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Abstract 

An FPGA implementable Verilog HDL based signal processing algorithm has been 

developed to detect the range and velocity of target vehicles using a MEMS based 77 

GHz LFMCW long range automotive radar. The algorithm generates a tuning voltage to 

control a GaAs based VCO to produce a triangular chirp signal, controls the operation of 

MEMS components, and finally processes the IF signal to determine the range and 

veolicty of the detected targets. The Verilog HDL code has been developed targeting the 

Xilinx Virtex-5 SX50T FPGA. The developed algorithm enables the MEMS radar to detect 

24 targets in an optimum timespan of 6.42 ms in the range of 0.4 to 200 m with a range 

resolution of 0.19 m and a maximum range error 0.25 m. A maximum relative velocity of 

±300 km/h can be determined with a velocity resolution in HDL of 0.95 m/s and a 

maximum velocity error of 0.83 m/s with a sweep duration of 1 ms. 
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CHAPTER 1: 
INTRODUCTION 

This chapter starts with a clear definition of the issue this research work 

addresses, explaining the importance of the work and its outcomes. Facts about road 

safety and accident records around the globe are presented and automotive radar 

applications are identified as an effective means of enhancing vehicular safety features. 

The potential benefits of automotive radar systems in road safety are highlighted, and 

the radar being developed at the University of Windsor is presented along with a 

concise operating principle. Finally, the principal results of this research work are listed. 

1.1 Problem Statement 

The objective and goal of this research is to develop an FPGA-implementable signal 

processing algorithm for use in a Microelectromechanical Systems (MEMS) based linear 

frequency modulated continuous wave (LFMCW) long range auotomotive radar to 

determine the range and velocity of targets in the vicinity of a host vehicle. 

Loss of lives and property damage due to automotive collisions can be minimized if it 

is possible to detect the proximity of other vehicles, pedestrians, and obstacles in real

time using advanced microelectromechanical systems (MEMS) based sensor technology. 

The current technology for short and long range proximity detection, such as: stand

alone ultrasonic sensor or sensor arrays, electromagnetic radar units (present in high-

end vehicles only), lasers, and cameras mounted on side view mirrors fall short of 

establishing a real-time dynamic safety shell around a vehicle due to their high latency 

time associated with microelectronic signal processing and need for mechanical 

scanning of the target area in case of radars. Moreover, due to high cost of stand-alone 

manufacturing, automakers are reluctant to incorporate these solutions in low-end 
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vehicles. As a result the overall road safety situation remains almost the same even if 

some of the vehicles are equipped with advanced collision or pre-crash warning 

systems. To put the problem in perspective, less than 1% of vehicles running in Canadian 

highways are equipped with advanced radar sensors. 

Market research firm Strategy Analytics predicts that over the period 2006 to 2011, 

the use of long-range distance warning systems in cars could increase by more than 65 

percent annually, with demand reaching 3 mn units in 2011, with 2.3 mn of them using 

radar sensors. By 2014, 7 percent of all new cars will include a distance warning system, 

primarily in Europe and in Japan [18]. 

Global auto industries and governments are extensively pursuing radar based 

proximity detection systems for (1) ACC support with Stop&Go functionality, (2) collision 

warning, (3) pre-crash warning, (4) blind spot monitoring, (5) parking aid (forward and 

reverse), (6) lane change assistant and (7) rear crash collision warning. The European 

Commission (EC) has set an ambitious target to reduce road deaths by 50% by the end 

of 2010. In North America alone the rate of fatalities related to road accidents has been 

stagnant at approximately 43,000 per year, which sums to a huge annual loss of life and 

property [15]. It has been concluded that the use of Forward Collision Warning long 

range radar and Lane Departure Warning camera-based sensor among other security 

features will become very effective to reduce road fatality rates. In [15], it has been 

mentioned that with the proposed crash prevention technologies equipped in vehicles, 

the number of crashes can be reduced by 3.8 mn in North America, and the number of 

human lives saved from that amounts close to 17,000 per year. This warrants the use of 

long range radar as an indispensable feature to improve highway safety and minimize 

loss of lives and property damage. 
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Table 1.1: Fatality count around the globe [15] 

North America 

European Union 

Japan 

Fatality count in 2005 

43,443 

41,600 

6,871 

Fatality rate per 100 million vehicle 

miles 

1.5 

1.3 

1.4 

Pulse-Doppler vs FMCW Radar 

Some of the earlier automotive radar applications relied on a high-power Pulsed 

Doppler radar technique, but the suitability of the technique came under criticism after 

the televised failure of the Mercedes-Benz pulsed radar assisted Distronic cruise control 

system on Stern TV in 2005 [17]. This has instigated the industry to study and use the 

FMCW radar technique for modern radar systems. FMCW radar in automotive 

applications is still a developing field of study, with on-going research at all system levels 

including signal processing and RF hardware design. 

The MEMS Radar 

The application of an automotive radar system is classified according to the 

range it covers. Long range radar (LRR) and medium range radar (MRR) are used in 

cruise control and collision avoidance, and short range radar (SRR) is used in collision 

avoidance, crash-prevention and parking-assist systems. 

Having established that automotive radar can be very helpful in reducing the 

number of fatal accidents, it is essential that low cost and reliable radar systems be 

made to improve road safety globally. Lower cost (compared to $2000-$3000 approx. 

for current systems) will enable even lower-end vehicles to be equipped with safety 

options, boosting road safety. 
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MEMS technology offers the advantage of realizing low cost batch fabricatable 

high performance RF componets like Rotman lens, RF switches that can be sued to 

realize a compact high performance lightweight radar in a small form factor. Such a 

MEMS based radar system has been developed at the University of Windsor, Ontario, 

Canada. A block diagram for the MEMS based radar has been developed as part of this 

thesis and is shown in Figure 1.1. 

Transmitted 
signal 

Target 

SP3T 
switch 
control 

Transmitter 
control 

Signal 
processing Target velocity, range, 

safe distance 

Driver 
notification 

CAN Bus 

FPGA 

Figure 1.1: Automotive radar system conceptual diagram showing Rotman lens and SP3T 
switches. Only major components are shown. 

MEMS Radar Operating Principle: 

1. An FPGA implemented control circuit generates a triangular signal (Vtune) to 

modulate a voltage controlled oscillator (VCO) to generates a linear frequency 

modulated continuous wave (LFMCW) signal having a frequency sweep range of 

0-400 MHz centered at 77 GHz. 

2. The signal is fed to a MEMS SP3T switch. 



3. An FPGA implemented control algorithm controls the SP3T switch to sequentially 

switch the LFMCW signal among the three beam ports of a MEMS implemented 

Rotman lens. 

4. As the LFMCW signal arrives at the array ports of the Rotman lens after traveling 

through the Rotman lens cavity, the time-delayed in-phase signals are fed to a 

microstrip antenna array that radiates the signal in a specific direction. 

5. The sequential switching of the input signal among the beamports of the Rotman 

lens enables the beam to be steered across the target area in steps by a pre-

specific angle. 

6. On the receiving side, a receiver antenna array receives the signal reflected off a 

vehicle or an obstacle and feeds the signal to another SP3T switch through 

another Rotman lens. 

7. An FPGA based control circuit controls the operation of the receiver SP3T switch 

so that the signal output at a specific beamport of the receiver Rotman lens can 

be mixed with the corresponding transmit signal. 

8. The output of the receiver SP3T switch is passed through a mixer to generate an 

IF signal in the range of 0-200 KHz. 

9. An Analog-to-digital converter (ADC) samples the received IF signal and converts 

it to a digital signal. 

10. Finally, an FPGA implemented algorithm processes the digital signal from the 

ADC to determine the range and velocity of the detected target. 

The goal of this thesis is to develop the FPGA implementable algorithm to realize the 

functionality of the MEMS Radar system as described above to detect the distance and 

velocity of target vehicle(s) in a pre-specified range to meet the requirements of a long 

range automotive radar. 



1.2 Hypothesis 

Owing to the passive nature of the MEMS Rotman lens, a relatively enhanced 

cycle time can be achievable as compared to current state-of-the-art systems. The FPGA 

based control and signal processing algorithm can be implemented as a low cost ASIC. 

Together with the miniature MEMS components, and appropriate off-the-shelf radar 

frontend, the target system would offer a highly compact higher performance small 

form factor radar solution for automotive applications. 

The efficiency of the FPGA control and signal processing implementation will be 

gauged by resource usage, speed and its accuracy compared to floating-point MATLAB 

simulations. 

1.3 Motivation 

The automotive scenario is fast-paced, with every millisecond being precious in 

time-critical applications such as collision avoidance and collision mitigation systems. 

Existing automotive radar sensors are critical components of the overall safety system of 

a vehicle, and their cycle time or refresh time (these terms are used interchangeably 

through this thesis) - the time over which the entire field of view is covered - should be 

considerably short. At a speed of 200 km/h a vehicle travels 2.78 meters in 50ms, the 

refresh time of a typical existing system such as Bosch LRR3. Such latency in the safety 

mechanism of the vehicle in response to a potential threat increases the possibility of an 

accident. 

This thesis aims at exploiting the intrinsic beamforming capability of the Rotman 

lens, the fast signal processing and parallel computing on FPGAs, and the reliability of 

the LFMCW method in target detection to provide digital signal processing and control 

of a lightweight state-of-the-art compact radar sensor for automotive safety systems. 
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1.4 Research Methodology 

The course of developing an FPGA-based LFMCW radar signal processing algorithm for 

the 77 GHz MEMS radar sensor involves the following steps: 

1. Study the initial system specifications provided by the project supervisor based 

on the MEMS based radar sensor presented in [1]. 

2. Survey of literature on radar systems, radar signal processing and target tracking, 

radio frequency attenuation, and acceptable parameters for automotive collision 

avoidance systems. 

3. Development of a robust and fast radar signal processing algorithm and 

development of a mathematical model of the same. 

4. Decision on system peripherals such as data converters and interfaces according 

to target system parameters. 

5. Simulation of the algorithm in MATLAB for a typical highway traffic test scenario. 

6. Development of HDL code for implementation on FPGA. 

7. Verification of the developed HDL code using the same test scenario as in (3) for 

a comparison of accuracy between fixed-point HDL signal processing and 

floating-point MATLAB processing. 

8. Fine-tuning and optimization of the HDL code for implementation on target 

FPGA. 
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1.5 Principal Results 

1. A reusable and parameterizable ready-to-implement LFMCW radar signal 

processing algorithm for FPGA/ASIC with minimal latency of 212 us and a 

competitive radar cycle time of 6.78 ms has been created. Major achieved 

performance specifications of the developed system are listed below: 

• Operating frequency - 77 GHz (within regional radio frequency allocation) 

• Bandwidth - 800 MHz (within regional bandwidth limits) 

• Maximum (Minimum) distance - 200 (0.4) meters 

• Range resolution (in HDL) - 0.19 meters 

• Maximum target range error - 0.25 meters 

• Worst-case range accuracy - 99.75% (beyond 100 meters) 

• Maximum relative velocity - ±300 km/h (receding and approaching target) 

• Velocity resolution (in HDL) - 0.95 m/s 

• Maximum target velocity error - 0.83 m/s 

• Worst-case velocity accuracy - 99.17% (beyond 60 km/h) 

• Beam steerability - ±4.5° (beam width 9°) [1] 

• Maximum target count for 3-beam Rotman lens radar - 24 

2. A superior signal processing time compared to recent FPGA-based 

implementations as presented in [28]. 

8 



1.6 Thesis Organization 

Developing from the introduction in Chapter 1, Chapter 2 concisely summarizes 

the available literature of radar technology and studies state-of-the-art standards in 

automotive radar sensors, and their applications, in order to produce a list of target 

specifications for the MEMS radar sensor developed at the University of Windsor. 

Chapter 3 of this thesis propounds a thorough background and mathematical 

conceptualization of radar topics, focusing on LFMCW radar theory. The underlying 

concept of radio detection and ranging systems is presented considering different issues 

affecting performance, such as noise, attenuation and non-linearity all with reference to 

the design of an automotive radar sensor. Essential signal conditioning and processing 

approaches are discussed with focus on frequency analysis of the radar signal. 

Chapter 4 builds on the foundations laid in Chapter 2, and presents the developed 

radar signal processing algorithm. The different components in the algorithm are 

discussed in further detail. 

Chapter 5 shows a MATLAB implementation and simulation of the radar signal 

processing algorithm. Effects of different signal processing methods such as time-

domain windowing and Fourier transform on a noisy signal are studied. Simulation 

results are presented to validate the accuracy of the developed algorithm. 

Hardware implementation of the conceived algorithm is laid out in the form of 

FPGA modules in Chapter 6. Realization of the modules is carried out in Verilog HDL 

(Verilog 2005 - IEEE Standard 1364-2005) using Xilinx development software, where 

fixed-point and resource usage considerations for the signal processing, sampling and 

control algorithm are presented. Code validation is done using Xilinx ISE ISim simulator 

with the same real-valued time-domain data samples as used in MATLAB code 

verification. Chapter 7 furnishes the concluding remarks on the research work, shedding 

light on achieved system specifications, future amendments and possible expansions to 

the work presented herein. 
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CHAPTER 2: 

LITERATURE SURVEY 

This chapter covers a review of the existing literature on radar systems, 

identifying the types of radars available. The advantages of frequency modulated 

continuous wave (FMCW) radar over pulsed and frequency shifting radars are 

recognized, based on which the decision of using FMCW radar is selected as the right 

match for the target automotive radar. Important radar concepts are described, 

especially beamforming and beam steering for solid-state phased array antenna radars. 

The Rotman lens' role in this radar system is described, and a platform for the radar 

signal processing algorithm is selected. The latter part of this chapter presents state-of-

the-art automotive radar systems, highlighting the Bosch LRR3 as a guideline for the 

specifications of the system developed in this thesis. 

2.1 Literature Review 

Radar technology has long been used in military, aerospace, marine, geographical, 

weather monitoring and global positioning applications [9]. The first conceptualization 

of RF radar was made in 1920 by Bells Labs and in 1922 by Guglielmo Marconi [10]. It 

has recently found increasing popularity in the automotive arena with automobile 

manufacturers incorporating radars for adaptive cruise control (ACC), parking aid, pre-

crash warning, and collision avoidance systems. 

Radar systems can be classified by two major types: Pulsed and Continuous Wave 

[2]. Both implementations have distinct operating principle, transmit signal generation, 

receive signal conditioning and processing, control and synchronization issues, and 

power requirements. 
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Pulsed Radar: Pulsed radars send short-duration (in the range of a few hundred 

nanoseconds) high-power (typically in kilowatts range) pulses which illuminate a target 

in the line-of-sight. A pulse is essentially a sinusoid (carrier wave) at the chosen 

operating frequency: the Doppler shift in the carrier wave frequency within the pulse 

corresponds to the relative velocity of the target, and the time taken for the radar to 

detect a return of the pulse determines the range of the target. The pulse repetation 

frequency (PRF) between two consecutive pulses is a critical factor in Pulsed radar 

design. Pulsed radar is a mature technology. The waveform for Pulsed radar is shown in 

Figure 2.1. 

In Pulsed radar the range and relative velocity of the target are determined as follows: 

c x^two-way ,~ ... 
Range, r = (2.1) 

— f x A 
Relative velocity, vre, = - ^ - (2.2) 

Here, c is the speed of electromagnetic radiation in air, 77
tw0_way is the two-way travel 

time for a pulse reflected form the target to return to the source, / d is the Doppler shift 

and AQ is the operating wavelength. 
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Figure 2.1: Pulsed Doppler radar waveform - short pulses with high peak power are broadcast in 
the direction of the target. A pulse contains a few hundred oscillations of the RF signal. The 
return of a pulse is timed and analysed for Doppler shift. [11] 

Continuous Wave Radar: Continuous Wave radars continuously transmit the RF wave at 

a lower power level (typically less than 50mW) and a selected frequency. The CW radar 

systems continuously observe the return from a target over a period of time, commonly 

called the Coherent Processing Interval (CPI). During the CPI, the instantaneous transmit 

and receive signals are mixed, and the resultant intermediate frequency (IF) signal is 

assessed over the CPI for valid targets. The CW radar technology is still under constant 

refinement with new strategies related to both hardware and signal processing 

algorithms being developed. There are two prime implementations of CW radar: FH-

(Frequency Hopping) or FSK-CW (Frequency Shift Keying) radar and FMCW (Frequency 

Modulated) radar. In FSK-CW the RF jumps between multiple frequencies over a CPI, 

whereas FMCW makes use of a frequency chirp in a sine, saw-tooth or triangular fashion 

[12]. The transmit waveforms for both CW radar types are shown in Figure 2.2. 
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Figure 2.2: Transmit signal frequency for FSK-CW (left) radar - frequency hopping - and 
triangular FMCW (right) radar - linear frequency up and down sweeps (or chirps). 

Range for FSK-CW radar, 

Relative Velocity for FSK-CW radar, 

r = 

r̂el 

cAd> 

4*(F2-F,) 
(2.3) 

(2.4) 

Here, c is the speed of electromagnetic radiation in air, AO is the difference in phase 

shift at the two frequencies Fx and F2, fd is the Doppler shift and XQ is the operating 

wavelength. 

2.1.1 Selecting the Type of Radar 

Pulsed Doppler, FSK-CW and LFMCW radars are distinguished by the type of 

waveform, the operating power, computational cost, hardware requirements and 

application. Where Pulsed radar suffers lower atmospheric attenuation, CW radar is well 

suited to short-range applications with low transmit power. Keeping in mind the 

automotive scenario, which is the central theme around this thesis, the following 

disadvantages are visible in these radar types. 
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Pulsed Doppler disadvantages: 

- Velocity measurement limited by blind speed when fd is a multiple of the PRF. 

Maximum measurable Doppler shift has to be less than PRF to avoid ISI among 

different pulses and target returns. 

- To reduce the above velocity ambiguity the PRF can be increased, however 

increasing the PRF creates range ambiguity. 

Relatively high power requirements in the automotive scenario. 

Greater risk of jamming or confusion due to high-power pulses from other 

Pulsed radars. 

FSK-CW disadvantages: 

Invisible targets in the direct path of the radar. 

- Target range is computed based on the difference in phase shift for two 

consecutive frequency hops. This makes the system subject to phase noise. 

The CPI needs to be large enough to avoid range ambiguity. 

The disadvantages posed by both Pulsed Doppler and FSK-CW radars mandate a 

type of radar which does not suffer the same, and is apropos in the automotive 

scenario. LFMCW radar overcomes these disadvantages with: 

No theoretical limit to range resolution and better short range detection. 

Reduced effects of clutter and atmospheric noise. 

Lower power rating than Pulsed radar. 

Less effects of phase noise. 

More resistance to interference from other similar radars in the vicinity. 
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No theoretical blind spots. 

Resistance to jamming (frequency modulation is a common tool in ECCM -

Electronic Counter-Countermeasures - to overcome jamming effects) 

This qualitative comparison warrants the use of LFMCW for the MEMS radar sensor 

under development, especially for long range radar (LRR) application. 

Apart from the distinction in operating principles of different radar types, there are 

design issues common to all types in general. These are: 

Beamforming technique 

Frequency generation, tuning and linearity 

Platform for implementation of radar signal processing algorithm 

2.1.2 Beamforming with Phased Array Antennae 

2.1.2.1 Microelectronic Beamforming 

The primitive approach in communications to rotate a scanning beam over an 

azimuthal angle was to physically rotate a directional antenna mounted on a gyrating 

platform. To reduce the delay and power usage inherent to this mechanically rotating 

part, solid-state antennae with microelectronic beamforming were developed. 

Beamforming is an aspect of wireless systems where directional signal transmission 

and/or reception are desired. In other words, beamforming can be referred to as a form 

of spatial filtering [7]. It is a technique applied in both transmission and reception, 

depending on the application. In communications, high directivity is desired in the 

direction of the signal source for a low-noise high-fidelity link to be established. In radar 
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systems, beamforming allows a means of electronic steering of a narrow scanning beam 

to detect targets with higher angular resolution. 

Essentially, beamforming with phased array antennae - which is the type of 

antenna used in the radar system under development - is the ability to simulate a large 

directional radiation pattern using a set of smaller non-directional radiating antennae 

[4]. A beamformer does this by adjusting the amplitude and phase of the radiation at 

every radiating element and forming a pattern of constructive interference in the 

desired direction and destructive interference elsewhere. 

RF Source 

Figure 2.3: Six patch array antenna of radiating elements. 

Figure 2.3 illustrates the concept of beamforming usuing an array of 6 radiating 

elements (or patches). Each element is separated by a distance of y~ , where l i s the 

wavelength of the waves being radiated. The RF source passes an identical signal down 

the 6 different paths leading to the radiating patches. The RF signal travels different 

distances to reach the radiating patch, which essentially creates a different path delay 

for the signal. This delay manifests itself as a phase shift in the original signal. These 

phase shifted RF signals are radiated and produce an interference pattern which adds 

up to a main lobe and possibly some sidelobes, with nulls occurring in intermittently. 
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Figure 2.4 shows the radiation pattern of a 3 patch array antenna and a 6 patch 

array antenna. As a design rule for linear patch array antennae, a higher number of 

patches produce a more directional and sharper beam. 

W W t * -f%r •#•• fc«i 
m- * i : " i s - : a. •• so" t * : ^ 

Figure 2.4: Radiation pattern for 3 patch array (left) and 6 patch array (right). (The figures are 
extracts from graphs generated using Java applets distributed with Fundamentals of Applied 
Electromagnetics 6th Edition by Ulaby, Michielsson, Ravaioli.) 

Beamforming involves both the generation of a directional pattern as well as 

steering of the main lobe over the azimuth and also the elevation angles. 

Microelectronic beamforming can be categorized into two main types: 

• Analog Beamforming 

• Digital Beamforming 

2.1.2.1.1 Analog Beamforming 

Figure 2.5 illustrates the general layout of an analog beamformer that can be 

implemented using analog RF circuit components. After generation, an RF signal is fed to 

the radiating elements after altering the phase using electronically tuned phase shifting 

elements and constant weights to form a directional beam. An analog triangle or sine 

wave generator can be used to continuously vary the phase shifting elements, which 

effectively causes the beam to be steered [4]. Bosch LRR2 automotive radar has been 

developed to operate using this analog beamforming concept. 
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Figure2.5: Analog beamformer with power and phase adjustment to rotate the beam. 

2.1.2.1.2 Digital Beamforming 

Instead of using analog circuits to control the phase and power of the signal fed at 

every antenna patch, digital control offers the following advantages [5-6]. Denso bistatic 

77 GHz LRR and Toyota CRDL 77GHz LRR radar both operate on a digital beamforming 

principle. 

• Improved beamformer control: The phase at individual patch or sub-array level 

can be accurately controlled. The beam shape and size can be controlled 

electronically to any degree resulting in a more selective beamforming. 

• Switching between multiple beams: Switching between beams of different 

widths by enabling or disabling array elements or generating distinct beams 

using separate sub-arrays. 

• High precision control of phase shift and power: DSPs or FPGAs are powerful 

tools for high-resolution high-speed precise digital control of antenna 

components. These digital circuits can be used to drive high power antenna 

circuits with improved control and precision as compared to conventional analog 

implementations. 
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Digital beamformers require memory blocks, adders and multipliers as system 

building blocks. These digital components are available in high-speed on-chip resources 

in FPGAs which typically operate at clock frequencies of 550 MHz (e.g. Virtex 6 FPGA by 

Xilinx). This makes digital beamforming techniques more feasible and efficient. Digital 

beamforming does require more signal conditioning prior to digital processing. If the 

signal frequency is too high (greater than 100 MHz, say) direct sampling is not possible. 

To overcome this issue, the signal needs to be down-converted to an intermediate 

frequency (IF) using an RF mixer which can be sampled. Various beamformer 

architectures are available in [3-4]. 

2.1.2.2 Rotman Lens Beamformer 

A Rotman lens [1] is a passive device that can enable a beamforming and beam 

steering capability with out any microelectronic signal processing as needed by analog 

or digital beamformers. During operation, the electromagnetic property of a dielectric 

cavity is exploited to realize a directional in-phase signal. 

Figure 2.6: Schematic of the intrinsic beamforming capability of the Rotman lens [1]. 
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The body of the Rotman lens has beam ports on one side and array ports on the 

opposite side. The central beam (beam port 2 in Figure 2.6) guides the input signal 

through channels of equal length to the array elements, creating a forward-facing beam. 

On beam ports 1 and 3 the input signal travels through different path lengths to the 

antenna patches, thus undergoing phase shift leading to the beam being steered as 

shown [8]. Typical Rotman lenses are large and are realized using microstrip substrates 

like Duroid 5880 or dielectric material filled waveguides. Figure 2.6 illustrates the 

schematic representation of a Rotman lens. Recently a novel MEMS based air-filled 

waveguide type Rotman lens has been reported [1]. 

2.1.3 Direction of Arrival Estimation using Phased Array Antennae 

Direction of Arrival estimation or DOA using classical approach required a 

gyrating radar antenna that would pin-point the exact angle of a target. However, with 

solid-state antennae and beamforming, DOA estimation requires digital processing. With 

higher clock speeds and parallel processing capability of FPGAs and multi-core DSPs, this 

digital processing does not pose any limitations. Two techniques have been compared in 

literature [30]: DOA estimation by spatial frequency and DOA estimation by phase 

difference. 

DOA by the spatial frequency: this method is limited by the number of array antenna 

elements. A larger number of array elements are required for better accuracy and 

precision. It is shown in [30] that with 10 elements the DOA estimation can be unreliable 

using this method. For reliable and accurate measurement of target angle a 128 

element array is then used, which in real-life applications is impractical and would 

increase hardware. 

DOA by phase difference: this method is proposed as a superior method to the spatial 

frequency method, and requires fewer antenna elements for good precision DOA 

measurement. The technique is described as follows: 
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Let there be n patch array elements in the antenna. Sample each array element 

individually at the same time and process the samples through 1-D FFT to obtain 

the spectral power distribution for detected targets. 

Let there be m peaks in the FFT spectrum of each of the n element 

corresponding to m targets. Compute the phase of each complex peak and 

produce a matrix [ O, y ] for i = 1, 2, 3...m and j = 1, 2, 3.../1. 

Compute the phase change for every row of [Q>ij], taking O ^ as the primary 

phase for the Vth target, and obtain a new phase difference matrix V^ij] with 

the same definitions for indices i and j . 

Obtain the average of each row pertaining to a single target from V^ij], thus 

obtaining an array of averages [xVi ]. Use the average computed, along with the 

observed wavelength A, for the particular target (obtained from the peak 

frequency resolution in the previous steps) and the known distance between 

individual array elements d, to compute the angle of arrival using the equation: 

% =2n—sin0, (2.5) 

Where 9t is the angle of the Vth target. 

2.1.4 Frequency Generation, Tuning and Linearity 

Generation of the RF radar signal is typically accomplished by means of a voltage 

controlled oscillator (VCO). In FSK-CW or simple Pulsed Doppler radar a constant 

frequency is broadcast over a CPI or pulse respectively, however for LFMCW a frequency 

chirp is realized by tuning the VCO using a triangular modulating signal. This gives rise to 

linearity considerations in the transmitter, which arises due to a non-linear rate of 

change of output frequency per unit change in tuning voltage. Linearity of a VCO is 

defined as follows [13]. 
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Linearity, S = * 'max (2.6) 
B 

Here, | / e ( 0 | m a 's t n e maximum absolute value of | / e (0 | / which is the error or 

difference between the ideally expected output frequency |/jdeal(0| of the VCO and the 

actual output frequency |/ac tua i (0| of the VCO, and B is the bandwidth over which the 

VCO is being tuned. 

fe ( 0 = /ideal ( 0 ~ /actual ( 0 (2-7) 

Due to material imperfections, stray capacitance and inductance in high 

frequency RF circuits, VCOs tend to have a non-linear frequency vs. voltage curve as in 

Figure 2.7. These drifts in the output frequency gradient cause phase errors in an LFW-

CW radar among others [2]. 

Output Frequency fideJt) 
, 

fe(t) J 

/actualftJ 

^t^f^"^ ' ' """ 

> 

— * -
Tuning Voltage 

Figure 2.7: Non-linear frequency response of a typical RF VCO. 

2.1.5 Selecting the Development Platform for the Radar Signal 
Processing System 

The transmitter incorporates radar signal generation, tuning and linearity 

control. These aspects become critical in LFMCW radar due to the requirement of highly 

linear frequency sweeps. In LFMCW radar the signal generation and sweep modulation 

can be accomplished using analog or digital modulation. Analog PLLs or Phase Locked 
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Loops containing a VCO were used in early CW systems, however were overtaken by 

digital systems with better frequency response, excellent linearity, easier design and 

improved performance in noise [2]. 

In digital implementation of a radar transmitter the control and modulation 

algorithm can be based on a Digital Signal Processor (DSP) or a Field Programmable Gate 

Array (FPGA). Due to their highly parallel nature, ability to run several tasks 

simultaneously without stalling other tasks, and on-chip resources (such as RAM blocks, 

LUTs, fast DSP multipliers) FPGAs are the preferred solution for digital signal processing. 

The use of FPGAs for DSP has been boosted by the wide availability of fully customizable 

IP cores from various providers spanning many application areas such as DSP, 

automotive, communications, computer networking and bus interfaces among others 

[14]. According to benchmark results presented in [21], [22] and [28], the latencies for a 

2048-point FFT on a 32-bit Intel Core 2 Duo @ 3 GHz, an Analog Devices ADSP-BF53x 

and a Texas Instruments TMS320C67xx are tabulated in Table 2.1. Comparison of these 

with an FPGA at a much lower clock frequency demonstrates the power of FPGAs as 

modern-day high-bandwidth DSP solutions. 

Table 2.1: Speed Comparison of a typical FPGA versus a general purpose Dual Core 

Processor and a Digital Signal Processor 

Manufacturer 

Intel 

Analog Devices 

Texas Instruments 

Xilinx 

Part Name 

32-bit Core 2 Duo 

ADSP-BF53X 

TMS320C67xx 

Virtex-5 FFT Core 

Clock 

Frequency 

(MHz) 

3000 

600 

600 

200 

2048-point 

FFT Latency 

(Us) 

37.55 

32.40 

34.20 

39.60 

Number of 

Clock 

Cycles 

112650 

19440 

20520 

7920 
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Even with a low clock frequency of 200 MHz the FPGA has comparable speed 

performance compared to the other processors at higher clock rates. Power 

consumption of a digital circuit is proportional to the total gate-level switching required 

to compute a particular result: the higher the clock frequency and required clock cycles, 

the greater the amount of switching, and thus the higher the power consumption. Given 

the automotive scenario, FPGAs offer a desirable combination of speed and power 

efficiency. 

Furthermore, to deal with possible VCO non-linearity FPGAs can be used to 

implement a DDS or Direct Digital Synthesis algorithm. DDS is a method of creating 

arbitrary yet repetitive waveforms using a RAM or LUT, a counter, and a DAC, 

components that are readily available on FPGA platforms. DDS promises optimal 

linearity in frequency sweeps, precise frequency tuning, and excellent phase error 

recovery [2]. 

Based on the analyses presented here, the development platform of choice for 

this thesis is FPGA technology. A successful implementation of a radar sensor 

transmitter and receiver based on FPGA technology is the Radar Digital Unit (RDU) of 

South African Synthetic Aperture Radar II (SASAR II) in May 2004, by the University of 

Cape Town [22]. 

2.1.6 State-of-the-Art in Automotive Radar 

Research on automotive radar began as early as the 1950s, although 

commercialization only became possible in the late 1990s with the launch of various 

manufacturers introducing the early versions of collision warning, parking assist and 

adaptive cruise control radars [23]. Daimler-Chrysler launched their first "autonomous 

cruise control" radar in 1999 with Mercedes S-class models, marketed as "Distronic". 

Further developments of 77 GHz LRR and 24 GHz UWB SRR were launched as a 

combination of cruise control, parking assist and collision warning systems, marketed in 
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2003 as "Distronic" and a second version marketed as "Distronic Plus" [24]. Figure 2.8 

shows the Daimler-Chrysler automotive radar application portfolio, which has set an 

industry-wide standard on radar systems. The Distronic Plus system, which includes 1 

LRR at 77 GHz and 4 SRRs at 24 GHz, is shown in Figure 2.9. 

.. Blind spot 
^ ^ ^ ^ n n g a i a detection 

stop & tSBKKi ^ ^ ^ ^ _ _ _ ^ ^ _ 

iMa Blind spot 1 
l i l detection 

Figure 2.8: Radar applications in the automotive industry © Daimler-Chrysler 2005. 

One of the promising development initiatives was the German government 

funded Daimler-Chrysler research project named KOKON [25]. The main outcomes of 

this research were development of cost-effective 76 - 81 GHz automotive radar 

systems, vehicular integration conceptualization, and standardization of the 7 6 - 8 1 GHz 

radio frequency band for automotive applications. The KOKON project is a successor to 

the RoCC project, which is a joint-venture of Daimler-Chrysler, BMW, Bosch, Continental 

and Infineon [25]. 
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Parking Assist Short-range radar for Parking Assist 

Figure 2.9: Distronic Plus by Mercedes-Benz © Daimler-Chrysler 2005. 

The RoCC project essays a study of automotive radar vehicular integration and 

live testing, investigation of complete sensor packaging including DSP unit(s), evaluation 

of automotive radar beyond 100 GHz, SMD packaging of RF MMICs, feasibility study for 

500 GHz UWB automotive radar based on LFMCW technique, improvement of energy 

efficiency and multi-mode multi-range self-calibrating sensors. The lattermost objective 

is currently one of the most pursued topics in automotive radar; recent self-calibrating 

dual-band MMICs such as those presented in literatures [26] and [27] propose the 

capability of switching between 24 GHz and 77 GHz SRR, MRR and LRR using the same 

MMIC RF radar frontend. 

The MEMS Rotman lens and MEMS RF switch combination central to this thesis 

can be used in conjunction with a reconfigurable patch array antenna in order to 

accomplish SRR, MRR and LRR beamforming using the same hardware. The control of 

such a system would be easily realizable digitally by means of the FPGA control 

algorithm. 

Table 2.2 lists some of the commercially available automotive radar systems by 

different developers and their operating specifications. The AC3 by TRW Automotive is a 

third-generation adaptive cruise control radar operating at 77 GHz, capable of scanning 

targets up to 250 meters distant [20]. Table 2.3 shows a list of the previous generation 
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of radar systems and their capabilities as listed by a report from Fujitsu presented in 

reference [16]. 

Table 2.2: Commercially available new generation of automotive radar systems [23] 

Developer 

TRW Automotive 

Delphi 

Denso 

Bosch 

Operation 

Frequency 

77 GHz 

76 GHz 

77 GHz 

77 GHz 

Radar 

Type 

Pulsed 

Doppler 

Pulsed 

Doppler 

FMCW 

FMCW 

Range 

(m) 

1-250 

1-174 

2-150 

0.5 - 250 

Relative 

Velocity 

(km/h)1 

±220 

-360 to +90 

±200 

-500 to +250 

Field 

of 

View 

±8° 

±10° 

±20° 

±30° 

Refresh 

Time 

(ms)2 

50 

50 

50 

50 

Negative sign means velocity of approaching target; positive sign means velocity of receding 
target. 

Processing times are not included. 

Table 2.3: Previous generation of automotive radar systems - listing by Fujitsu [16] 

Manufacturer 

Appearance 

Externa! 

Dimensions (mm) 

Modulation Method 

Detection 

Range 

Horizontal 

Detection Angie 

Alible Detection 

Method 

EHF Device 

Our company 

m 
89X107X86 

F M C W 

4 m to 120m 

or greater 

±8"" 

Mechanical 

Scan 

MMIC 

ADC 

a 
136X133X68 

FM Pulse 

Approx. 

1 m to 150m 

Approx. 

Ream 

Conversion 

CUNN 

Delphi 

m 
137X67X100 

F M C W 

Approx. 

Ira to 150m 

Approx. 

±5° 

Mechanical 

Scan 

CUNN 

Bosch 

91X124X79 

2m to 120m 

or greater 

±4"' 

Beam 

Conversion 

CUNN 

Honda elesvs 

9 
123X98X79 

F M C W 

4 m to 100 m 

or greater 

± 8 ' 

Beam 

Conversion 

MMIC 

Denso 

% 

77X107X53 

FM-CW 

Approx. 

2m to 150m 

±10'' 

Phased 

Array 

MMIC 

Hitachi 

# 

80X108X64 

2- frequency CVV 

Approx, 

lm to 150m 

±8' 

Monopulse 

MMIC 
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One of the most recent systems from Table 2.2 is the Bosch LRR3 (as marketed) 

which was launched in September 2009 on the Porsche Panamera 2010 model. One of 

the claims of Bosch LRR3 is being the world's smallest radar sensor package at 74mm x 

77mm x 58mm. The MEMS radar system being developed at the University of Windsor 

has close to half the dimensions at 30mm x 40mm x 10mm owing to the compact MEMS 

Rotman lens beamformer and antenna design. 

These state-of-the-art automotive radar systems provide a target for this thesis 

and help set the aims for the speed and efficiency of the radar signal processing 

algorithm presented in this thesis. 

2.1.7 Recent Work Done in FPGA-based LFMCW Digital Signal 
Processing 

A recent study, in 2009, on FPGA-based LFMCW radar signal processing 

algorithm has been presented in [28], where a Xilinx Virtex-ll Pro FPGA at 50 MHz has 

been employed. For a radar cycle (or refresh) time of 60ms the developers have used a 

sampling time of 1240us and a processing time of 1250p.s per frequency sweep. The 

spectral analysis is first done using an FFT core, after which the software processing for 

peak detection and range-velocity computations has been done using a soft-processor 

MicroBlaze core by Xilinx. The developers quote a usage of 4100 DSP48 slices and 35% 

of on-chip Block RAM usage, and several Xilinx IP cores to optimize timing requirements. 

This work is given due consideration in light of the aims of this project, and a faster 

signal processing algorithm would be a key outcome of this thesis. 
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CHAPTER 3: 
REQUIREMENTS FOR THE TARGET FMCW SYSTEM 

This chapter reviews the relevant mathamtical models associated with FMCW 

radar to process the reflected radar signal to determine the range and the velocity of 

the targets. The range and velocity equations are reviewed for the automotive radar 

algorithm for both relatively stationary and moving targets. Necesssary mathematical 

process blocks have been identified and their characteristics are studied to determine 

the operating parameters. Several other issues such as atmospheric attenuation, effects 

of temperature, false alarm rate, removal of clutter, types of radar targets, and have 

also been reviewed. The gathered knowledge has been used in the next chapter to 

develop a robust highly accurate control and signal processing algorithm for the MEMS 

Rotman lens based radar. 

3.1 System Requirements Identification 

In [19], the requirements for state-of-the-art automotive long range radar have 

been identified in Table 3.1. Daimler-Chrysler has specified the operating parameters of 

the next generation of long range radar for automotive applications. The parameters 

key to the work presented in this thesis are range coverage, range accuracy, relative 

velocity coverage, velocity accuracy, and cycle time. 
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Table 3.1: The next generation of Long Range Radar (from Daimler-Chrysler) 

Specifi ration LRR 

Range / 

Range Accuracy 

Velocity Range / 

Velocity Accuracy 

Opening Angje Horizontal 

Angle Resolution Horizontal 

Alignment Offset Horizontal 

Opening Angle Vertical 

Angle Resolution Vertical 

Alignment Offset Vertical 

Cycle Time 

Interface 

Unit 

m 

m 

km/h 

km/h 

deg 

deg 

deg 

deg 

deg 

deg 

ms 

-

DC-Spec 

1 .200 

±0,25 

-100. .260 

±0,5 

20 

not del . 

±3addittv 

4.5 

notder. 

± 2 

<50 

CAN 

DAIMUERCHRYSLER 

Power 

Transma Power 

Sensor Size (WxHxD) 

Sensor Weight 

Operation Temperature 

Storage Temperature 

Mounting Position Offset Horizontal 

Mounting Position Offset Vertical 

Misalignment Detection / 

Automatic Adjustment Horizontal / 

Automatic Adjustment Vertical / 

Blockage Detection Time / 

77 GHz Interference Safety 

Unit 

w 

rrfW 

mm 

9 

•c 

*c 

cm 

cm 

deg 

-
sec 

-

DC-Sp*C 

<S 

< 10 

10Cr*100-50 

<500 

-40 ...B5 

-40... 105 

±80 

>50 

<0,1 

yes 

yes 

<1 

yes 
1 10 ' 

Based on the next-generation specifications in Table 3.1 [19], the target radar signal 

processing algorithm need to meet at least the following performance specifications: 

1. Range: 200 meters 

2. Range accruay: 0.25 meters 

3. Relative velocity: -100 to 250 km/h 

4. Velocity accuracy: ±0.5 km/h 

5. Cycle time: < 50ms 

30 



3.2 Selecting the Required FMCW Waveform 

FMCW is the type of radar for which the algorithm presented in this thesis has 

been designed. The use of FMCW as the radar technique of choice has been justified in 

Chapter 2. FMCW waveforms - note that LFMCW is a special case of FMCW where the 

modulating waveform is linear — exist in various standard implementations: sine wave, 

saw-tooth and triangular. Figure 3.1 illustrates these three types. 

Frequency 

"2H 

F i 

Frequency 
A 

Frequency 
A 

Time Time 

Figure 3.1: FMCW waveforms left to right: Sine, Saw-tooth and Triangular. (The period T is 

equivalent to CPI in Chapter 1) 

Sine wave modulation is seldom used in contemporary FMCW systems due to 

the extra latency added in computing and adjusting sine wave coefficients. Also, sine 

wave modulation has less tolerance for VCO non-linearity as compared to the linear 

variants of FMCW waveforms. However, at lower operating frequencies (few hundred 

MHz) sine wave modulation is realizable and offers easy analog modulation without the 

need for digital waveform generation. 

The saw-tooth waveform only has a positive frequency sweep, and is thus easier 

to control and tune electronically. However, the computation of range and velocity 

relies on phase calculation of the beat frequency over a minimum of 2 sweeps, and thus 
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requires more processing when compared to the triangular waveform. Range and 

velocity may not be determined simultaneously. 

The favoured FMCW waveform is the triangular waveform due to the ability to 

determine both range and velocity. The difference in up sweep and down sweep 

frequencies is equivalent to twice the Doppler shift of the target, thus allowing 

simultaneous range and velocity computation. Another benefit of the triangular 

waveform is that the different sweep directions make the system more resistant to 

stationary clutter and jamming signals by having a more dynamic instantaneous 

frequency. 

3.3 Linear Frequency Modulated Continuous Wave Radar 

The LFMCW technique relies on a linear frequency sweep (or chirp) over a 

carefully selected bandwidth and measures the received beat frequency / b from all 

targets (and false targets or clutter) that fall in the field of view of the radar beam. As 

discussed, triangular modulation is chosen for this thesis. The beat frequency is defined 

as the instantaneous difference in the frequencies of the transmitted and received radar 

signal: 

/b(0 = / t (0"/r (0 (3-D 

The bandwidth and chirp period (termed CPI in Chapter 2 and T hereon) are 

critical parameters in determining the refresh rate, range resolution and velocity 

resolution of the targets. A larger sweep bandwidth improves range resolution, which is 

a desirable effect. However, the limiting factor to higher bandwidth is the linearity of 

the VCO that is used to generate the radar signal. Figure 3.2 shows the LFMCW 

transmitted and received signals illustrating the beat frequency obtained in the up 

(positive) and down (negative) frequency sweeps. 
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FREQUENCY 
Transmitted 

Wave 

Received Wave 
(Target Echo) 

BEAT 
FREQUENCY 

/ , up 

f&> own 

Figure 3.2: LFMCW Transmit, Receive and Beat frequency. 

TIME 

TIME 

Here, r0 = round trip delay t ime for the signal to be received from the target 

fd= Doppler shift due to relative target velocity 

/ 0 = starting frequency for operation bandwidth 

B = operation bandwidth 

T = sweep duration (same for both up and down sweeps in this thesis) 

fb= beat frequency or intermediate frequency 

/ u p = up sweep beat frequency 

/down = down sweep beat frequency 
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3.3.1 Derivation of Range and Velocity for LFMCW 

The following is a concise step-wise derivation of the range and velocity equations for 

LFMCW radar: 

Let ft(t) = transmitted radar signal 

fT(t)= received target echo signal 

k = — = rate of change of frequency over a single sweep 

3.3.1.1 First case: Relatively Stationary Target 

A relatively stationary target is a target with zero relative velocity compared to 

the radar sensor or host vehicle, and as such does not contribute to any Doppler shift of 

the received echo signal. The transmitted radar signal can be defined as a complex 

sinusoid with a base frequency of f0 modulated over a bandwidth of B Hz [29]. 

f ( 1 2 
/ t l (0 = exp jln f0t + -ktz (3.2) 

The modulation of the transmit signal is evident from the frequency term in equation 

1 2 

(3.2) above. The term —kt adds a fraction of the total sweep bandwidth depending on 

the instantaneous time t. 

The received echo signal can be defined as a complex sinusoid delayed by a round trip 

delay time r0. 

( ( 1 2 
/ r l ( 0 = exp j2n f0(t-T0) + -k(t-T0) 

V V 2 

(3.3) 
/ ; 
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Multiplying in time (or mixing) the transmitted and received signals, and ignoring 

the high frequency component in the mixer output, produces the beat or intermediate 

frequency of interest. In the case of a relatively stationary target, beat frequencies for 

both up and down sweep are identical and can be expressed as: 

krt' /bi (0 = /ti (0 ® / n (0 = expf y 2 ; / / 0 r 0 + ktr0 - hrl \ | (3.4) 

Differentiating the phase of the beat signal in (3.4) w.r.t. time t gives the instantaneous 

beat frequency that is directly proportional to the range of the target. 

4foTo+ktT0-~kr$ 

/upl = ~ Jt
 l = kr0 (3.5) 

Therefore, both up and down sweep beat frequencies are defined for a stationary 

target. 

2r 
/upl = /downl =kT0=k— (3.6) 

c 

Here, r is the range of the target and c is the speed of EM waves in air. Thus for a 

relatively stationary target the range is computed by taking the average of the up and 

down sweep instantaneous beat frequencies as follows [29]: 

r = 
/upl + /downl 

J 

x — (3.7) 
2k 

3.3.1.2 Second case: Moving Target 

Consider a moving target with velocity vr relative to the radar sensor or host vehicle. 

This velocity introduces an additional term in the transmitted and received signals due 

to the Doppler shift. This Doppler shift is approximated by f^vjc [29]. The following 

transmitted signal is generated for the up sweep. 
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/ t 2 ( 0 = exp H /0t+-kt2 (3.8) 

The received signal for the up sweep is affected by twice the amount of Doppler shift 

due to two-way travel of the radar wave, as well as round trip delay as in the case of the 

stationary target. 

/ r 2 ( 0 = exp j2df0(t-T0) + ^k(t-T0)
2+2f0^-(t-T0) (3.9) 

Multiplying the transmitted and received signals in time we obtain the beat frequency 

for the up sweep as given in equation (3.9). 

/b uP(0 = exp jln 

f ( v v ^ 
f0r0 +\kT0+ 2 / 0 -^ - 2kr0 -£• 

V c c j 

t--kr2 

2 ° 

\ \ 

• ( 
\ 

+ 2-

(3.10) 

The constant and second order terms in the above equation can be ignored for a stable 

computation of the instantaneous up sweep frequency by differentiating w.r.t time t. 

/ up2 

fr v v U 
kr0+2f0^-2kT0^ t 

c c ) , 
dt 

kr0 + 2 / 0 ^ - 2kr0 ^*kr0+ fd (3.11) 
c c 

v 2v v v 
The above approximation is possible as 2kr0-

L = 2k L = 4ftr—^-«1 for 
c c c c 

bandwidths under 1 GHz. Larger bandwidths in tens of GHz also produce negligible 

frequency values for this term, and thus this term can be safely neglected. 

During the down sweep, the Doppler shift manifests as a negative entity due to 

the negative slope of the modulating wave. Note that fA<B. This gives rise to the 

following beat frequency signal at the receiver of the radar sensor: 
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/ b d o w n ( 0 = exp jln 

( ( v v ^ 
/orO + kTQ-lfQ^-lkTQ-t 

V c c) 

t--kxl 
2 ° 

+ 2-
. 2 ^ (3.12) 

J) 

Differentiating (3.12) w.r.t. time t we get the down sweep frequency for a moving 

target with relative velocity v r . 

/ d lown2 

(f v v ^ 
kr0-2f0-^-2kT0-t t 

vv c c ) ) 
dt 

= krQ - 2 / 0 ^ - 2kr0 ^ * k r 0 - fd (3.13) 
c c 

From this analysis, the range and velocity of any target for the LFMCW technique can be 

determined. Adding (3.11) and (3.13) we get 

/uP2 + /down2 = kTo + fd + kr0 -fd= 2kr0 = 2k 
(2r) 

Hence, range r 
C/up2 + / d o w n 2 ) C 

2k 
(3.14) 

This is similar to the range expression derived earlier for a stationary target. 

The relative velocity of the target can be derived by subtracting (3.13) from (3.11) to 

extract the Doppler shift caused by the target. 

/uP2 ~ /down2 = kr0 +fd- (kt0 -fd) = 2fd= 4 / 0 — F c 

Hence, relative velocity, v r = 
v/up2 /down2) C 

X 

4 /o 
(3.15) 

Given equation (3.15), the actual target velocity can be computed based on knowledge 

about the host vehicle velocity. 

(3.16) Actual target velocity, "'target ~ vhost • v r 
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3.3.2 LFMCW Radar Signal Generation using VCO 

A core component in contemporary radar systems is the VCO or voltage 

controlled oscillator. As the name implies, a VCO is supplied an input analog tuning 

voltage which translates to a change in internal capacitances leading to a change in 

generated output frequency. For the LFMCW radar under development the output 

frequency has been chosen as a triangular chirp, with a positive sweep in frequency 

following by a negative sweep. This requires a triangular modulating signal, which can 

be generated using an FPGA with relative ease. 

The modulating unit requires an up/down counter that will feed a DAC which will 

output the tuning voltage to the VCO. The digital counter will count up for the up 

sweep, and count down back to zero for the down sweep. The refresh rate and 

resolution of the DAC are important parameters affecting the linearity of the LFMCW 

frequency chirps. Figure 3.3 shows the radar signal generation method employed in the 

algorithm presented in this thesis, based on a digital counter implemented in an FPGA. 

Up sweep : 0 -» 2r - 1 

Down sweep : 2r - 1 -> 0 

77 GHz 
VCO 

Antenna 

Figure 3.3: FPGA based tuning voltage generation for VCO to produce LFMCW chirps 
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The modulation results in a time-domain chirp signal resembling the conceptual 

waveform in Figure 3.4. The up frequency sweep is followed by a down sweep over 

time. 

LFM-CW Triangular Chirp 

0 0.5 1 1.5 2 2.5 
Time (s) x 1 Q -3 

Figure 3.4: Time-domain RF signal showing up (red) and down (purple) frequency chirps for 
LFMCW radar. 

3.3.3 Received Echo Signal Conditioning for LFMCW 

Prior to digital signal processing of a received target echo, conditioning of the RF 

signal is required. Conditioning is typically accomplished using analog processing and 

involves the following components: 

1. Low Noise Amplifier: boost the received echo signal using a low noise amplifier 

to counter atmospheric and hardware attenuation. 
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2. Mixer: time-domain multiplication (frequency-domain convolution) of the 

instantaneous received echo signal with the instantaneous radar signal being 

transmitted. Let ar sin(wr / ) and at sin(w t /) be the received and transmitted 

signals at any t ime, then the output of the mixer is the difference and sum of 

these frequencies. Figure 3.5 shows the conceptual diagram of a mixer. 

axax ar sin(wr t) <S> a t sin(wt t) = -LJ-[sin((wr + wt )t) + sin(wr - wt )t)] (3.17) 

Mixer I f< + f< I 

Received Signal r ^ \ \ / \ Intermediate 
from Antenna Jx \^\^ Frequency 

A 
Transmit Signal from 
Local Oscillator / VCO 

Figure 3.5: Conceptual diagram of an RF mixer. 

3. Low Pass Filter: filter out the high frequency component from the output of the 

mixer and extract the beat frequency of interest, (w r -wt). 

4. Analog to Digital Converter: sample the IF or the beat frequency slightly above 

Nyquist rate to avoid aliasing. The ADC is a critical component in determining the 

efficiency and accuracy of the entire radar signal processing algorithm. The 

output resolution of the ADC commands the memory usage, speed and precision 

of range and velocity computation: higher resolution provides lower 

quantization noise and improved precision at the cost of t ime and required 

memory. The sampling rate of the ADC is proportional to the bandwidth the 

radar system operates at. 

40 



3.4 Digital Signal Processing Tools 

The following is a list of the major signal processing steps required in a radar system: 

1. Time-domain windowing 

2. Spectral analysis using the Fast Fourier Transform 

3. Constant False Alarm Rate processing 

3.4.1 Time-domain Window 

After signal conditioning, the data is digitized and available through the ADC, 

which samples the time-domain beat frequency or intermediate frequency over a 

restricted length of time t seconds, say. Spectral analysis is done on the time-domain 

data using the FFT, which assumes that the data consists of an integral number of 

wavelengths of the signal. However, samples from the ADC seldom contain an exact 

integral number of wavelengths, and the intermediate frequency in itself is distorted by 

noise and microwave interference. Sampling by an ADC is equivalent to multiplying a 

time-domain signal by a rectangular window function. This leads to the formation of 

spectral noise in the form of leakage [31]. 

Spectral leakage is caused by the sudden slicing of a time-domain signal. For 

there to be no spectral leakage the signal would have to be sampled over an infinite 

length of time, which is not feasible. Time-limiting a signal means multiplying it by a 

rectangular window function, which causes the signal to be non-band-limited, giving rise 

to power leakage into neighbouring frequencies from the actual frequency of interest. 

Figure 3.6 illustrates the effect. 
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Time domain signal Sampled signal 
Frequency domain 
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-•Time 

T < > 
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f i[t f 

sampling window 

Time 

of interest 

(b) 

Spectral 
leakage 

(side lobe) 

f Frequency 

(c) 

Figure 3.6: (a) Time-domain continuous wave with period T; (b) Sampled time-domain signal 
multiplied by a rectangular window through ADC; (c) Spectral leakage due to rectangular 
windowing where FN = 1/T is the frequency of interest. 

In order to reduce the effects of spectral leakage, different windowing functions 

have been investigated [31]. An ideal window function is a time-domain function whose 

energy is band-limited. When multiplied by a time-domain signal, an ideal window 

function helps focus the energy of the signal and reduce spectral leakage. Although ideal 

window functions are practically unrealizable, there exist windows that can greatly 

reduce the sidelobe spectral leakage as well as attenuate frequencies other than the 

frequency of interest, similar to the action of a filter. Figures 3.7(a), 3.7(b), 3.7(c) and 

3.7(d) offer a comparison of some window functions, namely Rectangular, Triangular, 

Hann and Hamming. The equations for each window are given, where w(n) represents 

the set of all time-domain coefficients of the window. The nth coefficient is multiplied 

by the nth time-domain sample. 
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Figure 3.7(a): Time and Frequency domain representations of Rectangular window 

points with 2048-point FFT. 
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Figure 3.7(b): Time and Frequency domain representations of Triangular window with 21 points 

and 2048-point FFT. 
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w(n) = 0.5 1 - cos 
V 

Inn 

N - 1 
(3.18) 
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Figure 3.7(c): Time and Frequency domain representations of Hann window with 41 points and 

2048-point FFT. In the equation, N - number of time-domain points. 

45 



W ( H ) = 0.54 - 0.46 cos 
Inn 

N - 1 
(3.19) 
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Figure 3.7(d): Time and Frequency domain representations of Hamming window with 41 points 

and 2048-point FFT. In the equation, N = number of time-domain points. 
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Table 3.2: Comparison of common Window functions [31] 

Window 

Rectangular 

Triangular 

Hamming 

Hann 

Blackman 

Main-lobe width (-3dB) 

(no. of frequency bins) 

0.89 

1.28 

1.36 

1.64 

1.68 

Highest side-lobe level 

(dB) 

-13 

-27 

-43 

-39 

-58 

Roll-off rate 

(dB/octave) 

-6 

-12 

-6 

-18 

-18 

Table 3.2 lists some well-known window functions compared to the default 

rectangular window. An ideal window function would have a unit main-lobe width, very 

low side-lobe level and steep roll-off. Looking at the table, the best side-lobe 

attenuation and roll-off are for the Blackman window; however the main-lobe width is 

large. This means that the energy of the main lobe is spread across 1.68 frequency bins, 

and this may be inferred in some systems as spectral leakage as well. The Hamming 

window is commonly employed in communication systems, although the roll-off is 

smaller than the rest. 

For this project, a Hamming window is chosen. The reasons for this choice are: 

1. Excellent side-lobe attenuation. 

2. Good accuracy even after truncation to 5 decimal places precision in fixed-point 

multiplications. 

3. Optimal main-lobe width; the poor roll-off can be easily dealt with using CFAR 

processing (discussed later). 
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3.4.2 The Fast Fourier Transform 

Perhaps the most widely used signal processing routine is the famous FFT 

algorithm developed by James W. Cooley and John W. Tukey [32]. The algorithm is a re

definition of the Discrete Fourier Transform in which an arbitrary N-point DFT is broken 

down into smaller DFTs recursively until computationally simple DFTs are possible. This 

forms the well-known butterfly architecture. 

The simplest form of the FFT developed by Cooley and Tukey is the Radix-2 

Decimation-in-Time algorithm. The DFT is defined by the following formula: 

N - \ _ 2 n i
 nk 

* k = £ *ne N (3.20) 
n = 0 

Here, k is an integer from 0 to N~l, i = V ^ L N is the total number of time-domain 

samples, and n is an index. The Radix-2 DIT FFT partitions the DFT into odd and even 

indices, thus dividing an N-point DFT into 2 DFTs of size N/2. 

More generally, the Cooley-Tukey FFT algorithm divides an N-point FFT into Ni 

FFTs of size N2, i.e. N = NiN2. First, Ni DFTs of size N2 are performed. Secondly, the 

outputs of the first step are multiplied by weights called twiddle factors. Finally, N2 DFTs 

of size Ni are performed on the result of step 2. If Ni<N2 the algorithm is called a Radix-

Ni Decimation-in-Time FFT, otherwise if N2<Ni the algorithm is called a Radix-N2 

Decimation-in-Frequency FFT. 

The Radix of an FFT algorithm affects the speed and complexity of the FFT. The 

two common algorithms used are Radix-2 DIT and Radix-4 DIT. The Radix-4 DIT 

algorithm is computationally quicker than the Radix-4 DIT algorithm [33]. 

N 
Number of complex multiplications for Radix-2 = —log2 N 

3 
Number of complex multiplications for Radix-4 = -7Vlog2 N = 75% of Radix-2 
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Number of complex additions for Radix-2 = iVlog2 N 

Number of complex additions for Radix-4 = Nlog2N= same as Radix-2 

Radix-4 thus requires 25% less complex multiplications than Radix-2 DIT 

algorithm, making it a faster FFT. In this project a Radix-4 FFT is used, the details of 

which are mentioned in Chapter 4 of this thesis. 

3.4.3 Constant False Alarm Rate (CFAR) Processor 

The CFAR unit makes it possible for radar systems to operate despite 

contamination of received signal with noise, interference, clutter and effects of 

attenuation. The CFAR unit runs an adaptive algorithm responsible for filtering out all 

spurious spectral peaks in the FFT output and extracts only those peaks that have a high 

probability of being real targets. The adaptive nature of CFAR processors enables them 

to identify real target returns in the presence of changing noise and clutter from 

surrounding false targets. In contrast, non-adaptive detection systems, called 

clairvoyant detectors in [34], use a static threshold to detect valid targets. 

After the spectral intensity of a signal is received from the FFT unit, the CFAR unit 

detects valid targets. For non-adaptive detectors a constant threshold, Tc, is used. Each 

frequency bin (frequency-domain sample from the FFT) is compared in absolute value to 

f 
Tc. If | X[ri\ \> Tc then there exists a valid target at frequency n x — , where X[n] is the 

discrete frequency domain representation of the received radar IF, n is an integer 

between 0 to (N-l)/2, N is the FFT size, and fs is the rate at which the IF is sampled. 

However, since noise and interference are stochastic and random processes this static 

threshold can produce high number of false alarms. 

CFAR algorithms overcome the short-coming of non-adaptive systems by 

dynamically changing the threshold Tc according to the amount of noise and clutter 
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present in the surrounding frequency bins of that target. There are various CFAR 

algorithms constantly being developed and refined, however two methods have seen 

widespread application in radar systems: OS-CFAR (Ordered Statistic CFAR) and CA-CFAR 

(Cell Averaging CFAR) [35-36]. There have been several variations to these basic two 

CFAR types; however, the details are beyond the scope of this thesis. 

A typical CA-CFAR architecture is shown in Figure 3.8 [37-38]. This is the CFAR 

architecture employed for the system developed in this thesis. The principle of 

operation of the CA-CFAR unit can be summarized in the following steps: 

1. Square law detector removes any possible negative values from the FFT output, 

in essence computing the absolute value or intensity of each frequency bin. 

2. G number of guard bands are left on either side of the CUT (cell-under-test), 

which help overcome spectral leakage effects. 

3. M12 number of cells (or frequency bins) are averaged on either side of the 

guard bands. Let avgL be the average of the left hand side Ml2 cells, and 

avgR be the average of the right hand side M12 cells. The index k ranges from 

l t o M / 2 . 

4. The average of avgL and avgR is computed and multiplied by a predetermined 

constant K to obtain the dynamic threshold Tc. The value of the CFAR 

parameter K is determined by the following equation: 

K = Pia M - 1 (3.21) 

Here, Pfa is the acceptable preselected probability of false alarm and M is the 

depth of the CFAR averaging [40]. 

5. The CUT is compared with Tc obtained from step 4. If CUT > Tc then a valid 

target detection is declared [39]. 
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The CA-CFAR processor runs through the entire FFT output x[ri\ considering each 

cell as the CUT. Given the parallel nature of this CA-CFAR architecture, FPGAs can 

immensely speed up detection owing to their parallel processing capabilities [39]. 

Input signal 
from FFT 

Square-law 
detector 

Guard bands 

CUT>TC? 
Decision 

(adaptive 
threshold) 

Figure 3.8: CA-CFAR processor architecture as implemented in this thesis. 

The CA-CFAR has two slight variants from the implementation shown in Figure 

3.8. Instead of computing the average of A and B, the GO (greatest of) -CFAR makes use 

of the greater value between A and B, while the LO (least of) -CFAR makes use of the 

smaller value between A and B to be multiplied by K. So in GO-CFAR, Tc =AxK 

where (A>B) and in LO-CFAR, Tc=AxK where (A<B) [41]. 
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3.4.4 Miscellaneous Topics 

3.4.4.1 Radar Targets 

In the 1950s, Peter Swerling of RAND Corporation developed mathematical models 

to classify radar targets into 5 types based on the RCS or radar cross-section they display 

[43]. These are known as the Swerling I, II, III, IV and V models for radar targets, and 

present a mathematical model to determine the RCS of a radar target [42]. The 

classification is modeled using the chi-squared distribution, which is beyond the scope of 

this thesis. In simple terms, the parameters that affect the type of Swerling model are: 

- Shape of the target. 

Degree of freedom for the target. 

Maximum and average RCS viewable from the target. 

Variation pattern in the RCS of the target with time and space. 

The RCS of a target is determined by the following relation: 

a = lim Anr1 [ ^ s { (3.22) 
r ->co | E . |2 

Here, Es = Scattered field intensity at distance r 

E\ = Incident EM intensity on object 

The radar cross-section of a vehicle is one of the factors which determine the maximum 

unambiguous range the radar can cover. 

Swerling I targets: 

Consist of 5 or more scattering surfaces equally contributing to the overall RCS. 

Have a constant RCS throughout a CPI or scanning interval, but independently 

varying RCS in different radar beam scans. 



The distribution of RCS is described by the following relation [43]: 

p(a) = — e "av« (3.23) 
" a v g 

Where a is the RCS of the target and cravg is the mean value of RCS for the 

target. 

Swerling II targets: 

Classification is similar to that of Swerling I, however the RCS varies during a 

single frequency sweep or CPI instead of staying constant. This represents more 

dynamic targets. 

Swerling III targets: 

Consist of 1 main scattering entity and may possess several less significant 

smaller scattering surfaces. 

- The RCS p.d.f. tends to remain constant through a single LFMCW sweep scan. 

- The p.d.f. is characterized by equation (3.24) as follows: 

2a 

p(a) = ^ - e *""* (3.24) 
^"avg 

Swerling IV targets: 

Similar to Swerling III targets, however the RCS scattering varies within a single 

scan and thus represents a more dynamic case of Swerling III targets. 
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Swerling V targets: 

Characterized by a constant RCS independent of time. These targets are easiest 

to detect as there is ideally no spectral deviation during or over consecutive 

frequency sweeps. 

Typically, Swerling II and IV targets are harder to track due to variation in RCS, and 

hence reflected power, over a single CPI or sampling interval. 

3.4.4.2 Noise 

Contemporary radar systems are affected by various types of noise sources. Noise 

may originate from the signal conditioning analog components, the RF circuitry and 

antennae, and the digital processing of the signal. Major sources of noise are listed: 

1. Background noise - cosmic radiation, atmospheric absorption of EM radiation 

and noise temperature of the Earth contribute to background noise which 

manifests as white noise in all communication systems. This noise gets amplified 

throughout the system and can be accounted for by adequate signal processing. 

2. Thermal noise - generated due to thermal motion of semiconductor charge 

carriers contributing to increased resistance in electronic and RF circuit 

components [5]. 

Thermal noise, NTh = kTAB (3.25) 

Where k is Boltzmann's constant, TA is the average absolute temperature 

around the circuit components and B is the system bandwidth. 

3. 1/f noise - pink noise power is inversely proportional to frequency. High 

frequency systems such as radars suffer less effects of 1/f noise [44]. 

54 



4. Quantization noise - when sampling the intermediate frequency of the radar 

return using an ADC all continuous samples are rounded to the nearest 

quantization level available. For instance, for a 10-bit ADC with an input range of 

1V-5V, an input of 0.22V would mean 1024 * (0.22V / 4V) = 56.32 levels. 

However, since the number of levels in the ADC is an integer from 1 to 1024, this 

voltage would be quantized to level 56 corresponding to 0.21875V, hence an 

error of 0.125% is induced. 

The SNRQ or signal-to-quantization-noise ratio for an ADC is defined as follows 

[45]: 

SNRQ (dB) = 6.027V + 4.77 + 20 log, 0(LF) (3.26) 

Here, LF is the RMS input voltage divided by the maximum acceptable voltage 

for the ADC. 

3.4.4.3 Attenuation 

Atmospheric attenuation is a necessary evil in radar systems. Attenuation varies 

with weather and the moisture level in the air. Table 3.3 lists attenuation under 

different weather conditions [46]. For this research work, an attenuation of 0.8 dB/km 

has been considered, which falls between light rain and medium rain conditions, 

resulting in an SNR of 4.73 dB. 
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Table 3.3: Atmospheric attenuation at 70-80 GHz 

Condition 

Clear, dry air 

Drizzle 

Light rain 

Medium rain 

Heavy rain or snow 

Precipitation Rate (mm/hr) 

0.00 

0.25 

1.25 

12.50 

25.00 

Attenuation (dB/km) 

0.1 

0.2 

0.5 

1.5 

9.0 

Although severe weather conditions can completely mask a target, within 

operable conditions attenuation is beneficial for a radar system. One of the most 

important aspects of LFMCW radars is peak pairing. Peak pairing is the technique by 

which a peak detected in the up sweep is paired with a peak detected in the down 

sweep as belonging to the same target. Every target manifests as a peak in each of the 

sweeps, therefore if reliable peak pairing is not accomplished, the target information 

would be grossly incorrect. One of the most logical criteria for peak pairing is power 

level comparison: a target at distance 10 m will have larger frequency-domain peak 

magnitude than a target at 30 m. 

3.4.4.4 Clutter 

Radar clutter is defined as the unwanted back-scatter reflection to the radar 

sensor from objects of no interest or invalid targets. In the automotive scenario, clutter 

is contributed by trees, water, buildings, sign posts, road surface, barriers or dividers, 

and even the host vehicle's bumper, among other sources. All these objects are not real 

targets of interest such as cars or trucks in the path of the vehicle; however clutter does 

contribute to the received radar signal at the antenna. Most sources of clutter are 

stationary sources and thus remain fixed to a particular frequency bin over a scan 

sweep. The other property of clutter is the low power and constant RCS, and can be 
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classified as Sterling V type targets. Except ground clutter, most low-intensity spurious 

spikes in the output of a frequency analyzer can be effectively removed by means of 

CFAR processing, owing to the fact that all clutter sources exhibit very little or no 

Doppler shift over LFMCW frequency chirps. Ground clutter infests the lower 

frequencies due to its close proximity to the host vehicle, and can thus be handled by 

filtering out those frequencies. In digital signal processing, ground clutter is removed by 

ignoring high-power returns in the lower frequency bins of the FFT output, and is a valid 

method assuming that the probability of a target existing within 30 cm of the radar 

sensor is very low. 

Albeit the general attempt at removal of clutter from the target return spectrum, 

a recent literature in [47] illustrates the idea of making use of clutter as valuable 

information in mapping the surrounding scenario. Literature [47] propounds the 

estimation of road curvature and detection of road dividers and partitions based on 

common clutter received in automotive radar applications. Such information can prove 

useful in determining advanced security aspects of the trajectory of the host vehicle, 

and act as a smarter adaptive cruise control system. 

3.4.4.5 Radar Jamming 

Jamming occurs when high-power microwave signals occupy the entire 

bandwidth of operation of a radar sensor and render it incapable of distinguishing 

between false and true targets. Although typically jamming has been an intentional ploy 

by security agencies [48], in the automotive radar scenario jamming may occur due to 

interference from nearby radar systems operating at the same instant frequency at the 

very same time, or from broadband pulsed Doppler radars that generate high-power 

pulses. 

Frequency hopping is a well-known ECCM or Electronic Counter Countermeaures 

solution. This allows FSK radars with several frequency hops better resistance to 
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jamming, although complete resistance is not guaranteed. Likewise, LFMCW radars 

suffer less effects of jamming due to the constant frequency chirps. 

3.4.4.6 Safe Distance Determination 

A concise formula for safe distance calculation has been presented in literature 

[55]. Consider the scenario in Figure 3.9, where the host vehicle with the radar sensor is 

moving at velocity v2 following a vehicle at velocity vj . 

< > 

Figure 3.9: Safe distance between two vehicles. 

Let the deceleration rate of the host vehicle be ax and the deceleration rate of 

the radar target vehicle be a2 • Finally, let Tr be the reaction time of the driver of the 

host vehicle. Then, the safe distance that should be maintained by the host vehicle from 

the leading vehicle is given by 

rsafe = T7~A - — V , 2 + V2Tr (3.27) 
2b2 26] 

The value of 6i and b2 is dependent on the braking performance of the vehicles in 

different road conditions. On a dry road, K ~ 6.5 m/s2 and b ~ 6.0 m/s2 assuming Tr 

= 1.0 s. On a surface covered with ice, K -2.6 m/s2 and t,2 ~ 2.0 m/s2 [55]. 
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CHAPTER 4: 
RADAR CONTROL AND SIGNAL PROCESSING 

ALGORITHM 

This chapter presents the developed algorithm and where it fits into the whole 

automotive radar system. The long rage automotive radar system being developed at 

the University of Windsor has three primary requirements: target range measurement, 

target velocity measurement and target angle measurement. This thesis develops a 

system to measure target range and velocity based on the LFMCW approach using a 

MEMS Rotman lens, MEMS RF switches and phased array antennae for transmission and 

reception. The signal processing algorithm controls the modulation of the linear 

frequency chirps in the transmission side and also processes the received echo signal 

after it has been conditioned. Signal conditioning and common noise and attenuation 

issues faced by radar developers, have been detailed in Chapter 3. 

This chapter lists the decisions made while designing the radar signal processing 

algorithm, and describes the operation of individual blocks with reference to the initial 

system specifications described in Table 4.1. 
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Table 4.1: Initially provided System Specifications 

Parameter 

Radar type 

Operating frequency 

VCO used 

Target model(s) considered 

Beamformer 

Number of beams 

Processing duration per beam 

Beam width 

Antenna type 

Radar processing unit (RPU) platform 

Value 

LFMCW 

77 GHz 

TLC77XS1 

Reliability guaranteed with Swerling 1, III and V 

type targets 

Rotman lens 

3 beams2 

2 ms 

±4.5° 

Phased array antenna 

FPGA 

176.5 GHz MMIC VCO by TLC Precision Wafer Technology 

2 Reference [1] 

Figure 1.1 shows the conceptual diagram of the entire radar system, showing the 

major components of the MEMS based radar system including the MEMS Rotman lens, 

MEMS RF switches, and the FPGA for signal processing. As shown, the tuning voltage is 

obtained from the DAC, and as described in Chapter 3 this translates to the triangular 

frequency chirp which is broadcast through the SP3T switch and Rotman lens 

combination into the phased array antenna. 
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4.1 Radar Transmitter Control and MEMS RF SP3T Switch Control 

Responsibilities of the algorithm in the transmission part of the radar system: 

1. Generate the radar frequency chirp by tuning the VCO with a voltage sweep 

through a DAC. 

2. Synchronize chirp generation with receiver side signal processing, giving 

appropriate delay when the sampler is busy. 

3. At the end of every down sweep, modify the MEMS switch control bits to switch 

to the next beam port, thus changing beam direction. 

4. Switch between MEMS Rotman lens beam ports; beam port 1 to beam port 2, 

beam port 2 to beam port 3, beam port 3 back to beam port 1. 

Figure 4.1 illustrates the transmitter side operation flowchart for the algorithm. On 

system reset, the sensor begins with beam port 1 of the Rotman lens, and by default 

would be designed to start with the up sweep or positive frequency chirp. The DAC is 

configured to output a voltage range from t̂une-min t 0 t̂une-max > which is the range 

required to tune the VCO over the desired sweep bandwidth of the system. 

For the target sweep duration of 1 ms, a 10-bit DAC with a 900 ns refresh period 

would be a suitable choice based on current market availability of fast DACs. 

61 



* • 

/ System \ 
Reset or First 
V Start / 

Start up counter from 0 
to max. 

i 
r 

Increment counter by 1 

NO ^ ^ Max. u p \ 

\ r eached? / ^ 

YES I 

Wait for sampling unit to 
complete sampling and 

buffering data 

i ' 
Start down counter from 

max. to 0 

\ ' 
Decrement counter by 1 

NO A 
/ cou 

\ ^ reac 

\ ° 
YES 

wn \ 
nter \ 
hed / 
? / 

Adjust switch control 
bits to next beam port 

of Rotman lens 

' r 

DAC converts binary 
input into analog tuning 

voltage for VCO 
, , 

*R\ 
Ky 
77 GHz 

VCO 

Figure 4 .1 : Flowchart for the operation of the developed radar algorithm's modulation and 

transmitter control unit. 
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4.2 Radar Receiver Flow Control and Signal Processing 

The main part of the radar algorithm is its signal processing routine, the input to 

which are the time-domain ADC samples and the output from which is target 

information. The signal processing algorithm is responsible for the following internal 

tasks: 

1. Apply the Hamming window to the time-domain samples acquired from the ADC. 

2. Fast Fourier Transform of the windowed time-domain samples. 

3. Peak intensity calculation for every frequency bin of the FFT output. 

4. Run a CFAR algorithm and detect valid target peaks, neglecting noise and clutter, 

for both up and down sweeps. 

5. Once both up and down sweeps have been processed by the CFAR unit, carry out 

peak pairing to calculate the target information. 

The developed signal processing algorithm discussed above is defined in Figure 4.2. 

The superimposed graphs are generated from MATLAB and depict the time-domain 

samples as it passes through the radar signal processing system. 
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Figure 4.2: Radar signal processing algorithm developed as part of the radar control unit for this 

thesis. The first two superimposed graphs represent the time-domain sampled signal; the graphs 

post FFT processing represent frequency-domain processing stages. Signal conditioning steps 

are also shown - Mixer, LPF and ADC. 
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4.3 Selecting the Radar Sweep Bandwidth 

The choice of components for the system is vital in determining the efficiency of 

the algorithm. One of the system parameters affecting the system components is the 

bandwidth of the system over which the frequency sweeps are made. The bandwidth 

selection involves a major trade-off: a higher bandwidth improves range resolution for 

the radar system (refer to equation 4.1), but also suffers non-linearity effects of the 

VCO. Following this trade-off, sweep bandwidths of 200 MHz, 400 MHz, 600 MHz, 800 

MHz and 1 GHz were tested in MATLAB for the developed algorithm. Due to frequency 

spectrum allocation policies bandwidths are currently restricted to 77.5 GHz. 

Range resolution for LFMCW radar, AR 

Velocity resolution for LFMCW radar, Avr 

Here, c is the speed of the EM radar wave in air, B is the LFMCW sweep bandwidth, A 

is the wavelength of the radar wave, and T is the up or down sweep duration [49]. 

The graph in Figure 4.3 shows the results for maximum intermediate frequency 

and range resolution from the tests on different bandwidths. The target radar 

specifications for maximum range and maximum relative velocity were selected as 200 

meters and ±300 km/h in line with the state-of-the-art Bosch LRR3 radar presented in 

Chapter 1. 
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Figure 4.3: Variation of range resolution and maximum intermediate frequency with LFMCW 
sweep bandwidth. 

As illustrated in Figure 4.3, an increase in bandwidth does improve range 

resolution for the radar system, but also increases the intermediate frequency. An 

increase in intermediate frequency means an increase in the sampling frequency, 

following Nyquist's sampling theorem. Another trade-off must be made at this point. 

Consider equations (4.2) and (4.3). 

f 
Frequency resolution of FFT, / r e s = — (4.3) 

Here, / s is the sampling frequency and N is the point size of the FFT which is equal to 

the number of time-domain samples collected. 

The resolution of the FFT affects the minimum range gap between two 

frequency bins in the output of the FFT, which is nothing but the range resolution of the 

radar system. According to equation (4.3) frequency resolution can be improved by 

either lowering sampling frequency or by increasing the sampling duration or both. 

Increasing the sampling duration also improves velocity resolution by equation (4.2), 

however the cycle time of the radar system increases, which is an undesirable effect. 
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Now, consider first a bandwidth of 200 MHz. The maximum expected 

intermediate frequency of a target at 200 meters distance going at a relative velocity of 

+300 km/h is close to 306 kHz. The minimum required sampling frequency is twice this 

frequency and is equal to 612 kHz. Restricting the point size of the FFT algorithm to 

1024, say, for quick computation, we have N = 1024. This gives an FFT resolution of 

597.66 Hz/bin, which translates to an ideal-case minimum target separation of 0.45 

meters (which is within the theoretic range resolution of the radar sensor for this 

bandwidth - refer to Figure 4.3). 

Secondly, consider a bandwidth of 1000 MHz. The maximum expected 

intermediate frequency of the same target now becomes 1357 kHz. The required 

sampling frequency for this bandwidth would be at least 2714 kHz. Restricting FFT size 

to 1024, the frequency resolution is equal to 2650.39 Hz/bin, corresponding to a 

minimum target separation of 0.40 meters. This range resolution is better than achieved 

with a bandwidth of 200 MHz using the same FFT point size. 

Through this discussion it seems desirable to have a higher bandwidth however 

the limiting factor of VCO linearity is to be taken into account. The non-linearity of any 

MMIC VCO is a key issue, especially at higher bandwidths. In order to operate in a linear 

part of the VCO transfer function, as discussed in Chapter 2, the sweep bandwidth 

should not be set too high. Most modern MMIC VCOs promise a linearity of 0.5% over 1-

2 GHz range (TLC 77xs VCO datasheet from TLC Precision Wafer Technology). 

Following this discussion, and keeping under consideration the frequency 

resolution and timing constraint of 2 ms per beam or 1 ms per sweep, the bandwidth of 

800 MHz is chosen. This choice necessitates an ADC with a sampling frequency of 2.2 

MHz (2.2 MSPS or Mega Samples per Second), which over 1 ms would collect close to 

2048 samples. A power of 2 is preferred for the sample count N so that a Radix-2 DIT 

FFT algorithm can be used, allowing faster and more hardware-efficient implementation 

on FPGA. 
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4.4 Configuration of System Components 

4.4.1 ADC 

As discussed above, with a bandwidth of 800 MHz a respectable range resolution 

is achievable. For this bandwidth, an ADC with sampling frequency of 2.2 MHz is 

required. Or alternately, a sampling frequency of 2 MHz can be used over 1.024 ms for 

an exact total of 2048 samples. 

4.4.2 FFT 

Over 1 ms (or 1.024ms), close to 2048 samples will be collected using the chosen 

ADC rate. This would be the size of the FFT required for the signal processing algorithm. 

4.4.3 CFAR 

The CA-CFAR was chosen as the CFAR processor architecture for this thesis. 

Results have been presented in Chapter 4 of this thesis supporting the validity of this 

choice. The CA-CFAR processes a total of 1024 frequency-domain peaks (only half of the 

FFT output is considered as the FFT is a symmetric algorithm) to identify valid targets 

from clutter and noise. The probability of false alarm Pfa is selected as 10"6 for the 

algorithm, with an averaging depth M of 4 cells on either side of the CUT and 2 guard 

bands on either side of the CUT. This generates the following value of scaling constant 

K: 

K = P^~m -1 = (10~6) 2x8-1*1.3714 

Using 2 guard bands on either side of the CUT allows for enhanced noise 

handling capability and increased immunity to spectral leakage as a secondary line of 

defense after the Hamming window. 
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4.4.4 Peak Pairing 

Two criteria for peak pairing are used in the proposed radar signal processing 

algorithm [48], assuming Swerling I, III and V targets. These are: 

1. Spectral proximity: With the chosen system bandwidth, a relative velocity of 300 

km/h corresponds to a maximum frequency bin shift of 84 bins between up 

sweep and down sweep peaks belonging to the same target. This frequency shift 

is due to Doppler shift. Therefore, a peak detected in the up sweep will only be 

paired with a detected peak in the down sweep if they are within 84 frequency 

bins of each other. 

2. Power level: The peak intensity of the FFT output is indicative of the power level 

in the return of a given target. A distant target would produce a larger beat 

frequency but at lower power compared to a nearer target. This relation has 

high probability of occurrence and can therefore be used as a pairing criterion, 

by which a peak in the up sweep would be paired with a peak in the down sweep 

if the difference in their power levels is small. 

4.5 Developed Algorithm Summary 

The decisions presented in this chapter set the ground for the software (MATLAB) and 

hardware (HDL on FPGA) testing of the devised radar signal processing algorithm. The 

subsequent chapters show simulation results and a comparison in performance of 

floating-point software (MATLAB) and fixed-point (HDL) systems. Table 4.2 lists the final 

parameters for this thesis. 
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Table 4.2: Final parameters for the devised signal processing algorithm 

Parameters 

LFMCW sweep bandwidth 

FFT size 

FFTtype 

Up/down sweep duration 

ADC resolution / sampling rate 

DAC resolution / refresh period 

Target range 

Target relative velocity 

CFAR Algorithm 

CFAR Parameters 

Value 

800 MHz 

2048 

Mixed Radix-2 and Radix-4 DIT 

l m s 

l lb i ts /2.2MSPS 

10 bits / 900 ns 

0.40 m - 200 m 

±300 km/h 

CA-CFAR 

One-side cell-averaging depth = 4 

One-side guard band count = 2 
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CHAPTER 5: 
SOFTWARE IMPLEMENTATION AND SIMULATION 

MATLAB simulations of the developed radar signal processing algorithm are 

carried out in this chapter, and the results presented. Based on the target specifications, 

the mathematical theory, and the component configurations the signal processing 

algorithm is tested for two different cases. The first case simulates targets detected in a 

3-beam MEMS radar, and the second case assumes a large wide-angle beam with a large 

number of targets. The results from the MATLAB simulation validate the developed 

algorithm and form the basis for the HDL implementation of the same. 

5.1 Software Implementation of the Radar Signal Processing 
Algorithm 

Following the Research Methodology stated in Chapter 1, after the development 

of the algorithm and decision on peripherals' configurations, the next step is a detailed 

MATLAB simulation of the proposed algorithm. MATLAB R2006b Version 7.3 has been 

used to develop the code for and verify the radar signal processing algorithm. 

There are three stages to testing the algorithm in MATLAB: 

1. Test the algorithm with and without a window function to validate the need for 

the extra processing produced by windowing. 

2. Test the algorithm with a test case for a practical 3-lane highway scenario with 3 

narrow beams between 3°-6° width each. 

3. Test the algorithm for a hypothetical scenario with a large number of targets in a 

single wide-angle beam between 15°-30° in order to see the effect of saturating 

the radar sensor. 
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Before the results are analyzed, we must revisit the chosen algorithm parameters as 

presented in Chapter 4. With these system settings, one can proceed testing the 

algorithm. The flowchart in Figure 5.1 shows a flowchart of the sequential MATLAB 

program used to simulate the radar signal processing algorithm (see Appendix A l for 

complete code listing). 

Frequency sweep bandwidth = 800 MHz 

Sampling frequency = 2 MHz 

Sampling duration (up/down sweep duration) = 1.024 ms 

Number of time-domain samples = 2048 

FFT size = 2048 

FFT frequency resolution = 2 MHz / 2048 = 976.5625 Hz/bin 
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Define system 
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sweep duration, 
bandwidth, CA-CFAR 

depth etc. 

Set range and velocity for all 
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r 
Compute the ideal up and 

down sweep beat frequencies 
for all targets 

Corrupt beat frequency sine 
waves with AWGN noise of 

variance = 1 and add all 
target beat frequencies 

Apply a 2048-point Hamming 
window to all time-domain 
beat frequency samples 

Run a 2048-point FFT on the 
time-domain samples for both 

up and down sweep 

Compute the absolute peak 
intensity in all frequency bins 
of the FFT output for up and 

down sweep 

Execute CA-CFAR processing 
on the computed power 

spectrum for up and down 
sweep 

Apply pairing criteria to all 
valid down sweep peaks and 
match them to corresponding 

up sweep peaks 

Output Range and Velocity 
results for all targets 

Figure 5.1: Flowchart for MATLAB simulation of the radar signal processing algorithm. 



5.2 Testing Stage 1: Windowing versus No Windowing 

Test scenario: 

1 target at distance 142 meters. 

Target velocity is 165 km/h. 

Host vehicle velocity is 70 km/h. 

- Therefore relative velocity is (70 - 165) km/h = -95 km/h, due to a negative 

Doppler shift caused by a receding target. 

For the described target, the up sweep frequency would be a sum of the beat 

frequency component due to the distance of 142 meters, / R , and the Doppler shift due 

to relative velocity -95 km/h, fD, obtained from equations (3.11) and (3.13): 

r f f 2kr 2f0vr 
/ u p calculated - JR + JD ~ h ~ 

c C 

JSOOMHzX.- 95 
2 \T~^TA l42m 2x76JGHzx(- — m/s) 

1 ! m4mS ]
 + - ^ = 732683.97 Hz 

2.973xl08m/5 2.973xl08m/5 

Similarly, the down sweep frequency for the target amounts to the difference between 

/ R and / D : 

f - f - f - 2kr 2fvVr 
J down calculated ~ JR JD ~ 

2 
^S0OMHz\ Ars 95 

\A2m 2x76JGHzx(- — m/s) 
3-6 -=759774.08 Hz 

\1.024ms; 

2.973x\0Sm/s 2.973x\08m/s 
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5.2.1 Results without Windowing 

The results obtained from the MATLAB simulation without any windowing stage in the 

algorithm are as follows: 

Up sweep frequency bin number obtained from CFAR = 752 bins 

.*. Up sweep frequency / u p obtained through algorithm 

= 752 bins x frequency resolution 

= 752 bins x 976.5625 Hz/bin 

= 734375.00 Hz 

Down sweep frequency bin number obtained from CFAR = 780 bins 

.'. Down sweep frequency /down obtained through algorithm 

= 780 bins x 976.5625 Hz/bin 

= 761718.75 Hz 

Now, by equation (2.14) the target range from the simulation result is computed as 

follows: 

(/up + /down ) C 

r = — x — 
2 2k 

^(734375 + 76171 SJS)Hz 2.973xl08m/s = 1 4 2 - 3 3 m 

2 „ SOOMHz 
2x 

1.024ms 

And, by equation (3.15) the target velocity from the simulation result is computed as 75 



C/up /down) c 
vr = x — 

4 / 0 

_ (734375-761718.75)/fe 2.973xlQ8yw/^ 

4 76.7 x\09 Hz 

= -26.497 m/s 

= -95.39 km/h 

5.2.2 Results with Windowing 

The results obtained from the MATLAB simulation without any windowing stage in the 

algorithm are as follows: 

Up sweep frequency bin number obtained from CFAR = 751 bins 

.*. Up sweep frequency / u p obtained through algorithm 

= 751 bins x frequency resolution 

= 751 bins x 976.5625 Hz/bin 

= 733398.44 Hz 

Down sweep frequency bin number obtained from CFAR = 779 bins 

.". Down sweep frequency /<]own obtained through algorithm 

= 779 bins x 976.5625 Hz/bin 

= 760742.11 Hz 

Now, by equation (3.14) the target range from the simulation result is computed as 
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v/up ~*~ /down / C r = x — 
2 2k 

_ (733398.44 +760742. ll)/fe 2.973 x \0sm/s = 1 4 2 1 5 m 

2 X 800M//Z 

1.024ms 

And, by equation (3.15) the target velocity from the simulation result is computed as 

(/up — /down ) c 
V ' ~ 4 

(733398.44-

= -26.497 m/s 

= -95.39 km/h 

x — 
/o 

-760742.1 
4 

l)//z 2.973> 
x 

76.7 > 

:108 

clO9 

m/s 

' /& 

From this simulation result, the velocity of the target was obtained as the same 

with and without window. However, there is an observed improvement in range 

measurement by (142.33 - 142.15) m = 18 cm. Without windowing, the error for the 

measured range is (142.33 - 142)/142 x 100 = 0.23%. With the Hamming window, this 

error is reduced to (142.15 - 142)/142 x 100 = 0.11%, thus using an extra signal 

processing step to apply the Hamming window function to the time-domain samples 

offers considerable improvement in range measurement. 

5.3 Testing Stage 2: 3-Lane Highway Scenario with Narrow Beam 

Figure 5.2 and Table 5.1 illustrate the highway scenario being tested in this case. A 

3-beam Rotman lens radar sensor has been considered, as described in Chapter 4. The 

host vehicle is taken to be travelling at 70 km/h. 
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Target 2 Target 5 Target 6 
Range: 35 m Range: 78 m Range: 90 m 

Velocity: 250 km/h Velocity: 99 km/h Velocity: 150 km/h 

Figure 5.2: Test case highway scenario. Beam 1 shines 2 targets, Beam 2 covers 2 targets, and 

Beam 3 covers 3 of the targets. Beam width for the antenna is assumed to be 9°, with 4.5° 

Rotman lens beam steering. 

Table 5.1: Practical Test Case Highway Scenario - Target Description 

Beam Port 

Number 

1 

2 

3 

Target 

ID 

1 

3 

4 

6 

2 

5 

6 

Range 

(m) 

12 

54 

111 

90 

35 

78 

90 

Velocity 

(km/h) 

65 

24 

90 

150 

250 

99 

150 

Theoretical Up 

Sweep IF (Hz) 

63784 

290397 

580509 

461541 

158148 

405783 

461541 

Theoretical Down 

Sweep IF (Hz) 

62358 

277280 

586212 

484354 

209477 

414053 

484354 

All targets are assumed to be Swerling I or III type, and it is tacitly assumed that 

the return f rom each target sums up at the receiving phased array antenna of the MEMS 

radar sensor. This gives rise to the time-domain signals for Beam 1 up and down 

78 



frequency sweeps shown in Figure 5.3, before and after being multiplied by the window 

function. The simulated time-domain signals for Beam 2 and 3 are similar to those 

illustrated in Figure 5.3. The signal has been corrupted with AWGN (Additive White 

Gaussian Noise) with unit variance. The simulated signal-to-noise ratio is 4.73 dB. 

Up Chirp IF corrupted with Zero-Mean Random Noise 

0.4 0.6 0.8 
Time (ms) 

x 10 

1.2 
3 

5.3(a) Received up sweep IF before windowing. 

Up Chirp IF corrupted with Zero-Mean Random Noise 

! - ' 
^ f l l l 

0.2 0.4 0.6 
Time (ms) 

0.8 1.2 

x10 

5.3(b) Up sweep IF signal after Hamming window. 



Down Chirp IF corrupted with Zero-Mean Random Noise 

0.4 0.6 0.8 
Time (ms) x 10 

1.2 
•3 

5.3(c) Received down sweep IF before windowing. 

Down Chirp IF corrupted with Zero-Mean Random Noise 

0.6 
Time (ms) x 10" 

5.3(d) Down sweep IF signal after Hamming window. 

Figure 5.3: Time-domain signals for the up and down sweep of Beam 1 of the Rotman 

presented in the test scenario, before and after multiplication with the Hamming window. 



Figure 5.4 shows the frequency analysis output from the FFT for Beams 1, 2 and 

windowing. The respective targets have been marked. 
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MATLAB Frequency Analysis - Beam 1, Down Sweep 
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Figure 5.4(a): Spectral analysis of beam 1 targets in the up and down sweeps. 
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Figure 5.4(b): Spectral analysis of beam 2 targets in the up and down sweeps. 
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Figure 5.4(c): Spectral analysis of beam 3 targets in the up and down sweeps. 

Figure 5.4: Frequency analysis of return signals in Beams 1, 2 and 3 shows the presence of 
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The error induced in the floating-point MATLAB based radar signal processing 

algorithm is primarily due to the added AWGN added in the code (see Appendix for 

complete MATLAB listing), which is visible in the spectral plots in Figure 5.4. Table 5.2 

shows the results obtained from the MATLAB simulations of the algorithm. The results 

presented are after successful pairing of the up sweep and down sweep peaks. Table 5.3 

displays the errors from the simulation results. 

Table 5.2: Results from MATLAB Simulation of the Developed Algorithm for 3-Lane 

Narrow Beam Scenario 

Beam 

Port 

Number 

1 

2 

3 

Target 

ID 

1 

3 

4 

6 

2 

5 

6 

Measured Up 

Sweep IF 

(frequency bins)1 

67 

299 

596 

474 

164 

417 

474 

Measured Down 

Sweep IF 

(frequency bins)1 

66 

286 

602 

497 

216 

426 

498 

Measured 

Range 

(m) 

12.36 

54.35 

111.30 

90.21 

35.30 

78.32 

90.30 

Measured 

Velocity 

(km/h)2 

66.59 

25.71 

90.44 

148.36 

247.15 

100.66 

151.76 

1 Frequency resolution for 2048-point FFT = 976.5625 Hz/bin 

Target velocity has been calculated using equation (3.16) 
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Table 5.3: Errors for the Developed Algorithm from MATLAB Simulations for 3-Lane 

Narrow Beam Scenario (SNR = 4.73dB) 

Beam Port Number 

1 

2 

3 

Target ID 

1 

3 

4 

6 

2 

5 

6 

Error in Range 

Measurement (m) 

0.36 

0.35 

0.30 

0.21 

0.30 

0.32 

0.30 

Error in Velocity 

Measurement (km/h) 

1.59 

1.71 

0.44 

1.64 

2.85 

1.66 

1.76 

Maximum error in range measurement for the developed algorithm: 0.36 m 

Maximum error in velocity measurement: 2.85 km/h 
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5.4 Testing Stage 3: Hypothetical Scenario with 7 Targets Detected 
in a Single Wide Beam 

The test scenario is presented in Figure 5.5. Only one wide-angle beam is 

considered for this simulation. The host vehicle velocity is set at 100 km/h, and it has 

direct line-of-sight detection of 7 simulated targets. 

HOST VEHICLE 
Velocity: 100 km/h 

Target 1 target 3 
Range: 9 m Range: 29 m 

Velocity: 90 km/h Velocity: 89 km/h 

Target 4 
Range: 55 m 

Velocity: 100 km/h 

Target 7 
Range: 148 m 

Velocity: 22 km/h 

0 * * * 

* 

% '""••-..̂  
* " ' • • - . 

* % % % 

— = -

ir jr.; 

u t . . . "" 

> 
';' 

Target 2 
Range: 24 m 

Velocity: 55 km/h 

Target 5 
Range: 78 m 

Velocity: 70 km/h 

Target 6 
Range: 106 m 

Velocity: 80 km/h 

Figure 5.5: Hypothetical scenario with a single wide-angle antenna beam using only one beam 
port of the Rotman lens, i.e. no beam steering required to cover 3 central highway lanes. 

To ensure fair and reliable testing, different target descriptions were used from 

Testing Stage 2. These target descriptions are tabulated in Table 5.4, and the results 

obtained from the MATLAB simulation are presented in Table 5.5. Figure 5.6 looks at the 

frequency analysis of the wide-angle beam, clearly labeling the 7 simulated targets. The 

CFAR processing results are shown, where all 7 target peaks have been correctly 

identified and extracted. This validates the accuracy of the employed CA-CFAR 

algorithm. 
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Table 5.4: Hypothetical Test Case -Target Description 

Target ID 

1 

2 

3 

4 

5 

6 

7 

Range 

(m) 

9 

24 

29 

55 

78 

106 

148 

Velocity 

(km/h) 

123 

55 

89 

100 

70 

80 

22 

Theoretical Up 

Sweep IF (Hz) 

44004 

132585 

153990 

289060 

414239 

559964 

789013 

Theoretical Down 

Sweep IF (Hz) 

50563 

119753 

150853 

289060 

405684 

554261 

766771 

These targets have been selected randomly, and the test results are displayed 

after 6 complete iterations of the system for the same targets. This is one of the 

approaches to ensuring fair and reliable test results. 
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MATLAB Frequency Analysis - Wide-Angle Beam, Up sweep 

Frequency (Hz) x1(f 
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Figure 5.6(a): Frequency analysis of up frequency sweep for the wide-angle beam scan. The valid 

targets are shown as detected by the CFAR unit. 
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MATLAB Frequency Analysis - Wide-Angle Beam, Down Sweep 
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Figure 5.6(b): Frequency analysis of down frequency sweep for the wide-angle beam scan 

valid targets are shown as detected by the CFAR unit. 



Table 5.5: Results from MATLAB Simulations of the Developed Algorithm for 3-Lane 

Single Wide Beam Scenario 

Target 

ID 

l 

2 

3 

4 

5 

6 

7 

Measured Up 

Sweep IF 

(frequency bins)1 

47 

138 

159 

298 

426 

575 

810 

Measured Down 

Sweep IF 

(frequency bins)1 

54 

124 

156 

298 

417 

569 

787 

Measured 

Range(m) 

9.38 

24.34 

29.27 

55.37 

78.32 

106.28 

148.37 

Measured 

Velocity (km/h)2 

123.85 

52.31 

89.78 

100.00 

69.34 

79.56 

21.64 

Frequency resolution for 2048-point FFT= 976.5625 Hz/bin 

2 Target velocity has been calculated using equation (3.16) 

Table 5.6: Errors for the Developed Algorithm from MATLAB Simulations for 3-Lane 

Single Wide Beam Scenario (SNR = 4.73dB) 

Target ID 

l 

2 

3 

4 

5 

6 

7 

Error in Range 

Measurement (m) 

0.38 

0.34 

0.27 

0.37 

0.32 

0.28 

0.37 

Error in Velocity 

Measurement (km/h) 

0.85 

2.69 

0.78 

0.00 

0.66 

0.44 

0.36 
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The error of the obtained target range and velocity measurements from the MATLAB 

Simulation of the radar signal processing algorithm are shown in Table 5.6. 

Maximum error in range measurement for the developed algorithm: 0.38 m 

Maximum error in velocity measurement: 2.69 km/h 

5.5 Observations from Software Simulation Results 

The simulations results confirm the validity of the developed algorithm and 

chosen system parameters such as bandwidth of 800 MHz and up/down sweep duration 

of 1.024ms. The chosen ADC sample rate of 2.0 MHz is appropriate for capturing exactly 

2048 time-domain samples of the intermediate frequency or beat frequency signal. 

The CA-CFAR algorithm has been tested and its operation validated through 

accurate extraction of valid targets from a background of noise and clutter with an SNR 

of 4.73 dB, which is a good performance with reference to literature [50] in which the 

author has described better SNR under normal conditions at mm-wavelengths. 

The maximum error observed in the range determination of any target is 38 cm, 

while the maximum error in target velocity measurement is 2.85 km/h or 0.79 m/s. 

These errors are within tolerable limits compared to state-of-the-art automotive radars 

studied in Chapter 2. 
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CHAPTER 6: 
HARDWARE IMPLEMENTATION AND VALIDATION 

The signal processing algorithm is coded in Verilog HDL and the modular design 

has been shown in this chapter. The data flow through individual modules is described, 

and an overview of the entire HDL implementation is produced. A few alterations and 

fine-tuning of the FFT and CFAR modules have been done to improve noise tolerance 

and accommodate short range, medium range and long range target return attenuation 

and power variation. The coded system is simulated using Xilinx ISim and the waveforms 

have been illustrated. The results are promising and show lower error than the MATLAB 

simulations, primariliy due to the fixed-point rounding of data as it propagates through 

the digital logic. 

6.1 Hardware Implementation of the Radar Signal Processing 
Algorithm 

The advantages of modern FPGAs over DSPs in running signal processing tasks 

have been highlighted in Chapter 2. The state-of-the-art Bosch LRR3 has a cycle time of 

50 ms. An FPGA implementation presented in [28] displays a signal processing latency of 

1250 p.s for a single LFMCW sweep using with a 1024-point FFT using a Xilinx Virtex-ll 

Pro FPGA clocked at 50 MHz. To achieve a smaller computation latency per sweep, and 

hence a smaller cycle time for the MEMS based automotive radar, the target FPGA for 

this thesis is selected as Virtex-5 SX50T. 

Figure 6.1 shows an annotated snapshot of the Virtex-5 development board and 

Table 6.1 highlights the main aspects of this FPGA. One of the advantages of using the 

Virtex-5 FPGA from Xilinx is the high integration capacity of the design, and the higher 

operating clock frequency, owing to the improved gate-level performance with 65 nm 
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technology. A faster clock frequency enables quicker computation of signal processing 

routines thus reducing overall cycle time for the MEMS radar further. It should be noted 

here that the MEMS Rotman lens and MEMS SP3T switches devised for the radar system 

are capable of handling switching times well below 1 ms. 

Table 6.1: Xilinx Virtex-5 SX50T features [51] 

Feature 

DSP48E Slices 

Block/ Distributed RAM 

Total LUT Bits 

Maximum Clock Frequency 

Gate Technology 

I/O Voltage / Core Voltage 

Value 

288 

4,752 kb / 780 kb 

> 13 million 

550 MHz 

65 nm 

1.2V-3.3V/1 .0V 

LEDs(Green/Red) User Buttons 

Figure 6.1: Xilinx Virtex-5 SX50T mounted on Development Board ML506 (annotated). 
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The resources offered by Xilinx Virtex-5 suffice for the developed signal 

processing algorithm and future expansions of the MEMS automotive radar project, 

while offering optimal speed. The on-chip system monitor has core temperature and 

power consumption sensors that can be used to ensure the system is always in working 

capacity. 

6.1.1 Radar Signal Processing Algorithm on FPGA 

The block diagram for the HDL implementation on FPGA is presented in Figure 

6.2. The language used for the FPGA implementation is Verilog HDL (Verilog 2005 - IEEE 

Standard 1364-2005). The coding and simulation has been done using Xilinx ISE Design 

Suite 11.5. The HDL blocks are synonymous to the signal processing stages of the 

algorithm presented and tested in Chapter 5, and have been developed for a bandwidth 

of 800 MHz and a frequency sweep of 1.024 ms. 

Control to MEMS 
SP3T Switches 

Host Vehicle 
Velocity 

System 
ENABLE oaiy I | eiN«E 

PPM 
LFMCW Peak 

Pairing 
CA-CFAR 
Processing 

CFAR 

TDRI 

Distributed Dual-
Port RAM 

(Time-domain 
data) 

FDR 

FFT 

FFTCore 

Distributed Dual-
Port RAM 

(Frequency-domain 
data) 

1 
Square Law 

Detector 

Peak Intensity 
Computation (over 

I.F. frequency range) 

PSD 
Target Velocity Target Range 

Figure 6.2: HDL blocks for the radar signal processing algorithm. 
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6.1.1.1 Top Level Control (TLC) 

The TLC is the interface of the radar control and signal processing algorithm to 

the real world and MEMS radar RF components. The control part of the algorithm 

synchronizes the radar transmission and signal processing, and provides the sampling 

clock to the ADC and captures real-valued time-domain samples from the intermediate 

frequency of target echoes through the sampler unit. The TLC also provides a clock to 

the DAC, along with data bits to generate the tuning voltage for the VCO as discussed in 

previous chapters. The operation of this top level module is described by the flowchart 

in Figure 4.1. 

Figure 6.3 below illustrates entire radar control and signal processing algorithm 

as a black box as seen from outside the FPGA. 

11-bit ADC samples 

8-bit Host 
Vehicle Velocity 

System CLOCK 

System ENABLE 

System RESET 

22-bit Target 
Information Output 

10-bit Modulating 
Signal Output to DAC 
3-pin MEMS RF 
Switch Control 

DAC Clock 

Sampling Clock 
to ADC 

Figure 6.3: Black box view of radar control and signal processing algorithm. The thicker lines 
represent data buses. The left side represents inputs and the right side shows the outputs. 

The 22-bit target information output from the unit has the following format: 

[10-bit target velocity] [10-bit target range] [2-bit beam port number] 
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6.1.1.1.1 Velocity Precision 

The velocity is presented in a [9.1] format in km/h, meaning 9 bits for the integer 

part and 1 bit for the fractional part. This means velocity measurement is restricted to a 

precision of 0.5 km/h. However, internally there is 5-bit precision for velocity calculation 

which gives a precision of 0.03125 km/h. The 5-bit precision has been curtailed to 1-bit 

fractional precision in order to restrict the length of the output target information. 

6.1.1.1.2 Range Precision 

The range is output in a [8.2] format, thus a precision of 0.25 meters is imposed 

on the HDL implementation. However, as in the case of velocity calculation, this 

fractional precision can be extended up to 11-bit precision or 0.00048828125 m = 488 

u,m. Since such precision is not required in automotive radar applications, the 11-bit 

internal precision is replaced with 2-bit fractional precision to shorten the output word 

length. 

The beam port number appended at the end of target information represents 

the beam number the target was detected in, which is indicative of the estimated 

direction of the target. 

Figure 6.4 below shows the top level module as seen in the Xilinx ISE Design 

Suite. Table 6.2 describes the input and output signals. 

iik>f 

en.>f~ 

reset/j-

umt_vel(7:0)>f-

datain{10:0)>f-

final info valid) 

sclk> 

modulate(9:0)> 

final_targetJnfo(21:0)> 

beamport(2:0))> 

Figure 6.4: TLC in Xilinx ISE RTL viewer. 
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Table 6.2: Port description for TLC 

HDL Port Name 

elk 

en 

reset 

unit_vel 

datain 

final_info_valid 

sclk 

modulate 

final_target_info 

beam port 

Direction 

Input 

Input 

Input 

Input 

Input 

Output 

Output 

Output 

Output 

Output 

Description 

System clock at 550 MHz from ML506 development 

board on-board clock generator 

System enable signal 

Global synchronous system reset 

Host vehicle velocity 

Real-valued time-domain ADC samples 

Signal is logic ' 1 ' or HIGH if a new target range and 

velocity information are being output 

Sampling clock from TLC to ADC 

10-bit data to DAC generated from an up/down counter 

in TLC - used to generate the tuning voltage to modulate 

the VCO output1 

This contains the target range and velocity measurement 

along with 2 bits describing the beam direction in which 

the target was detected 

Control pins for the MEMS SP3T switches to control the 

direction of the radar beam by controlling the beam port 

of the Rotman lens being fed 

1 For the TLC77xs VCO being used for this thesis, tuning voltage range of 2.5V to 6.5V generates 

output frequency range 76.5 ± 1 GHz. Therefore, for 800 MHz bandwidth centered at 76.9 GHz, 

the tuning voltage is 4.5 V to 6.1 V is required. A value of 0 on the modulate port will be output 

from the DAC as 4.5 V, and a value of (1111111111)2 or 1023 will result in 6.1 V. 

The 3-pin MEMS RF switch control signal contains a bit each for the 3 MEMS 

switches that are controlled through charge pumps connected to the FPGA pins. These 

MEMS SP3T switches are responsible for routing the RF signal generated by the VCO to 

the appropriate beam port of the Rotman lens thus steering the beam. Isolation 
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between the supply voltage of the MEMS switches and the RF signal travelling through 

them is done using a bias-tee for each switch. 

The system clock input for Virtex-5 is 550 MHz, obtained from the ML506 

development kit from Xilinx. This clock signal is divided internally to an operating clock 

of 100 MHz, which is the target operating frequency for the radar algorithm. 

Time-domain samples from the ADC are obtained in 11-bit format as per the 

decided resolution of the ADC (Chapter 3). 

6.1.1.2 Sampling Unit (SAMPLER): sub-module Window Function (WINDOW) 

This is a sub-module of the sampler module and contains a ROM storing 1024 

coefficients of a 2048-point Hamming window. Since the Hamming window is 

symmetric, storing the first 1024 values is memory efficient. This sub-module contains a 

simple 10-bit up/down counter that extracts the coefficient depending on the index of 

the time-domain sample. 

The Hamming window coefficients are floating point numbers, thus representing 

them in digital hardware requires rounding off. The precision of the coefficients is 

chosen to be 10 bits, with the maximum of (11 1111 1111)2 representing the maximum 

coefficient value of 1. The rounded off Hamming coefficients are thus stored as integers 

ranging from (0.08 x 1023) to (1 x 1023). The coefficients are obtained from MATLAB 

code which carries out the following steps (refer to Appendix for MATLAB listing): 

1. Create a Hamming window of size 2048. 

2. Multiply the window coefficients by 1023 to scale them to a 10-bit range. 

3. Round off the scaled coefficients to the nearest integer. 

4. Save the first 1024 coefficients in sampler ROM. 
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Although this rounding does introduce a secondary quantization error after the ADC, 

the results from simulation of the algorithm in HDL show desired accuracy and 

precision. The percentage error produced by from rounding the Hamming coefficients is 

0.084%, which has negligible effects on the signal processing. A similar approach has 

been presented and validated by Hampson in [56]. 

The scaling an x-bit time-domain sample by multiplication with a window coefficient 

returns a scaled x-bit number; there is no change in the word length of the samples. This 

is done by retrieving only the most significant x bits from the result of the multiplication. 

Thus: 

x-bit time-domain sample -> WINDOW -> x-bit scaled time-domain sample 

This method of scaling has a maximum error of 0.1% per sample which is 

negligible. The preservation of word length proves efficient later on in the signal 

processing by limiting the memory sizes and reducing processing speed while retaining 

adequate accuracy. 

6.1.1.3 Sampling Unit (SAMPLER): sub-module Time-Domain Data RAM (TDR) 

This is a sub-model of the sampler module which is a dual-port Block RAM. This 

sub-module stores the windowed time-domain samples collected from the ADC. The 

width of the data RAM is 12 bits, and the depth is 2048 - 2 MHz ADC sampling over 

1.024 ms. An important note to make is that although the ADC output is 11 bits long, the 

TDR module stores 12-bit samples. The extra bit is merely a '0' added to the front of 

every sample. This is done as the FFT core used in this project works with 2's 

complement input and output data, so appending a '0' at the beginning of every time-

domain sample converts all samples to positive values. The only effect of this method is 

a high DC component being detected in the first frequency bin of the FFT, which is safely 

ignored as it represents a negligible target range of 0.186 m or 18.6 cm. The first few 
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range gates of the FFT are ignored to avoid nearby clutter return from the host vehicle's 

bumper, the immediate ground level, and internal reflections in the radar sensor. 

The TDR module is also responsible for feeding the sampled data to the FFT core. 

The TDR monitors the sample index being displayed from the FFT core and outputs the 

sample at that index. In this case, the index from the FFT core is used as the address to 

access the RAM in TDR. Upon sending all 2048 samples to the FFT core, the TDR sends a 

"start calculation" active-high signal to the FFT core. Figure 6.5 shows the overall 

sampler module as seen from Xilinx ISE. The timing diagram for the sampler unit is 

shown in Figure 6.6. 
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Figure 6.5: Xilinx ISE RTL view of sampler unit with sub-modules WINDOW and TDR. 
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Table 6.3: Port description for SAMPLER 

HDL Port Name 

datain 

xnjndex 

elk 

en 

fft_rfd 

reset 

xn_im 

xn_re 

fft_start 

hold 

sclk 

Direction 

Input from TLC 

Input from FFT 

Input from TLC 

Input 

Input from FFT 

Input 

Output to FFT 

Output to FFT 

Output to FFT 

Output to TLC 

Output to TLC 

Description 

11-bit ADC sample 

Index of the sample being passed to the FFT core 

Operating clock of 100 MHz 

Enable signal 

Control signal from FFT core indicating it is ready to 

accept new batch of data for processing 

Global synchronous reset 

Imaginary part of time-domain sample - this port is 

permanently grounded to 0 

Real part of time-domain sample - windowed time-

domain samples from dual-port RAM 

Active-high start signal for FFT - initiates FFT 

computation 

Active-high signal to TLC - a level 'V on this wire 

makes the TLC halt modulation and sampling while all 

data is fed from RAM to the FFT core 

Sampling clock to ADC generated by the sampler unit 

T 
sclk 

Windowed 
Time-domain 

Sample 

hold 

fft_start 
TIME 

Figure 6.6: Timing diagram for SAMPLER module. When hold = 1 all windowed time-domain 

samples are fed to the FFT core. Values Tscik and 7/,oW are presented in Table 6.16. The pulse 

widths are not drawn to scale. 
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6.1.1.4 Fast Fourier Transform Core (FFT) 

This module contains a 2048-point FFT core generated using Xilinx Core 

Generator, which is part of the Xilinx ISE Design Suite 11.5 package. Xilinx FFT v7.0 

(version 7.0) has been used in this thesis. Core Generator offers fully customizable, high-

performance, parameterized signal processing IP cores from Xilinx. The parameters used 

for the FFT core implemented in this thesis are displayed in Table 6.4. The Xilinx ISE 

block for the FFT is shown in Figure 6.7. 

Table 6.4: Xilinx FFT IP core parameterization 

Parameter 

FFT size 

Architecture type 

Radix 

Input word length 

Output word length 

Scaling type 

I/O data type 

Internal phase factor length 

Value 

2048 

Burst I/O1 

Mixed 2/4 

12 bits 

12 bits (scaled) 

Rounding 

2's complement 

16 bits2 

1 refer to FFT datasheet from Xilinx [52]. The two available architectures are Burst I/O and 
Streaming I/O. Burst I/O architecture has been chosen due to its lower resource consumption. 

2 this parameter affects the precision of the FFT calculation. 16 bits was chosen for the phase 
factor word length as a trade-off between accuracy and resource usage. 
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Figure 6.7: Xilinx ISE RTL view of FFT v7.0 core. 

Table 6.5: Port description for FFT 

HDL port name 

scale_sch2 

xn_im 

xn_re 

elk 

fwd_inv2 

fwd_inv_we2 

scale_sch_we2 

start 

unload 

xk_im 

xk_index 

Direction 

Input from TLC 

Input from TDR 

Input from TDR 

Input from TLC 

Input from TLC 

Input from TLC 

Input from TLC 

Input from TDR 

Input from FDR 

Output to FDR 

Output to FDR 

Description 

Scaling schedule for all stages of the FFT - a default 

value of (0110 1010 1010)2 has been used1 

Imaginary part of the time-domain sample 

Real part of the time-domain sample 

Operating clock at 100 MHz 

' 1 ' for FFT, '0' for IFFT (inverse FFT) 

Write enable for fwdjnv 

Write enable for scale_sch 

Start signal initiates FFT computation 

Signal to start unloading result from FFT 

Imaginary part of frequency-domain FFT result 

Index of frequency-domain sample being unloaded 
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xk_re 

xn_index 

busy 

done 

dv 

edone 

rfd 

Output to FDR 

Output to TDR 

Output 

(unconnected) 

Output to FDR 

Output to FDR 

Output 

(unconnected) 

Output to TDR 

Real part of frequency-domain FFT result 

Index of time-domain sample being loaded 

Active-high busy signal 

Active-high completion signal 

Active-high data valid pin - logic T while unloading FFT 

results 

Early completion signal - goes to logic T one clock 

cycle before done 

Ready For Data - logic T when FFT core is ready to 

accept new batch of t ime-domain data for processing 

1 refer to Xilinx FFT datasheet [52]. The scaling schedule specifies the number of bits to be 

scaled at the end of each internal FFT stage. This scaling ensures the same output world length 

as the input, in this case 12 bits. 

these signals offer run-time configurability to the FFT core. 

The t iming diagram for the Xilinx FFT core is shown in Figure 6.8 below. 
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Figure 6.8: Timing diagram for Xilinx FFT core v7.0 (refer to datasheet in reference [52]). 
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6.1.1.5 Frequency-Domain Data RAM (FDR) 

This unit is made of two sub-modules. The first sub-module monitors the done 

signal from the FFT core to be asserted, upon which it requests the FFT core to start 

unloading the result of the FFT by asserting the unload signal of the FFT core. The sub-

module then accepts the frequency-domain samples from the FFT once the DV (data 

valid) signal from the FFT core is asserted, converts the 2's complement samples into 

positive values. This gives the absolute value of each real and imaginary frequency 

sample, setting up the next stage of the signal processing which deals with peak 

intensity calculation for each complex frequency sample. 

The second sub-module contains two Block RAMs, one each for real and 

imaginary samples from the FFT. Only the latter half of the FFT results is stored due to 

the observation that the first half of the Xilinx FFT core has more noise and inaccuracy 

than the latter half. The fact that the FFT of a real-valued signal is symmetric about the 

central frequency bin allows the first half of the frequency-domain data to be ignored. 

Each stored sample is 12 bits in length, therefore the total RAM used is: 

2 x 12 x 1024 bits = 24 kb 

Once all 1024 frequency-domain samples have been retrieved and stored, the 

second sub-module of FDR begins the peak intensity calculation procedure by squaring 

the real and imaginary parts, summing them up and passing them to the PSD module. 

Figure 6.9 shows the RTL view of the two sub-modules forming the FDR unit and Table 

6.6 lists the port descriptions. Figure 6.10 illustrates the timing of events related to the 

FDR module. 
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Figure 6.9: Xilinx ISE RTL schematic view of two sub-modules forming the FDR unit. 

Table 6.6: Port description for FDR 

HDL Port Name 

xk_im 

xk_index 

xk_re 

elk 

fft_done 

fft_dv 

reset 

cfar_busy 

sqrt_done 

sqrt_feeda/b/c/d 

sqrt_start 

Direction 

Input from FFT 

Input from FFT 

Input from FFT 

Input from TLC 

Input from FFT 

Input from FFT 

Input 

Input from CFAR 

Input from PSD 

Output to PSD 

Output to PSD 

Description 

2's complement imaginary part of complex 

frequency-domain sample from FFT core 

Index of frequency-domain sample being unloaded 

from the FFT core 

2's complement real part of complex frequency-

domain sample from FFT core 

Operating clock of 100 MHz 

FFT completion signal from FFT core 

Signal is logic T when valid output data is being 

unloaded from the FFT core 

Global synchronous reset 

Busy signal from the CFAR unit - logic T causes FDR 

and PSD units to halt 

Completion signal from PSD module 

Four complex values sent per clock cycle to PSD unit 

Signal asserted to instruct PSD module to commence 

peak intensity computation 
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fft_done 

fft_unload 

fft_dv 

fft_re 

fft_im 

sqrt_feeda 

sqrt_feedb 

sqrt_feedc 

sqrt_feedd 

start_sqrt 
TIME 

Figure 6.10: Timing diagram for FDR. [7p F j un|oacj = 1024 clock cycles] and 7pSD is defined in 

Table 6.16. 

6.1.1.6 Peak Intensity Calculator (PSD) 

The PSD module computes the peak intensities of all the 1024 captured FFT 

output samples. It processes one sample at a time upon assertion of the sqrt_start 

signal. The signal processing algorithm contains 4 of these modules operating in parallel, 

allowing faster processing of all 1024 frequency-domain samples. Buses 

sqrt_feeda/b/c/d from the FDR are each inputs to one of these PSD modules. Once the 

peak intensity is computed, it is passed through a square-law detector unit which 

essentially ensures that no peak intensity value is negative before being passed to the 

CFAR processor. The positive-valued, frequency-domain peak intensity is sent to the 

CFAR processing module in groups of 4. 
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value (24:01 

elk 

reset 

start 

rooti 12:01 

done 

Figure 6.11: Peak intensity calculation unit. 

Table 6.7: Port description for PSD 

HDL Port Name 

value 

elk 

reset 

start 

root 

done 

Direction 

Input from PSD units 

Input from TLC 

Input 

Input from FDR 

Output to CFAR 

Output to FDR 

Description 

Mapped to sqrt_feeda/b/c/d from FDR 

Operating clock at 100 MHz 

Global synchronous reset 

Start peak intensity computation signal from FDR 

Peak intensity computation result to CFAR unit 

Completion of peak intensity calculation 

6.1.1.7 Constant False Alarm Rate Processor (CFAR) 

The CA-CFAR algorithm has been detailed in previous chapters of this thesis. The 

HDL implementation of the CA-CFAR algorithm is a vital component of the radar signal 

processing algorithm. It is solely responsible for removal of unwanted clutter and noise 

while detecting valid targets from an unknown attenuation pattern arising from 

different weather conditions. 

The CFAR processor receives frequency-domain peak intensity values in batches 

of 4 from the 4 PSD units working in parallel, as shown in Figure 6.12. These 4 values are 

stored in a Block RAM in the following order: 
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Result of sqrt_feeda stored in index 0 of Block RAM. 

Result of sqrt_feedb stored in index 1 of Block RAM. 

Result of sqrt_feedc stored in index 2 of Block RAM. 

Result of sqrt_feedd stored in index 3 of Block RAM. 

In the similar order, the next 4 received peak intensity values from the 4 PSD 

units are stored in index 4, 5, 6 and 7 of the RAM. The RTL block diagram for the CFAR 

processor is shown in Figure 6.13, and the port description is provided in Table 6.8. The 

timing diagram depicting the operation of the CFAR unit is shown in Figure 6.14. 

FDR 

PSD1 

PSD2 

PSD3 

PSD4 

CFAR 

Figure 6.12: Four PSD units work in parallel to speed up peak intensity computation. 
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Figure 6.13: RTL view of CFAR module. 

Table 6.8: Port description for CFAR 

HDL Port Name 

inA/B/C/D 

elk 

reset 

start 

target_abs 

target_pos 

complete 

new_target 

start_cfar 

Direction 

Input from PSD 

Input from TLC 

Input 

Input from PSD 

Output to PPM 

Output to PPM 

Output to PPM 

Output to PPM 

Output to FDR 

Description 

Peak intensity values from 4 parallel PSD units 

Operating clock at 100 MHz 

Global synchronous reset 

Active-high signal that is logic T when new peak 

intensity values are available to be read from the PSD 

units 

Peak intensity of detected target output to Peak Pairing 

module 

Spectral position (FFT bin number) of detected target 

output to Peak Pairing module 

CFAR completion signal for all 1024 values 

Active-high signal that is logic ' 1 ' to alert the Peak 

Pairing module when a new valid target is detected 

Mapped to cfar_busy signal to FDR indicating CFAR unit 

is busy 
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PSD1 
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PSD2 
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PSD3 
output 

PSD4 
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CFAR busy 
(start_cfa?) 
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PSD PSD 

< T > 

<I 

TIME 

Figure 6.14: Timing diagram for CFAR module: 32 peak intensity values are collected by the CFAR 

unit from 4 PSD units working in parallel. For processing delays 7pSD ar|d ^CFAR re^er t 0 Table 

6.16. 

Reasons for processing 32 frequency-domain values at a time: 

1. Lower memory requirements for the CFAR module. 

2. Reduce complexity and improve speed in CFAR module. 

6.1.1.7.1 Important modification to the CA-CFAR processor 

Due to atmospheric attenuation targets far away appear with smaller peak 

intensities. Low power peaks were observed in the CFAR when modeling far away 

targets, and in some cases this led to their exclusion by the CA-CFAR process. In order to 

overcome this problem, the sensitivity of the CFAR processor was increased for 

medium-range and long-range targets by reducing the Pfa used to compute the 

constant K. The adjustments are presented in Table 6.9. This approach increased the 

detection rate for medium- and long-range targets. 
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Table 6.9: Sensitivity Adjustment for CA-CFAR Processor 

Radar range 

Short 

Medium 

Long 

FFT bin range 

1-512 

513-852 

853 -1024 

Corresponding 

range (m) 

0.186-95.136 

95.322-158.312 

158.498-200.000 

Pf* 

10"7 

10'6 

10"5 

Constant K1 

6.499 

4.623 

3.217 

1 As mentioned in Chapter 4, cell-averaging depth is 4 on either side of CUT i.e. M = 8. These 

values of K have been rounded off in the fixed-point HDL implementation. 

6.1.1.8 Peak Pairing Module (PPM) 

The Peak Pairing unit was implemented as is from the MATLAB model of the 

radar signal processing algorithm. The criteria of peak pairing used are Spectral 

Proximity and Power Level comparison as described in Chapter 4. Figure 6.15 and Figure 

6.16 display the Xilinx RTL view and the timing diagram for the PPM, respectively. Table 

6.10 provides port descriptions for the module. The output of the PPM is the target 

range and velocity information already described in the TLC section of this chapter. 

target absf12:0) 

target pos(9;0) 

uns; vel(7:0) 

dk 

comctcte 

new targe! 

upclown 

target info(19:0) 

info valid 

Figure 6.15: RTL view of PPM. 
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Table 6.10: Port description for PPM 

HDL Port Name 

target_abs 

target_pos 

unit_vel 

elk 

complete 

new_target 

reset 

updown 

target_info 

info_valid 

Direction 

Input from CFAR 

Input from CFAR 

Input from TLC 

Input from TLC 

Input from CFAR 

Input from CFAR 

Input 

Input from TLC 

Output to TLC 

Output to TLC 

Description 

Peak intensity of a detected target by CFAR 

Spectral position of a detected target by CFAR 

Velocity of host vehicle in km/h 

Operating clock at 100 MHz 

Completion signal for CFAR processing of all 1024 
frequency-domain samples 

Active-high signal that is logic ' 1 ' when a new valid 
target is detected by CFAR 

Global synchronous reset 

Is equal to logic ' 1 ' during a positive frequency chirp 
and logic '0' during a negative frequency chirp 

Bus containing computed target information with 
most significant 10 bits for target velocity, next 10 
bits for target range, and final 2 bits for beam number 
in which the target was detected 

Active-high signal that is at logic ' 1 ' when new target 
information is available to the TLC 

updown 

target_abs 

targetjDos 

new_target 

complete 

info_valid 

targetjnfo 

TIME 

Figure 6.16: Timing diagram for PPM showing 4 detected targets from CFAR. 
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As illustrated in Figure 6.16, the Peak Pairing module collects peaks from the 

CFAR processor for both the up and down frequency sweeps. Once all target peaks and 

spectral positions have been received from the CFAR, the LFMCW equations for range 

and velocity are applied to retrieve the target information and output it over the 

targetjnfo bus. 

Let us re-state the range and velocity equations from Chapter 3: 

_ v/up + /down / C 
Range, r = — x — 

2 2k 

. . . .. v/up "~ /down) C 
Velocity, v = — x — 

4 /o 

Doing the multiplications and divisions to calculate range and velocity would be 

hardware in-efficient and consume more clock cycles. An easier method is to pre-

calculate the factors for range and velocity so that a direct multiplication with the sum 

and difference of the target spectral positions (or frequency bin numbers) would 

generate the target range and velocity, respectively. 

The range factor for the implemented system parameters is: 

J- 1 C r< 
U =—X x ^ r e s 

2 2k 

2.973 xlO8 2x10° 
= x 

„ 800 xlO6 2048 
4x -

1.024 xlO"3 
(6.1) 

= 0.09290625 

Here, Fres is the frequency resolution of the FFT core. 

This value has been approximated as an 11-bit number equal to (00010111110)2, where 

all bits represent the fractional part. This sequence thus corresponds to a decimal value 

of 0.0927734375. 

114 



Similarly, the velocity factor is: 

„ 1 c 1 2.973xl08 2x l0 6 

vf = — x — xF r e sx3.6 = - x — x x3.6 
4 / 0

 res 4 76.9 xlO9 2048 (6.2) 
= 3.39790414 

Here, the value of 3.6 has been multiplied here to convert the calculated velocity from 

m/s into km/h. The central frequency for the LFMCW chirps has been set to 76.9 GHz, as 

the TLC VCO permits a sweep range of 76.5 GHz - 77.3 GHz to form a bandwidth of 800 

MHz. 

This value has been approximated by a 7-bit binary number equal to (1101101)2 

where the first 2 bits represent the integer part and the last 5 bits represent the 

fractional part, corresponding to a decimal value of 3.40625. 

6.2 Simulation and Validation of the HDL Implementation of the 
Signal Processing Algorithm 

To accomplish simulation and validation of the entire HDL implementation and ensure 

readiness of the Verilog HDL code for downloading to the Virtex-5 FPGA, the following 

steps were followed: 

1. All individual modules are assembled to form the top level control module TLC. 

2. A Verilog test-bench is coded to run tests on the TLC module. 

3. Time-domain samples of the intermediate frequency generated from the traffic 

scenarios presented in Chapter 5 are extracted in hexadecimal format from 

MATLAB. A total of 2048 samples are extracted. 

4. The time-domain samples are passed to the TLC through the test-bench, thus 

imitating the external ADC at 2 MSPS sampling rate. 
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5. The simulation test-bench is run in Xilinx ISE Simulator and the resultant 

waveforms are observed for the output of the TLC. 

6. The results are compared to the actual parameters of the simulated targets. 

The test on the HDL modules involved the same scenarios used to verify the signal 

processing algorithm in Chapter 5. 

6.2.1 Test 1: 3-Lane Highway Scenario with Narrow Beam 

Recall the test scenario presented in Figure 6.17. The HDL design was clocked at 

100 MHz and tested for timing compliance with the desired 1 ms up or down sweep 

time as part of the target MEMS radar specifications. 

Target 1 Target 3 Target 4 
HOST VEHICLE Range: 12 m Range: 54 m Range: 111m 
Velocity: 70 km/h Velocity: 65 km/h Velocity: 24 km/h Velocity: 90 km/h 

Target 2 Target 5 Target 6 
Range: 35 m Range: 78 m Range: 90 m 

Velocity: 250 km/h Velocity: 99 km/h Velocity: 150 km/h 

Figure 6.17: Test case highway scenario. Beam 1 shines 2 targets, Beam 2 covers 2 targets, and 
Beam 3 covers 3 of the targets. Beam width for the antenna is assumed to be 9°, with 4.5° 
Rotman lens beam steering. 
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The test-bench is coded to display the timing of each major event. The following is the 

output from the Xilinx ISim Simulation: 

up sampling start: 110 
up sampling done: 1023890 
down sampling start: 1044610 
down sampling done: 2068150 
beam 1 first target info out: 2259300 

up sampling start: 2259300 
up sampling done: 3303390 
down sampling start: 3303400 
down sampling done: 4347650 
beam 2 first target info out: 4347820 

up sampling start: 4347820 
up sampling done: 5391910 
down sampling start: 5391920 
down sampling done: 6436170 
beam 3 first target info out: 6436380 

The numerical values in the output are the exact time in nanoseconds at which 

the labeled event occurred. Therefore, sampling 1024 time-domain values took 1023780 

ns or 0.1024 ms approximately, which is the expected sampling duration. 

Additionally, this timing information gives the total time taken for 1 beam to be 

scanned and all target information to be output from the PPM. Start of sampling the up 

frequency sweep for beam 1 is at 110 ns, and the first target information for beam 1 is 

output at 2259300 ns, thus a total time of 2259190 ns or 2.26 ms approximately. This 

confirms that a total processing latency of less than 0.25 ms per beam has been 

achieved. 
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Figure 6.18: 3-Lane simulation waveform results from Xilinx ISE Simulator. The spikes on the 
final_info_valid signal show the positions where new target information is available. 

Figure 6.18 shows target detection, and also shows the change in the 3-pin beam 

port control bus responsible for controlling the MEMS SP3T switches. The control signals 

are accurate and occur at the correct time. On the left hand side of the figure the list of 

displayed variables is as follows: 

1. sclk: Sampling clock 

2. final_target_info: 22-bit target information 

3. beamport: 3-bit control bus for MEMS SP3T switches to control beam direction 

through the MEMS Rotman lens 

4. final_info_valid: Signal goes to logic ' 1 ' when new target information is output 

5. modulate: the 10-bit counter output to the DAC which forms the up and down 

sweeps for the VCO tuning voltage 

6. elk: Operating clock of 100 MHz 

7. reset: Global synchronous reset 
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8. en: System enable signal 

9. datain: MATLAB samples are input via this port to the TLC, imitating time-

domain ADC samples 

10. unit_veh This is the host vehicle velocity, which has been set to (0110 0100)2 or 

100 km/h 

11. /': An index variable used in the Verilog test-bench code 

The results for the range and velocity measurements obtained from HDL simulation are 

illustrated in binary format in Figure 6.19, and tabulated in Table 6.11. 

59 290 000 ps 
i i i i _ 

2 259 295 000 ps 
_ i i i _ 

12 259 300 000 ps 
_ J i i t _ 

12 259 305 000 ps 

I 0000000011. 00011 111 lOODOOl 1000001 ooooooooooooc 
010 

omoioion 

10011100100 

piIOOIOO 

000000000000000100000000000 X 00000000000000000000000000 

6.19(a): Beam 1, Target 1 
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6.19(b): Beam 1, Target 3 
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6.19(c): Beam 2, Target 6 
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6.19(d): Beam 2, Target 4 
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Figure 6.19: HDL simulation results for Test Case 1. 

As described earlier in this chapter, the 22-bit target information contains the 

range and velocity measurement of the target. For example, Figure 6.19(e) shows the 

target information for Target 2 detected in Beam 3 of the MEMS radar. 
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The 22-bit target information is understood as follows: 

(0111110100 0010001100 11)2 

Most significant 10 bits = velocity of Target 2 in 9-integer-l-fractional bit format 

= (011111010)2.(0)2 

= 250.0 km/h 

Next 10 significant bits = range of Target 2 in 8-integer-2-fractional bit format 

= (00100011)2.(00)2 

= 35.00 m 

In a similar fashion, all detected target ranges and velocities can be computed. These 

have been listed in Table 6.11. 

Table 6.11: Results from HDL Simulation of the Developed Algorithm for 3-Lane Narrow 

Beam Scenario 

Beam 

Port 

Number 

1 

2 

3 

Target 

ID 

1 

3 

4 

6 

2 

5 

6 

Measured Up 

Sweep IF 

(frequency bins)1 

71 

303 

478 

600 

167 

421 

478 

Measured Down 

Sweep IF 

(frequency bins)1 

60 

280 

493 

597 

211 

421 

497 

Measured 

Range 

(m) 

12.00 

54.00 

111.00 

90.00 

35.00 

78.00 

90.00 

Measured 

Velocity 

(km/h) 

63.0 

22.0 

90.0 

151.0 

250.0 

100.0 

151.5 

1 Frequency resolution for 2048-point FFT = 976.5625 Hz/bin 
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Table 6.12: Errors for the Developed Algorithm from HDL Simulations of 3-Lane Narrow 

Beam Scenario (SNR = 4.73dB) 

Beam Port Number 

1 

2 

3 

Target ID 

1 

3 

4 

6 

2 

5 

6 

Error in Range 

Measurement (m) 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

Error in Velocity 

Measurement (km/h) 

2.0 

2.0 

0.0 

1.0 

0.0 

1.0 

1.5 

Maximum error in range measurement for the developed algorithm: 0.00 m 

Maximum error in velocity measurement: 1.50 km/h 

6.2.2 Test 2: Hypothetical Scenario with 7 Targets Detected in a Single 
Wide Beam 

Figure 6.20 shows the scenario in consideration. It is a replica of the test carried 

out on the MATLAB model of the radar signal processing unit. The target ranges and 

velocities have been selected randomly to ensure fair testing. Through the verification 

process several target configurations were tested using randomly generated targets 

spread over the allowable range for the developed system, and the results presented in 

this chapter have been obtained after 6 iterations for each scenario. This is applicable 

for both Test 1 and Test 2 cases. 
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HOST VEHICLE 
Velocity: 100km/h 

Target 1 
Range: 9 m 

Velocity: 90 km/h 
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Velocity: 89 km/h 
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Velocity: 22 km/h 

,* :.*?:" 
.12̂  

a A i t 

Target 2 
Range: 24 m 

Velocity: 55 km/h 

Target 5 Target 6 
Range: 78 m Range: 106 m 

Velocity: 70 km/h Velocity: 80 km/h 

Figure 6.20: Hypothetical scenario with a single wide-angle antenna beam using only one beam 
port of the Rotman lens, i.e. no beam steering required to cover 3 central highway lanes. 

The results obtained are presented in Figure 6.21 for all 7 targets. Measurement 

results from the simulation and the respective errors are shown in Table 6.13 and Table 

6.14, respectively. 
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Figure 6.21: HDL simulation results for Test Case 2. 



Table 6.13: Results from HDL Simulations of the Developed Algorithm for 3-Lane Single 

Wide Beam Scenario 

Target 

ID 

1 

2 

3 

4 

5 

6 

7 

Measured Up 

Sweep IF 

(frequency bins)1 

46 

137 

159 

297 

425 

574 

809 

Measured Down 

Sweep IF 

(frequency bins)1 

53 

123 

155 

297 

416 

569 

786 

Measured 

Range (m) 

9.00 

24.00 

29.00 

55.00 

78.00 

106.00 

147.75 

Measured 

Velocity (km/h)2 

123.5 

53.5 

87.5 

100.0 

70.5 

83.0 

22.0 

1 Frequency resolution for 2048-point FFT = 976.5625 Hz/bin 

Target velocity has been calculated using equation (3.16) 

Table 6.14: Errors for the Developed Algorithm from HDL Simulations for 3-Lane Single 

Wide Beam Scenario (SNR = 4.73dB) 

Target ID 

1 

2 

3 

4 

5 

6 

7 

Error in Range 

Measurement (m) 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.25 

Error in Velocity 

Measurement (km/h) 

0.5 

1.5 

1.5 

0.0 

0.5 

3.0 

0.0 
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Maximum error in range measurement for the developed algorithm: 0.25 m 

Maximum error in velocity measurement: 3.00 km/h 

At this point a comparison can be made between the MATLAB simulation results 

and the HDL simulation results for the developed radar signal processing algorithm. HDL 

results are seen to be in accordance with software simulation results, and this proves 

the mathematical accuracy of the developed hardware system on FPGA. Table 6.15 and 

Table 6.16 show the difference between MATLAB and HDL results for range and velocity, 

respectively, for the wide beam scenario presented in Figure 6.20. 

Table 6.15: Comparison of MATLAB and HDL range results for wide beam scenario 

Target 

ID 

1 

2 

3 

4 

5 

6 

7 

Target 

Distance f rom 

Host Vehicle 

(m) 

9.00 

24.00 

29.00 

55.00 

78.00 

106.00 

148.00 

MATLAB 

calculated 

value 

(m) 

9.38 

24.34 

29.27 

55.37 

78.32 

106.28 

148.37 

HDL 

determined 

value 

(m) 

9.00 

24.00 

29.00 

55.00 

78.00 

106.00 

147.75 

A 

MATLA-

Actual 

(m) 

0.38 

0.34 

0.27 

0.37 

0.32 

0.28 

0.37 

A 

HDL-

Actual 

(m) 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.25 

A 

MATLAB 

-HDL 

(m) 

0.38 

0.34 

0.27 

0.37 

0.32 

0.28 

0.62 
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Table 6.16: Comparison of MATLAB and HDL velocity results for wide beam scenario 

Target 

ID 

1 

2 

3 

4 

5 

6 

7 

Target Velocity 

relative to Host 

Vehicle 

(km/h) 

123 

55 

89 

100 

70 

80 

22 

MATLAB 

calculated 

value 

(km/h) 

123.85 

52.31 

89.78 

100.00 

69.34 

79.56 

21.64 

HDL 

determined 

value 

(km/h) 

123.5 

53.5 

87.5 

100.0 

70.5 

83.0 

22.0 

A 

MATLA-

Actual 

(km/h) 

0.85 

2.69 

0.78 

0.00 

0.66 

0.44 

0.36 

A 

HDL-

Actual 

(km/h) 

0.5 

1.5 

1.5 

0.0 

0.5 

3.0 

0.0 

A 

MATLAB 

-HDL 

(km/h) 

0.35 

1.19 

2.28 

0.00 

1.16 

3.44 

0.36 

From Table 6.15 and Table 6.16 it can be concluded that the HDL results are in 

good accordance with the MATLAB results, and have higher accuracy compared to 

MATLAB results. This is due to the quantization involved in fixed-point HDL. The 

maximum measured range discrepancy between MATLAB and HDL is 62 cm, and the 

maximum measured velocity difference is 3.44 km/h or 0.95 m/s. 

6.3 Hardware Synthesis Results for the Developed Algorithm 

Table 6.15 lists the resource usage for the developed HDL design of the signal 

processing algorithm. The target device has been selected as the Virtex-5 SX50T FPGA. 

Table 6.16 lists the timing achievements of the HDL implementation. 
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Table 6.17: Resource Usage for the Radar Signal Processing Algorithm on Virtex-5 SX50T 

Resource 

Slice registers 

Slice LUTs 

DSP48E slices 

Fully used LUT-FF pairs 

BUFG/BUFGCTRLs 

FPGA fabric area ratio 

Used 

1357 

7445 

17 

705 

1 

21 

Available 

32640 

32640 

288 

8097 

32 

100 

Percentage Usage 

4% 

23% 

6% 

9% 

3% 

21% 

Table 6.18: Timing Achievements of HDL Implementation 

Operation 

Up sweep sampling 

(rsclk = o.5/tf) 

Window and feed time-

domain samples to FFT core 

FFT calculation 

Peak intensity calculation 

with 4 PSD units in parallel 

CFAR processing and Peak 

Pairing (rC F A R) 

Total Signal Processing 

Latency 

Overall Latency 

Effective Clock 

Cycles per Beam 

204756 

2072 

3960 

10743 

4388 

21163 

225928 

Latency per Beam with Operating 

Clock at 100 MHz (ms) 

2.047560 

0.020720 

0.039600 

0.107430 

0.060460 

0.211630 

2.259280 
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6.4 Observations from HDL Implementation of the Developed 
Algorithm 

The following noteworthy observations have been made about the HDL implementation 

of the radar signal processing algorithm: 

1. The worst case range measurement error is seen to be 0.25 m. This can be 

further reduced by increasing the word length of the range output, which is 

currently restricted to 10 bits. 

2. The worst case velocity measurement error is noted to be 3 km/h, which 

corresponds to 0.83 m/s. This error is within tolerance limits of the automotive 

radar arena, however can be improved further by making use of more bits for 

the output result. 

3. Proper synchronization of the modules has been achieved. 

4. The HDL design can operate at a maximum of 160 MHz, although a 100 MHz 

operating frequency is selected for ease of clock generation. 

5. Generation of the modulating waveform data to the DAC operates as required. 

6. The sampling clock is tuned at 2 MHz and the TLC unit samples over 1.024 ms to 

gather a total of 2048 time-domain samples. 

7. The HDL design operates within the time frame of 1.024 ms, and gives a result 

for a single beam scan in less than 0.22 ms as shown in Figure 6.22. 

8. The HDL results are within acceptable error limits compared to the MATLAB 

results, thus validating the HDL implementation of the algorithm. Due to 

truncation and rounding used in the fixed-point HDL implementation, the HDL 

code appears to generate better results compared to the floating-point MATLAB 

model. This was seen to be true over 6 iterations of running the system on the 

same time-domain data, however may or may not always hold true. 
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Table 6.19: Achieved Timing Details for Developed LFMCW Radar System 

Parameter 

Up sweep duration 

Down sweep duration 

Maximum Design Operating Frequency 

Processing Time per Beam 

«S> 100 MHz) 

Processing Time for 3 Beam RADAR 

Value 

1.024 ms 

1.024 ms 

160 MHz (65-nm FPGA technology) 

2.04756 ms sampling + 0.21163 ms processing = 

2.25928 ms 

2.25928 ms x 3 = 6.77784 ms1 

=> 147 MHz refresh rate 

1 This value is assuming that the sweep generation is stalled during processing, which is not the 

case. In actual implementation, processing of the previous beam is done during the next sweep 

as shown in Figure 6.22. The actual time is (2.048 + 0.020720) x 3 + 0.211630 = 6.41779 ms. 

DAC Output 

No sampling while passing 
up sweep samples to FFT 

core over 20720ns 

Hex'3FF=>6.1V-H 

Hex'000 => 4.5V - j — ^ Time (ms) 

No sampling while passing Beam 1 results available 
down sweep samples to at 2259280ns 
FFT core over 20720ns 

Figure 6.22: LFMCW sweep timing diagram for the realized HDL system. 
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CHAPTER 7: 
CONCLUSIONS 

7.1 Discussions and Conclusions 

A Xilinx Virtex-5 SX50T FPGA platform targeted Verilog HDL based signal 

processing algorithm has been developed to process the drive, control and decision 

making signal processing tasks associated with a MEMS implemented Rotman lens 

based LFMCW long range radar to detect the velocity and range of target vehicles in 

typical highway condtions. Necessary building blocks of the complete system have been 

developed and implemented to realize a fast radar control and signal processing 

algorithm in hardware. Excellent agreement between the MATLAB implemented 

mathematical models and Verilog HDL code generated results verify the accuracy of the 

HDL modules. The devloped Verilog HDL codes can be used to fabricate an ASIC that can 

be incorporated in a 3-D integrated complete radar system to realize a small form-factor 

low-cost automotive radar. A hardware latency time as low as 211.63 ps clocked at 100 

MHz has been achieved which is superior to state-of-the-art commercially reported 

radar systems. This is almost 3 times faster than a recent FPGA implementation 

presented in [28], where an LFMCW signal processing system has been implemented on 

a Xilinx Virtex-ll Pro FPGA with a latency of 1250 ps clocked at 50 MHz. The results for 

range and velocity calculations are promising and accurate with 100% detection in a 

tested SNR of 4.73 dB under an atmospheric attenuation of 0.8 dB/km corresponding to 

light or medium rain conditions. Swerling I, III and V type targets have been simulated. 

The maximum error in range measurement is 25 cm, and the maximum error in velocity 

measurement is 3 km/h or 0.83 m/s. The bandwidth of the LFMCW radar waveform is 

set to 800 MHz, and the radar algorithm is capable of covering a range of 200 meters 

with a maximum relative target velocity of ±300 km/h (receding and approaching 

targets). 
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The excellent speed performance of the algorithm validates the use of FPGAs in 

radar signal processing and allows the MEMS radar sensor to operate with a cycle time 

of 6.78 ms for a 3-beam sensor, which is at least 7 times faster than the Bosch LRR3 [23]. 

Beam direction control by means of MEMS SP3T RF switches and a MEMS Rotman lens 

has been implemented in the radar algorithm and found to operate in coherence with 

the radar system specifications. 

7.2 Future Work 

This thesis opens the path to many additional features that can be added to the MEMS 

radar sensor system. The following are some of the exciting possible future 

developments to the field of automotive radar systems with regard to this thesis: 

1. Accurate target angle measurement using an FPGA-based implementation of 

Direction-of-Arrival or DOA algorithms, such as Phase-Difference DOA estimation 

using double 1-D FFT [30], MUSIC [53], or ESPRIT [54]. 

2. Higher resolution of ADC input and target information output to improve range 

precision from 25 cm down to 5 cm and velocity precision from 0.5 km/h down 

to 0.125 km/h provided the sweep bandwidth is increased to 2 GHz and the 

sweep duration is increased to at least 6 ms. 

3. Inculcate the ability to gather road clutter and create a virtual map of the road 

by smartly using clutter information to detect side fences and dividers along with 

vehicles, as presented in literature [47]. 

4. Use alternating frequency bands and bandwidths to increase chances of target 

detection and improve detection accuracy by comparing results from both 

bands. 

5. Decrease the sweep duration to 0.5 ms and study the effect on signal processing 

accuracy and precision. 
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6. Implement an OS-CFAR module parallel to the CA-CFAR module developed 

herein in order to increase system fidelity by dynamic comparison of the results 

of both modules. 

7. Estimate the RCS of a detected target in close proximity or threat zone of the 

host vehicle and compute the mass and impact force in case of collision. 

8. Implementation of a multi-mode automotive radar system consisting of an SRR, 

MRR and LRR, as in Figure 7.1, running on the same processing unit and 

hardware. Such a system would be realizable by means of a reconfigurable 

antenna that can be controlled using the FPGA algorithm. 

9. Implementation of a combined FSK-monopulse and LFMCW radar using the 

same hardware to improve the functional dimensions to realize a compact small 

form-factor cost-effective automotive radar. 

SRR (30 meters) MRR (80 meters) LRR (200 meters) 

Figure 7.1: Typical angle and range coverage for forward-looking collision avoidance SRR, MRR 

and LRR over a 3-lane road. 
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Al. MATLAB listing for Radar Echo Signal Generation and Radar Signal 
Processing Algorithm testing 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ABOUT THIS CODE 
9-9-&S9-9-9-9-9-9-9-&&9-9-^3:&^&&&9-9-a9-9-9-&9-9-&9-S.a49.&e.aaQ.9.Q.ag,Q.aaoQaQ.o,a 
o o "6 o ~o *o ?> o'D o o o o o o o T> o 15 o o o o o o o o o o o o"5 o "5 "5 o o "5 "So "5 o o "5 o "5 o f i o ' 5 ? 5 o ? ? ? ' 6 ? S 6 ' 5 ' 5 6 S S o o o'o'O'o'o'o'o o 

% 
% The code generates a set of intermediate frequencies for a long range 
% radar, for both the up and down sweeps. The cell-averaging cfar algorithm 
% is then employed, followed by removal of spectral copies, and a final 
% loop to remove any,left-over noise components from the target map. This 
% leaves a final cfar matrix with all valid targets, which are plotted. 
% ^ 
% The target echo power is attenuated by 0.4dB/km as the factor of 
% attenuation of RF radiation in clear air. This factor can be changed 
% once a more appropriate/practical value is obtained. 
% 
% The algorithm eliminates any targets which are within +-1 frequency bin 
% of another target. This puts an upper limit to the number of targets the 
% system can detect: 
% Maximum number of simultaneously detectable targets = (NFFT/2)/3 
% where NFFT is the length of the Fourier transform. 
% Due to leakage and noise effects, this number can be practically as low 
% as (NFFT/2)/5. The noise and leakage effects persist to an extent despite 
% windowing. 
% 
% The original ca-cfar algorithm has poorer performance with higher number 
% of targets. To overcome this problem, a duplicate or ghost target removal 
% scheme is employed, followed by a secondary threshold. This enables 
% operation at a deteriorated probability of false alarm. Originally using 
% Pfa = 10A-9, and finally using Pfa = 10^-6. This allows multiple targets 
% to be detected with a resolution of 2.7 metres at same velocities. 
a 
o 

% The Pfa can be lowered further, which results in more false targets but 
% at low power. These can be removed by using a tertiary threshold scheme. 
% 
% Increasing the sweep bandwidth from 200MHz to 500MHz, and sampling rate 
% from lMSps to 3MSps can help improve the resolution to a certain extent, 
% such that the range resolution drops to 1 metre. 
% 
% The FMCW LRR simulated here can only detect the maximum relative velocity 
% of 300KMPH reliably at a minimum distance of 10 meters. 
% 
% Windowing is NOT included in this code. 
% 
% Finally, the code uses the frequency information from the up sweep and 
% the down sweep to compute the range and velocity of each detected target. 
% 
O O O O O 'O O O O O O O O O O O O O O O O O O O O O O O O O O "6 "5 O ' O ' O ' O ' O ' O ' O ' D ' O ' O ' O ' O ' O ' O ^ ' O ' O ' O ' O ^ 0 ~ 5 0 0 " 5 " 6 O " 6 " 6 ' O O O O O O O "5 O O O O O 

% DEVELOPER: SUNDEEP LAL (MEMS LAB) 
9-9-9-9-° 9-9-° ° 0-9-9-9-0-9-9-9-Q-9-9-9-9-9-0--9-9-9-9-9-9-9-9-9.9-0 9-0-Q-&9-^9-0-Q-9-9.9.9-9-0-9-9-9-£9-9-9-9-9-°-9-9-9-9-0-
O O'O'O'O'O'O'O'O'O O O O O O O O O O O O O O O O O O O^^^^^^^^^^IS^'O'O'O^'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O O O O O O 'O "0 "O O O 

clear all 
clc 

Tsweep = 1.024*10^-3; % Chirp duration in seconds 
Fsweep = 800 * 10~6; % Chirp bandwidth in Hz 

% Largely affects the range resolution of the system 
% A larger sweep bandwidth increases the spectral 
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% gap between targets, giving better cfar detection, 
c = 2.973 * 1CT8; % Speed of EM waves in m/s 
Ft = 76.9 * 10^9; % Central transmission frequency 

% Frequency sweep rate in s^-2 
k = Fsweep/Tsweep; 

% Target ranges in m 
rangesUp = [9 24 29 55 78 106 148]; % hypothetical scenario 
%rangesUp = [12 54]; % practical road scenario beaml 
%rangesUp = [111 90]; % practical road scenario beam2 
%rangesUp = [35 78 90]; % practical road scenario beam3 

% Target velocities in km/h 
% (all targets assumed to travel in same direction) 
% (all targets assumed to have zero acceleration during frequency chirp) 
velocities = [123 55 89 100 70 80 22]; % hypothetical scenario 
%velocities = [65 24]; % practical road scenario beaml 
%velocities = [90 150]; % practical road scenario beam2 
%velocities = [250 99 150]; % practical road scenario beam3 

% Host vehicle velocity in km/h 
velocity = 100; 

% Target echo received power factors assuming worst case scenario of 
% 0.8dB/km attenuation in light rain 
for i=l:length(rangesUp) 

loss = -2*0.8*rangesUp(i)/1000; % Two-way atmospheric absortion loss (dB) 
of 77GHz 

atten(i) = lO^loss; % Attenuation factor 
end 

% Relative velocities in m/s 
for i=l:length(rangesUp) 

relativeVelocity(i) = (velocity - velocities(i))/3.6; 
end 

% Change in ranges after up sweep 
for i=l:length(rangesUp) 

rangesDown(i) = rangesUp(i) + relativeVelocity(i)*Tsweep; 
end 

% Up and Down sweep frequencies in Hz 
for i=l:length(rangesUp) 

upIF(i) = k*2*rangesUp(i)/c + 2*Ft*relativeVelocity(i)/c; 
downlF(i) = k*2*rangesDown(i)/c - 2*Ft*relativeVelocity(i)/c; 

end 

1 5 ' o o o o o ' D o o o o o o o 

% Up c h i r p I F % 
Q . O O O Q . O O Q . O O O O Q . O . O 

' S ' 5 ' 5 o o o o ' 6 o o o " 6 o o o 

Fs = 2*10~6; % Sampling frequency 
T = 1/Fs; % Sample time 
L = Fs * Tsweep; % Length of signal 
t = (0:L-1)*T; % Time vector for up chirp 

xUp = 0; 
% Sum of all target frequencies in the up chirp 
for i=l:length(rangesUp) 

xUp = xUp + attend) *sin (2*pi*upIF (i) *t) ; 
end 
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yUp = xUp + randn(size(t)); % Sinusoids plus 

%%%%%%%%%%%%%%%%% 
% Down chirp IF % 

xDown = 0; 
% Sum of all target frequencies in the down ch 
for i=l:length(rangesUp) 

xDown = xDown + atten(i)*sin(2*pi*downIF(i 
end 

system noise 

irp 

)*t); 

yDown = xDown + randn(size(t)); % Sinusoids plus system noise 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Make hex time-domain data for HDL simulation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
uu = yUp; 
uu = uu - min(uu); 
uu = uu./max(uu); 
uu = uu.*2047; 
uu = round(uu); 
uuhex = dec2hex(uu); 
dd = yDown; 
dd = dd - min(dd); 
dd = dd./max(dd); 
dd = dd.*2047; 
dd = round(dd); 
ddhex = dec2hex(dd); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Apply Window to time-domain samples % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
window = hamming(2048); 
for i=l:2048 

yUp(i) = yUp(i) * window(i); 
yDown(i) = yDown(i) * window(i); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot time-domain received IF % 
9-&9-9.'iQ.9-&a-4Q-Q-Q-<3-'l.Q.Q-9.aQ.3.9.Q.9.9.Q.9-S.Q.Q-Q.Q-
"5 o o "5 o "6 o o o^^'5'6'0"0'0'0^"0"5'5t>15"6t>"5"5"5t)T>"O"0 

figure(1) 
Isubplot(2,1,1) 
plot(t(l:L),yUp(l:L)) 

%% 
% 
%% 

title('Up Chirp IF corrupted with Zero-Mean Random Noise') 
xlabel('Time (ms)') 
ylabel('Amplitude') 
figure(2) 
%subplot(2,1,1) 
plot(t(1:L),yDown(1:L)) 
title('Down Chirp IF corrupted with Zero-Mean 
xlabel('Time (ms)') 
ylabel('Amplitude') 

9-9-9-9-9-9-9-&-&-0 0-9-9.9-9-9-9-9-9-9-9-0-9-°-9-9-9-0 ° Q- 9- 9- Q. o Q.o.0 
O O O O O 0 O O O'O'D'O'O'O'O'O'O'OO'O 0 O O O O OO'O'5'O'O'O'O'O'O'O'O 

% Plot frequency-domain received IF % 
9-9-9-0-9-9-9-8-9-° ° ° ° ° S-9-9-9-9-9-9-9-9-9-9-9-9-0 o O Q.Q.O g,o o o 
O O O O O O O O O O O O O O O O O O O O O O O O ' O O ' O O ' O ' O ' O ' 5 ' O ' D ' O ' O ' O 

NFFT = 2^nextpow2(L); % Next power of 2 from 
Yup = fft(yUp,NFFT)/L; 
Ydown = fft(yDown,NFFT)/L; 
f = Fs/2*linspace(0,l,NFFT/2+l); 

Random Noise') 

length of y 
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% Plot single-sided amplitude spectrum 
figure(3) 
%subplot(2,1,2) 
stem(f,abs(Yup(1:NFFT/2+l))./max(abs(Yup(1:NFFT/2+l)))) 
title('Single-Sided Amplitude Spectrum of yUp(t)') 
xlabel('Frequency (Hz)') 
ylabel ('|Yup(f) | •) 
figure(4) 
%subplot(2,1,2) 
stem(f,abs(Ydown(1:NFFT/2+l)) 
title ('Single-Sided Amplitude 
xlabel('Frequency (Hz)') 
ylabel('IYdown(f)|') 

/max(abs(Ydown(1:NFFT/2+l)))) 
Spectrum of yDown(t)') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
% CA-CFAR detection 
% K = PfaA(-l/(2*M)) - 1 
%%%%%%%%%%%%%%%%%%%%%%%%%% 

I-
% I UP SWEEP | 
% I I 
Pfa = 1CT-6; 
M = 4; % Depth of cell averaging on one side of CUT 
GB = 2; % Number of guard bands around Cell-Under-Test 
K = PfaA(-1/(2*M)) - 1; % Cell averaging factor 
tmpcfar = [ 0 0 0 0 ] ' ; % Initiate the cfar matrix 
countup = 1; 
countupfinal = 0; 

for CUT=2:NFFT/2 

avgL = 0; 
avgR = 0; 

% Start from index 2 to avoid DC component caused by 
% system and channel noise. Stop at (NFFT/2-30) to 
% limit maximum target range, relative velocity at 
% 150m,300kmph 

% Average on left side of Cell-Under-Test 
% Average on right side of Cell-Under-Test 

% Compute the averages 
if (CUT<=M+GB) 

for i=l:M 
avgR = avgR + abs(Yup(CUT+i+GB)); 

end 
avgR = avgR/M; 

elseif(CUT>=NFFT/2-M-GB) 
for i=l:M 

avgL = avgL + abs(Yup(CUT-i-GB)); 
end 
avgL = avgL/M; 

else 
for i=l:M 

avgL = avgL + abs(Yup (CUT-i-GB)); 
avgR = avgR + abs(Yup(CUT+i+GB)); 

end 
avgR = avgR/M; 
avgL = avgL/M; 

end 
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% Compute threshold 
T = (avgR+avgL)/2 * K; 
% Decision 
if(abs(Yup(CUT))>T) 

countup = countup + 
tmpcfar(1,countup) = 
tmpcfar(2,countup) = 

end 
end 
tmpcfar(1,countup+1) = 0; 
tmpcfar(2,countup+1) = 0; 

1; 
= abs(Yup(CUT)) ; 
= CUT; 

% REMOVE ALL SPECTRAL COPIES HERE 
-i — 1 • 

for i=2:length(tmpcfar(1,:) -1 
if((tmpcfar(2,i)~=tmpcfar(2,i+1)-1)&&(tmpcfar(2,i)~=tmpcfar(2, i+1) ) ) 

if((tmpcfar(2,i)==tmpcfar(2,i-l)+l) 1 | (tmpcfar(2,i)==tmpcfar(2, i-1) ) ) 
tmplcfar(1,j) = 
tmplcfar(2,j) = 
j = j + 1; 

else 
tmplcfar(1,j) = 
tmplcfar(2, j) = 
j = j + 1; 

end 
end 

end 

max(tmpcfar(1,i-1),tmpcfar(1,i)); 
tmpcfar(2,i); 

tmpcfar(1,i); 
tmpcfar(2,i); 

% Eliminate any residual false alarms 
ST = 0.6 * mean(tmplcfar(1, 

j = l; 
for i=l:length(tmplcfar(1,: 

if(tmplcfar(l,i)>ST) 

) ) ; % Secondary Threshold computed from 
% mean of all detected target powers 

) 

cfar(l,j) = tmplcfar(1,i); 
cfar(2,j) = tmplcfar(2,i);% * Fs/NFFT; 
j = j + 1; 
countupfinal = countupfinal + 1; 

end 
end 

% Plot detected targets 
figure(5) 
%subplot(2,1,1) 
title('CFAR-detected targets for yUp(t)') 
xlabel('Frequency (Hz)') 
ylabelC |Yup(f) | ') 
stem(cfar(2,:),cfar(1,:)); 

a i i 
* 1 1 
% | DOWN SWEEP | 
% i I * 1 1 
countdown = 1 ; 
countdownfinal = 0; 

for CUT=2:NFFT/2 % Start from index 2 to avoid DC component caused by 
% system and channel noise. Stop at (NFFT/2-30) to 
% limit maximum target range, relative velocity at 
% 150m 

avgL = 0 ; % Average on 
avgR = 0 ; % Average on 

300kmph 
left side of Cell-Under-Test 
right side of Cell-Under-Test 
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% Compute the averages 
if(CUT<=M+GB) 

for i=l:M 
avgR = avgR + abs(Ydown(CUT+i+GB)); 

end 
avgR = avgR/M; 

elseif(CUT>=NFFT/2-M-GB) 
for i=l:M 

avgL = avgL + abs(Ydown(CUT-i-GB)); 
end 
avgL = avgL/M; 

else 
for i=l:M 

avgL = avgL + abs(Ydown(CUT-i-GB)) ; 
avgR = avgR + abs(Ydown(CUT+i+GB)); 

end 
avgR = avgR/M; 
avgL = avgL/M; 

end 

% Compute threshold 
T = (avgR+avgL)/2 * K; 
% Decision 
if(abs(Ydown(CUT))>T) 

countdown = countdown + 1; 
tmpcfar(3,countdown) = abs(Ydown(CUT)); 
tmpcfar(4,countdown) = CUT; 

end 
end 
tmpcfar(3,countdown+1) = 0; 
tmpcfar(4,countdown+1) = 0; 

% REMOVE ALL SPECTRAL COPIES HERE 
J = 1 ; 
for i=2:length(tmpcfar(1,:))-1 

if((tmpcfar(4,i)~=tmpcfar(4,i+1)-1)&& (tmpcfar(4,i)~=tmpcfar(4, i+1) ) ) 
if((tmpcfar(4,i)==tmpcfar(4,i-l)+l) | | (tmpcfar(4,i)==tmpcfar(4, i-1)) ) 

tmplcfar(3,j) = max(tmpcfar(3,i-1),tmpcfar(3,i)); 
tmplcfar(4,j) = tmpcfar(4,i); 
j = j + 1; 

else 
tmplcfar(3,j) = tmpcfar(3,i); 
tmplcfar(4,j) = tmpcfar(4,i); 

end 
end 

end 

% Eliminate any residual false alarms 
ST = 0.6 * mean(tmplcfar(3,:)); % Secondary Threshold computed from 

% mean of all detected target powers 
j = l; 
for i=l:length(tmplcfar(3,:)) 

if(tmplcfar(3,i)>ST) 
cfar(3,j) = tmplcfar(3,i); 
cfar(4,j) = tmplcfar(4,i);% * Fs/NFFT; 
j = j + 1; 
countdownfinal = countdownfinal + 1; 

end 
end 
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% Plot detected targets 
figure(6); 
%subplot(2,1,2) 
title('CFAR-detected targets for yDown(t) 
xlabel('Frequency (Hz)') 
ylabelC |Ydown(f) | ') 
stem(cfar(4,:),cfar(3,: ) ) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot target IF phase % 

for i=l:length(cfar(1,:)) 
phaseup(i) = 180 * atan( imag ( Yup(cfar(2,i)) ) / real( Yup(cfar(2,i)) ) 
phasedown(i) = 180 * atan( imag( Ydown(cfar(4,i)) ) / real( 

Ydown(cfar(4,i)) ) ); 
end 

i=l:length(cfar(1,:)) ; 
figure(7); 
subplot(2,1,1) ; 
stem(i,(phaseup)); 
subplot(2,1,2); 
stem(i,(phasedown)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Pairing % 
%%%%%%%%%%% 

% PAIRING IS DONE BASED ON TWO STAGES: 
% 1) the up sweep and down sweep intermediate frequencies of the same target 
% will be within 22 cells of each other. 
% 2) if there are multiple down sweep intermediate frequencies that fall in 
% the criteria in (1) for a given frequency in the up sweep, then peak power 
% comparison is done. 
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A2. MATLAB listing for percentage error calculation from 10-bit rounding of 
Window functions 

clear all 
clc 

window = hamming(2048); % get the coefficients of 2048-point Hamming 
window 

window = window.*1023; % scale the coefficients to 10-bit range 
rounded_window = round(window); % round off window coefficients to 

nearest integer 

% compute the percentage error from rounding 
for i=l:2048 

perr(i) = abs ( window(i)-rounded_window(i) )/window(i) * 100; 
end 

mean(perr) % display the average percentage error from rounding 

150 



A3. HDL listing for TLC 
'timescale Ins / lps 

llllllllllllllllllllllllllllilllllllllllllllllllllllllllllllllllllllllllllllllllll 
II This is the full radar system, including the controller and the digital signal 
/ / processing modules. The input are 2048 11-bit time domain samples from the ADC, 
/ / the outputs are a modulation signal for the VCO tuning voltage via DAC, and the 
/ / detected target information. 

// 
/ / - SUNDEEP LAL -
////////////////////////////////////////////////////////////////////////////////// 

module toplevel( 
elk, 

reset, 
en, 
data in, 
unit_vel, 
sclk, 
final_target_info, 
beamport, 
final_info_valid, 
modulate); 

/ / Inputs 
input elk, reset, en; 
input [10:0] datain; / / ADC -> ADC_CAPTURE 
input [7:0] unit_vel;//vehicle velocity 

/ / Outputs 
output sclk; / / SCLK is sampling clock to ADC 
output [21:0] final_target_info; / / 9.1bits velocity, 8.2bits range, 2bits beamport 
output [2:0] beamport; / / 100 - beamportl, 010 beamport2, 001 - beamport3 
output final_info_valid; / / data valid output from PAIRING module 
output [9:0] modulate; / / 10-bit DAC output for tuning voltage 

/ / Output registers 
reg [21:0] final_target_info; 
reg [2:0] beamport; 
reg final_info_valid; 
reg [9:0] modulate; 

/ / Internal registers 
reg updown; 
reg modclock; / / modulation clock at 1MHz to update DAC value 
reg [5:0] modtimer; / / counter for clock division: 100MHz -> 1MHz 
reg moddone; / / flag to mark update of VCO tuning voltage 
reg dirchange; / / flag to mark change of sweep direction 
(* KEEP = "TRUE"*) reg [18:0] velmulres; / / used in adjusting target velocity for beamports 1/3 angle 
reg [8:0] velmulfac; / / multiplication factor l/cos(10) for target at +-10 degrees 
reg st; / / internal flag 

/ / Internal connections 
wire hold; / / ADC_CAPTURE -> TOPLEVEL (busy signal, do not change sweep direction) 
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wire fwd_inv_we, fwd jnv ; 
assign fwd_inv_we = 1; 
assign fwd jnv = 1; / / forward FFT 

wire scale_sch_we; 
assign scale_sch_we = 0; 

wire [11:0] scale_sch; 
assign scale_sch = 12'dO; / / use default scaling schedule for FFT stages 

wire fft_start; / / ADC_CAPTURE -> FFT 
wire [11:0] xn_re, x n j m ; / / ADC_CAPTURE -> FFT 
wire [10:0] xn_index; / / FFT-> ADC.CAPTURE 
wire [10:0] xkjndex; / / FFT -> UNLOAD_FFT 
wire [11:0] xk_re, xk_im; / / FFT -> UNLOAD_FFT 
wire fft_busy, fft_edone; / / FFT -> ?toplevel? 
wire fft_rfd, fft_dv, fft_done; / / FFT -> UNLOAD_FFT 
wire [9:0] index; / / UNLOAD_FFT -> FFT_CAPTURE 
wire [11:0] re, im; / / UNLOAD_FFT -> FFT_CAPTURE 
wire dv; / / UNLOAD_FFT -> FFT_CAPTURE 
wire sqrt_done; / / TOPLEVEL -> FFT_CAPTURE 
wire donea, doneb, donee, doned; / / SQRT -> TOPLEVEL 

assign sqrt_done = donea & doneb & donee & doned; 
wire [24:0] sqrt_feeda, sqrt jeedb, sqrt jeedc, sqrt jeedd; / / FFT_CAPTURE -> SQRT 
wire sqrt_start; / / FFTjCAPTURE -> SQRT 
wire [12:0] roota, rootb, rootc, rootd; / / SQRT -> CFAR 
wire [12:0] target_abs; / / CFAR -> PAIRING 
wire [9:0] target_pos; / / CFAR -> PAIRING 
wire new_target, complete; / / CFAR -> PAIRING 
wire start_cfar; / / CFAR -> FFT_CAPTURE 
wire [19:0] target jnfo; / / PAIRING -> TOPLEVEL 
wire info_valid; / / PAIRING -> TOPLEVEL 

ti
ll lMhz clock generator from 100MHz system clock 
/ / - used to update VCO tuning voltage via DAC 
//_ 
always @ ( posedge elk) 
begin 

if( reset == 1) / / synchronous reset 
begin 

modtimer <= 6'd0; 
modclock <= 1'bO; 

end 

else if( modtimer == 49 ) 
begin 

modclock <= ~modclock; / / invert modulation clock 
modtimer <= 6'd0; / / clear counter 

end 

else 
modtimer <= modtimer + 1; 

end 

// 
/ / Beamport, tuning voltage and sweep control 
// 
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always @ ( posedge elk) 
begin 

if( reset ==1)17 synchronous reset 
begin 

beamport <= 3'bl00; / / start with beamportl 
modulate <= 10'dO; 
updown <= l ' b l ; / / start in up sweep 
moddone <= 1'bO; 
dirchange <= 1'bO; 

end 

/ / if FFT computation has begun 
else if( fft_start == 1 && dirchange == 0) 
begin 

dirchange <= l ' b l ; / / flag: mark change of sweep direction 

if( updown == 1) / / if current sweep direction is up 
begin 

modulate <= modulate; / / set up modulation signal for down sweep 
updown <= 1'bO; / / switch to down sweep 

end 

else / / if current sweep direction is down 
begin 

modulate <= 10'dO; / / set up modulation signal for up sweep 
updown <= l ' b l ; / / switch to up sweep 

if( beamport == 3'bl00) / / if currently using beamportl 
beamport <= 3'b010; / / switch to beamport2 

else if( beamport == 3'b010 ) / / if currently using beamport2 
beamport <= 3'b001; / / switch to beamport3 

else / / if currently using beamport3 
beamport <= 3'blOO; / / switch back to beamportl 

end 
end 

else if( hold == 1) 
begin 

modulate <= modulate; / / hold at max. while ADC_CAPTURE is busy feeding FFT 
dirchange <= 1'bO; / / clear flag 

end 

else if( modclock == 1 && moddone == 0 ) 
begin 

if( updown == 1) / / up sweep 
begin 

if( modulate < 1023 ) 
modulate <= modulate + 1; / / increase tuning voltage 

else 
modulate <= modulate; / / hold at max. 

end 

else if( updown ==0 ) 
begin 

iff modulate > 0 ) 
modulate <= modulate - 1 ; / / decrease tuning voltage 

else 
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modulate <= modulate; / / hold at min. 
end 

moddone <= l ' b l ; / / f lag : tuning voltage has been updated 
end 

else if( modclock == 0 ) 
moddone <= 1'bO; / / clear flag: ready for next 'modclock' pulse to update., 

//..tuning voltage via 'modulate' 
end 

//-
II Adjust target velocity according to beam angle w.r.t. vehicle 

always @ ( posedge elk) 
begin 

if( reset == 1) 
begin 

final_target_info <= 22'dO; 
final_info_valid <= 1'bO; 
velmulres <= 19'dO; 
velmulfac <= 9'bl00000001; / * - 1.8bits number, decimal equivalent is 1.00390625 

- multiplication factor for target at 5 degrees 
angle to the vehicle is l/cos(5) = 1.00382 * / 

st <= 1'bO; 
end 

else 
begin 

if( info_valid == 1 11 st == 1) 
begin 

if( st == 0 ) 
begin 

/ / if current beamportl/2, then previous beamport is 3/1 
/ / i.e. target is at an angle of +-10 degrees beam 
iff beamport == 3'blOO 11 beamport == 3'bOlO) 
begin 

velmulres <= target_info[19:10] * velmulfac; 
/ / extract range (unaffected by angle), append beamport# 
if( beamport == 3'blOO ) 

final_target_info[ll:0] <= {target_info[9:0],2'd3}; 
else if( beamport == 3'b010) 

final_target_info[ll:0] <= {target_info[9:0],2'dl}; 
st <= l ' b l ; / / mark flag to add adjusted velocity 

end 
/ / else if previous beamport is 2, target velocity remains unchanged 
else 
begin 

final_target_info[21:0] <= {target_info,2'd2}; / / append beamport# 
final_info_valid <= l ' b l ; 

end 
end 

else if( st == 1 && velmulres[17:9] <= 300 ) / / add adjusted velocity to output-
begin 

//..and allow max. 300kmph 
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final_target_info[21:12] <= velmulres[17:8]; 
final_info_valid <= l ' b l ; 
st <=l 'bO;//clear flag 

end 
end 

end 

if( final_info_valid == 1) 
begin 

final_info_valid <= 1'bO; / / clear flag 
final_target_info <= 22'dO; 

end 

// 
/ / Module instantiation 

adc_capture adc_capture_l( 
.clk(clk), 

.reset( reset), 

.en(en), 

.fft_rfd(fft_rfd), 

.datain(datain), 

.xn_index(xn_index), 

.xn_re(xn_re), 

.xn_im(xn_im), 

.fft_start(fft_start), 

.hold(hold), 

.sclk(sclk)); 

fft_2048 fft_2048_l( 
.fwd_inv_we_i(fwd_inv_we), 
.rfd_i(fft_rfd), 
.start_i(fft_start), 
.fwd_inv_i(fwd_inv), 
.dv_i(fft_dv), 
.unload_i(fft_unload), 
.scale_sch_we_i(scale_sch_we), 
.done_i(fft_done), 
.clk_i(clk), 
.busy_i(fft_busy), 
.edone_i(fft_edone), 
.scale_sch_i(scale_sch), 
.xn_re_i(xn_re), 
.xk_im_i(xk_im), 
.xn_index_i(xn_index), 
.xk_re_i(xk_re), 
.xn_im_i(xn_im), 
.xk_index_i(xk_index) ); 

unload_fft unload_fft_l( 
.clk(clk),//global clock 

.reset(reset), / / global synchronous reset 
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.fft_done(fft_done), / / completion signal from FFT core 

.fft_dv(fft_dv), / / data valid signal from FFT core 

.xk_index(xk_index), / / data index from FFT core 

.xk_re(xk_re), / / real output from FFT 

.xk_im(xk_im), / / imaginary output from FFT 

.fft_unload(fft_unload), / / unload transform results from FFT core 

.index(index), / / 1023 -> 0 index to FFT_CAPTURE 

.re(re), / / real output to FFT_CAPTURE 

.im(im), / / imaginary output to FFT_CAPTURE 
•dv(dv)); / / data valid signal to FFT_CAPTURE 

fft_capture fft_capture_l( 
.clk(clk), 

.reset(reset), 

.index(index), / / sample index from 1023 down to 0 from UNLOAD_FFT 

.re(re), / / real FFT output data from UNLOAD_FFT 

.im(im), / / imaginary data from UNLOAD_FFT 

.dv(dv), / / data valid signal from UNLOAD_FFT 

.cfar_busy(start_cfar), / / busy signal from CFAR unit, halt feeding SQRT while high 

.sqrt_done(sqrt_done), / / completion signal from SQRT units 

.sqrt_feeda(sqrt_feeda), / / output to SQRT units 

.sqrt_feedb(sqrt_feedb), 

.sqrt_feedc(sqrt_feedc), 

.sqrt_feedd(sqrt_feedd), 

.sqrt_start(sqrt_start)); / / start signal to all SQRT units 

sqrtsqrtl( 
xlk(clk), 

.reset( reset), 

.value(sqrt_feeda), / / 25-bit input sum of realA2 + imagA2 

.start(sqrt_start), / / start signal from FFT_CAPTURE 

.root(roota), / / square root of input 

.done(donea)); / / completion signal 

sqrt sqrt2( 
.clk(clk), 

.reset(reset), 

.value(sqrt_feedb), 

.start(sqrt_start), 

.root(rootb), 

.done(doneb)); 

sqrtsqrt3( 
.clk(clk), 

.reset( reset), 

.value(sqrt_feedc), 

.start(sqrt_start), 

.root(rootc), 

.done(donec)); 

sqrt sqrt4( 
.clk(clk), 

.reset(reset), 

.value(sqrt_feedd), 

.start(sqrt start), 



.root(rootd), 

.done(doned)); 

cacfar_32 cacfar_32_l( 
xlk(clk), 

.reset( reset), 

.inA(roota), / / inA,inB, inC, inD are obtained from 4 different sqrt modules 

.inB(rootb), 

.inC(rootc), 

.inD(rootd), 

.start(sqrt_done), / / start recieving values from SQRT modules.. 

.target_abs(target_abs), / / new target peak intensity 

.target_pos(target_pos), / / new target frequency bin number 

.new_target(new_target), / / new target detected signal 

.start_cfar(start_cfar), / / high when busy, mapped to cfar_busy in FFT_CAPTURE 

.complete(complete)); / / completion of CFAR processing for current data batch 

pairing pairing_l( 
xlk(clk), 

.reset(reset), 

.new_target(new_target), / / new target detected signal from CACFAR_32 module 

.target_abs(target_abs), / / new target peak intensity 

.target_pos(target_pos), / / new target frequency bin number 

.complete(complete), / / CFAR completion signal 

.updown(updown), / / updown = 1(0) during up(down) sweep sampling i.e. down(up) sweep processing 

.unit_vel(unit_vel), / / vehicle velocity 

.target_info(target_info), / / MSB -> 10 bits velocity, 10 bits range <- LSB 

.info_valid(info_valid)); / / target information valid signal to display unit 

endmodule 



A4. HDL listing for SAMPLER 

'timescale Ins / lps 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
II This module is responsible for capturing data from the ADC, buffering it, and 
/ / transferring it to the FFT module for frequency analysis. There is a clock 
/ / divider that divides the system clock down to sampling clock. 

// 
//-SUNDEEPLAL-

ll/l/l/llllllll/llllllll/lllllllllllll/ll/lll/lllllllllllllllll/lllll/llllllllllll 

module adc_capture( 
elk, 

reset, 
en, 
fft_rfd, 
datain, 
xn_index, 
xn_re, 
xn_im, 
fft_start, 
hold, 
sclk ); 

/ / Inputs 
input elk; / / global clock 
input reset; / / global reset 
input en;/ /enable 
input fft_rfd; / / FFT core ready-for-data signal 
input [10:0] datain; / / input sample from ADC 
input (10:0] xnjndex; / / 2048 samples 

/ / Outputs 
output [11:0] xn_re; / / real part of sample data to FFT core 
output [11:0] xn_im; / / imaginary part of sample data to FFT core 
output fft_start; / / start FFT calculation 
output hold; / / hold while passing data to FFT core 
output sclk; / / sampling clock at 2MHz to drive ADC 

/ / Internal registers 
reg [11:0] xn_re; 
reg [11:0] xn_im; 
regfft_start; 
reg hold; 
reg sclk; 

reg [4:0] sclk_cnt; / / clock divider counter 
reg sample_read; / / internal flag 
reg [10:0] data_buf [2047:0]; 
reg [10:0] data_cnt; 
reg feedfft; / / internal flag 
reg feeddone; / / internal flag 
(* KEEP = "TRUE"*) reg [21:0] mult_res; / / window multiplication result register 
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reg [9:0] window [1023:0]; / / window function 

// 
/ / generate sampling clock @ 2MHz from 100MHz supply 
// 
always @ ( posedge elk) 
begin 

if( reset == 1) 
begin 

sclk<=l'bO; 
sclk_cnt <= 5'dO; 

end 

else if( reset == 0 && en == 1 && hold == 1) 
begin 

sclk <= 1'bO; 
sclk_cnt <= 5'dO; 

end 

else if( reset == 0 && en == 1 && hold == 0 ) 
begin 

if( sclk_cnt == 24 ) / / count 24 -> 100MHz, 19 -> 80MHz, 14 -> 60MHz 
begin 

sclk <= ~sclk; 
sclk_cnt <= 5'dO; 

end 

else 
begin 

sclk_cnt <= sclk_cnt + 1; 
end 

end 

end 

// 
/ / Capture data from adc 
// 
always @ ( posedge elk ) 
begin 

if( reset == 1) 
begin 

data_cnt <= 11'dO; 
feedfft <= 1'bO; 
sample_read <= 1'bO; 

end 

else if( reset == 0 && en == 1 && sclk == 1 && feedfft == 0 ) 
begin 

if( sample_read == 0 ) 
begin 

data_buf [data_cnt] <= datain; / / store data in buffer 
data_cnt <= data_cnt + 1; / / increment buffer index 
sample_read <= l ' b l ; 



end 

iff data_cnt == 2047 && sample_read == 0) 
begin 

feedfft <= l ' b l ; / / hold is asserted after 2 elk cycles 
end 

end 

else if( reset == 0 && sclk == 0 ) 
sample_read <= 1'bO; 

iff reset == 0 && feeddone == 1) 
feedfft <= l 'bO; / / clear flag 

// 
/ / Send captured data to FFT core 
//. 
always @ ( posedge elk) 
begin 

iff reset == 1) 
begin 

xn_re <= 12'dO; 
xn_im <= 12'dO; 
hold <= 1'bO; 
fft_start <= 1'bO; 
mult_res <= 22'dO; 
feeddone <= 1'bO; 

else iff reset == 0 && feeddone == 1) 
feeddone <= 1'bO; / / clear flag 

else iff reset == 0 && en == 1 && feedfft == 1) 
begin 

iff fft_start == 0 && hold == 0) 
begin 

//$display("FFTfeed start: %d",$time); 
fft_start <= l ' b l ; / / start FFT core 
hold <= l ' b l ; / / halt sampling while passing data to FFT 
mult_res <= {l'bO,data_buf [xnjndex]} * window [xnjndex]; 

end 

else iff fft_start == 1 && xnjndex == 0 && fft_rfd == 1) 
begin 

fft_start <= 1'bO; 
xn_re <= mult_res [21:10]; / / truncate and send 
mult_res <= {l'bO,data_buf [xnjndex + 1]} * window [xnjndex + 1]; 

end 

else iff xnjndex > 0 && xnjndex < 1023 && f f t j f d == 1) 
begin 

x n j e <= multj-es [21:10]; / / truncate and send 
mult res <= {l'bO,data buf [xn index + 1]} * window [xnjndex + 1]; 



end 

else if( xnjndex > 1022 && xnjndex < 2047 && fft_rfd == 1) 
begin 

xn_re <= mult_res [21:10]; / / truncate and send 
mult_res <= {l'bO,datajDuf [xnjndex + 1]} * window [2047 - xnjndex -1 ] ; 

end 

else if( xnjndex == 2047 && fft_rfd == 1) 
begin 

x n j e <= multj-es [21:10]; / / truncate and send 
hold <= 1'bO; / / resume sampling next sweep 
feeddone <= l ' b l ; / / feedfft is deasserted after 2 elk cycles 

end 
end 

end 

ti
ll set window function coefficients 
// 
always @ ( posedge elk) 
begin 

if( reset == 1) 
begin 

window[0] <= 0; 
window[l] <= 1; 
window[2] <= 2; 

.. / / define window coefficients here 

window[2047] <= 1023; 
end 

end 
endmodule 
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AS. HDL wrapper for Xilinx FFT v7.0 core 

'timescale l n s / l p s 

module fft_2048 ( 
fwd_inv_we_i, rfd_i, start_i, fwd_inv_i, dv_i, unload_i, scale_sch_we_i, done_i, elk i, busy_i, edonej , scale_sch_i, 

xn_re_i, xk_im_j, x n j n d e x j , xk_re_i, xn_im_i, xk index_i 

); 
input fwd_inv_we_i; 
output rfd_i; 
input start_i; 
input fwd_inv_i; 
output dv_i; 
input un loadj ; 
input scale_sch_we_i; 
output done_i; 
input e l k j ; 
output busy_i; 
output edone j ; 
input [11:0] scale_sch_i; 
input [ 1 1 : 0] x n j e j ; 
output [11:0] xk_im_i; 
output [10 :0] xn_index_i; 
output [11:0] xk_re_i; 
input [ 1 1 : 0] xn_im_i; 
output [10 : 0] xk_index_i; 

xfft_v6_0 fft ( 
.fwd_inv_we(fwd_inv_we_i), 
•rfd(rfd_i), 
.start(startj'), 
.fwd_inv(fwd_inv_i), 
.dv(dv_i), 
.unload(unloadj'), 
.scale_sch_we(scale_sch_we_i), 
.done(donej), 
.clk(clk_i), 
.busy(busy_i), 
.edone(edone_i), 
.scale_sch(scale_sch_i), 
.xn_re(xn_re_i), 
.xkj 'm(xkjmj ' ) , 
.xnjndex(xnj'ndexj'), 
.xk_re(xk_re_i), 
.xn_im(xn_im_i), 
.xk_index(xk_index_i) 

); 
endmodule 

162 



A6. HDL listing for FDR 

[Unit to unload data from FFT] 

'timescale I n s / lps 

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II This module is needed to compute the 2's complement of the FFT output in order 
/ / to compute the absolute value accurately. The output of this module is unsigned 
/ / data to the FFT_CAPTURE module. 

// 
//-SUNDEEPLAL-
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

module unload_fft( 
elk, 

reset, 
fft_done, / / completion signal from FFT core 
fft_dv, / / data valid signal from FFT core 
xkjndex, / / data index from FFT core 
xk_re, / / real output from FFT 
xk_im, / / imaginary output from FFT 
fft_unload, / / unload transform results from FFT core 
index, / / 1023 -> 0 index to FFT_CAPTURE 
re, / / real output to FFT_CAPTURE 
im, / / imaginary output to FFT_CAPTURE 
dv ); / / data valid signal to FFT_CAPTURE 

/ / Inputs 
input elk, reset, fft_done, fft_dv; 
input [10:0] xkjndex; 
input [11:0] xk_re, xk_im; 

/ / Outputs 
output fft_unload; 
output [9:0] index; 
output [11:0] re, im; 
output dv; / / data valid to FFT_CAPTURE 

/ / Registers 
regff t j jn load; 
reg [9:0] index; 
reg [11:0] re, im; 
reg dv; 

/ / Main process 
always @ ( posedge elk) 
begin 

if( reset == 1) / / synchronous reset 
begin 

f f t j jn load <= l'bO; 
index <= 10'd0; 
re <= 12'd0; 
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end 

else 
begin 

im <= 12'dO; 
dv <= 1'bO; 

end 

if( fft_done == 1) 
fft_unload <= l ' b l ; / / pulse fft_unload to start receiving FFT output 

else 
fft_unload <= 1'bO; 

if( fft_dv == 1) 
begin 

if( xk_index > 1023) / / only capture lower half of the FFT output 
begin 

if( xk_re[ l l ] == 1) / / if negative number output from FFT 
re <= ~xk_re + l ' b l ; 

else 
re <= xk_re; 

iff xk_im[l l ] == 1) / / if negative number output from FFT 
im <= ~xk_im + l ' b l ; 

else 
im <= xk_im; 

index <= index - 1 ; / / decrement index (first state 0 to 1023).. 
dv <= l ' b l ; //..this enables reverse order storage of FFT.. 

end //..output in FFT_CAPTURE 
end 

else / / clear outputs while not receiving from FFT 
begin 

index <= 10'dO; 
re <= 12'd0; 
im <= 12'dO; 
dv <= 1'bO; 

end 

end 
endmodule 
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[Unit to store FFT output] 

'timescale Ins / lps 

////////7/////////////////////////////7/////7////////////7///////////////////////// 
/ / This code accepts FFT output from the UNLOAD_FFT module in unsigned form. This 
/ / module then squares the real and imaginary parts, adds them together and feeds 
/ / the sum to 4 SQRT units running in parallel, thus computing the absolute peak 
/ / intensity for each frequency bin of the FFT. 

// 
//-SUNDEEPLAL-

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

module fft_capture( 
elk, 

reset, 
index, / / sample index from 1023 down to 0 from UNLOAD_FFT 
re, 
im, 
dv, 
cfar_busy, 
sqrt_done, 
sqrt_feeda, 
sqrt_feedb, 
sqrt_feedc, 
sqrt_feedd, 
sqrt_start); 

/ / Inputs 
input elk; / / global clock 
input reset; / / global reset 
input [9:0] index; / / FFT output index in reverse order from UNLOAD_FFT 
input [11:0] re; / / real output from UNLOAD_FFT 
input [11:0] im; / / imaginary output from UNLOAD_FFT 
input dv; / / data valid signal from UNLOAD_FFT 
input cfar_busy; / / signal from CFAR module, mapped to output start_cfar 
input sqrt_done; / / completion signal from module absval 

/ / Outputs 
output [24:0] sqrt_feeda; / / output to module absval for calculation 
output [24:0] sqrt_feedb; 
output [24:0] sqrt_feedc; 
output [24:0] sqrt_feedd; 
output sqrt_start; / / initiate module sqrt for new calculation 

/ / Registers 
reg [24:0] sqrt_feeda; / / input to module sqrt 
reg [24:0] sqrt_feedb; / / input to module sqrt 
reg [24:0] sqrt_feedc; / / input to module sqrt 
reg [24:0] sqrt_feedd; / / input to module sqrt 
regsqrt_start; 

reg start_abs; / / internal flag to start calculation of absolute values 
reg abs_done; 
reg [11:0] re_buf [1023:0]; / / memory for real FFT output 
reg [11:0] im_buf [1023:0]; / / memory for imaginary FFT output 
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reg sta; / / internal flag 
reg [23:0] sq_rea; / / square of real part, for absolute value calculation 
reg [23:0] sq jma; / / square of imaginary part 
reg [23:0] sq_reb; / / square of real part, for absolute value calculation 
reg [23:0] sq_imb; / / square of imaginary part 
reg [23:0] sq_rec; / / square of real part, for absolute value calculation 
reg [23:0] sq_imc; / / square of imaginary part 
reg [23:0] sq_red; / / square of real part, for absolute value calculation 
reg [23:0] sq_imd; / / square of imaginary part 
reg [9:0] indexi; 

ti
ll Capture data from FFT core 
// 
always @ ( posedge elk) 
begin 

if( reset == 1) 
begin 

start_abs <= 1'bO; 
end 

/ / if previous set of FFT data has been processed 
else if( abs_done == 1) 
begin 

start_abs <= 1'bO; / / clear flag 
end 

else if( dv == 1 && start_abs == 0 ) 
begin 

re_buf [index] <= re; / / index is 1023 -> 0, storing values in reverse 
im_buf [index] <= im; 

if( index == 0 ) 
start_abs <= 1'bl; / / start absolute value calculation 

end 

end 

// 
/ / Compute absolute value (send to sqrt units) 
// 
always @ ( posedge elk ) 
begin 

if( reset == 1) 
begin 

abs_done <= 1'bO; 
sta <= 1'bO; 
sq_rea <= 24'dO; sq_ima <= 24'dO; 
sq_reb <= 24'dO; sq_imb <= 24'dO; 
sq_rec <= 24'dO; sq_imc <= 24'dO; 
sq_red <= 24'dO; sq_imd <= 24'dO; 
sqrt_feeda <= 25'd0; 
sqrt jeedb <= 25'dO; 
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sqrtjeedc <= 25'dO; 
sqrt jeedd <= 25'dO; 
sqrt_start <= 1'bO; 
indexi <= 10'dO; / * counter to count up to 1024 values, since only the latter half of the FFT output 

is considered for CFAR * / 

end 

/ / clear flags 
else if( abs_done == 1) 
begin 

abs_done <= 1'bO; 
indexi <= 10'dO; 

end 

/ / only pass new values to sqrt units if CFAR unit is not busy 
else if( reset == 0 && start_abs == 1 && cfar_busy == 0) 
begin 

/ / square real and imaginary components 
if( sta == 0 ) 
begin 

sqjrea <= re_buf [indexi] * re_buf [indexi]; / / reA2 
sq_ima <= im_buf [indexi] * im_buf [indexi]; / / imA2 
sq_reb <= re_buf [indexi+1] * re_buf [indexi+1]; / / reA2 
sq_imb <= im_buf [indexi+1] * im_buf [indexi+1]; / / imA2 
sq_rec <= re_buf [indexi+2] * re_buf [indexi+2]; / / reA2 
sq jmc <= im_buf [indexi+2] * im_buf [indexi+2]; / / imA2 
sq_red <= re_buf [indexi+3] * re_buf [indexi+3]; / / reA2 
sq_imd <= im_buf [indexi+3] * im_buf [indexi+3]; / / imA2 
sta <= l ' b l ; 

end 
/ / sum multiplication results from previous cycle 
else if( sta == 1 && sqrt_start == 0 ) 
begin 

sqrt_feeda <= sq_rea + sq_ima; / / (reA2 + imA2) pass value to first sqrt 
sqrt_feedb <= sq_reb + sq jmb; / / (reA2 + imA2) pass value to second sqrt 
sqrt_feedc <= sq_rec + sq_imc; / / (reA2 + imA2) pass value to third sqrt 
sqrt_feedd <= sq_red + sq jmd ; / / (reA2 + imA2) pass value to fourth sqrt 
sqrt_start <= l ' b l ; / / initiate module sqrt - sqrt( reA2 + imA2 ) 

end 

if( sqrt_done == 1 && sqrt_start == 1) 
begin 

sqrt_start <= 1'bO; / / halt sqrt calculation 
sta<= 1'bO;//clear flag 

if( indexi == 1020 ) 
begin 

abs_done <= l ' b l ; / / mark completion of absval calculation 
indexi <= 10'dl023; 

end 
else 

indexi <= indexi + 4; / / increment index to previous complex value 
end 

end 
end endmodule 
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A7. HDL listing for PSD 
"timescale l n s / l p s 

module sqrt( 
elk, 

reset, 
value, 
start, 
root, 
done); 

/ / Inputs 
input elk; 
input reset; / / global synchronous reset 
input [24:0] value; / / input value to be processed 
input start; / / start signal 

/ / Outputs 
output [12:0] root; / / square root of input value 
output done; / / completion signal 

/ / Internal registers 
reg [12:0] root; 
reg done; 
reg edone; 
reg [12:0] error; 
reg [25:0] root_square; 
reg [3:0] count; / / down counter to index individual bits in the root 
reg sta; 

// 
/ / Calculate the square root 

II 
always @ ( posedge elk) 
begin 

if( reset == 1) 
begin 

root <= 13'b 1000000000000; 
root_square <= 26'dO; 
error <= 13'd0; 
edone <= 1'bO; 
done <= 1'bO; 
count <=4'dl2; 
sta <= 1'bO; 

end 

/ / refresh internal variables for new value 
else if( done == 1) 
begin 

done <= 1'bO; 
count <=4'dl2; 
root <= 13'bl000000000000; 
root_square <= 26'd0; 
error <= 13'd0; 
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end 

else if( edone == 1) 
begin 

done <= l ' b l ; 
edone <= 1'bO; 
if( error < root) 

root <= root + 1; / / round off result if required 
end 

/ / start calculating square root 
else if( start == 1) 
begin 

/ / stage A: square the root 
if( sta == 0) 
begin 

root_square <= root * root; 
sta <= l ' b l ; / / set flag for next stage 

end 

/ / stage B: compare root_square and change the root 
else iff sta == 1) 
begin 

if( root_square > value ) / / if rootA2 is greater than value 
begin 

root [count] <= 1'bO; / / clear current bit 
iff count > 0) 

root [count-1] <= l ' b l ; / / assert next bit 
end 
else iff root_square < value ) / / if rootA2 is less than value 
begin 

root [count-1] <= l ' b l ; / / assert next bit 
end 

/ / adjust down counter 
iff count > 0 ) 
begin 

count <= count - l ' b l ; / / decrement count 
end 
else iff count == 0 ) / / if the last bit has been assessed 
begin 

edone <= l ' b l ; / / signal completion of calculation 
iff root_square > value ) 

error <= root_square - value; / / compute error 
else iff root_square < value ) 

error <= value - root_square; / / compute error 
end 

end 

sta <=l 'bO;/ / reset flag 
end 

end 
endmodule 



A8. HDL listing for CFAR 

'timescale Ins / lps 

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II This module implements the CA-CFAR algorithm to identify valid targets from 
/ / discrete frequency samples with noise and clutter. These samples are obtained 
/ / by computing the peak intensity for every frequency bin as output from the FFT. 
// 
//-SUNDEEPLAL-
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

module cacfar_32( 
elk, 

reset, 
inA, / / inA,inB, inC, inD are obtained from 4 different sqrt modules 
inB, 
inC, 
inD, 
start, 
target_abs, 
target_pos, 
new_target, 
start_cfar, 
complete); 

/ / Inputs 
input elk; 
input reset; 
input [12:0] inA, inB, inC, inD; 
input start; / / start recieving values from sqrt modules 

/ / mapped to output 'done' on module sqrt 

/ / Outputs 
output [12:0] target_abs; 
output [9:0] target_pos; 
output new_target; 
output start_cfar; / / signal to module fft_capture to halt during CFAR calculation 
output complete; / / all 1024 values completed 

/ / Internal registers 
reg [12:0] target_abs; 
reg [9:0] target_pos; 
reg new_target; 
reg start_cfar; 
reg complete; 

reg [12:0] buffer [31:0]; / / store 32 cells for CFAR processing 
reg [9:0] indexa; / / used in buffering data 
reg [4:0] indexb; / / used in buffering data 
reg [4:0] indexc; / / for CFAR routine 
(* KEEP = "TRUE"*) reg [14:0] avgL; / / cell averaging to left of CUT 
(* KEEP = "TRUE"*) reg [14:0] avgR; / / cell averaging to right of CUT 
reg [12:0] avg; / / threshold average 
regcfar_done; 
reg [1:0] st; / / internal flag to sort CFAR stages 
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(* KEEP = "TRUE"*) reg [17:0] T; / / dynamic threshold result from CFAR processing 
reg [4:0] K; / / 5-bit decimal constant for CFAR 
reg [12:0] CUT; 

// 
/ / Accept data from module sqrt 
// 
always @ ( posedge elk) 
begin 

if( reset == 1) 
begin 

indexa <= 10'dO; 
indexb <= 5'd0; 
start_cfar <= 1'bO; 

end 

else if( complete == 1) / / if all 1024 values have been processed 
begin 

indexa <= 10'dO; 
indexb <= 5'dO; 
start_cfar<=l'bO; 

end 

else if( start == 0 && start_cfar == 1) / / if CFAR processing is active 
begin 

if( cfar_done == 1) 
begin 

start_cfar <= 1'bO; / / clear signal, proceed with buffering 
indexb <= 5'dO; / / reset for next 32 values 

end 
else 
begin 

start_cfar <= l ' b l ; 
indexb <= 5'd31; / / to avoid truncation by Xilinx ISE 

end 
end 

else if( start == 1 && start_cfar == 0 ) / / if CFAR processing is not active 
begin 

buffer[indexb] <= inA; 
buffer[indexb+l] <= inB; 
buffer[indexb+2] <= inC; 
buffer[indexb+3] <= inD; 

iff indexa == 1020 ) / / 1024 counter 
indexa <= 10'dl023; / / avoid truncation and mark completion of all samples 

else 
indexa <= indexa + 4; 

if( indexb == 28 ) 
begin 

indexb <= 5'dO; / / 32 counter 
start_cfar <= l ' b l ; / / start CFAR routine 

end 
else 

indexb <= indexb + 4; 
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end 
end 

// 
/ / CFAR process 
// 
always @ ( posedge elk) 
begin 

if( reset == 1) 
begin 

new_target <= 1'bO; 
target_abs <= 13'dO; 
target_pos <= 10'dO; 
avg <= 13'dO; 
avgR <= 15'dO; 
avgL <= 15'dO; 
indexc <= 5'dO; 
cfar_done <= 1'bO; 
st <= 2'bOO; 
K <= 5'bOlOll; / / setting K = (11111) to avoid truncation 

/ / K = PfaA(-l/(2*M)) - 1 ; e.g. Pfa=10A-7, M=4, 
//therefore K=6.49~(11010) 
/ / K has 3 integer bits, 2 fraction bits 

T <= 18'dO; 
CUT <= 13'dO; 
complete <= 1'bO; 

end 

else if( complete == 1) 
complete <= 1'bO; 

/ / After every 32 values or valid target detection 
else if( cfar_done == 1 11 new_target == 1) 
begin 

cfar_done <= 1'bO; / / reset flag, ready for next batch of 32 cells 
target_abs <= 13'dO; 
target_pos <= 10'dO; 

end 

/ / Get the averages for M=4 
else if( start_cfar == 1 && cfar_done == 0 && st == 2'bOO) 
begin 

new_target <= 1'bO; / / reset new valid target output signal 

iff indexa >= 10'dO && indexa <= 10'd511) 
K <= 5'd20; / / Pfa = 10A-7, min. K = 5.00 

else iff indexa >= 10'd512 && indexa <= 10'd851) 
K <= 5'dl7; / / Reduced K = 4.25 for attenuated medium range targets 

else if( indexa >= 10'd852 ) 
K <= 5'dl6; / / Reduced K = 4.00 for attenuated long range targets 

if( indexc < 6 ) 
begin 

avgR <= buffer[indexc+3] + buffer[indexc+4] + buffer[indexc+5] 
+ buffer[indexc+6]; 

avgL <= buffer[indexc+3] + buffer[indexc+4] + buffer[indexc+5] 



+ buffer[indexc+6]; 
end 
else if( indexc > 25 ) 
begin 

avgR <= buffer[indexc-3] + buffer[indexc-4] + buffer[indexc-5] 
+ buffer[indexc-6]; 

avgL <= buffer[indexc-3] + buffer[indexc-4] + buffer[indexc-5] 
+ buffer[indexc-6]; 

end 
else 
begin 

avgR <= buffer[indexc+3] + buffer[indexc+4] + buffer[indexc+5] 
+ buffer[indexc+6]; 

avgL <= buffer[indexc-3] + buffer[indexc-4] + buffer[indexc-5] 
+ buffer[indexc-6]; 

end 
st <= 2'bOl; / / move to next CFAR stage 

end 

/ / Add the averages 
else if( start_cfar == 1 && cfar_done == 0 && st == 2'bOl) 
begin 

avg <= avgR[14:3] + avgL[14:3] + 1; / / (avgR/4 + avgL/4)/2 + 1 (to avoid zero) 
st <= 2'blO; 

end 

/ / Compute the dynamic threshold 
else if( start_cfar == 1 && cfar_done == 0 && st == 2'blO ) 
begin 

T <= avg * K; / / threshold value for current CFAR cells 
CUT <= bufferfindexc]; / / CUT has equal word length as integer part of T 
st <= 2'bll; 

end 

/ / Decision to extract valid target from clutter 
else iff start_cfar == 1 && cfar_done == 0 && st == 2 ' b l l ) 
begin //$display("%d %d",CUT,indexa+indexc-32); 

iff CUT > T[14:2] && CUT > 13'd7 ) / / compare integer part and exclude FFT noise 
begin 

new_target <= l ' b l ; / / assert new valid target signal to pairing module 
target_abs <= CUT; / / output target peak intensity 
target_pos <= indexa + indexc - 30; / / output target FFT bin number 
K <= 5'b00000; / / temporary clear to avoid truncation 

end 
if( indexc == 31) / / mark completion of CFAR processing on current 32 cells 

cfar_done <= l ' b l ; 
if( indexc == 31 && indexa == 1023 ) / / if all 1024 samples done 

complete <= l ' b l ; / / send completion signal to pairing module 
indexc <= indexc + 1; / / move to next cell for CFAR processing 
st <= 2'b00; 

end 

iff new_target == 1) 
new_target <= 1'bO; / / reset new valid target signal 

end 
endmodule 



A9. HDL listing for PPM 

"timescale Ins / lps 

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II This module is responsible for pairing the peaks detected by the CFAR unit 
/ / and producing the target ranges and velocities for all detected targets. 

// 
/ / - SUNDEEP LAL -
////////////////////////////////////////////////////////////////////////////////// 

module pairing! 
elk, 

reset, 
new_target, 
target_abs, 
target_pos, 
complete, 
updown, 
unit_vel, 
target jnfo, 
info_valid 

); 

/ / Inputs to module 
input elk; / / system/global clock 
input reset; / / synchronous reset 
input new_target; / / new valid target from CFAR module 
input [12:0] target_abs; / / target peak intensity 
input [9:0] target_pos; / / target frequency bin number 
input complete; / / CFAR completion signal from CFAR module 
input updown; / * sweep direction, 1 for up, 0 for down 

this signal is used inverted (0 for up, 1 for down) because.. 
..during down sweep sampling, up sweep processing is done and.. 
.. vice versa * / 

input [7:0] unit_vel; / / radar unit's velocity / car's velocity 

/ / Outputs from module 
output [19:0] target jnfo; / / 10 bits target velocity, 10 bits target distance 
output info_valid; / / signal to display module 

/ / Internal registers 
reg [19:0] target jnfo; 
reg infoj/al id; 

reg [12:0] absjbufup [7:0]; / / maximum 8 targets in up sweep 
reg [9:0] pos_bufup [7:0]; 
reg upf ill; / / flag to mark fully filled up sweep buffers 
reg [12:0] absjbufdown [7:0]; / / maximum 8 targets in down sweep 
reg [9:0] posjDufdown [7:0]; 
reg downfill; / / flag to mark fully filled down sweep buffers 
reg [2:0] count; / / index for up sweep and down sweep buffers 
reg [2:0] paircount; / / final count of records accepted for pairing from CFAR 
reg startjpairing; / / flag to commence pairing and output process 
reg pairingdone; / / flag to mark completion of pairing process 
reg [2:0] indexup; / / counter to count through up sweep records while pairing 
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reg [2:0] indexdown; / / counter to count through down sweep records while pairing 
reg [2:0] tmpindex; / / used to store the final matching pair index 
reg [6:0] vel_fac; / / multiplication constant for velocity calculation 
(* KEEP = "TRUE"*) reg [17:0] velocity; / / computed velocity - (13bits).(6bits) 
reg [10:0] range_fac; / / multiplication constant for range calculation 
(* KEEP = "TRUE"*) reg [21:0] range; / / computed range - ( l lb i ts).( l lb i ts) 
reg [1:0] st; / / internal flag 
reg stb; / / internal flag 
reg [9:0] posa, posb; / / used to analyse spectral closeness during pairing 
reg [13:0] absa, absb, absc; / / used to analyse peak intensity closeness during pairing 
reg [10:0] sum_pos, diff_pos; / / sum for range, diff for velocity 
reg faster; / / 0 if target is slower, 1 is target is faster 
reg updone; / / mark up sweep processing done 

// 
/ / Accept data from CFAR module 
/ / - spectral copies are ignored by this module 
// 
always @ ( posedge elk) 
begin 

if( reset == 1) 
begin 

count <= 3'dO; 
paircount <= 3'd0; 
abs_bufup[0] <= 13'dO; 
pos_bufup[0] <= 10'dO; 
abs_bufdown[0] <= 13'd0; 
pos_bufdown[0] <= 10'd0; 
upfill <= 1'bO; 
downfill <= 1'bO; 
start_pairing <= 1'bO; 
updone <= 1'bO; 

end 

/ / clear pairing process flags 
else if( reset == 0 && pairing_done == 1) 
begin 

start_pairing <= 1'bO; 
paircount <= 3'dO; 
updone <= 1'bO; 

end 

/ / if CFAR processing for current sweep direction is complete 
else if( reset == 0 && complete == 1) 
begin 

iff updown == 0 ) / / if up sweep is done 
begin 

paircount <= count; / / store the total number of targets for later use 
updone <= l ' b l ; 

end 

count <= 3'dO; / / reset counter to 0 
upfill <= 1'bO; / / clear flags 
downfill <= 1'bO; 
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if( updown == 1 && updone == 1) / / if the down sweep has been completely obtained 
begin 

//$display("%d %d %d %d %d %d %d %d 
%d",pos_bufup[0],pos_bufup[l],pos_bufup[2],pos_bufup[3];pos_bufup[4],pos_bufup[5],pos_bufup[6],pos_bufup[7], 
paircount); 

//$display("%d %d %d %d %d %d %d %d 
%d",pos_bufdown[0],pos_bufdown[l],pos_bufdown[2],pos_bufdown[3],pos_bufdown[4],pos_bufdown[5],pos_bufd 
own[6],pos_bufdown[7],count); 

start_pairing <= l ' b l ; 
end 

end 

// 
/ / UP SWEEP 
// 
else if( reset == 0 && updown == 0 && new_target == 1 && upfill == 0) 
begin //$display("up %d %d",target_abs,target_pos); 

/ / first valid target detection stored without 'spectral copy' checking 
if( count == 0 && target_pos > 4 ) / / ignore DC values 
begin 

abs_bufup[count] <= target_abs; 
pos_bufup[count] <= target_pos; 
count <= count + 1; 

end 

/ / 'spectral copy' checking 
else if( count >= 1) 
begin 

/ / if new CFAR detection is a 'spectral copy' of previous target 
if( target_pos == pos_bufup[count-l] + 1) 
begin 

if( target_abs > abs_bufup[count-l]) / / store larger peak intensity 
begin 

abs_bufup[count-l] <= target_abs; / / update previous target record 
pos_bufup[count-l] <= target_pos; 

end 
end 

else 
begin 

abs_bufup[count] <= target_abs; / / add new target record 
pos_bufup[count] <= target_pos; 
count <= count + 1; / / increment counter 
if( count == 7) 

upfill <= l ' b l ; / / mark up sweep buffer filled 
end 

end 

end 

// 
/ / DOWN SWEEP 
// 
else if( reset == 0 && updown == 1 && new_target == 1 && downfill == 0 ) 
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begin //$display("down %d %d",target_abs,target_pos); 

/ / first valid target detection stored without 'spectral copy' checking 
iff count == 0 && target_pos > 4) / / ignore DC values 
begin 

abs_bufdown[count] <= target_abs; 
pos_bufdown[count] <= target_pos; 
count <= count + 1; 

end 

/ / 'spectral copy' checking 
else if( count > 0 ) 
begin 

/ / if new CFAR detection is a 'spectral copy' of previous target 
if( target_pos == pos_bufdown[count-l] + 1) 
begin 

if( target_abs > abs_bufdown[count-l]) / / store larger peak intensity 
begin 

abs_bufdown[count-l] <= target_abs; / / update previous target 
record 

pos_bufdown[count-l] <= target_pos; 
end 

end 

else 
begin 

a bs_buf down [count] <= target_abs; / / add new target record 
pos_bufdown[count] <= target_pos; 
count <= count + 1; / / increment counter 
iff count == 7 ) 

downfill <= l ' b l ; / / mark up sweep buffer filled 
end 

end 

end 

/ / clear the record from down buffer when a pair has been matched successfully 
if( st == 2'blO && start_pairing == 1) 
begin 

abs_bufdown[tmpindex] <= 13'dO; 
pos_bufdown[tmpindex] <= 10'dO; 

end 

end 

// 
/ / Peak Pairing 
//Criteria: 
/ / (1) +-84 frequency bins 
/ / (2) compare peak intensity 

// 
always @ ( posedge elk ) 
begin 

iff reset == 1) 
begin 
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target_info <= 20'dO; 
info_valid <= 1'bO; 
pairing_done <= 1'bO; 
indexup <= 3'dO; 
indexdown <= 3'dO; 
tmpindex <= 3'dO; 
ve l jac <= 7 ' b l lO l lO l ; / / (l l.OHOl)binary = (3.40625)decimal 
rangejac <= 11'bOOOlOlll l lO; / / (O.OOOlOlllllO)binary = (0.0927734375)decimal 
/ * these factors have been obtained by converting the equations into 

constants, saving hardware and making computation quicker: 
Fr = 4*Fsweep/Tsweep*range/c, Fd = 2*Ft*relative_velocity/c * / 

st <= 2'bOO; 
stb <= 1'bO; 
posa <= 10'dO; 
posb <= 10'dO; 
absa <= 13'dO; 
absb <= 13'dO; 
absc <= 13'dO; 
sum_pos <= 11'dO; 
diff_pos <= 11'dO; 
faster <= 1'bO; 
velocity <= 18'dO; 
range <= 22'dO; 

end 

/ / if pairing is complete 
else if( reset == 0 && pairing_done == 1) 
begin 

target_info <= 20'dO; 
info_valid <= 1'bO; 
pairing_done <= 1'bO; 
indexup <= 3'dO; 
indexdown <= 3'dO; 
tmpindex <= 3'dO; 
st <= 2'bOO; 
stb <= 1'bO; 
posa <= 10'dO; 
posb <= 10'dO; 
absa <= 13'dO; 
absb <= 13'dO; 
absc <= 13'dO; 
sum_pos <= 11'dO; 
diff_pos <= 11'dO; 
faster <= 1'bO; 
velocity <= 18'dO; 
range <= 22'dO; 

end 

/ / pair target peaks from up and down sweeps 
else iff reset == 0 && start_pairing == 1 && indexdown <= paircount-1 ] 
begin 

target jnfo <= 20'dO; 
info_valid <= 1'bO; 

if( st == 2'bOO ) 
begin 

/ / lower limit for criteria (1) 
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if( pos_bufup[indexup] > pos_bufdown[indexdown]) 
posa <= pos_bufup[indexup] - pos_bufdown[indexdown]; / / limit to +-84 i.e. 

300kmph 
else 

posa <= pos_bufdown[indexdown] - pos_bufup[indexup]; 

/ * calculate peak intensity difference between current up sweep value 
and current down sweep value * / 

if( abs_bufup[indexup] > abs_bufdown[indexdown]) 
absa <= abs_bufup[indexup] - abs_bufdown[indexdown]; 

else 
absa <= abs_bufdown[indexdown] - abs_bufup[indexup]; 

/ * calculate peak intensity difference between current up sweep value 
and previously stored best match value * / 

if( abs_bufup[indexup] > abs_bufdown[tmpindex]) 
absb <= abs_bufup[indexup] - abs_bufdown[tmpindex]; 

else 
absb <= abs_bufdown[tmpindex] - abs_bufup[indexup]; 

/ * calculate peak intensity difference between next up sweep value 
and previously stored best match value for the current target * / 

if( indexup < paircount - 1 ) begin 
iff abs_bufup[indexup+l] > abs_bufdown[tmpindex]) 

absc <= abs_bufup[indexup+l] - abs_bufdown[tmpindex]; 
else 

absc <= abs_bufdown[tmpindex] - abs_bufup[indexup-l]; end 
else 

absc <= 13'd8191; 

/ / ensure next up sweep sample is within +-84 range of previous best match 
if( indexup < paircount - 1 ) begin 

if( pos_bufup[indexup+l] > pos_bufdown[indexdown]) 
posb <= pos_bufup[indexup+l] - pos_bufdown[indexdown]; 

else 
posb <= pos_bufdown[indexdown] - pos_bufup[indexup+l]; end 

else 
posb <= 10'dl023; 

st <= 2'bOl; / / next stage 

III Illll update best match according to criteria (1,2) 
else iff st == 2'bOl) 
begin 

/ / if the peak in the down sweep is spectrally close to peak in up sweep 
if( posa < 84 && posa <= posb ) 
begin 

/ / if current down sweep peak is closer in intensity 
iff absa <= absb && absa <= absc ) 

tmpindex <= indexdown; / / update best match index 
end 

if( indexdown == paircount-1) / / if all down sweep peaks have been assessed 
st <= 2'blO; / / next stage 

else 
begin 
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indexdown <= indexdown + 1; / / move to next down sweep peak 
st <= 2'b00; / / return to re-compute new parameters 

end 
end 

IIIllllI obtain sum and difference of matched frequency bin indices 
else if( st == 2'blO) 
begin 

indexdown <= 3'dO; / / clear index to restart from first record in down sweep 
sum_pos <= pos_bufup[indexup] + pos_bufdown[tmpindex]; / / for target range 

if( pos_bufdown[tmpindex] > 0 ) begin 
/ / for target relative velocity 
if( pos_bufup(indexup] > pos_bufdown[tmpindex])//slower target 
begin 

diff_pos <= pos_bufup[indexup] - pos_bufdown[tmpindex]; 
faster <= 1'bO; 

end 
else//faster target 
begin 

diff_pos <= pos_bufdown[tmpindex] - pos_bufup[indexup]; 
faster <= l ' b l ; 

end 

st <= 2 ' b l l ; / / next stage 
end 

else begin 
if( indexup < paircount - 1 ) 
begin 

indexup <= indexup + 1; 
st <= 2'bOO; 

end 
else 

pairing_done <= l ' b l ; 
end 

end 

IIIIIIII compute the velocity and range and output as single bus 
else if( st == 2 ' b l l ) 
begin 

if( stb ==0)1/ stage to compute velocity and range 
begin 

if( faster == 0 ) / / if the target is not faster than own vehicle 
velocity <= vel_fac * diff_pos; 

else / / if the target is faster than own vehicle 
velocity <= vel_fac * diff_pos; 

range <= range_fac * sum_pos; 
stb <= l ' b l ; 

end 

else / / final step: output targetjnfo, update indexup 
begin 

if( faster ==0)1/ extract (9bits).(0bit) velocity 
target info[19:l l ] <= unit_vel - velocity[13:5]; 



else 

target_info[19:ll] <= unit_vel + velocity[13:5]; 

target_info[10] <= velocity[4]; / / attach the fraction bit 

target_info[9:0] <= range[18:9]; / / extract (8bits).(2bits) range 
info_valid <= l 'b l ; / / alert display unit of valid target information 
tmpindex <= 3'dO; 
posa <= 10'dO; 
posb <= 10'dO; 
absa <= 13'dO; 
absb <= 13'dO; 
stb <= 1'bO; 
st <= 2'b00; / / reset to first state 
indexup <= indexup + 1; / / move to next record in up sweep buffer 
if( indexup == paircount) / / if all records have been assessed 

pairing done <= l 'b l ; 
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