
Forschungsberichte aus dem
Institut für Nachrichtentechnik des
Karlsruher Instituts für Technologie

Band 26

Stefan Nagel

Development for
Software Defined Radios

Portable Waveform

CELCEL

Copyright: Institut für Nachrichtentechnik (CEL)
Karlsruher Institut für Technologie (KIT)
2011

Druck: Frick Digitaldruck
Brühlstraße 6
86381 Krumbach

ISSN: 1433-3821

Forschungsberichte aus dem Institut für Nachrichtentechnik
des Karlsruher Instituts für Technologie

Herausgeber: Prof. Dr. rer. nat. Friedrich Jondral

Band 1 Marcel Kohl
Simulationsmodelle für die Bewertung von
Satellitenübertragungsstrecken im
20/30 GHz Bereich

Band 2 Christoph Delfs
Zeit-Frequenz-Signalanalyse: Lineare und
quadratische Verfahren sowie vergleichende
Untersuchungen zur Klassifikation von Klaviertönen

Band 3 Gunnar Wetzker
Maximum-Likelihood Akquisition von Direct
Sequence Spread-Spectrum Signalen

Band 4 Anne Wiesler
Parametergesteuertes Software Radio
für Mobilfunksysteme

Band 5 Karl Lütjen
Systeme und Verfahren für strukturelle
Musteranalysen mit Produktionsnetzen

Band 6 Ralf Machauer
Multicode-Detektion im UMTS

Band 7 Gunther M. A. Sessler
Schnell konvergierender Polynomial Expansion
Multiuser Detektor mit niedriger Komplexität

Band 8 Henrik Schober
Breitbandige OFDM Funkübertragung bei
hohen Teilnehmergeschwindigkeiten

Band 9 Arnd-Ragnar Rhiemeier
Modulares Software Defined Radio

Band 10 Mustafa Mengüç Öner
Air Interface Identification for
Software Radio Systems

iii

Forschungsberichte aus dem Institut für Nachrichtentechnik
des Karlsruher Instituts für Technologie

Herausgeber: Prof. Dr. rer. nat. Friedrich Jondral

Band 11 Fatih Çapar
Dynamische Spektrumverwaltung und
elektronische Echtzeitvermarktung von
Funkspektren in Hotspotnetzen

Band 12 Ihan Martoyo
Frequency Domain Equalization in CDMA Detection

Band 13 Timo Weiß
OFDM-basiertes Spectrum Pooling

Band 14 Wojciech Kuropatwiński-Kaiser
MIMO-Demonstrator basierend
auf GSM-Komponenten

Band 15 Piotr Rykaczewski
Quadraturempfänger für Software Defined Radios:
Kompensation von Gleichlauffehlern

Band 16 Michael Eisenacher
Optimierung von Ultra-Wideband-Signalen (UWB)

Band 17 Clemens Klöck
Auction-based Medium Access Control

Band 18 Martin Henkel
Architektur eines DRM-Empfängers
und Basisbandalgorithmen zur Frequenzakquisition
und Kanalschätzung

Band 19 Stefan Edinger
Mehrträgerverfahren mit dynamisch-adaptiver
Modulation zur unterbrechungsfreien
Datenübertragung in Störfällen

Band 20 Volker Blaschke
Multiband Cognitive Radio-Systeme

iv

Forschungsberichte aus dem Institut für Nachrichtentechnik
des Karlsruher Instituts für Technologie

Herausgeber: Prof. Dr. rer. nat. Friedrich Jondral

Band 21 Ulrich Berthold
Dynamic Spectrum Access using OFDM-based
Overlay Systems

Band 22 Sinja Brandes
Suppression of Mutual Interference in
OFDM-based Overlay Systems

Band 23 Christian Körner
Cognitive Radio – Kanalsegmentierung und
Schätzung von Periodizitäten

Band 24 Tobias Renk
Cooperative Communications: Network Design and
Incremental Relaying

Band 25 Dennis Burgkhardt
Dynamische Reallokation von spektralen Ressourcen
in einem hierarchischen Auktionssystem

Band 26 Stefan Nagel
Portable Waveform Development for
Software Defined Radios

v

Vorwort des Herausgebers

Software Defined Radios (SDRs) werden inzwischen seit zwei Jahrzehn-
ten intensiv untersucht. Dabei stand zunächst die Frage im Vordergrund,
wie ein Funkgerät entwickelt werden kann, das mehrere verschiedene
Standards unterstützt. Danach wurden in weitergehenden Untersuchun-
gen Verfahren zum Software-Update, auch durch Funkübertragung,
implementiert. Dazu gehörten auch Methoden zum Nachweis der Kor-
rektheit der übertragenen Software. Breitflächig durchgesetzt haben sich
die SDR Technologien bisher im Wesentlichen in Basisstationsgeräten.
Mobile Endgeräte existieren vor allen Dingen als Multiband- (GSM 900,
1800, 1900) und Multistandard- (GSM, UMTS) Transceiver.

Eine weitere wesentliche Eigenschaft, durch die sich SDRs auszeichnen
können, wurde bisher zwar in der Literatur breit diskutiert, experi-
mentell jedoch, wohl wegen der dazu notwendigen Hardware, nicht
angegangen. Es handelt sich um die Portabilität von Wellenformen1

von einer Hardwareplattform auf eine andere. Durch das Aufkommen
finanzierbarer Plattformen wie der Universal Software Radio Periph-
eral (USRP) von Ettus Research oder der Small Form Factor Software
Defined Radio Development Platform (SFF SDR DP) von Lyrtech wird
eine experimentelle Untersuchung der Portabilität von Wellenformen
durchführbar. Dabei treten Fragen nach einer Entwicklungsstrategie für
die SDR Software unter Berücksichtigung der Portabilität sowie nach
den Kosten, die eine Portierung verursacht, in den Vordergrund. Um
hierfür Antworten finden zu können, müssen, neben einem profunden
Wissen über die beteiligten SDR Plattformen, Kenntnisse über Wellen-
formen bzw. Standards vorliegen. Dazu kommt die Beherrschung der
notwendigen Hilfsmittel wie Programmiersprachen von MatLab über
Python und C bis hin zu VHDL, Verilog und Assembler sowie der Um-
gang mit Messmitteln wie Signalgeneratoren und -analysatoren, die

1Die Begriffe Standard und Wellenform werden oft als synonym angesehen. Allerdings
umfassen Wellenformen, im Gegensatz zu Standards, häufig neben der Definition einer
Luftschnittstelle auch Eigenschaften des Empfängers.

vii

für den Nachweis erfolgreicher Arbeit, der die Interoperabilität zwis-
chen auf verschiedenen Hardwareplattformen basierenden Funkgeräten
umfasst, gebraucht werden.

Auf der Basis des am KIT Institut für Nachrichtentechnik (Communica-
tions Engineering Lab, CEL) eingerichteten Funklabors hat Stefan Nagel
die Portabilität verschiedener Wellenformen zwischen den beiden oben
genannten Hardwareplattformen USRP und SFF SDR DP untersucht.
Mit der Dissertation Portable Waveform Development for Software Defined
Radios legt er die wesentlichen Ergebnisse seiner Arbeit vor.

Die Arbeit trägt insofern nachhaltig zum Fortschritt von Wissenschaft
und Technik bei, als hier erstmalig, basierend auf der Model Driven
Architecture (MDA) der Object Management Group (OMG), die Soft-
ware für die Signalverarbeitung verschiedener Funkübertragungsstan-
dards entwickelt, implementiert und von einer Plattform auf eine andere
portiert wurde.

Karlsruhe, im Mai 2011
Friedrich Jondral

viii

Portable Waveform Development
for Software Defined Radios

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der Fakultät für

Elektrotechnik und Informationstechnik

des Karlsruher Instituts für Technologie

genehmigte

DISSERTATION

von

Dipl.-Ing. Stefan Werner Nagel

geb. in

Sinsheim

Tag der mündlichen Prüfung: 26. Mai 2011
Hauptreferent: Prof. Dr. rer. nat. Friedrich K. Jondral
Korreferent: Prof. Jeffrey H. Reed Ph.D.
Korreferent: Prof. Dr.-Ing. Robert Weigel

Zusammenfassung

Der Grundgedanke bei Software Defined Radios besteht darin, Funkstan-
dards in Software auf rekonfigurierbaren Prozessoren zu verarbeiten.
Dieses Konzept für neue Funkgeräte existiert bereits seit mehreren
Jahrzehnten. Allerdings ist es erst durch die rasante Entwicklung auf
dem Markt der Prozessoren der letzten Jahre möglich, SDR-Plattformen
kommerziell zu erwerben und eigene Wellenformen zu implementieren.
Dabei ergibt sich das Problem, dass Wellenformen, die auf der eige-
nen Plattform lauffähig sind, zu anderen Plattform nicht zwangsläufig
kompatibel sind. Dieses Problem tritt auch bei einer möglichen Platt-
formerneuerung auf. Die Wellenformen, die für eine alte Plattform
entwickelt wurden, müssen auf eine neue Plattform portiert werden.
Dabei stellt sich zwangsläufig die Frage: ,,Wie können Wellenformen
entwickelt werden, die auf beliebigen Plattformen lauffähig sind?”

Ein Erfolg versprechender Ansatz ist die Entwicklung vonWellenformen
nach der Model Driven Architecture. Diese beschreibt einen Entwick-
lungsprozess, der sich von sehr generischen, plattformunabhängigen
Modellierungen der Funktionalität bis zum ausführbaren Binärcode er-
streckt. In dieser Arbeit wird vorgestellt, wie dieser Prozess auf die
portable Entwicklung von Wellenformen angepasst werden kann. Die
automatisierte Erzeugung von Quellcode spielt hierbei eine wichtige
Rolle. Daher werden Laufzeit- und Speichermessungen vorgestellt, die
generierten Code mit nicht optimiertem und optimiertem Code ver-
gleichen und damit einen Einblick in die Effizienz von automatisch
generiertem Code erlauben.

Das Ettus USRP und das Lyrtech Small Form Factor SDR gehören zu den
kommerziell erfolgreichsten SDR-Plattformen. Daher werden in dieser
Arbeit ausführlich ihr Aufbau sowie ihre Fähigkeiten und Limitierungen
beschrieben. Weiterhin wird aufgezeit, wie diese Plattformen in den be-
reits vorgestellten Entwicklungsprozess integriert werden können. Dazu
gehören sowohl die Umsetzung der programmierbaren Schnittstellen

xi

und der Bussysteme in die Systemmodellierung als auch die Integration
der betreffenden Prozessoren in die Codegenerierung.

Um zu demonstrieren, dass der vorgestellte Entwicklungsprozess auch
praktisch anwendbar ist, wurde die Wellenform TETRA für eine Platt-
form entwickelt und auf eine zweite Plattform portiert. Die Umsetzung
der dabei zu realisierenden Modelle werden in dieser Arbeit genauso
vorgestellt wie die Verarbeitungsdauer der Algorithmen auf den betref-
fenden Prozessoren. Um zu gewährleisten, dass die Wellenform stan-
dardkonform umgesetzt wurde, kamen Messgeräte zum Einsatz, die
sowohl Sende- als auch Empfangspfad gegen die TETRA-Spezifikation
getestet haben. Neben TETRA wurden zwei weitere Wellenformen ent-
wickelt und portiert. Die Ergebnisse und Herausforderungen all dieser
Entwicklungsvorgänge werden in dieser Arbeit präsentiert.

xii

Abstract

The basic idea of Software Defined Radio is the implementation of ra-
dio communication standards with software on reconfigurable proces-
sors. This concept for new radio devices was already proposed several
decades ago. However, through the rapid development of processors
in recent years, it is possible to acquire commercial SDR platforms and
build own waveforms. Unfortunately, waveforms that are developed
for one platform are not necessarily compatible to other platforms. This
problem also occurs with a possible hardware upgrade. The waveforms
that were developed for an old platform must be ported to a new plat-
form. Therefore, this work focuses on the question: “How can we build
waveforms that can be moved from one platform to another?”

A promising approach is the development of waveforms based on the
Model Driven Architecture. It describes a development process that
extends from a very generic, platform-independent functionality to the
executable binary code. This work presents the adaption of this process
to the development of portable waveforms. In this process, the auto-
mated generation of source code plays a decisive role. Therefore, mea-
surements of processing time and memory consumption are presented
to compare the generated code with non-optimized and optimized code
and allow insights into the efficiency of automatically generated code.

The USRP from Ettus and the Small Form Factor SDR from Lyrtech are
among the most used commercially SDR platforms. Therefore, their
structure as well as their capabilities and limitations are presented in
this work. It is furthermore shown, how these platforms can be inte-
grated into the development flow. This includes the implementation of
programmable interfaces and bus systems as well as the integration of
the processors in the code generation process.

To demonstrate that the used development flow is also applicable in
practice, a proof of concept is given with the development and port
of a TETRA waveform from one platform to another. Therefore, the

xiii

realizations of the waveform for both platforms are presented as well
as the processing times for the algorithms on the different processors.
To demonstrate the standard compliance, the waveform was tested
with measurement equipment against the TETRA air specification. In
addition to TETRA, two other waveforms were developed and ported.
This work presents the results and challenges of all these waveform
developments and ports.

xiv

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Developments in wireless communications 1
1.1.2 History of digital processing technology 2
1.1.3 Evolution of Software Defined Radio 2
1.1.4 Problem of portability 4

1.2 Outline of Work . 4

2 Waveform Development 6
2.1 Introduction . 6
2.2 Overview of Waveform Development 6

2.2.1 Platform Specific Development 6
2.2.2 GNU Radio . 11
2.2.3 Software Communication Architecture 14

2.3 Model-Based Development 17
2.3.1 OMG’s Model Driven Architecture 17
2.3.2 A new interpretation of the MDA 18
2.3.3 Model-Based Design with Simulink 20

2.4 Overhead of Code Generation 26
2.4.1 Code Generation for GPPs 26
2.4.2 Code Generation for DSPs 30
2.4.3 Code Generation for FPGAs 32

3 SDR Platforms 36
3.1 SDR Platforms in General 36

3.1.1 RF Front Ends in SDR 36
3.1.2 Digital Signal Processing in SDR 38

3.2 Universal Software Radio Peripheral 40
3.2.1 The USRP Motherboard 41
3.2.2 The USRP Daughter Boards 42
3.2.3 Platform Specific Constraints 45
3.2.4 Integration in the design flow 48

xv

Contents

3.3 Small Form Factor SDR . 54
3.3.1 Digital Processing Module (DPM) 54
3.3.2 Data Conversion Module (DCM) 56
3.3.3 Radio Frequency Module 59
3.3.4 Platform Specific Constraints 64
3.3.5 Integration in the design flow 65

4 Proof of Concept: Portability of TETRA 70
4.1 Overview of the TETRA standard 70
4.2 Computational Independent Model 72

4.2.1 Media Access Control 72
4.2.2 Physical Layer . 76

4.3 Platform Independent Model 80
4.3.1 Transmitter . 81
4.3.2 Channel . 85
4.3.3 Time Synchronization in TETRA 86
4.3.4 Frequency Synchronization 88
4.3.5 Frame Synchronization 90
4.3.6 MAC receiver . 90

4.4 Platform Specific Model for the USRP 92
4.4.1 Separation on different processing elements . . . 92
4.4.2 Resampling . 93
4.4.3 Timing Synchronization 97
4.4.4 Frequency Synchronization 98
4.4.5 MAC receiver . 101

4.5 Benchmarks for the waveform on the GPP 102
4.6 Platform Specific Model for the SFF SDR 108

4.6.1 Separation on different Processing Units 108
4.6.2 Sample Rate Conversion 109
4.6.3 Timing error synchronization 110
4.6.4 PSM on the DSP . 114

4.7 Benchmarks for the waveform on the DSP 115
4.8 Interoperability Tests . 120

5 Portability aspects of further waveform implementations 122
5.1 Family Radio Service . 122

5.1.1 Overview of the standard 122
5.1.2 Digital signal approximation for the portability . 122
5.1.3 Results . 123

xvi

Contents

5.2 Wireless LAN in the version IEEE 802.11g 123
5.2.1 Overview of the standard 123
5.2.2 Challenges for the portability of the waveform . . 124
5.2.3 Results . 124

6 Conclusions 128
6.1 Contributions . 128
6.2 Outlook . 129

A Source Code 131
A.1 Source Code of the unoptimized FIR filter 131
A.2 Source Code of the unoptimized FFT 132
A.3 Source Code of the optimized RCPC for the TCH/4.8 . . 133
A.4 Source Code of the optimized scrambling 134

Acronyms 135

Bibliography 140

Supervised Theses 149

Index 150

Sponsorship 152

Curriculum Vitae 153

xvii

1 Introduction

1.1 Motivation

1.1.1 Developments in wireless communications

Two fields in electrical engineering formed the evolution of Software
Defined Radios: the history of wireless communication principles and
the development of digital processing technologies.

The wireless transmission of information started at the end of the 19th
century. In 1886, Heinrich Hertz was the first who generated and de-
tected electromagnetic radiation, with which he verified Maxwell’s the-
ory of the existence of electromagnetic waves. Nicola Tesla gave a
public demonstration of wireless radio communications in 1893 and ten
years later Marconi succeeded in the first wireless transmission over
the Atlantic. Even if these milestones in the history of wireless com-
munications took place more than hundred years ago, the principles of
the transmission of amplitude modulated (AM) analog signals are still
existent today: Most broadcast radio receivers provide an AM tuner for
the radio frequency (RF) band and the signal for analog broadcast televi-
sion is also amplitude modulated. In 1933, Edwin Armstrong patented
a method to integrate the information in the frequency component of
an electromagnetic wave instead in the amplitude. Hence, radios with
Frequency Modulation (FM) occurred and are still used in the Very High
Frequency (VHF) band for audio broadcast.

The fact that old communication schemes are still used today is also true
for digital communications. The Global System for Mobile Communica-
tions (GSM) was created 1981 and thirty years later it has a market share
of 80.4% for cellular mobile networks [1]. With the standards that were
released in the last two decades like the 802.11 family, Universal Mobile
Telecommunications System (UMTS) or Long Term Evolution (LTE), a

1

1 Introduction

normal user faces plenty of complete different wireless communication
schemes. It is a fact that more and more communication schemes emerge
while the older ones still must be maintained. From a normal user per-
spective this is not problematic due to the fact that the communication
devices are cheap and can be replaced immediately.

From a military perspective this is a huge challenge. The number of
radio communication standards in this area are in the range of several
hundreds and a legacy radio device supports only a few of them. These
devices should additionally operate over decades. New devices should
not only be interoperable with the older devices they should also be
interoperable with communication schemes from other countries for
international operations. The present situation with the need for a
radio device can be summarized as follows: There are plenty of radio
communication standards and the optimum would be a device that
supports present standards and also communication schemes for the
future.

1.1.2 History of digital processing technology

The development of programmable devices for data processing started
in 1971 with the Intel 4004. This was the first single chip microprocessor
on the market with an integrated Central Processing Unit (CPU), a
memory unit, as well as input and output control ports [2]. Eleven years
later the first commercial microprocessor with a special architecture
for multiplying and accumulating was released [3]. With these Digital
Signal Processors (DSPs) a new branch of processors intended for digital
processing purposes evolved. At the same time, the company Xilinx was
founded and developed the first Field Programmable Gate Array (FPGA)
for the commercial market [4]. These inventions and the development of
the Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter
(DAC) technology formed the basis of processing radio signals with
software.

1.1.3 Evolution of Software Defined Radio

With the development in processing technology in the last thirty years,
the architecture of radio devices changed from application specific in-

2

1.1 Motivation

tegrated circuits to processors and reconfigurable logic. With these
programmable devices, the radio standards could be realized by soft-
ware and could be changed according to the user’s need. Although
many people contributed in this idea like Ulrich Rohde in 1984 [5], Joe
Mitola coined the term “Software Defined Radio” in 1991 [6].

At the same time, the first Software Defined Radio (SDR) project was
initiated by the U.S. military to produce an SDR that could be tuned to
frequencies between 2MHz and 2GHz and provide furthermore interop-
erability between several different standards of the armed forces. Today,
the principle of SDR is present in many fields of wireless communica-
tion. In the military environment, SDR projects are launched around the
world. In the U.S. military, the project Joint Tactical Radio System (JTRS)
should produce devices that are interoperable to many existing military
and civilian communication standards and should successively replace
existing legacy radios. The German equivalent: “Streitkräftegemeinsame
Verbundfähige Funkgeräteausstattung (SVFuA)” is a software defined
joint radio system that works in a frequency range between 3MHz and
3GHz and should also replace existing legacy devices in the German
army.

The advantage of an SDR is the reconfigurability and the interoperability
to old radio communication standards. Legacy radios can still be used
and the SDR has even the possibility to work as a gateway between
existent and new wireless standards [7]. These advantages were also
recognized by various European agencies of public and governmental
security, which face the problem to replace their old analog commu-
nication structure with a new digital system. The European project
“WIreless INTeroperability for SECurity (WINTSEC)” proposed SDR as
the key enabler for this step [8]. But not only the replacement of legacy
to new devices can be accomplished. An SDR can also enable the wire-
less communication among rescue teams, firefighters and police. It can
furthermore establish a connection with rescue teams across a country’s
borders.

With the company Vanu Inc., SDRs are also existent on the commercial
market for mobile communication. Vanu Inc. was the first company
that developed base stations with General Purpose Processors (GPPs).
The wireless standards are written in high level languages and can be
configured and maintained online [9].

3

1 Introduction

1.1.4 Problem of portability

The difference between a legacy radio device and a Software Defined
Radio is in principle the distribution of the SDR in a waveform part
and in a platform part. It is therefore named: “The waveform/platform
paradigm”. The platform consists of the hardware with various process-
ing elements, memory and user interfaces. However, it is not only the
hardware that comprises a platform, it is also the software connected to it
like the operating system, the firmware and Application Programmable
Interfaces (APIs). The waveform is an application that is supported by
the SDR platform and configures it in accordance to the dedicated radio
communication standard. Therefore, the waveform enables the platform
to be part of the related radio communication system. The waveform
developer is able to build multiple waveforms for his platform.

In the past years several new SDR platforms were released and each
waveform developer build applications for his own system. The question
evolved: “How can be assured that waveforms can be moved from one
platform to another?” This portability problem is not only valid for
the exchange of waveforms. It is also existent when SDR platforms are
modernized and upgraded with new processors. How can be assured
that waveforms running on the old platform can be ported to the new
platform with a minimum of effort?

This work focuses on these questions. It proposes a development flow
and shows that waveforms can be ported. A proof of concept is given
with an exemplary waveform and two platforms. It additionally investi-
gates the overhead of automatically generated code, which is a key term
for waveform portability.

1.2 Outline of Work

Chapter 2 gives an overview of existing waveform development flows
and compares them with respect to portability issues. The Model-Based
Design is introduced for baseband processing and measurements are
presented about the overhead of automatically generated codes.

In this work about portability of SDR waveforms also an overview
of SDR platforms are given in chapter 3, concerning a general and a

4

1.2 Outline of Work

detailed description of two special platforms that are used for waveform
porting. These are the USRP and the SFF SDR. Furthermore, chapter
3 describes how the model-based waveform design was integrated in
these platforms.

With the knowledge of the waveform development flow and the SDR
platforms, the next step is the design and the port of a real world wave-
form. For this proof of concept, the professional mobile radio waveform
for public and governmental security systems was chosen, known as
TETRA. Chapter 4 therefore gives an overview of TETRA and describes
the development of the waveform according to the design flow, intro-
duced in chapter 2. Furthermore, the port of this waveform from one
platform to another is described. It presents results and benchmarks of
the generated code for TETRA on both platforms and introduce the tests
for evaluating the real time waveform with measurement equipment.

The detailed description of further ports that were realized is not nec-
essary for this work. Therefore, chapter 5 gives an overview of the
challenges and results from other waveform ports.

Chapter 6 finally concludes the work and gives an outlook of waveform
development in the future.

5

2 Waveform Development

2.1 Introduction

The hardware for radio devices changed dramatically in the last decades
and so did the development of waveforms. In former times, wave-
form development consisted mainly of designing electronic circuits for
specific waveforms. Nowadays, waveform development means pro-
gramming on different processing units like GPPs, DSPs or FPGAs. In
addition the way of programming changed from a platform specific to
a platform independent development. These approaches deal with a
trade-off between efficient platform specific code on the one hand and
a portable platform independent code on the other. This chapter gives
an overview of the existing and common ways for waveform develop-
ment and describes in more detail a new approach of the model-based
waveform development under the aspect of portability. It furthermore
gives a closer look into the performance overhead of generated code
by measuring the processing time as well as the logic resources and
compares it with hand-written code.

2.2 Overview of Waveform Development

2.2.1 Platform Specific Development

Implementing applications for a specific SDR platform is the traditional
way of waveform development. The code is optimized for the under-
lying processing element and the platform specific tools are used to
maximize performance in sense of speed, size and power. Although this
is a high-performance approach, existing optimized codes can hardly
be ported to other processing elements. If you additionally think of

6

2.2 Overview of Waveform Development

porting the code from GPP to FPGA this means a complete rewriting of
the algorithms.

Code Development on Processors

For processors, a lot of programming languages exist, but only a few are
used for digital signal processing and embedded systems. This is due to
the performance constraints in power, speed and code size. Benchmarks
show that C and C++ belong to the most powerful languages in that
field [10], [11]. However, it has to be mentioned that benchmarks for
dedicated programming languages have only limited significance. This
is due to the fact that benchmarks for processing times or cycles measure
not the language itself but the application behind. Nevertheless, C and
C++ are, according to the results from [10] and [11], the choices of the
DSP industry. Figure 2.1 shows the DSP vendor market shares in 2006.
It is remarkable that development environments from these vendors
only support C based and assembly languages. According to this result,
this work focuses only on C, C++ and optimized libraries written in
Assembler.

Furthermore, a still recent topic is the choice between the languages
C, C++ and assembly. The big advantage and the main reason why
assembly languages are still used is the direct mapping from language
to processor instruction. This mapping gives the programmer any con-
trol to optimize the code in the sense of speed and size. Even if the
performance constraints are relaxed, small execution times lead to a
decrease of the clock frequency and to a lower power consumption. Nev-
ertheless, high-level languages like C became more and more popular in
embedded systems due to three main reasons [13]:

• better portability between hardware platforms

• protection of the investment in program code

• reduced development time

In modern systems, there has to be a trade-off between high-level and
low-level programming languages. On the one hand the application
should be executed as fast as possible while on the other hand the shrink-
ing time to market calls for portable code. Therefore, almost any vendor
for integrated development environments provides user guides and

7

2 Waveform Development

62%
Texas Instruments

12%
Freescale

7%
Agere

6%
Analog Devices

13%
Others

Figure 2.1: DSP vendor market shares in 2006 [12]

tutorials for C optimizations ([14], [15] or [16]). They also claim that
well written, efficient and platform independent C code is appropriate
for most applications due to platform optimized compilers. The code
section represented in listing 2.1 calculates the dot product for two vari-
ables in simple C. Listing 2.2 shows the assembly code that is produced
by the compiler without optimizations. By enabling the compiler opti-
mizations, the code is reduced to only a few lines, shown in listing 2.3.
Due to the fact that the code is written clearly, the compiler is able to
optimize it and to use the platform specific architecture. It can calculate
two Multiply and Accumulate (MAc) operations and simultaneously
load two data elements in one single cycle. This example was written
for Analog Devices Blackfin DSP and compiled with VisualDSP++.

Listing 2.1: Example code in C
1 for (i=0; i< 150; i++){
2 dotp += b[i] * a[i];
3 sqr += b[i] * b[i];
4 }

8

2.2 Overview of Waveform Development

Listing 2.2: Unoptimized assembler code
1 [FP+ -8] = R7;
2 ._ P1L1:
3 R3 = [FP+ -8];
4 R2 = 150 (X);
5 CC = R3 < R2;
6 IF !CC JUMP ._P1L3;
7 R3 <<= 1;
8 P2 = R3;
9 P0 = [FP+ 8];
10 P0 = P0 + P2;
11 R1 = W[P0+ 0] (X);
12 R0 = [FP+ -8];
13 R0 <<= 1;
14 P1 = R0;
15 P2 = [FP+ 12];
16 P2 = P2 + P1;
17 R7 = W[P2+ 0] (X);
18 R7 *= R1;
19 R1 = [FP+ -4];
20 R0 = R1 + R7;
21 [FP+ -4] = R0;

22 R3 = [FP+ -8];
23 R3 <<= 1;
24 P0 = R3;
25 P1 = [FP+ 12];
26 P1 = P1 + P0;
27 R1 = W[P1+ 0] (X);
28 R7 = [FP+ -8];
29 R7 <<= 1;
30 P2 = R7;
31 P1 = [FP+ 12];
32 P1 = P1 + P2;
33 R3 = W[P1+ 0] (X);
34 R3 *= R1;
35 R1 = [FP+ 16];
36 R7 = R1 + R3;
37 [FP+ 16] = R7;
38 R3 = [FP+ -8];
39 R3 += 1;
40 [FP+ -8] = R3;
41 JUMP ._P1L1;

Listing 2.3: Optimized assembler code
1 LSETUP (._P1L2 , ._P1L3-8) LC0=P1;
2 ._P1L2:
3 A1+= R0.H*R0.H, A0+= R0.L*R0.H (IS)
4 || R0.L = W[I1++]
5 || R0.H = W[I0++];
6

7 ._P1L3:

There are several other ways of optimizing C code beside the optimizing
abilities of the compiler. However, [17] claims that even an optimum
assembler code is merely 10% faster than a well written C code. In
addition the rising speed of processors made it possible to pass by the
assembly language in most cases. If the code is still too slow, despite
of being well written, the positive impact of the Pareto Principle can be
applied. It says that small code portions (10% - 20%) are consuming

9

2 Waveform Development

most (80% - 90%) of the system resources [18]. The performance crit-
ical code segments can be identified easily and tuned with optimized
assembler code. This can be done for example by applying vectorization
or parallelization of the underlying processor. However, these code
segments can hardly be ported to other platforms.

A similar discussion about the choice between C and assembly language
can be observed in the choice between C and C++. C++ is often seen as
slow, inefficient and too large for embedded systems. However, these
are assumptions that must not be true, due to the fact that obviously
C++ is just a superset of the C language. This means that implementing
in C and compiling with a C++ compiler should not produce any over-
head. Unfortunately that is not really true. In [13] this overhead was
investigated by compiling C benchmark programs with the TASKING
DSP563xx C and C++ compilers and comparing the speed and size. The
result was that the execution speed decreased by no more than 1.6%
while the code size growed by no more than 6.8%. C++ features are
not consuming much more space than elements in C do if they are well
designed. The key issue for writing efficient high-level code (indepen-
dent of C or C++) is that the developer is aware of the functionality at
machine code level and the work of the compiler.

Code Development on FPGAs

An FPGA has to be programmed different from amicroprocessor or DSP,
due to its underlying hardware structure (see section 3.1.2). While pro-
cessors are implemented in assembly language, which can be mapped to
the binary machine code instructions, the FPGA and its underlying logic
is represented by an Hardware Description Language (HDL). The HDL
is a formal description of the digital logic with reference to the timing
behavior. In the beginnings of HDLs only representations for either the
logical behavior or the structure existed. This changed in the 1980s when
two new languages appeared, representing the logical and structural
behavior: Verilog and VHDL. These languages are still dominating the
FPGA world, but their distribution is locally different. While Verilog
is the most popular HDL at the US west coast and Asia, VHDL is the
preferred language in Europe and the US east coast [19]. There are vari-
ous discussions about the advantages and disadvantages of these two
HDLs and several papers compare them based on example applications

10

2.2 Overview of Waveform Development

[20], [21]. The choice between Verilog and VHDL depends lastly not
on technical capabilities but on personal references, tool capability and
existing code to reuse.

Portability with platform specific development

Platform specific waveform development is, as indicated by the name,
dependent on the underlying processing element. C and C++ code
can be ported from one GPP to another without a major decrease in
performance. But this is only true under the condition that the operating
systems are not changing. The porting of DSP code depends on the
underlying architecture. The port from a floating point processor to
a fixed point processor forces the compiler to translate every floating
point instruction into fixed point instructions with exception handling
in case of overflows. Furthermore, a program with processor specific
intrinsics can not be ported to a new platform. The sections of the code
with the platform specific commands have to be rewritten. Although C
and C++ are high level programming languages, there is no assurance
that they can be ported without modifications or loss in performance.
This is even more dramatic when porting HDL. The choice of language
is predetermined by the platform developer and provider of the board
support kit. Therefore, a specific language has to be used and code can
not be ported if it is available in the wrong language.

2.2.2 GNU Radio

GNU Radio is an open source project for building waveforms for soft-
ware defined radios [22]. The idea is the interpretation of a waveform
as multiple components that are composed together. The components
with an input and output port build the signal processing blocks, while
blocks with only input or output ports can be named sinks or sources.
Therefore, the GNU Radio library supports hundreds of components
written in C++. The connection between blocks and the creation of
waveforms is accomplished by building a flow graph in Python that
holds the components as primitives. The code example 2.4 works as
an “Hello World” tutorial for GNU Radio. It generates two sine waves
with a frequency of 350Hz and 400Hz, adds them and passes the output
to the sound card. In lines 13 to 16 the components are defined and

11

2 Waveform Development

configured. The simplicity of GNU Radio can be seen on line 18 and 19.
The components can be connected with the instruction connect(). The
whole scheduling and necessary inter-process communication is done
by GNU Radio itself.

Listing 2.4: Dial tone example in GNU Radio
1 #!/usr/bin/env python
2

3 from gnuradio import gr
4 from gnuradio import audio
5

6 class my_top_block(gr.top_block):
7 def __init__(self):
8 gr.top_block.__init__(self)
9

10 sample_rate = 32000
11 ampl = 0.1
12

13 src0 = gr.sig_source_f(sample_rate, gr.
GR_SIN_WAVE, 350, ampl)

14 src1 = gr.sig_source_f(sample_rate, gr.
GR_SIN_WAVE, 440, ampl)

15 add = gr.add_ff()
16 dst = audio.sink (sample_rate, "")
17

18 self.connect (src0, (add,0))
19 self.connect (src1, (add,1))
20 self.connect (add, dst)
21

22 if __name__ == ’__main__’:
23 try:
24 my_top_block().run()
25 except KeyboardInterrupt:
26 pass

Despite the comprehensive signal processing library, GNU Radio was
only used by few developers through the beginning years. In 2004
Ettus Research LLC released the first version of the USRP as an RF front
end that can be connected directly with GNU Radio. Therefore, the
community of developers for GNU Radio increased. The next step in the

12

2.2 Overview of Waveform Development

evolution of GNU Radio was the development of a tool, named as GNU
Radio Companion (GRC), which graphically connects and configures
components to a flow graph. The equivalent example from listing 2.4 is
shown in the GRC environment in figure 2.2. The graphical flow graph
can automatically generate the Python code where lower programming
experience for SDR developers is demanded.

Figure 2.2: Dial tone example in the GNU Radio Companion

GNU Radio composes the waveform with a flow graph and allows the
developer to build waveforms that are independent of the underlying
hardware. Nevertheless they are not independent of the underlying
operating system. In simple terms GNU Radio waveforms are portable
between processors that run Linux operating systems. It has to be
mentioned that ports of GNU Radio were only successful from a GPP
to another GPP. Even if there have been ports to various hardware
platforms like Sony’s Playstation 3 [23] and the BeagleBoard [24], it has
to be mentioned that GNU Radio only ran on the GPP part of these multi
core platforms, neither on DSPs nor on FPGAs.

13

2 Waveform Development

2.2.3 Software Communication Architecture

History of the Software Communication Architecture

Waveform development and portability aspects are also enforced by U.S.
military. It maintains hundreds of different legacy radios, which are nei-
ther upgradeable nor compatible to each other. In parallel the processor
capabilities increased in the last two decades according to Moore’s Law
[25], [26]. This claims that the number of transistors that can be placed
on the same area is doubled every other year. The development in chip
technology and in the DSP capability resulted in a shift of the borders
between analog and digital domain of a radio towards the antenna as
mentioned in section 1.1. Therefore, the JTRS Joint Program Office (JPO)
was founded in 1997 to develop a family of the next generation of re-
configurable software-based tactical radios. This system should increase
the flexibility and interoperability among the legacy radio systems to
reduce the costs for maintenance and to supply and provide the ability
to upgrade not only hardware parts but also the software of the radio.
The first milestone in this effort was the definition of a common software
architecture for these radios: The Software Communications Architec-
ture (SCA). To accomplish the JTRS project goals, the SCA was intended
to support portability between SCA compliant implementations, and to
use already established frameworks and architectures from the industry.
This should result in minimizing the development time due to reuse of
waveform components.

Operating Environment

The Operating Environment (OE) builds the interface between a wave-
form component and the radio [27]. One part of it is the operating system
of the radio. To be independent of the underlying hardware and the
operating system, the OE provides several interfaces for the waveform
components to communicate with its environment: These are the inter-
faces provided by the Core Framework and CORBA and additionally
the Application Environment Profile (AEP). The access points for the
application to the operating system are shown in figure 2.3.

14

2.2 Overview of Waveform Development

Waveform Components/Application Resources

Operating System

Platform/Hardware

AEP CF Interfaces

cos()

gets()

CORBA APIs

Core Framework Control,

Services, Devices,

and File access

ORB and

CORBA

Services

Figure 2.3: Operating Environment with the connections to the platform
and the waveform

Core Framework

The Core Framework (CF) provides interfaces to the operating system,
which can be used by the waveform or other applications running on the
OE. The interfaces give access to various services like the installation,
management or configuration of a waveform. Another purpose of the
interfaces is to abstract the underlying hardware. Therefore, four classes
of CF interfaces are specified:

• Base Application Interfaces

• Base Device Interfaces

• Framework Control Interfaces

• Framework Service Interfaces

The base application interfaces provide access to waveform components
like initializing or releasing, configuring or querying the properties of
the different components for testing purposes. The software compo-
nents for access to the hardware resources are called devices, where
the basic device interfaces allow interaction with the physical hardware
devices on the radio. The framework control interfaces provide a radio
wide control of services like installation, deployment or management
while the framework service interfaces supply additional services like
management of file systems.

15

2 Waveform Development

CORBA

The Common Object Request Broker Architecture (CORBA) is an open
specification for mechanisms calling objects from other processes per re-
mote. The specific characteristic of CORBA is, that these objects can run
under different operating systems or on different processor architectures
and that they can even be implemented with a different programming
language. The remote calls can not be distinguished in the implementa-
tion from local calls. This is the main reason of the inclusion of CORBA
in the SCA due to the fact that waveform components should exchange
information without knowledge of the underlying operating systems
and transport mechanisms. Nevertheless, CORBA has also some techni-
cal restrictions. The most important is the complexity and the size of its
APIs, which are quite larger than necessary [28] and therefore not well
suited to an embedded system. To circumvent this, the SCA dictates
the use of minimumCORBA, standardized by the Object Management
Group. MinimumCORBA is a subset of CORBA designed for systems
with limited resources.

Application Environment Profile

The Institute of Electrical and Electronics Engineers (IEEE) and The Open
Group specified APIs between application and operating system under
the name Portable Operating System Interface (POSIX). The SCA [29]
dictates with the AEP a subset of POSIX with 256 APIs. This includes
for example mathematical operations like cos(), sin(), tan() or
string operations like gets(), getchar(). Due to the fact that these
interfaces are standardized, the access from the waveform component to
the underlying operating system, is portable without the use of the CF
or CORBA.

Domain Profile

Beside the aspect of portability, an additional requirement of SCA com-
pliant radios is the reconfigurability. Therefore, the Domain Profile
provides an essential description of the platform and the waveform ap-
plication. The Domain Profile consists of several description files written
in eXtensible Markup Language (XML). These files describe:

16

2.3 Model-Based Development

• the various hardware devices

• the waveform components

• the deployment

• the connections between components

• the properties of components and devices

With this information the SCA-compliant radio is able to deploy a wave-
form, independent of the underlying hardware.

SCA-compliant waveform development

The development of an SCA-compliant waveform requires a good un-
derstanding of the SCA CF. However, there are tools that make it easier
for waveform developers. Beside professional tools like SCARI [30],
Spectra [31] or Component Enabler [32], the Open Source project Ossie
[33] builds a complete SCA framework with code generation. It already
supports interfaces to the USRP and the USRP2 and was ported to envi-
ronments including FPGAs [34] and DSPs [35].

2.3 Model-Based Development

2.3.1 OMG’s Model Driven Architecture

The Object Management Group (OMG) is a non-profit international com-
puter industry consortium for standardizing distributed object-oriented
software systems as well as model-based developments. It created the
development and the standardization of modeling architectures like the
Unified Model Language (UML) as well as middleware solutions like
CORBA, which is described in section 2.2.3. In 2001 OMG adopted the
Model Driven Architecture (MDA), which can be seen as an approach
for the usage of models in software development to provide portabil-
ity, interoperability and reusability [36]. These goals can be achieved
by the concept of separating the functionality of an application from
the capabilities of the underlying platform. The fundamental idea is

17

2 Waveform Development

to initiate an iterative process in developing models of a specific sys-
tem and to extend these models in a last step to an application running
on a platform. Therefore, the MDA suggests to start the development
with a Computational Independent Model (CIM) for the requirements
of the system, but which is independent of the way how the system is
built. The first step of an implementation is the Platform Independent
Model (PIM). This is a model that describes the system but does not
show details of its use of any platform. The first implementation with
platform details is realized in the Platform Specific Model (PSM). As
the name implies, this illustrates how the system uses the underlying
platform to fulfill the functionality and the requirements specified in the
CIM. The step from one model to another is called transformation. The
MDA does not define a specific method for the transformation. However,
it gives examples from all manual transformations up to fully automated
transformations [36].

In contrast to the MDA, the SCA is also defining its waveforms in a plat-
form independent manner but models the platform itself in a Platform
SpecificModel with the Domain Profile. The transformation for this PSM
to executable code running in real-time on the SDR platform should be
done with the Core Framework and CORBA. However, CORBA comes
with overhead in processing time and memory usage and is therefore
not the best choice for the baseband processing. Due to this, the MDA
should be reinterpreted to fit the needs of baseband processing on het-
erogeneous hardware architectures.

2.3.2 A new interpretation of the MDA

The introduced models CIM, PIM, and PSM build the basis of the MDA
and should should be maintained. However, the interpretation should
be more application specific concerning the air interface. The CIM that
should describe the requirements independent of the implementation
is actually the specification of the waveform. While most specifications
for industry waveforms are open to public (e.g. specifications of IEEE
or European Telecommunications Standards Institute (ETSI)), this is not
the case for military waveforms. These waveforms were built for legacy
devices where the baseband data were processed with hardware. The
specifications are not open and in some cases not even existent. This
results in a lot of work for reengineering and creating the CIM when

18

2.3 Model-Based Development

Code

CIM

PIM

PSM

�Functional description

�Specification of the air interface

�Functional simulation

�Without platform specific aspects

�Extended simulation

�Separation in processing units

�Inclusion of platform APIs

�Binary code running on the platform

Figure 2.4: Overview of the models, which are defined by the MDA

the waveform should be supported by an SDR. The transformation to
the PIM can be accomplished by implementing the waveform without
platform specific aspects. Therefore high-level languages can be used,
which support good debug and simulation features. The PIM is a model
for the implementation of the waveform’s functionality. This includes for
example the realization of the synchronization schemes or the design of
the digital filters. The step to the PSM is done by extending the PIMwith
platform specific aspects. These can be infrastructural platform aspects
like the data buses on the system or the configuration of the RF front
ends and ADCs. Further platform specific aspects are processor specific
issues like the adaption of algorithms for fixed-point representations.
The last transformation from the PSM to an executable code is done
automatically with code generation tools like Real Time Workshop or
HDL Coder from the company The Mathworks and processor specific
compilers like Visual C Compiler from Microsoft, Code Composer Studio
Compiler from Texas Instruments (TI) or Intel Parallel Studio. Another
example for this use of the MDA is described in [37] and [38]. Figure 2.4
summarizes the steps from CIM to Code.

19

2 Waveform Development

Figure 2.5: Dial tone example in Simulink

2.3.3 Model-Based Design with Simulink

Simulink [39] is a visual programming language, which allows engineers
to model dynamic systems. It provides hundreds of blocks, which
generate, process and consume data. Furthermore, Simulink supports
extensions to generate code in the languages C, C++, Verilog and VHDL.
It is therefore used in this work for waveform development. This section
should give an overview of the principles of Simulink and its extensions
to code generation.

Simulation

In introductions to programming languages the “Hello World” example
is used very often. However, this does not make sense for a visual
programming language that is used for digital signal processing. A better
example is the “dial tone” example from section 2.2.2. The generation
and processing of two sine waves gives an overview of the necessary
parameters and configurations.

Figure 2.5 shows the dial tone example in a Simulink environment. The
blocks require information about the sample time as well as frequency
and magnitude of both sine waves. This does not differ from the GRC
model described in section 2.2.2. The difference is in the optional han-
dling of the data. While GNU Radio considers the data flow as a stream

20

2.3 Model-Based Development

Sample-based operation

Frame-based operation

time

time

acquire sample

acquire multiple samples

latency

ISR

ISR

Figure 2.6: Comparison of latency and throughput for sample-based and
frame-based processing

without the knowledge of the actual processing, Simulink provides the
opportunity to parameterize the size of vectors in the initialization phase.
This results in new degrees of freedom. While the processing on single
values (sample-based) minimizes latency, the throughput is decreased
due to the Interrupt Service Routine (ISR) after each sample. Working
on multiple values (frame-based) increases the latency and the memory
usage but optimizes the performance with respect to execution time.
Figure 2.6 clarifies this relation.

Code Generation from Simulink to C/C++

Real Time Workshop [40] and Real Time Workshop Embedded Coder
[41] extend Simulink’s functionalities with the ability to generate C and
C++ code for real-time systems. For building executable models, it is not
only necessary to generate the code for the algorithmic function. This
code must also support run time interfaces as well as scheduler and
memory transfer. Therefore, the following steps are executed:

• ModelInitialize: Initializes the code for the run-time interface

21

2 Waveform Development

and the model. This includes allocation of memory and data that
can be calculated prior to the execution of the algorithm.

• ModelOutput: Calls all blocks in the model that have a sample hit
at the current time and produce their output. The output follows a
given simulation time step.

• ModelUpdate: Calls all blocks in the model that have a sample
hit at the current point in time and update their discrete states.

• ModelTerminate: Terminates the program if it is designed to
run for a finite time. It deallocates memory and can write data to a
file.

The pseudo code in listing 2.5 shows how these functions are integrated
in the generated code.

Listing 2.5: Structure of a generated model in pseudo code [40]

1 rtOneStep()
2 {
3 //Check for interrupt overflow
4 //Enable "rt_OneStep" interrupt
5 ModelOutputs(); // Major time step.
6 LogTXY(); // Log time, states and root

outports.
7 ModelUpdate(); // Major time step.
8 }
9

10 main()
11 {
12 ModelInitialize();
13 //including installation of rtOneStep as an
14 //interrupt service routine for a real-time clock
15

16 while(time < final time){
17 rt_OneStep();
18 //Background task
19 }
20 ModelTerminate();
21 //Mask interrupts (Disable rt_OneStep() from

executing.)

22

2.3 Model-Based Development

22 //Complete any background tasks.
23 //Shutdown
24 }

The C++ code from the dial tone example shown in figure 2.5 was
generated for a better overview of these functions working with a model.
Listing 2.6 shows the initialization of this configuration with the step
size according to the sample rate of 32 kHz and the memory allocation
of the block input and output arrays.

Listing 2.6: Initialization of the model

1 dial_tone_initialize(){
2 dial_tone_M->Timing.stepSize = (0.032);
3 dial_tone_M->ModelData.blockIO = ((void *) &

dial_tone_B);
4 (void) memset(((void *) &dial_tone_B), 0,
5 sizeof(BlockIO_dial_tone));
6 ...
7 }

In listing 2.7 the actual signal processing is shown for the ModelOutput
function, which is in this case the addition of two sine waves with a
frame length of 1024 as the iteration size for the loop.

Listing 2.7: Signal processing in the dial tone

1 dial_tone_output(){
2 ...
3 for (i = 0; i < 1024; i++) {
4 dial_tone_B.Add[i] = dial_tone_B.SineWave[i]
5 + dial_tone_B.SineWave1[i];
6 }
7 ...
8 }

In the code section from the dial tone update function in listing 2.8,
two parameters are shown. The first is the call of the sound card with
the memory address of the adders output. The second is the increment
of the step size.

23

2 Waveform Development

Listing 2.8: Update of the model’s states
1 dial_tone_update(){
2 ...
3 LibUpdate_Audio(
4 &dial_tone_DWork.

ToAudioDevice_AudioDeviceLib[0],
5 &dial_tone_B.Add[0], 0, 1024, 0);
6 ++dial_tone_M->Timing.clockTick0;
7 dial_tone_M->Timing.t[0] = dial_tone_M->Timing.

clockTick0 *
8 dial_tone_M->Timing.stepSize0;
9 ...
10 }

The models are finalized by terminating the call of the sound card and
freeing all memory space as shown in listing 2.9.

Listing 2.9: Termination of the model
1 dial_tone_terminate(){
2 ...
3 LibTerminate(
4 &dial_tone_DWork.

ToAudioDevice_AudioDeviceLib[0]);
5 LibDestroy(
6 &dial_tone_DWork.

ToAudioDevice_AudioDeviceLib[0], 1);
7 ...
8 }

Code generation from Simulink to Verilog/VHDL

The HDL Coder extension of Simulink [42] provides the ability to gener-
ate Verilog or VHDL code for a model. This leads, with the support of
C code generation and simulation, to a system that is highly capable of
building and transforming models for heterogeneous processing plat-
forms. The code generation shall be introduced by the already known
dial tone example. However, the output is not connected to a sound card
but to an output port for the dedicated module. Some minor changes

24

2.3 Model-Based Development

clk

clk_enable

reset

dial_tone

ce_out

out1[15..0]

Figure 2.7: Structure of the generated dial tonemodule

have to be applied to the model to assure that the code can be generated.
Due to the fact that FPGAs do not support floating point arithmetic,
the sine waves must be configured to generate fixed point output. In
difference to DSPs, FPGAs are not working on arrays. This means that
the processing changed to be based on samples. With these changes,
HDL code can be generated.

Listing 2.10: Extraction of the generated Verilog code

1 module dial_tone(...)
2

3 always @(address_cnt_1)
4 ...
5 begin
6 case(address_cnt_1)
7 7’b0000000 : Sine_Wave1_out1 = 16’

b0000000000000000;
8 7’b0000001 : Sine_Wave1_out1 = 16’

b0000100000001001;
9 ...
10 endcase
11 end
12 assign Add_add_cast = Sine_Wave_out1;
13 assign Add_add_cast_1 = Sine_Wave1_out1;
14 assign Add_add_temp = Add_add_cast +

Add_add_cast_1;
15 assign Out1 = Add_add_temp[15:0];
16

17 endmodule // dial_tone

Listing 2.10 shows an extraction of the generated Verilog code for the
dial tone example. The sine waves are generated by a lookup table and

25

2 Waveform Development

the output is assigned to the highest 16 bit of the sum of the sine waves.
Figure 2.7 shows the structure of the generated Verilog module.

2.4 Overhead of Code Generation

The efficiency of generated code is still highly controversial in the devel-
opment of radio systems. While some are complaining about the fact
that the code is too slow baseband signal processing, others argue that
there is no overhead. In this section, the processing time of the gener-
ated code was measured on different processing units under varying
conditions like compilers or data types. It is furthermore compared with
an unoptimized hand written code and an assembly-based optimized
code. Parts of these measurements were also published in [43].

2.4.1 Code Generation for GPPs

The benchmarks for generated C/C++ code were executed on an In-
tel Core 2 Duo CPU (P8400) with a clock frequency of 2.28GHz. The
processor is working with a Windows 7 operating system and three
compilers:

• In the following the C/C++ compiler, which is integrated in Visual
Studio 2005, is named VS. The comparison with newer versions of
the Visual Studio Express Edition showed no differences in speed.
Therefore only this version is listed in the results.

• The Local C Compiler in the following denoted as LCC is a small
open source C compiler, where in the benchmarks, version 2.4.1 is
used.

• Intel Parallel Studio XE2011 integrates a C/C++ compiler in the
development environment, which is especially suited for Intel
architectures. The compiler is subsequently denoted as IPS.

The C/C++ code was generated with Real Time Workshop version 7.6.
For better readability and comparison with different processors, the
benchmarks show, beside the time consumption of the evaluated code,
also the number of cycles. These are calculated by the processing time

26

2.4 Overhead of Code Generation

multiplied with the processor frequency. Therefore, it is just a time
scaling.

Figure 2.8 shows the overhead that the generated code consumes after
every ISR due to scheduling, logging and status updates. This is the
time the code remains in the gray boxes in figure 2.6. It can be seen
that the choice of the compiler dramatically influences the differences in
processing times. The Intel Parallel Studio (IPS) consumes less than a
third of the time than the Local C Compiler (LCC). The figure indicates
also the influence of the frame size on the generated overhead. While
the processing time of the non-functional code in figure 2.8 remains con-
stant, the processing time for code inside the model output function
increases with the frame size and leads to a better throughput in total.

0 20 40 60 80

IPS

VS

LCC

C
om

pi
le

r

Processing time [ns]

 0 45.6 91.2 136.8 182.4
Cycles

Figure 2.8: Processing times of the generated non-functional code, which
was compiled with various compilers

One of the essential signal processing functions in SDRs are Finite Im-
pulse Response (FIR) filters. Figure 2.9 shows the benchmark of an FIR
filter compiled with the aforementioned compilers. To present values
independent of the number of taps and frame size, the results are nor-
malized to one input sample and one tap, leading in the best case to
only one MAc operation. Additionally to the named compilers, the data
type (real or complex) and the code (hand written or generated) are

27

2 Waveform Development

compared. The results for the compilers from figure 2.8 are also valid for
this benchmark. The Visual Studio (VS) and IPS produce the fastest code.
The generated code consumes always less time than the hand written
code. Note that the hand written code is not optimized in any sense
except in the implementation of a circular buffer. The source code of
the unoptimized hand written FIR filter can be found in appendix A.1.
The fastest code is the generated code for an FIR filter with real data and
compiled with the IPS. Only three cycles are consumed on the GPP per
real tap and real sample. The processing time for a complex operation
takes about ten cycles, which is also a good result, taking into account
that the complex MAc operation needs four real multiplications and two
additions.

0 5 10 15 20 25 30 35

IPS

VS

LCC

C
om

pi
le

r

Processing time [ns]

 0 22.8 45.6 68.4

Cycles

Real data, hand written
Complex data, hand written
Real data, generated
Complex data, generated

Figure 2.9: Benchmark of an FIR filter on a GPP

Another important algorithm used in a waveform implementation is the
Fast Fourier Transformation (FFT). Figure 2.10 compares the processing
times of an FFT for generated code, unoptimized hand written code and an
optimized code. This optimized code comes from FFTW, which is a C
subroutine library for calculating discrete Fourier Transforms. It is sup-
ported by an open software platform and is in performance comparable

28

2.4 Overhead of Code Generation

to machine-specific, vendor-optimized codes. The good performance
is achieved by querying the parameters through the operating system
and tuning the architecture automatically for the fastest results [44]. The
unoptimized code is the straight implementation of the Cooley-Tukey
algorithm, which can be found in appendix A.2.

64 128 256 512 1024 2048
1 μs

10 μs

100 μs

1 ms

10 ms

FFT block size

Pr
oc

es
si

ng
 ti

m
e

 2.28

 22.8

 228

 2280

22800

C
yc

le
s/

10
00

FFTW
Generated
Hand written

Figure 2.10: Benchmark of the FFT on a GPP

For better comparability the compiler times are not included in the above
results. The differences in the times for the compilers are in accordance
to the previous results, which are shown in figure 2.8. The input data
are complex floating point vectors with a length according to a power
of two. The hand written code is about thirty times slower than the
generated and optimized code. They are varying over the FFT block size
according to the benchmarks of the FFTW in [45]. There, it is shown,
that the FFTW implementation achieves the best speed results with FFT
sizes between 512 and 2048. The speed of the generated code does not
fully reach the optimized FFTW implementation.

29

2 Waveform Development

2.4.2 Code Generation for DSPs

The benchmarks for generated C code were measured with a C64x+
core on Texas Instrument’s DM6446 system on chip, which is described
in more details in section 3.3. The processing times and cycles are in
accordance with the GPP measurements when taking the scaling factor
of the DSP’s clock frequency of 594MHz into account. The C code is
compiled with Code Composer Studio (CCS) from the DSP vendor TI.
Figure 2.11 shows an overhead of 3.8 μs of the generated non-functional
code. Referring to the number of cycles, this is about fifty times more
than the non-functional code for the GPP. This is mainly caused by the
underlying fixed point processor that has to deal with floating point
code.

0 1 2 3 4 5

CCS

C
om

pi
le

r

Processing time [μs]

 0 594 1188 1782 2376 2970
Cycles

Figure 2.11: Overhead of the non-functional code on a DSP

The performance loss of floating point code on a fixed point processor
can also be seen in the benchmark of an FIR filter represented in fig-
ure 2.12. While the difference between floating point and fixed point
arithmetic with hand written code makes a factor of ten, the generated
fixed point code is about hundred times faster than the generated code
dealing with floating point data types. The optimized code with a special
library for digital signal processing comes from TI and is only available
in fixed point arithmetic. The generated fixed point code needs twice
the time, which is not a bad result compared with the hand written,
non-optimized code.

Figure 2.13 compares the results for the FFT for hand written code, gen-
erated code and the assembler optimized code from TI’s signal processing
library. It has to be noted that the hand written code uses floating point

30

2.4 Overhead of Code Generation

1 10 100 1000

Optimized

Generated

Hand written

C
od

e

Processing time [ns]

0.594 5.94 59.4 594

Cycles

Fixed point
Floating point

Figure 2.12: Benchmark of an FIR filter on a DSP

31

2 Waveform Development

arithmetic in contrast to the other code. This leads to the poor results,
which are in processing time several decades slower than the optimized
codes. The speed up for the optimized code is about four times higher
than the generated C code.

64 128 256 512 1024
1 μs

10 μs

100 μs

1 ms

10 ms

100 ms

1 s

FFT block size

Pr
oc

es
si

ng
 ti

m
e

 0.594

 5.94

 59.4

 594

 5940

 59400

594000

C
yc

le
s/

10
00

Optimized
Generated
Hand written

Figure 2.13: Benchmark of the FFT on a DSP

2.4.3 Code Generation for FPGAs

In contrast to the generated codes for DSPs and GPPs, the generated
HDL code creates no overhead for the system. The main task of the
FPGA on a SDR is the adaptation of the DSP sample rate to the higher
data rate of the DAC and vice versa. Therefore, decimation and interpo-
lation filters have to be realized. Figure 2.14 shows the resource usage

32

2.4 Overhead of Code Generation

of interpolation filters with a Cascaded Integrator-Comb (CIC) struc-
ture. The filters were implemented on a Virtex 4 FPGA from Xilinx with
VHDL [46] and on a Cylone FPGA from Altera with Verilog [47].

0 200 400 600 800 1000

Virtex 4

Cyclone

FP
G

A

Resource usage [LE, Slice]

Hand written
Generated

Figure 2.14: Benchmark of a CIC decimation filter on different FPGAs

The interpolation factor was 128 and the bit lengths for input and output
were 16. The bit length inside the filter increased to 44 due to bit pruning.
The filter was implemented with four cascaded stages. Due to the dif-
ferent hardware architectures, the resource usage between both FPGAs
can not be compared. The FPGAs from the company Altera are based
on Logic Element (LE), which mainly consists of one programmable
register, one carry chain and one Lookup Table (LUT) with four inputs.
This is different from the Xilinx approach. The smallest logic block is
named “slice”, comprising two LUTs with four inputs, one carry chain
and two programmable registers. Therefore, the resource usage of the
filter was measured in LEs for the Cyclone and in slices for the Virtex
FPGA. The generated code is smaller in the sense of space than the hand
written code but the difference is not as dominating as in the previous
sections.

33

2 Waveform Development

Beside CIC filters, also FIR filters, used for decimation in time, are bench-
marked. Figure 2.15 shows the difference between an optimized half-
band decimation filter in comparison to the generated polyphase decima-
tion filter. The filter length was 31 but due to the coefficient properties,
only eight multiplications were needed. The other coefficients were zero.
Furthermore, due to the symmetry of the filter some coefficients were
equal. The generated filter did not recognize this symmetry and hence
the possibilities to use this for optimization.

0 500 1000 1500 2000

Generated

Optimized

C
od

e

Resource usage [LE]

Figure 2.15: Comparison of the resource usage for a 31-tap halfband
filter

To get an overview how the number of taps correlate with the resource
usage in generated code, Figure 2.16 shows the used LEs of a decimate
by two filter. The bit length of input and output signal as well as the
filter coefficients was 16 bit, the bit length of the accumulator was 32 bit.
The results of figure 2.16 were measured on a Cyclone FPGA without
hardware multipliers.

34

2.4 Overhead of Code Generation

0 500 1000 1500

20

18

16

14

12

10

T
ap

s

Resource usage [LE]

Figure 2.16: Comparison of the resource usage of an FIR decimation filter
with various tap lengths

35

3 SDR Platforms

This chapter gives an overview of the platforms and their components
that are used in this work. The chapter starts with a general overview
of SDR platforms and presents the different used platforms in detail.
Furthermore, the integration in the development flow is shown, which
was introduced in section 2.3.

3.1 SDR Platforms in General

Software Defined Radio is associated with digital signal processing,
implemented on reconfigurable processors. The interface to the analog
world is done by the ADC and DAC, which are as close as possible
to the antenna. It should be highlighted that reconfigurable digital
signal processing is the core part of any SDR. The RF signals in the
physical analogworld are on high frequencies at low power and the ADC
sampling rate, dynamic range and power consumption are limited [48].
Therefore, the RF front end should only extract a dedicated frequency
band of interest and convert it into a signal suitable for the ADC. After
AD conversion the digital signal processing is in dependence on the
underlying digital hardware. This scheme is represented in figure 3.1.

3.1.1 RF Front Ends in SDR

Receiver Architectures

The receive side in RF front ends is for down conversion of desired
signals in a form that the ADC can handle the signals and further to
suppress interferences in the band of interest. The most common archi-
tecture to achieve this is the superheterodyne receiver [49]. It converts
the signal from the desired Radio Frequency (RF) into a fix Intermediate

36

3.1 SDR Platforms in General

Analog Side

RF

Front End

Digital

Signal

 Processing

ADC /

DAC

Digital Side

Figure 3.1: Structure of a general SDR platform

Frequency (IF). The IF is lower than the RF but higher than the band-
width of the signal. This fact is also the origin of the name “superhetero-
dyne” where hetero and dynamis are the greek words for “different”
and “power”. This means the superposition of different forces: the
desired signal on RF and the mixing signal in the distance of IF from
RF. There are plenty of commercial components available on the mar-
ket for standard IFs like 10.7MHz for FM broadcast. Two examples of
superheterodyne topologies are shown in figure 3.16 and 3.17.

A serious problem in superheterodyne receivers is the presence of image
spectra, which are symmetrically located above and below the mixing
frequency in the distance to the IF. Therefore, image rejection filters
are mandatory for superheterodyne architectures. This leads to a trade-
off in the choice of the IF. On high IFs image suppression is not very
demanding but channel filtering is more difficult at these frequencies
and the same is true vice versa: On relative low IFs the requirements
for channel selection are relaxed but the filters for image suppression
are more demanding [50]. To circumvent this problem, downconversion
is realized over multiple stages with the presence of a filter after each
downconversion step. This yields to merely partial channel selection at
each step and as a result the relaxation of the quality of the filters.

Another way to circumvent the problem of images is the homodyne
architecture, which is also called direct-conversion or zero-IF. The prin-
ciple is to mix the desired signal with a carrier on its center frequency.
This yields to an IF with a frequency of zero and to the circumvention of
the problem of image frequencies. Furthermore, high quality IF filters
and subsequent downconversion stages can be replaced with baseband
amplifiers and low-pass filters, which eases the monolithic integration.
An example of such a receiver topology is presented in figure 3.5. Nev-

37

3 SDR Platforms

ertheless, having here the advantages of image rejection and monolithic
integration, other problems occur. DC offsets can corrupt the signal
due to the baseband location. Another problem is the I/Q phase shift
mismatch due to errors in the ninety degree phase shifter.

Transmitter Architectures

The transmit path of an RF front end converts the signal from IF or
baseband up to the desired carrier frequency. It furthermore amplifies
the signal before transmitting through the antenna, where in-phase
and quadrature components are provided by quadrature modulation.
Compared to receiver architectures, the requirements for transmitters
are lower regarding noise, interference rejection or band selectivity. Two
types of transmitters are of interest: the direct-conversion transmitter
and the two step transmitter.

Similar to the direct-conversion receiver, the mixing frequency of a direct-
conversion transmitter is equal to the transmitted carrier frequency.
Examples of this architecture can be found in figures 3.5 and 3.16. The
problems described for the direct-conversion receiver remain for the
transmitter: leakage of the power amplifier and I/Q phase mismatch.
These disadvantages can be circumvented by the two-step transmitter,
which is shown in figure 3.17. The quadrature modulation is done
digitally and the Power Amplifier (PA) works on different frequencies
as the carrier from the Local Oscillators (LOs).

3.1.2 Digital Signal Processing in SDR

The digital signal processing part is the core of an SDR to provide the
computational performance. The SDR consists of various processors
and reconfigurable logic to fulfill the underlying radio communication
standards and baseband processing algorithms. The most common
components in this field are: FPGAs, DSPs and GPPs.

38

3.1 SDR Platforms in General

Field Programmable Gate Arrays

An FPGA is an Integrated Circuit (IC) consisting of thousands of pro-
grammable logic blocks with reconfigurable interconnections to route
signals between them [51]. A general logic block includes a LUT for the
combinatorial logic, a programmable register to store elements and a
multiplexer for internal routing [52]. However, there are slight differ-
ences in actual designs from different vendors to this general structure.
The two major companies on the world market for FPGAs are Xilinx
and Altera. Xilinx’s main logic resources are named Configurable Logic
Blocks (CLBs), which are connected to switch fabrics. Any CLB itself
contains four slices, which are grouped in pairs. The slices are com-
parable with the general custom logic blocks described above. Each
slice contains two LUTs, two programmable registers and one carry
chain for multiplexing and adding [46]. This structure is similar to the
actual Altera design that comprises several Logic Array Blocks (LABs)
grouped into rows and columns on the FPGA. Each LAB contains 16
LEs, which include themselves one LUT, one programmable register
and one carry chain [47]. Due to these differences in architecture it is
hard to compare measurement results for FPGAs from different vendors.
Furthermore, most vendors provide their FPGAs in various configura-
tions: with several multiplication cores and embedded micro controllers
or with embedded bus systems. The different structures make it even
harder to compare.

Digital Signal Processors

In the evolution of microcomputers special architectures for digital signal
processing appeared first in 1982 on the market with TI’s TMS32010
[3]. This was the first commercial DSP that made use of specialized
hardware for multiplication and accumulation in one single cycle. Today,
MAc units are mandatory for modern DSPs but at that time comparable
processors required multiple add and shift operations each consuming
one cycle. But not only add and shift operations became the bottleneck
for high speed, real time processing. In early processors there was
generally one single bus interface to the memory, which could only be
accessed once per cycle. The Harvard architecture circumvents this by
changing the memory structure to use separate buses: one for the data
memory and the other for the instructions. This memory architecture

39

3 SDR Platforms

is still used, but the memory access was accelerated over the years.
Beside the faster underlying hardware, there are also algorithms that are
adapted to the memory structure in DSP applications in order to find
memory addresses more quickly. Further, DSPs are mostly working on
vector bases in block processing. The high end DSPs of today provide
up to eight arithmetic units and support multiple MAc operations in
one single cycle. Other features in the present high end processors are
specialized arithmetic units like Viterbi accelerators or video codecs
[53].

General Purpose Processors

Today, more and more GPPs are used to handle signal processing tasks
in the SDR environment. On the one hand, this is due to the possibility
to write software with high-level languages and to debug directly on
the host instead of using a Joint Test and Action Group (JTAG) device.
On the other hand, GPPs made huge steps in their capability to process
digital signals. This is due to extensions like Single-Instruction Multiple-
Data (SIMD) capabilities, which can process one instruction on multiple
data segments in a single cycle. Other reasons are high clock speeds and
multiple cores that GPPs became alternatives to DSPs in digital signal
processing.

3.2 Universal Software Radio Peripheral

The Universal Software Radio Peripheral (USRP) is not itself a Software
Radio Platform, it only provides an interface from a host Personal Com-
puter (PC) to several RF front ends. The real baseband processing is
calculated on the PC. The USRP was originally developed by Matt Ettus
[54] as a cheap interface for the GNU Radio software, which anyone
could afford or even build himself. The schematics and the source code
for the firmware can be downloaded for free. Today, the USRP is not only
an interface for the GNU Radio community. Users can utilize it with var-
ious software radio development tools like OSSIE, MATLAB/Simulink,
LabView or they build their applications in C++. The company Ettus Re-
search became the dominant seller of low cost software radio platforms
and has been acquired by National Instruments in February 2010.

40

3.2 Universal Software Radio Peripheral

����

���	�
���
�

���	��

���
�

�������

���	��

���
�

Figure 3.2: The USRP motherboard equipped with two daughter boards

In the following sections, the USRP is named as the motherboard, while
the RF front ends are named as the daughter boards. A fully equipped
USRP motherboard with two FLEX400 daughter boards is shown in
figure 3.2. You can also see at the front side of the case the power
connection and the USB cable for high speed data connection to the
host.

3.2.1 The USRP Motherboard

The motherboard is equipped with a Cyclone EP1C12 FPGA from Altera
[55], which provides the interfaces to the Universal Serial Bus (USB) and
to the ADCs and DACs. Two ADCs and two DACs are integrated in
a single AD9862 [56] conversion chip. Due to the fact that the board
is equipped with two AD9862, the motherboard provides a total of
four transmit and four receive paths. The ADCs support a sample rate

41

3 SDR Platforms

of 64MHz with a quantization resolution of 12 bit. Furthermore they
provide Programmable Gain Amplifiers (PGAs), bypassable low pass
decimation filters and a bypassable Hilbert filter. The transmit side
of the AD9862 provides two 128MHz DACs with 14 bit resolution as
well as interpolation filters and digitally tunable real or complex up-
converters.

Figure 3.3 shows the motherboard in more details. The FPGA is located
at the center of the board and the two ADC/DAC combinations are in
adjacency on the right and left side. The chip, shown in figure 3.3, below
the FPGA is a Cypress’ FX2 USB microcontroller [57], which supports
the connection to the USB peripheral. The white plug-ins over and
under the AD9862 conversion chips are the connectors to the daughter
boards.

3.2.2 The USRP Daughter Boards

Ettus Research provides a variety of daughter boards for the USRP,
working in a frequency range from baseband up to 5GHz. In this sub-
section only the Flex400 and Flex2400 daughter boards are described.
These front ends were used for the implemented waveforms in chapter
4 and chapter 5.

The Flex400 supports a frequency range from 400MHz to 500MHz
while the Flex2400 is designed for RF signals between 2400MHz and
2500MHz. Other USRP daughter boards are described in [54]. The
Flex400 and Flex2400 are designed similarly in a way that they are using
a single conversion topology for upconversion and downconversion.

For the Flex400, the received signal is sent to the AD8348 direct quadra-
ture demodulator [58]. The demodulator needs a carrier for mixing the
RF signal into baseband. This signal comes from a Voltage Controlled
Oscillator (VCO)/Phase Locked Loop (PLL) combination, which is able
to tune the frequency in steps of 4MHz. This does not achieve an exact
direct-conversion architecture but results in a low IF topology, where
the intermediate frequency varies between baseband and 4MHz. The
last step for downconversion of the in-phase and quadrature compo-
nents into baseband is done on the motherboard inside the FPGA with a
Digital Down Converter (DDC).

42

3.2 Universal Software Radio Peripheral

����
������� �������

	
�

Figure 3.3: The USRP motherboard [54]

43

3 SDR Platforms

1 10 22 100
−100

−50

−12
0

Frequency [MHz]

M
ag

ni
tu

d
e

[d
B

]

1 10 22 100
−200

−100

0

100

200

Frequency [MHz]

Ph
as

e
[d

eg
]

Figure 3.4: Transfer function of the anti-aliasing filter for the Flex400 and
Flex2400 daughter boards

The architecture of the Flex2400 is equal but an AD8347 [59] quadrature
modulator replaces the AD8348 due to the higher frequency range. The
receiver structure is shown in figure 3.5. The Anti-aliasing filter is the
same for both daughter boards and comprises resistances, capacitors
and inductors with known values due to the open source schematics.
The transfer function was calculated and is shown in figure 3.4. The 6
dB cut off frequency is at 22MHz.

The transmit path is designed analogically to the receive path as shown
in figure 3.5. The AD8345 quadrature modulator [60] converts the sig-
nals to a radio frequency between 400MHz and 500MHz for the Flex400.
The local oscillator is the same version as for the receive path, where dig-
ital up conversion of the baseband signal to an intermediate frequency
between baseband and 4MHz is necessary. This can be done with the in-
ternal Digital Up Converter in the AD9862 [56]. The difference between

44

3.2 Universal Software Radio Peripheral

EP1C12 Logic Elements
12060 100 %

Tx 1214 10 %
Rx 3448 29 %

Tx & Rx 3895 32 %

Table 3.1: Minimum number of Logic Elements used in the FPGA

Flex2400 and Flex400 daughter board is again the different frequency
range of the modulator.

3.2.3 Platform Specific Constraints

Figure 3.5 shows a signal flow graph for a software radio platform
with a Flex400/Flex2400 front end. As described before, both daugh-
ter boards have the same structure but with different modulators and
demodulators as well as different VCO/PLL combinations. The USRP
motherboard works as a conversion module. Custom signal processing
can be implemented either on the FPGA or on the GPP respectively.

Table 3.1 gives an overview how much space the FPGA provides. With-
out any logic usage, Altera’s Cyclone EP1C12 has a total of 12060 LEs.
However, all these elements cannot be used for signal processing due
to the fact that the interfaces to the AD9862 as well as buffers and inter-
faces to the USB chip have to be implemented. With the transmit and
receive sides, approximately 68% of the internal logic can be used for
signal processing. The space occupancy for a receive only configuration
is about three times higher than for a pure transmitter. This is due to
the fact that in the receive side a Digital Down Converter (DDC) has to
be implemented. This is not the same for the transmit side, since the
internal Digital Up Converter (DUC) on the AD9862 can be used. These
results are summarized in table 3.1.

Another platform specific limitation is the USB connection between
motherboard andGPP. While USB 2.0 supports data rates up to 480Mbps,
the USB controller from Cypress together with the library: libusb on the
GPP achieves a maximum throughput of 228Mbps. With this, a com-
plex bandwidth of approximately 7MHz with 16 bit wide in-phase and

45

3 SDR Platforms

quadrature samples is achieved. To get the lower sample rate in com-
parison to the conversion rate of the ADCs, a decimation filter has to be
implemented with a factor not less than eight on the receive side. On
the transmit side an interpolation filter with an upsampling rate not less
than four is necessary. These filters have to be implemented for in-phase
and quadrature signal components.

46

3.2 Universal Software Radio Peripheral

S
ig

n
al

P
ro

ce
ss

in
g

S
ig

n
al

P
ro

ce
ss

in
g

A
D

90
°

D
D

C

S
ig

n
al

P
ro

ce
ss

in
g

S
ig

n
al

P
ro

ce
ss

in
g

�
4

90
°

U
S

B

�
4

A
D

 9
86

2

A
D

 8
34

5

A
D

 8
34

8

V
C

O
/P

L
L

43
60

G
P

P
F

P
G

A

N
C

O

U
S

B

V
C

O
/P

L
L

43
60

A
D

A
D

A
D

Fi
gu
re
3.
5:
Si
gn
al
flo
w
in
a
U
SR
P

47

3 SDR Platforms

3.2.4 Integration in the design flow

Integration of the FPGA

Figure 3.6 gives an overview of the FPGA, where it should be highlighted
that the baseband data are coming from the ADC and are passing to the
DAC with fixed data rates and word lengths. Therefore, on the receive
side a DDC is implemented that can be configured through a register
by the GPP. As mentioned previously, a DUC is already included at the
transmit side on the DAC. The Rx Chain and Tx Chain blocks are black
boxes with interfaces to in-phase and quadrature signal components as
well as to the clock. This makes the integration of the generated Verilog
code possible. The generated time scopes inside the black boxes are
connected automatically with buffers at the transmit or receive side of
the USB. In addition, interrupt commands for the GPP are provided in a
form that the GPP can handle the sample rate.

Rx

Buffer
DDC

Tx

Buffer
Tx Chain

Rx Chain

rx_a

tx_a

rx_b

tx_b

usb_rx_i

usb_tx_i

usb_rx_q

usb_tx_q

Figure 3.6: Black boxes in the FPGA on the USRP

The transformation from PSM to the raw binary file for the FPGA is
presented in figure 3.7. The functional code is generated from the PSM.
This is the code that is integrated in the RX Chain at the receive path and
in the TX Chain at the transmit path. A template makefile, written in Tool
Command Language (TCL), is doing the synthesizing and mapping of
the code. It includes information concerning the FPGA, the synthesizer
and mapper as well as the physical connections to the chip. Additional
Verilog code for the platform specific functions like buffers are integrated
in the development flow. The resulting file can be uploaded to the
FPGA.

48

3.2 Universal Software Radio Peripheral

Platform Specific

Modules:

usrp_std.v

ddc.v

tx_buffer.v

adc_interface.v

Custom

Script:

model.tcl

Template

Script
PSM

Functional Code:

tx_chain.v

rx_chain.v

subsystem.v

timing_controler.v

...

Generate

TCL

Generate

Verilog

Binary:

model.rbf

Figure 3.7: Transformation from the PSM to the bitstream on the Cyclone
FPGA

49

3 SDR Platforms

Integration of the GPP

The integration of the GPP is done by implementing an interface which
is based on the USRP API from GNU Radio. This interface must be
extended for code generation and inclusion in Simulink. Therefore two
APIs are build: a usrp source object that handles the data transfer
from the USRP to the GPP and a usrp sink object that handles the
connection from GPP to USRP. Figure 3.8 shows these interfaces in the
Simulink environment.

Figure 3.8: Example for the use of the APIs for integration of the USRP
in a model

The interfaces are implemented such that for code generation, the plat-
form specific objects are linked to the functional code. According to
the example in figure 3.8 the usrp sink receives the data from the
sine wave and sends it to the USB buffer and then to the FPGA. The
usrp source gets new data from the USB buffer and passes it to the
spectrum scope. To maintain real time processing, the USRP sends inter-
rupts when a new frame of data can be accessed in the USB buffer. An
error is produced if these data are not used or not passed over before the
next interrupt arrives. This ISR controls the timing and the scheduling
of the code running on the GPP.

For configuring the data, a Graphical User Interface (GUI) was devel-
oped shown in figures 3.9 and 3.10. The parameters for timing and
scheduling can be configured via the GUI shown in figure 3.9. The ISR

50

3.2 Universal Software Radio Peripheral

Figure 3.9: GUI for the USRP sink with an example for configuration
parameters

time period TISR can be calculated as follows:

TISR =
fDAC

I
· Nframe, (3.1)

where fDAC is the sampling rate of the DAC, I is the interpolation factor
and Nframe is the vector length. This would lead to an ISR time period
of 4.096ms for the configuration shown in figure 3.9.

Figure 3.10 shows the configuration for the USRP daughter boards.
The daughter board ID is written to the text field and gives additional
information like the maximum tuning frequency and the range of the
gain. All these data are written to the APIs. The interfaces for the
daughter board expect the tuning of the frequency and the gain as

51

3 SDR Platforms

Figure 3.10: GUI for the USRP subdevice, showing configuration values

input data. Additionally, the data type can be configured as well as the
selection of the antenna type through the antenna ID. The setting of the
configuration can be done for both daughter boards by selecting one of
the two tabs: Side A or Side B.

Figure 3.11 gives an overview of the transformation from PSM to exe-
cutable code, according to the transformation from PSM to bitstream
shown in figure 3.7. As described in section 2.3.3, the functional code
is generated in a C++ code. With the integration of the usrp sink or
usrp source objects, the functional code can be linked to the source
code of the interfaces. The template makefile starts the development
environment as well as the compiler and linker. The output is a file
that can be executed on any host PC operating with Windows or Linux
operating system.

52

3.2 Universal Software Radio Peripheral

Platform Specific

Libraries:

usrp_source.cpp

usrp_standard.cpp

usrp_prims.cpp

...

Boost

LibUSB-Win32

Custom

Makefile:

model.mk

Template

Makefile
PSM

Functional Code:

model.cpp

model.h

model_data.cpp

model_private.h

...

Generate

Makefile

Generate

C++ Code

Executable:

model.exe

Figure 3.11: Transformation from the PSM to an executable file for the
GPP

53

3 SDR Platforms

3.3 Small Form Factor SDR

Lyrtech’s Small Form Factor SDR Development Platform (SFF SDR DP)
[61] was one of the first embedded development platforms for Software
Defined Radios. The platform was originally developed as an evaluation
board for Texas Instrument’s Da Vinci System on Chip (SoC). Lyrtech
used the processing power of the included processors for Software Radio
applications and extended it with ADCs, DACs and various RF front
ends. The SFF SDR DP consists of three modules, which are shown in
figure 3.12. The Digital Processing Module (DPM) is the signal process-
ing layer at the bottom with a GPP/DSP combination in addition to an
FPGA. The Data Conversion Module (DCM) is the middle layer and is
equipped with an additional FPGA for sample rate conversion as well
as ADCs and DACs. The Radio Frequency Module (RFM) finally is the
RF front end on the top.

3.3.1 Digital Processing Module (DPM)

As the name indicates, the whole signal processing on the SFF SDR is
placed on the DPM. Therefore, the board is equipped with a Virtex
4 SX35 FPGA [46] and TI’s TMS320DM6446 SoC [62] as the central
processing units. The SoC comprises two processing cores: a C64x+
fixed point DSP and an ARM GPP. An overview of the architecture of
the DPM is given in figure 3.13. The exact properties of the components
are described in table 3.2. The FPGA and the DSP are connected via
the Video Processing Sub-System (VPSS). This is a 16-bit synchronous
video data transfer port for the DSP, which was originally designed as
a video processing chip. The VPSS was adapted to provide high data
rates between both processing units with the Video Processing Front
End (VPFE) as the interface towards the DSP and the Video Processing
Back End (VPBE) in the opposite direction back to the FPGA. Both
interfaces are independent from another. Furthermore, there are two
additional connections between FPGA and DSP: The External Memory
Interface (EMIF) allows access to read from and to write to registers,
while the Audio Serial Port (ASP) is connected to the on board PCM3008
audio stereo codec through the FPGA. Beside the audio codec, the Virtex
4 allows access to several buttons, switches, LEDs and to the DCM over a
proprietary bus system. The peripherals of the DSP consists of the RS232

54

3.3 Small Form Factor SDR

Radio Frequency Module

Digital Processing Module

Data Conversion Module

Figure 3.12: Illustration of the SFF SDR DP, showing the three different
modules

55

3 SDR Platforms

TMS320DM6446 DMP SoC

Core Frequency 594MHz
Peak MMAcs 4752

On-chip L1/SRAM DSP 112 kB
GPP 40 kB

On-chip L2/SRAM DSP 64 kB
GPP 0kB

ROM GPP 16 kB

EMIF EMIFA 16 bit / 8 bit
DDR2 32 bit / 16 bit

Timer GP 64 bit
WD 64 bit

Virtex 4 XC4VSX35 FPGA

CLB array 96x40
Slices 15360

Block RAM bits (#) 3456 (192)
18 x 18 multpliers 192

Digtal Clock Manager 8

Table 3.2: Properties of the digital processing units on DPM

interface to configure the IP-address, the DDR2 RAM external memory
with 128MB and a high speed USB bus, which is not supported by the
firmware right now. Further peripheral equipments are an Ethernet
connection for board access over a host PC, a slot for an SD card and
another 128MBmemory, which stores the bootloader and a kernel image
of the operating system and the file system.

3.3.2 Data Conversion Module (DCM)

The DCM is the interface between the digital world of the DPM and the
analog RF front end. The DCM is equipped with two ADCs, two DACs,
an FPGA and a clock distribution unit. The ADC is a Texas Instruments
ADS5500 Analog-to-Digital Converter [63] with a maximum sampling
frequency of 125MHz and a resolution of 14 bit. As shown in figure 3.14,
two ADS5500 are needed for a complex baseband signal received from
a direct-conversion receiver. This is different to the Radio Frequency

56

3.3 Small Form Factor SDR

������
���	
��
���
����

�
��
�

�	
��
�	�
��
�
�

�����
���	
�����

����������
��������

��
��������
�
�����

������� !"��	�!
#�$ ���%���

#%������
!���&��&���
�'�(!
)�*��+�,

-�-��.��
"�/�/&�0
��1()���(!
 2��1

�������������

���3��&�! �����&�! �2*4��&�! 5	��&6!
5	��	
���	2��1��&�!

7#�

7#8

�6!!&	

�9!�"�

5 �

1#:;

 �:8

��#

�������		�
���
��������
�&!
�������		�
���

Figure 3.13: Structure of the Digital Processing Module

Modules (RFMs) described in section 3.3.3, where the incoming signal
on an IF on 30MHz or 44MHz is real. Therefore, the second input port
and the second ADC is not used. After sampling, the digitized data are
passed to Xilinx’s Virtex-4 LX25 FPGA, which is the interface between
the conversion chips and the proprietary expansion connector. This
FPGA here is not designated for custom signal processing and its logic
cannot be changed.

The transmit side of the board consists mainly of TI’s DAC5687 Dual-
Channel DAC [64]. This chip comprises two DACs with a bit resolution
of 16 at a maximum sampling rate of 500MHz. Furthermore, it provides
an interpolation filter for upsampling by a factor of 2, 4 or 8, as well as a
complex modulator and a programmable amplifier.

The clock of the DCM controls the sample rate converters. It is based
on Analog Device’s AD9511 PLL [65]. The reference clock for the PLL is
supported from the on-board 10MHz internal LO or from an external
clock. With the limited frequency range from 800MHz to 1400MHz of
the VCO, the target clock frequency fout can be calculated by

fout =
fVCO
div

=
N

R · div · fref . (3.2)

In equation (3.2), div is the clock divider, which is realized as a 5-bit

57

3 SDR Platforms

�

� �����

������� �	

�������

�������
����������
����� #

#
��
������

���

!���"��"����
�

����

����

������

�	

�	����
�

���������

����������	

��
�

����	
���������

������
���	
��
���
���

�
��
�

�	
��
�	�
��

�

���������

���������

�������
��	
��������
��������

��������
�����������

���

���
������������

���

�
 �
!
���
�

"�����#������$�%������

�"����#������$�%������

�
�

�
�

�
 �
!
���
�

�
 �
!
���
�

Figure 3.14: Structure of the Data Conversion Module

58

3.3 Small Form Factor SDR

counter. This leads to a division range of [1 . . . 32]. R is the PLL refer-
ence divider with a division range between one and 16383 due to the
implemented 14-bit counter. The feedback divider N is a combination
of a 3-bit prescaler and two counters A (6 bit) and B (13 bit). Through
combinations in the prescaler, any integer value for N in the range
of [1 . . . 262112] can be selected. Figure 3.15 gives an example for the
possible division factors between N and R with a given reference LO
at 10MHz. Due to the limitations of the VCO in the interval between
800MHz to 1400MHz, the ratio between feedback and reference divider
is limited to

N
R

=
fVCO
fref

= [80 . . . 140] . (3.3)

These are the upper and lower bounds for the ratio, shown in figure 3.15.
The curves represent any possible value for the clock divider div. The
remaining parameters can finally be chosen as follows:

N
R

=
P · B + A

R
(3.4)

With this clock distribution circuit any sampling frequency with high
accuracy can be achieved. Therefore no more complex resampling algo-
rithms have to be implemented on the FPGA or on the DSP to provide
the system’s base sampling rate.

3.3.3 Radio Frequency Module

In the following two subsections the Tunable Low Band RF module and
the WiMAX RF module are described. These two modules are used in
conjunction with the SFF SDR DP.

Tunable RF Module

The Tunable RF module consists of a superheterodyne receiver with
three stages, which converts signals between 200MHz and 1GHz to an
IF of 30MHz. It is equipped with five analog filters and three local oscil-
lators. The first filter, close to the antenna, is a low-pass filter that sup-
presses all frequencies above 1GHz. The following LO is a combination
of PLL and VCO, which supports frequencies between 1775MHz and

59

3 SDR Platforms

20 40 60 80 100 120
50

80

100

140
150

200

Frequency [MHz]

N
R

div

Figure 3.15: Ratios between N and R over the target frequency for differ-
ent divider values div

60

3.3 Small Form Factor SDR

RF-
Input

IF-
Output

RF-
Output

IF
 �
�3

0
M

H
z

65 MHz

65
MHz

330 MHz
290 - 310

MHz
1600 - 2500

MHz

20 -
1000
MHz

1565 -
1585
MHz

1275 MHz

297,5 -
302,5 MHz

65 MHz

IF-I
Input

IF-Q
Input

Transmitter

Receiver

262 - 483 MHz
523 - 876 MHz

90°

TRF3701

Figure 3.16: Structure of the Tunable RF Module

61

3 SDR Platforms

2575MHz and converts the RF signal to a fixed frequency of 1575MHz.
This is the center frequency of the second 20MHz wide bandpass filter.
With a switch, two filters with different signal bandwidths of 5MHz or
20MHz can be selected. These bandpass filters have a center frequency
of 300MHz. Before the bandpass filters, the signal is down converted
with the second LO with a mixing frequency of 1275MHz. The last
step to an IF of 30MHz is achieved with the third conversion stage of
330MHz and the final low pass filter for the images.

The transmit side of the RF front end is built according to a direct-
conversion transmitter, using TI’s quadrature modulator TRF3701 [66].
An in-phase and a quadrature signal are mixed with the incoming signal
from the LO, which is composed of a PLL, a VCO and a didivide-by-
two prescaler. In case when the prescaler is activated, a frequency of
262MHz up to 483MHz is generated while a frequency of 523MHz up
to 876MHz is generated when the prescaler is deactivated.

WiMAX RF Module

Similar to the Tunable RF module, the WiMAX RF module is a super-
heterodyne receiver. The supported frequency range of the front end is
from 2.3GHz to 2.7GHz. This is also the frequency range for the wireless
communication standardWiMAX. However, theWiMAX RFmodule has
no bearing with theWiMAX specification but the frequency range. It con-
verts signals from the RF over two stages to an IF of 44MHz. As shown
in figure 3.17, most components are integrated in ICs. The RF signal is
limited by a 400MHzwide bandpass filter working on 2.5GHz. The first
downconversion is done by TI’s TRF1115 [67] low-noise down converter.
It mixes the signal with an incoming carrier on a fixed frequency of
456MHz. On this frequency, the signal is filtered by a bandpass with
a bandwidth of 24MHz. The final conversion on the IF to 44MHz is
done by a combination of PLL and IF down-converter (TRF1112 [68])
and is followed by the last filtering on a bandwidth of 7MHz or 22MHz.
These last bandpass filters are switchable and controlled by TRF1112.

The transmit side of the WiMAX RF module is designed as a two stage
architecture composed of two ICs and two bandpass filters similar to the
receive side architecture. The first up-converter (TRF1121 [69]) expects
the transmit signal on a 18MHz IF and mixes it up to a fixed frequency
of 325MHz. Furthermore, it works as a LO distributor for the second

62

3.3 Small Form Factor SDR

Receiver

Transmitter

RX IF
44 MHz

TX IF
18 MHz

TRF1112

TRF1121

FS

PLL1

PLL1

PLL2

PLL2

444 - 467
Mhz TRF1115

2.3 - 2.7
Ghz

313-337
Mhz TRF1122

22 MHz

7,5 MHz

2.3 - 2.7
Ghz

Figure 3.17: Structure of the WiMAX RF Module

63

3 SDR Platforms

upconversion stage, where the mixing on frequencies between 2.3GHz
and 2.7GHz is done (TRF1122 [70]). The bandpass filter between the
upconversion stages limits the signal to a bandwidth of 24MHz, while
the last bandpass filter on 2.5GHz limits the frequency on a bandwidth
of 400MHz.

3.3.4 Platform Specific Constraints

The C64x+ DSP is one of the processing units for the SFF SDR DP. This is
in contrast to the USRP concept, where any GPP with an operating sys-
tem can be used as a processing unit. With a clock frequency of 594MHz,
the DSP runs very fast, but the memory space for the signal processing
code is limited to approximately 176 kB. Code lengths that exceed this
size have to be partitioned and moved to the external Synchronous Dy-
namic Random Access Memory (SDRAM). Although it is dimensioned
with a size of 128MB, the access time for read and write operations takes
several cycles. This can slow down the running code until violating the
real time constraints.

Another limit for waveform development on the platform is the interface
between DSP and FPGA. Originally intended to connect the processor
to video peripherals, the VPSS was rebuilt for data transfers from and
to the FPGA. With the underlying firmware it is not possible to achieve
higher data rates than 64Mbps. This yields to a bandwidth of 2MHz
assuming 16 bit wide in-phase and quadrature components. Waveforms
with higher bandwidths have to be processed on the FPGA.

As shown in table 3.2, the Virtex4 provides 15360 slices and 192multiplier
components. Similar to the platform constraints for the USRP, shown
in table 3.1, not all logic cells can be used for waveform development.
Table 3.3 summarizes the number of logic cells for different RF modules
for the following configurations: single transmitter, single receiver or
transceiver. It is remarkable that approximately 15% of the resources are
used for internal logic. This is due to the implementation of several First
In, First Out (FIFO) queus for the VPFE, VPBE, ADC and DAC. These
buffers are built independently of the actual existence of a transmit or
receive side. Further logic resources are used to implement the On-chip
Peripheral Bus (OPB) subsystem which provides access to the different
peripherals. The differences for transmit and receive paths are due to
the archiecture of the connected front end. The receive signal from

64

3.3 Small Form Factor SDR

Virtex 4 SX35 Slices Multipliers
15360 100% 192 100%

WiMAX RF
TX 1942 12% 7 3%
RX 1981 12% 7 3%

TX & RX 2046 13% 9 4%

Tunable RF
TX 1907 12% 5 2%
RX 1981 13% 7 3%

TX & RX 2016 13% 7 3%

Table 3.3: Space occupation with different RF modules and transmit
receive configurations

the tunable RF module is a real signal on a 30MHz IF. This makes
downconverting and the implementation of a Direct Digital Synthesizer
(DDS) and two multipliers necessary. For the transmit side, a quadrature
modulator is necessary on the tunable front end. The transmit side for
the WiMAX module expects a real signal on 18MHz IF. In this case
upconversion and quadrature modulation have to be implemented on
the FPGA.

3.3.5 Integration in the design flow

Integration of the FPGA

Similar as for the USRP flow, the code generated for the PSM is integrated
in the existent environment. Figure 3.18 gives an overview of the FPGA
environment in the SFF SDR. The custom logic can be seen as a black
box for the individual signal processing functions. Therefore, it provides
interfaces to the data converters and to the VPSS buses. Additional
interfaces are for registers, interrupts and control strobes.

The transformation from PSM to bitstream is shown in figure 3.19. The
functional VHDL code is generated such that the interfaces to the data
and control ports are connected automatically. The template makefile
includes the entities and connects them with the provided netlists for the
data buses and the additional platform specific functions. Furthermore
physical properties and connections are given in the makefile that finally
scripts the synthesizing and mapping of the code to a bitstream.

65

3 SDR Platforms

Codec
PLL

2-channel
codec

MSP430

2 output ch

UART

2 input ch

Digital processing module I/O ring

Digital processing module top

Dconv
input
FIFO

Dconv
output
FIFO

2x signed 16-bit ch

custom_logic_default.vhd

Custom logic

To/From the OPB
GPIO Swiitch,
LED, buttons

2x unsigned 14-bit ch
1-bit out-of-range each

sdrtop_Bsp_a.vhd

sdrioring_virtex4ffg668_a.vhd

32 bits

32 bits VPFE 16 bits

VPBE 16 bits

Prog threshold
FIFO

Prog threshold
FIFO

ASP

VPFE

VPFE

User interrupt 2

User interrupt 1

RFFE interrupt

OPB
Data

conversion
module UART

Data_Conv
FIFO CTRL

Custom
registers (8x)

SPI

5x Buttons
4x DIPswitches
5x LEDx

GPIO connector #1: 10 SPI/GPIO � 2 external clocks + VCC + GND
GPIO connector #2: 16 dedicated GPIOs

SPI GPIO

G
P

IO
#1

G
P

IO
#2

OPB subsystem

Onboard interfaces

SPI/GPIO
selector

GPIO
Button

Interface

Switch/
LED reg

EMIF slave SYSGEN
Global
control

VPSS
CTRL

system.ngc

OPB
EMIF

master

EMIFMstGlue

Codec
CTRL

Codec ASP Link

U
A

R
T

UART

EMIF

Figure 3.18: Default configuration of the FPGA as in [61]

66

3.3 Small Form Factor SDR

Platform Specific

Netlists:

sdrioring.vhd

vpbe.ngc

vpfe.ngc

...

Custom

Skript:

model.tcl

Template

Script
PSM

Generate

TCL

Generate

VHDL

Binary:

model.bin

Functional Code:

tx_chain.vhd

rx_chain.vhd

subsystem.vhd

timing_ctrl.vhd

...

Figure 3.19: Transformation from the PSM to the bitstream on the Virtex4
FPGA

67

3 SDR Platforms

Integration of the DSP

The integration of the DSP in the design flow is done with APIs that
connect the model with the data buses. An example of these APIs in
the Simulink nevironment is shown in figure 3.20. The interface to the
VPSS is implemented as a single block, where in the example of figure
3.20 a block in transmit direction is shown. The VPFE interfaces are
linked after code generation and compiling. The other platform specific
interfaces are for configuration of the following modules: DSP, DCM and
RFM. The configuration of the DSP consists of building properties and
arguments for the compiler. In contrast to the data conversion section on
the USRP, an own parametrization is needed for the DCM to distribute
the clock frequency or to adjust the gain. The configuration of the front
end is similar to the USRP: the important parameters are the carrier
frequency and the cutting frequencies of the bandpass filters.

Figure 3.20: Example of the use of the APIs for the integration of the DSP
on the SFF SDR DP

Figure 3.21 shows the transformation from PSM to executable code,
which is similar to the transformation shown in figure 3.11. In this
transformation the C code is generated and linked to the buses and APIs.
The resulting code is compiled with the vendor specific development
environment (Code Composer Studio) and loaded on the platform.

68

3.3 Small Form Factor SDR

Platform Specific

Libraries:

vpbe.h

vpfe.h

fpga.h

timer.h

...

sff_sdr.lib

Custom

Makefile:

model.mk

Template

Makefile
PSM

Functional Code:

model.c

model.h

model_data.c

model_private.h

...

Generate

Makefile

Generate

C Code

Executable:

model.out

Figure 3.21: Transformation from the PSM to the executable file for the
DSP

69

4 Proof of Concept: Portability
of TETRA

4.1 Overview of the TETRA standard

Terrestrial Trunked Radio (TETRA) is an open specification for a digital
communication system defined by ETSI in 1995. It is intended as a radio
link for public safety agencies like police or fire department and will
replace legacy analog radio devices. Therefore, the carrier frequency was
specified to be in the already existing VHF and UHF bands for Public
Mobile Radio (PMR). With a bandwidth of 25 kHz, two 12.5 kHz wide
analog FM channels can be replaced by one channel of the new digital
system. Due to the TDMA structure with four time slots per channel,
the number of users for each channel can be doubled. Furthermore,
new features like multicasting and broadcasting, data transmission and
encryption, access to the Internet and a better resistance against inter-
ferences are added. Although its first draft was released in 1995, the
integration of the system in the current radio communication structure
for public mobile radio is still ongoing. The European project WINTSEC
proposed SDR as a way for cost efficient introduction of new commu-
nication systems by a software based interoperability with the legacy
devices.

This chapter describes the software based development of a TETRA
waveform under the aspect of portability. Due to the high complexity
of the specification, this work focuses on the user plane of the Voice
and Data (V+D) air interface protocol stack. Therefore, Physical Layer
(PHY) and Media Access Control (MAC) layers are implemented. For
completeness, figure 4.1 shows the architecture of the V+D protocol stack
for the user plane as well as the higher levels of the control plane. The
implemented PHY and MAC layers are highlighted in gray.

70

4.1 Overview of the TETRA standard

User-PlaneControl-Plane

Mobility-

Manage-

ment

P
H

Y Burst-

builder

Modu-

lation

Pulse

Shaping

Circuit

Mode

Control

Entity

Mobile/Base Link Control Entity

Packet

Handling

L
ay

er
 1

L
ay

er
 2

L
ay

er
 3

T
et

ra
 C

le
ar

/E
n

cr
yp

te
d

S
pe

ec
h

C
ic

u
it

 M
o

d
e

U
n

pr
ot

ec
te

d
D

at
a

C
ir

cu
it

 M
o

d
e

P
ro

te
ct

ed
 D

at
a

(L
ow

)

C
ir

cu
it

 M
o

d
e

P
ro

te
ct

ed
 D

at
a

(H
ig

h)

Logical Link Control

M
A

C Block

Coding
RCPC-

Code

Inter-

leaving
Scrambling

Figure 4.1: Architecture of the V+D protocol stack, based on [71]

The user plane specifies four possible traffic channels for transmitting
user data, which are distinguished according to the robustness of channel
coding and the data rate as follows:

Traffic CHannel/2.4 (TCH/2.4): Channel for data transmission with
high protection. The bit rate is according to the name 2.4 kbit/s

Traffic CHannel/4.8 (TCH/4.8): Channel for data transmission with
low protection. The bit rate is according to the name 4.8 kbit/s

Traffic CHannel/7.2 (TCH/7.2): Channel for data transmission with-
out protection. The bit rate is according to the name 7.2 kbit/s

71

4 Proof of Concept: Portability of TETRA

Traffic CHannel/Speech (TCH/S): Channel for speech transmission,
due to the bit rate of the underlying voice codec of 4567 bit/s, the
TCH/S uses TCH/4.8.

The various traffic channels described above are only logical channels.
The mapping from logical to physical channels will be described in the
specification of the PHY in section 4.2.2.

4.2 Computational Independent Model

4.2.1 Media Access Control

The MAC layer of TETRA consists of channel coding, interleaving and
scrambling according to figure 4.1. These operations are shown in more
detail in figure 4.2 with separation in the different traffic channels. For a
complete description of the individual coding and interleaving schemes,
five planes are introduced that separate the different processing blocks.
In this nomenclature bx[k] is the bit at position k of plane number x.
The figure shows furthermore the width of the bit fields, which differs
according to the data rate of the different channels. The length of these
fields in plane x is named Kx.

To assure that the convolutional encoder ends up in a defined state, the
information bits for TCH/2.4 and TCH/4.8 must be extended with four
tail bits according to the following clauses:

b2[k] =

{
b1[k] for 1 ≤ k ≤ K1

0 for K1 < k ≤ K2
(4.1)

For the TCH/2.4 the length of the vector is K1 = 144 while for the
TCH/4.8 the length is specified to K1 = 288. For these channels a zero
padding of four bits is inserted due to the register length of four for
the following encoding. Therefore, the length of K2 can be determined
to be K2 = K1 + 4. Due to the fact that the TCH/7.2 is not protecting
its information with channel encoding, neither tail bits nor encoding
schemes or interleaving are needed. For the traffic channels TCH/2.4
and TCH/4.8 the convolutional coding is identical. The encoded bits b3
can be calculated by:

72

4.2 Computational Independent Model

TCH/2.4 TCH/4.8 TCH/7.2

Interleaving Interleaving

Scrambling Scrambling Scrambling

b1

b2

b3

b4

b5

b6

4 Tail-Bits 4 Tail-Bits

Convolution.

Code

r = 1/4

Convolution.

Code

r = 1/4

144 bit

148 bit 292 bit

592 bit 1168 bit

432 bit432 bit

432 bit432 bit

432 bit432 bit432 bit

288 bit 432 bit

Puncturing

r = 148/432

Puncturing

r = 292/432

Figure 4.2: Overview of the encoding and scrambling schemes, used in
the transmit side of the traffic channel

b3[4(k − 1) + i] =
4

∑
j=0

b2[k − j]gi,j for

{
i = 1, 2, 3, 4
k = 1, 2, ...,K2 .

(4.2)

In this equation, gi,j is the element j at row i of the matrix that can be
described by the generator polynomials of the rate 1

4 mother code:

G1(X) = 1+ X + X4 ⇒ g1 = [11001]
G2(X) = 1+ X2 + X3 + X4 ⇒ g2 = [10111]
G3(X) = 1+ X + X2 + X4 ⇒ g3 = [11101]
G4(X) = 1+ X + X3 + X4 ⇒ g4 = [11011]

At this point, the traffic channels have different frame lengths. This
can also be seen in figure 4.2. The length of the bit field K3 is 592

73

4 Proof of Concept: Portability of TETRA

for the TCH/2.4, 1168 for the TCH/4.8 and 432 for the TCH/7.2. To
achieve the specified frame length of K4 = 432 bit, which is equal
for all channels, the redundancy of the encoded channels is reduced
with different puncturing schemes. The puncturing can be described as
follows:

b4[k] = b3[j(k)] (4.3)

The index j can be calculated dependent on the index k from the output
vector by the following equation for the TCH/2.4:

j(k) = 8
(⌊

k − 1+ k35
6

⌋)
+ P2.4

(
k + k35 − 6 ·

⌊
k − 1+ k35

6

⌋)
, (4.4)

where �x� is the floor function that rounds down to the largest integer
smaller than x. The variable kx is a counter that increments for multiples
of x. This can be described by

kx =

⌊
k − 1

x

⌋
. (4.5)

The mapping of P2.4 is depicted in table 4.1. For the TCH/4.8 the index j
is calculated with

j(k) = 8
(⌊

k − 1+ k65
3

⌋)
+ P4.8

(
k + k65 − 3 ·

⌊
k − 1+ k65

3

⌋)
, (4.6)

where the mapping of P4.8 is also depicted in table 4.1.

i P2.4(i) P4.8(i)

1 1 1
2 2 2
3 3 5
4 5
5 6
6 7

Table 4.1: Mapping of the puncturing scheme for TCH/2.4 and TCH/4.8

74

4.2 Computational Independent Model

The interleaving mechanism follows the same rule for TCH/2.4 and
TCH/4.8 respectively. Therefore the bits are interleaved by

b5[k] = b4 [1+ ((103 · k) mod (432))] for 1 ≤ k ≤ 432 . (4.7)

While interleaving is only applied within the convolutional encoded
channels, the scrambling mechanism is the same for all traffic channels.
It is done by adding a pseudo noise sequence p[k] to the bits:

b6[k] = b5[k]⊕ p[k] for 1 ≤ k ≤ 432 (4.8)

The scrambling sequence p[k] is generated by a 32 bit wide linear feed-
back shift register with a connection polynomial of

c(x) =
32

∑
i=0

cixi

= 1+ x + x2 + x4 + x5 + x7 + x8 + x10

+x11 + x12 + x16 + x22 + x23 + x26 + x32 .

Hereby, the k-th bit of the scrambling sequence is given by

p[k] =
32

∑
i=1

ci p[k − i]. (4.9)

Beside the connection polynomial, the initialization of the register de-
fines the scrambling code. This is done with the EXTENDED COLOUR
CODE e[k]:

p[k] =

{
e[1− k] for − 29 ≤ k ≤ 0
1 for − 31 ≤ k ≤ −30 (4.10)

The EXTENDED COLOUR CODE consists of 30 bits and describes the
mobile station according to figure 4.3. The first ten bits are defined by
the MOBILE COUNTRY CODE which identifies the country where the
device is registered. The next 14 bits identify the access net within the
country with the MOBILE NETWORK CODE. The last six bits, finally,
represent the COLOUR CODE, which identifies the individual mobile
[72]. To achieve a register length of 32, two defined bits are added.

75

4 Proof of Concept: Portability of TETRA

14 bits 6 bits

Mobile Country

Code (MCC)

Mobile Network Code

(MNC)
Colour

Code

10 bits

Figure 4.3: Initialization of the scrambling registers with the EXTENDED
COLOUR CODE

4.2.2 Physical Layer

Similar to the well known GSM standard, TETRA is specified to use a
combination of Time Division Multiple Access (TDMA) and Frequency
Division Multiple Access (FDMA) to give multiple users access to the
air interface. A TDMA frame in the TETRA system consists of four
time slots, for supporting up to four users on a single frequency of
25 kHz bandwidth. Uplink and downlink are separated in time and
frequency where the various European regulatory organizations agreed
on a distance of 10MHz between uplink and downlink carrier. To ease
the requirements for a mobile station, uplink and downlink are not only
separated in frequency, they are further shifted by two slots in time.
Figure 4.4 shows the TDMA/FDMA structure with the combination of
Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
The gray boxes show an example of a physical channel, defined with a
pair of frequencies (for uplink and downlink carriers) and a correspond-
ing time slot number [73].

In every occupied time slot one burst is transmitted. TETRA specifies
four bursts for the downlink and another three bursts for the uplink.
With these bursts, control information, synchronization mechanisms and
user data can be transmitted. Due to the fact that this work is focused on
the user plane, only the bursts containing user data or synchronization
information are considered. A NORMAL UPLINK BURST or a NORMAL
DOWNLINK BURST consists of 510 bits and maps the logical traffic chan-
nels to the physical channels by extending the coded bits with training
sequences, guard intervals and control information. In addition, special
synchronization bursts ensure that the mobile station can be synchro-
nized to its frequency and frame structure. Examples of uplink and
downlink bursts, specified in the TETRA standard and considered in
the CIM, are shown in figure 4.5. To achieve a data transmission, the

76

4.2 Computational Independent Model

3

3

3

3

4

4

4

4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2 2

2 2

2 2

2 2

2

2

2

2

2

2

2

2

3

3

3

3

3 3

3 3

3 3

3 3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

Time (ms)

T
E

T
R

A
 f

re
q

u
en

cy
 b

an
d

F = Frequency downlinkdw

F = Frequency uplinkup

G = Guard bandwidth

D = Duplex bandwidth

F
re

q
u

en
cy

U
p

li
n

k
D

o
w

n
li

n
k

56.67
14.17

Fdw,4

Fup,4

Fdw,3

Fup,3

Fdw,2

Fup,2

Fdw,1

Fup,1

D

25
 k

H
zG

G

Figure 4.4: Overview of the FDMA/TDMA structure

NORMAL DOWNLINK BURST is transmitted. The two blocks with en-
coded data comprise of the 432 bit long traffic channel, which can be
encoded with the error schemes described in the previous section. The
broadcast bits, indicated as BBK in figure 4.5, are control information
from the Access Assignment CHannel (AACH). This is a channel that
controls the time slot occupation in uplink and downlink. As mentioned
previously, this work focuses on the user plane. However, for the sake
of completeness the AACH is part of the NORMAL DOWNLINK BURST
and has therefore to be implemented. The information for the AACH
consists of 14 bits that are encoded with a shortened Reed Muller code,
leading to a coded bit length of 30. The generator matrix can be found in
[73]. The coded bits are scrambled with the scheme described above and
form the BBK bits in the NORMAL DOWNLINK BURST.

77

4 Proof of Concept: Portability of TETRA

Normal Uplink Burst

Normal Downlink Burst

Synchronization Downlink Burst

R+PA Ramping + PA linearize

GP Guard Period

PA Phase Adjustment

FC Frequency Correction

TB Tail Bits

TS Training Sequence

STS Synchronization TS

BBK Broadcast Block

R+PA

TS

TS

TS

TS

GP

1 full slot = 510 bit periods = 255 symbol periods = 14.17 ms

T
B

P
A

P
A

P
A

P
A

T
B

Data

Data

DataFC

Data

Data

Data

TS

TS

STS

BBK

BBK

BBK

34 4 216 22 216 4 14

12 2 216 14 22 16 216 2 10

10221630381208012 2

Figure 4.5: TETRA V+D uplink and downlink burst types

The bits of the bursts are modulated with a Differential Quadrature
Phase-Shift Keying (DQPSK) scheme with a phase offset of π/4. Due to
the fact that a phase rotation must occur between two adjacent symbols,
the current symbol s[k] can be calculated dependent on the previous one
by

s[k] = s[k − 1]ejφ[k] with s[0] = 1 . (4.11)

The phase offset φ[k] depends on the current symbol and can be deter-
mined using table 4.2. With these values, no phase shift of ±π occurs,
which reduces fluctuations in the magnitude of the complex envelope.
This eases the linearization requirements of power amplifiers, especially
in mobile devices where power amplifier should be as cheap as possible.
The signal trajectory of this modulation scheme is shown on the left hand

78

4.2 Computational Independent Model

side in figure 4.6. Another advantage of this modulation scheme is that
it allows non-coherent demodulation at the receiver, due to the fact that
information is not transmitted with the current phase but with the phase
offset. Even if the Signal-to-Noise Ratio (SNR) has to be doubled to
achieve the same bit error rate as QPSK, the ease of the synchronization
compensates this loss.

Table 4.2: Phase offset depending on the actual symbol

Bit 2 Bit 1 Symbol φ[k]

1 1 3 - 3π
4

0 1 1 + 3π
4

0 0 0 - π
4

1 0 2 + π
4

To generate the transmit signal stx(t), the discrete time symbols s[k] are
filtered with a time continuous pulse shaping filter gRRC(t). This can be
described as follows:

stx(t) =
K

∑
k=0

s[k] · gRRC(t − kTsym), (4.12)

where Tsym is the symbol duration of 55.56 μs and K is the maximum
number of symbols. The impulse response of the pulse shaping filter
gRRC(t) is obtained by the inverse Fourier transform of a square root
raised cosine spectrum GRRC(f) with roll-off factor α defined as

GRRC(f) =

⎧⎪⎪⎨
⎪⎪⎩
1, | f | ≤ 1−α

2Tsym

cos
(

πTsym
2α

(
| f | − 1−α

2Tsym

))
, 1−α

2Tsym < | f | ≤ 1+α
2Tsym

0, | f | > 1+α
2Tsym .

(4.13)

TETRA specifies α = 0.35 and offers the possibility to implement a time
limited version of gRRC(t) that fulfills the constraints of modulation
accuracy and adjacent channel attenuation. Therefore, the sequence of
complex symbols s[k]must be interpolated by a factor of IRRC and fur-
thermore filtered with a discrete time realization of the root raised cosine
filter. This is identical to the sampling of the time continuous transmit

79

4 Proof of Concept: Portability of TETRA

function stx(t) with sampling rate IRRC/Tsym. Hence, the discrete time
signal of the transmit sequence can be described as

stx

(
i · Tsym

IRRC

)
=

K

∑
k=0

s[k]gRRC

(
i · Tsym

IRRC
− kTsym

)
. (4.14)

The design of the filter gRRC(·) is platform specific due to the sample
rate conversion. Therefore it is part of the PSM. However, it has to be
mentioned that the pulse shaping filter results in larger fluctuations of
the complex envelope and hence a smaller hole of the signal trajectory in
the complex plane. This effect is shown on the right hand side of figure
4.6.

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

Re {s[k]}

Im
 {s

[k
]}

Without pulse shaping

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

Re {s(t)}

Im
 {s

(t
)}

With pulse shaping

Figure 4.6: Signal trajectory of the π
4 -DQPSK modulation scheme

Table 4.3 summarizes the key parameters of the TETRA system.

4.3 Platform Independent Model

The Platform Independent Model of TETRA is the implementation of
the transmit path as described in the CIM in the previous section 4.2.

80

4.3 Platform Independent Model

Table 4.3: Overview of the TETRA system parameter

Parameter Value

Carrier frequency 400 MHz
Bandwidth 25 kHz
Media access TDMA/FDMA
Duplex mode TDD/FDD

Users per carrier 4
Modulation π

4 -DQPSK
Channel coding RCPC
Symbol rate 18 kBaud/s
Bits per slot 510

Frame duration 56.67 ms
Bursts per frame 4
Burst duration 14.167 ms
Pulse shaping RRC with 0.35 rolloff
Data rate up to 28.8 kbit/s

Furthermore, the receive side is implemented with the synchronization
of time, frequency and frame, which is not described in the CIM.

4.3.1 Transmitter

The input of the transmitter is a vector with random bits generated by
a Pseudo Noise (PN) sequence and is used as information data. The
length of this array depends on the traffic channel and can vary from
144 bits for the TCH/2.4, over 288 bits for the TCH/4.8 to 432 bits for
the TCH/7.2. The encoding depends also on the traffic channel and
assures an output length of 432 bits, independent of the channel’s data
rate. The scrambling with the EXTENDED COLOUR CODE is similar for
all channels. It is assumed that the initialization of the register is already
known at transmit and receive side.

Another input for the transmitter is the 14 bit wide vector for the control
channel (AACH). It has to be mentioned that this channel also transmits
random bits. Therefore, no control or configuration is applied from the
information of the broadcast channel. The control channel is encoded
with a shortened ReedMuller code and scrambled with the same pseudo

81

4 Proof of Concept: Portability of TETRA

noise sequence as the traffic channel. The burst builder shown in figure
4.7 integrates the encoded data fields in a NORMAL DOWNLINK BURST
as defined by the TETRA specification and adds a SYNCHRONIZATION
DOWNLINK BURST after 18 regular bursts. This synchronization burst is
needed for the frequency synchronization in the receiver. The frame size
for the implementation is according to the TETRA burst length set to
510. These bits are modulated with the described π

4 -DQPSK modulation
scheme to 255 complex symbols. The pulse shaping filter that must fulfill
the root raised cosine spectrum finalizes the transmit side.

Burst

builder

�/4

DQPSK
AACH

MAC

TCH

MAC

RRC

PN

PN

144

288

432 432

30

255 255· IRRC

14

510

Figure 4.7: PIM of the TETRA transmit path

The realization of the Root Raised Cosine (RRC) transmit filter as an FIR
filter can be determined by two parameters: the interpolation factor IRRC
and the group delay DRRC. The third parameter, the roll-off factor is
already specified in the standard to α = 0.35. According to the symbol
rate of 18 kBaud/s the symbol time can be determined to Tsym = 55.56 μs.
The impulse response of an RRC filter is according to [74]

gRRC(t) = 4α

cos
(
(1+ α)π t

Tsym

)
+

sin
(
(1−α)π t

Tsym

)
4α t

Tsym

π
√

Tsym

(
1−

(
4α t

Tsym

)2) . (4.15)

The discrete time realization of this filter response can be described with

82

4.3 Platform Independent Model

the interpolation factor IRRC as follows:

gRRC

(
i · Tsym

IRRC

)
= 4α

cos
(
(1+ α)π i

IRRC

)
+

sin
(
(1−α)π i

IRRC

)
4α i

IRRC

π
√

Tsym

(
1−

(
4α i

IRRC

)2) (4.16)

Due to the fact that this filter is defined for infinite values of i, a time lim-
ited version of gRRC(·)must be applied and the impulse response must
be delayed to achieve a causal filter. The group delay DRRC describes the
number of symbol durations the impulse response must be shifted and
is therefore the implicit parameter of the rectangular window function
w[i] with

w[i] =

{
1 |i| ≤ DRRC · IRRC
0 |i| > DRRC · IRRC.

(4.17)

The time limited realization of the filter can be described as follows:

gRRC,w

(
i · Tsym

IRRC

)
= gRRC

(
i · Tsym

IRRC

)
· w[i] (4.18)

With the multiplication of the window function, the filter length can be
determined to 2DRRC IRRC + 1 and is therefore proportional to the group
delay. The performance loss of this filter due to the windowing can be
evaluated by the relative energy loss that can be calculated as follows:

Erel =
ERRC − ERRC,w

ERRC
, (4.19)

where the energy of an RRC impulse response can be easily calculated
with the impulse response of a raised cosine filter gRC[i]:

ERRC = g∗RRC[−i] ∗ gRRC[i] |i=0 (4.20)

=
IRRC
Tsym

· gRC[i] |i=0 (4.21)

=
IRRC
Tsym

(4.22)

83

4 Proof of Concept: Portability of TETRA

The relation of the energies can be determined to:

Erel = 1−
DRRC·IRRC

∑
i=−DRRC·IRRC

∣∣∣∣∣∣∣∣∣
4α

cos
(
(1+ α)π i

IRRC

)
+

sin
(
(1−α)π i

IRRC

)
4α i

IRRC

π
√

Tsym

(
1−

(
4α i

IRRC

)2)
∣∣∣∣∣∣∣∣∣

2

(4.23)

Figure 4.8 shows the relative energy loss Erel in relation to the group
delay DRRC. To achieve an energy loss less than 0.01% a group delay of
six was chosen in combination with an interpolation factor of IRRC =
64. The chosen parameters result in 769 taps for one filter and the
signal processing period for one frame is about 1.5ms on an Intel P8400
processor with a clock frequency of 2.28GHz. Even if this filter length
is not feasible for a real time implementation, the combination between
filter accuracy and simulation time is acceptable.

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

D
RRC

E
re

l

Figure 4.8: Relative energy loss of a windowed realization of an RRC in
dependence of the group delay DRRC

84

4.3 Platform Independent Model

4.3.2 Channel

For the evaluation of the synchronization algorithms, a channel must
be simulated. This channel behaves like a virtual front end and adds
a white Gaussian noise signal n(t). The input of the channel consists
of a vector comprising the interpolated and filtered symbols stx(t) with
the TETRA burst length multiplied with the interpolation factor IRRC.
To introduce channel delay, a fixed latency of N symbols is applied.
Hence, a vector comprises two partial TETRA bursts and the receiver
has to detect the beginning of a burst. To simulate the different clock
frequencies of transmitter and receiver, another delay ε is inserted. In
contrast to the first delay, the time shift is not fixed and varies over time.
With these operations, the channel can be described as follows:

rrx(t) = stx
(
t − NTsym − ε(t)

)
+ n(t) (4.24)

Due to the discrete time realization of the PIM, the received signal is
given by

rrx

(
i · Tsym

IRRC

)
= stx

(
i · Tsym

IRRC
− NTsym − ε

(
i · Tsym

IRRC

))
+n

(
i · Tsym

IRRC

)
.

(4.25)

Another effect of the asynchronous local oscillators on the transmitter
and receiver is the offset of the carrier frequency ν and the phase offset
ϕ. These RF impairments are simulated by the multiplication with a
complex harmonic wave. Under the assumption that no time and symbol
offset occurs, the receive signal rrx(·) can be determined by

rrx

(
i · Tsym

IRRC

)
= stx

(
i · Tsym

IRRC

)
· ej2π

(
ν·i· Tsym

IRRC
+ϕ

)
+ n

(
i · Tsym

IRRC

)
. (4.26)

A more detailed description of this channel as a virtual front end can be
found in [75].

85

4 Proof of Concept: Portability of TETRA

s [i]tx /IRRC r [i]rx /IRRC

n[i]/IRRC
j2�(�·i/I �)

e RRC
+

	

z

Counter

	N� I
z

RRC

Figure 4.9: Structure of the channel, which works as a virtual front end

4.3.3 Time Synchronization in TETRA

To minimize the influence of the additive white Gaussian noise n(·), the
received signal rrx(·) is filtered with the root raised cosine filter, which
is also the matched filter to

r
(

i · Tsym
IRRC

)
= rrx

(
i · Tsym

IRRC

)
∗ gRRC

(
i · Tsym

IRRC

)
. (4.27)

Prior to downsampling, the timing error ε must be determined and
corrected. This is done by a square timing error detector as proposed
by Oerder in [76]. By calculating the square of the absolute value of the
received and filtered signal r(·), there are linear distortions leading to
spectral peaks at multiples of the system’s symbol rate, which include
the delay information. The squared receive signal x[i] can be expressed
by

x[i] =
∣∣∣∣r
(

i · Tsym
IRRC

)∣∣∣∣2 . (4.28)

Figure 4.10 shows the spectrum of the signal x[i]. The mentioned spectral
lines at multiples of 18 kHz indicate the symbol rate. The time delay in
the symbol rate is now transformed into a phase shift. Therefore, the
delay can be determined by calculating the phase rotation in the spectral
domain at the frequency of the symbol rate. By assuming that the timing
error is constant over L symbols, the Fourier transform can be applied
over L · IRRC samples. Due to the fact that only the Fourier coefficient
at the symbol rate is needed for the timing error, it can be calculated as
follows:

86

4.3 Platform Independent Model

X[m] =
(m+1)LIRRC−1

∑
i=mLIRRC

x[i]e−j2πi/IRRC (4.29)

−72 −54 −36 −18 0 18 36 54 72

−200

−150

−100

−50

0

Frequency [kHz]

M
ag

ni
tu

d
e−

Sq
ua

re
d

 [d
B

]

Figure 4.10: Spectrum of the squared magnitude of the receive signal

Therefore, the timing error ε can be determined by

ε[m] = − 1
2π

arg {X[m]} . (4.30)

It has to be mentioned that the choices of several parameters such as
the interpolation factor IRRC or the assumption that the timing error is
constant over L symbols, depends on the underlying platform. Therefore,
these parameters will be discussed in the PSM.

87

4 Proof of Concept: Portability of TETRA

4.3.4 Frequency Synchronization

The frequency offset is determined by using the 19 symbol wide SYN-
CHRONIZATION TRAINING SEQUENCE and the 40 symbol wide FRE-
QUENCY CORRECTION FIELD as shown in figure 4.5. According to the
specification, the SYNCHRONIZATION DOWNLINK BURST is sent after
18 NORMAL DOWNLINK BURSTS. To detect the SYNCHRONIZATION
DOWNLINK BURST the incoming symbols are correlated with the follow-
ing two training sequences: the FREQUENCY CORRECTION FIELD and
the SYNCHRONIZATION TRAINING SEQUENCE. However, by assuming
a frequency offset, the peak of the correlation would disappear in the
noise. A possibility to circumvent this is to build the product of the
incoming symbol with the conjugate complex of the previous symbol.
This transforms the frequency offset to a phase offset. The signal is then
correlated with the training sequences and the peak remains detectable
for frequency offsets as shown in figure 4.11.

The position of the peak leads to the position of the FREQUENCY COR-
RECTION FIELD, which consists of the following bits:

FC = [1, 1, ..., 1, 1︸ ︷︷ ︸
8

, 0, 0, ..., 0, 0︸ ︷︷ ︸
64

, 1, 1, ..., 1, 1︸ ︷︷ ︸
8

]

The zero bits in the middle of the field lead to a phase offset of π/4
between two symbols. With this information, the frequency offset can
be evaluated by

r(k · Tsym)
!
= r((k − 1) · Tsym)ejπ/4 for k = FC5 . . . FC36 . (4.31)

In this equation, FCx represents the position of symbol number x in the
FREQUENCY CORRECTION FIELD inside the symbol stream. With the
following equation:

ν̂ =
1
2π

·
(
1
32

FC36

∑
k=FC5

arg
{

r(k · Tsym)
}− arg

{
r((k − 1) · Tsym)

}− π

4

)
,

(4.32)

88

4.3 Platform Independent Model

a frequency offset in the range of −9 kHz to 9 kHz can be evaluated.
Higher frequency offsets lead to errors due to phase ambiguities. There-
fore, frequency offset acquisition algorithms have to be implemented.
However, this depends on the platform specific offset and is therefore
not taken into account in the PIM. Figure 4.11 shows the correlation
with the known sequences for finding the FREQUENCY CORRECTION
FIELD. The input signal has a signal to noise ratio of SNR = 20dB and a
frequency offset of ν = 1 kHz.

0 0.5 1 1.5 2
0

20

40

Time [s]

〈r[
k
],
F
C
〉

0 0.5 1 1.5 2
0

10

20

Time [s]

〈r[
k
],
S
T
S
〉

Figure 4.11: Correlation of the receive signal r[k] with the synchroniza-
tion sequences: SYNCHRONIZATION TRAINING SEQUENCE
(STS) and FREQUENCY CORRECTION FIELD (FC)

The frequency offset signal is an error compensation signal in the de-
modulation. Due to the incoherent demodulation of the signal, the angle
of the actual signal is subtracted from the angle of the last symbol. This
means that the frequency offset can be regarded as an angle offset be-
tween two symbols, leading to another subtraction of the phase offset.
With this method, a complex multiplication can be replaced by a simple
real addition.

A phase synchronization is not necessary. The differential modulation
scheme includes the information on the phase difference between two ad-
jacent symbols. Therefore, no knowledge of the absolute phase position
is needed.

89

4 Proof of Concept: Portability of TETRA

4.3.5 Frame Synchronization

The output of the demodulator is a bit stream without information about
the embedded bursts. Therefore, the frame synchronization extracts
the traffic and control channels from the bit stream. To find the logical
channels inside the stream, every burst includes training sequences as
shown in figure 4.5. When receiving data from the NORMAL CONTIN-
UOUS DOWNLINK BURST, the frame synchronization searches the bit
stream for the TRAINING SEQUENCE 1 (TS1) and TRAINING SEQUENCE
3 (TS3). These fields indicate the start and stop of the traffic and the
control channel. The output is a 432 bit long vector, comprising the
Traffic CHannel (TCH) and a 30 bit long vector with the AACH. The
receiver for the physical layer is shown in figure 4.12 with a matched
filter, time synchronization, frequency synchronization and frame syn-
chronization.

Demodg [i/I]RRC RRC

Frequ

Error

Estim

Timing

Error

Estim.

Frame

Sync

kTsym

r [i/I]rx RRC r[i/I]RRC

.

TCH

AACH

r[k]

Figure 4.12: Overview of the PIM of the receiving PHY

4.3.6 MAC receiver

The input of the MAC receiver comprises two vectors: the 432 bit long
TCH and the 30 bit long AACH. Since both channels are encoded dif-
ferently, two receivers have to be used that work in parallel. The first
operation in the TCH receiver is descrambling. Due to the fact that an
additive scrambler was used in the transmit path, the descrambling can
be achieved by a second addition with the pseudo noise sequence p[k].
To generate the same sequence as in the transmitter, the initialization of
the register with the EXTENDED COLOUR CODE must be known at the

90

4.3 Platform Independent Model

receiver. The descrambling can be described by

b̂5[k] = b̂6[k] + p[k] for 1 ≤ k ≤ 432 , (4.33)

where b̂x[k] represents the approximated bit at position k of the plane x
as indicated in the transmit side by figure 4.2.

In case of the TCH/7.2, the descrambled bits are the information bits
with

b̂1[k] = b̂5[k] . (4.34)

No decoding is applied, however, the bits of the other traffic channels
must be descrambled. According to the interleaving scheme, which
was described in equation (4.7), the inverse element of 103 has to be
determined. It can be shown that 151 is the inverse element to 103 when
holding the condition

(151 · 103) mod 432 = 1 . (4.35)

The de-interleaving can be applied as follows:

b̂4[k] = b̂5 [1+ (151 (k − 1)− 1) mod (432)] for 1 ≤ k ≤ 432 (4.36)

The time shifts are necessary because the range of values have to be
mapped from the modulo 432 interval [0, 431] to the interval [1, 432].
The now de-interleaved data are decoded, according to the dedicated
traffic channel. The lengths of 592 for the TCH/2.4 and 1168 for the
TCH/4.8 can be achieved by inserting random bits at the positions where
information data were dropped, according to the scheme described in
equation (4.3) and table 4.1. Due to the fact that there is no information
about the inserted data, values of 0.5 are inserted.

The decoding is achieved with a Viterbi algorithm. Since the PIM is not
a real-time implementation, the traceback length of the Viterbi decoder
can be set to the frame length, leading to the best error correction perfor-
mance. However, due to the applied scrambling of the data, the Viterbi
decoder works in a hard decision mode. The only bits with reliability
values are the punctured bits, which are included with values of 0.5. An
advantage of the hard decision decoding is the reduced memory usage.
This yields in a loss of approximately 2.5 dB in the SNR compared to soft
decision decoding [77].

91

4 Proof of Concept: Portability of TETRA

The 30 bit wide data field of the AACH is descrambled with the same
sequence used for the traffic channels. The decoding is achieved with
the parity check matrix, which is used to calculate the syndrome vector.
Since the syndrome depends only on the error vector and not on the code
word, it can be mapped to an error pattern. However, due to the fact that
there are 216 different syndromes, only pattern errors with one bit error
are searched. This eases the implementation and is a valid expectation.
The probability that more than one bit is wrong in the 30 bit long AACH
receive vector can be calculated with the bit error rate of the uncoded
data Pb to

PAACH = 1−
(
(1− Pb)

30 + 30 (1− Pb)
29 · Pb

)
. (4.37)

Assuming a bit error rate of Pb = 0.01 on the channel, the probability
that the AACH would be decoded incorrectly is 3.6%.

4.4 Platform Specific Model for the USRP

4.4.1 Separation on different processing elements

As described in section 3.2, the platform consists of an FPGA on the
USRP and a GPP. Due to the fact that the FPGA is relatively small and
without hardware multipliers, most of the signal processing should be
located on the GPP. The sample rate conversion from symbol rate to DAC
rate and vice versa should be done in the FPGA. Another limitation of
the FPGA is the fixed clock frequency of 64MHz, leading to sampling
rates that are only integer divisions of this rate. In the following the
resampling for the transmit side is described. As introduced in section
4.3, the symbol time interval is denoted by Tsym. The sampling rate of the
DAC is given by fs = 1/Ts. The TETRA symbol rate is according to table
4.3 fsym = 18 kHz. The input rate of the DACs is fs = 32MHz. With
these data, a resampling factor R can be determined with the following
factors of interpolation and decimation:

R =
fs

fsym
=

32MHz
18 kHz

=
27 · 53
32

(4.38)

92

4.4 Platform Specific Model for the USRP

Due to the architecture of the platform, the FPGA is only able to work
with an upsampling factor of integer numbers. This leads to a resampling
over two stages: the first resampling stage is realized in the GPP, while
the second stage is done in the FPGA with an interpolation to achieve
the DAC rate of 32MHz. This yields the factors

R =
IGPP
DGPP

· IFPGA =
IFIR
DFIR

· ICIC . (4.39)

The FPGA provides no multipliers and should perform a high sampling
rate conversion. Therefore, a CIC interpolation filter as described in [78]
is needed. CIC filters are a class of digital filters that achieve decimation
and interpolation without any multipliers. The hardware efficient imple-
mentation is furthermore favored by the highly symmetrical structure,
comprising cascaded integrator and comb filter pairs [79]. However,
CIC filters have two major disadvantages. The first is that the internal
word width increases with the number of stages. However, due to the
fact that the FPGA is able to work on data words with arbitrary lengths,
this is not a problem in this realization. The second disadvantage is
the passband of the filter, which is not flat. To circumvent this problem,
an FIR filter has to be designed on the GPP that compensates the CIC
frequency response in the desired band. The design of these filters is
described in the next section.

Figure 4.13 shows the separation of the resampling on the USRP. The re-
maining part of the transmitter on the GPP is not shown. The resampling
on the receive side has two differences in comparison to the concept of
the transmit side. The decimation factors on the receiver are represented
with the letter I, while the interpolation factors are described with the
letter D. This is due to the fact that the same interpolation and decima-
tion rates are used on the transmit and receive side. Another difference
is the missing decimation at the last block of the resampling, since the
decimation has to be triggered by the timing error detector. Therefore, it
is not shown in this figure.

4.4.2 Resampling

The resampling on the transmit side is done in two stages, one inter-
polation on the FPGA and one resampling on the GPP. The following

93

4 Proof of Concept: Portability of TETRA

�IFIR
HFIR �DFIR �ICIC

HCIC

GPP FPGA

HFIR �DFIR �ICIC
HCIC

Figure 4.13: Overview of the resampling on the USRP

objectives have to be achieved:

• The sampling rate must be converted from fsym to fs.

• The pulse shaping of the transmitter must be equal to the frequency
response of a root raised cosine filter.

• The conditions for the TETRA spectrum mask must be maintained.

As indicated in the previous section, the interpolation filter on the FPGA
can be realized as a CIC filter with a frequency response as follows:

GCIC(f) =

⎡
⎣ sin

(
π f Tsym DFIR

ICIC

)
sin

(
π f Tsym DFIR

IFIR·ICIC
)
⎤
⎦

NCIC

(4.40)

The parameters for the resampling are already given, therefore the num-
ber of stages NCIC remains as the only parameter to configure this filter.
To ensure that the overall frequency response of the system is equal to a
root raised cosine, a CIC compensation filter has to be implemented on
the GPP. The frequency response for this filter GFIR on the GPP can be
calculated by

GFIR(f) =
GRRC(f)
GCIC(f)

, (4.41)

where GRRC(f) is the frequency response of an RRC filter as described
in (4.13) and GCIC(f) is the frequency responses for the CIC filter as
described in (4.40).

94

4.4 Platform Specific Model for the USRP

A root raised cosine filter is also a low pass filter where the pass band
depends on the roll-off factor α. Therefore, the relation between inter-
polation and decimation on the FIR filters should fulfill the following
condition:

IFIR
DFIR

≥ 1+ α (4.42)

The filters are realized digitally on reconfigurable logic or processors.
From the discrete time impulse response, the frequency response can be
calculated for the CIC filter as follows:

HCIC(f) =
∞

∑
n=−∞

GRRC

(
f − n

IFIR · ICIC
DFIR · Tsym

)
(4.43)

The frequency response of the discrete time filter HFIR(f) is given by

HFIR(f) =
∞

∑
n=−∞

GFIR

(
f − n

IFIR
DFIR

Tsym

)
si
(
π f (2NFIR + 1)Tsym

)
.

(4.44)

The decimation after filtering is included in the frequency response
HFIR(f). The factor NFIR defines the length of the FIR filter, i.e. the
number of filter taps. When combining these filters, the TETRA spectrum
mask has to be considered in a way that the tolerance schemes, as given
in table 4.4 showing the maximum noise levels, are fulfilled .

Frequency Offset Maximum Noise Level

25 kHz - 50 kHz −55 dBc
50 kHz - 100 kHz −70 dBc
100 kHz - 250 kHz −75 dBc
250 kHz - 5MHz −80 dBc

> 5MHz −100 dBc

Table 4.4: TETRA spectrum mask with the maximum noise levels in
dependence of the frequency offset

95

4 Proof of Concept: Portability of TETRA

There are several ways of choosing the filter parameters to fulfill the
above mentioned objectives. However, due to the fact that the CIC filters
are the only signal processing elements on the FPGA, the interpolation
factor of the CICwas chosen as high as possible to lower the interpolation
factor on the GPP. The decimation factor DFIR was already defined in
equation (4.38) to DFIR = 9. As follows, the smallest integer value
of IFIR that holds the criteria (4.42) is IFIR = 16. This determines the
interpolation factor on the FPGA to ICIC = 1000. A CIC filter with
NCIC = 10 stages suppresses the aliases of the RRC spectrum to be
compliant with the tolerance scheme of the spectrum mask. With higher
values of the filter length NFIR, the spectrum gets closer to the RRC
spectrum. According to section 4.3, the filter length was chosen as
NFIR = 6. These parameters are summarized in table 4.5.

Parameter Value

NCIC 10
ICIC 1000

MCIC 1
IFIR 16
DFIR 9
NFIR 6

Table 4.5: Parameters for the Resampling on the USRP

The frequency response of this system with RRC, CIC compensation and
CIC filters is shown in figure 4.14 with reference to the TETRA spectrum
mask and an optimum RRC filter.

It has to be mentioned that the impulse response of the filters for the
receive path and the transmit path are identical. While the filter on the
transmit path is the pulse shaping filter, the filter on the receive path
is the matched filter. The values for the interpolation of the transmit
side are now the values for the decimation on the receive side and vice
versa, except for the decimation in the CIC filter which is double the
interpolation factor on the transmit side. This is due to the different
ADC and DAC rates. Another difference is that the filters on the receive
side do not apply a decimation. The decimation in the last cascade is
shifted to the timing synchronization, which is described in the following
section.

96

4.4 Platform Specific Model for the USRP

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

Frequency [kHz]

M
ag

ni
tu

d
e

[d
B

]

Spectrum Mask
Root Raised Cosine
Designed Filter

Figure 4.14: Designed filter, which fulfills the tolerance scheme of the
TETRA spectrum mask

Table 4.6 shows the usage of LEs on the USRP’s FPGA. It can be seen that
92% of the provided space is used. Due to the fact that the decimation
rate on the CIC receive filter twice the factor of the CIC transmit side,
the usage for the receive side is higher. The usage of the overhead for
buffers, Digital Down Converter or interfaces is given in table 3.1.

4.4.3 Timing Synchronization

The timing synchronization is described in section 4.3 but two parame-
ters have still to be defined according to the underlying platform. These
are the oversampling factor I and the number of symbols that have a con-
stant time offset L. The oversampling factor is given by the resampling

97

4 Proof of Concept: Portability of TETRA

Cyclone Logic Elements
12060 100 %

Overhead 3895 32 %
CIC Rx 5374 45 %
CIC Tx 1871 16 %
Sum 11140 93 %

Table 4.6: Number of Logic Elements used in the FPGA

filter design, which leads to

I = IFIR = 16 .

The factor L can be approximated by the timing error, caused by the
oscillator on the USRP. According to section 3.2, the frequency tolerance
of the local oscillator is ±20 ppm. This leads to a maximum time shift of
approximately one symbol interval in a three second period. Working
with a frame length of L = 255 symbols, as done in the PIM, leads to
a time shift of 0.5% of the symbol time period after any frame. There-
fore, no adaptation of the PIM has to be taken into account and the
timing error can be approximated as constant over one burst. Figure
4.15 shows the normalized time offset for the USRP. The dashed lines are
the maximum and minimum theoretical time offsets from the oscilator’s
instability while the solid line shows measured values on the USRP over
one second.

4.4.4 Frequency Synchronization

The frequency offset is detected with the FREQUENCY CORRECTION
FIELD in the SYNCHRONIZATION DOWNLINK BURST as described in
section 4.3. However, due to the 20 ppm inaccuracy of the oscillator the
resulting frequency offset from the Flex400 daughter board can vary
from ±8 kHz to ±10 kHz, depending on the carrier frequency. This
value exceeds the maximum detectable frequency of the tracking which
is 9 kHz. Therefore, prior to tracking, a carrier acquisition scheme has
to be applied on the USRP. This scheme is according to the dual filter
detector as proposed in [80]. The structure of this acquisition method

98

4.4 Platform Specific Model for the USRP

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time [s]

T
im

in
g

er
ro

r
/

 T
sy

m

Measured error
Max/Min error

Figure 4.15: Measured time offset with maximum and minimum condi-
tions for the timing error

is shown in figure 4.16. The band pass filters are placed symmetrically
around the carrier frequency. If the energy of the signal filtered with the
upper band pass is equal to the energy of the signal with the lower band
pass, no frequency offset occurred. The two band pass filters and the
spectrum of the TETRA signal are depicted in figure 4.17. The magnitude
square of the filter output can be seen as the energy of the filtered signal,
whereas the error signal e can be obtained by the subtraction of these
two energies.

The filters are designed as low pass filters and then transformed to band
pass filters. For the low pass filters the window design was chosen in
combination with a Hamming window. To ensure that the error signal
has its highest values between 8 kHz (frequency offsets lower than this
value can be synchronized by the tracking) and 10 kHz (this should be
the highest frequency offset due to the oscillator inaccuracy), the center
frequency was chosen to be 9 kHz. Combined with the sampling rate of
288 kHz at the input of the GPP, this leads to a tap length of multiples
of 16. Figure 4.17 shows the frequency response of the band pass filters
with the frequency response of the root raised cosine pulse shaping filter

99

4 Proof of Concept: Portability of TETRA

r [i]rx /IRRC
e[i]/IRRC

x [i]u /IRRC

x [i]l /IRRC	 kHz

9 kHz

2
|·|

2
|·|

-

Figure 4.16: Block diagram of the frequency acquisition

−36 −27 −18 −9 0 9 18 27 36
0

0.2

0.4

0.6

0.8

1

Frequency [kHz]

M
ag

ni
tu

d
e

Figure 4.17: Illustration of the band pass filters and the raised cosine
spectrum for the frequency acquisition

designed above. Figure 4.18 shows the error signal e(ν) in relation to the
frequency offset ν.

Large frequency offsets like ±10 kHz must only be synchronized at the

100

4.4 Platform Specific Model for the USRP

−20 −10 0 10 20

−0.2

−0.1

0

0.1

0.2

0.3

ν [kHz]

e(
ν)

Figure 4.18: Error signal e(ν) of the dual filter detector in dependence
on the frequency offset ν

start of the transmission. Therefore, the acquisition is only applied in
the initialization phase of the receiver. The frequency synchronization as
described in the PIM controls that the frequency offset does not exceed
the maximum value. The measurement of the current offset is performed
for each received SYNCHRONIZATION DOWNLINK BURST and the ap-
proximated frequency offset is saved until the next SYNCHRONIZATION
DOWNLINK BURST is detected. The following demodulation can be
implemented as a subtraction of the previous phase value and the phase
offset, which was evaluated by the frequency synchronization, from the
current phase value.

4.4.5 MAC receiver

The whole frame synchronization as well as the receiver for the traffic
channel and the AACH are taken from the PIM without any adaptations
due to the signal processing. Changes that are made for measuring

101

4 Proof of Concept: Portability of TETRA

the processing time (varying of the data types, hand written versus
generated code) are described in section 4.5.

4.5 Benchmarks for the waveform on the GPP

The PSM for the USRP that was described in section 4.4 is transformed
into C++ code and the execution time on a GPP was measured. The
processor is an Intel Core 2 Duo CPU (P8400) with a clock frequency of
2.28GHz. It was introduced in section 2.4 for the evaluation of the code
generation overhead. The C++ code is compiled with VS and executed
on a Windows 7 operating system. All measurement results apply to one
NORMAL DOWNLINK BURST, which comprises 255 symbol periods.

 0 0.25 0.5 0.74 0.99

Receiver

Transmitter

Transceiver

Pr
oc

es
si

ng
 b

lo
ck

Processing time [ms]

 0 % 25 % 50 % 75 % 100 %

Relation to transceiver

Figure 4.19: Comparison of the processing time for the transceiver, trans-
mitter and receiver

Figure 4.19 shows the processing time for the complete transceiver,
which is 0.99ms. With the timing constraint of 14.17ms for one burst,
only 7% of the processor capacity is used. In this case the code was
not optimized for the platform, except for the compiler flags. Figure
4.19 shows the processing time for one burst on the lower x-axis. To

102

4.5 Benchmarks for the waveform on the GPP

highlight the influence of the measured code segment on the whole
system, the x-axis on the top is the relation of the processing time to
the transceiver time. This form of representation is maintained for
the following figures. In the transceiver measurements, the relation
for the processing time from transmitter to receiver can be seen. Due
to the increasing complexity for synchronization and decoding, the
receiver consumes approximately ten times more processing time than
the transmitter.

In figure 4.20 the processing times of the different blocks in the trans-
mitter are shown. They are separated in the MAC blocks of the traffic
channel (MAC TCH) and the broadcast channel (MAC AACH), the
physical layer (PHY) and finally the sample rate conversion (SRC). The
fact that the broadcast channel consumes only 15.5 μs while the traffic
channel consumes 33 μs can be explained by the different frame lengths
of both channels.

The processing times of the functions inside the traffic channel are shown
in figure 4.20.

The broadcast channel MAC AACH consists of the following processing
blocks: encoding and scrambling. The encoder is a Reed Muller encoder
as described in section 4.3 with a processing time of 15 μs. This is due to
the slow realization of the matrix multiplication for binary values. How-
ever, this comprises only 1.5% of the processing time for the transceiver,
therefore no optimized version of the Reed Muller encoder was realized.
The encoded data are scrambled with the same scrambling sequence
used in the MAC TCH. This operation takes less than 1μs.

The PHY consists of the burst builder, which inserts training sequences
and synchronization bursts in the data stream. It furthermore com-
prises the modulator for mapping the bits from the two logical channels
(AACH and TCH) to symbols in the complex plane. With a process-
ing time of 36 μs this is the block with the highest time consumption
in the transmitter. It can also be seen that the sample rate conversion
can be applied very efficiently with the polyphase structure of the mul-
tirate filter. With the processor’s clock frequency of 2.28GHz and the
processing time for the Sample Rate Conversion (SRC) of 11.3 μs, approx-
imately hundred clock cycles are used for the filtering and resampling
of one complex symbol. This is a good value for a processor that is not
optimized for digital signal processing.

103

4 Proof of Concept: Portability of TETRA

0 10 20 30 40

SRC

PHY

MAC AACH

MAC TCH

Pr
oc

es
si

ng
 b

lo
ck

Processing time [μs]

0 % 1 % 2 % 3 % 4 %

Relation to transceiver

Figure 4.20: Comparison of the processing times in the transmitter

Figure 4.21 provides more details about the processing times of the
signal processing blocks in the MAC TCH. The used traffic channel was
the TCH/4.8 with an encoding rate r = 292/432. The Rate-Compatible
Punctured Convolutional (RCPC) code needs 20 μs and is the block with
the highest time consumption. However, even if this block comprises
puncturing and encoding, it uses only 2% of the whole transceiver. The
interleaving and the scrambling need 5μs and 7μs. This is due to the
fact that both blocks are implemented regarding time and not memory.
For the interleaving, an array is saved that provides mapping from
the incoming data to the interleaved data. This vector is calculated
at the initialization phase and has to be provided at run time. The
implementation of the scrambling is similar. The scrambling sequence
is calculated in the initialization phase and saved as a constant array
during run time i.e. it is merely an exclusive disjunction of the incoming
data with a constant array.

Figure 4.22 shows the processing times of the various blocks in the re-
ceiver. It can be seen that the processing times are larger than the results

104

4.5 Benchmarks for the waveform on the GPP

0 5 10 15 20

Scrambler

Interleaver

RCPC

Pr
oc

es
si

ng
 b

lo
ck

Processing time [μs]

 0 % 0.5 % 1 % 1.5 % 2 %

Relation to transceiver

Figure 4.21: Comparison of the processing times within the MAC TCH
in the transmitter

for the transmitter in figure 4.20. The receive side of the AACH receiver
consists of a syndrome decoder and descrambling. The relatively short
time for this processing block is due to the relaxed non-optimal imple-
mentation that corrects only one error and the short frame length. The
SRC takes, with 110 μs, about eight times more than the SRC in the trans-
mitter. This is due to the fact that no decimation is applied after filtering.
The interpolated values are sent to the timing error detector, which trig-
gers the downsampling. Similar to the SRC, the PHY on the receive side
consumes with 368 μs about ten times more than the physical layer in
the transmitter. In this case, this is due to the various synchronization
schemes that must be applied.

In figure 4.23, the processing times of the blocks in the PHY are shown.
While the transmitting part of the PHY consists only of a burst builder
and a modulator, the receiving part of the PHY must correct time, fre-
quency and symbol offsets. In these synchronization schemes, the timing
error correction is the most simple regarding the processing time of 50 μs.
The frequency error correction applies two correlations to find the syn-
chronization burst and is therefore more complex with 146 μs. The frame
synchronization realizes two buffers that are filled when training se-

105

4 Proof of Concept: Portability of TETRA

0 100 200 300 400

MAC AACH

MAC TCH

PHY

SRC

Pr
oc

es
si

ng
 b

lo
ck

Processing time [μs]

 0 % 10 % 20 % 30 % 40 %

Relation to transceiver

Figure 4.22: Comparison of the processing times in the receiver

quences are found inside a vector. These buffers are transmitted to the
TCH and AACH receiver.

The measurements of the processing time for the MAC TCH receiver
are presented in figure 4.24. It is obvious that the Viterbi decoding is
the bottleneck for the transceiver with 388 μs, which makes about 40%
of the processing time for the complete system. In relation to that, the
descrambling and the de-interleaving can be almost ignored. The same
block is used for descrambling as for scrambling, therefore the times are
equal. The same is true for the de-interleaver, except for the different
entries in the mapping vector.

106

4.5 Benchmarks for the waveform on the GPP

0 50 100 150 200

Frame Sync

Freq Sync

Time Sync

Pr
oc

es
si

ng
 b

lo
ck

Processing time [μs]

 0 % 5 % 10 % 15 % 20 %

Relation to transceiver

Figure 4.23: Comparison of the processing times within the PHY in the
receiver

0 100 200 300 400

Viterbi

De−Interleaver

Descrambler

Pr
oc

es
si

ng
 b

lo
ck

Processing time [μs]

 0 % 10 % 20 % 30 % 40 %

Relation to transceiver

Figure 4.24: Comparison of the processing times within the MAC TCH
in the receiver

107

4 Proof of Concept: Portability of TETRA

4.6 Platform Specific Model for the SFF SDR

4.6.1 Separation on different Processing Units

The processing performance of the SFF differs from the USRP in so far
as the FPGA on the SFF provides more logical resources and additional
hardware multipliers. This leads to the possibility to shift more signal
processing to the FPGA, as done in the PSM for the USRP. Another
difference of this platform to the USRP is the DSP. Even if it provides an
optimized hardware architecture for digital signal processing, its clock
frequency of 594MHz is approximately four times lower than the GPP
used in combination with the USRP. Further, the cache size makes with
172 kB only 2% of the cache size on the GPP. The third major difference
is the possibility of the clock distribution on the DCM. This means that
the sampling rate of the data converters can be configured in a range
between 25MHz and 125MHz as described in section 3.3.

The choice of the sampling rate depends on two parameters: the sym-
bol rate fsym that should be achieved and the IF fIF that is needed for
downconversion. The sampling rate can be calculated as follows:

fDAC = k fIF = IFIR ICIC fsym , (4.45)

where k is an integer not smaller than two, and IFIR and ICIC are the
upsampling factors of two cascaded filters, similar to the resampling
filters designed in the PSM for the USRP. The CIC filter is processing the
high upsampling rates while the FIR filter compensates the non exact
flat pass band in combination with the RRC pulse shaping. Due to the
fact that the clock can be adjusted to a multiple of the symbol rate no
more decimation is needed.

An ideal relation between IF and clock rate would be a factor of four,
where the IF would then only consist of additions and subtractions. With
this configuration the IF of 30MHz on the SFF would lead to a clock rate
of 120MHz. Even if the clock distribution circuit is able to handle this
frequency, it is not a multiple of the symbol rate of 18 kHz. This would
demand a resampling filter as designed in the PSM for the USRP. The
advantage of the relaxed implementation of the down-conversion would
be on the cost of an additional filter for the resampling in the DSP.

108

4.6 Platform Specific Model for the SFF SDR

A good compromise would be a sampling rate of 90MHz. With this
clock frequency the down-conversion can be implemented by the multi-
plication of the signal with three constants for the in-phase component
and another three constants for the quadrature component which can
be saved easily in a LUT. This sampling rate would also define the
upsampling factor of the system as follows:

ICIC · IFIR =
fADC
fsym

=
90MHz
18 kHz

= 5000 (4.46)

The sample rate conversion and pulse shaping on the FPGA does not
only reduce the load of the DSP but also the load of the bus between
DSP and FPGA. To ensure that the bus on the SFF runs at the same
speed for transmit and receive path, the time synchronization has to be
implemented in the FPGA. This leads to a separation as shown in figure
4.25.

Demod

Mod

Freq

Sync

�IFIR �ICIC
HFIR

HFIR

HCIC

HCIC

TED

�IFIR �ICIC

DSP FPGA

Figure 4.25: Separation of the processing function in the SFF between
DSP and FPGA

4.6.2 Sample Rate Conversion

The conversion from symbol rate to sampling rate of the data converters
consists only of interpolation filters, running on the FPGA. Similar to
the USRP model, two interpolation filters should be designed that hold
the conditions of the TETRA spectrum mask in a cascaded mode. In
the receive path only one decimation filter shall be applied. After the
adherent matched filter, the oversampled data are sent to the timing

109

4 Proof of Concept: Portability of TETRA

error detector, which implements the final decimation regarding the
calculated timing error. Therefore, the filters are designed in a way that,
in combination with the timing synchronization, the FPGA resources
are used to the maximum. The filter parameters are listed in table 4.7.
The frequency response of the interpolation filter is shown in figure 4.26.
For a reference also the TETRA spectrum mask and an ideal root raised
cosine transmit filter is represented.

Parameter Value

NCIC 6
ICIC 625

MCIC 6
IFIR 8
NFIR 4

Table 4.7: Parameters for the interpolation on the SFF

4.6.3 Timing error synchronization

Due to the shift of the timing error synchronization from the GPP to the
FPGA, the design has to be adapted from a floating point, frame based
implementation to a fixed point, sample based design. The sine and
cosine functions, needed for the calculation of the Fourier coefficients,
must be implemented with a lookup table. This table must only hold
IFIR values. With the results from the previous section, this would mean
eight values for the sine and another eight values for the cosine. This
can be optimized with only one lookup table and shifted accesses for the
sine and the cosine waves. The Fourier coefficients can be calculated by
the multiplication of the squared magnitude with the sine waves. Figure
4.27 gives an overview of the timing error detector on the FPGA.

It is assumed that the timing error is constant over L symbol intervals.
To avoid random peaks in the timing error signal a moving average
filter with length L · IRRC is implemented. By realization of the filter in
an FIR form, the number of taps grows with the length of L · IRRC. To
circumvent this, the FIR filter can be transformed to an IIR filter with the
use of the geometric series. The z-transformation of a moving average

110

4.6 Platform Specific Model for the SFF SDR

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

Frequency [kHz]

M
ag

ni
tu

d
e

[d
B

]

Spectrum Mask
Root Raised Cosine
Designed Filter

Figure 4.26: Frequency response of the interpolation filter on the SFF
with respect to the TETRA spectrummask and an ideal RRC
filter

filter can simply be described as follows:

H(z) =
L·IRRC−1

∑
i=0

z−i (4.47)

=
1− z−L·IRRC
1− z−1

(4.48)

The increasing number of taps for the FIR filter is now transformed in
a delay component. The resulting filter can be designed efficiently in
hardware with only two adders and two delay lines. The block diagram
of the efficient calculation is shown in figure 4.28.

111

4 Proof of Concept: Portability of TETRA

�

�
Timing

Error

Running

Sum

Running

Sum

CORDICCounter

2
|·|

2
|·|

Cosine

LUT

Sine

LUT

In

Out

In

In-phase

Quadrature

Figure 4.27: Overview of the fixed point realization of the timing error
detector for the FPGA

The last block in the timing error detector is the transformation from real
(x) and imaginary (y) parts of the symbol to its angle (ϕ). Therefore, an
implementation of an inverse tangent function can be applied. This is
done by a COordinate Rotation DIgital Compute (CORDIC) algorithmic
element as described in [81]. Due to the fact that real and imaginary parts
of the complex symbol are given, the vectoring computing mode is used.
Therefore, a vector of Nϕ angle values θ[i] is saved in the initialization
phase to rotate the phase:

θ[i] = atan
(
2−i

)
for 1 ≤ i ≤ Nϕ (4.49)

As follows, the iterative process to calculate the phase ϕ can be described
by

ϕ[i + 1] = ϕ[i] + sgn (y[i]) · θ[i] , (4.50)

x[i + 1] = x[i] + sgn (y[i]) · 2−iy[i] , (4.51)

y[i + 1] = y[i]− sgn (y[i]) · 2−ix[i] . (4.52)

This process assumes a complex value in the first quadrant of the com-
plex plane. If this is not the case, the quadrant can be defined by the sign

112

4.6 Platform Specific Model for the SFF SDR

	1
z

	2040
z

�

�
�

	
OutIn

Figure 4.28: Hardware efficient implementation of a running sum

bits of the real and imaginary part and a phase offset can be added. An-
other difference to an original CORDIC algorithm is the missing scaling
factor but this is no problem since only the resulting angle is of interest.
The implementation of the sign function consist of an extraction of the
sign bit of the imaginary part which triggers an adder. Furthermore, the
multiplication by the factors of 2−i are only bit shifts of i. The upper
bound of Nϕ is given by the used word length of 16.

The timing offset ε can be calculated with the evaluated phase through
scaling and rounding to the nearest integer:

ε[k] =
⌊

ϕ[k]
2π

· IFIR + 0.5
⌋

(4.53)

The maximum error of the CORDIC algorithm occurs if the correct
phase is found at the step i = Nϕ − 1. Then, the phase rotates with the
maximum angle, which can be described by

θ[Nϕ − 1] = atan
(
2−(Nϕ−1)

)
. (4.54)

Due to rounding, the accuracy of the phase with the CORDIC algo-
rithm should be small against the following decimation, which can be
described by the following condition:

θ[Nϕ − 1]
2π

· IFIR � 1 (4.55)

113

4 Proof of Concept: Portability of TETRA

Figure 4.29 shows the error value from the left hand side of inequality
(4.55) in dependence to the number of steps in the CORDIC algorithm Nϕ.
It can be seen that seven iterations for the CORDIC algorithm already
fulfills this condition.

0 5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

θ
[N

ϕ
−1

]
2
π

I F
IR

Nϕ

Figure 4.29: Error for the phase calculation in relation to the number of
steps Nϕ, assuming an interpolation factor of IFIR = 8

The resulting phase triggers the downsampling. The symbols with the
corrected timing offset are sent to the DSP at the TETRA symbol rate of
18 kHz.

4.6.4 PSM on the DSP

The porting of the waveform from USRP to SFF should be done with a
minimum effort of rewriting code, the majority of the PSM for USRP’s
GPP shall be used at the DSP on the SFF. The differences are, as already
mentioned in the previous sections, the sample rate conversion and
the time synchronization, which was shifted to the FPGA. In chapter

114

4.7 Benchmarks for the waveform on the DSP

4.7 the operations are described that must be tuned in order to get an
operating waveform. No frequency acquisition has to be applied due
to the precise oscillator with an accuracy of 1 ppm, which leads to a
maximum frequency offset of ±500Hz.

4.7 Benchmarks for the waveform on the DSP

The PSM for the USRP can be ported to the SFF by shifting the time
synchronization and the pulse shaping to the FPGA. This means these
blocks have to be deleted from the DSP side. By measuring the process-
ing time of the waveform, one single burst is in the range of seconds. It
could be shown that the processing time of the code causes less problems
than the memory allocation. Every memory section of the code must
be placed on the external SDRAM, when the PSM, originally intended
for a GPP is inserted. This needs several read and write operations, for
example: to load the section of the SDRAM into the internal cache, to
process these data and to write it back to the external memory.

Generated Hand-written

Processing time 120ms 248 μs
Level 1 memory 0 kB 1.04 kB
Level 2 memory 0 kB 11.1 kB

SDRAM 54.8 kB 0 kB

Table 4.8: Comparison of processing times and memory allocation for
generated and hand-written part of the transmitter

The difference between processing on the SDRAM and processing on
the L1 and L2 memory sections can be seen with the following example.
The MAC section of the transmitter has been rewritten in C code and
compared with generated code. While the generated code was executed
on the external SDRAM, the hand written code was executed on the
internal cache of the processor. The results are shown in table 4.8. It can
be seen that the generated code needs approximately 500 times more
processing time than the hand-written code. This is mainly caused by
the slow read and write accesses of the external memory.

115

4 Proof of Concept: Portability of TETRA

 0 0.54 1.09 1.63 2.17

Receiver

Transmitter

Transceiver

Pr
oc

es
si

ng
 b

lo
ck

Processing time [ms]

 0 % 25 % 50 % 75 % 100 %

Relation to transceiver

Figure 4.30: Comparison of the processing times of the transmitter, re-
ceiver and transceiver for the DSP

The generated code creates a lot of arrays for the signal processing where
especially for the puncturing an array with a length of 1168 is created.
In this array for puncturing the positions of the coded bits that can be
dropped are contained. This is the same for the interleaving, where an
array is created with the position of the interleaved data. While these
methods work really fast, they consume a lot of memory. For a GPP
with an internal cache of 8MB this is not a problem. The DSP however,
has to shift these sections to the external SDRAM, where it needs much
more time. To compare the memory usage, the hand-written code was
optimized for memory consumption but not for speed. This means the
punctured channel encoder and the interleaver have been combined in
one function. No bits are encoded that would be dropped due to the
puncturing, and the encoded bits are immediately shifted to the right
position as specified through the interleaving scheme. The code is shown
in appendix A.3. This was also done for the scrambling of the data. The
code for the optimized scrambling is shown in appendix A.4. Due to
to the register length of 32, the whole register can be calculated with
one single integer value that has a size of four bytes. The used memory
of both functions is also shown in table 4.8. Compared to the memory

116

4.7 Benchmarks for the waveform on the DSP

usage of the generated code with 54.8 kB, the optimized code consumes
12.1 kB. The reason why the generated code was placed on the SDRAM
is the better comparability to the whole transceiver. By generating the
code for the transceiver, it has to be placed on the external memory.
This is not the same for the hand written code. Due to the optimization
options, it is possible to place the code for the complete transceiver on
the internal cache.

Figure 4.30 shows the relation of the processing times between trans-
mitter and receiver. The receiver consumes approximately 80% of the
processing time for the complete transceiver. This is similar to the results
for the GPP from section 4.5 although the time synchronization as well
as the resampling was moved to the FPGA. However, the processing
time for the complete transceiver is with 2.17ms approximately twice
the time of the code running on the GPP.

0 50 100 150 200 250

PHY

MAC AACH

MAC TCH

Pr
oc

es
si

ng
 b

lo
ck

Processing time [μs]

 0 % 2.3 % 4.6 % 6.9 % 9.2 % 11.5 %

Relation to transceiver

Figure 4.31: Comparison of the processing times within the transmitter
on the DSP

The transmitter is split in three parts as shown in figure 4.31: The PHY,
the traffic channel MAC TCH and the broadcast channel MAC AACH.
The processing time for the TCH is already known from table 4.8. Com-
pared to the results from figure 4.20 the MAC TX block needs more time.
This is due to the fact that the code is now optimized for memory and

117

4 Proof of Concept: Portability of TETRA

0 500 1000 1500

MAC AACH

MAC TCH

PHY

Pr
oc

es
si

ng
 b

lo
ck

Processing time [μs]

 0 % 23 % 46 % 69 %

Relation to transceiver

Figure 4.32: Comparison of the processing times within the receiver on
the DSP

therefore slower than a code that is optimized for speed. The processing
blocks PHY and MAC AACH were not changed.

Figure 4.32 shows the processing times of the functions on the receive
side. It can be seen that the traffic channel is the block that consumes
the most processing time. The difference to the other blocks have been
increased in comparison to figure 4.22. This is due to the fact that the
timing synchronization as well as the decimation at the receive side was
realized on the FPGA.

The both remaining blocks on the physical layer need with 191 μs for
the frequency synchronization and 135 μs for the frame synchronization
approximately similar processing times as on the GPP. These processing
times are shown in figure 4.33.

Figure 4.34 shows the reason for the large processing time of the MAC
receiver. The Viterbi algorithm consumes approximately 65% of the
processing time of the whole transceiver. To circumvent this problem,
modern DSPs provide hard wired Viterbi accelerators. Unfortunately
the DM6446 does not provide those accelerators. Therefore, the decoder

118

4.7 Benchmarks for the waveform on the DSP

0 50 100 150 200

Frame Sync

Freq Sync

Pr
oc

es
si

ng
 b

lo
ck

Processing time [μs]

 0 % 2.3 % 4.6 % 6.9 % 9.2 %

Relation to transceiver

Figure 4.33: Comparison of the processing times within the PHY in the
receiver

has to be implemented in software and remains the bottleneck of the
complete system as already shown in the results for the GPP.

0 500 1000 1500

Viterbi

De−Interleaver

Descrambler

Pr
oc

es
si

ng
 b

lo
ck

Processing time [μs]

 0 % 23 % 46 % 69 %

Relation to transceiver

Figure 4.34: Comparison of the processing times within the MAC TCH
in the receiver

119

4 Proof of Concept: Portability of TETRA

4.8 Interoperability Tests

A signal generator and a analyzer were used as a reference to prove that
the transmitting and receiving behavior of the generated waveforms for
USRP and SFF are like TETRA signals. To test the transmit function, the
signals from USRP and SFF were evaluated with a Rohde & Schwarz
FSQ8 signal analyzer. As shown in figure 4.35, the signals are processed
with a special software that shows the training sequence as well as the
signal constellation and the modulation accuracy.

Figure 4.35: Received TETRA signal from the SFF, evaluated with an
FSQ8

To test the receive path on USRP and SFF SDR, TETRA signals were
generated with a Rohde & Schwarz SMU200 signal generator. USRP
and SFF were tuned on a carrier frequency of 402MHz and decoded
the NORMAL DOWNLINK BURST correctly. To ensure that the transmis-
sions from USRP to SFF and vice versa works correctly, the transmit and
receive functions were tested in both directions and the decoded data

120

4.8 Interoperability Tests

were compared for errors. However, no errors occurred due to the close
distance between transmitter and receiver. The setup for the demonstra-
tion of the waveform is shown in figure 4.36. The USRP is on the left
hand side with a laptop for the signal processing. The SFF is on the right
hand side of the picture. The desktop is only used for configuration and
does not process any radio signals. The measurement equipment is in
the center of the picture. The lower device is the FSQ8 signal analyzer
and the upper device is the SMU200A signal generator.

Figure 4.36: Measurement setup for the TETRA waveform testing

121

5 Portability aspects of further
waveform implementations

5.1 Family Radio Service

5.1.1 Overview of the standard

Family Radio Service (FRS) is a communication system that is used for
speech transmission within a range of less than one mile. Therefore,
the transmitters have a maximum output power of 500mW. The signal
is modulated with an FM scheme, where the envelope of the complex
baseband signal stx(t) can be described as follows:

stx(t) = exp
(

j2π fΔ

∫ t

0
v(t′)dt′

)
, (5.1)

where v(t) is the audio signal that should be transmitted and fΔ describes
the frequency deviation. FRS is a narrowband FM system and is intended
for channels with 12.5 kHz bandwidth. Therefore, fΔ is set to 2.5 kHz
while the maximum frequency of the audio signal v(t) should not exceed
3.5 kHz. The Federal Communications Commission (FCC) specified 14
channels between 462.5625MHz and 467.7125MHz. This means that
the carrier frequency is in the same range as the TETRA waveform and
can be achieved with the same RF front ends.

5.1.2 Digital signal approximation for the portability

In a digital representation, the integral in equation (5.1) can be replaced
by a sum of the values coming from the sound card. These values are
scaled with the frequency deviation factor and synthesize the angle for

122

5.2 Wireless LAN in the version IEEE 802.11g

the complex base band signal. The receiver works vice versa. The angle
of the incoming in-phase and quadrature component is determined and
scaled. The audio signal can be retrieved by subtraction of the previous
angle from the current angle.

5.1.3 Results

Due to the narrow bandwidth of 12.5 kHz, a high resampling has to
be applied. However, the signal has just to be resampled to a data
rate that the sound card supports. In case of the USRP this is 32 kHz.
Together with the ADC rate of 64MHz, this leads to a decimation rate of
2000 in the FPGA. The audio system on the SFF can be coupled to the
FPGA data rate. Therefore, the same rates as for the TETRA waveform
was applied leading to a reuse of the decimation, interpolation and
downconversion.

Since the transmitter comprises only an integration and the receiver con-
sists only of a differentiator beside the resampling filters, the whole PIM
can be shifted to the GPP, DSP or even FPGA without any modifications.
This shows that if the processing power of the underlying platform is
amply dimensioned for the complexity and bandwidth of the waveform,
the concerned waveform here can be ported without any knowledge of
the underlying hardware.

5.2 Wireless LAN in the version IEEE 802.11g

5.2.1 Overview of the standard

Since 1980, the IEEE releases specifications about Local Area Networks
(LANs) in its project 802. In 1997, the first specification of a Wireless
Local Area Network (WLAN) was published within the working group
eleven. This was the beginning of the standard IEEE 802.11, which
specifies MAC and PHY for local radio networks. In the original version,
data rates up to 2Mbit/s were reached with spread spectrum techniques
in the 2.4GHz Industrial, Scientific and Medical (ISM) radio band. Just
about two years later, in 1999, the standard was extended with two
annexes. IEEE 802.11a specified an Orthogonal Frequency Division

123

5 Portability aspects of further waveform implementations

Multiplex (OFDM) transmission in the 5GHz ISM band with data rates
up to 54Mbit/s and 802.11b extended the transmission on 2.4GHz to
data rates up to 11Mbit/s. The most common extension till the present
day is annex g, which was released in 2003 and specified the OFDM
transmission with up to 54Mbit/s in the 2.4GHz range [82]. This is a
frequency range that is supported by the Flex2400 daughter board for
the USRP and the WiMAX module RF front end for the SFF as described
in sections 3.2 and 3.3.

5.2.2 Challenges for the portability of the waveform

The major challenge in implementing and porting the 802.11g waveform
is its large bandwidth. The symbol duration of one OFDM symbol is
specified to 3.2 μs. This results in a bandwidth of 20MHz with 64 sub-
carriers. Even if the data converters on both platforms can support this
bandwidth, the buses between DSP/GPP and FPGA are not fast enough.
By assuming 16 bit in-phase and quadrature components, data rates of
640Mbit/s must be achieved, while the maximum data rate between
GPP and FPGA on the USRP is 228Mbit/s and the maximum data rate
on the SFF SDRDP is 52Mbit/s. This means that the complete waveform
should be implemented on the FPGA. However, both platforms provide
not enough logic to achieve this. Due to the fact that no real time imple-
mentation is possible with the given platforms, the maximum achievable
bandwidths should be evaluated. Therefore, a PIM was realized with
the channel from section 4.3. To achieve a synchronization in time and
frequency, an algorithm from Schmidl and Cox [83] was realized that
uses training sequences in the beginning of each transmission to find the
exact position of an OFDM symbol in the data stream coming from the
ADCs.

5.2.3 Results

To fulfill the real time constraints for 802.11g, the time for one OFDM
symbol with the guard interval must not exceed 4μs. Measurements on
the Intel P8400 showed that the processing time for the transmitter is
approximately 2.78 μs. Without the limitation due to the bus between
GPP and FPGA, it is possible to implement the transmit side in software
and support the real time constraints of a 20MHz bandwidth. However,

124

5.2 Wireless LAN in the version IEEE 802.11g

due to the fact that the maximum data rate of the bus is at 228Mbit/s,
only a bandwidth of 6.4MHz can be achieved. The spectrum of the
transmitted signal was recorded with a Rohde & Schwarz FSQ8 signal
analyzer and is shown in figure 5.2(a). To detect the 802.11g frame,
a training sequence was transmitted where its spectrum is shown in
figure 5.2(b). The representation of the spectrum shows the power in a
logarithmic scale.

The processing time for the receiver is 58.9 μs. Therefore, with the used
processor, a whole system comprising of transmitter and receiver with a
USRP can only be realized with a complex bandwidth of up to 1.3MHz.
This is due to the timing and error synchronization as well as the Viterbi
decoding. These two processing blocks consume 75% of the processing
time for one OFDM symbol.

When porting the code for the transmitter from the USRP to the SFF
SDR a processing time of 600 μs was measured for one OFDM symbol.
As already mentioned in section 4.7, this is due to the floating point
implementation. The data section of the code becomes too large for the
internal memory and has to use the slow external SDRAM. The usage of
external memory can be circumvented with a fixed point design and the
use of optimized libraries as presented in section 2.4. With these changes
the processing time for an OFDM symbol decreases to 18.9 μs.

The transformation of the PIM for the receiver yields similar results. The
measurements of the floating point code lead to a processing time of
222ms. Even with a fixed point implementation of the model, the mem-
ory size exceeds the internal cache. Therefore, the timing and frequency
synchronization must be shifted to the FPGA. The sample based pro-
cessing on this reconfigurable logic requires a completely new modeling
of the synchronization algorithm. Especially the peak detection of the
correlation must be redesigned. Nevertheless, the processing time for
one OFDM symbol in the receiver could be decreased to 12.4ms. This
time could be further reduced with an optimized version of the Viterbi
algorithm. Similar to the results on the USRP, this is the processing block
that consumes most of the time.

The realization of the PSMs for the USRP and the SFF SDR are shown in
figure 5.1. The porting process for this waveform is described in more
details in [84] and [85].

125

5 Portability aspects of further waveform implementations

USRPSFF SDR DP

SinkSink

Extract Symbol

Extract Symbol

From FPGAFrom FPGA

Sample Rate

Conversion

Sample Rate

Conversion
Sample Rate

Conversion

SourceSource

Pilots &

Zeropadding

Pilots &

Zeropadding

To FPGATo FPGA

Sample Rate

Conversion

Demodulation

Demodulation

Carrier Offset

Carrier Offset

Phase Synchr.

Phase Synchr.

To GPPTo DSP

DDC

DDC

Channel

Equalization

Channel

Equalization

Time & Freq.

Synchronization

Time & Freq.

Synchronization

From ADCFrom ADC

Cyclic Prefix &

Symbol Shaping

To DAC

Modulation

Modulation

IFFT
FFT

IFFT

From GPPFrom DSP

To DAC

DUC

FFT

G
P

P
F

P
G

A

D
S

P
F

G
P

A

Figure 5.1: Separation of the waveform for the processing elements on
USRP and SFF SDR

126

5.2 Wireless LAN in the version IEEE 802.11g

(a) Power spectrum of the waveform data

(b) Power spectrum of the training sequence

Figure 5.2: Measured power spectrum in dBm of the OFDM waveform

127

6 Conclusions

6.1 Contributions

Chapter 2 presented different possibilities of waveform development
with all their assets and drawbacks for waveform portability. A design
flow based on the Model Driven Architecture was proposed as the
best choice for portable waveform development in combination with
generated codes for various processing elements like DSPs, GPPs and
FPGAs. Due to the fact that code generation is an important part of
this concept, the overhead of generated code was measured in the sense
of processing time and number of used logic elements. Especially for
processing components that are used often like digital filters, there is no
large overhead in the generated code. It could be seen that hand-written
code is often much slower than the generated code. Even in relation to
highly optimized vendor specific libraries or components, there is no
tremendous loss in performance of generated codes.

Two platforms used for waveform development were introduced in
chapter 3: the USRP and the SFF SDR. The possibilities and limitations
of both platforms regarding the speed of interfaces, the clock frequen-
cies as well as the processing capabilities are shown. Furthermore, the
integration of the design flow based on the MDA is presented for both
platforms.

A proof of concept is given in chapter 4 to demonstrate that the proposed
design flow works. A TETRA waveform was realized and ported from
the USRP to the SFF SDR. Results of the porting process are given as
well as processing times for the generated code in comparison to an
optimized code.

Chapter 5 describes the challenges and results for the port of further
waveforms, which were also ported from USRP to SFF. Since a detailed

128

6.2 Outlook

description would go beyond the scope of this work, only an overview
of the results is given.

6.2 Outlook

One of the major questions in the Model Driven Architecture with code
generation is: “Can we generate the waveform for our platform without
hand written modifications?”. The results from this work show that
this depends on the waveform and on the platform. The FRS waveform
can easily be ported without modifications from one of the presented
platforms to another. Unfortunately, this is not possible for more com-
plex waveforms like the PSM for TETRA on the SFF SDR. Parts of this
waveform had to be rewritten in C to fulfill the memory constraints of
the processor.

The code generation for DSPs faces two problems: the low cache size
and the fixed point architecture. Nevertheless, code generation and
platform independent models in floating point arithmetic are the right
direction in waveform development. This can also be confirmed with
the current developments on the DSP market. TI releases a new DSP
with an arithmetic to use fixed and floating point algorithms [86]. The
internal memory of this new branch is with approximately 8MB in the
same range as GPPs running on a desktop. With these changes in DSP
architecture, code generation for DSPs will result in lower processing
times. The code size and memory usage will not decrease but due to the
rising cache size, the processor is able to handle this.

One trend that can be seen in the development of new processors (DSPs
as well as GPPs) are multiple cores. Regarding portability of waveforms
it has to be verified that the same code can be executed on single-core and
multi-core processors. It furthermore must be checked that the code on
multi-core processors runs faster with the number of cores. This can be
achieved by the integration of OpenMP. OpenMP is an API that supports
multi-platform shared-memory parallel programming in C/C++ on all
architectures. The advantage is that the directives are ignored from
single-core systems. Therefore, source codes can be generated that can
be applied in multi-core systems but also be compatible for single-core
processors.

129

6 Conclusions

The role for FPGAs will be the interface between the data converters
and the processors. Therefore, sample rate conversion, pulse shaping,
matched filtering and time synchronization will be the major tasks. Even
if FPGAs are the faster processing units for digital signal processing,
the configuration of the data is too complex and needs too much de-
velopment time. One example for this is the OFDM transmitter that
was evaluated in this work. The FPGA is able to handle the IFFT very
efficiently, but the inclusion of the guard interval with cyclic prefix can
only be accomplished with multiple FIFO buffers. This diminishes the
advantage of the efficient IFFT processing. This is also valid for the
Viterbi algorithm, which is the most time consuming process in each
evaluated waveform. The shift of the Viterbi algorithm back to the FPGA
would bring a tremendous speedup for the system. However, it would
overload the bus between the processing elements. Solutions for this
problem are already presented by the industry. The high performance
DSP chips from TI for baseband processing provide hardware acceler-
ators for time consuming functions like the Viterbi algorithm [87] or a
rake receiver.

130

A Source Code

A.1 Source Code of the unoptimized FIR filter

1 static void mdlOutputs(SimStruct *S, int_T tid)
2 {
3 int_T i, j;
4 int_T width;
5

6 creal_T *input = (creal_T *) ssGetInputPortSignal(
S, 0);

7 creal_T *output = (creal_T *)
ssGetOutputPortSignal(S, 0);

8

9 width = ssGetOutputPortWidth(S,0);
10

11 for (i=0; i<width; i++) {
12

13 buffer[position] = input[i];
14 output[i].re = 0;
15 output[i].im = 0;
16

17 for(j = 0;j<NUM_COEF;j++){
18 output[i].re += filter_coef[j].re*buffer[(

position+j)%NUM_COEF].re -filter_coef[j].im*
buffer[(position+j)%NUM_COEF].im;

19 output[i].im += filter_coef[j].re*buffer[(
position+j)%NUM_COEF].im +filter_coef[j].re*
buffer[(position+j)%NUM_COEF].im;

20 }
21 position = (position+1)%NUM_COEF;
22 }
23 }

131

A Source Code

A.2 Source Code of the unoptimized FFT

1 std::complex <float> * my_fft(int length, std::
complex <float>* input)

2 {
3 using namespace std;
4 complex <float> *output = new complex <float> [

length];
5 complex <float> *even_in = new complex <float> [

length/2];
6 complex <float> *odd_in = new complex <float> [

length/2];
7 complex <float> *even_out = new complex <float> [

length/2];
8 complex <float> *odd_out = new complex <float> [

length/2];
9 complex <float> odd_factor;
10 int i;
11

12 if(length == 1)
13 output = input;
14 else
15 {
16 for(i = 0;i<length/2; i++){
17 even_in[i] = input[2*i];
18 odd_in[i] = input[2*i+1];
19 }
20 even_out = my_fft(length/2,even_in);
21 odd_out = my_fft(length/2,odd_in);
22

23 for(i = 0;i<length/2; i++){
24 odd_factor = polar(1.0,-2*PI*i/length) ;
25 odd_factor = odd_out[i]* odd_factor;
26 output[i] = even_out[i] + odd_factor;
27 output[i+length/2] = even_out[i] - odd_factor;
28 }
29 }
30 return output;
31 }

132

A.3 Source Code of the optimized RCPC for the TCH/4.8

A.3 Source Code of the optimized RCPC for
the TCH/4.8

1 void tch4_8_rcpc(unsigned char inVar[432], unsigned
char outVar[255])

2 {
3 unsigned char *state = malloc(292+4);
4 unsigned char init[] = {0U,0U,0U,0U};
5 short k,j,i;
6

7 memcpy(state,init,4);
8 memcpy(state + 4, inVar, 292);
9

10 j = 0;
11 i = 0;
12 for (k=0; k < 146; k++){
13 outVar[j+i] = (state[2*k+4] + state[2*k+3] +

state[2*k])%2;
14 outVar[j+i+1] = (state[2*k+4] + state[2*k+2] +

state[2*k+1] + state[2*k])%2;
15 if((i+2)!=65){
16 outVar[j+i+2] = (state[2*k+5] + state[2*k+4] +

state[2*k+1])%2;
17 i+=3;
18 }
19 else{
20 i=0;
21 j+=65;
22 }
23 }
24 }

133

A Source Code

A.4 Source Code of the optimized scrambling

1 void tch_scrambling(unsigned char inVar[432],
unsigned char outVar[432])

2 {
3 unsigned int init = 0x4183E8B7;
4 unsigned int new;
5 int k;
6

7 for(k=0;k<432;k++){
8 new = 0x80000000&(init ˆ (init << 1) ˆ (init <<

3) ˆ (init << 4) ˆ (init << 6) ˆ (init << 7)
ˆ (init << 9) ˆ (init << 10) ˆ (init << 11) ˆ
(init << 15) ˆ (init << 21) ˆ (init << 22) ˆ
(init << 25) ˆ (init << 31));

9 init = init >> 1 | new;
10 outVar[k] = inVar[k] ˆ (init >> 31);
11 }
12 }

134

Acronyms

AACH Access Assignment CHannel

ADC Analog-to-Digital Converter

AEP Application Environment Profile

AGC Automatic Gain Control

AM Amplitude Modulation

API Application Programmable Interface

ASP Audio Serial Port

BPSK Binary Phase-Shift Keying

CCS Code Composer Studio

CF Core Framework

CIC Cascaded Integrator-Comb

CIM Computational Independent Model

CLB Configurable Logic Block

CORBA Common Object Request Broker Architecture

CORDIC COordinate Rotation DIgital Compute

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DCM Data Conversion Module

DDC Digital Down Converter

DDS Direct Digital Synthesizer

DPM Digital Processing Module

135

Acronyms

DQPSK Differential Quadrature Phase-Shift Keying

DSP Digital Signal Processor

DUC Digital Up Converter

EMIF External Memory Interface

ETSI European Telecommunications Standards Institute

FCC Federal Communications Commission

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

FFT Fast Fourier Transformation

FIFO First In, First Out

FIR Finite Impulse Response

FM Frequency Modulation

FPGA Field Programmable Gate Array

FRS Family Radio Service

GPP General Purpose Processor

GRC GNU Radio Companion

GSM Global System for Mobile Communications

GUI Graphical User Interface

HDL Hardware Description Language

IC Integrated Circuit

IFFT Inverse Fast Fourier Transformation

IPS Intel Parallel Studio

ISM Industrial, Scientific and Medical

ISR Interrupt Service Routine

IEEE Institute of Electrical and Electronics Engineers

IF Intermediate Frequency

JTAG Joint Test and Action Group

136

JTRS Joint Tactical Radio System

JPO Joint Program Office

LAB Logic Array Block

LCC Local C Compiler

LE Logic Element

LMR Land Mobile Radio

LNA Low Noise Amplifier

LO Local Oscillator

LTE Long Term Evolution

LTS Long Training Sequence

LUT Lookup Table

MAc Multiply and Accumulate

MAC Media Access Control

MDA Model Driven Architecture

MSPS Mega Samples Per Second

OE Operating Environment

OFDM Orthogonal Frequency Division Multiplex

OMG Object Management Group

OPB On-chip Peripheral Bus

OSSIE Open Source SCA Implementation: Embedded

PA Power Amplifier

PC Personal Computer

PGA Programmable Gain Amplifier

PHY Physical Layer

PIM Platform Independent Model

PLCP Physical Layer Convergence Protocol

PLL Phase Locked Loop

137

Acronyms

PMR Public Mobile Radio

PN Pseudo Noise

POSIX Portable Operating System Interface

PPDU Physical Protocol Data Unit

PSDU Physical layer Service Data Unit

PSM Platform Specific Model

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

RCPC Rate-Compatible Punctured Convolutional

RF Radio Frequency

RFM Radio Frequency Module

RRC Root Raised Cosine

SCA Software Communications Architecture

SDR Software Defined Radio

SDRAM Synchronous Dynamic Random Access Memory

SFF SDR DP Small Form Factor SDR Development Platform

SIMD Single-Instruction Multiple-Data

SNR Signal-to-Noise Ratio

SoC System on Chip

SRC Sample Rate Conversion

STS Short Training Sequence

SVFuA Streitkräftegemeinsame Verbundfähige
Funkgeräteausstattung

TCH Traffic CHannel

TCL Tool Command Language

TDD Time Division Duplex

TDMA Time Division Multiple Access

138

TETRA Terrestrial Trunked Radio

TI Texas Instruments

UMTS Universal Mobile Telecommunications System

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

V+D Voice and Data

VCO Voltage Controlled Oscillator

VHDL Very High Speed Integrated Circuit (VHSIC) HDL

VHF Very High Frequency

VHSIC Very High Speed Integrated Circuit

VPBE Video Processing Back End

VPFE Video Processing Front End

VPSS Video Processing Sub-System

VS Visual Studio

WINTSEC WIreless INTeroperability for SECurity

WLAN Wireless Local Area Network

XML eXtensible Markup Language

139

Bibliography

[1] GSM Association and Europe Technologies, “GSM world
coverage 2009,” http://78.46.55.237/pubs/GSM_
WorldPoster2009A.pdf, This is an electronic document.
Date retrieved: March 10, 2011.

[2] Mary Bellis, “Inventors of the Modern Computer: In-
tel 4004 - The World’s First Single Chip Microprocessor,”
http://inventors.about.com/od/mstartinventions/
a/microprocessor.htm, This is an electronic document. Date
retrieved: December 31, 2010.

[3] Noam Levine David Skolnick, “Why Use DSP? Digital Signal
Processing 101,” Analog Dialogue, vol. 31, no. 1, 1997.

[4] Xilinx, “Our History,” http://www.xilinx.com/company/
history.htm, This is an electronic document. Date retrieved:
December 31, 2010.

[5] Ulrich Rohde, “Digital HF Radio: A Sampling of Techniques,”
HAM Radio Magazine, April 1985.

[6] Joseph Mitola, “The Software Radio,” in IEEE National Telesystems
Conference, 1992.

[7] Stefan Nagel, Friedrich Jondral, “Software Defined Radio in Public
and Governmental Security Systems,” Micromaterials and Nanomate-
rials, , no. 10, pp. 94–97, 2009.

[8] Stefan Nagel, Volker Blaschke, Friedrich Jondral, Eric Nicollet, Do-
minique Ragot, “Wireless Interoperability for Security - WINTSEC,”
in Proceedings of the Software Defined Radio Forum Technical Conference,
Denver CO, November 2007.

140

Bibliography

[9] Steve Muir, “Trends in the Evolving Soft-
ware Defined Radio (SDR) Market Landscape,”
http://www.vanu.com/documents/technology/
trends-in-evolving-software-defined-radio.pdf,
This is an electronic document. Date retrieved: December 31, 2010.

[10] Lutz Prechelt, “An empirical comparison of seven programming
languages,” Computer, vol. 33, no. 10, October 2000.

[11] “The Computer Language Benchmark Game,”
http://shootout.alioth.debian.org/
fastest-programming-language.php, 2010, This is an
electronic document. Date retrieved: October 8, 2010.

[12] Will Strauss, “DSP/Wireless market analyses,” http://www.
dsp-fpga.com/articles/id/?2547, 2006, This is an elec-
tronic document. Date retrieved: October 8, 2010.

[13] Robert Jan Ridder, “Programming digital signal processors with
high-level languages,” DSP Engineering, Summer 2000.

[14] Alan Anderson, “Programming and op-
timizing C code,” http://www.eetimes.
com/design/automotive-design/4017021/
Programming-and-optimizing-C-code-part-1, 2007,
This is an electronic document. Date of publication: February 20,
2007. Date retrieved: October 7, 2010.

[15] Texas Instruments, TMS320C6000 Optimizing C Compiler User’s
Guide, 2010, http://focus.ti.com/lit/ug/spru187q/
spru187q.pdf.

[16] AMD, Software Optimization Guide for AMD64 Processors,
2005, http://support.amd.com/Embedded_TechDocs/
25112.pdf.

[17] Michael E. Lee, “Optimization of Computer Programs in C,”
http://leto.net/docs/C-optimization.php, 1997, This
is an electronic document. Date retrieved: October 14, 2010.

[18] Jim Xochellis, “The impact of the Pareto principle in optimiza-
tion,” http://www.codeproject.com/Articles/49023/
The-impact-of-the-Pareto-principle-in-optimization.

141

Bibliography

aspx, January 2010, This is an electronic document. Date retrieved:
October 14, 2010.

[19] Uwe Meyer-Baese, Digital Signal Porcessing with Field Programmable
Gate Arrays, Springer, 3rd edition, 2007.

[20] Douglas J. Smith, “VHDL & Verilog Compared & Contrasted
Plus Modeled Example Written in VHDL, Verilog and C,” http:
//www.angelfire.com/in/rajesh52/verilogvhdl.html,
2003, This is an electronic document. Date retrieved: October 25,
2010.

[21] Anke Kamp, Frank Schmidt, Florian Thiem, “VHDL vs Verilog,”
2007/2008.

[22] Eric Blossom, “GNU Radio: Tools for Exploring the RF Spectrum,”
Linux Journal, vol. 122, June 2004.

[23] GNU Radio, “Installation on the Play Station 3,” http:
//gnuradio.org/redmine/wiki/gnuradio/BuildGuide,
This is an electronic document. Date retrieved: January 5, 2011.

[24] Philip Balister, “Installation on the Play Station 3,” http://www.
opensdr.com/, This is an electronic document. Date retrieved:
January 5, 2011.

[25] Gordon E. Moore, “Cramming more components onto integrated
circuits,” Electronics, vol. 38, no. 8, April 1965.

[26] Gordon E. Moore, “Excerpts from A Conversation with Gor-
don Moore: Moore’s Law,” ftp://download.intel.com/
museum/Moores_Law/Video-Transcripts/Excepts_A_
Conversation_with_Gordon_Moore.pdf, 2005, This is an
electronic document. Date retrieved: October 26, 2010.

[27] Carlos R. Aguayo González, Carl B. Dietrich, and Jeffrey H. Reed,
“Understanding the software communications architecture,” Comm.
Mag., vol. 47, no. 9, pp. 50–57, 2009.

[28] Michi Henning, “The rise and fall of CORBA,” Communications of
the ACM, vol. 51, no. 8, pp. 52–57, 2008.

[29] “Software Communications Architecture Specification Version
2.2.2,” http://sca.jpeojtrs.mil/, May 2006, This is an elec-
tronic document. Date retrieved: October 26, 2010.

142

Bibliography

[30] Communications Research Center, CRC, “SCARI Software Suite,”
http://www.crc.gc.ca/en/html/crc/home/research/
satcom/rars/sdr/products/scari_suite/scari_suite,
This is an electronic document. Date retrieved: October 26, 2010.

[31] Prismtech, “SPECTRA,” http://www.prismtechnologies.
com/spectra, This is an electronic document. Date retrieved:
October 26, 2010.

[32] Zeligsoft, “Component Enabler,” http://www.zeligsoft.
com/tools/zeligsoft-ce, This is an electronic document.
Date retrieved: October 26, 2010.

[33] Wireless@Virginia Tech, “OSSIE: Open Source SCA Implementation
- Embedded,” http://ossie.wireless.vt.edu/, This is an
electronic document. Date retrieved: October 27, 2010.

[34] M. Carrick, S. Sayed, C. Dietrich, and J. Reed, “Integration of
FPGAs into SDR via Memory-Mapped I/O,” in Proceedings of the
SDR Forum Technical Conference 2009, Dec 2009.

[35] Philip Balister, “A Software Defined Radio Implemented using the
OSSIE Core Framework Deployed on a TI OMAP Processor,” M.S.
thesis, Virginia Tech, Wireless@VT, VA, Dec 2007.

[36] “MDA Guide Version 1.0.1,” http://www.omg.org/mda/, June
2003, This is an electronic document. Date retrieved: October 28,
2010.

[37] T. Langguth and H. Schober, “SDR based Waveform Development,”
in Proc. 5th Karlsruhe Workshop on Software Radios, 2008, pp. 109–114.

[38] S. Nagel, D. Epple, and F. K. Jondral, “Implementing the TETRA
Physical Layer on Lyrtech’s SFF SDR,” in Proc. SDR Forum Technical
Conference, 2008.

[39] “Simulink User’s Guide,” 2010, http://www.mathworks.com/
help/toolbox/simulink/.

[40] “Real-Time Workshop User’s Guide,” 2010, http://www.
mathworks.com/help/toolbox/rtw/.

[41] “Real-Time Workshop Embedded Coder User’s Guide,” 2010,
http://www.mathworks.com/help/toolbox/ecoder/.

143

Bibliography

[42] “HDL-Coder User’s Guide,” 2010, http://www.mathworks.
com/help/toolbox/slhdlcoder/.

[43] Stefan Nagel, Michael Schwall, Friedrich K. Jondral, “Performance
Overhead of High-Level Waveform Development,” in Proceedings
of the SDR Forum 2010 European Reconfigurable Radio Technologies
Workshop, Mainz, June 2010.

[44] M. Frigo and S.G. Johnson, “Fftw: an adaptive software architec-
ture for the fft,” in Acoustics, Speech and Signal Processing, 1998.
Proceedings of the 1998 IEEE International Conference on, May 1998,
vol. 3, pp. 1381 –1384 vol.3.

[45] “FFTW Benchmark Results,” http://www.fftw.org/speed/,
This is an electronic document. Date retrieved: December 03, 2010.

[46] “Virtex 4 FPGA User Guide,” http://www.xilinx.com, Decem-
ber 2008, This is an electronic document. Date retrieved: December
03, 2010.

[47] “Cyclone 2 Device Handbook, Volume 1,” http://www.altera.
com, 2008, This is an electronic document. Date retrieved: December
03, 2010.

[48] Jeffrey H. Reed, Software Radio, A Modern Approach to Radio Engi-
neering, Prentice Hall, 2002.

[49] Anne Wiesler Friedrich Jondral, Ralf Machauer, Software Radio,
Adaptivität durch Parametrisierung, J. Schlemmbach Fachverlag, 2002.

[50] Behzad Razavi, RF Microelectronics, Prentice Hall, 1998.

[51] André Dehon Scott Hauck, Reconfigurable Computing: The theory and
practice of FPGA-based computation, Morgan Kaufmann Publishers,
2008.

[52] Bob Zeidman, Designing with FPGAs and CPLDs, CMP Books, 2002.

[53] “TMS320C6414, TMS320C6415, TMS320C6416, Fixed-Point Digital
Signal Processors Data Sheet,” http://www.ti.com, May 2005,
This is an electronic document. Date retrieved: December 03, 2010.

[54] Matt Ettus, “Ettus research llc,” http://www.ettus.com, March
2010, This is an electronic document. Date retrieved: December 03,
2010.

144

Bibliography

[55] “Cyclone FPGA Family Data Sheet,” http://www.altera.com,
March 2010, This is an electronic document. Date retrieved: Decem-
ber 03, 2010.

[56] “Data Sheet for the Mixed Signal Front-End Processor for Broad-
band Communications,” http://www.analog.com, March 2010,
This is an electronic document. Date retrieved: December 03, 2010.

[57] “Data Sheet for the CY7C68013 EZ-USB FX2 USB Microcontroller,
High-Speed USB Peripheral Controller,” http://www.cypress.
com, March 2010, This is an electronic document. Date retrieved:
December 03, 2010.

[58] “Data Sheet for the 50 MHz to 1000 MHz Quadrature Demodulator
AD8348,” http://www.analog.com, 2005, This is an electronic
document. Date retrieved: December 03, 2010.

[59] “Data Sheet for the 0.8 GHz to 2.7 GHz Direct Conversion Quadra-
ture Demodulator AD8347,” http://www.analog.com, 2005,
This is an electronic document. Date retrieved: December 03, 2010.

[60] “Data Sheet for the 140 MHz to 1000 MHz Quadrature Modulator
AD8345,” http://www.analog.com, 2005, This is an electronic
document. Date retrieved: December 03, 2010.

[61] “Small Form Factor SDR Evaluation Module/ Development Plat-
form User’s Guide,” http://www.lyrtech.com, October 2007,
This is an electronic document. Date retrieved: December 03, 2010.

[62] “TMS320DM6446 Digital Media System-on-Chip Data Sheet,”
http://www.ti.com, March 2008, This is an electronic docu-
ment. Date retrieved: December 03, 2010.

[63] “Datasheet for the 14-bit, 125 MSPS Analog-to-Digital Converter
ADS5500,” http://www.ti.com, February 2007, This is an elec-
tronic document. Date retrieved: December 03, 2010.

[64] “Datasheet for the 16-bit, 500 MSPS 2x–8x Interpolating Dual-
Channel Digital-to-Analog Converter DAC5687,” http://www.
ti.com, September 2006, This is an electronic document. Date
retrieved: December 03, 2010.

145

Bibliography

[65] “Datasheet for the 1.2 GHz Clock Distribution IC AD9511 with
PLL Core, Dividers, Delay Adjust, Five Outputs,” http://www.
analog.com, June 2005, This is an electronic document. Date
retrieved: December 03, 2010.

[66] “Datasheet for the TRF3701 0.6 GHz to 1.0 GHz Quadrature Modu-
lator,” http://www.ti.com, February 2003, This is an electronic
document. Date retrieved: December 03, 2010.

[67] “Datasheet for the TRF1115 2.5 GHz, High Dynamic Range, Low-
Noise Down-Converter,” http://www.ti.com, September 2006,
This is an electronic document. Date retrieved: December 03, 2010.

[68] “Datasheet for the TRF1112 Dual VCO/PLL Synthesizer with IF
downconversion,” http://www.ti.com, December 2005, This is
an electronic document. Date retrieved: December 03, 2010.

[69] “Datasheet for the TRF1121 Dual VCO/PLL Synthesizer with IF
Up-Converter,” http://www.ti.com, December 2005, This is an
electronic document. Date retrieved: December 03, 2010.

[70] “Datasheet for the TRF1122 2.5 GHz Integrated Up-Converter,”
http://www.ti.com, September 2006, This is an electronic doc-
ument. Date retrieved: December 03, 2010.

[71] Martin Steppler, Leistungsbewertung von TETRA Mobilfunksystemen
durch Analyse und Emulation ihrer Protolle, Ph.D. thesis, Department
of Communication Networks (ComNets), Faculty 6, RWTH Aachen
University, 2002.

[72] James Irvine John Dunlop, Demessie Girma, Digital Mobile Commu-
nications and the TETRA System, Wiley, 1 edition, 1999.

[73] ETSI, Terrestrial Trunked Radio (TETRA); Voice plus Data; Part 2: Air
Interface (AI), European Telecommunications Standards Institute,
3.2.1 edition, 2007.

[74] Karl-Dirk Kammeyer, Nachrichtenuebertragung, Teubner, 3 edition,
2004.

[75] Jens Elsner, Martin Braun, Stefan Nagel, Kshama Nagaraj, Friedrich
K. Jondral, “Wireless Networks In-the-Loop: Software Radio as the
Enabler,” in Proceedings of the Software Defined Radio Forum Technical
Conference, Washington DC, December 2009.

146

Bibliography

[76] M. Oerder and H. Meyr, “Digital filter and square timing recovery,”
Communications, IEEE Transactions on, vol. 36, no. 5, pp. 605 –612,
May 1988.

[77] Martin Bossert, Kanalcodierung, Teubner, 2 edition, 1998.

[78] E. Hogenauer, “An economical class of digital filters for decimation
and interpolation,” Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 29, no. 2, pp. 155 – 162, Apr. 1981.

[79] Altera, “Understanding CIC Compensation Filters,” Application
Note, vol. 455, Apr. 2007.

[80] T. Alberty and V. Hespelt, “A new pattern jitter free frequency error
detector,” Communications, IEEE Transactions on, vol. 37, no. 2, pp.
159 –163, Feb. 1989.

[81] Jack Volder, “The cordic computing technique,” Managing Require-
ments Knowledge, International Workshop on, vol. 0, pp. 257, 1959.

[82] IEEE 802.11 Working Group, “IEEE Standard for Information tech-
nology — Telecommunications and information exchange between
systems — Local and metropolitan area networks — Specific re-
quirements Part 11: Wireless LANMedium Access Control (MAC)
and Physical Layer (PHY) Specifications,” IEEE Standard 802.11,
2007.

[83] T.M. Schmidl and D.C. Cox, “Robust frequency and timing syn-
chronization for ofdm,” Communications, IEEE Transactions on, vol.
45, no. 12, pp. 1613 –1621, Dec. 1997.

[84] Stefan Nagel, Michael Schwall, Friedrich K. Jondral, “Porting of
waveforms: Principles and implementation,” Frequenz, vol. 64, no.
11-12, pp. 218 –223, nov/dec 2010.

[85] Stefan Nagel, Michael Schwall, Friedrich K. Jondral, “Portable
Waveform Design,” in Proceedings of 20th Virginia Tech Symposium
on Wireless Communications, Blacksburg VA, June 2010.

[86] Arnon Friedmann, “TI’s new TMS320C66x fixed and floating-point
DSP core conquers the ‘Need for Speed’,” http://focus.ti.
com/lit/wp/spry147/spry147.pdf, November 2010, This is
an electronic document. Date retrieved: March 10, 2011.

147

Bibliography

[87] Jelena Nikolic-Popovic, “Using TMS320C6416 Coprocessors:
Viterbi Coprocessor (VCP),” http://focus.ti.com/lit/an/
spra750d/spra750d.pdf, September 2003, This is an electronic
document. Date retrieved: March 10, 2011.

148

Supervised Theses

Dennis Epple Aufbau eines Demonstrators zum echtzeitfähigen
TETRA-Empfang
(Diplomarbeit)

Michael Schwall Aufbau einer Übertragungsstrecke mit einem
Small Form Factor SDR
(Studienarbeit)

Jan Herzmann Aufbau eines Senders nach dem IEEE 802.11a
Standard auf einem Small Form Factor SDR
(Studienarbeit)

Patrick Schuster Erweizerung einer echtzeitfähigen TETRA-
Übertragungsstrecke
(Studienarbeit)

Michael Schwall Echtzeitfähige Implementierung einer Zeit- und
Frequenzsynchronisation für eine OFDM-Übertra-
gung
(Diplomarbeit)

Enno Klasing Realisierung eines UMTS-Empfängers in
Simulink
(Studienarbeit)

Simon Meier Vergleich von High-Level Entwicklungsverfahren
für FPGAs
(Studienarbeit)

Hendrik Brunst Umsetzung einer TETRA-Wellenform in Fixed
Point Arithmetik
(Studienarbeit)

Enno Klasing Untersuchung des Optimierungspotentials von
automatisch generiertem Code in der DSV
(Diplomarbeit)

149

Index

Access Assignment Channel, 77
ADC, 2
AEP, 14, 16
API, 4

Carrier acquisition, 98
Channel, 85
Channel coding, 72
CIC filter, 33, 93, 94, 108
CIM, 18, 72, 80
CORBA, 14, 16
CORDIC, 112
Core Framework, 15

DAC, 2
Data Conversion Module, 56
Decimation, 93
Digital Processing Module, 54
Direct-Concersion receiver, 37
Domain Profile, 16
DSP, 2, 39
Dual filter detector, 98

Extended Colour Code, 75, 90

Family Radio Service, 122
FFT, 28, 30
FIR filter, 27, 30, 34
Flex2400, 42
Flex400, 42
Floor function, 74
FPGA, 2, 10, 39

Frame synchronization, 90
Frame-based processing, 21
Frequency Correction Field, 88,

98
Frequency modulation, 122
Frequency synchronization, 88,

98
Frequency tolerance, 98

GNU Radio, 11, 40
GPP, 3, 40
GRC, 13

Hardware multiplier, 108
HDL, 10
High-Level Language, 7

IEEE 802.11g, 123
Interleaving, 72
Intermediate frequency, 37, 59,

108
Interoperability, 120
Interpolation, 93
ISM radio band, 123

Logic Element, 33, 39
Lookup table, 109

MDA, 17
Media Access Control, 72

Normal Downlink Burst, 77

150

Index

OFDM, 124
Operating Environment, 14
Optimization, 8
OSSIE, 40

Pareto Principle, 9
Phase-Shift keying, 78
Physical layer, 76
PIM, 18
Platform, 4, 36, 54
Platform Specific Model, 92
Portability, 4
PSM, 18
Public Mobile Radio, 70
Pulse shaping, 79
Puncturing, 74

Rate-Compatible punctured con-
volutional code, 104

Receiver, 36
Reed Muller code, 77, 103
Resampling, 93
RF front end, 36
Roll-off factor, 95
Root raised cosine, 79, 82

Sample rate conversion, 103, 105,
109

Sample-based processing, 21
SCA, 14
Schmidl and Cox synchroniza-

tion, 124
Scrambling, 72
SDR, 3
Signal-to-Noise Ratio, 79
Simulink, 20, 40, 50
Slice, 33, 39
Spectrum mask, 95
Superheterodyne receiver, 36, 59,

62

SynchronizationDownlink Burst,
88

Synchronization Training Sequence,
88

TETRA, 70
Time synchronization, 86, 97
Traffic channel, 71
Transmitter, 38
Tunable RF Module, 59

USB, 45
USRP, 40, 92

Verilog, 10
VHDL, 10
Viterbi decoding, 91, 106

Waveform, 4
WiMAX RF Module, 62
WLAN, 123

151

Sponsorship

The research visit at the Mobile and Portable Radio Research Group
(MPRG) at the Virginia Polytechnic Institute and State University was
supported in part by the Karlsruhe House of Young Scientists (KHYS) of
the Karlsruhe Institute of Technology (KIT).

152

Curriculum Vitae

Personal Details

Date of birth: September 6th, 1980
Place of birth: Sinsheim, Germany
Citizenship: German

Education

07/2006 - 06/2011: Research Associate,
Karlsruhe Institute of Technology

08/2009 - 10/2009: Visiting Researcher, Virginia Tech
06/2001 - 06/2006: Dipl.-Ing., Universität Ulm
09/1991 - 06/2000: Anna Essinger Gymnasium, Ulm

153

