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Energy efficiency is a rising concern in today’s society and also affects information
technology and software. This concern becomes highlighted in battery powered
embedded systems like portable multimedia and smart devices as the available
energy is limited. Energy efficiency in information technology is often thought as
energy-efficient hardware although it should rather be thought as a joint effort
between hardware and software. The energy consumption of hardware depends
on what software is running on top of it and how that software uses the hardware.
Reciprocally, the software energy consumption depends on the energy efficiency
of the hardware. Instruction-level energy models are used for analysing and
optimising the energy efficiency of software. The models in turn rely on accurate
measurements of energy consumed by individual machine instructions.
Low-energy processors are usually used in embedded systems. Measuring their
energy consumption is a challenging task, due to the small currents and noise.
It is a challenge to develop a measurement platform for conducting accurate
measurements as well as minimising the noise affecting the measurements.
In this thesis, four different circuits were examined to assess their suitability for a
measurement platform. A printed circuit board was designed and constructed in
order to identify and investigate solutions concerning the challenges in designing
such a platform. Within this process a suitable processor was selected to act as
the measurement target. A survey of low-energy processors targeted at embedded
systems was conducted as part of this work. As a result a prototype measurement
platform was constructed.

Keywords: Internet of Things, embedded systems, energy measurement, energy
models
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Energiatehokkuus on kasvava huolenaihe nyky-yhteiskunnassa ja koskettaa myös
tietotekniikkaa ja ohjelmistoja. Tämä korostuu erityisesti akkukäyttöisissä
sulautetuissa järjestelmissä, kuten kannettavissa medialaitteissa ja älylaitteissa,
joissa käytettävän energian määrä on rajattu. Energiatehokkuuden
tietotekniikassa ajatellaan yleisesti viittaavaan energiatehokkaaseen laitteistoon,
vaikka itse asiassa pitäisi puhua pikemminkin laitteiston ja ohjelmiston
yhteispelistä. Laitteiston energiankulutus riippuu laitteiston päällä ajettavasta
ohjelmistosta ja tavasta, miten ohjelmisto laitteistoa käyttää. Vastavuoroisesti
ohjelmiston energiankulutus riippuu laitteiston energiatehokkuudesta.
Ohjelmiston energiatehokkuuden analysointiin ja optimointiin käytetään
konekäskytason energiamalleja. Mallit puolestaan perustuvat tarkkoihin
mittauksiin yksittäisten konekäskyjen käyttämästä energiasta.
Sulautetuissa järjestelmissä käytetään yleisesti energiapihejä prosessoreita. Niiden
energiankulutuksen mittaaminen on haasteellista pienten virtojen ja ulkoisten
häiriöiden takia. Haasteena on sellaisen mittausalustan kehittämien, jolla
mahdollistetaan tarkat energiamittaukset ja minimoidaan mittauksiin vaikuttavat
häiriötekijät.
Työssä tutkittiin neljän eri virtapiirin soveltumista mittausalustaksi. Tämän
lisäksi suunniteltiin ja valmistettiin piirilevy suunnitteluun liittyvien ongelmien
tunnistamiseksi ja ratkaisuvaihtoehtojen selvittämiseksi. Tähän liittyy myös
oikeanlaisen mittauskohteen valinta. Samalla tehtiin kartoitus energiapiheistä
prosessoreista, jotka on suunnattu sulautettuihin järjestelmiin. Lopputuloksena
on rakennettu prototyyppi mittausalustasta.

Avainsanat: Esineiden Internet, sulautetut järjestelmät, energiamittaus, ener-
giamallintaminen
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ISA Instruction Set Architecture
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MCU Microcontroller unit
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NVIC Nested Vectored Interrupt Controller
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1 Introduction

Embedded systems are found everywhere in our society: portable multimedia and
entertainment devices, intelligent home and office automation systems, industrial
automation systems and automotive systems. In many cases, these systems form a
network of sensors which themselves are a certain type of embedded devices collect-
ing information on their surroundings. The most recent trend is to connect these
systems to the Internet and make them exchange information autonomously creating
the Internet of Things.

The raw information collected by the sensors may include a lot of unnecessary in-
formation and it would be a waste of resources to send it as such to the network.
The earlier the information can be processed the more efficient the exchange of in-
formation will be. The sensor nodes are the leaf nodes and generate the data in
the first place. The nodes close to the leaf nodes are more likely to run on limited
battery power and therefore, they have to be highly energy-efficient. Not only the
hardware has to be energy-efficient but the software has to use it wisely beside other
restrictions.

Energy models for processors predict the energy consumption of software. The
energy models are based on measurements. The quality and accuracy of those
measurements lay the foundation for a model and its accuracy, and in the end for
the creation of an energy-efficient embedded system.

The focus in this thesis is on performing those measurements for processors used
in modern low-energy embedded systems. Because there is no platform specifically
designed to function as a measurement platform, this thesis explores the issues of
designing such a platform.

1.1 Problem statement

Measuring the energy consumption of single machine instructions is not trivial as
the measurements are easily disturbed by noise creating errors that propagate into
the energy models. A measurement platform is required for performing these kinds
of measurements, and has to be designed and constructed. The biggest challenge is
to minimise unwanted noise affecting the measurements.

1.2 Contribution

This thesis presents the results from an investigation concerning different circuits
suitable for creating this kind of measurement platform for low-energy processors.
This investigation described in section 5 was executed in close collaboration with
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Nicolas Roeser from the Institute of Embedded Systems/Real-time Systems at Ulm
University.

A prototype was designed, manufactured and assembled to explore the design issues
concerning the construction of this kind of platform. The process revealed many
aspects that have to be taken into consideration and the findings and results are
described in sections 6 and 7.

In the end two prototypes of the measurement platform, nicknamed Energyboard,
were built and tested.

1.3 Structure of the thesis

The thesis is divided into 8 sections. A brief description of the overall structure of
this thesis is given here:

• Section 1 is the introduction to this thesis.

• Section 2 describes the context and background for this thesis.

• Section 3 explains two different instruction-level energy models in detail. The
models are quite different from each other but the basis is the same: both rely
on accurate measurements for the energy consumption of single instructions.

• Section 4 describes measurement systems needed for performing instruction-
level energy measurements. Oscilloscopes and a custom-made operational am-
plifier are described here.

• Section 5 describes four different circuits which were investigated. The cir-
cuits described are designed with the goal to reduce noise in order to perform
good quality energy measurements.

• Section 6 presents a survey of current low-energy processors used in networked
embedded systems. Selecting a suitable processor for the prototype platform
is not an easy task and the criteria that steered our choice are presented here.

• Section 7 focuses on the printed circuit board design of the prototype platform
nicknamed Energyboard. The layout is divided in five different functional
blocks and a description is provided accordingly. A short description of the
manufacturing and assembly process is also included in this section. During
the testing of the Energyboard it was noticed that the microcontroller does
not start up properly. Some measurements were performed and the results are
analysed at the end of this section.

• Section 8 presents the future research possibilities and the summary.
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2 Background

This section provides the context and necessary background to this thesis. The
emerging Internet of Things is described to provide a context for networked em-
bedded systems. Modern hardware is moving towards heterogeneous computing
systems and therefore the heterogeneous system architecture is introduced. Basic
physic formulas for energy and energy management techniques are described as well.

2.1 Internet of Things

To begin with, there was the Internet of Computers in which computers are con-
nected to each other and exchange information with each other. This forms the
foundation on which the World Wide Web was built in the 1990s. In the first
decade of the 2000s, the Internet of Computers evolved into the Network of People
which indicates that instead of just consuming content, people actively create con-
tent themselves and exchange information with other people. Buzzwords, such as
the "Social Web" or "Web 2.0", emerged during this time. The next step is towards
the Internet of Things. [8]

Defining the Internet of Things (IoT) paradigm is not easy and still a bit fuzzy. As
a result, there are many definitions for it which are influenced by the perspective
from which the issue is approached. If emphasizing the functionality of the concept
of IoT one could define the Internet of Things as "Things having identities and
virtual personalities operating in smart spaces using intelligent interfaces to con-
nect and communicate within social, environmental, and user contexts" [18]. This
means that, for example, a piece of furniture is able to connect to the Internet and
exchange information with any other device and react intelligently according to the
information, if necessary. The only prerequisite to make the piece of furniture or
indeed any thing connectable to the Internet is to uniquely identify it from any other
device on the Internet and this is not a problem in the foreseeable future with IPv6
becoming more common. [18]

McEwen and Cassimally [28] approach the Internet of Things from a "Thing ori-
ented" perspective with the following equation:

Physical Object + Controller, Sensor and Actuators + Internet
= Internet of Things

The physical object – the ’Thing’ – is worn, carried around or placed at a relevant
place – e.g. at home, at work or in a car – for the user. It acts as the container for
the embedded system that consists of the "Controller, Sensor and Actuator" part of
the equation. The Controller is an "intelligently programmed computer processor"
[28]. It can collect data on its surroundings using built-in sensors.
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This data is then processed by combining it with information from the Internet. The
result can then trigger an output through actuators conveying information to the
real world. The data can also be sent over the Internet to a server or service that
processes and combines the data with information collected from the Internet. The
key element in IoT-devices is that there is some information flow that "connects
the defining characteristics of the Thing with the world of data and processing
represented by the Internet" [28]. Hence, the processing does not necessarily happen
on the device itself. It might even be impractical if the processing is very intensive
and requires a lot of processing power as another characteristic of IoT is that there
are hundreds or even thousands of these devices. These devices are low-cost and
low-power compared to modern personal computers, smartphones or tablets. [28]

This definition resembles an older idea of ubiquitous computing as described in [28].
Basically, the difference is that ubiquitous computing does not include the Internet
aspect. As an example the book mentions an air freshener that outputs scent when
its sensors notice movement in the room.

The International Telecommunication Union (ITU) mentions the aspect of the size
of the Things in the four dimensions it has identified in its report [19] as described
in [8]:

• Item identification: Tagging things, the ability to identify items through
unique addressing systems.

• Sensors and wireless sensor networks: Generate data from the real world.

• Embedded systems: Provide the capabilities for programming intelligent
behaviour to create Thinking Things.

• Nano-technology: Refers to shrinking the Things which makes it possible
to embed intelligence into almost any object whatsoever.

A prerequisite for the Internet of Things is obviously having access to the Internet.
Broadband Internet is affordable and widespread in many countries, especially in
Europe and North America. According to Eurostat [10], in the European Union the
level of Internet access was 79% in 2013.

The scale of the IoT is expected to be huge. Billions of Things that connect to the
Internet and do intelligent data processing to make people’s lives easier. Because
of the vast number of Things, the price for the sensors and embedded systems, as
well as the energy consumption of a Thing have to be low. In the report [18], low-
power microchips and energy harvesting are identified as enabler technologies for
IoT. Sensor networks will likely be operating on batteries for long periods of time.

Also, the low-cost requirement supports the idea of low-power and low-energy con-
sumption of the Thing. With billions of Things, as envisioned, even a small energy
improvement in each Thing accumulates to significant energy savings.
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2.2 Networked embedded systems

Embedded systems are similar to general purpose computing systems and it is not
straightforward to differentiate them from each other. Holt and Huang [17] define
some characteristics found in but not limited to embedded systems. Differentiating
between a general purpose computing system and an embedded system is somewhat
fuzzy. Holt and Huang identify a few characteristics associated with embedded
systems in their book. These characteristics are not exclusive to embedded systems
as they point out.

• Subsystem of a device or machine: Embedded systems are often found in-
tegrated into larger mechanical or electrical systems. An example would be
the different subsystems of a car or a microprocessor inside a household de-
vice. Counter-examples of non-subsystems would be network routers or set-top
boxes.

• Dedicated application: Embedded systems are generally meant for fulfilling a
specialised task. In cars, for example, the different subsystems specialise to
fulfil complicated tasks like the anti-locking braking system (ABS). A simpler
example would be a temperature monitor in a server room that controls an
on/off-switch to protect the servers from overheating.

• Small footprint: Embedded systems are small. The size is driven by the re-
quirements of the intended task and by the environmental restrictions where
the system operates.

• Low power consumption: It is typical that embedded systems are operating
on limited battery power. Therefore they need to conserve energy to stay
functional for as long as possible. In case of non-rechargeable batteries, this
determines the lifespan of the system.

• Real-time systems: Many of the tasks the embedded systems are designed for
have strict time constraints. The airbags in a car need to be launched within
a certain time window to protect the passengers inside the car in case of an
accident. In this case, taking any longer is likely to be fatal for the passengers.

The trend in the past three decades has been to build networks of embedded sys-
tems, also called distributed embedded systems. One of the most important drivers
for this trend has largely been the need to replace wired point-to-point connections
with a single communications bus. The network may consist of either wired or wire-
less communication bridges or a mix of both. A typical example of wired networked
embedded systems is from the automotive industry. A car has a collection of embed-
ded systems ranging from ABS and engine control to the audio system and window
lift controls which are all networked by in-vehicle network interfaces like Controller
Area network (CAN). [25]

12



Sensor

Processing Unit Radio

Actuator

Battery

SensorSensor

ActuatorActuator

Figure 1: Sensor node architecture.

Another example is a wireless sensor network that allows flexible deployment and
maintenance. Figure 1 shows a generalised architecture of a wireless sensor node.
Sensors are nodes in the network expected to collect information on their surround-
ings using one or more sensors and forward the collected information more or less
preprocessed to a central node for further use. A sensor could be simple as a push-
button or a complex system like a video camera. The node could also include one or
more actuators. An actuator transforms an electric signal into an observable event.
For example, turning on or off a LED or moving a robotic arm.

The sensor node operates on limited battery power that is either rechargeable or
non-rechargeable depending on the application. Wireless communication uses more
energy than local computation [31] which encourages to aggregate and preprocess
the collected data to send only essential information over the radio link. This makes
sense in cases where a lot of data is generated by the sensor or sensors and it is
possible to do some preprocessing already on the sensor node itself. The processing
unit is likely to have specialised hardware to do the preprocessing and a general
purpose processor to handle communication and controlling of the sensor node.

For instance, if the situation is following: The sensor is a videocamera and we are
only interested in objects identified in the videostream. Instead of sending the raw
videostream through the network, the stream is processed on the sensor node video
processing hardware and just the data objects are sent further.

2.3 Heterogeneous System Architecture

The heterogeneous system architecture (HSA) is addressing four challenges the com-
puting industry is facing today: power, performance, programmability and portabil-
ity. Reducing power consumption is important across all computing segments: data
centres are faced with rising power and cooling costs. Consumers expect improved
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battery life for their portable devices. At the same time the continuous improve-
ment in computing performance is expected to enable new user experiences (UX)
and features. Programmability enables programmer productivity by using familiar
programming models. Portability is important as it means the software can run on
a variety of different hardware without the need of rewriting the code as is often the
case today. [23]

CPU

Core

APU

GPU

Core

Core H-CU

H-CU

H-CU

H-CU

HMMU

Figure 2: HSA Accelerated Processing Unit.

Instead of having a separate central processing unit (CPU) for general purpose com-
puting and a separate graphics processing unit (GPU), the HSA Accelerated Pro-
cessing Unit (APU) combines them into one platform with shared coherent memory.
Figure 2 shows a simple APU that consists of a multi-core CPU for general purpose
computation and a GPU with multiple HSA Computing Units (H-CU) for parallel
processing. The HSA Memory Management Unit (HMMU) controls and manages
the access to system memory to keep it coherent and shared between the CPU and
GPU. This makes the memory management transparent to the application software
running on the APU. [23]

2.4 Energy and power consumption

Energy is a physical quantity that describes how much work a physical system can
do to another system. Both energy and work is measured in joules (J) after the
physicist James Prescott Joule in the International System of Units (SI). The work
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performed or energy consumed in a circuit in the time interval [t1, t2] is therefore:

E =

∫ t2

t1

(I(t)× V (t))dt (1)

The focus of this thesis is on the electromagnetic energy consumed in integrated
circuits, especially digital CMOS circuits such as single-core microcontrollers. To
find out the energy consumption of a circuit, the current I in equation 1 needs to
be solved.

I =
V

R
(2)

In equation 2, resistance R denotes an objects property which describes its oppo-
sition to the flow of current through it. The SI unit of resistance is ohm (Ω) after
physicist Georg Ohm.

If an electric potential difference or voltage V is imposed across a resistor, a current
flows through it. Resistors are conductive objects that have a specific resistance.
The quantity V equals the energy gained per unit charge as charge "falls" through
the potential difference [45]. In case of a resistor, this energy is transformed into
heat. Therefore, the rate of doing work or power can be expressed in multiple forms
by applying equation 2:

P = I × V = I2 ×R =
V 2

R
(3)

These fundamental laws of physics essential to energy modeling and measurements
are described in many good quality physics books, such as [45].

2.5 Power management

Software consumes energy during its execution by affecting the state of the CMOS
circuit. The energy consumption of the CMOS circuit can be divided in two parts:
dynamic energy and static energy. Dynamic energy consumption represents the
processing of the software as it changes the circuit state. A circuit state change is
the transition from logic ’1’ to logic ’0’ or vice versa.

Static energy consumption is the result of leakage currents. Leakage currents are
small undesired current flows through diodes and transistors. In ideal circuits no
leakage would happen but in reality they cannot be avoided and are dependent on
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the manufacturing process. Current leakage increases as CMOS planar circuit size
is scaled down. [36]

Advanced Configuration and Power Interface (ACPI) [16] is a collection of interfaces
for power management functions to establish industry common Operating System-
directed configuration and Power Management (OSPM). The goal is to establish a
common way for all operating systems to configure the motherboard and manage
power related issues.

There are two common technologies used: dynamic voltage and frequency scaling
(DVFS) and low-power states. DVFS trades performance against energy savings.
Changing the frequency and voltage of the processor affects the execution speed of
instructions in exchange for energy consumption. The processor is unavailable to
execute tasks during the frequency transition as the voltages and clocks must first
stabilise to adapt to the new operating frequency. Switching from higher to lower
frequencies is faster than the other way round. [36, 20]

Low-power states are an efficient way to gain energy savings as the systems unused
parts are shut down by cutting off their power supply. The energy savings are larger
when compared to reducing the operating frequency and voltage like in DVFS as
both the dynamic and static consumption are removed.

2.6 Multi-criteria optimisation

Embedded systems usually have to meet several design constraints like energy con-
sumption, code size and worst-case execution time (WCET). Because it is difficult
to determine strict upper bounds for the energy consumption, energy minimisation
is usually chosen as the multi-criteria optimisation target. The WCET and code
size on the other hand are often hard constraints: Maximal code size constraints are
given by the physical memory available on embedded systems. [35]

The current approach of manually analysing the compiled binary and tweaking the
compiler input iteratively is tedious and time consuming. Automating the proce-
dure and letting the compiler do the optimisations would seem a desired alternative.
Different optimisation goals require expertise knowledge in different areas and the
WCC compiler provides a noteworthy option. Also as noted in [44], energy con-
sumption follows closely the execution time so that optimising the code improves
the execution time which can result in reducing energy consumption.

The WCET Aware C Compiler WCC automates the WCET minimisation procedure.
It achieves this by integrating the WCET analysis into the compiler and utilises the
results to reduce the WCET. A simplified overview of this procedure is presented
in figure 3. It is the first and currently the only fully functional automated WCET
aware compiler.
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Code
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Figure 3: WCC framework.

The parser accepts C code files and generates a high-level intermediate represen-
tation (HLIR). The HLIR is used for loop analysis and other high-level WCET
optimisation purposes. This optimised version is then translated into a low-level in-
termediate representation (LLIR). The LLIR is analysed by a static WCET analyser
tool integrated into WCC and the results are imported into LLIR-objects which can
store arbitrary data for different optimisation purposes. Various optimisations, such
as loop unrolling, procedure cloning etc., are used for minimising the WCET. Some
of the results are communicated via back-annotation to HLIR to exploit high-level
optimisation methods. This is represented by the dashed arrow in figure 3.

The optimised code is then passed on to the code generator which outputs assembly
code and linker script to create the WCET optimised binary. The modular structure
of WCC and the extensible LLIR-object structure are intended for implementing
future extensions to support other optimisation goals like energy consumption. [11,
12]
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3 Modeling energy consumption

For a successful integration of energy consumption optimisation at compiler level,
the energy consumption needs to be modeled. The term ’energy cost’ is used to
describe the energy consumed by something. One of the simplest models would be
the multiplying of an averaged energy cost Eavg by the number of instructions N in
the program to obtain the total energy cost EP .

EP = Eavg ×N (4)

However, this model would very likely hold true only for the program where the
average was derived from and thus useless to model arbitrary programs. Different
instructions tend to have different energy costs depending on active parts in the
processor and also other aspects, like state switches, pipeline stalls, memory accesses
and so on, affect the total consumption of a program.

The models presented in this section are intended especially for energy consumption
modeling. However, there are models created for so called power attacks in the
field of embedded security and they could potentially be exploited for use in energy
modeling meant for energy optimisations [26].

This section presents the first instruction-level model that was introduced in the
mid-90s and a newer one from 2013.

3.1 Classic instruction-level energy model

Software energy consumption can be modeled by instruction level power analysis.
The first instruction-level model described in this section was presented in [43, 44].
The measurement setup used was basically the same as the circuit described in
section 5.1.1.

The total energy consumption of a program Ep is expressed with the following
equation:

Ep =
∑
i

(Bi ×Ni) +
∑
i,j

(Oi,j ×Ni,j) +
∑
k

Ek (5)

The following factors contribute towards the energy cost of a program:

• Bi - Base cost for each instruction i.

• Ni - Number of execution times for each instruction i.
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• Oi,j - Circuit state change overhead for each instruction pair (i,j).

• Ni,j - Number of execution times for each instruction pair (i,j).

• Ek - Energy cost for other inter-instruction effects (stalls, cache misses etc.).

Instruction base cost Bi which is the cost associated with the basic processing needed
to execute the instruction. This can vary depending on the value and address of the
operands but is in practice negligible, below 10%. The base cost is then multiplied
by the number of times each instruction is executed. Operand values affect the base
energy cost but the difficulty is that the exact values are usually not known before
the execution time and thus the base cost has to be an average.

The circuit state overhead Oi,j takes the energy contribution of circuit state changes
into account. Circuit state changes occur when executing two different instructions
consecutively. Without this, the energy cost of the whole program would be under-
estimated.

For finding out the overhead the basic energy costs of the two consecutive instruc-
tions, i and j are subtracted from the total energy cost of executing instructions i
and j consecutively:

Oi,j = |Ei,j − (Bi +Bj)| (6)

Other inter-instruction effects Ek may result during the execution of the program
like cache misses and pipeline stalls and are added to the final result. However, the
penalty caused by e.g. a pipe stall is hard to predict and causes varying errors in
the predictions. In [43], the predictions had generally a 3%-error in test cases with
no pipe stalls or cache misses. Such cases are not realistic in real world scenarios.

3.2 Advanced energy model

The energy model proposed in [6] and described in this section aims to model the
energy consumption of the CPU, Flash memory, SRAM and the memory controller
which should provide more accurate estimates than the classic model introduced
in section 3.1. The memory model is still quite simple as no cache hierarchy is
modeled and does not include the energy consumption of read-only memory (ROM)
or peripherals either.

A typical program for embedded systems has two parts: the initialisation phase and
the main phase. The initialisation phase is only executed once at startup. The
main part is basically often just an endless loop. The implication is that the energy
consumption for the initialisation phase is negligible in regard to the relatively long
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running main phase. The initialisation phase can safely be discarded from the energy
analysis without losing much accuracy.

When an instruction is executed, energy is consumed during the different stages
of the CPU pipeline. Because of that, the total energy cost of the instruction can
be expressed as a sum of the energy consumed in the different pipeline stages. The
processor used in [6] is an ARM7TDMI which has a three-stage pipeline: instruction
fetch, instruction decode and instruction execute. [4]

Most modern processors make use of instruction parallelism by pipelining instruc-
tion execution. Instead of executing one instruction fully during one clock cycle of a
processor, multiple instructions can be in execution at the same time. This increases
the processor throughput and clock frequency. A basic pipeline consists usually of
three stages: instruction fetch (IF), instruction decode (ID) and instruction execu-
tion (EX). In practice, there are often more stages like memory, mathematical or
other intermediate stages inside a processor. [33]

Instruction
execution
order

Time

IF ID EX

IF ID EX

IF ID EX

bubble bubble bubble

Figure 4: Pipelined instruction execution in a three-stage pipeline.

Figure 4 illustrates how a pipelined execution works featuring a three-stage pipeline
matching with the ARM7TDMI pipeline mentioned before. Each horizontal line
corresponds to one instruction going through each stage of the pipeline. Each stage
takes one clock cycle and only one instruction can be in a stage at a time. The
third instruction, marked as a bubble moving through the pipeline stages, indicates
a pipeline stall when basically a no-operation instruction moves through the pipeline
[33]. Each stage consumes energy and the total energy consumption of an instruction
is the sum of the energy consumption used in each of the stages. In [6], the memory
and memory controller related energy is added to the relevant stages as explained
next.

The energy cost of the fetch stage consists of the CPU consuming energy EIF calcu-
lating the memory address of the next instruction. The memory controller is then
ordered to fetch the next instruction of the program code. The memory controller
in turn orders the Flash memory to read the instruction from the specified address.
The energy cost associated with the memory controller is denoted as Ectrl(code) and

20



with the Flash memory as EFlash(data).

The energy cost of the decode stage consists of the CPU being active. The energy
consumed is marked as EID which can be assumed to be constant in case of the
ARM7TDMI processor as it uses the fixed length 32-bit ARM instructions.

The execute stage is the most complex one. In the processor the execution may
activate different hardware depending on the type of instruction. The execution
stage either solves an arithmetic or a logic operation or triggers a memory operation.
The energy consumed is marked as EEX . In case of an operation that accesses the
memory, the memory controller is activated and either the SRAM or Flash memory
is accessed to read or write data. The associated energy costs are Ectrl(data), ESRAM

and EFlash(data). Pipeline stalls are possible during memory operations when the
processor needs to wait for the memory operation to finish and the energy cost
ensuing from this is denoted as Estall.

Eprocess = Ectrl(code) + EFlash(code) + EIF + EID + EEX + Estall

Ememory = Ectrl(data) + EFlash(data) + ESRAM
(7)

In equation 7, the different energy costs are divided into three different types: The
energy cost associated with fetching and processing an instruction Eprocess, the en-
ergy cost associated with memory data accesses Ememory and static energy consump-
tion Estatic. Static energy is the energy consumed by hardware that is supplied with
current but inactive as explained in section 2.5.

Ememory = NFlash(read) × λFlash(read)

+NSRAM(read) × λSRAM(read)

+NSRAM(write) × λSRAM(write)

(8)

The Ememory is rewritten in equation 8 to count the number of read and write
operations. The write operations to Flash are omitted from the equation as write
operations are rare in the normal operation of embedded systems.

Ecore = EIF + EID + EEX (9)

In equation 9, the CPU pipeline stages found in Eprocess equation 7 have been com-
bined into one Ecore energy cost which is comparable to equation 5 in the classic
model described in section 3.1. Because the inter-instruction costs are only about
5% of the pure base cost as shown in [22], the inter-instruction costs are ignored in [6]
and instead, the Ecore energy consumption is estimated by the following parameters:

• Instruction word Hamming distances IHamming.
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• Instruction word weight Iweight.

• Number of shift operations Nshift.

• Register bank bit flips Rbitflip.

• Pipeline stalls (both fixed and variable length).

When comparing two arbitrary strings, the Hamming Distance is the number of
positions in which the two strings differ from each other. In the instruction word
context it means how many bit positions have to be flipped to the opposite – ’1’ to
’0’ or vice versa – in order to transform the instruction into the other one. Flipping
a bit costs more energy than not needing to flip it.

The instruction word weight is basically the count of 1’s in the binary representation.
It costs more energy to have more bits equalling ’1’ than ’0’ in an instruction. The
number of shift operations equals the count of shift operations in the program.

The register bank bit flips are related to the Hamming distance as this parameter
measures the effect of flipping bit in the registers as a result of executing instructions.

The pipeline stall parameter measures the energy cost of pipeline stalls. In [6], this
parameter is approximated by an average value gotten from a benchmark suite.

Finally, Estatic is considered to be a constant value in the model and is added in the
base cost of an instruction. Thus, the final form of the equation is as follows:

Eprogram =
∑
p∈P

Np × coeff(p) (10)

where p ∈ P = {Processor instruction set, λSRAM(R), λSRAM(W ), λFlash(R), IHamming,
Iweight, Nshift}.

The coefficients are computed using regression analysis. It is a statistical method
where the coefficients are adjusted using training data. In this case it would mean
that the training data are test programs for which the total energy consumption is
known and the coefficients of the model are adjusted to produce sufficient estimates
for the total energy consumption of the test programs. The more test programs that
stress different parameters, the better will the model be adjusted. [6]
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4 Energy measurement systems

First, an overview of oscilloscopes and probes is presented as they are crucial for
conducting meaningful and accurate measurements. Furthermore, an operational
amplifier custom-made for this project is described in this section. Lastly, both
microbenchmarks and application benchmarks, and their use in these kinds of mea-
surements are described.

4.1 Oscilloscopes and probes

X (time)

Y (Voltage)

Z (intensity)

Figure 5: Three dimensions of an oscilloscope.

An oscilloscope is a device that draws a graph of an electrical signal onto a display.
Its usual application is to show signal change over time. The components of the
displayed waveform are the X-axis representing the time dimension while the Y-
axis represents the voltage dimension. The intensity of the displayed waveform is
considered to be the Z-axis. The dimensions are illustrated in figure 5. [39]

There are two types of oscilloscopes: analog and digital. An analog oscilloscope
works with a continuously variable signal by applying it directly to the electron
beam of the cathode-ray tube (CRT) display. This makes analog oscilloscopes ideal
for tracing rapidly varying signals that need to be followed real-time. Analog os-
cilloscopes use a phosphor-based display that features a characteristic known as
"intensity grading" which relates to the Z dimension in figure 5. It makes signal
details more easily distinguishable by displaying the trace brighter where signal
features occur more often. [39]

Digitising oscilloscopes on the other hand digitize the continuous analog signal
through an analog-digital converter (ADC) into discrete binary values. The con-
ventional digital oscilloscope is known as a Digital Storage Oscilloscope (DSO).
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The DSO constructs the displayed waveform by sampling the signal using various
methods. Real-time sampling works for signal frequencies up to a half of the os-
cilloscope’s maximum sampling rate. It captures a sufficient amount of samples in
one cycle to reconstruct the waveform accurately enough. It is the only method to
capture transient events.

Transient events are signals that happen once or only rarely. The other methods
that are used for signal frequencies larger than half of the oscilloscope’s sampling
rate miss those transient events. Interpolated real-time capture method interpolates
the gaps in between the samples to make an estimation of the real signal. Lastly
there is the method of equivalent-time sampling where samples are collected from
successive cycle until enough samples have been obtained to reconstruct a repeating
signal. [39]

A fundamental part of an oscilloscope is the probe of which there are many different
types. Two major categories are passive and active voltage probes. By far, the most
common probes used are passive ones as they are the most durable and simplest
type of probes. Compared to active probes they have a higher source loading effect.
The probe becomes a part of the circuit and draws some of the current from the
circuit to create a signal for the oscilloscope. The probe tip causes both resistive and
capacitive load on the circuit. The capacitive load is usually of a greater concern as
it affects the maximum bandwidth and capacitive reactance. [38]

Oscilloscope

Probe

Probe

(a) Two single-ended probes.

OscilloscopeProbe

(b) Differential probe.

Figure 6: Methods of measuring a differential signal.

The most common probes are for measuring single-ended signals; i.e., signals that are
referenced to the ground. When, however, two signals are referenced to each other
we talk about differential signals. There are two ways of measuring a differential
signal illustrated in figure 6. The first way as shown in figure 6a is to use two single-
ended probes and subtract second signal (signal A – signal B) from the first one to
obtain the differential signal. The use of this setup is however discouraged because
of problems such as time skewing of the two signals and poor common-mode signal
rejection. [38]

Time skewing happens if one of the signals has any delay in relation to the other
signal which can produce amplitude and timing errors in the computed differential
signal shown on the oscilloscope. The probe signals are affected by noise as any
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other signal. Because the two signals are not combined until in the oscilloscope, the
computed differential signal is a result of subtracting a noisy signal from another
noisy signal.

Both problems mentioned above are minimised by using a differential probe as shown
in figure 6b in which the combining of the two signals is already done in the probe.
This generally improves the common-mode signal rejection rate. Most of the mea-
surement circuits described later in section 5 rely on measuring a voltage drop over
a resistor which in essence is measuring a differential signal. [38]

As a side note, there are methods developed in the field of embedded security to
measure and model the energy consumption of processors. Some methods do not
require a probe to be physically connected to the circuit, like e.g. electromagnetic
emissions that can be observed from a short distance. The positive aspect is that
these kinds of methods do not require any special test pins or other hardware support
from the device which is to be measured. However, the measurements are easily much
noisier and require special measurement systems that are hard to obtain. For these
reasons, it is not possible to use these kinds of measurement systems in context of
this thesis. [26]

4.2 Operational amplifier

Figure 7: Operational amplifier by Egon Kirsch.

An operational amplifier is an amplifier for direct current circuits. It is used for am-
plifying the potential difference of a differential input to a higher potential difference
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in the output. [42] The operation amplifier in figure 7 was custom-made for use in
this project by Egon Kirsch from the Institute of Embedded Systems at Hamburg
University of Technology.

It is designed to amplify the potential difference over a shunt resistor without in-
fluencing the energy consumption to be measured by having a completely separate
power supply. It is connected between the measurement pins and the oscilloscope.
Usually operational amplifiers are integrated into the circuit in which they are used.
An operational amplifier with a separate power supply reduces unwanted noise pro-
duced by the operational amplifier. An initial test with a signal generator indicated
that it is able to amplify signals of a frequency up to 1MHz.

4.3 Benchmarks

Benchmarks are used for calibrating and evaluating energy measurements. Mi-
crobenchmarks are used for evaluating characteristics of the hardware’s microar-
chitecture, such as energy consumption. In [43], the microbenchmarks stress con-
tinuously a single architectural component of the processor while measuring the
energy consumption. The microbenchmarks for measuring the base cost of individ-
ual machine instructions consist of a short startup code for the hardware followed
by a loop of 120 instances of the same instruction. The branching code for looping
causes a small error in the measured averaged base cost of an instruction. Loops of
two alternating instructions were created in a similar fashion for measuring inter-
instruction effects. The startup code is executed only once so that it does not affect
the measurement. [43]

Microbenchmarks are well suitable for measuring the energy consumption for indi-
vidual instructions and inter-instruction effects in order to create energy models.
The models should be evaluated with application benchmarks that represent much
more realistic real-world software. MediaBench is a benchmark suite designed for
multimedia and communication applications running on embedded systems. Medi-
aBench was introduced in 1997 [27]. The MediaBench aims to represent accurately
realistic multimedia and communication workloads intended for embedded systems.
MediaBench is first benchmarking suite stressing complete applications that were
written in high-level languages and was published back in 1997. The 11 components
of MediaBench are:

• JPEG - Still image compression encoding and decoding.

• MPEG - Video compression encoding and decoding.

• GSM - Speech transcoding in 2G mobile networks.

• G.721 - Voice compression encoding and decoding.
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• PGP - IDEA/RSA public-key encryption algorithm for encrypting, decrypting
and signing messages.

• PEGWIT - A public-key encryption and authentication program.

• Ghostscript - PostScript interpreter. Test file I/O.

• Mesa - A clone of the OpenGL graphic library. Includes the following appli-
cations: mipmap, osdemo and texgen.

• RASTA - A speech recognition program using various techniques.

• EPIC - Experimental image encryption.

• ADPCM - A classic audio coding technique: adaptive differential pulse code
modulation.

MediaBench has been extensively used for almost 20 years but multimedia related
technology has advanced since. MediaBench II is the next generation benchmark
and beside just using more recent test programs it divides the benchmark into 6
different benchmark suites for different application areas: video and image, audio,
speech, security, graphics and analysis. A seventh suite is the composite suite which
will consist of two representative applications from the other suites. Furthermore,
there is a kernel suite which does not consist of full applications but kernels are
often found in multimedia applications. So far only the video and image suite has
been completed. [13, 29]
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5 Measurement circuits

The basic building blocks of software are machine instructions. The instructions
trigger circuit state changes which are the source of energy consumption. If software
uses hardware non-optimally, the result may be significant for the software energy
consumption. For example, an unfortunate order of the machine instructions –
e.g. having vastly different instruction types ordered one after each other – can
result in expensive state changes in the circuit. Reordering the instructions by
minimizing expensive state changes, without altering the software program’s logic,
would improve the energy efficiency of the program up to 40%. [44]

This section presents the results of an investigation concerning different measure-
ment circuits. The investigation was conducted in collaboration with Nicolas Roeser
from the Institute of Embedded Systems/Real-time Systems at Ulm University.

5.1 Investigated measurement circuits

According to the feedback we received about the plan to use a development board
as a measurement platform was regarded as unqualified for our purposes. The
differentiation of the processor energy consumption from other hardware would most
probably not succeed. For example, the on-board USB voltage regulator would
cause a lot of noise. Based on this feedback, we conducted a survey of different
measurement circuits which we could use for constructing our own measurement
platform tailored for measuring processor energy consumption.

The measurement circuits presented in this section were our proposals for measur-
ing instruction-level power consumption. The circuits were presented in a position
paper and distributed to colleagues mainly at Ulm University to receive feedback
and collect suggestions for the most suitable measurement approach. Most of the
feedback was collected in face-to-face conversations.

5.1.1 Shunt resistor circuit

The first attempt to model the energy consumption of a processor was made in
the mid-90s by Tiwari et. al [43]. Their technique was based on measurements
performed on real hardware executing different instructions. They measured the
average current drawn from the power supply using an ammeter. This is equivalent
to measuring the voltage drop over an accurately known resistor a.k.a. a shunt
placed in series with the processor. The shunt resistance is usually very small so
that the influence on the circuit is kept as small as possible.

This kind of measurement circuit is visualized in figure 8. ’R’ is the shunt resistor
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DUT

R

Figure 8: Classic shunt resistor measurement circuit.

and ’DUT’ is the Device Under Test which in this case would be the processor.

Measurement circuits that insert a current sensing device – e.g. an ammeter or
shunt resistor – into the device’s power supply path affect the current to be measured.
According to Nikolaidis and Laopoulos [32], the voltage drop degrades the operating
performance of the device due to voltage variations.

5.1.2 Current mirror circuit

DUT
R

Figure 9: Current mirror measurement circuit.

Laopoulos et al [24] propose a measurement circuit that is based on a current mirror
for creating a current sensing circuit. The current mirror creates a copy or mirrors
of the instantaneous current drawn by the processor. Placing the shunt resistor on
the mirrored side minimises the influence on the supply current for the processor.
Figure 9 shows an example of this kind of circuit.
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A current mirror is a circuit block that produces ideally an exact copy of a current.
The high output resistance of the current mirror keeps the output current constant
regardless of the load. [42]

5.1.3 Automated measurement system

DUT
ADC

ADC

FPGA

CLK
CTRL

CTRL
R

BUS

Figure 10: Automated measurement system by Prof. Slomka from Ulm University.

The circuit shown in figure 10 is a sketch for an automated cycle-accurate measure-
ment circuit based on a current mirror. This circuit was conceptualised by Prof.
Slomka from the Institute of Embedded Systems / Real-Time Systems of Ulm Uni-
versity. The analog digital converter (ADC) measures the voltage drop over the
shunt resistor ’R’. The second ADC in the top-right corner in the schematic is for
measuring the supply voltage which can also fluctuate and is added for achieving
better accuracy. This measurement circuit is able to evaluate the energy consump-
tion of arbitrary software.

The automation is accomplished by the field programmable gate array (FPGA)
that shares the same system clock with the processor to be able to conduct cycle-
accurate energy measurements. The FPGA implements the control logic for the
measurements. It reads the output of the two ADCs at each cycle and evaluates
them to get the current for each instruction executed.

The FPGA has to store a copy of the program and snoop the bus or feed instructions
to the processor itself in order to know which instruction is being executed. It also
stores a table of the number of clock-cycles that each instruction requires for its
execution.

It takes time to read and evaluate the output from ADC. The processor has either to
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stop execution until the FPGA is ready to evaluate the next instruction or leave the
following instructions unevaluated. The solution is straightforward by duplicating
the ADCs. Then the FPGA can switch ADCs between instructions allowing for
uninterrupted execution of the software executing on the DUT.

5.1.4 Advanced setup

DUT

Digital
oscilloscope

Uref

OpAmp

Iref

R

C

Figure 11: Advanced circuit by [7].

The circuit shown in figure 11 is a circuit for measuring the instantaneous current
of a device that consumes current in a pulsating fashion like processors or micro-
controllers. The circuit uses a current stabiliser as its current source. Basically,
the current is kept constant while the voltage changes. The device needs a stable
voltage in order to operate normally. Sudden spikes in the current drawn by the
device changes the voltage however, and this needs to be stabilised using a capacitor
as a local current source. These are called decoupling capacitors.

When measuring a voltage it is crucial to have the correct reference potential a.k.a.
ground. The resistor and Zener-diode are added to the circuit to stabilise the refer-
ence voltage so that the digital oscilloscope gets correct readings. The operational
amplifier is an addition to compensate inaccuracies caused by the voltage and tem-
perature sensitivity of the Zener-diode. This setup offers accurate measurements of
instant current values without affecting the device operation. [7]
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6 Measurement target

This section describes the selection process of the measurement target. A Cortex-
M3 based microcontroller was selected, and the architecture is described in more
detail in order to understand what is going to be measured.

6.1 Selecting the measurement target

A sensible measurement target has to be selected in order to perform meaningful
measurements. For this project, there are some restrictions that narrow down the
possible candidates for our measurement platform:

• A modern low-energy or low-power ARM processor suitable for embedded
systems like a sensor node such as described in section 2.2.

• A single-core processor as it is adequate for a first prototype of a measurement
platform. This also means that it is possible to use a simple energy model at
first.

• An ARM processor architecture that is supported by the WCC to aid the
development towards a multi-criteria optimising compiler as envisioned in [35].

WCC supports compilation and code analysis for ARM processors. ARM processors
are widely used in microcontrollers and in our survey we did not encounter micro-
processors based on them. A primary difference between a microcontroller and mi-
croprocessor is that the microcontroller has an on-chip flash memory on which the
program code is to be stored. This allows short startup times as the program does
not reside on external memory as is the case with microprocessors. The downside is
the limited memory size.

Another aspect is the power supply: a microcontroller usually has an embedded
power supply to regulate its own internal voltage levels and thus needs only one
voltage power rail. A microprocessor on the other hand needs to be supplied with
different voltages for the different parts of the chip as it has no embedded regulation
hardware inside the chip. [14]

Figure 12 shows different ARM architectures included in the survey of current low-
energy processors for this project. The ARM Cortex-M processors are meant to
be used in microcontrollers targeted at low-cost and low-energy embedded systems,
whereas the Cortex-R series processors focus on high-performance real-time applica-
tions. The older versions of aiT used in WCC also support the classic ARM7TDMI
processor architecture which can be considered to be the predecessor of the Cortex-
M series. Even though the ARM7 processors were introduced in 1994, there are still
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ARM7TDMI

Cortex M3

Cortex R4f

Figure 12: Three ARM architectures investigated.

microcontrollers based on this processor architecture on the market. It is included
in this survey in case the more recent ones would have not been suitable for the
measurement platform prototype. [3]

ARM7TDMIAtmel

SAM7LUlta-low power

SAM7X/XCHardware Cryptography

SAM7S/SEReal-time

Figure 13: ARM7TDMI processors by Atmel.

The ARM7TDMI has been a widely used ARM core in many applications. Currently
there are not many microcontrollers that use this core and it is being replaced by
more current microprocessors. Atmel produces microcontroller series using this core,
the SAM7S/SE, SAM7X/XC and SAM7L series, each of them targeted at different
application uses.

The SAM7S/SE series is targeted at real-time applications while the SAM7X/XC is
targeted at applications with special needs for hardware cryptography. The SAM7L
is targeted at applications with very low power requirements featuring a 100 nA
power-down mode.

TMS570

NOTE: One Cortex R5 based MCU

Clock: 80/169/180 + one 300 MHz

Dual-core lockstep

Figure 14: Cortex-R4 processors by Texas Instruments.

The ARM Cortex-R4 architecture is targeted at real-time systems. There are cur-
rently two microcontroller families from Texas Instruments based on the Cortex-R4
and Cortex-R4f. The ’f’ in Cortex-R4f indicate that the ARM core has hardware
floating point processing capabilities. Both microcontroller families belong to the
Hercules Safety microcontroller family. The TMS570 family is targeted at trans-
portation applications while the RMxxx families targeted at safety-critical medical
and industrial applications.

Both the TMS570 and RM microcontroller families implement the Lock-step CPU
Safety Architecture from Texas Instruments. The Lock-step CPU Safety Architec-
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ture is based on the idea of having a duplicate microprocessor executing the same
instructions one or more cycle after the other microprocessor. This physical and
temporal differentiation allows the hardware with the help of discrepancies in out-
comes to spot possible errors in execution. This feature makes the measurement
of an instruction energy cost difficult as there are two cores executing a different
instruction at the same time. It collides with our single-core requirement and is
therefore not a suitable option for us.

Atmel

SAM3X Enhanced connectivity

SAM3A CAN connectivity

SAM3U On-chip USB

SAM3S SAM7S follower

SAM3N

Figure 15: Cortex-M3 processors offered by Atmel.

Atmel has a range of MCU series based on the Cortex-M3 microprocessor. The
SAM3N series is a basic model with the lowest clock speed and targeted at multiple
applications. The SAM3S focuses on low power consumption and is intended to be
the follower of the SAM7S series from the ARM7TDMI architecture. The SAM3U
focuses on USB connectivity and SAM3A on CAN connectivity. SAM3X is meant
for networking applications by providing Ethernet connectivity in addition to CAN
and USB. The SAM3N and SAM3S would be suitable candidates for the prototype
platform.

NXP

LPC1800Clock: 180MHz

LPC1700Clock: 120MHz

LPC1500Clock: 72MHz

LPC1300Clock: 72MHz

Figure 16: Cortex-M3 processors offered by NXP.

The NXP uses the Cortex-M3 in four of its microcontroller series: LPC1300, LPC1500,
LPC1700 and LPC1800. The LPC1300 is the basic model offering mid-range perfor-
mance and basic connectivity with each of the other series offering more performance
and advanced connectivity and features. For example, the LPC1700 and LPC1800
have LCD-controllers. This is unnecessary hardware that could create unwanted
noise, and therefore the two microcontrollers were not considered further to be an
option. As a relatively simple processor is sufficient for the prototype, the LPC1300
would be a suitable choice.

Texas Instruments produces two MCU families which are based on the Cortex-M3:
The F28M3x and TMS470M families. The F28M3x microcontroller is a dual-core
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Figure 17: Cortex-M3 processors offered by Texas Instruments.

system with a C28x and Cortex-M3 integrated into a single chip. The C28x core is
intended for the real-time and loop controller tasks while the Cortex-M3 works as
the host subsystem taking control of communications, monitoring and other system
functions. The dual-core structure collides with the requirement of a single-core
processor.

The TMS470M series does not implement the lock-step CPU Safety Architecture
mentioned before. Thus, it has only one Cortex-M3 core which fulfils the requirement
of a single-core processor. As a bonus, the Flash memory module has its own supply
pin. This could be used for measuring and modeling the energy consumption of
the memory module separately from the core. The microcontroller is targeted at
embedded systems used in transportation applications like Electric Power Steering
(EPS) and safety related automotive applications.

The most likely candidates for the prototype were the NXP LPC1300, Atmel SAM3N
and SAM3S, and the Texas Instruments TMS470M. All of them would suite the
prototype well and fulfil the criteria listed at the beginning of this section: they all
use a single-core Cortex-M3 processor supported by WCC and are suitable for being
used in a sensor node. In the end, the TMS470MF03107 microcontroller from the
TMS470M family was selected for its additional Flash memory supply voltage pin.
However, the pin was not eventually exploited in the prototype as it would have
complicated the hardware design.

6.2 ARM Cortex-M3

The ARM Cortex-M3 architecture is a modified Harvard architecture. The most dis-
tinctive feature of the Harvard architecture is that instructions and data are accessed
via separate buses. The pure Harvard architecture also requires the instruction and
data memories to reside in physically different memories but the Cortex-M3 miti-
gates this requirement which turns it to a modified Harvard architecture. It supports
the Thumb and Thumb-2 Instruction Set Architecture (ISA).

Figure 18 provides a quick overview at the features provided by the ARM Cortex-M3
processor.

• Nested Vectored Interrupt Controller (NVIC) - an embedded interrupt con-
troller that supports low-latency interrupt processing. It supports 240 inter-
rupts with 256 priorities that can be changed dynamically.
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Figure 18: ARM Cortex-M3 chip architecture [2].

• CoreSight debug and trace interfaces which offer multiple choices of debug
communication protocols (JTAG and Serial Wire Debug) and tracing capabil-
ities.

• An optional Memory Protection Unit.

• Code interface which supports both Thumb and Thumb-2 Instruction Set Ar-
chitectures (ISA)

The pipeline consists of three stages: Instruction Fetch, Instruction Decode and
Instruction Execute. The decode stage also executes a speculative instruction fetch
if a branch instruction is encountered.

6.3 TMS470MF03107 microcontroller

The Hercules TMS470M microcontroller series from Texas Instruments is targeted
at safety-related automotive applications. The microcontroller is based on the ARM
Cortex-M3 CPU running at 80MHz. The chip has built-in safety features like CPU
and RAM self test engines, Error Correcting Code (ECC) and parity checks.

The upper half of the block diagram in figure 19 shows the microcontroller system,
debug and power supply modules which have to be operational to allow basic op-
erations on the chip. The core part is the ARM Cortex-M3 processor with a ’logic
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Figure 19: TMS470M block diagram [41].

built-in self-test’ (LBIST) module. It allows the processor to verify the correct
operation without external test equipment.

The microcontroller has two types of memory: SRAM and Flash. Both memory
types have ECC capabilities to detect and correct data corruption. There is also
an additional Memory Protection Unit to prevent access to protected parts of the
memory.

The Power, Clock and Safety -block includes the clock logic, internal power regu-
lation and debug functionality. The debug interface is the industry standard IEEE
1149.1 Standard Test Access Port and Boundary-Scan Architecture (JTAG). [21]

The middle-part consists of the microcontroller internal structures like the system
bus and interrupt management system. The lower part of the diagram shows the
different interfaces to the outside. There are serial, network (CAN and UART) and
timer interfaces. These are of little interest in this project as they are not going to
be used extensively.
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7 Energyboard construction and testing

The Energyboard is a printed circuit board (PCB) built to create a prototype of a
measurement system. The board layout was designed using a PCB design software
called EAGLE. [1] The Energyboard was manufactured at the faculty for Printed
Circuit Board Technology of Ulm University. In total two Energyboards have been
manufactured, assembled and tested.

This section describes the design and functional parts of the Energyboard. Various
people at Ulm University offered their insight and improvement suggestions during
the design process which influenced the overall design of the Energyboard.

7.1 General PCB design considerations

The physical aspects and features have also to be considered when constructing a
piece of hardware. When measuring the microcontroller energy consumption, one
consideration point is the PCB board itself. The main concern in this project was
the transmission lines – or more commonly known as traces – and the various sources
of unwanted interference that could create noise and impact the measurements. The
aim is to minimize this noise so that it is possible to measure the small changes in
the currents.

Figure 20: Parallel traces interfering with each other like antennas.

The measurements are going to be performed by connecting to the traces directly
but one source of error is actually the traces themselves. The traces act as antennas
– albeit very small – and pick up interference over the air or even from each other.
One of the early board designs includes an example of a scenario where the antenna
effect could take place as shown in figure 20. The traces in question are the ones
between jumpers JP4 and JP6. In this case, the effect comes from the fact that only
one of the traces would be connected to the circuit at a time. In this design stage,
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the focus was to create a platform with adjustable configuration once it would have
been built.

The upper route in figure 20 is the on-board energy measurement interface with
the pins acting as points to which an oscilloscope connects. The lower route was
to bypass the on-board measurement pins in case the power supply has a built-
in current integrator for measuring the consumed current of the microcontroller.
Bypassing the shunt resistor would minimize the influence on the measurements as
discussed in section 5.1.1. Thus, only one of the routes would be connected to the
circuit at a time. The route not connected to the rest of the circuit would be prone
to behave like an antenna as there is no current to resist it.

In addition, the two signals from the left corner of figure 20 come from two different
power sources: one on-board regulated and one externally regulated, like with a
high-end laboratory power supply. The jumper labelled JP2 is for choosing either
of these power sources as only one can be in use at a time.

A rule of thumb in PCB design is to avoid 90 degree corners as they may cause
reflections of the signals moving along the traces. Also, the angles cannot be below 15
degrees because the etching agent, when manufacturing the PCB, may get trapped
inside these pockets and cause corrosion [15]. On the Energyboard the thick main
power rails have right angles whereas the thinner traces use 45 degree angles as
seen in the layout image in appendix B. This is purely an aesthetic choice as the
reflections get relevant in high-speed designs [30]. Frequencies of 1GHz and above
are considered to be high-speed and the microcontroller system clock is at 80MHz
or lower, so the reflections should cause no problems in the prototype.

7.2 Design of the Energyboard prototype

The Energyboard prototype shown in figure 21 is based on the measurement setup
described in section 5.1.1. As figure 21 highlights, the Energyboard can be divided
into five different functional blocks:

• Power supply.

• Voltage regulation.

• Measurement point.

• Device Under Test or DUT.

• JTAG connector.

The schematic and layout figures in this subsection are details from the full schematic
and layout found in appendix A and appendix B, respectively.
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Figure 21: Overview of the Energyboard’s functional blocks.

(a) Schematic (b) Layout

Figure 22: Power supply schema and layout.

Power supply A direct current (DC) connector to connect a suitable power source
to the board. For programming and debugging a standard laboratory power supply
would be enough but for making energy measurements a higher quality power supply
may be needed. A Schottky-diode is placed right after the DC connector to provide
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reverse polarity protection for the circuit.

Figure 23: Voltage regulator schematic.

Figure 24: Voltage regulator layout.

The voltage regulator integrated circuit (IC) used is the LP3878-ADJ from Texas
Instruments. The design of the voltage regulation circuit on the Energyboard follows
closely the circuit presented in the application note of the LP3878-ADJ datasheet
[40]. The schematic and layout are shown in figures 23 and 24, respectively. The
voltage regulator is adjusted to the desired output voltage VOUT according to the
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following equation:

VOUT = VADJ × (1 + (
R1

R2

)) (11)

The adjust pin voltage can be assumed to be VADJ = 1V . The adjust resistors for
the Energyboard are set to R1 = 2.3kΩ and R2 = 1kΩ which means that the output
voltage results in VOUT = 3.2V . The adjust resistors are labelled as R1-ADJ and
R2-ADJ in the schematic and layout files. This is well within the supply voltage
range of [3.0V, 3.6V] required by the microcontroller. The LP3878-ADJ can output
a current up to 800mA which should be more than enough as the microcontroller
total supply current ICCTOTAL is estimated to be 125mA at maximum. [41]

NAME VALUE FUNCTION
C1-VREG 4.7µF Input
C2-VREG 10µF Output

CBP 10nF Noise bypass
CADJ 2.2nF Feedforwardi

Table 1: Voltage regulator external capacitors.

The voltage regulator also needs external capacitors for stability. The capacitors,
along with their values and functions within the voltage regulator circuit, are listed
in table 1. They are ceramic X5R or X7R capacitor as recommended in the datasheet
[40].

The bypass capacitor reduces significantly the output noise and is required for loop
stability. The feedforward capacitor increases the phase margin which improves the
transient response and settling time according to changes in load or input voltage.
It also improves the stability of the IC.

Figure 25: Measurement point schema and layout.

The measurement point consists of a good quality shunt resistor with two test
pins on either side of it. A shunt resistor is a resistor with a small resistance for
minimising the influence on the circuit. For measuring the varying voltage during
the microcontroller operation, a differential probe would be optimal in this situation
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as the ground is relative. Different kinds of probes are described in section 4.1. An
amplifier could be connected to the measurement pins for amplifying the oscillating
voltage. The operation amplifier described in section 4.2 is intended for exactly this
purpose.

Figure 26: JTAG schematic.

Figure 27: JTAG layout.

The JTAG connector shown in figures 26 and 27, is meant for programming
and debugging the microcontroller. To program a.k.a. to flash the microcontroller
using a computer needs a JTAG programmer in-between. The JTAG programmer is
connected to the computer usually through USB and to the microcontroller through
a JTAG cable connected to the connector on the PCB. The JTAG programmer is
controlled with special software like OpenOCD [34].

The circuitry associated with the DUT consists mainly of the power lines, essential
reset and power supply signals to make the chip functional. Most of the logic
pins like general purpose, CAN and timer pins are unused and left floating on the
Energyboard with the exception of the ADIN pins. The power pins (VCCIOR)
are used for supplying the chip with current as shown in figure 28. The VCCP
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Figure 28: Decoupling capacitors for stabilising the supply voltage.

pin supplies current to the Flash memory of the microcontroller. The part of the
layout related to the microcontroller can be seen clearly in the Energyboard layout
in appendix B.

Figure 29: LED and decoupling capacitors for stablising the internal supply voltage.

There are four VCC pins at 1.55V voltage level which are pulled to the ground as
shown in figure 29. The 1.55V is the supply voltage for Cortex-M3 microprocessor
but the required voltage adjustment is done in the microcontroller internal power
supply so that there is no need to provide it externally. Pulling them to the ground
through capacitors serves for stabilising the voltage and filtering out current peaks.
Also shown in figure 29 is the LED circuitry. The LED is intended for quickly
producing output for debugging purposes.

7.3 Manufacture and assembly

The board was manufactured using non-plated copper technology with a solder
mask. The board is not RoHS compliant as it uses tin/lead solder – a soft solder
– to finish the surface and to protect the exposed copper pads until the board is
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assembled. In context of this thesis, assembling means soldering IC-components
onto the board. The manufacturing process of a two-sided PCB consists roughly of
the following procedures: [5, 9]

• Copper plating

• Patterning and etching

• Drilling

• Solder masking and plating

The process starts with covering both sides of the PCB substrate entirely with a layer
of copper which creates a blank PCB with no tracks (also called traces). The blank
PCB is coated with photosensitive coating and exposed to ultraviolet light masked
with the wanted track pattern. The mask or film is created with a photoplotter. The
exposure to UV-light removes the etching-resistant coating from the areas exposed
by the mask. The UV-processed PCB is then etched for example by submerging it
into a tank filled with suitable etching solvent which removes the unwanted copper
from the PCB. This procedure is called photoengraving but there are other methods
too. The PCB is then washed and dried.

After this, the drillings for vias and such are made. A via creates an electrical
connection between different layers of a PCB. The drillings are done by an automated
drilling machine which is controlled with numerically controlled drill (NCD) files.
After that, the vias are copper plated to connect the two layers.

In order to finish the PCB, a soldering mask is applied to protect the copper from
oxidation and help during the assembly stage when the components are soldered
onto the board for preventing the formation of solder bridges. Solder plating on the
other hand refers to plating exposed copper areas, such as pads and landing areas,
with solder. This protects the copper and keeps the area solderable when assembling
the PCB.

The components of the Energyboard were soldered by hand using techniques de-
scribed for example in [5]. This is a slow procedure compared to flow soldering
that is used in industrial production where the pads are coated with solder. The
surface-mount devices (SMD) are pressed onto the pads and the PCB or solder is
heated to make the solder "flowing". When the solder cools down again the joints of
the SMD-components and pads are linked together. The hand soldering technique
is pretty similar but instead of heating the solder on all pads at the same time, the
soldering iron is used for heating the pads one at a time. Usually the preapplied
solder on the pads is not enough and some extra solder has to be applied at the
same time.
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7.4 Testing

After the two Energyboards were assembled and soldered, the boards were tested
using a Fluke 175 True RMS multimeter. Voltage measurements were performed
on various exposed microcontroller pins. It is a crude test but already reveals a
problem on both Energyboards as the voltage on the microcontroller RESET pin is
pulled low. It should be pulled high when in normal operation mode.

PIN Board A Board B
GIOA[4]/INT[4] 0.445V 0.495V

VCC 12 1.556V 1.591V
VCC 41 1.556V 1.592V
VCC 67 1.555V 1.592V
VCC 92 1.556V 1.591V

VCCIOR 14 3.192V 3.204V
VCCIOR 20 3.192V 3.204V
VCCIOR 43 3.192V 3.204V
VCCIOR 52 3.192V 3.204V
VCCIOR 65 3.192V 3.204V
VCCIOR 94 3.192V 3.200V

VCCP 3.192V 3.205V
VCCAD 3.192V 3.205V
RESET 0.237V 0.234V
PORRST 1.078V 1.083V

ENZ 0.0V 0.0V
TEST 0.0V 0.0V

VREG-OUTPUT 3.193V 3.206V

Table 2: Pin voltage measurements.

Table 2 shows the voltage measurement on a selection of pins. As there were two
Energyboards available for testing one is called ’Board A’ and the other one ’Board
B’. All, except the VREG-OUTPUT pin, are pins of the TMS470M microcontroller.
The VREG-OUTPUT is the output pin of the voltage regulator. All other voltages,
except the RESET pin, show values that are within expected ranges. The 0.2V
value shows that the RESET pin is pulled low by the microcontroller. This would
indicate that the microcontroller is in reset state and cannot start properly.

There was a suspicion that the supply voltage is not stable enough and causes some
problems, like instability, inside the microcontroller. However, accurate measure-
ments with an oscilloscope did not confirm this suspicion. The measurement setup
consisted of an USB oscilloscope, the PicoScope 3204, which was connected to a
laptop running the PicoScope Oscilloscope Software 6.10.16 [37]. The sample rate
was set to 50MS/s and the sample interval to 20ns. The measurements were con-
ducted with a passive 1X attenuator probe The time window in figures 30 and 31 is
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Figure 30: Regulated supply voltage of Board A.

Figure 31: Regulated supply voltage of Board B.

20µs.

The oscilloscope traces shown in the figures 30 and 31 present the measurement
results. They X-axis show a time-span of 20µs. The regulated supply voltage
of Board A varies between [3.168V, 3.170V ] while the average is at 3.169V . For
Board B, the voltage varies between [3.179V, 3.182V ] with an average of 3.180V .
The variation is minimal so it is unlikely that voltage stability would be the root
cause of the bug.

Another suspicion was, that the 100 pF capacitors in connection with the quartz
crystal are too big. Much smaller capacitors, below 22 pF , should be tested. It
turned out, that the crystal on Board A is not oscillating properly which could
definitely be the cause of the problem. The crystal on Board B worked properly
though, which means that the ultimate problem lies somewhere else.

In the end, the exact cause for the bug still remains undiscovered when writing
this text. More testing and debugging is needed to discover the root cause of the
problem.
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8 Future work and summary

8.1 Future work

No energy measurements could be conducted as there is a bug in the Energyboard
design. The bug could not be identified during the project time-frame. However,
once the Energyboard is debugged, microbenchmarks can be executed and measure-
ments conducted. Some energy measurement system setups, like oscilloscopes and
probes, are described in section 4. The next step would be to create energy models
and then benchmark the models using application benchmarks.

Looking further into the future, making energy optimisation of software practical for
application developers would require automating the process. A practical solution
would be to implement automated energy optimisation into a compiler. There is
an interest in implementing energy optimisations in the WCET aware C-compiler
WCC presented briefly in section 2.6. Its architecture is designed to be extensible
for adding other optimisation goals.

A interesting continuation of this work would be to make a comparison between
measurement platforms based on the four circuits described in this thesis. The au-
tomated measurement circuit is already being looked into at Ulm University. The
other two circuits would still need to be constructed. Also, a comparison between
traditional probes and wireless methods, as used in power attacks, could be a pos-
sibility.

8.2 Summary

This thesis explored the topic of designing and constructing a measurement platform
for instruction-level energy models. The description of the prototype can serve as a
guide for future projects of similar nature as the challenges are likely to remain the
same. A prototype platform was built and is being developed further.

This thesis investigated four measurement circuits. The circuits are designed to
minimise noise by leaving out hardware unnecessary for running microbenchmarks
and conducting energy measurements. The classic shunt resistor circuit was chosen
as the basis for the Energyboard prototype. Another measurement platform, based
on the automated measurement circuit, is being developed further at Ulm Univer-
sity. A survey concerning low-energy processors was also conducted to find suitable
measurement targets. A low-energy Cortex-M3 based microcontroller targeted at
automotive embedded systems was selected for this thesis project.
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