C. Sidney Burrus, "Real-Valued Fast Fourier

Transform Algorithms," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. ASSP-

35, No. 6, pp. 849-863, Jun. 1987.

34. F. Gini, M. Greco, A. Farina, "Clairvoyant and Adaptive Signal Detection in Non-Gaussian

Clutter: A Data-dependent Threshold Interpretation," IEEE Trans. Signal Processing, Vol.

47, No. 6, pp. 1522-1531, Jun. 1999.

35. L. Abdou, F. Soltani, "OS-CFAR and CMLD Threshold Optimization in Distributed Systems

Using Evolutionary Strategies," J. Signal, Image and Video Processing (SIVip), 2008, No.

2, pp. 155-167, Dec. 2008.

36. V. Kyovtorov et al., "Parallel FPGA Design of CA CFAR Algorithm," Comp. Eng. Lab, TU-

Delft, October 15, 2009.

37. R. S. Raghavan, "Analysis of CA-CFAR Processors for Linear-Law Detection," IEEE Trans.

Aerospace and Electronic Systems, Vol. 28, No. 3, pp. 661-665, Jul. 1992.

38. T. R. Saed, J. K. Ali, Z. T. Yassen, "An FPGA Based Implementation of CA-CFAR Processor,"

Asian Journal of Information Technology, Vol. 6, No. 4, pp. 511-514, 2007.

39. R. Cumplido, C. Torres, S. Lopez, "On the Implementation of an Efficient FPGA-based

CFAR Processor for Target Detection," in Proc. IEEE ICEEE and CEI, Acapulco (Mexico),

2004, pp. 214-218.

40. G. Galati (Ed.), Advanced Radar Techniques and Systems, IEEE Radar, Sonar, Navigation

and Avionics Series 4, Exeter (UK): Short Run Press Ltd, 1993.

41. L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis,

New York: Addison Wesley, 1991. (ISBN: 0-201-19038-9).

42. M. I. Skolnik, Introduction to Radar Systems, 3rd ed., New York: McGraw-Hill, 2001.

43. P. Swerling, "Probability of Detection for Fluctuating Targets," The RAND Corp., Santa

Monica, CA, Mar. 17,1954.

44. P. Bak, C. Tang, K. Wiesenfeld, "Self-Organized Criticality: An Explanation of 1/f Noise,"

Physical Review Letters, Vol. 59, pp. 381-384,1987.

45. R. Lyons, R. Yates. (2005, June). Reducing ADC Quantization Noise [Online]. Available:

http://www.mwrf.com/Articles/lndex.cfm?Ad=l&Ad=l&ArticlelD=10586

46. P. W. Gorham, "RF Atmosphere Absorption/Ducting," Antarctic Impulsive Transient

Antenna Project (ANITA), Univ. Hawaii (Manoa), April 21, 2003.

140

http://www.mwrf.com/Articles/lndex.cfm?Ad=l&Ad=l&ArticlelD=10586

47. C. Lundquist, U. Orguner, T. B. Schon, "Tracking Stationary Extended Objects for Road

Mapping using Radar Measurements," IEEE Symp. Intelligent Vehicles IV'09, Xi'an

(China), 2009.

48. BBC h2g2. (2003, July). Radar Countermeasures: Range Gate Pull-off [Online]. Available:

http://www.bbc.co.uk/dna/h2g2/A637535

49. D. Kok, J. S. Fu, "Signal Processing for Automotive Radar," in IEEE Radar

Conf.(EURAD2005), Arlington, VA, June 2005, pp. 842-846.

50. K. Estmer, "Noise Model of an FMCW Radar System," M.S. Thesis, Dept. Elect. Eng.,

Royal Inst, of Tech., Stockholm (Sweden), May 2002.

51. Xilinx Corporation (2010). Virtex-5 Family/Virtex-5/ML506 Development Board

Datasheets [Online]. Available: http://www.xilinx.com/support/documentation/ml506.htm

52. Xilinx Corporation (2010). Xilinx FFT v7.0 Datasheet [Online]. Available:

http://www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf

53. J. Qumar, B. Mazhari, "Spectral Estimation Using a MUSIC Algorithm - Altera Nios II

Embedded Processor Design Contest," Altera Corporation, San Jose, CA, 2005. Available:

http://www.altera.eom/literature/dc/l.6-2005_lndia_3rd_IITKanpur-web.pdf

54. R. Roy, T. Kailath, "ESPRIT - Estimation of Signal Parameters Via Rotational Invariance

Technique", IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, pp. 984-

995, Jul. 1989.

55. M. Huang, Vehicle Crash Dynamics, Michigan: CRC Press, 2002. (ISBN: 0-8493-0104-1)

56. G. Hampson, "Implementation Results of a Windowed FFT", Sys. Eng. Div., Ohio State

Univ., Columbus, OH, July 12, 2002. Available: http://esl.eng.ohio-state.edu

/~rstheory/iip/window.pdf

141

http://www.bbc.co.uk/dna/h2g2/A637535
http://www.xilinx.com/support/documentation/ml506.htm
http://www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf
http://www.altera.eom/literature/dc/l.6-2005_lndia_3rd_IITKanpur-web.pdf
http://esl.eng.ohio-state.edu

APPENDIX

Contents:

1. MATLAB listing for Radar Echo Signal Generation and Radar Signal Processing

Algorithm testing

2. MATLAB listing for percentage error calculation from 10-bit rounding of Window

functions

3. HDL listing for TLC

4. HDL listing for SAMPLER

5. HDL wrapper for Xilinx FFT v7.0 core

6. HDL listing for FDR

7. HDL listing for PSD

8. HDL listing for CFAR

9. HDL listing for PPM

142

Al. MATLAB listing for Radar Echo Signal Generation and Radar Signal
Processing Algorithm testing

%%%
% ABOUT THIS CODE
9-9-&S9-9-9-9-9-9-9-&&9-9-^3:&^&&&9-9-a9-9-9-&9-9-&9-S.a49.&e.aaQ.9.Q.ag,Q.aaoQaQ.o,a
o o "6 o ~o *o ?> o'D o o o o o o o T> o 15 o o o o o o o o o o o o"5 o "5 "5 o o "5 "So "5 o o "5 o "5 o f i o ' 5 ? 5 o ? ? ? ' 6 ? S 6 ' 5 ' 5 6 S S o o o'o'O'o'o'o'o o

%
% The code generates a set of intermediate frequencies for a long range
% radar, for both the up and down sweeps. The cell-averaging cfar algorithm
% is then employed, followed by removal of spectral copies, and a final
% loop to remove any,left-over noise components from the target map. This
% leaves a final cfar matrix with all valid targets, which are plotted.
% ^
% The target echo power is attenuated by 0.4dB/km as the factor of
% attenuation of RF radiation in clear air. This factor can be changed
% once a more appropriate/practical value is obtained.
%
% The algorithm eliminates any targets which are within +-1 frequency bin
% of another target. This puts an upper limit to the number of targets the
% system can detect:
% Maximum number of simultaneously detectable targets = (NFFT/2)/3
% where NFFT is the length of the Fourier transform.
% Due to leakage and noise effects, this number can be practically as low
% as (NFFT/2)/5. The noise and leakage effects persist to an extent despite
% windowing.
%
% The original ca-cfar algorithm has poorer performance with higher number
% of targets. To overcome this problem, a duplicate or ghost target removal
% scheme is employed, followed by a secondary threshold. This enables
% operation at a deteriorated probability of false alarm. Originally using
% Pfa = 10A-9, and finally using Pfa = 10^-6. This allows multiple targets
% to be detected with a resolution of 2.7 metres at same velocities.
a
o

% The Pfa can be lowered further, which results in more false targets but
% at low power. These can be removed by using a tertiary threshold scheme.
%
% Increasing the sweep bandwidth from 200MHz to 500MHz, and sampling rate
% from lMSps to 3MSps can help improve the resolution to a certain extent,
% such that the range resolution drops to 1 metre.
%
% The FMCW LRR simulated here can only detect the maximum relative velocity
% of 300KMPH reliably at a minimum distance of 10 meters.
%
% Windowing is NOT included in this code.
%
% Finally, the code uses the frequency information from the up sweep and
% the down sweep to compute the range and velocity of each detected target.
%
O O O O O 'O "6 "5 O ' O ' O ' O ' O ' O ' O ' D ' O ' O ' O ' O ' O ' O ^ ' O ' O ' O ' O ^ 0 ~ 5 0 0 " 5 " 6 O " 6 " 6 ' O O O O O O O "5 O O O O O

% DEVELOPER: SUNDEEP LAL (MEMS LAB)
9-9-9-9-° 9-9-° ° 0-9-9-9-0-9-9-9-Q-9-9-9-9-9-0--9-9-9-9-9-9-9-9-9.9-0 9-0-Q-&9-^9-0-Q-9-9.9.9-9-0-9-9-9-£9-9-9-9-9-°-9-9-9-9-0-
O O'O'O'O'O'O'O'O'O O O O O O O O O O O O O O O O O O O^^^^^^^^^^IS^'O'O'O^'O O O O O O 'O "0 "O O O

clear all
clc

Tsweep = 1.024*10^-3; % Chirp duration in seconds
Fsweep = 800 * 10~6; % Chirp bandwidth in Hz

% Largely affects the range resolution of the system
% A larger sweep bandwidth increases the spectral

143

% gap between targets, giving better cfar detection,
c = 2.973 * 1CT8; % Speed of EM waves in m/s
Ft = 76.9 * 10^9; % Central transmission frequency

% Frequency sweep rate in s^-2
k = Fsweep/Tsweep;

% Target ranges in m
rangesUp = [9 24 29 55 78 106 148]; % hypothetical scenario
%rangesUp = [12 54]; % practical road scenario beaml
%rangesUp = [111 90]; % practical road scenario beam2
%rangesUp = [35 78 90]; % practical road scenario beam3

% Target velocities in km/h
% (all targets assumed to travel in same direction)
% (all targets assumed to have zero acceleration during frequency chirp)
velocities = [123 55 89 100 70 80 22]; % hypothetical scenario
%velocities = [65 24]; % practical road scenario beaml
%velocities = [90 150]; % practical road scenario beam2
%velocities = [250 99 150]; % practical road scenario beam3

% Host vehicle velocity in km/h
velocity = 100;

% Target echo received power factors assuming worst case scenario of
% 0.8dB/km attenuation in light rain
for i=l:length(rangesUp)

loss = -2*0.8*rangesUp(i)/1000; % Two-way atmospheric absortion loss (dB)
of 77GHz

atten(i) = lO^loss; % Attenuation factor
end

% Relative velocities in m/s
for i=l:length(rangesUp)

relativeVelocity(i) = (velocity - velocities(i))/3.6;
end

% Change in ranges after up sweep
for i=l:length(rangesUp)

rangesDown(i) = rangesUp(i) + relativeVelocity(i)*Tsweep;
end

% Up and Down sweep frequencies in Hz
for i=l:length(rangesUp)

upIF(i) = k*2*rangesUp(i)/c + 2*Ft*relativeVelocity(i)/c;
downlF(i) = k*2*rangesDown(i)/c - 2*Ft*relativeVelocity(i)/c;

end

1 5 ' o o o o o ' D o o o o o o o

% Up c h i r p I F %
Q . O O O Q . O O Q . O O O O Q . O . O

' S ' 5 ' 5 o o o o ' 6 o o o " 6 o o o

Fs = 2*10~6; % Sampling frequency
T = 1/Fs; % Sample time
L = Fs * Tsweep; % Length of signal
t = (0:L-1)*T; % Time vector for up chirp

xUp = 0;
% Sum of all target frequencies in the up chirp
for i=l:length(rangesUp)

xUp = xUp + attend) *sin (2*pi*upIF (i) *t) ;
end

144

yUp = xUp + randn(size(t)); % Sinusoids plus

%%%%%%%%%%%%%%%%%
% Down chirp IF %

xDown = 0;
% Sum of all target frequencies in the down ch
for i=l:length(rangesUp)

xDown = xDown + atten(i)*sin(2*pi*downIF(i
end

system noise

irp

)*t);

yDown = xDown + randn(size(t)); % Sinusoids plus system noise

%%
% Make hex time-domain data for HDL simulation
%%
uu = yUp;
uu = uu - min(uu);
uu = uu./max(uu);
uu = uu.*2047;
uu = round(uu);
uuhex = dec2hex(uu);
dd = yDown;
dd = dd - min(dd);
dd = dd./max(dd);
dd = dd.*2047;
dd = round(dd);
ddhex = dec2hex(dd);

%%
% Apply Window to time-domain samples %
%%
window = hamming(2048);
for i=l:2048

yUp(i) = yUp(i) * window(i);
yDown(i) = yDown(i) * window(i);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot time-domain received IF %
9-&9-9.'iQ.9-&a-4Q-Q-Q-<3-'l.Q.Q-9.aQ.3.9.Q.9.9.Q.9-S.Q.Q-Q.Q-
"5 o o "5 o "6 o o o^^'5'6'0"0'0'0^"0"5'5t>15"6t>"5"5"5t)T>"O"0

figure(1)
Isubplot(2,1,1)
plot(t(l:L),yUp(l:L))

%%
%
%%

title('Up Chirp IF corrupted with Zero-Mean Random Noise')
xlabel('Time (ms)')
ylabel('Amplitude')
figure(2)
%subplot(2,1,1)
plot(t(1:L),yDown(1:L))
title('Down Chirp IF corrupted with Zero-Mean
xlabel('Time (ms)')
ylabel('Amplitude')

9-9-9-9-9-9-9-&-&-0 0-9-9.9-9-9-9-9-9-9-9-0-9-°-9-9-9-0 ° Q- 9- 9- Q. o Q.o.0
O O O O O 0 O O O'O'D'O'O'O'O'O'O'OO'O 0 O O O O OO'O'5'O'O'O'O'O'O'O'O

% Plot frequency-domain received IF %
9-9-9-0-9-9-9-8-9-° ° ° ° ° S-9-9-9-9-9-9-9-9-9-9-9-9-0 o O Q.Q.O g,o o o
O ' O O ' O O ' O ' O ' O ' 5 ' O ' D ' O ' O ' O

NFFT = 2^nextpow2(L); % Next power of 2 from
Yup = fft(yUp,NFFT)/L;
Ydown = fft(yDown,NFFT)/L;
f = Fs/2*linspace(0,l,NFFT/2+l);

Random Noise')

length of y

145

% Plot single-sided amplitude spectrum
figure(3)
%subplot(2,1,2)
stem(f,abs(Yup(1:NFFT/2+l))./max(abs(Yup(1:NFFT/2+l))))
title('Single-Sided Amplitude Spectrum of yUp(t)')
xlabel('Frequency (Hz)')
ylabel ('|Yup(f) | •)
figure(4)
%subplot(2,1,2)
stem(f,abs(Ydown(1:NFFT/2+l))
title ('Single-Sided Amplitude
xlabel('Frequency (Hz)')
ylabel('IYdown(f)|')

/max(abs(Ydown(1:NFFT/2+l))))
Spectrum of yDown(t)')

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%
% CA-CFAR detection
% K = PfaA(-l/(2*M)) - 1
%%%%%%%%%%%%%%%%%%%%%%%%%%

I-
% I UP SWEEP |
% I I
Pfa = 1CT-6;
M = 4; % Depth of cell averaging on one side of CUT
GB = 2; % Number of guard bands around Cell-Under-Test
K = PfaA(-1/(2*M)) - 1; % Cell averaging factor
tmpcfar = [0 0 0 0] ' ; % Initiate the cfar matrix
countup = 1;
countupfinal = 0;

for CUT=2:NFFT/2

avgL = 0;
avgR = 0;

% Start from index 2 to avoid DC component caused by
% system and channel noise. Stop at (NFFT/2-30) to
% limit maximum target range, relative velocity at
% 150m,300kmph

% Average on left side of Cell-Under-Test
% Average on right side of Cell-Under-Test

% Compute the averages
if (CUT<=M+GB)

for i=l:M
avgR = avgR + abs(Yup(CUT+i+GB));

end
avgR = avgR/M;

elseif(CUT>=NFFT/2-M-GB)
for i=l:M

avgL = avgL + abs(Yup(CUT-i-GB));
end
avgL = avgL/M;

else
for i=l:M

avgL = avgL + abs(Yup (CUT-i-GB));
avgR = avgR + abs(Yup(CUT+i+GB));

end
avgR = avgR/M;
avgL = avgL/M;

end

146

% Compute threshold
T = (avgR+avgL)/2 * K;
% Decision
if(abs(Yup(CUT))>T)

countup = countup +
tmpcfar(1,countup) =
tmpcfar(2,countup) =

end
end
tmpcfar(1,countup+1) = 0;
tmpcfar(2,countup+1) = 0;

1;
= abs(Yup(CUT)) ;
= CUT;

% REMOVE ALL SPECTRAL COPIES HERE
-i — 1 •

for i=2:length(tmpcfar(1,:) -1
if((tmpcfar(2,i)~=tmpcfar(2,i+1)-1)&&(tmpcfar(2,i)~=tmpcfar(2, i+1)))

if((tmpcfar(2,i)==tmpcfar(2,i-l)+l) 1 | (tmpcfar(2,i)==tmpcfar(2, i-1)))
tmplcfar(1,j) =
tmplcfar(2,j) =
j = j + 1;

else
tmplcfar(1,j) =
tmplcfar(2, j) =
j = j + 1;

end
end

end

max(tmpcfar(1,i-1),tmpcfar(1,i));
tmpcfar(2,i);

tmpcfar(1,i);
tmpcfar(2,i);

% Eliminate any residual false alarms
ST = 0.6 * mean(tmplcfar(1,

j = l;
for i=l:length(tmplcfar(1,:

if(tmplcfar(l,i)>ST)

)) ; % Secondary Threshold computed from
% mean of all detected target powers

)

cfar(l,j) = tmplcfar(1,i);
cfar(2,j) = tmplcfar(2,i);% * Fs/NFFT;
j = j + 1;
countupfinal = countupfinal + 1;

end
end

% Plot detected targets
figure(5)
%subplot(2,1,1)
title('CFAR-detected targets for yUp(t)')
xlabel('Frequency (Hz)')
ylabelC |Yup(f) | ')
stem(cfar(2,:),cfar(1,:));

a i i
* 1 1
% | DOWN SWEEP |
% i I * 1 1
countdown = 1 ;
countdownfinal = 0;

for CUT=2:NFFT/2 % Start from index 2 to avoid DC component caused by
% system and channel noise. Stop at (NFFT/2-30) to
% limit maximum target range, relative velocity at
% 150m

avgL = 0 ; % Average on
avgR = 0 ; % Average on

300kmph
left side of Cell-Under-Test
right side of Cell-Under-Test

147

% Compute the averages
if(CUT<=M+GB)

for i=l:M
avgR = avgR + abs(Ydown(CUT+i+GB));

end
avgR = avgR/M;

elseif(CUT>=NFFT/2-M-GB)
for i=l:M

avgL = avgL + abs(Ydown(CUT-i-GB));
end
avgL = avgL/M;

else
for i=l:M

avgL = avgL + abs(Ydown(CUT-i-GB)) ;
avgR = avgR + abs(Ydown(CUT+i+GB));

end
avgR = avgR/M;
avgL = avgL/M;

end

% Compute threshold
T = (avgR+avgL)/2 * K;
% Decision
if(abs(Ydown(CUT))>T)

countdown = countdown + 1;
tmpcfar(3,countdown) = abs(Ydown(CUT));
tmpcfar(4,countdown) = CUT;

end
end
tmpcfar(3,countdown+1) = 0;
tmpcfar(4,countdown+1) = 0;

% REMOVE ALL SPECTRAL COPIES HERE
J = 1 ;
for i=2:length(tmpcfar(1,:))-1

if((tmpcfar(4,i)~=tmpcfar(4,i+1)-1)&& (tmpcfar(4,i)~=tmpcfar(4, i+1)))
if((tmpcfar(4,i)==tmpcfar(4,i-l)+l) | | (tmpcfar(4,i)==tmpcfar(4, i-1)))

tmplcfar(3,j) = max(tmpcfar(3,i-1),tmpcfar(3,i));
tmplcfar(4,j) = tmpcfar(4,i);
j = j + 1;

else
tmplcfar(3,j) = tmpcfar(3,i);
tmplcfar(4,j) = tmpcfar(4,i);

end
end

end

% Eliminate any residual false alarms
ST = 0.6 * mean(tmplcfar(3,:)); % Secondary Threshold computed from

% mean of all detected target powers
j = l;
for i=l:length(tmplcfar(3,:))

if(tmplcfar(3,i)>ST)
cfar(3,j) = tmplcfar(3,i);
cfar(4,j) = tmplcfar(4,i);% * Fs/NFFT;
j = j + 1;
countdownfinal = countdownfinal + 1;

end
end

148

% Plot detected targets
figure(6);
%subplot(2,1,2)
title('CFAR-detected targets for yDown(t)
xlabel('Frequency (Hz)')
ylabelC |Ydown(f) | ')
stem(cfar(4,:),cfar(3,:)) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot target IF phase %

for i=l:length(cfar(1,:))
phaseup(i) = 180 * atan(imag (Yup(cfar(2,i))) / real(Yup(cfar(2,i)))
phasedown(i) = 180 * atan(imag(Ydown(cfar(4,i))) / real(

Ydown(cfar(4,i))));
end

i=l:length(cfar(1,:)) ;
figure(7);
subplot(2,1,1) ;
stem(i,(phaseup));
subplot(2,1,2);
stem(i,(phasedown));

%%%

% Pairing %
%%%%%%%%%%%

% PAIRING IS DONE BASED ON TWO STAGES:
% 1) the up sweep and down sweep intermediate frequencies of the same target
% will be within 22 cells of each other.
% 2) if there are multiple down sweep intermediate frequencies that fall in
% the criteria in (1) for a given frequency in the up sweep, then peak power
% comparison is done.

149

A2. MATLAB listing for percentage error calculation from 10-bit rounding of
Window functions

clear all
clc

window = hamming(2048); % get the coefficients of 2048-point Hamming
window

window = window.*1023; % scale the coefficients to 10-bit range
rounded_window = round(window); % round off window coefficients to

nearest integer

% compute the percentage error from rounding
for i=l:2048

perr(i) = abs (window(i)-rounded_window(i))/window(i) * 100;
end

mean(perr) % display the average percentage error from rounding

150

A3. HDL listing for TLC
'timescale Ins / lps

llllllllllllllllllllllllllllilll
II This is the full radar system, including the controller and the digital signal
/ / processing modules. The input are 2048 11-bit time domain samples from the ADC,
/ / the outputs are a modulation signal for the VCO tuning voltage via DAC, and the
/ / detected target information.

//
/ / - SUNDEEP LAL -
//

module toplevel(
elk,

reset,
en,
data in,
unit_vel,
sclk,
final_target_info,
beamport,
final_info_valid,
modulate);

/ / Inputs
input elk, reset, en;
input [10:0] datain; / / ADC -> ADC_CAPTURE
input [7:0] unit_vel;//vehicle velocity

/ / Outputs
output sclk; / / SCLK is sampling clock to ADC
output [21:0] final_target_info; / / 9.1bits velocity, 8.2bits range, 2bits beamport
output [2:0] beamport; / / 100 - beamportl, 010 beamport2, 001 - beamport3
output final_info_valid; / / data valid output from PAIRING module
output [9:0] modulate; / / 10-bit DAC output for tuning voltage

/ / Output registers
reg [21:0] final_target_info;
reg [2:0] beamport;
reg final_info_valid;
reg [9:0] modulate;

/ / Internal registers
reg updown;
reg modclock; / / modulation clock at 1MHz to update DAC value
reg [5:0] modtimer; / / counter for clock division: 100MHz -> 1MHz
reg moddone; / / flag to mark update of VCO tuning voltage
reg dirchange; / / flag to mark change of sweep direction
(* KEEP = "TRUE"*) reg [18:0] velmulres; / / used in adjusting target velocity for beamports 1/3 angle
reg [8:0] velmulfac; / / multiplication factor l/cos(10) for target at +-10 degrees
reg st; / / internal flag

/ / Internal connections
wire hold; / / ADC_CAPTURE -> TOPLEVEL (busy signal, do not change sweep direction)

151

wire fwd_inv_we, fwd jnv ;
assign fwd_inv_we = 1;
assign fwd jnv = 1; / / forward FFT

wire scale_sch_we;
assign scale_sch_we = 0;

wire [11:0] scale_sch;
assign scale_sch = 12'dO; / / use default scaling schedule for FFT stages

wire fft_start; / / ADC_CAPTURE -> FFT
wire [11:0] xn_re, x n j m ; / / ADC_CAPTURE -> FFT
wire [10:0] xn_index; / / FFT-> ADC.CAPTURE
wire [10:0] xkjndex; / / FFT -> UNLOAD_FFT
wire [11:0] xk_re, xk_im; / / FFT -> UNLOAD_FFT
wire fft_busy, fft_edone; / / FFT -> ?toplevel?
wire fft_rfd, fft_dv, fft_done; / / FFT -> UNLOAD_FFT
wire [9:0] index; / / UNLOAD_FFT -> FFT_CAPTURE
wire [11:0] re, im; / / UNLOAD_FFT -> FFT_CAPTURE
wire dv; / / UNLOAD_FFT -> FFT_CAPTURE
wire sqrt_done; / / TOPLEVEL -> FFT_CAPTURE
wire donea, doneb, donee, doned; / / SQRT -> TOPLEVEL

assign sqrt_done = donea & doneb & donee & doned;
wire [24:0] sqrt_feeda, sqrt jeedb, sqrt jeedc, sqrt jeedd; / / FFT_CAPTURE -> SQRT
wire sqrt_start; / / FFTjCAPTURE -> SQRT
wire [12:0] roota, rootb, rootc, rootd; / / SQRT -> CFAR
wire [12:0] target_abs; / / CFAR -> PAIRING
wire [9:0] target_pos; / / CFAR -> PAIRING
wire new_target, complete; / / CFAR -> PAIRING
wire start_cfar; / / CFAR -> FFT_CAPTURE
wire [19:0] target jnfo; / / PAIRING -> TOPLEVEL
wire info_valid; / / PAIRING -> TOPLEVEL

ti­
ll lMhz clock generator from 100MHz system clock
/ / - used to update VCO tuning voltage via DAC
//_
always @ (posedge elk)
begin

if(reset == 1) / / synchronous reset
begin

modtimer <= 6'd0;
modclock <= 1'bO;

end

else if(modtimer == 49)
begin

modclock <= ~modclock; / / invert modulation clock
modtimer <= 6'd0; / / clear counter

end

else
modtimer <= modtimer + 1;

end

//
/ / Beamport, tuning voltage and sweep control
//

152

always @ (posedge elk)
begin

if(reset ==1)17 synchronous reset
begin

beamport <= 3'bl00; / / start with beamportl
modulate <= 10'dO;
updown <= l ' b l ; / / start in up sweep
moddone <= 1'bO;
dirchange <= 1'bO;

end

/ / if FFT computation has begun
else if(fft_start == 1 && dirchange == 0)
begin

dirchange <= l ' b l ; / / flag: mark change of sweep direction

if(updown == 1) / / if current sweep direction is up
begin

modulate <= modulate; / / set up modulation signal for down sweep
updown <= 1'bO; / / switch to down sweep

end

else / / if current sweep direction is down
begin

modulate <= 10'dO; / / set up modulation signal for up sweep
updown <= l ' b l ; / / switch to up sweep

if(beamport == 3'bl00) / / if currently using beamportl
beamport <= 3'b010; / / switch to beamport2

else if(beamport == 3'b010) / / if currently using beamport2
beamport <= 3'b001; / / switch to beamport3

else / / if currently using beamport3
beamport <= 3'blOO; / / switch back to beamportl

end
end

else if(hold == 1)
begin

modulate <= modulate; / / hold at max. while ADC_CAPTURE is busy feeding FFT
dirchange <= 1'bO; / / clear flag

end

else if(modclock == 1 && moddone == 0)
begin

if(updown == 1) / / up sweep
begin

if(modulate < 1023)
modulate <= modulate + 1; / / increase tuning voltage

else
modulate <= modulate; / / hold at max.

end

else if(updown ==0)
begin

iff modulate > 0)
modulate <= modulate - 1 ; / / decrease tuning voltage

else

153

modulate <= modulate; / / hold at min.
end

moddone <= l ' b l ; / / f lag : tuning voltage has been updated
end

else if(modclock == 0)
moddone <= 1'bO; / / clear flag: ready for next 'modclock' pulse to update.,

//..tuning voltage via 'modulate'
end

//-
II Adjust target velocity according to beam angle w.r.t. vehicle

always @ (posedge elk)
begin

if(reset == 1)
begin

final_target_info <= 22'dO;
final_info_valid <= 1'bO;
velmulres <= 19'dO;
velmulfac <= 9'bl00000001; / * - 1.8bits number, decimal equivalent is 1.00390625

- multiplication factor for target at 5 degrees
angle to the vehicle is l/cos(5) = 1.00382 * /

st <= 1'bO;
end

else
begin

if(info_valid == 1 11 st == 1)
begin

if(st == 0)
begin

/ / if current beamportl/2, then previous beamport is 3/1
/ / i.e. target is at an angle of +-10 degrees beam
iff beamport == 3'blOO 11 beamport == 3'bOlO)
begin

velmulres <= target_info[19:10] * velmulfac;
/ / extract range (unaffected by angle), append beamport#
if(beamport == 3'blOO)

final_target_info[ll:0] <= {target_info[9:0],2'd3};
else if(beamport == 3'b010)

final_target_info[ll:0] <= {target_info[9:0],2'dl};
st <= l ' b l ; / / mark flag to add adjusted velocity

end
/ / else if previous beamport is 2, target velocity remains unchanged
else
begin

final_target_info[21:0] <= {target_info,2'd2}; / / append beamport#
final_info_valid <= l ' b l ;

end
end

else if(st == 1 && velmulres[17:9] <= 300) / / add adjusted velocity to output-
begin

//..and allow max. 300kmph

154

final_target_info[21:12] <= velmulres[17:8];
final_info_valid <= l ' b l ;
st <=l 'bO;//clear flag

end
end

end

if(final_info_valid == 1)
begin

final_info_valid <= 1'bO; / / clear flag
final_target_info <= 22'dO;

end

//
/ / Module instantiation

adc_capture adc_capture_l(
.clk(clk),

.reset(reset),

.en(en),

.fft_rfd(fft_rfd),

.datain(datain),

.xn_index(xn_index),

.xn_re(xn_re),

.xn_im(xn_im),

.fft_start(fft_start),

.hold(hold),

.sclk(sclk));

fft_2048 fft_2048_l(
.fwd_inv_we_i(fwd_inv_we),
.rfd_i(fft_rfd),
.start_i(fft_start),
.fwd_inv_i(fwd_inv),
.dv_i(fft_dv),
.unload_i(fft_unload),
.scale_sch_we_i(scale_sch_we),
.done_i(fft_done),
.clk_i(clk),
.busy_i(fft_busy),
.edone_i(fft_edone),
.scale_sch_i(scale_sch),
.xn_re_i(xn_re),
.xk_im_i(xk_im),
.xn_index_i(xn_index),
.xk_re_i(xk_re),
.xn_im_i(xn_im),
.xk_index_i(xk_index));

unload_fft unload_fft_l(
.clk(clk),//global clock

.reset(reset), / / global synchronous reset

155

.fft_done(fft_done), / / completion signal from FFT core

.fft_dv(fft_dv), / / data valid signal from FFT core

.xk_index(xk_index), / / data index from FFT core

.xk_re(xk_re), / / real output from FFT

.xk_im(xk_im), / / imaginary output from FFT

.fft_unload(fft_unload), / / unload transform results from FFT core

.index(index), / / 1023 -> 0 index to FFT_CAPTURE

.re(re), / / real output to FFT_CAPTURE

.im(im), / / imaginary output to FFT_CAPTURE
•dv(dv)); / / data valid signal to FFT_CAPTURE

fft_capture fft_capture_l(
.clk(clk),

.reset(reset),

.index(index), / / sample index from 1023 down to 0 from UNLOAD_FFT

.re(re), / / real FFT output data from UNLOAD_FFT

.im(im), / / imaginary data from UNLOAD_FFT

.dv(dv), / / data valid signal from UNLOAD_FFT

.cfar_busy(start_cfar), / / busy signal from CFAR unit, halt feeding SQRT while high

.sqrt_done(sqrt_done), / / completion signal from SQRT units

.sqrt_feeda(sqrt_feeda), / / output to SQRT units

.sqrt_feedb(sqrt_feedb),

.sqrt_feedc(sqrt_feedc),

.sqrt_feedd(sqrt_feedd),

.sqrt_start(sqrt_start)); / / start signal to all SQRT units

sqrtsqrtl(
xlk(clk),

.reset(reset),

.value(sqrt_feeda), / / 25-bit input sum of realA2 + imagA2

.start(sqrt_start), / / start signal from FFT_CAPTURE

.root(roota), / / square root of input

.done(donea)); / / completion signal

sqrt sqrt2(
.clk(clk),

.reset(reset),

.value(sqrt_feedb),

.start(sqrt_start),

.root(rootb),

.done(doneb));

sqrtsqrt3(
.clk(clk),

.reset(reset),

.value(sqrt_feedc),

.start(sqrt_start),

.root(rootc),

.done(donec));

sqrt sqrt4(
.clk(clk),

.reset(reset),

.value(sqrt_feedd),

.start(sqrt start),

.root(rootd),

.done(doned));

cacfar_32 cacfar_32_l(
xlk(clk),

.reset(reset),

.inA(roota), / / inA,inB, inC, inD are obtained from 4 different sqrt modules

.inB(rootb),

.inC(rootc),

.inD(rootd),

.start(sqrt_done), / / start recieving values from SQRT modules..

.target_abs(target_abs), / / new target peak intensity

.target_pos(target_pos), / / new target frequency bin number

.new_target(new_target), / / new target detected signal

.start_cfar(start_cfar), / / high when busy, mapped to cfar_busy in FFT_CAPTURE

.complete(complete)); / / completion of CFAR processing for current data batch

pairing pairing_l(
xlk(clk),

.reset(reset),

.new_target(new_target), / / new target detected signal from CACFAR_32 module

.target_abs(target_abs), / / new target peak intensity

.target_pos(target_pos), / / new target frequency bin number

.complete(complete), / / CFAR completion signal

.updown(updown), / / updown = 1(0) during up(down) sweep sampling i.e. down(up) sweep processing

.unit_vel(unit_vel), / / vehicle velocity

.target_info(target_info), / / MSB -> 10 bits velocity, 10 bits range <- LSB

.info_valid(info_valid)); / / target information valid signal to display unit

endmodule

A4. HDL listing for SAMPLER

'timescale Ins / lps

II
II This module is responsible for capturing data from the ADC, buffering it, and
/ / transferring it to the FFT module for frequency analysis. There is a clock
/ / divider that divides the system clock down to sampling clock.

//
//-SUNDEEPLAL-

ll/l/l/llllllll/llllllll/lllllllllllll/ll/lll/lllllllllllllllll/lllll/llllllllllll

module adc_capture(
elk,

reset,
en,
fft_rfd,
datain,
xn_index,
xn_re,
xn_im,
fft_start,
hold,
sclk);

/ / Inputs
input elk; / / global clock
input reset; / / global reset
input en;/ /enable
input fft_rfd; / / FFT core ready-for-data signal
input [10:0] datain; / / input sample from ADC
input (10:0] xnjndex; / / 2048 samples

/ / Outputs
output [11:0] xn_re; / / real part of sample data to FFT core
output [11:0] xn_im; / / imaginary part of sample data to FFT core
output fft_start; / / start FFT calculation
output hold; / / hold while passing data to FFT core
output sclk; / / sampling clock at 2MHz to drive ADC

/ / Internal registers
reg [11:0] xn_re;
reg [11:0] xn_im;
regfft_start;
reg hold;
reg sclk;

reg [4:0] sclk_cnt; / / clock divider counter
reg sample_read; / / internal flag
reg [10:0] data_buf [2047:0];
reg [10:0] data_cnt;
reg feedfft; / / internal flag
reg feeddone; / / internal flag
(* KEEP = "TRUE"*) reg [21:0] mult_res; / / window multiplication result register

158

reg [9:0] window [1023:0]; / / window function

//
/ / generate sampling clock @ 2MHz from 100MHz supply
//
always @ (posedge elk)
begin

if(reset == 1)
begin

sclk<=l'bO;
sclk_cnt <= 5'dO;

end

else if(reset == 0 && en == 1 && hold == 1)
begin

sclk <= 1'bO;
sclk_cnt <= 5'dO;

end

else if(reset == 0 && en == 1 && hold == 0)
begin

if(sclk_cnt == 24) / / count 24 -> 100MHz, 19 -> 80MHz, 14 -> 60MHz
begin

sclk <= ~sclk;
sclk_cnt <= 5'dO;

end

else
begin

sclk_cnt <= sclk_cnt + 1;
end

end

end

//
/ / Capture data from adc
//
always @ (posedge elk)
begin

if(reset == 1)
begin

data_cnt <= 11'dO;
feedfft <= 1'bO;
sample_read <= 1'bO;

end

else if(reset == 0 && en == 1 && sclk == 1 && feedfft == 0)
begin

if(sample_read == 0)
begin

data_buf [data_cnt] <= datain; / / store data in buffer
data_cnt <= data_cnt + 1; / / increment buffer index
sample_read <= l ' b l ;

end

iff data_cnt == 2047 && sample_read == 0)
begin

feedfft <= l ' b l ; / / hold is asserted after 2 elk cycles
end

end

else if(reset == 0 && sclk == 0)
sample_read <= 1'bO;

iff reset == 0 && feeddone == 1)
feedfft <= l 'bO; / / clear flag

//
/ / Send captured data to FFT core
//.
always @ (posedge elk)
begin

iff reset == 1)
begin

xn_re <= 12'dO;
xn_im <= 12'dO;
hold <= 1'bO;
fft_start <= 1'bO;
mult_res <= 22'dO;
feeddone <= 1'bO;

else iff reset == 0 && feeddone == 1)
feeddone <= 1'bO; / / clear flag

else iff reset == 0 && en == 1 && feedfft == 1)
begin

iff fft_start == 0 && hold == 0)
begin

//$display("FFTfeed start: %d",$time);
fft_start <= l ' b l ; / / start FFT core
hold <= l ' b l ; / / halt sampling while passing data to FFT
mult_res <= {l'bO,data_buf [xnjndex]} * window [xnjndex];

end

else iff fft_start == 1 && xnjndex == 0 && fft_rfd == 1)
begin

fft_start <= 1'bO;
xn_re <= mult_res [21:10]; / / truncate and send
mult_res <= {l'bO,data_buf [xnjndex + 1]} * window [xnjndex + 1];

end

else iff xnjndex > 0 && xnjndex < 1023 && f f t j f d == 1)
begin

x n j e <= multj-es [21:10]; / / truncate and send
mult res <= {l'bO,data buf [xn index + 1]} * window [xnjndex + 1];

end

else if(xnjndex > 1022 && xnjndex < 2047 && fft_rfd == 1)
begin

xn_re <= mult_res [21:10]; / / truncate and send
mult_res <= {l'bO,datajDuf [xnjndex + 1]} * window [2047 - xnjndex -1] ;

end

else if(xnjndex == 2047 && fft_rfd == 1)
begin

x n j e <= multj-es [21:10]; / / truncate and send
hold <= 1'bO; / / resume sampling next sweep
feeddone <= l ' b l ; / / feedfft is deasserted after 2 elk cycles

end
end

end

ti­
ll set window function coefficients
//
always @ (posedge elk)
begin

if(reset == 1)
begin

window[0] <= 0;
window[l] <= 1;
window[2] <= 2;

.. / / define window coefficients here

window[2047] <= 1023;
end

end
endmodule

161

AS. HDL wrapper for Xilinx FFT v7.0 core

'timescale l n s / l p s

module fft_2048 (
fwd_inv_we_i, rfd_i, start_i, fwd_inv_i, dv_i, unload_i, scale_sch_we_i, done_i, elk i, busy_i, edonej , scale_sch_i,

xn_re_i, xk_im_j, x n j n d e x j , xk_re_i, xn_im_i, xk index_i

);
input fwd_inv_we_i;
output rfd_i;
input start_i;
input fwd_inv_i;
output dv_i;
input un loadj ;
input scale_sch_we_i;
output done_i;
input e l k j ;
output busy_i;
output edone j ;
input [11:0] scale_sch_i;
input [1 1 : 0] x n j e j ;
output [11:0] xk_im_i;
output [10 :0] xn_index_i;
output [11:0] xk_re_i;
input [1 1 : 0] xn_im_i;
output [10 : 0] xk_index_i;

xfft_v6_0 fft (
.fwd_inv_we(fwd_inv_we_i),
•rfd(rfd_i),
.start(startj'),
.fwd_inv(fwd_inv_i),
.dv(dv_i),
.unload(unloadj'),
.scale_sch_we(scale_sch_we_i),
.done(donej),
.clk(clk_i),
.busy(busy_i),
.edone(edone_i),
.scale_sch(scale_sch_i),
.xn_re(xn_re_i),
.xkj 'm(xkjmj ') ,
.xnjndex(xnj'ndexj'),
.xk_re(xk_re_i),
.xn_im(xn_im_i),
.xk_index(xk_index_i)

);
endmodule

162

A6. HDL listing for FDR

[Unit to unload data from FFT]

'timescale I n s / lps

ll
II This module is needed to compute the 2's complement of the FFT output in order
/ / to compute the absolute value accurately. The output of this module is unsigned
/ / data to the FFT_CAPTURE module.

//
//-SUNDEEPLAL-
ll

module unload_fft(
elk,

reset,
fft_done, / / completion signal from FFT core
fft_dv, / / data valid signal from FFT core
xkjndex, / / data index from FFT core
xk_re, / / real output from FFT
xk_im, / / imaginary output from FFT
fft_unload, / / unload transform results from FFT core
index, / / 1023 -> 0 index to FFT_CAPTURE
re, / / real output to FFT_CAPTURE
im, / / imaginary output to FFT_CAPTURE
dv); / / data valid signal to FFT_CAPTURE

/ / Inputs
input elk, reset, fft_done, fft_dv;
input [10:0] xkjndex;
input [11:0] xk_re, xk_im;

/ / Outputs
output fft_unload;
output [9:0] index;
output [11:0] re, im;
output dv; / / data valid to FFT_CAPTURE

/ / Registers
regff t j jn load;
reg [9:0] index;
reg [11:0] re, im;
reg dv;

/ / Main process
always @ (posedge elk)
begin

if(reset == 1) / / synchronous reset
begin

f f t j jn load <= l'bO;
index <= 10'd0;
re <= 12'd0;

163

end

else
begin

im <= 12'dO;
dv <= 1'bO;

end

if(fft_done == 1)
fft_unload <= l ' b l ; / / pulse fft_unload to start receiving FFT output

else
fft_unload <= 1'bO;

if(fft_dv == 1)
begin

if(xk_index > 1023) / / only capture lower half of the FFT output
begin

if(xk_re[l l] == 1) / / if negative number output from FFT
re <= ~xk_re + l ' b l ;

else
re <= xk_re;

iff xk_im[l l] == 1) / / if negative number output from FFT
im <= ~xk_im + l ' b l ;

else
im <= xk_im;

index <= index - 1 ; / / decrement index (first state 0 to 1023)..
dv <= l ' b l ; //..this enables reverse order storage of FFT..

end //..output in FFT_CAPTURE
end

else / / clear outputs while not receiving from FFT
begin

index <= 10'dO;
re <= 12'd0;
im <= 12'dO;
dv <= 1'bO;

end

end
endmodule

164

[Unit to store FFT output]

'timescale Ins / lps

////////7/////////////////////////////7/////7////////////7/////////////////////////
/ / This code accepts FFT output from the UNLOAD_FFT module in unsigned form. This
/ / module then squares the real and imaginary parts, adds them together and feeds
/ / the sum to 4 SQRT units running in parallel, thus computing the absolute peak
/ / intensity for each frequency bin of the FFT.

//
//-SUNDEEPLAL-

lll

module fft_capture(
elk,

reset,
index, / / sample index from 1023 down to 0 from UNLOAD_FFT
re,
im,
dv,
cfar_busy,
sqrt_done,
sqrt_feeda,
sqrt_feedb,
sqrt_feedc,
sqrt_feedd,
sqrt_start);

/ / Inputs
input elk; / / global clock
input reset; / / global reset
input [9:0] index; / / FFT output index in reverse order from UNLOAD_FFT
input [11:0] re; / / real output from UNLOAD_FFT
input [11:0] im; / / imaginary output from UNLOAD_FFT
input dv; / / data valid signal from UNLOAD_FFT
input cfar_busy; / / signal from CFAR module, mapped to output start_cfar
input sqrt_done; / / completion signal from module absval

/ / Outputs
output [24:0] sqrt_feeda; / / output to module absval for calculation
output [24:0] sqrt_feedb;
output [24:0] sqrt_feedc;
output [24:0] sqrt_feedd;
output sqrt_start; / / initiate module sqrt for new calculation

/ / Registers
reg [24:0] sqrt_feeda; / / input to module sqrt
reg [24:0] sqrt_feedb; / / input to module sqrt
reg [24:0] sqrt_feedc; / / input to module sqrt
reg [24:0] sqrt_feedd; / / input to module sqrt
regsqrt_start;

reg start_abs; / / internal flag to start calculation of absolute values
reg abs_done;
reg [11:0] re_buf [1023:0]; / / memory for real FFT output
reg [11:0] im_buf [1023:0]; / / memory for imaginary FFT output

165

reg sta; / / internal flag
reg [23:0] sq_rea; / / square of real part, for absolute value calculation
reg [23:0] sq jma; / / square of imaginary part
reg [23:0] sq_reb; / / square of real part, for absolute value calculation
reg [23:0] sq_imb; / / square of imaginary part
reg [23:0] sq_rec; / / square of real part, for absolute value calculation
reg [23:0] sq_imc; / / square of imaginary part
reg [23:0] sq_red; / / square of real part, for absolute value calculation
reg [23:0] sq_imd; / / square of imaginary part
reg [9:0] indexi;

ti­
ll Capture data from FFT core
//
always @ (posedge elk)
begin

if(reset == 1)
begin

start_abs <= 1'bO;
end

/ / if previous set of FFT data has been processed
else if(abs_done == 1)
begin

start_abs <= 1'bO; / / clear flag
end

else if(dv == 1 && start_abs == 0)
begin

re_buf [index] <= re; / / index is 1023 -> 0, storing values in reverse
im_buf [index] <= im;

if(index == 0)
start_abs <= 1'bl; / / start absolute value calculation

end

end

//
/ / Compute absolute value (send to sqrt units)
//
always @ (posedge elk)
begin

if(reset == 1)
begin

abs_done <= 1'bO;
sta <= 1'bO;
sq_rea <= 24'dO; sq_ima <= 24'dO;
sq_reb <= 24'dO; sq_imb <= 24'dO;
sq_rec <= 24'dO; sq_imc <= 24'dO;
sq_red <= 24'dO; sq_imd <= 24'dO;
sqrt_feeda <= 25'd0;
sqrt jeedb <= 25'dO;

166

sqrtjeedc <= 25'dO;
sqrt jeedd <= 25'dO;
sqrt_start <= 1'bO;
indexi <= 10'dO; / * counter to count up to 1024 values, since only the latter half of the FFT output

is considered for CFAR * /

end

/ / clear flags
else if(abs_done == 1)
begin

abs_done <= 1'bO;
indexi <= 10'dO;

end

/ / only pass new values to sqrt units if CFAR unit is not busy
else if(reset == 0 && start_abs == 1 && cfar_busy == 0)
begin

/ / square real and imaginary components
if(sta == 0)
begin

sqjrea <= re_buf [indexi] * re_buf [indexi]; / / reA2
sq_ima <= im_buf [indexi] * im_buf [indexi]; / / imA2
sq_reb <= re_buf [indexi+1] * re_buf [indexi+1]; / / reA2
sq_imb <= im_buf [indexi+1] * im_buf [indexi+1]; / / imA2
sq_rec <= re_buf [indexi+2] * re_buf [indexi+2]; / / reA2
sq jmc <= im_buf [indexi+2] * im_buf [indexi+2]; / / imA2
sq_red <= re_buf [indexi+3] * re_buf [indexi+3]; / / reA2
sq_imd <= im_buf [indexi+3] * im_buf [indexi+3]; / / imA2
sta <= l ' b l ;

end
/ / sum multiplication results from previous cycle
else if(sta == 1 && sqrt_start == 0)
begin

sqrt_feeda <= sq_rea + sq_ima; / / (reA2 + imA2) pass value to first sqrt
sqrt_feedb <= sq_reb + sq jmb; / / (reA2 + imA2) pass value to second sqrt
sqrt_feedc <= sq_rec + sq_imc; / / (reA2 + imA2) pass value to third sqrt
sqrt_feedd <= sq_red + sq jmd ; / / (reA2 + imA2) pass value to fourth sqrt
sqrt_start <= l ' b l ; / / initiate module sqrt - sqrt(reA2 + imA2)

end

if(sqrt_done == 1 && sqrt_start == 1)
begin

sqrt_start <= 1'bO; / / halt sqrt calculation
sta<= 1'bO;//clear flag

if(indexi == 1020)
begin

abs_done <= l ' b l ; / / mark completion of absval calculation
indexi <= 10'dl023;

end
else

indexi <= indexi + 4; / / increment index to previous complex value
end

end
end endmodule

167

A7. HDL listing for PSD
"timescale l n s / l p s

module sqrt(
elk,

reset,
value,
start,
root,
done);

/ / Inputs
input elk;
input reset; / / global synchronous reset
input [24:0] value; / / input value to be processed
input start; / / start signal

/ / Outputs
output [12:0] root; / / square root of input value
output done; / / completion signal

/ / Internal registers
reg [12:0] root;
reg done;
reg edone;
reg [12:0] error;
reg [25:0] root_square;
reg [3:0] count; / / down counter to index individual bits in the root
reg sta;

//
/ / Calculate the square root

II
always @ (posedge elk)
begin

if(reset == 1)
begin

root <= 13'b 1000000000000;
root_square <= 26'dO;
error <= 13'd0;
edone <= 1'bO;
done <= 1'bO;
count <=4'dl2;
sta <= 1'bO;

end

/ / refresh internal variables for new value
else if(done == 1)
begin

done <= 1'bO;
count <=4'dl2;
root <= 13'bl000000000000;
root_square <= 26'd0;
error <= 13'd0;

168

end

else if(edone == 1)
begin

done <= l ' b l ;
edone <= 1'bO;
if(error < root)

root <= root + 1; / / round off result if required
end

/ / start calculating square root
else if(start == 1)
begin

/ / stage A: square the root
if(sta == 0)
begin

root_square <= root * root;
sta <= l ' b l ; / / set flag for next stage

end

/ / stage B: compare root_square and change the root
else iff sta == 1)
begin

if(root_square > value) / / if rootA2 is greater than value
begin

root [count] <= 1'bO; / / clear current bit
iff count > 0)

root [count-1] <= l ' b l ; / / assert next bit
end
else iff root_square < value) / / if rootA2 is less than value
begin

root [count-1] <= l ' b l ; / / assert next bit
end

/ / adjust down counter
iff count > 0)
begin

count <= count - l ' b l ; / / decrement count
end
else iff count == 0) / / if the last bit has been assessed
begin

edone <= l ' b l ; / / signal completion of calculation
iff root_square > value)

error <= root_square - value; / / compute error
else iff root_square < value)

error <= value - root_square; / / compute error
end

end

sta <=l 'bO;/ / reset flag
end

end
endmodule

A8. HDL listing for CFAR

'timescale Ins / lps

ll
II This module implements the CA-CFAR algorithm to identify valid targets from
/ / discrete frequency samples with noise and clutter. These samples are obtained
/ / by computing the peak intensity for every frequency bin as output from the FFT.
//
//-SUNDEEPLAL-
ll

module cacfar_32(
elk,

reset,
inA, / / inA,inB, inC, inD are obtained from 4 different sqrt modules
inB,
inC,
inD,
start,
target_abs,
target_pos,
new_target,
start_cfar,
complete);

/ / Inputs
input elk;
input reset;
input [12:0] inA, inB, inC, inD;
input start; / / start recieving values from sqrt modules

/ / mapped to output 'done' on module sqrt

/ / Outputs
output [12:0] target_abs;
output [9:0] target_pos;
output new_target;
output start_cfar; / / signal to module fft_capture to halt during CFAR calculation
output complete; / / all 1024 values completed

/ / Internal registers
reg [12:0] target_abs;
reg [9:0] target_pos;
reg new_target;
reg start_cfar;
reg complete;

reg [12:0] buffer [31:0]; / / store 32 cells for CFAR processing
reg [9:0] indexa; / / used in buffering data
reg [4:0] indexb; / / used in buffering data
reg [4:0] indexc; / / for CFAR routine
(* KEEP = "TRUE"*) reg [14:0] avgL; / / cell averaging to left of CUT
(* KEEP = "TRUE"*) reg [14:0] avgR; / / cell averaging to right of CUT
reg [12:0] avg; / / threshold average
regcfar_done;
reg [1:0] st; / / internal flag to sort CFAR stages

170

(* KEEP = "TRUE"*) reg [17:0] T; / / dynamic threshold result from CFAR processing
reg [4:0] K; / / 5-bit decimal constant for CFAR
reg [12:0] CUT;

//
/ / Accept data from module sqrt
//
always @ (posedge elk)
begin

if(reset == 1)
begin

indexa <= 10'dO;
indexb <= 5'd0;
start_cfar <= 1'bO;

end

else if(complete == 1) / / if all 1024 values have been processed
begin

indexa <= 10'dO;
indexb <= 5'dO;
start_cfar<=l'bO;

end

else if(start == 0 && start_cfar == 1) / / if CFAR processing is active
begin

if(cfar_done == 1)
begin

start_cfar <= 1'bO; / / clear signal, proceed with buffering
indexb <= 5'dO; / / reset for next 32 values

end
else
begin

start_cfar <= l ' b l ;
indexb <= 5'd31; / / to avoid truncation by Xilinx ISE

end
end

else if(start == 1 && start_cfar == 0) / / if CFAR processing is not active
begin

buffer[indexb] <= inA;
buffer[indexb+l] <= inB;
buffer[indexb+2] <= inC;
buffer[indexb+3] <= inD;

iff indexa == 1020) / / 1024 counter
indexa <= 10'dl023; / / avoid truncation and mark completion of all samples

else
indexa <= indexa + 4;

if(indexb == 28)
begin

indexb <= 5'dO; / / 32 counter
start_cfar <= l ' b l ; / / start CFAR routine

end
else

indexb <= indexb + 4;

171

end
end

//
/ / CFAR process
//
always @ (posedge elk)
begin

if(reset == 1)
begin

new_target <= 1'bO;
target_abs <= 13'dO;
target_pos <= 10'dO;
avg <= 13'dO;
avgR <= 15'dO;
avgL <= 15'dO;
indexc <= 5'dO;
cfar_done <= 1'bO;
st <= 2'bOO;
K <= 5'bOlOll; / / setting K = (11111) to avoid truncation

/ / K = PfaA(-l/(2*M)) - 1 ; e.g. Pfa=10A-7, M=4,
//therefore K=6.49~(11010)
/ / K has 3 integer bits, 2 fraction bits

T <= 18'dO;
CUT <= 13'dO;
complete <= 1'bO;

end

else if(complete == 1)
complete <= 1'bO;

/ / After every 32 values or valid target detection
else if(cfar_done == 1 11 new_target == 1)
begin

cfar_done <= 1'bO; / / reset flag, ready for next batch of 32 cells
target_abs <= 13'dO;
target_pos <= 10'dO;

end

/ / Get the averages for M=4
else if(start_cfar == 1 && cfar_done == 0 && st == 2'bOO)
begin

new_target <= 1'bO; / / reset new valid target output signal

iff indexa >= 10'dO && indexa <= 10'd511)
K <= 5'd20; / / Pfa = 10A-7, min. K = 5.00

else iff indexa >= 10'd512 && indexa <= 10'd851)
K <= 5'dl7; / / Reduced K = 4.25 for attenuated medium range targets

else if(indexa >= 10'd852)
K <= 5'dl6; / / Reduced K = 4.00 for attenuated long range targets

if(indexc < 6)
begin

avgR <= buffer[indexc+3] + buffer[indexc+4] + buffer[indexc+5]
+ buffer[indexc+6];

avgL <= buffer[indexc+3] + buffer[indexc+4] + buffer[indexc+5]

+ buffer[indexc+6];
end
else if(indexc > 25)
begin

avgR <= buffer[indexc-3] + buffer[indexc-4] + buffer[indexc-5]
+ buffer[indexc-6];

avgL <= buffer[indexc-3] + buffer[indexc-4] + buffer[indexc-5]
+ buffer[indexc-6];

end
else
begin

avgR <= buffer[indexc+3] + buffer[indexc+4] + buffer[indexc+5]
+ buffer[indexc+6];

avgL <= buffer[indexc-3] + buffer[indexc-4] + buffer[indexc-5]
+ buffer[indexc-6];

end
st <= 2'bOl; / / move to next CFAR stage

end

/ / Add the averages
else if(start_cfar == 1 && cfar_done == 0 && st == 2'bOl)
begin

avg <= avgR[14:3] + avgL[14:3] + 1; / / (avgR/4 + avgL/4)/2 + 1 (to avoid zero)
st <= 2'blO;

end

/ / Compute the dynamic threshold
else if(start_cfar == 1 && cfar_done == 0 && st == 2'blO)
begin

T <= avg * K; / / threshold value for current CFAR cells
CUT <= bufferfindexc]; / / CUT has equal word length as integer part of T
st <= 2'bll;

end

/ / Decision to extract valid target from clutter
else iff start_cfar == 1 && cfar_done == 0 && st == 2 ' b l l)
begin //$display("%d %d",CUT,indexa+indexc-32);

iff CUT > T[14:2] && CUT > 13'd7) / / compare integer part and exclude FFT noise
begin

new_target <= l ' b l ; / / assert new valid target signal to pairing module
target_abs <= CUT; / / output target peak intensity
target_pos <= indexa + indexc - 30; / / output target FFT bin number
K <= 5'b00000; / / temporary clear to avoid truncation

end
if(indexc == 31) / / mark completion of CFAR processing on current 32 cells

cfar_done <= l ' b l ;
if(indexc == 31 && indexa == 1023) / / if all 1024 samples done

complete <= l ' b l ; / / send completion signal to pairing module
indexc <= indexc + 1; / / move to next cell for CFAR processing
st <= 2'b00;

end

iff new_target == 1)
new_target <= 1'bO; / / reset new valid target signal

end
endmodule

A9. HDL listing for PPM

"timescale Ins / lps

ll
II This module is responsible for pairing the peaks detected by the CFAR unit
/ / and producing the target ranges and velocities for all detected targets.

//
/ / - SUNDEEP LAL -
//

module pairing!
elk,

reset,
new_target,
target_abs,
target_pos,
complete,
updown,
unit_vel,
target jnfo,
info_valid

);

/ / Inputs to module
input elk; / / system/global clock
input reset; / / synchronous reset
input new_target; / / new valid target from CFAR module
input [12:0] target_abs; / / target peak intensity
input [9:0] target_pos; / / target frequency bin number
input complete; / / CFAR completion signal from CFAR module
input updown; / * sweep direction, 1 for up, 0 for down

this signal is used inverted (0 for up, 1 for down) because..
..during down sweep sampling, up sweep processing is done and..
.. vice versa * /

input [7:0] unit_vel; / / radar unit's velocity / car's velocity

/ / Outputs from module
output [19:0] target jnfo; / / 10 bits target velocity, 10 bits target distance
output info_valid; / / signal to display module

/ / Internal registers
reg [19:0] target jnfo;
reg infoj/al id;

reg [12:0] absjbufup [7:0]; / / maximum 8 targets in up sweep
reg [9:0] pos_bufup [7:0];
reg upf ill; / / flag to mark fully filled up sweep buffers
reg [12:0] absjbufdown [7:0]; / / maximum 8 targets in down sweep
reg [9:0] posjDufdown [7:0];
reg downfill; / / flag to mark fully filled down sweep buffers
reg [2:0] count; / / index for up sweep and down sweep buffers
reg [2:0] paircount; / / final count of records accepted for pairing from CFAR
reg startjpairing; / / flag to commence pairing and output process
reg pairingdone; / / flag to mark completion of pairing process
reg [2:0] indexup; / / counter to count through up sweep records while pairing

174

reg [2:0] indexdown; / / counter to count through down sweep records while pairing
reg [2:0] tmpindex; / / used to store the final matching pair index
reg [6:0] vel_fac; / / multiplication constant for velocity calculation
(* KEEP = "TRUE"*) reg [17:0] velocity; / / computed velocity - (13bits).(6bits)
reg [10:0] range_fac; / / multiplication constant for range calculation
(* KEEP = "TRUE"*) reg [21:0] range; / / computed range - (l lb i ts).(l lb i ts)
reg [1:0] st; / / internal flag
reg stb; / / internal flag
reg [9:0] posa, posb; / / used to analyse spectral closeness during pairing
reg [13:0] absa, absb, absc; / / used to analyse peak intensity closeness during pairing
reg [10:0] sum_pos, diff_pos; / / sum for range, diff for velocity
reg faster; / / 0 if target is slower, 1 is target is faster
reg updone; / / mark up sweep processing done

//
/ / Accept data from CFAR module
/ / - spectral copies are ignored by this module
//
always @ (posedge elk)
begin

if(reset == 1)
begin

count <= 3'dO;
paircount <= 3'd0;
abs_bufup[0] <= 13'dO;
pos_bufup[0] <= 10'dO;
abs_bufdown[0] <= 13'd0;
pos_bufdown[0] <= 10'd0;
upfill <= 1'bO;
downfill <= 1'bO;
start_pairing <= 1'bO;
updone <= 1'bO;

end

/ / clear pairing process flags
else if(reset == 0 && pairing_done == 1)
begin

start_pairing <= 1'bO;
paircount <= 3'dO;
updone <= 1'bO;

end

/ / if CFAR processing for current sweep direction is complete
else if(reset == 0 && complete == 1)
begin

iff updown == 0) / / if up sweep is done
begin

paircount <= count; / / store the total number of targets for later use
updone <= l ' b l ;

end

count <= 3'dO; / / reset counter to 0
upfill <= 1'bO; / / clear flags
downfill <= 1'bO;

175

if(updown == 1 && updone == 1) / / if the down sweep has been completely obtained
begin

//$display("%d %d %d %d %d %d %d %d
%d",pos_bufup[0],pos_bufup[l],pos_bufup[2],pos_bufup[3];pos_bufup[4],pos_bufup[5],pos_bufup[6],pos_bufup[7],
paircount);

//$display("%d %d %d %d %d %d %d %d
%d",pos_bufdown[0],pos_bufdown[l],pos_bufdown[2],pos_bufdown[3],pos_bufdown[4],pos_bufdown[5],pos_bufd
own[6],pos_bufdown[7],count);

start_pairing <= l ' b l ;
end

end

//
/ / UP SWEEP
//
else if(reset == 0 && updown == 0 && new_target == 1 && upfill == 0)
begin //$display("up %d %d",target_abs,target_pos);

/ / first valid target detection stored without 'spectral copy' checking
if(count == 0 && target_pos > 4) / / ignore DC values
begin

abs_bufup[count] <= target_abs;
pos_bufup[count] <= target_pos;
count <= count + 1;

end

/ / 'spectral copy' checking
else if(count >= 1)
begin

/ / if new CFAR detection is a 'spectral copy' of previous target
if(target_pos == pos_bufup[count-l] + 1)
begin

if(target_abs > abs_bufup[count-l]) / / store larger peak intensity
begin

abs_bufup[count-l] <= target_abs; / / update previous target record
pos_bufup[count-l] <= target_pos;

end
end

else
begin

abs_bufup[count] <= target_abs; / / add new target record
pos_bufup[count] <= target_pos;
count <= count + 1; / / increment counter
if(count == 7)

upfill <= l ' b l ; / / mark up sweep buffer filled
end

end

end

//
/ / DOWN SWEEP
//
else if(reset == 0 && updown == 1 && new_target == 1 && downfill == 0)

176

begin //$display("down %d %d",target_abs,target_pos);

/ / first valid target detection stored without 'spectral copy' checking
iff count == 0 && target_pos > 4) / / ignore DC values
begin

abs_bufdown[count] <= target_abs;
pos_bufdown[count] <= target_pos;
count <= count + 1;

end

/ / 'spectral copy' checking
else if(count > 0)
begin

/ / if new CFAR detection is a 'spectral copy' of previous target
if(target_pos == pos_bufdown[count-l] + 1)
begin

if(target_abs > abs_bufdown[count-l]) / / store larger peak intensity
begin

abs_bufdown[count-l] <= target_abs; / / update previous target
record

pos_bufdown[count-l] <= target_pos;
end

end

else
begin

a bs_buf down [count] <= target_abs; / / add new target record
pos_bufdown[count] <= target_pos;
count <= count + 1; / / increment counter
iff count == 7)

downfill <= l ' b l ; / / mark up sweep buffer filled
end

end

end

/ / clear the record from down buffer when a pair has been matched successfully
if(st == 2'blO && start_pairing == 1)
begin

abs_bufdown[tmpindex] <= 13'dO;
pos_bufdown[tmpindex] <= 10'dO;

end

end

//
/ / Peak Pairing
//Criteria:
/ / (1) +-84 frequency bins
/ / (2) compare peak intensity

//
always @ (posedge elk)
begin

iff reset == 1)
begin

177

target_info <= 20'dO;
info_valid <= 1'bO;
pairing_done <= 1'bO;
indexup <= 3'dO;
indexdown <= 3'dO;
tmpindex <= 3'dO;
ve l jac <= 7 ' b l lO l lO l ; / / (l l.OHOl)binary = (3.40625)decimal
rangejac <= 11'bOOOlOlll l lO; / / (O.OOOlOlllllO)binary = (0.0927734375)decimal
/ * these factors have been obtained by converting the equations into

constants, saving hardware and making computation quicker:
Fr = 4*Fsweep/Tsweep*range/c, Fd = 2*Ft*relative_velocity/c * /

st <= 2'bOO;
stb <= 1'bO;
posa <= 10'dO;
posb <= 10'dO;
absa <= 13'dO;
absb <= 13'dO;
absc <= 13'dO;
sum_pos <= 11'dO;
diff_pos <= 11'dO;
faster <= 1'bO;
velocity <= 18'dO;
range <= 22'dO;

end

/ / if pairing is complete
else if(reset == 0 && pairing_done == 1)
begin

target_info <= 20'dO;
info_valid <= 1'bO;
pairing_done <= 1'bO;
indexup <= 3'dO;
indexdown <= 3'dO;
tmpindex <= 3'dO;
st <= 2'bOO;
stb <= 1'bO;
posa <= 10'dO;
posb <= 10'dO;
absa <= 13'dO;
absb <= 13'dO;
absc <= 13'dO;
sum_pos <= 11'dO;
diff_pos <= 11'dO;
faster <= 1'bO;
velocity <= 18'dO;
range <= 22'dO;

end

/ / pair target peaks from up and down sweeps
else iff reset == 0 && start_pairing == 1 && indexdown <= paircount-1]
begin

target jnfo <= 20'dO;
info_valid <= 1'bO;

if(st == 2'bOO)
begin

/ / lower limit for criteria (1)

178

if(pos_bufup[indexup] > pos_bufdown[indexdown])
posa <= pos_bufup[indexup] - pos_bufdown[indexdown]; / / limit to +-84 i.e.

300kmph
else

posa <= pos_bufdown[indexdown] - pos_bufup[indexup];

/ * calculate peak intensity difference between current up sweep value
and current down sweep value * /

if(abs_bufup[indexup] > abs_bufdown[indexdown])
absa <= abs_bufup[indexup] - abs_bufdown[indexdown];

else
absa <= abs_bufdown[indexdown] - abs_bufup[indexup];

/ * calculate peak intensity difference between current up sweep value
and previously stored best match value * /

if(abs_bufup[indexup] > abs_bufdown[tmpindex])
absb <= abs_bufup[indexup] - abs_bufdown[tmpindex];

else
absb <= abs_bufdown[tmpindex] - abs_bufup[indexup];

/ * calculate peak intensity difference between next up sweep value
and previously stored best match value for the current target * /

if(indexup < paircount - 1) begin
iff abs_bufup[indexup+l] > abs_bufdown[tmpindex])

absc <= abs_bufup[indexup+l] - abs_bufdown[tmpindex];
else

absc <= abs_bufdown[tmpindex] - abs_bufup[indexup-l]; end
else

absc <= 13'd8191;

/ / ensure next up sweep sample is within +-84 range of previous best match
if(indexup < paircount - 1) begin

if(pos_bufup[indexup+l] > pos_bufdown[indexdown])
posb <= pos_bufup[indexup+l] - pos_bufdown[indexdown];

else
posb <= pos_bufdown[indexdown] - pos_bufup[indexup+l]; end

else
posb <= 10'dl023;

st <= 2'bOl; / / next stage

III Illll update best match according to criteria (1,2)
else iff st == 2'bOl)
begin

/ / if the peak in the down sweep is spectrally close to peak in up sweep
if(posa < 84 && posa <= posb)
begin

/ / if current down sweep peak is closer in intensity
iff absa <= absb && absa <= absc)

tmpindex <= indexdown; / / update best match index
end

if(indexdown == paircount-1) / / if all down sweep peaks have been assessed
st <= 2'blO; / / next stage

else
begin

179

indexdown <= indexdown + 1; / / move to next down sweep peak
st <= 2'b00; / / return to re-compute new parameters

end
end

IIIllllI obtain sum and difference of matched frequency bin indices
else if(st == 2'blO)
begin

indexdown <= 3'dO; / / clear index to restart from first record in down sweep
sum_pos <= pos_bufup[indexup] + pos_bufdown[tmpindex]; / / for target range

if(pos_bufdown[tmpindex] > 0) begin
/ / for target relative velocity
if(pos_bufup(indexup] > pos_bufdown[tmpindex])//slower target
begin

diff_pos <= pos_bufup[indexup] - pos_bufdown[tmpindex];
faster <= 1'bO;

end
else//faster target
begin

diff_pos <= pos_bufdown[tmpindex] - pos_bufup[indexup];
faster <= l ' b l ;

end

st <= 2 ' b l l ; / / next stage
end

else begin
if(indexup < paircount - 1)
begin

indexup <= indexup + 1;
st <= 2'bOO;

end
else

pairing_done <= l ' b l ;
end

end

IIIIIIII compute the velocity and range and output as single bus
else if(st == 2 ' b l l)
begin

if(stb ==0)1/ stage to compute velocity and range
begin

if(faster == 0) / / if the target is not faster than own vehicle
velocity <= vel_fac * diff_pos;

else / / if the target is faster than own vehicle
velocity <= vel_fac * diff_pos;

range <= range_fac * sum_pos;
stb <= l ' b l ;

end

else / / final step: output targetjnfo, update indexup
begin

if(faster ==0)1/ extract (9bits).(0bit) velocity
target info[19:l l] <= unit_vel - velocity[13:5];

else

target_info[19:ll] <= unit_vel + velocity[13:5];

target_info[10] <= velocity[4]; / / attach the fraction bit

target_info[9:0] <= range[18:9]; / / extract (8bits).(2bits) range
info_valid <= l 'b l ; / / alert display unit of valid target information
tmpindex <= 3'dO;
posa <= 10'dO;
posb <= 10'dO;
absa <= 13'dO;
absb <= 13'dO;
stb <= 1'bO;
st <= 2'b00; / / reset to first state
indexup <= indexup + 1; / / move to next record in up sweep buffer
if(indexup == paircount) / / if all records have been assessed

pairing done <= l 'b l ;

VITAAUCTORIS

Sundeep Lai was born in 1984 in New Delhi, India. He completed his first degree in

engineering titled M. Eng. (Hons.) in Electronic and Computer Engineering from the

University of Nottingham (UK) in 2007, during which he underwent industrial training at

Philips Semiconductors SDN. BHD. (Petaling Jaya, Malaysia). His research interests

include Processor Architecture, Digital Signal Processing on FPGAs, Neurofuzzy Control

and Optimization Algorithms, and Microelectromechanical Systems (MEMS). At the time

of writing this thesis Sundeep is a member of the MEMS Lab, and a candidate for the

degree of M. A. Sc. in Electrical and Computer Engineering, at the University of Windsor

(Ontario, Canada).

	An FPGA-based 77 GHzs RADAR signal processing system for automotive collision avoidance
	Recommended Citation

	ProQuest Dissertations

