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Distributed Computing System, Amoeba, V, and Eden. 

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]: 
Distributed Systems-network operating system; D.4.3 [Operating Systems]: File 
Systems Management-distributed file systems; D.4.5 [Operating Systems]: 
Reliability-fault tolerance; D.4.6 [Operating Systems]: Security and Protection-access 
controls; D.4.7 [Operating Systems]: Organization and Design-distributed systems 

General Terms: Algorithms, Design, Experimentation, Reliability, Security 

Additional Key Words and Phrases: File server 

INTRODUCTION 

Everyone agrees that distributed systems 
are going to be very important in the future. 
Unfortunately, not everyone agrees on 
what they mean by the term “distributed 
system.” In this paper we present a view- 
point widely held within academia about 
what is and is not a distributed system, we 
discuss numerous interesting design issues 
concerning them, and finally we conclude 
with a fairly close look at some experimen- 
tal distributed systems that are the subject 
of ongoing research at universities. 

To begin with, we use the term “distrib- 
uted system” to mean a distributed operat- 
ing system as opposed to a database system 
or some distributed applications system, 
such as a banking system. An operating 
system is a program that controls the re- 
sources of a computer and provides its users 
with an interface or virtual machine that is 

more convenient to use than the bare ma- 
chine. Examples of well-known centralized 
(i.e., not distributed) operating systems are 
CP/M,’ MS-DOS,’ and UNIX.3 

A distributed operating system is one that 
looks to its users like an ordinary central- 
ized operating system but runs on multi- 
ple, independent central processing units 
(CPUs). The key concept here is transpar- 
ency. In other words, the use of multiple 
processors should be invisible (transparent) 
to the user. Another way of expressing the 
same idea is to say that the user views 
the system as a “virtual uniprocessor,” not 
as a collection of distinct machines. This 
is easier said than done. 

Many multimachine systems that do not 
fulfill this requirement have been built. For 

’ CP/M is a trademark of Digital Research, Inc. 
’ MS-DOS is a trademark of Microsoft. 
3 UNIX is a trademark of AT&T Bell Laboratories. 
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example, the ARPANET contains a sub- 
stantial number of computers, but by this 
definition it is not a distributed system. 
Neither is a local network consisting of 
personal computers with minicomputers 
and explicit commands to log in here or 
copy a file from there. In both cases we 
have a computer network but not a distrib- 
uted operating system. Thus it is the soft- 
ware, not the hardware, that determines 
whether a system is distributed or not. 

As a rule of thumb, if you can tell which 
computer you are using, you are not using 
a distributed system. The users of a true 
distributed system should not know (or 
care) on which machine (or machines) their 
programs are running, where their files 
are stored, and so on. It should be clear by 
now that very few distributed systems are 
currently used in a production environ- 
ment. However, several promising research 
projects are in progress. 

To make the contrast with distributed 
operating systems stronger, let us briefly 
look at another kind of system, which we 
call a “network operating system.” A typical 
configuration for a network operating sys- 
tem would be a collection of personal com- 
puters along with a common printer server 
and file server for archival storage, all tied 
together by a local network. Generally 
speaking, such a system will have most of 
the following characteristics that distin- 
guish it from a distributed system: 

l Each computer has its own private oper- 
ating system, instead of running part of 
a global, systemwide operating system. 

l Each user normally works on his or her 
own machine; using a different machine 
invariably requires some kind of “remote 
login,” instead of having the operating 
system dynamically allocate processes to 
CPUS. 

l Users are typically aware of where each 
of their files are kept and must move files 
between machines with explicit “file 
transfer” commands, instead of having 
file placement managed by the operating 
system. 

l The system has little or no fault toler- 
ance; if 1 percent of the personal com- 
puters crash, 1 percent of the users are 
out of business, instead of everyone sim- 
ply being able to continue normal work, 
albeit with 1 percent worse performance. 

Goals and Problems 

The driving force behind the current inter- 
est in distributed systems is the enormous 
rate of technological change in micropro- 
cessor technology. Microprocessors have 
become very powerful and cheap, compared 
with mainframes and minicomputers, so it 
has become attractive to think about de- 
signing large systems composed of many 
small processors. These distributed sys- 
tems clearly have a price/performance ad- 
vantage over more traditional systems. 
Another advantage often cited is the rela- 
tive simplicity of the software-each pro- 
cessor has a dedicated function-although 
this advantage is more often listed by 
people who have never tried to write a 
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VAXs), each with multiple users. Each user 
is logged onto one specific machine, with 
remote access to the other machines. This 
model is a simple outgrowth of the central 
time-sharing machine. 

In the workstation model, each user has 
a personal workstation, usually equipped 
with a powerful processor, memory, a bit- 
mapped display, and sometimes a disk. 
Nearly all the work is done on the work- 
stations. Such a system begins to look dis- 
tributed when it supports a single, global 
file system, so that data can be accessed 
without regard to their location. 

The processor pool model is the next 
evolutionary step after the workstation 
model. In a time-sharing system, whether 
with one or more processors, the ratio of 
CPUs to logged-in users is normally much 
less than 1; with the workstation model it 
is approximately 1; with the processor pool 
model it is much greater than 1. As CPUs 
get cheaper and cheaper, this model will 
become more and more widespread. The 
idea here is that whenever a user needs 
computing power, one or more CPUs are 
temporarily allocated to that user; when 
the job is completed, the CPUs go back into 
the pool to await the next request. As an 
example, when ten procedures (each on a 
separate file) must be recompiled, ten pro- 
cessors could be allocated to run in parallel 
for a few seconds and then be returned to 
the pool of available processors. At least 
one experimental system described below 
(Amoeba) attempts to combine two of these 
models, providing each user with a work- 
station in addition to the processor pool for 
general use. No doubt other variations will 
be tried in the future. 

distributed operating system than by those 
who have. 

Incremental growth is another plus; if 
you need 10 percent more computing 
power, you just add 10 percent more pro- 
cessors. System architecture is crucial to 
this type of system growth, however, since 
it is hard to give each user of a personal 
computer another 10 percent of a personal 
computer. Reliability and availability can 
also be a big advantage; a few parts of the 
system can be down without disturbing 
people using the other parts. On the minus 
side, unless one is very careful, it is easy 
for the communication protocol overhead 
to become a major source of inefficiency. 
There has been built more than one system 
requiring the full computing power of its 
machines just to run the protocols, leaving 
nothing over to do the work. The occasional 
lack of simplicity cited above is a real prob- 
lem, although in all fairness, this problem 
comes from inflated goals: With a central- 
ized system no one expects the computer to 
function almost normally when half the 
memory is sick. With a distributed system, 
a high degree of fault tolerance is often, at 
least, an implicit goal. 

A more fundamental problem in distrib- 
uted systems is the lack of global state 
information. It is generally a bad idea to 
even try to collect complete information 
about any aspect of the system in one table. 
Lack of up-to-date information makes 
many things much harder. It is hard to 
schedule the processors optimally if you are 
not sure how many are up at the moment. 

Many people, however, think that these 
obstacles can be overcome in time, so there 
is great interest in doing research on the 
subject. 

System Models 

Various models have been suggested for 
building a distributed system. Most of them 
fall into one of three broad categories, 
which we call the “minicomputer” model, 
the “workstation” model, and the “proces- 
sor pool” model. In the minicomputer 
model, the system consists of a few (per- 
haps even a dozen) minicomputers (e.g., 

1. NETWORK OPERATING SYSTEMS 

Before starting our discussion of distrib- 
uted operating systems, it is worth first 
taking a brief look at some of the ideas 
involved in network operating systems, 
since they can be regarded as primitive 
forerunners. Although attempts to connect 
computers together have been around for 
decades, networking really came into the 
limelight with the ARPANET in the early 
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1970s. The original design did not provide 
for much in the way of a network operating 
system. Instead, the emphasis was on using 
the network as a glorified telephone line to 
allow remote login and file transfer. Later, 
several attempts were made to create net- 
work operating systems, but they never 
were widely used [Millstein 19771. 

In more recent years, several research 
organizations have connected collections of 
minicomputers running the UNIX operat- 
ing system [Ritchie and Thompson 19741 
into a network operating system, usually 
via a local network [Birman and Rowe 
1982; Brownbridge et al. 1982; Chesson 
1975; Hwang et al. 1982; Luderer et al. 1981; 
Wambecq 19831. Wupit [1983] gives a good 
survey of these systems, which we shall 
draw upon for the remainder of this section. 

As we said earlier, the key issue that 
distinguishes a network operating system 
from a distributed one is how aware the 
users are of the fact that multiple machines 
are being used. This visibility occurs in 
three primary areas: the file system, pro- 
tection, and program execution. Of course, 
it is possible to have systems that are highly 
transparent in one area and not at all in 
the other, which leads to a hybrid form. 

1.1 File System 

When connecting two or more distinct sys- 
tems together, the first issue that must be 
faced is how to merge the file systems. 
Three approaches have been tried. The first 
approach is not to merge them at all. Going 
this route means that a program on ma- 
chine A cannot access files on machine B 
by making system calls. Instead, the user 
must run a special file transfer program 
that copies the needed remote files to the 
local machine, where they can then be ac- 
cessed normally. Sometimes remote print- 
ing and mail is also handled this way. 
One of the best-known examples of net- 
works that primarily support file transfer 
and mail via special programs, and not 
system call access to remote files, is the 
UNIX “uucp” program, and its network, 
USENET. 

The next step upward in the direction of 
a distributed file system is to have adjoining 
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file systems. In this approach, programs on 
one machine can open files on another ma- 
chine by providing a path name telling 
where the file is located. For example, one 
could say 

open(’ ‘/machinel/pathname’ ‘, READ); 
open(“machinel!pathname”, READ); 

open(‘f/. ./machinel/pathname”, READ); 

The latter naming scheme is used in the 
Newcastle Connection [Brownbridge et al. 
19821 and Netix [Wambecq 19831 and is 
derived from the creation of a virtual 
“superdirectory” above the root directories 
of all the connected machines. Thus “/. .” 
means start at the local root directory and 
go upward one level (to the superdirectory), 
and then down to the root directory of 
“machine.” In Figure 1, the root directory 
of three machines, A, B, and C are shown, 
with a superdirectory above them. To ac- 
cess file x from machine C, one could say 

open(’ ‘/. ./C/x’ ‘, READ-ONLY) 

In the Newcastle system, the naming tree 
is actually more general, since “machine 1” 
may really be any directory, so one can 
attach a machine as a leaf anywhere in the 
hierarchy, not just at the top. 

The third approach is the way it is done 
in distributed operating systems, namely, 
to have a single global file system visible 
from all machines. When this method is 
used, there is one “bin” directory for binary 
programs, one password file, and so on. 
When a program wants to read the pass- 
word file it does something like 

open(’ ‘/etc/passwd’ ‘, READ-ONLY) 

without reference to where the file is. It is 
up to the operating system to locate the file 
and arrange for transport of data as they 
are needed. LOCUS is an example of a 
system using this approach [Popek et al. 
1981; Walker et al. 1983; Weinstein et al. 
19851. 

The convenience of having a single global 
name space is obvious. In addition, this 
approach means that the operating system 
is free to move files around among ma- 
chines to keep all the disks equally full and 
busy, and that the system can maintain 
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way, the network is just being used as a 
fancy switch to allow users at any terminal 
to log onto any computer, just as a tele- 
phone company switching center allows 
any subscriber to call any other subscriber. 

This solution is usually inconvenient for 
people and impractical for programs, so 
something better is needed. The next step 
up is to allow any user to access files on 
any machine without having to log in, but 
to have the remote user appear to have 
the UID corresponding to “GUEST” or 
“DEMO” or some other publicly known 
login name. Generally such names have 
little authority and can only access files 
that have been designated as readable or 
writable by all users. 

A better approach is to have the operat- 
ing system provide a mapping between 
UIDs, so that when a user with UID 12 on 
his or her home machine accesses a remote 
machine on which his or her UID is 15, the 
remote machine treats all accesses as 
though they were done by user 15. This 
approach implies that sufficient tables are 
provided to map each user from his or her 
home (machine, UID) pair to the appropri- 
ate UID for any other machine (and that 
messages cannot be tampered with). 

In a true distributed system there should 
be a unique UID for every user, and that 
UID should be valid on all machines with- 
out any mapping. In this way no protection 
problems arise on remote accesses to files; 
as far as protection goes, a remote access 
can be treated like a local access with the 
same UID. The protection issue makes the 
difference between a network operating 
system and a distributed one clear: In one 
case there are various machines, each with 
its own user-to-UID mapping, and in the 
other there is a single, systemwide mapping 
that is valid everywhere. 

r 9 t u v w x Y 2 

Figure 1. A (virtual) superdirectory above the root 
directory provides access to remote files. 

replicated copies of files if it so chooses. 
When the user or program must specify the 
machine name, the system cannot decide 
on its own to move a file to a new machine 
because that would change the (user visi- 
ble) name used to access the file. Thus in a 
network operating system, control over file 
placement must be done manually by the 
users, whereas in a distributed operating 
system it can be done automatically by the 
system itself. 

1.2 Protection 

Closely related to the transparency of the 
file system is the issue of protection. UNIX 
and many other operating systems assign a 
unique internal identifier to each user. 
Each file in the file system has a little table 
associated with it (called an i-node in 
UNIX) telling who the owner is, where the 
disk blocks are located, etc. If two previ- 
ously independent machines are now con- 
nected, it may turn out that some internal 
User IDentifier (UID), for example, num- 
ber 12, has been assigned to a different user 
on each machine. Consequently, when user 
12 tries to access a remote file, the remote 
file system cannot see whether the access 
is permitted since two different users have 
the same UID. 

One solution to this problem is to require 
all remote users wanting to access files on 
machine X to first log onto X using a user 
name that is local to X. When used this 

1.3 Execution Location 

Program execution is the third area in 
which machine boundaries are visible in 
network operating systems. When a user or 
a running program wants to create a new 
process, where is the process created? At 
least four schemes have been used thus far. 
The first of these is that the user simply 
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says “CREATE PROCESS” in one way or 
another, and specifies nothing about where. 
Depending on the implementation, this can 
be the best or the worst way to do it. In the 
most distributed case, the system chooses 
a CPU by looking at the load, location of 
files to be used, etc. In the least distributed 
case, the system always runs the process on 
one specific machine (usually the machine 
on which the user is logged in). 

The second approach to process location 
is to allow users to run jobs on any machine 
by first logging in there. In this model, 
processes on different machines cannot 
communicate or exchange data, but a sim- 
ple manual load balancing is possible. 

The third approach is a special command 
that the user types at a terminal to cause a 
program to be executed on a specific ma- 
chine. A typical command might be 

remote vax4 who 

to run the who program on machine vax4. 
In this arrangement, the environment of 
the new process is the remote machine. In 
other words, if that process tries to read or 
write files from its current working direc- 
tory, it will discover that its working direc- 
tory is on the remote machine, and that 
files that were in the parent process’s di- 
rectory are no longer present. Similarly, 
files written in the working directory will 
appear on the remote machine, not the local 
one. 

The fourth approach is to provide the 
“CREATE PROCESS” system call with a 
parameter specifying where to run the new 
process, possibly with a new system call for 
specifying the default site. As with the pre- 
vious method, the environment will gener- 
ally be the remote machine. In many cases, 
signals and other forms of interprocess 
communication between processes do not 
work properly among processes on different 
machines. 

A final point about the difference be- 
tween network and distributed operating 
systems is how they are implemented. A 
common way to realize a network operating 
system is to put a layer of software on top 
of the native operating systems of the in- 
dividual machines (e.g., Mamrak et al. 
[1982]). For example, one could write a 
special library package that would intercept 
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all the system calls and decide whether each 
one was local or remote [Brownbridge et al. 
19821. Although most system calls can be 
handled this way without modifying the 
kernel, invariably there are a few things, 
such as interprocess signals, interrupt char- 
acters (e.g., BREAK) from the keyboard, 
etc., that are hard to get right. In a true 
distributed operating system one would 
normally write the kernel from scratch. 

1.4 An Example: The Sun Network 
File System 

To provide a contrast with the true distrib- 
uted systems described later in this paper, 
in this section we look briefly at a network 
operating system that runs on the Sun 
Microsystems’ workstations. These work- 
stations are intended for use as personal 
computers. Each one has a 68000 series 
CPU, local memory, and a large bit- 
mapped display. Workstations can be 
configured with or without local disk, as 
desired. All the workstations run a ver- 
sion of 4.2BSD UNIX specially modified 
for networking. 

This arrangement is a classic example of 
a network operating system: Each com- 
puter runs a traditional operating system, 
UNIX, and each has its own user(s), but 
with extra features added to make network- 
ing more convenient. During its evolution 
the Sun system has gone through three 
distinct versions, which we now describe. 

In the first version each of the work- 
stations was completely independent from 
all the others, except that a program rep 
was provided to copy files from one work- 
station to another. By typing a command 
such as 

rep Ml:/usr/jim/file.c M2:/usr/ast/f.c 

it was possible to transfer whole files from 
one machine to another. 

In the second version, Network Disk 
(ND), a network disk server was provided 
to support diskless workstations. Disk 
space on the disk server’s machine was 
divided into disjoint partitions, with each 
partition acting as the virtual disk for some 
(diskless) workstation. 

Whenever a diskless workstation needed 
to read a file, the request was processed 



locallv until it not down to the level of the 
device driver, it which point the block 
needed was retrieved by sending a message 
to the remote disk server. In effect, the 
network was merely being used to simulate 
a disk controller. With this network disk 
system, sharing of disk partitions was not 
possible. 

The third version, the Network File Sys- 
tem (NFS), allows remote directories to be 
mounted in the local file tree on any work- 
station. By mounting, say, a remote direc- 
tory “dot” on the empty local directory 
“/usr/doc,” all subsequent references to 
“/usr/doc” are automatically routed to the 
remote system. Sharing is allowed in NFS, 
so several users can read files on a remote 
machine at the same time. 

To prevent users from reading other peo- 
ple’s private files, a directory can only be 
mounted remotely if it is explicitly exported 
by the workstation it is located on. A direc- 
tory is exported by entering a line for it in 
a file “/etc/exports.” To improve perform- 
ance of remote access, both the client ma- 
chine and server machine do block caching. 
Remote services can be located using a 
Yellow Pages server that maps service 
names onto their network locations. 

The NFS is implemented by splitting the 
operating system up into three layers. The 
top layer handles directories, and maps 
each path name onto a generalized i-node 
called a unode consisting of a (machine, 
i-node) pair, making each vnode globally 
unique. 

Vnode numbers are presented to the mid- 
dle layer, the virtual file system (VFS). 
This layer checks to see if a requested 
vnode is local or not. If it is local, it calls 
the local disk driver or, in the case of an 
ND partition, sends a message to the re- 
mote disk server. If it is remote, the VFS 
calls the bottom layer with a request to 
process it remotely. 

The bottom layer accepts requests for 
accesses to remote vnodes and sends them 
over the network to the bottom layer on 
the serving machine. From there they prop- 
agate upward through the VFS layer to the 
top layer, where they are reinjected into the 
VFS layer. The VFS layer sees a request 
for a local vnode and processes it normally, 
without realizing that the top layer is ac- 
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tually working on behalf of a remote kernel. 
The reply retraces the same path in the 
other direction. 

The protocol between workstations has 
been carefully designed to be robust in the 
face of network and server crashes. Each 
request completely identifies the file (by its 
vnode), the position in the file, and the byte 
count. Between requests, the server does 
not maintain any state information about 
which files are open or where the current 
file position is. Thus, if a server crashes 
and is rebooted, there is no state informa- 
tion that will be lost. 

The ND and NFS facilities are quite 
different and can both be used on the same 
workstation without conflict. ND works at 
a low level and just handles remote block 
I/O without regard to the structure of the 
information on the disk. NFS works at a 
much higher level and effectively takes re- 
quests appearing at the top of the operating 
system on the client machine and gets them 
over to the top of the operating system on 
the server machine, where they are pro- 
cessed in the same way as local requests. 

2. DESIGN ISSUES 

Now we turn from traditional computer 
systems with some networking facilities 
added on to systems designed with the 
intention of being distributed. In this sec- 
tion we look at five issues that distributed 
systems’ designers are faced with: 

l communication primitives, 
l naming and protection, 
l resource management, 
0 fault tolerance, 
l services to provide. 

Although no list could possibly be exhaus- 
tive at this early stage of development, 
these topics should provide a reasonable 
impression of the areas in which current 
research is proceeding. 

2.1 Communication Primitives 

The computers forming a distributed sys- 
tem normally do not share primary mem- 
ory, and so communication via shared 
memory techniques such as semaphores 
and monitors is generally not applicable. 
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Instead, message passing in one form or 
another is used. One widely discussed 
framework for message-passing systems is 
the IS0 OS1 reference model, which has 
seven layers, each performing a well- 
defined function [Zimmermann 19801. The 
seven layers are the physical layer, data- 
link layer, network layer, transport layer, 
session layer, presentation layer, and ap- 
plication layer. By using this model it is 
possible to connect computers with widely 
different operating systems, character 
codes, and ways of viewing the world. 

Unfortunately, the overhead created by 
all these layers is substantial. In a distrib- 
uted system consisting primarily of huge 
mainframes from different manufacturers, 
connected by slow leased lines (say, 56 
kilobytes per second), the overhead might 
be tolerable. Plenty of computing capacity 
would be available for running complex 
protocols, and the narrow bandwidth 
means that close coupling between the sys- 
tems would be impossible anyway. On the 
other hand, in a distributed system consist- 
ing of identical microcomputers connected 
by a lo-megabyte-per second or faster local 
network, the price of the IS0 model is 
generally too high. Nearly all the experi- 
mental distributed systems discussed in the 
literature thus far have opted for a differ- 
ent, much simpler model, so we do not 
mention the IS0 model further in this 
paper. 

2.1.1 Message Passing 

The model that is favored by researchers 
in this area is the client-server model, in 
which a client process wanting some service 
(e.g., reading some data from a tile) sends 
a message to the server and then waits for 
a reply message, as shown in Figure 2. In 
the most naked form the system just pro- 
vides two primitives: SEND and RE- 
CEIVE. The SEND primitive specifies the 
destination and provides a message; the 
RECEIVE primitive tells from whom a 
message is desired (including “anyone”) 
and provides a buffer where the incoming 
message is to be stored. No initial setup is 
required, and no connection is established, 
hence no tear down is required. 
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Figure 2. Client-server model of communication. 

Precisely what semantics these primi- 
tives ought to have has been a subject 
of much controversy among researchers. 
Two of the fundamental decisions that 
must be made are unreliable versus reli- 
able and nonblocking versus blocking prim- 
itives. At one extreme, SEND can put a 
message out onto the network and wish it 
good luck. No guarantee of delivery is pro- 
vided, and no automatic retransmission 
is attempted by the system if the message 
is lost. At the other extreme, SEND can 
handle lost messages, retransmissions, and 
acknowledgments internally, so that when 
SEND terminates, the program is sure 
that the message has been received and 
acknowledged. 

Blocking versus Nonblocking Primitives. 
The other choice is between nonblocking 
and blocking primitives. With nonblocking 
primitives, SEND returns control to the 
user program as soon as the message has 
been queued for subsequent transmission 
(or a copy made). If no copy is made, any 
changes the program makes to the data 
before or (heaven forbid) while they are 
being sent are made at the program’s peril. 
When the message has been transmitted 
(or copied to a safe place for subsequent 
transmission), the program is interrupted 
to inform it that the buffer may be reused. 
The corresponding RECEIVE primitive 
signals a willingness to receive a message 
and provides a buffer for it to be put into. 
When a message has arrived, the program 
is informed by interrupt, or it can poll for 
status continuously or go to sleep until the 
interrupt arrives. The advantage of these 
nonblocking primitives is that they provide 
the maximum flexibility: Programs can 
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compute and perform message I/O in par- 
allel in any way they want. 

Nonblocking primitives also have a dis- 
advantage: They make programming tricky 
and difficult. Irreproducible, timing- 
dependent programs are painful to write 
and awful to debug. Consequently, many 
people advocate sacrificing some flexibility 
and efficiency by using blocking primitives. 
A.blocking SEND does not return control 
to the user until the message has been sent 
(unreliable blocking primitive) or until the 
message has been sent and an acknowledg- 
ment received (reliable blocking primitive). 
Either way, the program may immediately 
modify the buffer without danger. A block- 
ing RECEIVE does not return control until 
a message has been placed in the buffer. 
Reliable and unreliable RECEIVES differ 
in that the former automatically acknowl- 
edges receipt of a message, whereas the 
latter does not. It is not reasonable to com- 
bine a reliable SEND with an unreliable 
RECEIVE, or vice versa; so the system 
designers must make a choice and provide 
one set or the other. Blocking and non- 
blocking primitives do not conflict, so there 
is no harm done if the sender uses one and 
the receiver the other. 

receiver. Although buffered message pass- 
ing can be implemented in many ways, a 
typical approach is to provide users with a 
system call CREATEBUF, which creates a 
kernel buffer, sometimes called a mailbox, 
of a user-specified size. To communicate, 
a sender can now send messages to the 
receiver’s mailbox, where they will be 
buffered until requested by the receiver. 
Buffering is not only more complex (creat- 
ing, destroying, and generally managing 
the mailboxes), but also raises issues of pro- 
tection, the need for special high-priority 
interrupt messages, what to do with mail- 
boxes owned by processes that have been 
killed or died of natural causes, and more. 

Buffered versus Unbuffered Primitives. 
Another design decision that must be made 
is whether or not to buffer messages. The 
simplest strategy is not to buffer. When a 
sender has a message for a receiver that has 
not (yet) executed a RECEIVE primitive, 
the sender is blocked until a RECEIVE 
has been done, at which time the mes- 
sage is copied from sender to receiver. This 
strategy is sometimes referred to as a 
rendezvous. 

A more structured form of communica- 
tion is achieved by distinguishing requests 
from replies. With this approach, one typ- 
ically has three primitives: SEND-GET, 
GET-REQUEST, and SEND-REPLY. 
SEND-GET is used by clients to send re- 
quests and get replies. It combines a SEND 
to a server with a RECEIVE to get the 
server’s reply. GET-REQUEST is done by 
servers to acquire messages containing 
work for them to do. When a server has 
carried the work out, it sends a reply with 
SEND-REPLY. By thus restricting the 
message traffic and using reliable, blocking 
primitives, one can create some order in the 
chaos. 

2.1.2 Remote Procedure Call (RPC) 

A slight variation on this theme is to 
copy the message to an internal buffer on 
the sender’s machine, thus providing for a 
nonblocking version of the same scheme. 
As long as the sender does not do any more 
SENDS before the RECEIVE occurs, no 
problem occurs. 

A more general solution is to have a 
buffering mechanism, usually in the oper- 
ating system kernel, which allows senders 
to have multiple SENDS outstanding, even 
without any interest on the part of the 

The next step forward in message-passing 
systems is the realization that the model of 
“client sends request and blocks until ser- 
ver sends reply” looks very similar to a 
traditional procedure call from the client to 
the server. This model has become known 
in the literature as “remote procedure call” 
and has been widely discussed [Birrell and 
Nelson 1984; Nelson 1981; Spector 19821. 
The idea is to make the semantics of inter- 
machine communication as similar as pos- 
sible to normal procedure calls because the 
latter is familiar and well understood, and 
has proved its worth over the years as a 
tool for dealing with abstraction. It can be 
viewed as a refinement of the reliable, 
blocking SEND-GET, GET-REQUEST, 
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SENDREP primitives, with a more user- 
friendly syntax. 

The remote procedure call can be organ- 
ized as follows. The client (calling program) 
makes a normal procedure call, say, p(x, y) 
on its machine, with the intention of invok- 
ing the remote procedure p on some other 
machine. A dummy or stub procedure p 
must be included in the caller’s address 
space, or at least be dynamically linked to 
it upon call. This procedure, which may be 
automatically generated by the compiler, 
collects the parameters and packs them 
into a message in a standard format. It then 
sends the message to the remote machine 
(using SEND-GET) and blocks, waiting 
for an answer (see Figure 3). 

At the remote machine, another stub pro- 
cedure should be waiting for a message 
using GET-REQUEST. When a message 
comes in, the parameters are unpacked by 
an input-handling procedure, which then 
makes the local call p(x, y). The remote 
procedure p is thus called locally, and so its 
normal assumptions about where to find 
parameters, the state of the stack, etc., are 
identical to the case of a purely local call. 
The only procedures that know that the 
call is remote are the stubs, which build 
and send the message on the client side and 
disassemble and make the call on the server 
side. The result of the procedure call follows 
an analogous path in the reverse direction. 

Remote Procedure Call Design Issues. 
Although at first glance the remote 
procedure call model seems clean and sim- 
ple, under the surface there are several 
problems. One problem concerns parameter 
(and result) passing. In most programming 
languages, parameters can be passed by 
value or by reference. Passing value param- 
eters over the network is easy; the stub just 
copies them into the message and off they 
go. Passing reference parameters (pointers) 
over the network is not so easy. One needs 
a unique, systemwide pointer for each ob- 
ject so that it can be remotely accessed. For 
large objects, such as files, some kind of 
capability mechanism [Dennis and Van 
Horn 1966; Levy 1984; Pashtan 19821 could 
be set up, using capabilities as pointers. For 
small objects, such as integers and Boo- 
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Figure 3. Remote procedure call. 

leans, the amount of overhead and mecha- 
nism needed to create a capability and send 
it in a protected way is so large that this 
solution is highly undesirable. 

Still another problem that must be dealt 
with is how to represent parameters and 
results in messages. This representation is 
greatly complicated when different types of 
machines are involved in a communication. 
A floating-point number produced on one 
machine is unlikely to have the same value 
on a different machine, and even a negative 
integer will create problems between the l’s 
complement and 2’s complement machines. 

Converting to and from a standard for- 
mat on every message sent and received is 
an obvious possibility, but it is expensive 
and wasteful, especially when the sender 
and receiver do, in fact, use the same inter- 
nal format. If the sender uses its internal 
format (along with an indication of which 
format it is) and lets the receiver do the 
conversion, every machine must be pre- 
pared to convert from every other format. 
When a new machine type is introduced, 
much existing software must be upgraded. 
Any way it is done, with remote procedure 
call (RPC) or with plain messages, it is an 
unpleasant business. 

Some of the unpleasantness can be hid- 
den from the user if the remote procedure 
call mechanism is embedded in a program- 
ming language with strong typing, so that 
the receiver at least knows how many pa- 
rameters to expect and what types they 
have. In this respect, a weakly typed lan- 
guage such as C, in which procedures with 
a variable number of parameters are com- 
mon, is more complicated to deal with. 

Still another problem with RPC is the 
issue of client-server binding. Consider, for 
example, a system with multiple file ser- 
vers. If a client creates a file on one of the 
file servers, it is usually desirable that sub- 
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Client crashes can also cause trouble for 
servers. Consider, for example, the case of 
processes A and B communicating via the 
UNIX pipe model A ] B with A the server 
and B the client. B asks A for data and gets 
a reply, but unless that reply is acknowl- 
edged somehow, A does not know when it 
can safely discard data that it may not be 
able to reproduce. If B crashes, how long 
should A hold onto the data? (Hint: If the 
answer is less than infinity, problems will 
be introduced whenever B is slow in send- 
ing an acknowledgment.) 

Closely related to this is the problem of 
what happens if a client cannot tell whether 
or not a server has crashed. Simply waiting 
until the server is rebooted and trying again 
sometimes works and sometimes does not. 
This is a case in which it works: Client asks 
to read block 7 of some file. This is a case 
in which it does not work: Client says 
transfer a million dollars from one bank 
account to another. In the former case, it 
does not matter whether or not the server 
carried out the request before crashing; 
carrying it out a second time does no harm. 
In the latter case, one would definitely pre- 
fer the call to be carried out exactly once, 
no more and no less. Calls that may be 
repeated without harm (like the first ex- 
ample) are said to be idempotent. Unfortu- 
nately, it is not always possible to arrange 
for all calls to have this property. Any call 
that causes action to occur in the outside 
world, such as transferring money, printing 
lines, or opening a valve in an automated 
chocolate factory just long enough to fill 
exactly one vat, is likely to cause trouble if 
performed twice. 

Spector [1982] and Nelson [1981] have 
looked at the problem of trying to make 
sure that remote procedure calls are exe- 
cuted exactly once, and they have devel- 
oped taxonomies for classifying the seman- 
tics of different systems. These vary from 
systems that offer no guarantee at all (zero 
or more executions), to those that guaran- 
tee at most one execution (zero or one), to 
those that guarantee at least one execution 
(one or more). 

Getting it right (exactly one) is probably 
impossible, because even if the remote ex- 
ecution can be reduced to one instruction 

sequent writes to that file go to the file 
server where the file was created. With 
mailboxes, arranging for this is straight- 
forward. The client simply addresses the 
WRITE messages to the same mailbox that 
the CREATE message was sent to. Since 
each file server has its own mailbox, there 
is no ambiguity. 

When RPC is used, the situation is more 
complicated, since all the client does is put 
a procedure call such as 

write(FileDescriptor, BufferAddress, ByteCount); 

in his program. RPC intentionally hides all 
the details of locating servers from the 
client, but sometimes, as in this example, 
the details are important. 

In some applications, broadcasting and 
multicasting (sending to a set of destina- 
tions, rather than just one) is useful. For 
example, when trying to locate a certain 
person, process, or service, sometimes the 
only approach is to broadcast an inquiry 
message and wait for the replies to come 
back. RPC does not lend itself well to 
sending messages to sets of processes 
and getting answers back from some or 
all of them. The semantics are completely 
different. 

Despite all these disadvantages, RPC re- 
mains an interesting form of communica- 
tion, and much current research is being 
addressed toward improving it and solving 
the various problems discussed above. 

2.1.3 Error Handling 

Error handling in distributed systems is 
radically different from that of centralized 
systems. In a centralized system, a system 
crash means that the client, server, and 
communication channel are all completely 
destroyed, and no attempt is made to revive 
them. In a distributed system, matters are 
more complex. If a client has initiated a 
remote procedure call with a server that 
has crashed, the client may just be left 
hanging forever unless a time-out is built 
in. However, such a time-out introduces 
race conditions in the form of clients that 
time out too quickly, thinking that the 
server is down, when in fact, it is merely 
very slow. 
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(e.g., setting a bit in a device register that 
opens the chocolate valve), one can never 
be sure after a crash if the system went 
down a microsecond before or a micro- 
second after the one critical instruction. 
Sometimes one can make a guess based on 
observing external events (e.g., looking to 
see whether the factory floor is covered 
with a sticky, brown material), but in gen- 
eral there is no way of knowing. Note that 
the problem of creating stable storage 
[Lampson 19811 is fundamentally different, 
since remote procedure calls to the stable 
storage server in that model never cause 
events external to the computers. 

2.1.4 Implementation issues 

Constructing a system in principle is al- 
ways easier than constructing it in practice. 
Building a 16-node distributed system that 
has a total computing power about equal to 
a single-node system is surprisingly easy. 
This observation leads to tension between 
the goals of making it work fast in the 
normal case and making the semantics rea- 
sonable when something goes wrong. Some 
experimental systems have put the empha- 
sis on one goal and some on the other, but 
more research is needed before we have 
systems that are both fast and graceful in 
the face of crashes. 

Some things have been learned from past 
work, however. Foremost among these is 
that making message passing efficient is 
very important. To this end, systems 
should be designed to minimize copying of 
data [Cheriton 1984a]. For example, a re- 
mote procedure call system that first copies 
each message from the user to the stub, 
from the stub to the kernel, and finally 
from the kernel to the network interface 
board requires three copies on the sending 
side, and probably three more on the re- 
ceiving side, for a total of six. If the call is 
to a remote file server to write a 1K block 
of data to disk, at a copy time of 1 micro- 
second per byte, 6 milliseconds are needed 
just for copying, which puts an upper limit 
of 167 calls per second, or a throughput of 
167 kilobytes per second. When other 
sources of overhead are considered (e.g., the 
reply message, the time waiting for access 
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to the network, transmission time), achiev- 
ing even 80 kilobytes per second will be 
difficult, if not impossible, no matter how 
high the network bandwidth or disk speed. 
Thus it is desirable to avoid copying, but 
this is not always simple to achieve since 
without copies, (part of) a needed message 
may be swapped or paged out when it is 
needed. 

Another point worth making is that there 
is always a substantial fixed overhead with 
preparing, sending, and receiving a mes- 
sage, even a short message, such as a re- 
quest to read from a remote file server. The 
kernel must be invoked, the state of the 
current process must be saved, the desti- 
nation must be located, various tables must 
be updated, permission to access the net- 
work must be obtained (e.g., wait for the 
network to become free or wait for the 
token), and quite a bit of bookkeeping must 
be done. 

This fixed overhead argues for making 
messages as long as possible, to reduce the 
number of messages. Unfortunately, many 
current local networks limit physical pack- 
ets to 1K or 2K; 4K or 8K would be much 
better. Of course, if the packets become too 
long, a highly interactive user may occa- 
sionally be queued behind ten maximum- 
length packets, degrading response time; so 
the optimum size depends on the work load. 

Virtual Circuits versus Datagrams 
There is much controversy over whether 
remote procedure call ought to be built on 
top of a flow-controlled, error-controlled, 
virtual circuit mechanism or directly on top 
of the unreliable, connectionless (data- 
gram) service. Saltzer et al. [1984] have 
pointed out that since high reliability can 
only be achieved by end-to-end acknowl- 
edgments at the highest level of protocol, 
the lower levels need not be 100 percent 
reliable. The overhead incurred in provid- 
ing a clean virtual circuit upon which to 
build remote procedure calls (or any other 
message-passing system), is therefore 
wasted. This line of thinking argues for 
building the message system directly on the 
raw datagram interface. 

The other side of the coin is that it would 
be nice for a distributed system to be able 
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to encompass heterogeneous computers in 
different countries with different post, 
telephone, and telegraph (PTT) networks 
and possibly different national alphabets, 
and that this environment requires com- 
plex multilayered protocol structures. It is 
our observation that both arguments are 
valid, but, depending on whether one is 
trying to forge a collection of small com- 
puters into a virtual uniprocessor or merely 
access remote data transparently, one or 
the other will dominate. 

Even if one opts for building RPC on top 
of the raw datagram service provided by a 
local network, there are still a number of 
protocols open to the implementer. The 
simplest one is to have every request and 
reply separately acknowledged. The mes- 
sage sequence for a remote procedure call 
is then: REQUEST, ACK, REPLY, ACK, 
as shown in Figure 4a. The ACKs are man- 
aged by the kernel without user knowledge. 

The number of messages can be reduced 
from four to three by allowing the REPLY 
to serve as the ACK for the REQUEST, as 
shown in Figure 4b. However, a problem 
arises when the REPLY can be delayed for 
a long time. For example, when a login 
process makes an RPC to a terminal server 
requesting characters, it may be hours or 
days before someone steps up to a terminal 
and begins typing. In this event, an addi- 
tional message has to be introduced to allow 
the sending kernel to inquire whether the 
message has arrived or not. 

A further step in the same direction is to 
eliminate the other ACK as well, and let 
the arrival of the next REQUEST imply an 
acknowledgment of the previous REPLY 
(see Figure 4~). Again, some mechanism is 
needed to deal with the case that no new 
REQUEST is forthcoming quickly. 

One of the great difficulties in imple- 
menting efficient communication is that it 
is more of a black art than a science. Even 
straightforward implementations can have 
unexpected consequences, as the following 
example from Sventek et al. [1983] shows. 
Consider a ring containing a circulating 
token. To transmit, a machine captures and 
removes the token, puts a message on the 
network, and then replaces the token, thus 
allowing the next machine “downstream” 
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Figure 4. Remote procedure call (a) with individual 
acknowledgments per message, (b) with the reply as 
the request acknowledgment, (c) with no explicit 
acknowledgments. 

the opportunity to capture it. In theory, 
such a network is “fair” in that each user 
has equal access to the network and no one 
user can monopolize it to the detriment of 
others. In practice, suppose that two users 
each want to read a long file from a file 
server. User A sends a request message to 
the server, and then replaces the token on 
the network for B to acquire. 

After A’s message arrives at the server, 
it takes a short time for the server to handle 
the incoming message interrupt and reen- 
able the receiving hardware. Until the re- 
ceiver is reenabled, the server is deaf. 
Within a microsecond or two of the time A 
puts the token back on the network, B sees 
and grabs it, and begins transmitting a 
request to the (unbeknown to B) deaf file 
server. Even if the server reenables halfway 
through B’s message, the message will be 
rejected owing to missing header, bad frame 
format, and checksum error. According to 
the ring protocol, after sending one mes- 
sage, B must now replace the token, which 
A captures for a successful transmission. 
Once again B transmits during the server’s 
deaf period, and so on. Conclusion: B gets 
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no service at all until A is finished. If A 
happens to be scanning through the Man- 
hattan telephone book, B may be in for a 
long wait. This specific problem can be 
solved by inserting random delays in places 
to break the synchrony, but our point is 
that totally unexpected problems like this 
make it necessary to build and observe real 
systems to gain insight into the problems. 
Abstract formulations and simulations are 
not enough. 

2.2 Naming and Protection 

All operating systems support objects such 
as files, directories, segments, mailboxes, 
processes, services, servers, nodes, and I/O 
devices. When a process wants to access 
one of these objects, it must present some 
kind of name to the operating system to 
specify which object it wants to access. In 
some instances these names are ASCII 
strings designed for human use; in others 
they are binary numbers used only inter- 
nally. In all cases they have to be managed 
and protected from misuse. 

2.2.1 Naming as Mapping 

Naming can best be seen as a problem of 
mapping between two domains. For exam- 
ple, the directory system in UNIX provides 
a mapping between ASCII path names and 
i-node numbers. When an OPEN system 
call is made, the kernel converts the name 
of the file to be opened into its i-node 
number. Internal to the kernel, files are 
nearly always referred to by i-node number, 
not ASCII string. Just about all operating 
systems have something similar. In a dis- 
tributed system a separate name server is 
sometimes used to map user-chosen names 
(ASCII strings) onto objects in an analo- 
gous way. 

Another example of naming is the map- 
ping of virtual addresses onto physical ad- 
dresses in a virtual memory system. The 
paging hardware takes a virtual address as 
input and yields a physical address as out- 
put for use by the real memory. 

In some cases naming implies only a 
single level of mapping, but in other cases 
it can imply multiple levels. For example, 
to use some service, a process might first 
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have to map the service name onto the 
name of a server process that is prepared 
to offer the service. As a second step, the 
server would then be mapped onto the num- 
ber of the CPU on which that process is 
running. The mapping need not always 
be unique, for example, if there are multi- 
ple processes prepared to offer the same 
service. 

2.2.2 Name Servers 

In centralized systems, the problem of nam- 
ing can be effectively handled in a straight- 
forward way. The system maintains a table 
or database providing the necessary name- 
to-object mappings. The most straightfor- 
ward generalization of this approach to 
distributed systems is the single name 
server model. In this model, a server ac- 
cepts names in one domain and maps them 
onto names in another domain. For exam- 
ple, to locate services in some distributed 
systems, one sends the service name in 
ASCII to the name server, and it replies 
with the node number where that service 
can be found, or with the process name of 
the server process, or perhaps with the 
name of a mailbox to which requests for 
service can be sent. The name server’s da- 
tabase is built up by registering services, 
processes, etc., that want to be publicly 
known. File directories can be regarded as 
a special case of name service. 

Although this model is often acceptable 
in a small distributed system located at a 
single site, in a large system it is undesira- 
ble to have a single centralized component 
(the name server) whose demise can bring 
the whole system to a grinding halt. In 
addition, if it becomes overloaded, perform- 
ance will degrade. Furthermore, in a geo- 
graphically distributed system that may 
have nodes in different cities or even coun- 
tries, having a single name server will be 
inefficient owing to the long delays in ac- 
cessing it. 

The next approach is to partition the 
system into domains, each with its own 
name server. If the system is composed of 
multiple local networks connected by gate- 
ways and bridges, it seems natural to have 
one name server per local network. One 
way to organize such a system is to have a 



Distributed Operating Systems . 

Name server 1 
looks up a/b/c 

Name server 2 
looks up b/c 

Name server 3 
looks up c 

433 

a 

X > 

Y > 

2 > 

a 

X 

El C 

r 

Figure 5. Distributing the lookup of a/b/c over three name servers. 

global naming tree, with files and other 
objects having names of the form: /coun- 
try/city/network/pathname. When such a 
name is presented to any name server, it 
can immediately route the request to some 
name server in the designated country, 
which then sends it to a name server in the 
designated city, and so on until it reaches 
the name server in the network where the 
object is located, where the mapping can be 
done. Telephone numbers use such a hier- 
archy, composed of country code, area code, 
exchange code (first three digits of tele- 
phone number in North America), and sub- 
scriber line number. 

Having multiple name servers does not 
necessarily require having a single, global 
naming hierarchy. Another way to organize 
the name servers is to have each one effec- 
tively maintain a table of, for example, 
(ASCII string, pointer) pairs, where the 
pointer is really a kind of capability for any 
object or domain in the system. When a 
name, say a/b/c, is looked up by the local 
name server, it may well yield a pointer to 
another domain (name server), to which 
the rest of the name, b/c, is sent for further 
processing (see Figure 5). This facility can 
be used to provide links (in the UNIX 
sense) to files or objects whose precise 
whereabouts is managed by a remote name 
server. Thus if a file foobar is located in 
another local network, n, with name server 
n.s, one can make an entry in the local 
name server’s table for the pair (x, n.s) and 
then access xlfoobar as though it were a 
local object. Any appropriately authorized 
user or process knowing the name xlfoobar 

could make its own synonym s and then 
perform accesses using s/x/foobar. Each 
name server parsing a name that involves 
multiple name servers just strips off the 
first component and passes the rest of the 
name to the name server found by looking 
up the first component locally. 

A more extreme way of distributing the 
name server is to have each machine man- 
age its own names. To look up a name, one 
broadcasts it on the network. At each ma- 
chine, the incoming request is passed to the 
local name server, which replies only if it 
finds a match. Although broadcasting is 
easiest over a local network such as a ring 
net or CSMA net (e.g., Ethernet), it is also 
possible over store-and-forward packet 
switching networks such as the ARPANET 
[Dalal 19771. 

Although the normal use of a name server 
is to map an ASCII string onto a binary 
number used internally to the system, such 
as a process identifier or machine number, 
once in a while the inverse mapping is also 
useful. For example, if a machine crashes, 
upon rebooting it could present its (hard- 
wired) node number to the name server to 
ask what it was doing before the crash, that 
is, ask for the ASCII string corresponding 
to the service that it is supposed to be 
offering so that it can figure out what pro- 
gram to reboot. 

2.3 Resource Management 

Resource management in a distributed 
system differs from that in a centralized 
system in a fundamental way. Centralized 
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systems always have tables that give com- 
plete and up-to-date status information 
about all the resources being managed; dis- 
tributed systems do not. For example, the 
process manager in a traditional centralized 
operating system normally uses a “process 
table” with one entry per potential process. 
When a new process has to be started, it is 
simple enough to scan the whole table to 
see whether a slot is free. A distributed 
operating system, on the other hand, has a 
much harder job of finding out whether a 
processor is free, especially if the system 
designers have rejected the idea of having 
any central tables at all, for reasons of 
reliability. Furthermore, even if there is a 
central table, recent events on outlying 
processors may have made some table en- 
tries obsolete without the table manager 
knowing it. 

The problem of managing resources 
without having accurate global state infor- 
mation is very difficult. Relatively little 
work has been done in this area. In the 
following sections we look at some work 
that has been done, including distributed 
process management and scheduling. 

2.3.1 Processor Allocation 

One of the key resources to be managed in 
a distributed system is the set of available 
processors. One approach that has been 
proposed for keeping tabs on a collection of 
processors is to organize them in a logical 
hierarchy independent of the physical 
structure of the network, as in MICROS 
[Wittie and van Tilborg 19801. This ap- 
proach organizes the machines like people 
in corporate, military, academic, and 
other real-world hierarchies. Some of the 
machines are workers and others are 
managers. 

For each group of k workers, one manager 
machine (the “department head”) is as- 
signed the task of keeping track of who is 
busy and who is idle. If the system is large, 
there will be an unwieldy number of de- 
partment heads; so some machines will 
function as “deans,” riding herd on k de- 
partment heads. If there are many deans, 
they too can be organized hierarchically, 
with a “big cheese” keeping tabs on k deans. 
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This hierarchy can be extended ad infini- 
tum, with the number of levels needed 
growing logarithmically with the number of 
workers. Since each processor need only 
maintain communication with one superior 
and k subordinates, the information stream 
is manageable. 

An obvious question is, “What happens 
when a department head, or worse yet, a 
big cheese, stops functioning (crashes)?” 
One answer is to promote one of the direct 
subordinates of the faulty manager to fill 
in for the boss. The choice of which one 
can either be made by the subordinates 
themselves, by the deceased’s peers, or in a 
more autocratic system, by the sick man- 
ager’s boss. 

To avoid having a single (vulnerable) 
manager at the top of the tree, one can 
truncate the tree at the top and have a 
committee as the ultimate authority. When 
a member of the ruling committee malfunc- 
tions, the remaining members promote 
someone one level down as a replacement. 

Although this scheme is not completely 
distributed, it is feasible and works well in 
practice. In particular, the system is self- 
repairing, and can survive occasional 
crashes of both workers and managers 
without any long-term effects. 

In MICROS, the processors are mono- 
programmed, so if a job requiring S pro- 
cesses suddenly appears, the system must 
allocate S processors for it. Jobs can be 
created at any level of the hierarchy. The 
strategy used is for each manager to keep 
track of approximately how many workers 
below it are available (possibly several 
levels below it). If it thinks that a sufficient 
number are available, it reserves some 
number R of them, where R 2 S, because 
the estimate of available workers may not 
be exact and some machines may be down. 

If the manager receiving the request 
thinks that it has too few processors avail- 
able, it passes the request upward in the 
tree to its boss. If the boss cannot handle 
it either, the request continues propagating 
upward until it reaches a level that has 
enough available workers at its disposal. At 
that point, the manager splits the request 
into parts and parcels them out among the 
managers below it, which then do the same 
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thing until the wave of scheduling requests 
hits bottom. At the bottom level, the pro- 
cessors are marked as “busy,” and the ac- 
tual number of processors allocated is re- 
ported back up the tree. 

To make this strategy work well, R must 
be large enough so that the probability is 
high that enough workers will be found to 
handle the whole job. Otherwise, the re- 
quest will have to move up one level in the 
tree and start all over, wasting considerable 
time and computing power. On the other 
hand, if R is too large, too many processors 
will be allocated, wasting computing capac- 
ity until word gets back to the top and they 
can be released. 

The whole situation is greatly compli- 
cated by the fact that requests for proces- 
sors can be generated randomly anywhere 
in the system, so at any instant, multiple 
requests are likely to be in various stages 
of the allocation algorithm, potentially giv- 
ing rise to out-of-date estimates of available 
workers, race conditions, deadlocks, and 
more. In Van Tilborg and Wittie [1981] a 
mathematical analysis of the problem is 
given and various other aspects not de- 
scribed here are covered in detail. 

2.3.2 Scheduling 

The hierarchical model provides a general 
model for resource control but does not 
provide any specific guidance on how to do 
scheduling. If each process uses an entire 
processor (i.e., no multiprogramming), and 
each process is independent of all the oth- 
ers, any process can be assigned to any 
processor at random. However, if it is com- 
mon that several processes are working to- 
gether and must communicate frequently 
with each other, as in UNIX pipelines or 
in cascaded (nested) remote procedure 
calls, then it is desirable to make sure that 
the whole group runs at once. In this sec- 
tion we address that issue. 

Let us assume that each processor can 
handle up to N processes. If there are 
plenty of machines and N is reasonably 
large, the problem is not finding a free 
machine (i.e., a free slot in some process 
table), but something more subtle. The 
basic difficulty can be illustrated by an 
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Figure6. (a) Two jobs running out of phase with 
each other. (b) Scheduling matrix for eight machines, 
each with six time slots. The X’s indicated allocated 
slots. 

example in which processes A and B run 
on one machine and processes C and D run 
on another. Each machine is time shared 
in, say, lOO-millisecond time slices, with A 
and C running in the even slices, and B and 
D running in the odd ones, as shown in 
Figure 6a. Suppose that A sends many mes- 
sages or makes many remote procedure 
calls to D. During time slice 0, A starts up 
and immediately calls D, which unfortu- 
nately is not running because it is now C’s 
turn. After 100 milliseconds, process 
switching takes place, and D gets A’s mes- 
sage, carries out the work, and quickly re- 
plies. Because B is now running, it will be 
another 100 milliseconds before A gets the 
reply and can proceed. The net result is one 
message exchange every 200 milliseconds. 
What is needed is a way to ensure that 
processes that communicate frequently run 
simultaneously. 

Although it is difficult to determine dy- 
namically the interprocess communication 
patterns, in many cases a group of related 
processes will be started off together. For 
example, it is usually a good bet that the 
filters in a UNIX pipeline will communi- 
cate with each other more than they will 
with other, previously started processes. 
Let us assume that processes are created 
in groups, and that intragroup commu- 
nication is much more prevalent than 
intergroup communication. Let us further 
assume that a sufficiently large number 
of machines are available to handle the 
largest group, and that each machine is 
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multiprogrammed with N process slots (N- 
way multiprogramming). 

Ousterhout [ 19821 has proposed several 
algorithms based on the concept of co- 
scheduling, which takes interprocess 
communication patterns into account while 
scheduling to ensure that all members of a 
group run at the same time. The first al- 
gorithm uses a conceptual matrix in which 
each column is the process table for one 
machine, as shown in Figure 6b. Thus, col- 
umn 4 consists of all the processes that run 
on machine 4. Row 3 is the collection of all 
processes that are in slot 3 of some ma- 
chine, starting with the process in slot 3 of 
machine 0, then the process in slot 3 of 
machine 1, and so on. The gist of his idea 
is to have each processor use a round-robin 
scheduling algorithm with all processors 
first running the process in slot 0 for a fixed 
period, then all processors running the 
process in slot 1 for a fixed period, etc. A 
broadcast message could be used to tell each 
processor when to do process switching, to 
keep the time slices synchronized. 

By putting all the members of a process 
group in the same slot number, but on 
different machines, one has the advantage 
of N-fold parallelism, with a guarantee that 
all the processes will be run at the same 
time, to maximize communication through- 
put. Thus in Figure 6b, four processes that 
must communicate should be put into slot 
3, on machines 1, 2, 3, and 4 for optimum 
performance. This scheduling technique 
can be combined with the hierarchical 
model of process management used in 
MICROS by having each department head 
maintain the matrix for its workers, assign- 
ing processes to slots in the matrix and 
broadcasting time signals. 

Ousterhout also described several varia- 
tions to this basic method to improve per- 
formance. One of these breaks the matrix 
into rows and concatenates the rows to 
form one long row. With k machines, any 
k consecutive slots belong to different ma- 
chines. To allocate a new process group to 
slots, one lays a window k slots wide over 
the long row such that the leftmost slot is 
empty but the slot just outside the left edge 
of the window is full. If sufficient empty 
slots are present in the window, the pro- 
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cesses are assigned to the empty slots; 
otherwise the window is slid to the right 
and the algorithm repeated. Scheduling is 
done by starting the window at the left edge 
and moving rightward by about one win- 
dow’s worth per time slice, taking care not 
to split groups over windows. Ousterhout’s 
paper discusses these and other methods in 
more detail and gives some performance 
results. 

2.3.3 Load Balancing 

The goal of Ousterhout’s work is to place 
processes that work together on different 
processors, so that they can all run in par- 
allel. Other researchers have tried to do 
precisely the opposite, namely, to find sub- 
sets of all the processes in the system that 
are working together, so that closely related 
groups of processes can be placed on the 
same machine to reduce interprocess com- 
munication costs [Chow and Abraham 
1982; Chu et al. 1980; Gylys and Edwards 
1976; Lo 1984; Stone 1977,1978; Stone and 
Bokhari 19781. Yet other researchers have 
been concerned primarily with load balanc- 
ing, to prevent a situation in which some 
processors are overloaded while others are 
empty [Barak and Shiloh 1985; Efe 1982; 
Krueger and Finkel 1983; Stankovic and 
Sidhu 19841. Of course, the goals of maxi- 
mizing throughput, minimizing response 
time, and keeping the load uniform are to 
some extent in conflict, so many of the 
researchers try to evaluate different com- 
promises and trade-offs. 

Each of these different approaches to 
scheduling makes different assumptions 
about what is known and what is most 
important. The people trying to cluster 
processes to minimize communication 
costs, for example, assume that any process 
can run on any machine, that the comput- 
ing needs of each process are known in 
advance, and that the interprocess com- 
munication traffic between each pair of 
processes is also known in advance. The 
people doing load balancing typically make 
the realistic assumption that nothing about 
the future behavior of a process is known. 
The minimizers are generally theorists, 
whereas the load balancers tend to be 
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people making real systems who care less 
about optimality than about devising algo- 
rithms that can actually be used. Let us now 
briefly look at each of these approaches. 

Graph-Theoretic Models. If the system 
consists of a fixed number of processes, 
each with known CPU and memory re- 
quirements, and a known matrix giving the 
average amount of traffic between each pair 
of processes, scheduling can be attacked as 
a graph-theoretic problem. The system can 
be represented as a graph, with each pro- 
cess a node and each pair of communicating 
processes connected by an arc labeled with 
the data rate between them. 

The problem of allocating all the pro- 
cesses to k processors then reduces to the 
problem of partitioning the graph into k 
disjoint subgraphs, such that each subgraph 
meets certain constraints (e.g., total CPU 
and memory requirements below some 
limit). Arcs that are entirely within one 
subgraph represent internal communica- 
tion within a single processor (=fast), 
whereas arcs that cut across subgraph 
boundaries represent communication be- 
tween two processors (=slow). The idea is 
to find a partitioning of the graph that 
meets the constraints and minimizes the 
network traffic, or some variation of this 
idea. Figure 7a depicts a graph of interact- 
ing processors with one possible partition- 
ing of the processes between two machines. 
Figure 7b shows a better partitioning, with 
less intermachine traffic, assuming that all 
the arcs are equally weighted. Many papers 
have been written on this subject, for ex- 
ample, Chow and Abraham [1982], Chow 
and Kohler [1979], Stone [1977, 19781, 
Stone and Bokhari [1978], and Lo [1984]. 
The results are somewhat academic, since 
in real systems virtually none of the as- 
sumptions (fixed number of processes with 

Figure 7. Two ways of statically al- 
locating processes (nodes in the 
graph) to machines. Arcs show which 
pairs of processes communicate. 

static requirements, known traffic matrix, 
error-free processors and communication) 
are ever met. 

Heuristic Load Balancing. When the 
goal of the scheduling algorithm is dy- 
namic, heuristic load balancing, rather than 
finding related clusters, a different ap- 
proach is taken. Here the idea is for each 
processor to estimate its own load contin- 
ually, for processors to exchange load in- 
formation, and for process creation and 
migration to utilize this information. 

Various methods of load estimation are 
possible. One way is just to measure the 
number of runnable processes on each CPU 
periodically and take the average of the last 
n measurements as the load. Another way 
[Bryant and Finkel19811 is to estimate the 
residual running times of all the processes 
and define the load on a processor as the 
number of CPU seconds that all its pro- 
cesses will need to finish. The residual time 
can be estimated mostly simply by assum- 
ing it is equal to the CPU time already 
consumed. Bryant and Finkel also discuss 
other estimation techniques in which both 
the number of processes and length of re- 
maining time are important. When round- 
robin scheduling is used, it is better to be 
competing against one process that needs 
100 seconds than against 100 processes that 
each need 1 second. 

Once each processor has computed its 
load, a way is needed for each processor to 
find out how everyone else is doing. One 
way is for each processor to just broadcast 
its load periodically. After receiving a 
broadcast from a lightly loaded machine, a 
processor should shed some of its load by 
giving it to the lightly loaded processor. 
This algorithm has several problems. First, 
it requires a broadcast facility, which may 
not be available. Second, it consumes 
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considerable bandwidth for all the “here is 
my load” messages. Third, there is a great 
danger that many processors will try to 
shed load to the same (previously) lightly 
loaded processor at once. 

A different strategy [Barak and Shiloh 
1985; Smith 19791 is for each processor 
periodically to pick another processor (pos- 
sibly a neighbor, possibly at random) and 
exchange load information with it. After 
the exchange, the more heavily loaded pro- 
cessor can send processes to the other one 
until they are equally loaded. In this model, 
if 100 processes are suddenly created in an 
otherwise empty system, after one ex- 
change we will have two machines with 50 
processes, and after two exchanges most 
probably four machines with 25 processes. 
Processes diffuse around the network like 
a cloud of gas. 

Actually migrating running processes is 
trivial in theory, but close to impossible in 
practice. The hard part is not moving the 
code, data, and registers, but moving the 
environment, such as the current position 
within all the open files, the current values 
of any running timers, pointers or file de- 
scriptors for communicating with tape 
drives or other I/O devices, etc. All of these 
problems relate to moving variables and 
data structures related to the process that 
are scattered about inside the operating 
system. What is feasible in practice is to 
use the load information to create new 
processes on lightly loaded machines, in- 
stead of trying to move running processes. 

If one has adopted the idea of creating 
new processes only on lightly loaded ma- 
chines, another approach, called bidding, is 
possible [Farber and Larson 1972; Stan- 
kovic and Sidhu 19841. When a process 
wants some work done, it broadcasts a re- 
quest for bids, telling what it needs (e.g., a 
68000 CPU, 512K memory, floating point, 
and a tape drive). 

Other processors can then bid for the 
work, telling what their workload is, how 
much memory they have available, etc. The 
process making the request then chooses 
the most suitable machine and creates the 
process there. If multiple request-for-bid 
messages are outstanding at the same time, 
a processor accepting a bid may discover 
that the workload on the bidding machine 
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is not what it expected because that pro- 
cessor has bid for and won other work in 
the meantime. 

2.3.4 Distributed Deadlock Detection 

Some theoretical work has been done in the 
area of detection of deadlocks in distributed 
systems. How applicable this work may be 
in practice remains to be seen. Two kinds 
of potential deadlocks are resource dead- 
locks and communication deadlocks. Re- 
source deadlocks are traditional deadlocks, 
in which all of some set of processes are 
blocked waiting for resources held by other 
blocked processes. For example, if A holds 
X and B holds Y, and A wants Y and B 
wants X, a deadlock will result. 

In principle, this problem is the same in 
centralized and distributed systems, but it 
is harder to detect in the latter because 
there are no centralized tables giving the 
status of all resources. The problem has 
mostly been studied in the context of 
database systems [Gligor and Shattuck 
1980; Isloor and Marsland 1978; Menasce 
and Muntz 1979; Obermarck 19821. 

The other kind of deadlock that can oc- 
cur in a distributed system is a communi- 
cation deadlock. Suppose A is waiting for a 
message from B and B is waiting for C and 
C is waiting for A. Then we have a deadlock. 
Chandy et al. [1983] present an algorithm 
for detecting (but not preventing) commu- 
nication deadlocks. Very crudely summa- 
rized, they assume that each process that 
is blocked waiting for a message knows 
which process or processes might send the 
message. When a process logically blocks, 
they assume that it does not really block 
but instead sends a query message to each 
of the processes that might send it a real 
(data) message. If one of these processes is 
blocked, it sends query messages to the 
processes it is waiting for. If certain mes- 
sages eventually come back to the original 
process, it can conclude that a deadlock 
exists. In effect, the algorithm is looking 
for a knot in a directed graph. 

2.4 Fault Tolerance 

Proponents of distributed systems often 
claim that such systems can be more relia- 
ble than centralized systems. Actually, 



there are at least two issues involved here: 
reliability and availability. Reliability has 
to do with the system not corrupting or 
losing one’s data. Availability has to do 
with the system being up when it is needed. 
A system could be highly reliable in the 
sense that it never loses data, but at the 
same time be down most of the time and 
hence hardly usable. However, many people 
use the term “reliability” to cover availa- 
bility as well, and we will not make the 
distinction either in the rest of the paper. 

Distributed systems are potentially more 
reliable than a centralized system because 
if a system only has one instance of some 
critical component, such as a CPU, disk, or 
network interface, and that component 
fails, the system will go down. When there 
are multiple instances, the system may be 
able to continue in spite of occasional fail- 
ures. In addition to hardware failures, one 
can also consider software failures. These 
are of two types: The software failed to 
meet the formal specification (implemen- 
tation error), or the specification does not 
correctly model what the customer wanted 
(specification error). All work on program 
verification is aimed at the former, but the 
latter is also an issue. Distributed systems 
allow both hardware and software errors to 
be dealt with, albeit in somewhat different 
ways. 

An important distinction should be made 
between systems that are fault tolerant and 
those that are fault intolerant. A fault- 
tolerant system is one that can continue 
functioning (perhaps in a degraded form) 
even if something goes wrong. A fault- 
intolerant system collapses as soon as any 
error occurs. Biological systems are highly 
fault tolerant; if you cut your finger, you 
probably will not die. If a memory failure 
garbles l/10 of 1 percent of the program 
code or stack of a running program, the 
program will almost certainly crash in- 
stantly upon encountering the error. 

It is sometimes useful to distinguish be- 
tween expected faults and unexpected 
faults. When the ARPANET was designed, 
people expected to lose packets from time 
to time. This particular error was expected 
and precautions were taken to deal with it. 
On the other hand, no one expected a mem- 
ory error in one of the packet-switching 
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Figure 8. Each process has its own backup process. 

machines to cause that machine to tell the 
world that it had a delay time of zero to 
every machine in the network, which re- 
sulted in all network traffic being rerouted 
to the broken machine. 

One of the key advantages of distributed 
systems is that there are enough resources 
to achieve fault tolerance, at least with 
respect to expected errors. The system can 
be made to tolerate both hardware and 
software errors, although it should be em- 
phasized that in both cases it is the soft- 
ware, not the hardware, that cleans up the 
mess when an error occurs. In the past few 
years, two approaches to making distrib- 
uted systems fault tolerant have emerged. 
They differ radically in orientation, goals, 
and attitude toward the theologically sen- 
sitive issue of the perfectability of man- 
kind (programmers in particular). One 
approach is based on redundancy and the 
other is based on the notion of an atomic 
transaction. Both are described briefly 
below. 

2.4.1 Redundancy Techniques 

All the redundancy techniques that have 
emerged take advantage of the existence of 
multiple processors by duplicating critical 
processes on two or more machines. A par- 
ticularly simple, but effective, technique is 
to provide every process with a backup 
process on a different processor. All pro- 
cesses communicate by message passing. 
Whenever anyone sends a message to a 
process, it also sends the same message to 
the backup process, as shown in Figure 8. 
The system ensures that neither the pri- 
mary nor the backup can continue running 
until it has been verified that both have 
correctly received the message. 

Thus, if one process crashes because of 
any hardware fault, the other one can con- 
tinue. Furthermore, the remaining process 

Computing Surveys, Vol. 17, No. 4, December 1985 



440 l A. S. Tanenbaum and R. van Renesse 

can then clone itself, making a new backup 
to maintain the fault tolerance in the fu- 
ture. Borg et al. [1983] have described a 
system using these principles. 

One disadvantage of duplicating every 
process is the extra processors required, but 
another, more subtle problem is that, if 
processes exchange messages at a high rate, 
a considerable amount of CPU time may go 
into keeping the processes synchronized at 
each message exchange. Powell and Pre- 
sotto [1983] have described a redundant 
system that puts almost no additional load 
on the processes being backed up. In their 
system all messages sent on the network 
are recorded by a special “recorder” process 
(see Figure 9). From time to time, each 
process checkpoints itself onto a remote 
disk. 

If a process crashes, recovery is done by 
sending the most recent checkpoint to an 
idle processor and telling it to start run- 
ning. The recorder process then spoon feeds 
it all the messages that the original process 
received between the checkpoint and the 
crash. Messages sent by the newly restarted 
process are discarded. Once the new process 
has worked its way up to the point of crash, 
it begins sending and receiving messages 
normally, without help from the recording 
process. 

The beauty of this scheme is that the 
only additional work that a process must 
do to become immortal is to checkpoint 
itself from time to time. In theory, even the 
checkpoints can be disposed with, if the 
recorder process has enough disk space to 
store all the messages sent by all the cur- 
rently running processes. If no checkpoints 
are made, when a process crashes, the re- 
corder will have to replay the process’s 
whole history. 

When a process successfully terminates, 
the recorder no longer has to worry about 
having to rerun it; so all the messages that 
it received can be safely discarded. For serv- 
ers and other processes that never termi- 
nate, this idea must be varied to avoid 
repeating individual transactions that have 
successfully completed. 

One drawback of this scheme is that it 
relies on reliable reception of all messages 
all the time. In practice, local networks are 
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network traffic without affecting the sender and 
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very reliable, but they are not perfect. If 
occasional messages can be lost, the whole 
scheme becomes much less attractive. 

Still, one has to be very careful about 
reliability, especially when the problem is 
caused by faulty software. Suppose that a 
processor crashes because of a software bug. 
Both the schemes discussed above [Borg et 
al. 1983; Powell and Presotto 19831 deal 
with crashes by allocating a spare processor 
and restarting the crashed program, possi- 
bly from a checkpoint. Of course the new 
processor will crash too, leading to the al- 
location of yet another processor and 
another crash. Manual intervention will 
eventually be required to figure out what is 
going on. If the hardware designers could 
provide a bit somewhere that tells whether 
a crash was due to hardware or software, it 
would be very helpful. 

Both of the above techniques apply only 
to tolerance of hardware errors. It is also 
possible, however, to use redundancy in 
distributed systems to make systems toler- 
ant of software errors. One approach is to 
structure each program as a collection of 
modules, each one with a well-defined func- 
tion and a precisely specified interface to 
the other modules. Instead of writing a 
module only once, N programmers are 
asked to program it, yielding N functionally 
identical modules. 

During execution, the program runs on 
N machines in parallel. After each module 
finishes, the machines compare their re- 
sults and vote on the answer. If a majority 
of the machines say that the answer is X, 
then all of them use X as the answer, and 
all continue in parallel with the next mod- 
ule. In this manner the effects of an occa- 
sional software bug can be voted down. If 
formal specifications for any of the modules 
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are available, the answers can also be 
checked against the specifications to guard 
against the possibility of accepting an an- 
swer that is clearly wrong. 

A variation of this idea can be used to 
improve system performance. Instead of 
always waiting for all the processes to fin- 
ish, as soon as k of them agree on an 
answer, those that have not yet finished 
are told to drop what they are doing, accept 
the value found by the k processes, and 
continue with the next module. Some work 
in this area is discussed by Avizienis and 
Chen [ 19771, Avizienis and Kelly [ 19841, 
and Anderson and Lee [1981]. 

2.4.2 Atomic Transactions 

When multiple users on several machines 
are concurrently updating a distributed 
database and one or more machines crash, 
the potential for chaos is truly impressive. 
In a certain sense, the current situation is 
a step backward from the technology of the 
1950s when the normal way of updating a 
database was to have one magnetic tape, 
called the “master file,” and one or more 
tapes with updates (e.g., daily sales reports 
from all of a company’s stores). The master 
tape and updates were brought to the com- 
puter center, which then mounted the mas- 
ter tape and one update tape, and ran the 
update program to produce a new master 
tape. This new tape was then used as the 
“master” for use with the next update tape. 

Lampson [1981] has described a way of 
achieving atomic transactions by building 
up a hierarchy of abstractions. We sum- 
marize his model below. Real disks can 
crash during READ and WRITE opera- 
tions in unpredictable ways. Furthermore, 
even if a disk block is correctly written, 
there is a small (but nonzero) probability 
of it subsequently being corrupted by a 
newly developed bad spot on the disk sur- 
face. The model assumes that spontaneous 
block corruptions are sufficiently infre- 
quent that the probability of two such 
events happening within some predeter- 
mined time T is negligible. To deal with 
real disks, the system software must be able 
to tell whether or not a block is valid, for 
example, by using a checksum. 

This scheme had the very real advantage 
that if the update program crashed, one 
could always fall back on the previous mas- 
ter tape and the update tapes. In other 
words, an update run could be viewed as 
either running correctly to completion (and 
producing a new master tape) or having no 
effect at all (crash part way through, new 
tape discarded). Furthermore, update jobs 
from different sources always ran in some 
(undefined) sequential order. It never hap- 
pened that two users would concurrently 
read a field in a record (e.g., 6), each add 1 
to the value, and each store a 7 in that field, 
instead of the first one storing a 7 and the 
second storing an 8. 

The first layer of abstraction on top of 
the real disk is the “careful disk,” in which 
every CAREFUL-WRITE is read back im- 
mediately to verify that it is correct. If the 
CAREFUL-WRITE persistently fails, the 
system marks the block as “bad” and then 
intentionally crashes. Since CAREFUL- 
WRITES are verified, CAREFUL-READS 
will always be good, unless a block has gone 
bad after being written and verified. 

The next layer of abstraction is stable 
storage. A stable storage block consists of 
an ordered pair of careful blocks, which are 
typically corresponding careful blocks on 
different drives, to minimize the chance of 
both being damaged by a hardware failure. 
The stable storage algorithm guarantees 
that at least one of the blocks is always 
valid. The STABLE-WRITE primitive 
first does a CAREFUL-WRITE on one 
block of the pair, and then the other. If the 
first one fails, a crash is forced, as men- 
tioned above, and the second one is left 
untouched. 

The property of run-to-completion or do- After every crash, and at least once every 
nothing is called an atomic update. The time period T, a special cleanup process is 

property of not interleaving two jobs is 
called serializability. The goal of people 
working on the atomic transaction ap- 
proach to fault tolerance has been to regain 
the advantages of the old tape system, 
without giving up the convenience of 
databases on disk that can be modified in 
place, and to be able to do everything in a 
distributed way. 
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run to examine each stable block. If both 
blocks are “good” and identical, nothing 
has to be done. If one is “good” and one 
is “bad” (failure during a CAREFUL- 
WRITE), the “bad” one is replaced by the 
“good” one. If both are “good” but different 
(crash between two CAREFUL-WRITES), 
the second is replaced by a copy of the first. 
This algorithm allows individual disk 
blocks to be updated atomically and survive 
infrequent crashes. 

Stable storage can be used to create “sta- 
ble processors” [Lampson 19811. To make 
itself crashproof, a CPU must checkpoint 
itself on stable storage periodically. If it 
subsequently crashes, it can always restart 
itself from the last checkpoint. Stable stor- 
age can also be used to create stable moni- 
tors in order to ensure that two concurrent 
processes never enter the same critical re- 
gion at the same time, even if they are 
running on different machines. 

Given a way to implement crashproof 
processors (stable processors) and crash- 
proof disks (stable storage), it is possible to 
implement multicomputer atomic transac- 
tions. Before updating any part of the data 
in place, a stable processor first writes an 
intentions list to stable storage, providing 
the new value for each datum to be 
changed. Then it sets a commit flag to in- 
dicate that the intentions list is complete. 
The commit flag is set by atomically up- 
dating a special block on stable storage. 
Finally it begins making all the changes 
called for in the intentions list. Crashes 
during this phase have no serious conse- 
quences because the intentions list is stored 
in stable storage. Furthermore, the actual 
making of the changes is idempotent, so 
repeated crashes and restarts during this 
phase are not harmful. 

Atomic actions have been implemented 
in a number of systems (see, e.g., Fridrich 
and Older [1981, 19841, Mitchell and Dion 
[ 19821, Brown et al. [ 19851, Popek et al. 
[1981], and Reed and Svobodova [1981]). 

2.5 Services 

In a distributed system, it is natural for 
user-level server processes to provide func- 
tions that have been traditionally provided 
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by the operating system. This approach 
leads to a smaller (hence more reliable) 
kernel and makes it easier to provide, mod- 
ify, and test new services. In the following 
sections, we look at some of these services, 
but first we look at how services and servers 
can be structured. 

2.5.1 Server Structure 

The simplest way to implement a service is 
to have one server that has a single, se- 
quential thread of control. The main loop 
of the server looks something like this: 

while true do 
begin 

GetRequest; 
CarryOutRequest; 
SendReply 

end 

This approach is simple and easy to under- 
stand, but has the disadvantage that if the 
server must block while carrying out the 
request (e.g., in order to read a block from 
a remote disk), no other requests from 
other users can be started, even if they 
could have been satisfied immediately. An 
obvious example is a file server that main- 
tains a large disk block cache, but occasion- 
ally must read from a remote disk. In the 
time interval in which the server is blocked 
waiting for the remote disk to reply, it 
might have been able to service the next 
ten requests, if they were all for blocks that 
happened to be in the cache. Instead, the 
time spent waiting for the remote disk is 
completely wasted. 

To eliminate this wasted time and im- 
prove the throughput of the server, the 
server can maintain a table to keep track 
of the status of multiple partially completed 
requests. Whenever a request requires the 
server to send a message to some other 
machine and wait for the result, the server 
stores the status of the partially completed 
request in the table and goes back to the 
top of the main loop to get the next 
message. 

If the next message happens to be the 
reply from the other machine, that is fine 
and it is processed, but if it is a new request 
for service from a different client, that can 
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Message arrives 
at dispatcher 

I Shared data 

Dispatcher passes 
,request to worker 

Figure 10. The dispatcher task waits for requests and passes them on 
to the worker tasks. 

also be started, and possibly completed be- the dispatcher or some other previously 
fore the reply for the first request comes in. blocked task can now run. Thus waiting for 
In this way, the server is never idle if there a remote procedure call to finish only 
is any work to be done. blocks one task, not the whole server. 

Although this organization makes better 
use of the server’s CPU, it makes the soft- 
ware much more complicated. Instead of 
doing nicely nested remote procedure calls 
to other machines whose services it needs, 
the server is back to using separate SEND 
and RECEIVE primitives, which are less 
structured. 

The other way of organizing the server is 
to have each task capable of accepting new 
requests for work. When a message arrives, 
the kernel gives it at random to one of the 
tasks listening to the address or port to 
which the message was addressed. That 
task carries the work out by itself, and no 
dispatcher is needed. 

One way of achieving both good perfor- 
mance and clean structure is to program 
the server as a collection of miniprocesses, 
which we call a cluster of tadas. Tasks share 
the same code and global data, but each 
task has its own stack for local variables 
and registers and, most important, its own 
program counter. In other words, each task 
has its own thread of control. Multipro- 
gramming of the tasks can be done either 
by the operating system kernel or by a run 
time library within each process. 

Both of these schemes require some 
method of locking the shared data to pre- 
vent races. This locking can be achieved 
explicitly by some kind of LOCK and 
UNLOCK primitives, or implicitly by hav- 
ing the scheduler not stop any task while it 
is running. For example, task switching 
only occurs when a task blocks. With or- 
dinary user programs, such a strategy 
is undesirable, but with a server whose 
behavior is well understood, it is not 
unreasonable. 

There are two ways of organizing the 
tasks. The first way is to assign one task 
the job of “dispatcher,” as shown in Figure 
10. The dispatcher is the only task that 
accepts new requests for work. After in- 
specting an incoming request, it determines 
if the work can be done without blocking 
(e.g., if a block to be read is present in the 
cache). If it can, the dispatcher just carries 
out the work and sends the reply. If the 
work requires blocking, the dispatcher 
passes the work to some other task in the 
cluster, which can start work on it. When 
that task blocks, task switching occurs, and 

25.2 File Service 

There is little doubt that the most impor- 
tant service in any distributed system is the 
file service. Many file services and file serv- 
ers have been designed and implemented, 
so a certain amount of experience is avail- 
able (e.g., Birrell and Needham [1980], Del- 
lar [ 19821, Dion [1980], Fridrich and Older 
[ 19811, Fridrich and Older [ 19841, Mitchell 
and Dion [ 19821, Mullender and Tanen- 
baum [1985], Reed and Svobodova [1981], 
Satyanarayanan et al. [1985], Schroeder et 
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al. [1985], Sturgis et al. [1980], Svobodova 
[1981], and Swinehart et al. [1979]). A 
survey about file servers can be found in 
Svobodova [ 19841. 

File services can be roughly classified 
into two kinds, “traditional” and “robust.” 
Traditional file service is offered by nearly 
all centralized operating systems (e.g., the 
UNIX file system). Files can be opened, 
read, and rewritten in place. In particular, 
a program can open a file, seek to the 
middle of the file, and update blocks of data 
within the file. The file server implements 
these updates by simply overwriting the 
relevant disk blocks. Concurrency control, 
if there is any, usually involves locking 
entire tiles before updating them. 

Robust file service, on the other hand, is 
aimed at those applications that require 
extremely high reliability and whose users 
are prepared to pay a significant penalty in 
performance to achieve it. These file ser- 
vices generally offer atomic updates and 
similar features lacking in the traditional 
file service. 

In the following paragraphs, we discuss 
some of the issues relating to traditional 
file service (and file servers) and then look 
at those issues that specifically relate to 
robust file service and servers. Since robust 
file service normally includes traditional 
file service as a subset, the issues covered 
in the first part also apply. 

Conceptually, there are three compo- 
nents that a traditional file service nor- 
mally has: 

l disk service, 
l flat file service, 
l directory service. 

The disk service is concerned with reading 
and writing raw disk blocks without regard 
to how they are organized. A typical com- 
mand to the disk service is to allocate and 
write a disk block, and return a capability 
or address (suitably protected) so that the 
block can be read later. 

The flat file service is concerned with 
providing its clients with an abstraction 
consisting of files, each of which is a linear 
sequence of records, possibly l-byte records 
(as in UNIX) or client-defined records. The 
operations are reading and writing records, 
starting at some particular place in the file. 
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The client need not be concerned with how 
or where the data in the file are stored. 

The directory service provides a mecha- 
nism for naming and protecting tiles, so 
they can be accessed conveniently and 
safely. The directory service typically pro- 
vides objects called directories that map 
ASCII names onto the internal identifica- 
tion used by the file service. 

Design Issues. One important issue in a 
distributed system is how closely the three 
components of a traditional file service are 
integrated. At one extreme, the system can 
have distinct disk, file, and directory ser- 
vices that run on different machines and 
only interact via the official interprocess 
communication mechanism. This approach 
is the most flexible, because anyone need- 
ing a different kind of file service (e.g., a B- 
tree file) can use the standard disk server. 
It is also potentially the least efficient, 
since it generates considerable interserver 
traffic. 

At the other extreme, there are systems 
in which all three functions are handled by 
a single program, typically running on a 
machine to which a disk is attached. With 
this model, any application that needs a 
slightly different file naming scheme is 
forced to start all over making its own 
private disk server. The gain, however, is 
increased run-time efficiency, because the 
disk, file, and directory services do not have 
to communicate over the network. 

Another important design issue in dis- 
tributed systems is garbage collection. If 
the directory and file services are inte- 
grated, it is a straightforward matter to 
ensure that, whenever a tile is created, it is 
entered into a directory. If the directory 
system forms a rooted tree, it is always 
possible to reach every file from the root 
directory. However, if the file directory ser- 
vice and file service are distinct, it may be 
possible to create files and directories that 
are not reachable from the root directory. 
In some systems this may be acceptable, 
but in others unconnected files may be 
regarded as garbage to be collected by the 
system. 

Another approach to the garbage collec- 
tion problem is to forget about rooted trees 
altogether and permit the system to remove 
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model each request is completely self-con- 
tained (file name, file position, etc.), so a 
newly reincarnated server will have no 
trouble carrying it out. 

The price paid for this robustness, how- 
ever, is a slightly longer message, since each 
file request must contain the full file name 
and position. Furthermore, the virtual- 
circuit model is sometimes less complex in 
environments in which the network can 
reorder messages, that is, deliver the second 
message before the first. Local networks do 
not have this defect, but some wide-area 
networks and internetworks do. 

any file that has not been accessed for, say, 
five years. This approach is intended to 
deal with the situation of a client creating 
a temporary file and then crashing before 
recording its existence anywhere. When the 
client is rebooted, it creates a new tempo- 
rary file, and the existence of the old one is 
lost forever unless some kind of time-out 
mechanism is used. 

There are a variety of other issues that 
the designers of a distributed file system 
must address; for example, will the file ser- 
vice be virtual-circuit oriented or stateless? 
In the virtual-circuit approach, the client 
must do an OPEN on a file before reading 
it, at which time the file server fetches some 
information about the file (in UNIX terms, 
the i-node) into memory, and the client is 
given some kind of a connection identifier. 
This identifier is used in subsequent 
READS and WRITES. In the stateless ap- 
proach each READ request identifies the 
file and file position in full, so the server 
need not keep the i-node in memory (al- 
though most servers will maintain a cache 
for efficiency reasons). 

Both virtual-circuit and stateless file 
servers can be used with the IS0 OS1 and 
RPC models. When virtual circuits are used 
for communication, having the file server 
maintain open files is natural, However, 
each request message can also be self-con- 
tained so that the file server need not hold 
the file open throughout the communica- 
tion session. 

Similarly, RPC fits well with a stateless 
file server, but it can also be used with a 
file server that maintains open files. In the 
latter case the client does an RPC to the 
file server to OPEN the file and get back a 
tile identifier of some kind. Subsequent 
RPCs can do READ and WRITE opera- 
tions using this file identifier. 

The difference between these two be- 
comes clear when one considers the effects 
of a server crash on active clients. If a 
virtual-circuit server crashes and is then 
quickly rebooted, it will almost always lose 
its internal tables. When the next request 
comes in to read the current block from file 
identifier 28, it will have no way of knowing 
what to do. The client will receive an error 
message, which will generally lead to the 
client process aborting. In the stateless 

Protection. Another important issue 
faced by all file servers is access control- 
who is allowed to read and write which file. 
In centralized systems, the same problem 
exists and is solved by using either an ac- 
cess control list or capabilities. With access 
control lists, each file is associated with a 
list of users who may access it. The UNIX 
RWX bits are a simple form of access con- 
trol list that divides all users into three 
categories: owner, group, and others. With 
capabilities, a user must present a special 
“ticket” on each file access proving that he 
or she has access permission. Capabilities 
are normally maintained in the kernel to 
prevent forgery. 

With a distributed system using remote 
file servers, both of these approaches have 
problems. With access control lists the file 
server has to verify that the user in fact is 
who he or she claims to be. With capabili- 
ties, how do you prevent users from making 
them up? 

One way to make access control lists 
viable is to insist that the client first set up 
an authenticated virtual circuit with the 
file server. The authentication may involve 
a trusted third party as in Birrell et al. 
[1982, 19841. When remote procedure calls 
are used, setting up an authenticated ses- 
sion in advance is less attractive. The 
problem of authentication using RPC is 
discussed by Birrell [ 19851. 

With capabilities, the protection nor- 
mally results from the fact that the kernel 
can be trusted. With personal computers 
on a network, how can the file server trust 
the kernel? After all, a user can easily boot 
up a nonstandard kernel on his or her 
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machine. A possible solution is to encrypt 
the capabilities, as discussed by Mullender 
and Tanenbaum [1984, 1985, 19861 and 
Tanenbaum et al. [1986]. 

Performance. Performance is one of the 
key problems in using remote file servers 
(especially from diskless workstations). 
Reading a block from a local disk requires 
a disk access and a small amount of CPU 
processing. Reading from a remote server 
has the additional overhead of getting the 
data across the network. This overhead has 
two components: the actual time to move 
the bits over the wire (including contention 
resolution time, if any) and the CPU time 
the file server must spend running the pro- 
tocol software. 

Cheriton and Zwaenepoel [ 19831 describe 
measurements of network overhead in 
the context of the V system. With an 8- 
megahertz 68000 processor and a lo-me- 
gabyte-per-second Ethernet, they observe 
that reading a 512-byte block from the local 
machine takes 1.3 milliseconds and from a 
remote machine 5.7 milliseconds, assuming 
that the block is in memory and no disk 
access is needed. They also observe that 
loading a 64K program from a remote file 
server takes 255 milliseconds versus 60 mil- 
liseconds locally, when transfers are in 16K 
units. A tentative conclusion is that access 
to a remote file server is four times as 
expensive as to a local one. (It is also worth 
noting that the V designers have gone to 
great lengths to achieve good performance; 
many other file servers are much slower 
than V’s.) 

One way to improve the performance of 
a distributed file system is to have both 
clients and servers maintain caches of disk 
blocks and possibly whole files. However, 
maintaining distributed caches has a num- 
ber of serious problems. The worst of these 
is, “What happens when someone modifies 
the ‘master copy’ on the disk?” Does the 
file server tell all the machines maintaining 
caches to purge the modified block or 
file from their caches by sending them 
“unsolicited messages” as in XDFS [Sturgis 
et al. 1980]? How does the server even know 
who has a cache? Introducing a complex 
centralized administration to keep track is 
probably not the way to go. 
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Furthermore, even if the server did know, 
having the server initiate contact with its 
clients is certainly an unpleasant reversal 
of the normal client-server relationship, in 
which clients make remote procedure calls 
on servers, but not vice versa. More re- 
search is needed in this area before we have 
a satisfactory solution. Some results are 
presented by Schroeder et al. [1985]. 

Reliability. Reliability is another key 
design issue. The simplest approach is to 
design the system carefully, use good qual- 
ity disks, and make occasional tape back- 
ups. If a disk ever gets completely wiped 
out because of hardware failure, all the 
work done since the last tape backup is lost. 
Although this mode of operation may seem 
scary at first, nearly all centralized com- 
puter systems work this way, and with a 
mean time between failure of 20,000 or 
more hours for disks these days, it works 
pretty well in practice. 

For those applications that demand a 
higher level of reliability, some distributed 
systems have a more robust file service, as 
mentioned at the beginning of this section. 
The simplest approach is mirrored disks: 
Every WRITE request is carried out in 
parallel on two disk drives. At every instant 
the two drives are identical, and either one 
can take over instantly for the other in the 
event of failure. 

A refinement of this approach is to have 
the file server offer stable storage and 
atomic transactions, as discussed earlier. 
Systems offering this facility are described 
by Brown et al. [1985], Dion [1980], 
Mitchell and Dion [1982], Needham and 
Herbert [ 19821, Reed and Svobodova 
[ 19811, Sturgis et al. [ 19801, and Svobodova 
[1981]. A detailed comparison of a number 
of file servers offering sophisticated con- 
currency control and atomic update facili- 
ties is given by Svobodova [1984]. We just 
touch on a few of the basic concepts here. 

At least four different kinds of files can 
be supported by a file server. Ordinary files 
consist of a sequence of disk blocks that 
may be updated in place and that may be 
destroyed by disk or server crashes. 
Recoverable files have the property that 
groups of WRITE commands can be brack- 
eted by BEGIN TRANSACTION and 



END TRANSACTION, and that a crash 
or abort midway leaves the file in its origi- 
nal state. Robust files are written on stable 
storage and contain sufficient redundancy 
to survive disk crashes (generally two disks 
are used). Finally, multiversion files consist 
of a sequence of versions, each of which 
is immutable. Changes are made to a file 
by creating a new version. Different file 
servers support various combinations of 
these. 

All robust file servers need some mecha- 
nism for handling concurrent updates to a 
file or group of files. Many of them allow 
users to lock a file, page, or record to pre- 
vent conflicting writes. Locking introduces 
the problem of deadlocks, which can be 
dealt with by using two-phase locking 
[Eswaran et al. 19761 or timestamps [Reed 
19831. 

When the file system consists of multiple 
servers working in parallel, it becomes pos- 
sible to enhance reliability by replicating 
some or all files over multiple servers. 
Reading also becomes easier because the 
workload can now be split over two servers, 
but writing is much harder because multi- 
ple copies must be updated simultaneously, 
or this effect simulated somehow. 

One approach is to distribute the data 
but keep some of the control information 
(semi-) centralized. In LOCUS [Popek et 
al. 1981; Walker et al. 19831, for example, 
files can be replicated at many sites, but 
when a file is opened, the file server at one 
site examines the OPEN request, the num- 
ber and status of the file’s copies, and the 
state of the network. It then chooses one 
site to carry out the OPEN and the subse- 
quent READS and WRITES. The other 
sites are brought up to date later. 

2.5.3 Print Service 

Compared with file service, on which a 
great deal of time and energy has been 
expended by a large number of people, the 
other services seem rather meager. Still, it 
is worth saying at least a little bit about a 
few of the more interesting ones. 

Nearly all distributed systems have some 
kind of print service to which clients can 
send files, file names, or capabilities for 
files with instructions to print them on one 
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of the available printers, possibly with some 
text justification or other formatting be- 
forehand. In some cases the whole file is 
sent to the print server in advance, and the 
server must buffer it. In other cases only 
the file name or capability is sent, and the 
print server reads the file block by block as 
needed. The latter strategy eliminates the 
need for buffering (read: a disk) on the 

’ server side but can cause problems if the 
file is modified after the print command is 
given but prior to the actual printing. Users 
generally prefer “call-by-value” rather than 
“call-by-reference” semantics for printers. 

One way to achieve the “call-by-value” 
semantics is to have a printer spooler 
server. To print a file, the client process 
sends the file to the spooler. When the file 
has been copied to the spooler’s directory, 
an acknowledgment is sent back to the 
client. 

The actual print server is then imple- 
mented as a print client. Whenever the 
print client has nothing to print, it requests 
another file or block of a file from the print 
spooler, prints it, and then requests the 
next one. In this way the print spooler is a 
server to both the client and the printing 
device. 

Printer service is discussed by Janson et 
al. [1983] and Needham and Herbert 
[1982]. 

2.5.4 Process Service 

Every distributed operating system needs 
some mechanism for creating new pro- 
cesses. At the lowest level, deep inside the 
system kernel, there must be a way of cre- 
ating a new process from scratch. One way 
is to have a FORK call, as UNIX does, but 
other approaches are also possible. For ex- 
ample, in Amoeba, it is possible to ask the 
kernel to allocate chunks of memory of 
given sizes. The caller can then read and 
write these chunks, loading them with the 
text, data, and stack segments for a new 
process. Finally, the caller can give the 
filled-in segments back to the kernel and 
ask for a new process built up from these 
pieces. This scheme allows processes to be 
created remotely or locally, as desired. 

At a higher level it is frequently useful to 
have a process server that one can ask 
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whether there is a Pascal, TROFF, or some 
other service, in the system. If there is, the 
request is forwarded to the relevant server. 
If not, it is the job of the process server to 
build a process somewhere and give it the 
request. After, say, a very large-scale inte- 
gration (VLSI) design rule checking server 
has been created and has done its work, it 
may or may not be a good idea to keep it in 
the machine where it was created, depend- 
ing on how much work (e.g., network 
traffic) is required to load it, and how often 
it is called. The process server could easily 
manage a server cache on a least recently 
used basis, so that servers for common 
applications are usually preloaded and 
ready to go. As special-purpose VLSI pro- 
cessors become available for compilers 
and other applications, the process server 
should be given the job of managing them 
in a way that is transparent to the system’s 
users. 

2.55 Terminal Service 

How the terminals are tied to the system 
obviously depends to a large extent on the 
system architecture. If the system consists 
of a small number of minicomputers, each 
with a well-defined and stable user popu- 
lation, then each terminal can be hard 
wired to the computer that its user nor- 
mally logs on to. If, however, the system 
consists entirely of a pool of processors that 
are dynamically allocated as needed, it is 
better to connect all the terminals to one 
or more terminal servers that serve as 
concentrators. 

The terminal servers can also provide 
such features as local echoing, intraline 
editing, and window management, if de- 
sired. Furthermore, the terminal server can 
also hide the idiosyncracies of the various 
terminals in use by mapping them all onto 
a standard virtual terminal. In this way the 
rest of the software deals only with the 
virtual terminal characteristics and the ter- 
minal server takes care of the mappings to 
and from all the real terminals. The ter- 
minal server can also be used to support 
multiple windows per terminal, with each 
window acting as a virtual terminal. 
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2.5.6 Mail Service 

Electronic mail is a popular application of 
computers these days. Practically every 
university computer science department in 
the Western world is on at least one inter- 
national network for sending and receiving 
electronic mail. When a site consists of only 
one computer, keeping track of the mail is 
easy. When a site has dozens of computers 
spread over multiple local networks, how- 
ever, users often want to be able to read 
their mail on any machine they happen to 
be logged on to. This desire gives rise to the 
need for a machine-independent mail ser- 
vice, rather like a print service that can be 
accessed systemwide. Almes et al. [1985] 
discuss how mail is handled in the Eden 
system. 

2.5.7 Time Service 

There are two ways to organize a time 
service. In the simplest way, clients can just 
ask the service what time it is. In the other 
way, the time service can broadcast the 
correct time periodically, to keep all the 
clocks on the other machines in sync. The 
time server can be equipped with a radio 
receiver tuned to WWV or some other 
transmitter that provides the exact time 
down to the microsecond. 

Even with these two mechanisms, it is 
impossible to have all processes exactly 
synchronized. Consider what happens 
when a process requests the time of day 
from the time server. The request message 
comes in to the server, and a reply is sent 
back immediately. That reply must propa- 
gate back to the requesting process, cause 
an interrupt on its machine, have the ker- 
nel started up, and finally have the time 
recorded somewhere. Each of these steps 
introduces an unknown, variable delay. 

On an Ethernet, for example, the amount 
of time required for the time server to put 
the reply message onto the network is non- 
deterministic and depends on the number 
of machines contending for access at that 
instant. If a large distributed system has 
only one time server, messages to and from 
it may have to travel a long distance and 
pass over store-and-forward gateways with 
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variable queuing delays. If there are multi- nal format to those demanded by the wide- 
ple time servers, they may get out of syn- area network carrier. 
chronization because their crvstals run at 
slightly different rates. Einstein’s special 
theory of relativity also puts constraints on 
synchronizing remote clocks. 

The result of all these problems is that 
having a single global time is impossible. 
Distributed algorithms that depend on 
being able to find a unique global ordering 
of widely separated events may not work as 
expected. A number of researchers have 
tried to find solutions to the various prob- 
lems caused by the lack of global time (see, 
e.g., Jefferson [1985], Lamport [1978, 
19841, Marzullo and Owicki [1985], Reed 
[1983], and Reif and Spirakis [1984]). 

2.58 Boot Service 

The boot service has two functions: bring- 
ing up the system from scratch when the 
power is turned on and helping important 
services survive crashes. In both cases, it is 
helpful if the boot server has a hardware 
mechanism for forcing a recalcitrant ma- 
chine to jump to a program in its own read- 
only memory (ROM) in order to reset it. 
The ROM program could simply sit in a 
loop waiting for a message from the boot 
service. The message would then be loaded 
into that machine’s memory and executed 
as a program. 

The second function alluded to above is 
the “immortality service.” An important 
service could register with the boot service, 
which would then poll it periodically to see 
if it were still functioning. If not, the boot 
service could initiate measures to patch 
things up, for example, forcibly reboot it or 
allocate another processor to take over its 
work. To provide high reliability, the boot 
service should itself consist of multiple 
processors, each of which keeps checking 
that the others are still working properly. 

2.5.9 Gateway Service 

If the distributed system in question needs 
to communicate with other systems at re- 
mote sites, it may need a gateway server to 
convert messages and protocols from inter- 

3. EXAMPLES OF DISTRIBUTED 
OPERATING SYSTEMS 

Having disposed with the principles, it is 
now time to look at some actual distributed 
systems that have been constructed as re- 
search projects in universities around the 
world. Although many such projects are in 
various stages of development, space limi- 
tations prevent us from describing all of 
them in detail. Instead of saying a few 
words about each system, we have chosen 
to look at four systems that we consider 
representative. Our selection criteria were 
as follows. First, we only chose systems that 
were designed from scratch as-distributed 
systems (systems that gradually evolved by 
connecting together existing centralized 
systems or are multiprocessor versions of 
UNIX were excluded). Second, we only 
chose systems that have actually been im- 
plemented; paper designs did not count. 
Third, we only chose systems about which 
a reasonable amount of information was 
available. 

Even with these criteria, there were 
many more systems that could have been 
discussed. As an aid to the reader interested 
in pursuing this subject further, we provide 
here some references to other relevant 
work: Accent [Fitzgerald and Rashid 1985; 
Rashid and Robertson 19811, Argus [Liskov 
1982,1984; Liskov and Scheifler 1982; Oki 
et al. 19851, Chorus [Zimmermann, et al. 
19811, CRYSTAL [Dewitt et al. 19841, 
DEMOS [Powell and Miller 19831, Distrib- 
uted UNIX [Luderer et al. 19811, HXDP 
[Jensen 19781, LOCUS [Popek et al. 1981; 
Walker et al. 1983; Weinstein et al. 19851, 
Meglos [Gaglianello and Katseff 19851, 
MICROS [Curtis and Wittie 1984; Mohan 
and Wittie 1985; Wittie and Curtis 1985; 
Wittie and van Tilborg 19801, RIG [Ball et 
al. 19761, Roscoe/Arachne [Finkel et al. 
1979; Solomon and Finkell978,1979], and 
the work at Xerox Palo Alto Research Cen- 
ter [Birrell 1985; Birrell and Nelson 1984; 
Birrell et al. 1984; Boggs et al. 1980; Brown 
et al. 1985; Swinehart et al. 19791. 
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The systems we examine here are the 
Cambridge Distributed Computing System, 
Amoeba, V, and Eden. The discussion of 
each system follows the list of topics treated 
above, namely, communication primitives, 
naming and protection, resource manage- 
ment, fault tolerance, and services. 

3.1 The Cambridge Distributed Computing 
System 

The Computing Laboratory at the Univer- 
sity of Cambridge has been doing research 
in networks and distributed systems since 
the mid-1970s, first with the Cambridge 
ring and later with the Cambridge Distrib- 
uted Computing System [Needham and 
Herbert 19821. The Cambridge ring is not 
a token-passing ring, but rather contains 
several minipacket slots circulating around 
the ring. To send a packet, a machine waits 
until an empty slot passes by, then inserts 
a minipacket containing the source, desti- 
nation, some flag bits, and 2 bytes of data. 
Although the 2-byte minipackets them- 
selves are occasionally useful (e.g., for 
acknowledgments), several block-oriented 
protocols have been developed for reliably 
exchanging 2K packets by accumulating 
1024 minipackets. The nominal ring band- 
width is 10 megabytes per second, but since 
each minipacket has 2 bytes of data and 3 
bytes of overhead, the effective bandwidth 
is 4 megabytes per second. 

The Cambridge ring project was very suc- 
cessful, with copies of the ring currently in 
operation at many universities and com- 
panies in the United Kingdom and else- 
where. The availability of the ring led to 
research on distributed computing systems 
initially using nine Computer Automation 
LS14 minicomputers and later using about 
a dozen Motorola 680008, under the direc- 
tion of Roger Needham. 

The Cambridge system is primarily com- 
posed of two components: the processor 
bank and the servers. When a user logs in, 
he or she normally requests one machine 
from the processor bank, uses it as a per- 
sonal computer for the entire work session, 
and returns it when logging out. Processors 
are not normally dynamically allocated for 
short periods of time. The servers are ded- 
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icated machines that provide various useful 
services, including file service, name ser- 
vice, boot service, etc. The number and 
location of these servers is relatively static. 

3.7.7 Communication Primitives 

Owing to the evolution from network to 
distributed system described earlier, the 
communication primitives are usually de- 
scribed as network protocols rather than 
language primitives. The choice of the 
primitives was closely tuned to the capabil- 
ities of the ring in order to optimize per- 
formance. Nearly all communication is 
built up from sending packets consisting of 
a 2-byte header, a 2-byte process identifier, 
up to 2048 data bytes, and a 2-byte check- 
sum. On top of this basic packet protocol 
are a simple remote procedure call protocol 
and a byte stream protocol. 

The basic packet protocol, which is a 
pure datagram system, is used by the single- 
shot protocol to build up something similar 
to a remote procedure call. It consists of 
having the client send a packet to the server 
containing the request, and then having the 
server send a reply. Some machines are 
multiprogrammed, so that the second 
minipacket is used to route the incoming 
packet to the correct process. The request 
packet itself contains a function code and 
the parameters, if any. The reply packet 
contains a status code and the result, if 
any. Clients do not acknowledge receipt of 
the result. 

Some applications, such as terminal han- 
dling and file transfer, work better with a 
flow-controlled, virtual-circuit protocol. 
The byte stream protocol is used for these 
applications. This protocol is a full-duplex, 
connection-oriented protocol, with full flow 
control and error control. 

3.1.2 Naming and Protection 

Services can be located in the Cambridge 
system by using the name server. To look 
up a name, the client sends an ASCII string 
to the name server, which then looks it up 
in its tables and returns the machine num- 
ber where the service is located, the port 
used to address it, and the protocol it 
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expects. The name server stores service 
names as unstructured ASCII strings, 
which are simply matched against incoming 
requests character by character; that is, it 
does not manage hierarchical names. The 
name server itself has a fixed address that 
never changes, so this address may be 
embedded into programs. 

Although the service database is rela- 
tively static, from time to time names must 
be added or deleted to the name server’s 
database. Commands are provided for this 
purpose, but for protection reasons these 
commands may only be executed by the 
system administrator. 

Finding the location of a service is only 
half the work. To use most services, a pro- 
cess must identify itself in an unforge- 
able way, so that the service can check to 
see whether that user is authorized. This 
identification is handled by the Active 
Name Server, which maintains a table of 
currently logged-in users. Each table entry 
has four fields: the user’s login name, his 
or her session key (a big random number), 
the user’s class (e.g., faculty, student), and 
a control key, as shown in Figure 11. 

To use a service, a user supplies the ser- 
vice with his login name, session key (ob- 
tained at login time), and class. The service 
can then ask the Active Name Server if 
such an entry exists. Since session keys are 
sparse, it is highly unlikely that a student 
will be able to guess the current session key 
for the computer center director, and thus 
be able to obtain services reserved for the 
director. The control key must be presented 
to change an entry, thus providing a mech- 
anism to restrict changing the Active Name 
Server’s table to a few people. 

3.1.3 Resource Management 

The main resource managed by the system 
is the processor bank, handled by a service 
called the resource manager. Usually a user 
requests a processor to be allocated at login 
time, and then loads it with a single-user 
operating system. The processor then be- 
comes the user’s personal computer for the 
rest of the login session. 

The resource manager accepts requests 
to allocate a processor. In these requests 
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Figure 11. The Active name table. 

the user specifies a CPU type (e.g., 68000), 
a list of attributes (e.g., memory size), and 
a program to be run. The resource manager 
then selects the most suitable CPU cur- 
rently available for allocation. Various 
defaults are available, so, for example, a 
user can specify wanting to run TRIPOS 
(a straightforward single-user operating 
system), and the resource manager will se- 
lect an appropriate CPU type if none has 
been specified. 

The downloading of programs into pro- 
cessor bank machines is controlled by a 
server called the ancilla, although some of 
the machines have intelligent ring inter- 
faces that actually do most of the work. 
The ancilla also helps simulate the ma- 
chine’s console and front panel, so that 
users have the same control over a proces- 
sor bank machine as they would over real 
personal computers on their desks. 

3.1.4 Fault Tolerance 

The approach taken to fault tolerance in 
the Cambridge system is to make it easy to 
bring servers back up after a crash. When 
a ring interface detects a special minipacket 
whose source is the name server, it reboots 
the processor by forcing it to jump to a 
program in ROM. This program then sends 
a request to the boot server, which in turn 
goes to the name server asking for reverse 
name lookup. The name server then 
searches its tables to find the service that 
is running on the machine from which the 
reverse lookup request came. As soon as 
the reply comes in, the server knows 
what it is supposed to be doing and can 
request the resource manager and ancilla 
to download the appropriate program. 
When machines are physically reset or 
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Figure 12. The filing machine is posi- 
tioned between the users and the file server. 
It maintains a block cache and handles 
ASCII names. 

Processor 
bank 
machines 

Filing File 
machine server 

Block cache Regular files 
ASCII names Special files 

Index files 

powered up, the same procedure is carried 
out automatically. 

Another area in which some effort has 
been put to make the system fault tolerant 
is the file system, which supports atomic 
updates on special files. This facility is 
described in the next section. 

3.1.5 Services 

We have already described several key serv- 
ers, including the name server, resource 
manager, ancilla, and active name server. 
Other small servers include the time server, 
print server, login server, terminal server, 
and error server, which records system er- 
rors for maintenance purposes. The tile 
server is examined here. 

The file system started out with the idea 
of a single universal file server that pro- 
vided basic storage service but very primi- 
tive naming and protection system, coupled 
with single-user TRIPOS operating sys- 
tems in the processor bank machines, in 
which the naming and directory manage- 
ment would be done. The CAP computer (a 
large research machine within the Cam- 
bridge Computing Laboratory that does not 
have any disks of its own) also uses the file 
server. After some experience with this 
model, it was decided to create a new server, 
known as the filing machine, as a front end 
to the file system to improve the perform- 
ance (mostly by providing the filing ma- 
chine with a large cache, something that 
the small user machines could not afford). 
The CAP machine, which has adequate 
memory, continues to use the file server 
directly. The position of the filing machine 
is shown in Figure 12. 

The universal file server supports one 
basic file type, with two minor variations. 
The basic file type is an unstructured file 
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consisting of a sequence of 16-bit words, 
numbered from 0 to some maximum. 
Operations are provided for reading or writ- 
ing arbitrary numbers of words, starting 
anywhere in the file. Each file is uniquely 
identified by a 64-bit PUID (Permanent 
User IDentifier) consisting of a 32-bit disk 
address and a 32-bit random number. 

The first variation is the special file, 
which has the property that writes to it are 
atomic, that is, they will either succeed 
completely or not be done at all. They will 
never be partly completed, even in the face 
of server crashes. 

The second variation is a file called an 
index, which is a special file consisting of a 
sequence of slots, each holding one PUID. 
When a file is created, the process creating 
it must specify an index and slot in that 
index into which the new file’s PUID is 
stored. Since indexes are also files and as 
such have PUIDs themselves, an index may 
contain pointers (PUIDs) to other indices, 
allowing arbitrary directory trees and 
graphs to be built. One index is distin- 
guished as being the root index, which has 
the property that the file server’s internal 
garbage collector will never remove a file 
reachable from the root index. 

In the initial implementation, the full 
code of the TRIPOS operating system was 
loaded into each pool processor. All of the 
directory management and handling of 
ASCII names was done on the processor 
bank machines. Unfortunately, this scheme 
had several problems. First, TRIPOS was 
rather large and filled up so much memory 
that little room was left for buffers, mean- 
ing that almost every read or write request 
actually caused a disk access (the universal 
file server has hardly any buffers). Second, 
looking up a name in the directory hierar- 
chy required all the intermediate directo- 



ries between the starting point and the file 
to be physically transported from the file 
server to a machine doing the search. 

To get around these problems, a filing 
machine with a large cache was inserted in 
front of the file server. This improvement 
allowed programs to request files by name 
instead of PUID, with the name lookup 
occurring in the filing machine now. Owing 
to the large cache, most of the relevant 
directories are likely to be already present 
in the filing machine, thus eliminating 
much network traffic. Furthermore, it al- 
lowed the TRIPOS code in the user ma- 
chines to be considerably stripped, since 
the directory management was no longer 
needed. It also allowed the file server to 
read and write in large blocks; this was 
previously possible, but rarely done because 
of lack of buffer space on the user side. The 
resulting improvements were substantial. 

3.1.6 Implementation 

As should be clear by now, the whole Cam- 
bridge system is a highly pragmatic design, 
which from its inception [Wilkes and Need- 
ham 19801 was designed to be actually used 
by a substantial user community. About 90 
machines are connected by three rings now, 
and the system is fairly stable. A related 
research project was the connection of a 
number of Cambridge rings via a satellite 
[Adams et al. 19821. Future research 
may include interconnection of multiple 
Cambridge rings using very-high-speed 
(2-megabit-per-second) lines. 

3.2 Amoeba 

Amoeba is a research project on distributed 
operating systems being carried out at the 
Vrije Universiteit in Amsterdam under the 
direction of Andrew Tanenbaum. Its goal 
is to investigate capability-based, object- 
oriented systems and to build a working 
prototype system to use and evaluate. It 
currently runs on a collection of 24 Moto- 
rola 68010 computers connected by a 
lo-megabytes-per-second local network. 

The Amoeba architecture consists of four 
principal components, as shown in Figure 
13. First are the workstations, one per user, 
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Figure 13. The Amoeba architecture. 

on which users can carry out editing and 
other tasks that require fast interactive re- 
sponse. Second are the pool processors, a 
group of CPUs that can be dynamically 
allocated as needed, used, and then re- 
turned to the pool. For example, the “make” 
command might need to do six compila- 
tions; so six processors could be taken out 
of the pool for the time necessary to do the 
compilation and then returned. Alterna- 
tively, with a five-pass compiler, 5 X 6 = 
30 processors could be allocated for the six 
compilations, gaining even more speedup. 

Third are the specialized servers, such as 
directory, file, and block servers, database 
servers, bank servers, boot servers, and var- 
ious other servers with specialized func- 
tions. Fourth are the gateways, which are 
used to link Amoeba systems at different 
sites (and, eventually, different countries) 
into a single, uniform system. 

All the Amoeba machines run the same 
kernel, which primarily provides message- 
passing services and little else. The basic 
idea behind the kernel was to keep it small, 
not only to enhance its reliability, but also 
to allow as much as possible of the operat- 
ing system to run as user processes, provid- 
ing for flexibility and experimentation. 

Some of the research issues addressed by 
the project are how to put as much of the 
operating system as possible into user pro- 
cesses, how to use the processor pool, how 
to integrate the workstations and pro- 
cessor pool, and how to connect multiple 
Amoeba sites into a single coherent system 
using wide-area networks. All of these 
issues use objects and capabilities in a 
uniform way. 
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3.2.1 Communication Primitives 

The conceptual model for Amoeba com- 
munication is the abstract data type or 
object model, in which clients perform op- 
erations on objects in a location-indepen- 
dent manner. To implement this model, 
Amoeba uses a minimal remote procedure 
call model for communication between 
clients and servers. The basic client primi- 
tive is to send a message of up to about 32 
kilobytes to a server and then block waiting 
for the result. Servers use GET-RE- 
QUEST and PUT-REPLY to get new 
work and send back the results, respec- 
tively. These primitives are not embedded 
in a language environment with automatic 
stub generation. They are implemented as 
small library routines that are used to in- 
voke the kernel directly from C programs. 

All the primitives are reliable in the sense 
that detection and retransmission of lost 
messages, acknowledgment processing, and 
message-to-packet and packet-to-message 
management are all done transparently by 
the kernel. Messages are unbuffered. If a 
message arrives and no one is expecting it, 
the message is simply discarded. The send- 
ing kernel then times out and tries again. 
Users can specify how long the kernel 
should retransmit before giving up and re- 
porting failure. The idea behind this strat- 
egy is that server processes are generally 
cloned in N-fold, so normally there will be 
a server waiting. Since a message is dis- 
carded only if the system is badly over- 
loaded, having the client time out and try 
again later is not a bad idea. 

Although the basic message primitives 
are blocking, special provision is made for 
handling emergency messages. For exam- 
ple, if a database server is currently blocked 
waiting for a tile server to get some data 
for it, and a user at a terminal hits the 
BREAK key (indicating that he or she 
wants to kill off the whole request), some 
way is needed to gracefully abort all 
the processes working on behalf of that 
request. In the Amoeba system the terminal 
server generates and sends a special EX- 
CEPTION message, which causes an inter- 
rupt at the receiving process. 

This message forces the receiver to stop 
working on the request and send an 
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immediate reply with a status code of 
REQUEST ABORTED. If the receiver was 
also blocked waiting for a server, the excep- 
tion is recursively propagated all the way 
down the line, forcing each server in turn 
to finish immediately. In this manner, all 
the nested processes terminate normally 
(with error status), so that little violence is 
done to the nesting structure. In effect, an 
EXCEPTION message does not terminate 
execution. Instead, it just says “Force nor- 
mal termination immediately, even if you 
are not done yet, and return an error 
status.” 

3.2.2 Naming and Protection 

All naming and protection issues in 
Amoeba are dealt with by a single, uniform 
mechanism: sparse capabilities [Tanen- 
baum et al. 19861. The system supports 
objects such as directories, files, disk 
blocks, processes, bank accounts, and de- 
vices, but not small objects such as integers. 
Each object is owned by some service and 
managed by the corresponding server pro- 
cesses. 

When an object is created, the process 
requesting its creation is given a capability 
for it. Using this capability, a process can 
carry out operations on the object, such as 
reading or writing the blocks of a file, or 
starting or stopping a process. The number 
and types of operations applicable to an 
object are determined by the service that 
created the object; a bit map in the capa- 
bility tells which of those the holder of the 
capability is permitted to use. Thus the 
whole of Amoeba is based on the conceptual 
model of abstract data types managed by 
services, as mentioned above. Users view 
the Amoeba environment as a collection of 
objects, named by capabilities, on which 
they can perform operations. This is in 
contrast to systems in which the user view 
is a collection of processes connected by 
virtual circuits. 

Each object has a globally unique name 
contained in its capabilities. Capabilities 
are managed entirely by user processes; 
they are protected cryptographically, not 
by any kernel-maintained tables or mech- 
anisms. A capability has four fields, as 
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directory server with a capability for a di- 
rectory (itself an object) and an ASCII 
string and ask for the capability that cor- 
responds to that string in the given direc- 
tory. Other operations are entering and 
deleting (ASCII string, capability) pairs. 

This naming scheme is flexible in that a 
directory may contain capabilities for an 
arbitrary mixture of object types and loca- 
tions, but it is also uniform in that every 
object is controlled by a capability. A direc- 
tory entry may, of course, be for another 
directory, and so it is simple to build up 
a hierarchical (e.g., UNIX-like) directory 
tree, or even more general naming graphs. 
Furthermore, a directory may also contain 
a capability for a directory managed by a 
different directory service. As long as all 
the directory services have the same inter- 
faces with the user, one can distribute ob- 
jects over directory services in an arbitrary 
way. 

3.2.3 Resource Management 

Resource management in Amoeba is per- 
formed in a distributed way, again using 
capabilities. Each Amoeba machine (pool 
processor, work station, etc.) runs a re- 
source manager process that controls that 
machine. This process actually runs inside 
the kernel for efficiency reasons, but it uses 
the normal abstract data type interface 
with its clients. The key operations it sup- 
ports are CREATE SEGMENT, WRITE 
SEGMENT, READ SEGMENT, and 
MAKE PROCESS. To create a new pro- 
cess, a process would normally execute 
CREATE SEGMENT three times for 
the child process’s text, data, and stack 
segments, getting back one capability for 
each segment. Then it would fill each one 
in with that segment’s initial data and 
finally perform MAKE PROCESS with 
these capabilities as parameters, getting 
back a capability for the new process. 

Using the above primitives, it is easy to 
build a set of processes that share text 
and/or data segments. This facility is useful 
for constructing servers that consist inter- 
nally of multiple miniprocesses (tasks) that 
share text and data. Each of these processes 
has its own stack and, most important, its 
own program counter, so that when one of 

40 24 0 48 

Service port Object Rts Check 

Figure 14. An Amoeba capability. 

shown in Figure 14: 

The service port: a sparse address cor- 
responding to the service that owns the 
object, such as a file or directory service. 
The object number: an internal identi- 
fier that the service uses to tell which of 
its objects this is (comparable to the 
i-number in UNIX). 
The rights field: a bit map telling which 
operations on the object are permitted. 
The check field: a large random number 
used to authenticate the capability. 

When a server is asked to create an ob- 
ject, it picks an available slot in its internal 
tables (e.g., a free i-node, in UNIX termi- 
nology), puts the information about the 
new object there, and picks a new random 
number to be used exclusively to protect 
this new object. Each server is free to use 
any protection scheme that it wants to, but 
the normal one is for it to build a capability 
containing its port, the object number, the 
rights (initially all present), and a known 
constant. The two latter fields are then 
thoroughly mixed by encrypting them with 
the random number as key, which is then 
stored in the internal table. 

Later, when a process performs an oper- 
ation on the object, a message containing 
the object’s capability is sent to the server. 
The server uses the (plaintext) object num- 
ber to find the relevant internal table entry 
and extract the random number, which is 
then used to decrypt the rights and check 
fields. If the decryption yields the correct 
known constant, the rights field is believed 
and the server can easily check whether the 
requested operation is permitted. More de- 
tails about protection of capabilities can be 
found in Mullender and Tanenbaum [ 1984, 
19861 and Tanenbaum et al. [1986]. 

Capabilities can be stored in directories 
managed by the directory service. A direc- 
tory is effectively a set of (ASCII string, 
capability) pairs. The most common direc- 
tory operation is for a user to present the 
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them blocks on a remote procedure call, the 
others are not affected. For example, the 
file server might consist of 10 processes 
sharing a disk cache, all of which start out 
by doing a GET-REQUEST. When a mes- 
sage comes in, the kernel sees that ten 
processes are all listening to the port spec- 
ified in the message; so it picks one process 
at random and gives it the message. This 
process then performs the requested oper- 
ation, possibly blocking on remote proce- 
dure calls (e.g., calling the disk) while doing 
so, but leaving the other server processes 
free to accept and handle new requests. 

At a higher level the processor pool is 
managed by a process server that keeps 
track of which processors are free and 
which are not. If an installation wants to 
multiprogram the processor pool machines, 
then the process server manages each proc- 
ess table slot on a pool processor as a virtual 
processor. One of the interesting research 
issues here is the interplay between the 
workstations and the processor pool; that 
is: When should a process be started up on 
the workstation and when should it be off- 
loaded to a pool processor? Research has 
not yet yielded any definitive answers here, 
although it seems intuitively clear that 
highly interactive processes, such as screen 
editors, should be local to the workstation, 
and batchlike jobs, such as big compila- 
tions (e.g., UNIX “make”), should be run 
elsewhere. 

The bank server provides a basic mech- 
anism on top of which many interesting 
policies can be implemented. For example: 
If some resource is in short supply, are 
servers allowed to raise the price as a ra- 
tioning mechanism? Do you get your 
money back when you release disk space? 
That is: Is the model one of clients and 
servers buying and selling blocks, or is it 
like renting something? If it is like renting, 
there will be a flow of money from users to 
the various servers, and so users need in- 
comes to keep them going, rather than sim- 
ply initial fixed budgets. When new users 
are added, virtual money has to be created 
for them. Does this lead to inflation? The 
possibilities here are legion. 

3.2.4 Fault Tolerance 

The basic idea behind fault tolerance in 
Amoeba is that machine crashes are infre- 
quent, and that most users are not willing 
to pay a penalty in performance in order to 
make all crashes 100 percent transparent. 
Instead, Amoeba provides a boot service, 
with which servers can register. The boot 
service polls each registered server at 
agreed upon intervals. If the server does 
not reply properly within a specified time, 
the boot service declares the server to be 
broken and requests the process server to 
start up a new copy of the server on one of 
the pool processors. 

Accounting. Amoeba provides a general To understand how this strategy affects 
mechanism for resource management and clients, it is important to realize that 
accounting in the form of the bank server, Amoeba does not have any notion of a 
which manages “bank account” objects. virtual circuit or a session. Each remote 
Bank accounts hold virtual money, possibly procedure call is completely self-contained 
in multiple currencies. The principal oper- and does not depend on any previous setup; 
ation on bank account objects is transfer- that is, it does not depend on any volatile 
ring virtual money between accounts. For information stored in server’s memories. If 
example, to pay for file storage, a file server a server crashes before sending a reply, the 
might insist on payment in advance of X kernel on the client side will time out and 
dollars per megabyte of storage, and a pho- try again. When the new server comes up, 
totypesetter server might want a payment the client’s kernel will discover this and 
in advance of Y yen per page. The system send the request there, without the client 
management can decide whether or not dol- even knowing that anything has happened. 
lars and zlotys are convertible, depending Of course, this approach does not always 
on whether or not it wants users to have work, for example, if the request is not 
separate quotas on disk space and typeset- idempotent (the chocolate factory!) or if a 
ter pages, or just give each user a single sick disk head has just mechanically 
budget to use as he or she sees fit. scraped all the bits from some disk surface, 
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but it works much of the time and has zero 
overhead under normal conditions. 

3.2.5 Services 

Amoeba has several kinds of block, file, and 
directory services. The simplest one is a 
server running on top of the Amoeba kernel 
that provides a file service functionally 
equivalent to the UNIX system call inter- 
face, to allow most UNIX programs to run 
on Amoeba with only the need to relink 
them with a special library. 

A more interesting server, however, is 
FUSS (Free University Storage System), 
which views each file as a sequence of 
versions. A process can acquire a capability 
for a private copy of a new version, modify 
it, and then commit it in a single indivisible 
atomic action. Providing atomic commits 
at the file level (rather than only as a 
facility in some database systems) simpli- 
fies the construction of various servers, 
such as the bank server, that have to be 
highly robust. FUSS also supports multiple, 
simultaneous access using optimistic con- 
currency control. It is described in greater 
detail by Mullender and Tanenbaum 
[1985]. 

Other key services are the directory ser- 
vice, bank service, and boot service, all of 
which have already been discussed. 

3.2.6 Implementation 

The Amoeba kernel has been ported to five 
different CPUs: 68010, NS32016, 8088, 
VAX, and PDP-11. All the servers de- 
scribed above, except the boot server, have 
been written and tested, along with a num- 
ber of others. Measurements have shown 
that a remote procedure call from user 
space on one 68010 to user space on a 
different 68010 takes just over 8 millisec- 
onds (plus the time to actually carry out 
the service requested). The data rate be- 
tween user processes on different machines 
has been clocked at over 250,000 bytes per 
second, which is about 20 percent of the 
raw network bandwidth, an exceptionally 
high value. 

A library has been written to allow UNIX 
programs to run on Amoeba. A substantial 
number of utilities, including compilers, ed- 

itors, and shells, are operational. A server 
has also been implemented on UNIX to 
allow Amoeba programs to put capabilities 
for UNIX files into their directories and 
use them without having to know that the 
files are actually located on a VAX running 
UNIX. 

In addition to the UNIX emulation 
work, various applications have been im- 
plemented using pure Amoeba, including 
parallel traveling salesman and parallel 
alpha-beta search [Bal et al. 19851. Current 
research includes connecting Amoeba sys- 
tems at five locations in three countries 
using wide-area networks. 

3.3 The V Kernel 

The V kernel is a research project on dis- 
tributed systems at Stanford University 
under the direction of David Cheriton 
[Cheriton 1984a; Cheriton and Mann 1984; 
Cheriton and Zwaenepoel 1984a, 1984131. 
It was motivated by the increasing avail- 
ability of powerful microcomputer-based 
workstations, which can be seen as an 
alternative to traditional time-shared mini- 
computers. The V kernel is an outgrowth 
of the experience acquired with earlier sys- 
tems, Thoth [Cheriton 1982; Cheriton et al. 
19791 and Verex. 

The V kernel can be thought of as a 
software back plane, analogous to the 
Multibus or S-100 bus back planes. The 
function of a back plane is to provide an 
infrastructure for components (for hard- 
ware, boards; for software, processes) to 
communicate, and nothing else. Conse- 
quently, most of the facilities found in tra- 
ditional operating systems, such as a file 
system, resource management, and protec- 
tion, are provided in V by servers outside 
the kernel. In this respect V and Amoeba 
are conceptually very similar. 

Another point on which V and Amoeba 
agree is the free-market model of services. 
Services such as the file system are, in 
principle, just ordinary user processes. Any 
user who is dissatisfied with the standard 
file system [Stonebraker 1981; Tanenbaum 
and Mullender 19821 is free to write his or 
her own. This view is in contrast to the 
“centrally planned economy” model of most 
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Figure 15. A typical V configuration. 

time-sharing systems, which present the 
file system on a “like it or lump it” basis. 

The V system consists of a collection of 
workstations (currently SUNS), each run- 
ning an identical copy of the V kernel. The 
kernel consists of three components: the 
interprocess communication handler, the 
kernel server (for providing basic services, 
such as memory management), and the de- 
vice server (for providing uniform access to 
I/O devices). Some of the workstations 
support an interactive user, whereas others 
function as file servers, print servers, and 
other kinds of servers, as shown in Figure 
15. Unlike Amoeba, V does not have a 
processor pool. 

3.3.1 Communication Primitives 

The V communication primitives have been 
designed in accordance with the back-plane 
model mentioned above. They provide 
basic, but fast communication. To access a 
server, a client does SEND(message, pid), 
which transmits the fixed-length (32-byte) 
“message” to the server, and then blocks 
until the server has sent back a reply, which 
overwrites “message.” The second param- 
eter, “pid,” is a 32-bit integer that uniquely 
identifies the destination process. A mes- 
sage may contain a kind of pseudopointer 
to one of the client’s memory segments. 
This pseudopointer can be used to permit 
the server to read from or write to the 
client’s memory. Such reads and writes are 
handled by kernel primitives COPYFROM 
and COPYTO. As an optimization, when a 
client does a SEND containing one of these 
pseudopointers with READ permission, the 
first 1K of the segment is piggybacked onto 
the message, on the assumption that the 
server will probably want to read it even- 
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tually. In this way, messages longer than 
32 bytes can be achieved. 

Servers use the RECEIVE and REPLY 
calls. The RECEIVE call can provide a 
segment buffer in addition to the regular 
message buffer, so that if (part of) a seg- 
ment has been piggybacked onto the mes- 
sage, it will have a place to go. The REPLY 
call can also provide a segment buffer for 
the case in which the client provides a 
pseudopointer that the server can use to 
return results exceeding 32 bytes. 

To make this communication system eas- 
ier to use, calls to servers can be embedded 
in stubs so that the caller just sees an 
ordinary procedure call. Stub generation is 
not automated, however. 

3.3.2 Naming and Protection 

V has three levels of naming. At the bottom 
level, each process has a unique 32-bit pid, 
which is the address used to send messages 
to it. At the next level, services (i.e., pro- 
cesses that carry out requests for clients) 
can have symbolic (ASCII string) names in 
addition to their pids. A service can register 
a symbolic name with its kernel so that 
clients can use the symbolic name instead 
of the pid. When a client wants to access a 
service by its name, the client’s kernel 
broadcasts a query to all the other kernels, 
to see where the server is. The (Server- 
Name, pid) pair is then put in a cache for 
future use. 

The top level of naming makes it possible 
to assign symbolic names to objects, such 
as files. Symbolic names are always inter- 
preted in some “context,” analogous to 
looking up a file name in some directory in 
other systems. A context is a set of records, 
each including the symbolic name, server’s 



pid, context number, and object identifier. 
Each server manages its own contexts; 
there is no centralized “name server.” A 
symbolic name is looked up in a context by 
searching all the records in that context for 
one whose name matches the given name. 
When a match is found, the context num- 
ber and object identifier can be sent to the 
appropriate server to have some operation 
carried out. 

Names may be hierarchical, as in u/b/c. 
When a is looked up in some context, the 
result will probably be a new context, pos- 
sibly managed by a new server on a differ- 
ent machine. In that case the remaining 
string, b/c is passed on to that new server 
for further lookup, and so on. 

It is also possible to prefix a symbolic 
name with an explicit context, as in 
[HomeDirectory] a/b/c, in which case the 
name is looked up in the context specified, 
rather than in the current context (analo- 
gous to the current working directory in 
other systems). A question that quickly 
arises is, “Who keeps track of the various 
context names, such as ‘HomeDirectory’ 
above?” The answer is that each worksta- 
tion in the system has a Context Prefix 
Server, whose function is to map context 
names onto server names, so that the ap- 
propriate server can be found to interpret 
the name itself. 

3.3.3 Resource Management 

Each processor in V has a dedicated func- 
tion, either as a user workstation or a file, 
print, or other dedicated server; so no form 
of dynamic processor allocation is provided. 
The key resources to be managed are pro- 
cesses, memory, and the I/O devices. 
Process and memory management is pro- 
vided by the kernel server. I/O manage- 
ment is provided by the device server. Both 
of these are part of the kernel present on 
each machine, and are accessed via the 
standard message mechanism described 
above. They are special only in that they 
run in kernel mode and can get at the raw 
hardware. 

Processes are organized into groups 
called teams. A team of processes share a 
common address space, and therefore must 
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all run on the same processor. Application 
programs can make use of concurrency by 
running as a team of processes, each of 
which does part of the kernel. If one process 
in a team is blocked waiting for a reply to 
a message, the other ones are free to run. 
The kernel server is prepared to carry out 
operations such as creating new processes 
and teams, destroying processes and teams, 
reading and writing processes’ states, and 
mapping processes onto memory. 

All I/O in V is done using a uniform 
interface called the V I/O protocol. The 
protocol allows processes to read and write 
specific blocks on the device. This block 
orientation was chosen to provide idempo- 
tency. Terminal drivers must store the last 
block read and filter out duplicate requests 
in order to maintain the idempotency prop- 
erty. Implementation of byte streams is up 
to the users. The I/O protocol has proved 
general enough to handle disks, printers, 
terminals, and even a mouse. 

3.3.4 Fault Tolerance 

Since it was designed primarily for use in 
an interactive environment, V provides 
little in the way of fault tolerance. If 
something goes wrong, the user just does 
it again. V, however, does address excep- 
tion handling. Whenever a process causes 
an exceptional condition to occur, such as 
stack overflow or referencing nonexistent 
memory, the kernel detecting the error 
sends a specially formatted message to the 
exception server, which is outside the ker- 
nel. The exception server can then invoke 
a debugger to take over. This scheme does 
not require a process to make any advance 
preparation for being debugged and in prin- 
ciple, can allow the process to continue 
execution afterward. 

3.3.5 Services 

Since most of the V workstations do not 
have a disk, the central file server plays a 
key role in the system. The file server is 
not part of the operating system. Instead, 
it is just an ordinary user program running 
on top of the V kernel. Internally it is 
structured as a team of processes. The main 
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process handles directory operations, in- 
cluding opening files; subsidiary processes 
perform the actual read and write com- 
mands, so that when one of them blocks 
waiting for a disk block, the others can 
continue operation. The members of file 
server team share a common buffer cache, 
used to keep heavily used blocks in main 
memory. 

The file system is a traditional hierar- 
chical system, similar to that of Thoth 
[Cheriton 19821. Each file has a file descrip- 
tor, similar to an i-node in UNIX, except 
that the file descriptors are gathered into 
an ordinary file, which can grow as needed. 

Extensive measurements have been 
made of the performance of the file server. 
As an indication, it takes 7.8 milliseconds 
to read a 1K block from the file server when 
the block is in the cache. This time includes 
the communication and network overhead. 
When the block must be fetched from the 
disk, the time is increased to 35.5 millisec- 
onds. Given that the access time of the 
small Winchester disks used on personal 
computers is rarely better than 40 millisec- 
onds, it is clear that the V implementation 
of diskless workstations with a fast (18- 
millisecond) central file server is definitely 
competitive. 

Other V servers include the print server, 
gateway server, and time server. Other 
servers are in the process of being devel- 
oped. 

3.3.6 Implementation 

The V kernel has been up and running at 
Stanford University since September 1982. 
It runs on SUN Microsystems 68000-based 
workstations, connected by 3-megabit-per- 
second and lo-megabit-per-second Ether- 
nets. The kernel is used as a base for a 
variety of projects at Stanford, including 
the research project on distributed operat- 
ing systems. A great deal of attention has 
been paid to tuning the system to make it 
fast. 

3.4 The Eden Project 

The goal of the Eden system [Almes et al. 
1985; Black 1983, 1985; Jessop et al. 1982; 
Lazowska et al. 19811, which is being de- 
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veloped at the University of Washington in 
Seattle under the direction of Guy Almes, 
Andrew Black, Ed Lazowska, and Jerre 
Noe, is to investigate logically integrated 
but physically distributed operating sys- 
tems. The idea is to construct a system 
based on the principle of one user and one 
workstation (no processor pool), but with a 
high degree of systemwide integration. 
Eden is object oriented, with all objects 
accessed by capabilities, which are pro- 
tected by the Eden kernel. Eden objects, in 
contrast to, say, Amoeba objects, contain 
not only passive data, but also one or more 
processes that carry out the operations de- 
fined for the object. Objects are general: 
Applications programmers can determine 
what operations their objects will provide. 
Objects are also mobile, but at any instant 
each object (and all the processes it con- 
tains) resides on a single workstation. 

Much more than most research projects 
of this kind, Eden was designed top down. 
In fact, the underlying hardware and lan- 
guage was radically changed twice during 
the project, without causing too much rede- 
signing. This would have been much more 
difficult in a bottom-up, hardware-driven 
approach. 

3.4.1 Communication Primitives 

Communication in Eden uses “invocation,” 
a form of remote procedure call. Programs 
are normally written in EPL, the Eden 
Programming Language, which is based on 
Concurrent Euclid. (The EPL translator is 
actually a preprocessor for Concurrent 
Euclid.) To perform an operation on an 
object, say, Lookup, on a directory object, 
the EPL programmer just calls Lookup, 
specifying a capability for the directory to 
be searched, the string to be searched for, 
and some other parameters. 

The EPL compiler translates the call to 
Lookup to a call to a stub routine linked 
together with the calling procedure. This 
stub routine assembles the parameters 
and packs them in a standard form called 
ESCII (Eden Standard Code for Informa- 
tion Interchange), and then calls a lower 
level routine to transmit the function code 
and packed parameters to the destination 
machine. 
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Each directory entry contains the ASCII 
string by which the capability is accessed 
and the capability itself. Clients can only 
access the contents of a directory by invok- 
ing the directory object with one of the 
valid operations, which include add entry, 
delete entry, lookup string, and rename ca- 
pability. Capabilities are protected from 
forgery by the kernel, but users keep copies 
of capabilities for their own use; the kernel 
verifies them when they are used. 

The basic protection scheme protects ob- 
jects, using capabilities. Since all processes 
are embedded in objects, a process can be 
protected by restricting the distribution of 
capabilities to its object. The only way to 
obtain service from an object is by invoking 
the object with the proper capability, pa- 
rameters, etc., all of which are checked by 
the kernel and EPL run-time system before 
the call is made. 

When the message arrives at the desti- 
nation machine, a stub routine there un- 
packs the ESCII message and makes a local 
call on Lookup using the normal EPL call- 
ing sequence. The reply proceeds analo- 
gously in the opposite direction. The stub 
routines on both sides are automatically 
generated by the EPL compiler. 

The implementation of invocation is 
slightly complicated by the fact that an 
object may contain multiple processes. 
When one process blocks waiting for a re- 
ply, the others must not be affected. This 
problem is handled by splitting the invo- 
cation into two layers. The upper layer 
builds the message, including the capability 
for the object to be invoked and the ESCII 
parameters, passes it to the lower layer, 
and blocks the calling process until the 
reply arrives. The lower layer then makes 
a nonblocking call to the kernel to actually 
send the message. If other processes are 
active within the object, they can now be 
run; if none are active, the object waits until 
a message arrives. 

On the receiving side, a process within 
the invoked object will normally have pre- 
viously executed a call announcing its will- 
ingness to perform some operation (e.g., 
Lookup in the above example), thereby 
blocking itself. When the Lookup message 
comes in, it is accepted by a special dis- 
patcher process that checks to see which 
process, if any, is blocked waiting to per- 
form the operation requested by the mes- 
sage. If a willing process is found, it runs 
and sends a reply, unblocking the caller. If 
no such process can be found, the message 
is queued until one becomes available. 

3.4.2 Naming and Protection 

Naming and protection in Eden are accom- 
plished using the capability system. Data 
are encapsulated within objects, and are 
only accessible by invoking one of the op- 
erations defined by the object. To invoke 
an object, a process must have a valid ca- 
pability. Thus there is a uniform naming 
and protection scheme throughout Eden. 

Capabilities may be stored in any object. 
Directories provide a convenient mecha- 
nism for grouping capabilities together. 

3.4.3 Resource Management 

Because no version of Eden runs on bare 
machines, most of the issues associated 
with low-level resource management have 
not yet been dealt with. Nevertheless, some 
resource management issues have been ad- 
dressed. For example, when an object is 
created, the issue arises of where to put it. 
At present, it is just put on the same work- 
station as the object that created it unless 
an explicit request has been given to put it 
somewhere else. 

Another issue that has received consid- 
erable attention is how to achieve concur- 
rency within an object. From the beginning 
of the project it was considered desirable to 
allow multiple processes to be simultane- 
ously active within an object. These pro- 
cesses all share a common address space, 
although each one has its own stack for 
local variables, procedure call/return in- 
formation, etc. Having multiple active 
processes within an object, coupled with 
the basic Eden semantics of remote invoca- 
tions that block the caller but not the 
whole object, makes the implementation 
somewhat complicated. It is necessary to 
allow one process to block waiting for a 
reply without blocking the object as a 
whole. Monitors are used for synchroniza- 
tion. This multiprogramming of processes 
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within an object is handled by a run-time 
system within that object, rather than by 
the kernel itself (as is done in Amoeba and 
also in V). The experiences of Eden, 
Amoeba, and V all seem to indicate that 
having cheap, “lightweight” processes that 
share a common address space is often 
useful [Black 19851. 

Management of dynamic storage for ob- 
jects has also been a subject of some work. 
Each object has a heap for its own internal 
use, for which the EPL compiler generates 
explicit allocate and deallocate commands. 
However, a different storage management 
scheme is used for objects themselves. 
When a kernel creates an object, it allocates 
storage for the object from its own heap 
and gives the object its own address space. 
It also manages the user capabilities for the 
object in such a way that it is possible 
systematically to find all capabilities by 
scanning the kernel’s data structures. 

3.4.4 Fault Tolerance 

The Eden kernel does not support atomic 
actions directly, although some services 
provide them to their clients. Invocations 
can fail with status CANNOT LOCATE 
OBJECT when the machine on which the 
invoked object resides crashes. On the other 
hand, Eden goes to a considerable length 
to make sure that objects are not totally 
destroyed by crashes. The technique used 
to accomplish this goal is to have objects 
checkpoint themselves periodically. Once 
an object has written a copy of its state to 
disk, a subsequent crash merely has the 
effect of resetting the object to the state 
that it had at the most recent checkpoint. 
Checkpoints themselves are atomic, and 
this property can be used to build up more 
complex atomic actions. 

By judicious timing of its checkpoints, 
an object can achieve a high degree of reli- 
ability. For example, within the user mail 
system, a mailbox object will checkpoint 
itself just after any letter is received or 
removed. Upon receipt of a letter, a mailbox 
can wait for confirmation of the checkpoint 
before sending an acknowledgment back to 
the sender, to ensure that letters are never 
lost because of crashes. One drawback of 
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the whole checkpoint mechanism is that it 
is expensive: Any change to an object’s 
state, no matter how small, requires writing 
the entire object to the disk. The Eden 
designers acknowledge this as a problem. 

Another feature of Eden that supports 
fault tolerance is the ability of the file 
system, when asked, to store an object as 
multiple copies on different machines 
(see below). 

3.4.5 Services 

The Eden file system maintains arbitrary 
objects. One particular object type, the 
BYTESTORE, implements linear files, as 
in UNIX. It is possible to set the “current 
position” anywhere in the file and then read 
sequentially from that point. Unlike V and 
Amoeba, Eden does not have special ma- 
chines dedicated as servers. Instead, each 
workstation can support file objects, either 
for the benefit of the local user or remote 
ones. 

The model used for file service in Eden 
is quite different from the usual model of a 
file server, which manages some set of tiles 
and accepts requests from clients to per- 
form operations on them. In Eden, each file 
(i.e., BYTESTORE object) contains within 
it the processes needed to handle opera- 
tions on it. Thus the file contains the server 
rather than the server containing the file 
as in most other systems. 

Of course, actually having a process run- 
ning for each file in existence would be 
unbearably expensive, so an optimization 
is used in the implementation. When a file 
is not open, its processes are dormant and 
consume no resources (other than the disk 
space for its checkpoint). Mailboxes, direc- 
tories, and all other Eden objects work the 
same way. When an object is not busy with 
an invocation, the processes inside it are 
put to sleep by checkpointing the whole 
object to the disk. 

When a file is opened, a copy of the code 
for its internal processes is found, and the 
processes started up. Although all files on 
a given workstation share the same code, 
when the first file is opened on a work- 
station, the code may have to be fetched 
from another workstation. 
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The approach has advantages and dis- 
advantages compared with the traditional 
one-file-server-for-all-files way of doing 
things. There are two main advantages. 
First, the complicated, multithreaded file 
server code is eliminated: There is no tile 
server. The processes within a BYTE- 
STORE object are dedicated to a single file. 
Second, files can be migrated freely about 
all the nodes in the system, so that, for 
example, a tile might be created locally and 
then moved to a remote node where it will 
later be used. 

The chief disadvantage is performance. 
All the processes needed for the open tiles 
consume resources, and fetching the code 
for the first file to be opened on a work- 
station is slow. 

The Eden file system supports nested 
transactions [Pu and Noe 19851. When an 
atomic update on a set of files (or other 
objects) is to be carried out, the manager 
for that transaction first makes sure that 
all the new versions are safely stored on 
disk, then it checkpoints itself, and finally 
it updates the directory. 

The transaction facility can be used to 
support replicated tiles [Pu et al. 19861. In 
the simplest case, a directory object maps 
an ASCII name onto the capability for 
that object. However, the system also has 
“repdirs,” objects that map ASCII names 
onto sets of capabilities, for example, all 
the copies of a replicated file. Updating a 
replicated file is handled by a transaction 
manager, which uses a two-phase commit 
algorithm to update all the copies simul- 
taneously. If one of the copies is not 
available for updating (e.g., its machine is 
down or the network is partitioned), a new 
copy of the file is generated, and the capa- 
bility for the unreachable copy discarded. 
Sooner or later, the garbage collector will 
notice that the old copy is no longer in use 
and remove it. 

We touched briefly on the mail server 
above. The mail system defines message, 
mailbox, and address list objects, with op- 
erations to deliver mail, read mail, reply to 
mail, and so on. 

The appointment calendar system is an- 
other example of an Eden application. It is 
used to schedule meetings and runs in two 

phases. When someone proposes a meeting, 
a transaction is first done to mark the 
proposed time as “tentatively occupied” on 
all the participants’ calendars. When a par- 
ticipant notices the proposed date, he or 
she can then approve or reject it. If all 
participants approve the meeting, it is 
“committed” by another transaction; if 
someone rejects the proposed appointment, 
the other participants are notified. 

3.4.6 Implementation 

Eden has had a somewhat tortuous imple- 
mentation history. The initial version was 
designed to be written in Ada4 on the Intel 
432, a highly complex multiprocessor, fault- 
tolerant microprocessor chip ensemble. To 
make a long story short, neither the Ada 
compiler nor the 432 lived up to the pro- 
ject’s expectations. To gather information 
for further design, a “throwaway” imple- 
mentation was made on top of VMS on a 
VAX. 

The VAX/VMS version, called Newark 
(because that was thought to be far from 
Eden), was written in Pascal and was not 
distributed (i.e., it ran on a single VAX). It 
supported multiple processes per object 
(VMS kernel processes) but did not have 
automatic stub generation. Furthermore, 
the whole implementation was rather cum- 
bersome, so it was then decided to design a 
programming language that would provide 
automatic stub generation, better type 
checking, and a more convenient way of 
dealing with concurrency. 

This reevaluation led to EPL and a new 
implementation on top of UNIX instead of 
VMS. Subsequently, Eden was ported to 
68000-based workstations (SUNS), also on 
top of UNIX, rather than on the bare hard- 
ware (and in contrast to the Cambridge 
system, V, and Amoeba, all of which run 
on bare 68000s). The decision to put UNIX 
on the bottom, instead of the top (as was 
done with Amoeba), made system develop- 
ment easier and assisted users in migrating 
from UNIX to Eden. The price that has 
been paid is poor performance and a fair 

‘Ada is a trademark of the U.S. Department of 
Defense. 
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amount of effort spent trying to convince 
UNIX to do things against its will. 

3.5 Comparison of the Cambridge, 
Amoeba, V, and Eden Systems 

Our four example systems have many as- 
pects in common, but also differ in some 
significant ways. In this section we sum- 
marize and compare the four systems with 
respect to the main design issues that we 
have been discussing. 

3.5.1 Communication Primitives 

All four systems use an RPC-like mecha- 
nism (as opposed to an IS0 OS1 commu- 
nication-oriented mechanism). 

The Cambridge mechanism is the sim- 
plest, using the single-shot protocol with a 
2K request packet and a 2K reply packet 
for most client-server communication. A 
byte stream protocol is also available. 

Amoeba uses a similar REQUEST- 
REPLY mechanism, but allows messages 
up to 32 kilobytes (with the kernel-han- 
dling message fragmentation and reassem- 
bly), as well as acknowledgments and time- 
outs, thus providing user programs with a 
more reliable and simpler interface. 

V also uses a REQUEST-REPLY mech- 
anism, but messages longer than an Eth- 
ernet packet are dealt with by having the 
sender include a sort of “capability” for a 
message segment in the REQUEST packet. 
Using this “capability,” the receiver can 
fetch the rest of the message, as needed. 
For efficiency, the first 1K is piggybacked 
onto the REQUEST itself. 

Eden comes closest to a true RPC mech- 
anism, including having a language and 
compiler with automatic stub generation 
and a minilanguage for parameter passing. 
None of the four examples attempts to 
guarantee that remote calls will be executed 
exactly once. 

3.5.2 Naming and Protection 

All four systems use different schemes for 
naming and protection. In the Cambridge 
system a single name server process maps 
symbolic service names onto (node, process 
identifier) pairs so that the client will know 
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where to send the request. Protection is 
done by the active name table, which keeps 
track of the authorization status of each 
logged in user. 

Amoeba has a single mechanism for all 
naming and protection-sparse capabili- 
ties. Each capability contains bits specify- 
ing which operations on the object are 
allowed and which are not. The rights are 
protected cryptographically, so that user 
programs can manipulate them directly; 
they are not stored in the kernel. ASCII- 
string-to-capability mapping and capability 
storage are handled by directory servers for 
convenience. 

Eden also uses capabilities, but these are 
not protected by sparseness or encryption, 
and so they must be protected by the ker- 
nel. A consequence of this decision is that 
all the kernels must be trustworthy. The 
Amoeba cryptographic protection scheme 
is less restrictive on this point. 

V has naming at three levels: Processes 
have pids, kernels have ASCII-to-pid map- 
pings, and servers use a context mechanism 
to relate symbolic names to a given context. 

3.5.3 Resource Management 

Resource management is also handled quite 
differently on all four systems. In the Cam- 
bridge system the main resource is the 
processor bank. A resource manager is pro- 
vided to allocate machines to users. Gen- 
erally, this allocation is fairly static-upon 
login a user is allocated one machine for 
the duration of the login session, and this 
is the only machine the user uses during 
the session. The user may load any oper- 
ating system that he or she chooses in this 
machine. 

Amoeba also has a pool of processors, but 
these are allocated dynamically. A user run- 
ning “make” might be allocated ten pro- 
cessors to compile ten files; afterward, all 
the processors would go back into the pool. 
Amoeba also provides a way for processes 
to create segments on any machine (assum- 
ing that the proper capability can be 
shown) and for these segments to be forged 
into processes. Amoeba is unique among 
the four systems in that it has a bank server 
that can allow servers to charge for services 
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entire objects can be checkpointed, making 
checkpointing a slow operation and thus 
discouraging its frequent use. 

and to limit resource usage by accounting 
for it. 

In V, each processor is dedicated as either 
a workstation or a server, so processors are 
not resources to be dynamically allocated. 
Each V kernel manages its own local re- 
sources; there is no systemwide resource 
management. 

Eden has been built on top of existing 
operating systems, and therefore most of 
the issues of resource management are done 
by the underlying operating system. The 
main issue remaining for Eden is allocating 
and deallocating storage for objects. 

3.5.4 Fault Tolerance 

None of the four systems go to great lengths 
to make themselves fault tolerant; for ex- 
ample, none support atomic actions as a 
basic primitive. All four (with the possible 
exception of Eden) were designed with the 
intention of actually being used, so that the 
inherent trade-off between performance 
and fault tolerance tended to get resolved 
in favor of performance. 

In the Cambridge system the only con- 
cession to fault tolerance is a feature in the 
ring interface to allow a machine to be 
remotely reset by sending a special packet 
to the interface. There is also a small server 
that helps get the servers started up. 

Amoeba provides some fault tolerance 
through its boot server, with which pro- 
cesses can register. The boot server pools 
the registered processes periodically and, 
finding one that fails to respond, requests 
a new processor and downloads the failed 
program to it. This strategy does not re- 
trieve the processes that were killed when 
a machine has gone down, but it does au- 
tomatically ensure that no key service is 
ever down for more than, say, 30 seconds. 

V does not address the problem of fault 
tolerance at all. 

Of the four systems, Eden makes the 
most effort to provide a higher degree of 
reliability than provided by the bare hard- 
ware. The main tool used is checkpointing 
complete objects from time to time. If a 
processor crashes, each of its objects can be 
restored to the state it had at the time of 
the last checkpoint. Unfortunately, only 

3.5.5 Services 

The file systems used by Cambridge, 
Amoeba, V, and Eden are all quite different. 
The Cambridge system has two servers, the 
universal file server, and the filing machine, 
which was added later to improve the per- 
formance by providing a large buffer cache. 
The universal file server supports a primi- 
tive flat file, with no directory structure, 
which is provided by the filing machine or 
the user machines. The universal file server 
has regular and special files, of which the 
latter can be updated atomically. 

Amoeba has several file systems. One of 
them is compatible with UNIX, to allow 
UNIX applications to run on Amoeba. An- 
other one, FUSS, supports multiversion, 
multiserver, tree-structured, immutable 
files with atomic commit. Directory servers 
map ASCII names to capabilities, thus al- 
lowing an arbitrary graph of files and direc- 
tories to be constructed. 

V has a traditional file server similar to 
UNIX. It is based on the earlier Thoth 
system. 

Eden has no file server at all in the usual 
sense. Instead, each file object has embed- 
ded in it a process that acts like a private 
file server for that one file. Like Amoeba, 
Eden has separate directory servers that 
map ASCII strings onto capabilities and 
provides the ability to map one string onto 
several files, thus providing for file repli- 
cation. All four systems have a heteroge- 
neous variety of other services (e.g., print, 
mail, bank). 

4. SUMMARY 

Distributed operating systems are still in 
an early phase of development, with many 
unanswered questions and relatively little 
agreement among workers in the field about 
how things should be done. Many experi- 
mental systems use the client-server model 
with some form of remote procedure call as 
the communication base, but there are also 
systems built on the connection model. 
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Relatively little has been done on distrib- 
uted naming, protection, and resource 
management, other than building straight- 
forward name servers and process servers. 
Fault tolerance is an up-and-coming area, 
with work progressing in redundancy tech- 
niques and atomic actions. Finally, a con- 
siderable amount of work has gone into the 
construction of file servers, print servers, 
and various other servers, but here too 
there is much work to be done. The only 
conclusion that we draw is that distributed 
operating systems will be an interesting and 
fruitful area of research for a number of 
years to come. 
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