683 research outputs found

    Cutting the Climate-Development Gordian Knot - Economic options in a politically constrained world

    Get PDF
    Combating climate change cannot but be a cooperative venture amongst nations. Together with the problem posed by the withdrawal of the US from the Kyoto Protocol, the key challenge for winning the battle is the involvement of developing countries in efforts to alter their GHGs emissions trends. This involvement is necessary technically but also politically to bring the largest emitter of the planet back on the battle field. In the first section we draw on history to outline the intellectual underpinning of North/South divide around climate affairs. In the second section we show the economic basis for a leverage effect between development and climate policies. The third section ventures to propose some guidance to develop a viable climate regime strong enough to support an ambitious effort to decarbonize economies and we show that the Kyoto framework, once re-interpreted and amended is not so far from this working drawing.climate policy; development

    Cutting the Climate-Development Gordian Knot - <br />Economic options in a politically constrained world

    Get PDF
    http://www.cesifo.deCombating climate change cannot but be a cooperative venture amongst nations. Together with the problem posed by the withdrawal of the US from the Kyoto Protocol, the key challenge for winning the battle is the involvement of developing countries in efforts to alter their GHGs emissions trends. This involvement is necessary technically but also politically to bring the largest emitter of the planet back on the battle field. In the first section we draw on history to outline the intellectual underpinning of North/South divide around climate affairs. In the second section we show the economic basis for a leverage effect between development and climate policies. The third section ventures to propose some guidance to develop a viable climate regime strong enough to support an ambitious effort to decarbonize economies and we show that the Kyoto framework, once re-interpreted and amended is not so far from this working drawing

    Distributed Operating Systems

    Get PDF
    Distributed operating systems have many aspects in common with centralized ones, but they also differ in certain ways. This paper is intended as an introduction to distributed operating systems, and especially to current university research about them. After a discussion of what constitutes a distributed operating system and how it is distinguished from a computer network, various key design issues are discussed. Then several examples of current research projects are examined in some detail, namely, the Cambridge Distributed Computing System, Amoeba, V, and Eden. © 1985, ACM. All rights reserved

    Using Distributed Agents to Create University Course Timetables Addressing Essential & Desirable Constraints and Fair Allocation of Resources

    Get PDF
    In this study, the University Course Timetabling Problem (UCTP) has been investigated. This is a form of Constraint Satisfaction Problem (CSP) and belongs to the NP-complete class. The nature of a such problem is highly descriptive, a solution therefore involves combining many aspects of the problem. Although various timetabling algorithms have been continuously developed for nearly half a century, a gap still exists between the theoretical and practical aspects of university timetabling. This research is aimed to narrow the gap. We created an agent-based model for solving the university course timetabling problem, where this model not only considers a set of essential constraints upon the teaching activities, but also a set of desirable constraints that correspond to real-world needs. The model also seeks to provide fair allocation of resources. The capabilities of agents are harnessed for the activities of decision making, collaboration, coordination and negotiation by embedding them within the protocol designs. The resulting set of university course timetables involve the participation of every element in the system, with each agent taking responsibility for organising of its own course timetable, cooperating together to resolve problems. There are two types of agents in the model; these are Year-Programme Agent and Rooms Agent. In this study, we have used four different principles for organising the interaction between the agents: First-In-First-Out & Sequential (FIFOSeq), First-In-First-Out & Interleaved (FIFOInt), Round-Robin & Sequential (RRSeq) and Round-Robin & Interleaved (RRInt). The problem formulation and data instances of the third track of the Second International Timetabling Competition (ITC-2007) have been used as benchmarks for validating these implemented timetables. The validated results not only compare the four principles with each other; but also compare them with other timetabling techniques used for ITC-2007. The four different principles were able to successfully schedule all lectures in different periods, with no instances of two lectures occupying the same room at the same time. The lectures belonging to the same curriculum or taught by the same teacher do not conflict. Every lecture has been assigned a teacher before scheduling. The capacity of every assigned room is greater than, or equal to, the number of students in that course. The lectures of each course have been spread across the minimum number of working days with more than 98 percent success, and for more than 75 percent of the lectures under the same curriculum, it has been possible to avoid isolated deliveries. We conclude that the RRInt principle gives the most consistent likelihood of ensuring that each YPA in the system gets the best and fairest chance to obtain its resources

    On packet switch design

    Get PDF

    A self-integration testbed for decentralized socio-technical systems

    Get PDF
    The Internet of Things (IoT) comes along with new challenges for experimenting, testing, and operating decentralized socio-technical systems at large-scale. In such systems, autonomous agents interact locally with their users, and remotely with other agents to make intelligent collective choices. Via these interactions they self-regulate the consumption and production of distributed (common) resources, e.g., self-management of traffic flows and power demand in Smart Cities. While such complex systems are often deployed and operated using centralized computing infrastructures, the socio-technical nature of these decentralized systems requires new value-sensitive design paradigms; empowering trust, transparency, and alignment with citizens’ social values, such as privacy preservation, autonomy, and fairness among citizens’ choices. Currently, instruments and tools to study such systems and guide the prototyping process from simulation, to live deployment, and ultimately to a robust operation of a high Technology Readiness Level (TRL) are missing, or not practical in this distributed socio-technical context. This paper bridges this gap by introducing a novel testbed architecture for decentralized socio-technical systems running on IoT. This new architecture is designed for a seamless reusability of (i) application-independent decentralized services by an IoT application, and (ii) different IoT applications by the same decentralized service. This dual self-integration promises IoT applications that are simpler to prototype, and can interoperate with decentralized services during runtime to self-integrate more complex functionality, e.g., data analytics, distributed artificial intelligence. Additionally, such integration provides stronger validation of IoT applications, and improves resource utilization, as computational resources are shared, thus cutting down deployment and operational costs. Pressure and crash tests during continuous operations of several weeks, with more than 80K network joining and leaving of agents, 2.4M parameter changes, and 100M communicated messages, confirm the robustness and practicality of the testbed architecture. This work promises new pathways for managing the prototyping and deployment complexity of decentralized socio-technical systems running on IoT, whose complexity has so far hindered the adoption of value-sensitive self-management approaches in Smart Cities

    Flexible consistency for wide area peer replication

    Get PDF
    technical reportThe lack of a flexible consistency management solution hinders P2P implementation of applications involving updates, such as read-write file sharing, directory services, online auctions and wide area collaboration. Managing mutable shared data in a P2P setting requires a consistency solution that can operate efficiently over variable-quality failure-prone networks, support pervasive replication for scaling, and give peers autonomy to tune consistency to their sharing needs and resource constraints. Existing solutions lack one or more of these features. In this paper, we describe a new consistency model for P2P sharing of mutable data called composable consistency, and outline its implementation in a wide area middleware file service called Swarm1. Composable consistency lets applications compose consistency semantics appropriate for their sharing needs by combining a small set of primitive options. Swarm implements these options efficiently to support scalable, pervasive, failure-resilient, wide-area replication behind a simple yet flexible interface. We present two applications to demonstrate the expressive power and effectiveness of composable consistency: a wide area file system that outperforms Coda in providing close-to-open consistency overWANs, and a replicated BerkeleyDB database that reaps order-of-magnitude performance gains by relaxing consistency for queries and updates

    Behavioral equivalences for AbU: Verifying security and safety in distributed IoT systems

    Get PDF
    Attribute-based memory Updates ([Formula presented]in short) is an interaction mechanism recently introduced for adapting the Event-Condition-Action (ECA) programming paradigm to distributed reactive systems, such as autonomic and smart IoT device ensembles. In this model, an event (e.g., an input from a sensor, or a device state update) can trigger an ECA rule, whose execution can cause the state update of (possibly) many remote devices at once; the latter are selected “on the fly” by means of predicates over their state, without the need of a central coordinating entity. However, the combination of different [Formula presented]systems may yield unexpected interactions, e.g., when a new device is added to an existing secure system, potentially hindering the security of the whole ensemble of devices. This can be critical in the IoT, where smart devices are more and more pervasive in our daily life. In this paper, we consider the problem of ensuring security and safety requirements for [Formula presented]systems (and, in turn, for IoT devices). The first are a form of noninterference, as they correspond to avoid forbidden information flows (e.g., information flows violating confidentiality); while the second are a form of non-interaction, as they correspond to avoid unintended executions (e.g., leading to erroneous/unsafe states). In order to formally model these requirements, we introduce suitable behavioral equivalences for [Formula presented]. These equivalences are generalizations of hiding bisimilarity, i.e., a kind of weak bisimilarity where we can compare systems up to actions at different levels of security. Leveraging these behavioral equivalences, we propose (syntactic) sufficient conditions guaranteeing the requirements and, then, effective algorithms for statically verifying such conditions
    • 

    corecore