26 research outputs found

    Joint smoothed l0-norm DOA estimation algorithm for multiple measurement vectors in MIMO radar

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l0-norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l0-norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l1-norm minimization based methods, such as l1-SVD (singular value decomposition), RV (real-valued) l1-SVD and RV l1-SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance

    Stochastic Cramer-Rao bound for DOA estimation with a mixture of circular and noncircular signals

    Get PDF
    The Cramer-Rao bound (CRB) offers insights into the inherent performance benchmark of any unbiased estimator developed for a specific parametric model, which is an important tool to evaluate the performance of direction-of-arrival (DOA) estimation algorithms. In this paper, a closed-form stochastic CRB for a mixture of circular and noncircular uncorrelated Gaussian signals is derived. As a general one, it can be transformed into some existing representative results. The existence condition of the CRB is also analysed based on sparse arrays, which allows the number of signals to be more than the number of physical sensors. Finally, numerical comparisons are conducted in various scenarios to demonstrate the validity of the derived CRB

    Atomic norm-based DOA estimation with sum and difference co-arrays in coexistence of circular and non-circular signals

    Get PDF
    Sparse arrays can increase the array aperture and degrees of freedom through the construction of either sum or difference co-arrays or both. In order to exploit the advantages of sparse arrays while estimating directions of arrival (DOAs) of a mixture of circular and non-circular signals, in this paper, a gridless DOA estimation method is proposed by employing a recently introduced enhanced nested array, whose virtual arrays have no holes. The virtual signals derived from both sum and difference co-arrays are constructed based on atomic norm minimization. It is shown that the proposed method also works when the circular and non-circular signals come from the same set of directions. Simulation results are provided to demonstrate the performance of the proposed method

    ESPRIT-like two-dimensional direction finding for mixed circular and strictly noncircular sources based on joint diagonalization

    Get PDF
    In this paper, a two-dimensional (2-D) direction-of-arrival (DOA) estimation method for a mixture of circular and strictly noncircular signals is presented based on a uniform rectangular array (URA). We first formulate a new 2-D array model for such a mixture of signals, and then utilize the observed data coupled with its conjugate counterparts to construct a new data vector and its associated covariance matrix for DOA estimation. By exploiting the second-order non-circularity of incoming signals, a computationally effective ESPRIT-like method is adopted to estimate the 2-D DOAs of mixed sources which are automatically paired by joint diagonalization of two direction matrices. One particular advantage of the proposed method is that it can solve the angle ambiguity problem when multiple incoming signals have the same angle θ or β. Furthermore, the theoretical error performance of the proposed method is analyzed and a closed-form expression for the deterministic Cramer-Rao bound (CRB) for the considered signal scenario is derived. Simulation results are provided to verify the effectiveness of the proposed method

    Sparse Linear Antenna Arrays: A Review

    Get PDF
    Linear sparse antenna arrays have been widely studied in array processing literature. They belong to the general class of non-uniform linear arrays (NULAs). Sparse arrays need fewer sensor elements than uniform linear arrays (ULAs) to realize a given aperture. Alternately, for a given number of sensors, sparse arrays provide larger apertures and higher degrees of freedom than full arrays (ability to detect more source signals through direction-of-arrival (DOA) estimation). Another advantage of sparse arrays is that they are less affected by mutual coupling compared to ULAs. Different types of linear sparse arrays have been studied in the past. While minimum redundancy arrays (MRAs) and minimum hole arrays (MHAs) existed for more than five decades, other sparse arrays such as nested arrays, co-prime arrays and super-nested arrays have been introduced in the past decade. Subsequent to the introduction of co-prime and nested arrays in the past decade, many modifications, improvements and alternate sensor array configurations have been presented in the literature in the past five years (2015–2020). The use of sparse arrays in future communication systems is promising as they operate with little or no degradation in performance compared to ULAs. In this chapter, various linear sparse arrays have been compared with respect to parameters such as the aperture provided for a given number of sensors, ability to provide large hole-free co-arrays, higher degrees of freedom (DOFs), sharp angular resolutions and susceptibility to mutual coupling. The chapter concludes with a few recommendations and possible future research directions

    Multi-source parameter estimation and tracking using antenna arrays

    Get PDF
    This thesis is concerned with multi-source parameter estimation and tracking using antenna arrays in wireless communications. Various multi-source parameter estimation and tracking algorithms are presented and evaluated. Firstly, a novel multiple-input multiple-output (MIMO) communication system is proposed for multi-parameter channel estimation. A manifold extender is presented for increasing the degrees of freedom (DoF). The proposed approach utilises the extended manifold vectors together with superresolution subspace type algorithms, to achieve the estimation of delay, direction of departure (DOD) and direction of arrival (DOA) of all the paths of the desired user in the presence of multiple access interference (MAI). Secondly, the MIMO system is extended to a virtual-spatiotemporal system by incorporating the temporal domain of the system towards the objective of further increasing the degrees of freedom. In this system, a multi-parameter es- timation of delay, Doppler frequency, DOD and DOA of the desired user, and a beamformer that suppresses the MAI are presented, by utilising the proposed virtual-spatiotemporal manifold extender and the superresolution subspace type algorithms. Finally, for multi-source tracking, two tracking approaches are proposed based on an arrayed Extended Kalman Filter (arrayed-EKF) and an arrayed Unscented Kalman Filter (arrayed-UKF) using two type of antenna arrays: rigid array and flexible array. If the array is rigid, the proposed approaches employ a spatiotemporal state-space model and a manifold extender to track the source parameters, while if it is flexible the array locations are also tracked simultaneously. Throughout the thesis, computer simulation studies are presented to investigate and evaluate the performance of all the proposed algorithms.Open Acces

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link
    corecore