16,271 research outputs found

    Environmental shaping of codon usage and functional adaptation across microbial communities.

    Get PDF
    Microbial communities represent the largest portion of the Earth's biomass. Metagenomics projects use high-throughput sequencing to survey these communities and shed light on genetic capabilities that enable microbes to inhabit every corner of the biosphere. Metagenome studies are generally based on (i) classifying and ranking functions of identified genes; and (ii) estimating the phyletic distribution of constituent microbial species. To understand microbial communities at the systems level, it is necessary to extend these studies beyond the species' boundaries and capture higher levels of metabolic complexity. We evaluated 11 metagenome samples and demonstrated that microbes inhabiting the same ecological niche share common preferences for synonymous codons, regardless of their phylogeny. By exploring concepts of translational optimization through codon usage adaptation, we demonstrated that community-wide bias in codon usage can be used as a prediction tool for lifestyle-specific genes across the entire microbial community, effectively considering microbial communities as meta-genomes. These findings set up a 'functional metagenomics' platform for the identification of genes relevant for adaptations of entire microbial communities to environments. Our results provide valuable arguments in defining the concept of microbial species through the context of their interactions within the community

    Capturing the ‘ome’ : the expanding molecular toolbox for RNA and DNA library construction

    Get PDF
    All sequencing experiments and most functional genomics screens rely on the generation of libraries to comprehensively capture pools of targeted sequences. In the past decade especially, driven by the progress in the field of massively parallel sequencing, numerous studies have comprehensively assessed the impact of particular manipulations on library complexity and quality, and characterized the activities and specificities of several key enzymes used in library construction. Fortunately, careful protocol design and reagent choice can substantially mitigate many of these biases, and enable reliable representation of sequences in libraries. This review aims to guide the reader through the vast expanse of literature on the subject to promote informed library generation, independent of the application

    Physico-chemical foundations underpinning microarray and next-generation sequencing experiments

    Get PDF
    Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized

    Bias detection and correction in RNA-Sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High throughput sequencing technology provides us unprecedented opportunities to study transcriptome dynamics. Compared to microarray-based gene expression profiling, RNA-Seq has many advantages, such as high resolution, low background, and ability to identify novel transcripts. Moreover, for genes with multiple isoforms, expression of each isoform may be estimated from RNA-Seq data. Despite these advantages, recent work revealed that base level read counts from RNA-Seq data may not be randomly distributed and can be affected by local nucleotide composition. It was not clear though how the base level read count bias may affect gene level expression estimates.</p> <p>Results</p> <p>In this paper, by using five published RNA-Seq data sets from different biological sources and with different data preprocessing schemes, we showed that commonly used estimates of gene expression levels from RNA-Seq data, such as reads per kilobase of gene length per million reads (RPKM), are biased in terms of gene length, GC content and dinucleotide frequencies. We directly examined the biases at the gene-level, and proposed a simple generalized-additive-model based approach to correct different sources of biases simultaneously. Compared to previously proposed base level correction methods, our method reduces bias in gene-level expression estimates more effectively.</p> <p>Conclusions</p> <p>Our method identifies and corrects different sources of biases in gene-level expression measures from RNA-Seq data, and provides more accurate estimates of gene expression levels from RNA-Seq. This method should prove useful in meta-analysis of gene expression levels using different platforms or experimental protocols.</p
    corecore